73,149 research outputs found

    Classification with Single Constraint Progressive Mining of Sequential Patterns

    Get PDF
    Classification based on sequential pattern data has become an important topic to explore. One of research has been carried was the Classify-By-Sequence, CBS. CBS classified data based on sequential patterns obtained from AprioriLike sequential pattern mining. Sequential patterns obtained were called CSP, Classifiable Sequential Patterns. CSP was used as classifier rules or features for the classification task. CBS used AprioriLike algorithm to search for sequential patterns. However, AprioriLike algorithm took a long time to search for them. Moreover, not all sequential patterns were important for the user. In order to get the right and meaningful features for classification, user uses a constraint in sequential pattern mining. Constraint is also expected to reduce the number of sequential patterns that are short and less meaningful to the user. Therefore, we developed CBS_CLASS* with Single Constraint Progressive Mining of Sequential Patterns or Single Constraint PISA or PISA*. CBS_Class* with PISA* was proven to classify data in faster time since it only processed lesser number of sequential patterns but still conform to user’s need. The experiment result showed that compared to CBS_CLASS, CBS_Class* reduced the classification execution time by 89.8%. Moreover, the accuracy of the classification process can still be maintained.

    Various Sequence Classification Mechanisms for Knowledge Discovery

    Get PDF
    Sequence classification is an efficient task in data mining. The knowledge obtained from training stage can be used for sequence classification that assigns class labels to the new sequences. Relevant patterns can be found by using sequential pattern mining in which the values are represented in sequential manner. Classification process has explicit features but these features are not found in sequences. Feature selection techniques are sophisticated, but the potential features dimensionality may be very high. It is hard to find the sequential nature of feature. Sequence classification is a more challenging task than feature vector classification. Sequence classification problem can be solved by rules that consist of interesting patterns. These patterns are found in datasets that have labeled sequences along with class labels. The cohesion and support of the pattern are used to define interestingness of a pattern. In a given class of sequences, interestingness of a pattern can be measured by combining these two factors. Confident classification rules can be generated by using the discovered patterns. Two different approaches to build a classifier are used. The first classifier consists of an advanced form of classification method that depends on association rule. In the second classifier, the value belonging to the new data object is first measured then the rules are ranked

    Parallel Methods for Mining Frequent Sequential patterns

    Get PDF
    The explosive growth of data and the rapid progress of technology have led to a huge amount of data that is collected every day. In that data volume contains much valuable information. Data mining is the emerging field of applying statistical and artificial intelligence techniques to the problem of finding novel, useful and non-trivial patterns from large databases. It is the task of discovering interesting patterns from large amounts of data. This is achieved by determining both implicit and explicit unidentified patterns in data that can direct the process of decision making. There are many data mining tasks, such as classification, clustering, association rule mining and sequential pattern mining. In that, sequential pattern mining is an important problem in data mining. It provides an effective way to analyze the sequence data. The goal of sequential pattern mining is to discover interesting, unexpected and useful patterns from sequence databases. This task is used in many wide applications such as financial data analysis of banks, retail industry, customer shopping history, goods transportation, consumption and services, telecommunication industry, biological data analysis, scientific applications, network intrusion detection, scientific research, etc. Different types of sequential pattern mining can be performed, they are sequential patterns, maximal sequential patterns, closed sequences, constraint based and time interval based sequential patterns. Sequential pattern mining refers to the identification of frequent subsequences in sequence databases as patterns. In the last two decades, researchers have proposed many techniques and algorithms for extracting the frequent sequential patterns, in which the downward closure property plays a fundamental role. Sequential pattern is a sequence of itemsets that frequently occur in a specific order, where all items in the same itemsets are supposed to have the same transaction time value. One of the challenges for sequential pattern mining is the computational costs beside that is the potentially huge number of extracted patterns. In this thesis, we present an overview of the work done for sequential pattern mining and develop parallel methods for mining frequent sequential patterns in sequence databases that can tackle emerging data processing workloads while coping with larger and larger scales.The explosive growth of data and the rapid progress of technology have led to a huge amount of data that is collected every day. In that data volume contains much valuable information. Data mining is the emerging field of applying statistical and artificial intelligence techniques to the problem of finding novel, useful and non-trivial patterns from large databases. It is the task of discovering interesting patterns from large amounts of data. This is achieved by determining both implicit and explicit unidentified patterns in data that can direct the process of decision making. There are many data mining tasks, such as classification, clustering, association rule mining and sequential pattern mining. In that, sequential pattern mining is an important problem in data mining. It provides an effective way to analyze the sequence data. The goal of sequential pattern mining is to discover interesting, unexpected and useful patterns from sequence databases. This task is used in many wide applications such as financial data analysis of banks, retail industry, customer shopping history, goods transportation, consumption and services, telecommunication industry, biological data analysis, scientific applications, network intrusion detection, scientific research, etc. Different types of sequential pattern mining can be performed, they are sequential patterns, maximal sequential patterns, closed sequences, constraint based and time interval based sequential patterns. Sequential pattern mining refers to the identification of frequent subsequences in sequence databases as patterns. In the last two decades, researchers have proposed many techniques and algorithms for extracting the frequent sequential patterns, in which the downward closure property plays a fundamental role. Sequential pattern is a sequence of itemsets that frequently occur in a specific order, where all items in the same itemsets are supposed to have the same transaction time value. One of the challenges for sequential pattern mining is the computational costs beside that is the potentially huge number of extracted patterns. In this thesis, we present an overview of the work done for sequential pattern mining and develop parallel methods for mining frequent sequential patterns in sequence databases that can tackle emerging data processing workloads while coping with larger and larger scales.460 - Katedra informatikyvyhově

    Multivariate sequential contrast pattern mining and prediction models for critical care clinical informatics

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Data mining and knowledge discovery involves efficient search and discovery of patterns in data that are able to describe the underlying complex structure and properties of the corresponding system. To be of practical use, the discovered patterns need to be novel, informative and interpretable. Large-scale unstructured biomedical databases such as electronic health records (EHRs) tend to exacerbate the problem of discovering interesting and useful patterns. Typically, patients in intensive care units (ICUs) require constant monitoring of vital signs. To this purpose, significant quantities of patient data, coupled with waveform signals are gathered from biosensors and clinical information systems. Subsequently, clinicians face an enormous challenge in the assimilation and interpretation of large volumes of unstructured, multidimensional, noisy and dynamically fluctuating patient data. The availability of de-identified ICU datasets like the MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care) databases provide an opportunity to advance medical care, by benchmarking algorithms that capture subtle patterns associated with specific medical conditions. Such patterns are able to provide fresh insights into disease dynamics over long time scales. In this research, we focus on the extraction of computational physiological markers, in the form of relevant medical episodes, event sequences and distinguishing sequential patterns. These interesting patterns known as sequential contrast patterns are combined with patient clinical features to develop powerful clinical prediction models. Later, the clinical models are used to predict critical ICU events, pertaining to numerous forms of hemodynamic instabilities causing acute hypotension, multiple organ failures, and septic shock events. In the process, we employ novel sequential pattern mining methodologies for the structured analysis of large-scale ICU datasets. The reported algorithms use a discretised representation such as symbolic aggregate approximation for the analysis of physiological time series data. Thus, symbolic sequences are used to abstract physiological signals, facilitating the development of efficient sequential contrast mining algorithms to extract high risk patterns and then risk stratify patient populations, based on specific clinical inclusion criteria. Chapter 2 thoroughly reviews the pattern mining research literature relating to frequent sequential patterns, emerging and contrast patterns, and temporal patterns along with their applications in clinical informatics. In Chapter 3, we incorporate a contrast pattern mining algorithm to extract informative sequential contrast patterns from hemodynamic data, for the prediction of critical care events like Acute Hypotension Episodes (AHEs). The proposed technique extracts a set of distinguishing sequential patterns to predict the occurrence of an AHE in a future time window, following the passage of a user-defined gap interval. The method demonstrates that sequential contrast patterns are useful as potential physiological biomarkers for building optimal patient risk stratification systems and for further clinical investigation of interesting patterns in critical care patients. Chapter 4 reports a generic two stage sequential patterns based classification framework, which is used to classify critical patient events including hypotension and patient mortality, using contrast patterns. Here, extracted sequential patterns undergo transformation to construct binary valued and frequency based feature vectors for developing critical care classification models. Chapter 5 proposes a novel machine learning approach using sequential contrast patterns for the early prediction of septic shock. The approach combines highly informative sequential patterns extracted from multiple physiological variables and captures the interactions among these patterns via Coupled Hidden Markov Models (CHMM). Our results demonstrate a strong competitive accuracy in the predictions, especially when the interactions between the multiple physiological variables are accounted for using multivariate coupled sequential models. The novelty of the approach stems from the integration of sequence-based physiological pattern markers with the sequential CHMM to learn dynamic physiological behavior as well as from the coupling of such patterns to build powerful risk stratification models for septic shock patients. All of the described methods have been tested and bench-marked using numerous real world critical care datasets from the MIMIC-II database. The results from these experiments show that multivariate sequential contrast patterns based coupled models are highly effective and are able to improve the state-of-the-art in the design of patient risk prediction systems in critical care settings

    A Survey and Taxonomy of Sequential Recommender Systems for E-commerce Product Recommendation

    Get PDF
    E-commerce recommendation systems facilitate customers’ purchase decision by recommending products or services of interest (e.g., Amazon). Designing a recommender system tailored toward an individual customer’s need is crucial for retailers to increase revenue and retain customers’ loyalty. As users’ interests and preferences change with time, the time stamp of a user interaction (click, view or purchase event) is an important characteristic to learn sequential patterns from these user interactions and, hence, understand users’ long- and short-term preferences to predict the next item(s) for recommendation. This paper presents a taxonomy of sequential recommendation systems (SRecSys) with a focus on e-commerce product recommendation as an application and classifies SRecSys under three main categories as: (i) traditional approaches (sequence similarity, frequent pattern mining and sequential pattern mining), (ii) factorization and latent representation (matrix factorization and Markov models) and (iii) neural network-based approaches (deep neural networks, advanced models). This classification contributes towards enhancing the understanding of existing SRecSys in the literature with the application domain of e-commerce product recommendation and provides current status of the solutions available alongwith future research directions. Furthermore, a classification of surveyed systems according to eight important key features supported by the techniques along with their limitations is also presented. A comparative performance analysis of the presented SRecSys based on experiments performed on e-commerce data sets (Amazon and Online Retail) showed that integrating sequential purchase patterns into the recommendation process and modeling users’ sequential behavior improves the quality of recommendations

    Motivic Pattern Classification of Music Audio Signals Combining Residual and LSTM Networks

    Get PDF
    Motivic pattern classification from music audio recordings is a challenging task. More so in the case of a cappella flamenco cantes, characterized by complex melodic variations, pitch instability, timbre changes, extreme vibrato oscillations, microtonal ornamentations, and noisy conditions of the recordings. Convolutional Neural Networks (CNN) have proven to be very effective algorithms in image classification. Recent work in large-scale audio classification has shown that CNN architectures, originally developed for image problems, can be applied successfully to audio event recognition and classification with little or no modifications to the networks. In this paper, CNN architectures are tested in a more nuanced problem: flamenco cantes intra-style classification using small motivic patterns. A new architecture is proposed that uses the advantages of residual CNN as feature extractors, and a bidirectional LSTM layer to exploit the sequential nature of musical audio data. We present a full end-to-end pipeline for audio music classification that includes a sequential pattern mining technique and a contour simplification method to extract relevant motifs from audio recordings. Mel-spectrograms of the extracted motifs are then used as the input for the different architectures tested. We investigate the usefulness of motivic patterns for the automatic classification of music recordings and the effect of the length of the audio and corpus size on the overall classification accuracy. Results show a relative accuracy improvement of up to 20.4% when CNN architectures are trained using acoustic representations from motivic patterns

    Behavioral constraint template-based sequence classification

    Get PDF
    In this paper we present the interesting Behavioral Constraint Miner (iBCM), a new approach towards classifying sequences. The prevalence of sequential data, i.e., a collection of ordered items such as text, website navigation patterns, traffic management, and so on, has incited a surge in research interest towards sequence classification. Existing approaches mainly focus on retrieving sequences of itemsets and checking their presence in labeled data streams to obtain a classifier. The proposed iBCM approach, rather than focusing on plain sequences, is template-based and draws its inspiration from behavioral patterns used for software verification. These patterns have a broad range of characteristics and go beyond the typical sequence mining representation, allowing for a more precise and concise way of capturing sequential information in a database. Furthermore, it is possible to also mine for negative information, i.e., sequences that do not occur. The technique is benchmarked against other state-of-the-art approaches and exhibits a strong potential towards sequence classification. Code related to this chapter is available at: http://feb.kuleuven.be/public/u0092789/status: publishe

    Data Mining Approach for Amino Acid Sequence Classification

    Get PDF
    Computerized applications are employed all around the world, an enormous amount of data is collected. The essential information contained in large amounts of data is attracting scholars from a variety of disciplines to examine how to extract the hidden knowledge inside them. The technique of obtaining or mining usable and valuable knowledge from enormous amounts of data is known as data mining. Text mining, picture mining, sequential pattern mining, web mining, and so on are all examples of data mining fields. Sequencing mining is one of the most important technologies in this field, as it aids in the discovery of sequential connections in data. Sequence mining is used in a variety of applications, including customers' buying trends analysis, web access trends analysis, atmospheric observation, amino acid sequences, Gene sequencing, and so on. Sequence mining techniques are utilized in protein and DNA analysis for sequence alignment, pattern searching, and pattern categorization. Researchers are exhibiting an interest in the subject of amino acid sequence categorization in the field of amino acid sequence analysis. It has the ability to find recurrent patterns in homologous proteins. This study describes the numerous methods used by numerous studies to categories proteins and gives an overview of the most important sequence classification techniques
    corecore