

VŠB-TECHNICAL UNIVERSITY OF OSTRAVA

FACULTY OF ELECTRICAL ENGINEERING

AND COMPUTER SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

P H D T H E S I S

Study branch: COMPUTER SCIENCE

PhD Thesis

Parallel Methods for Mining

Frequent Sequential Patterns

A u t h o r : Quoc Bao Huynh

S u p e r v i s o r : Prof. RNDr. Václav Snášel, CSc.

Abstract

The explosive growth of data and the rapid progress of technology have led to a huge amount of

data that is collected every day. In that data volume contains much valuable information. Data mining

is the emerging field of applying statistical and artificial intelligence techniques to the problem of

finding novel, useful and non-trivial patterns from large databases. It is the task of discovering

interesting patterns from large amounts of data. This is achieved by determining both implicit and

explicit unidentified patterns in data that can direct the process of decision making.

There are many data mining tasks, such as classification, clustering, association rule mining and

sequential pattern mining. In that, sequential pattern mining is an important problem in data mining. It

provides an effective way to analyze the sequence data. The goal of sequential pattern mining is to

discover interesting, unexpected and useful patterns from sequence databases. This task is used in many

wide applications such as financial data analysis of banks, retail industry, customer shopping history,

goods transportation, consumption and services, telecommunication industry, biological data analysis,

scientific applications, network intrusion detection, scientific research, etc. Different types of sequential

pattern mining can be performed, they are sequential patterns, maximal sequential patterns, closed

sequences, constraint based and time interval based sequential patterns.

Sequential pattern mining refers to the identification of frequent subsequences in sequence databases

as patterns. In the last two decades, researchers have proposed many techniques and algorithms for

extracting the frequent sequential patterns, in which the downward closure property plays a fundamental

role. Sequential pattern is a sequence of itemsets that frequently occur in a specific order, where all items

in the same itemsets are supposed to have the same transaction time value.

One of the challenges for sequential pattern mining is the computational costs beside that is the

potentially huge number of extracted patterns. In this thesis, we present an overview of the work done

for sequential pattern mining and develop parallel methods for mining frequent sequential patterns in

sequence databases that can tackle emerging data processing workloads while coping with larger and

larger scales.

Keyword: Data Mining, Frequent Pattern, Sequential Pattern, Parallel Mining, Dynamic Load

Balancing, Multi-core processors, Sequence Database, Large Sequence Database.

 iii

Acknowledgments

First, I would like to express my sincere gratitude to my supervisors, Prof. Václav Snášel and Assoc.

Prof. Bay Vo, for their continuous support, patience, motivation, enthusiasm and immense knowledge.

Their guidance helped me in doing research, writing papers and writing this thesis. I also would like to

thank them for all the activities they organized, such as coursework, which introduce me to the world of

research.

In addition, I would like to thank the organizers, professors and secretaries of the sandwich program

for allowing me to participate in the international network. Especially, I would like to give special thanks

to Dr. Phan Dao for his advice and support while I studied in Vietnam and Czech Republic.

I would like to thank Ton Duc Thang University for their supporting me on during research time.

My sincere thanks also go to my colleagues Mr. Le Cung Tuong, Mr. Nguyen Anh, Mr. Nguyen

Dinh Anh and Mr. Pham Phu Thanh Sang. They gave me much helpful advice and support on doing

research during the past four years.

I would like to thank Assoc. Prof. Pavel Krömer for his support me to access the HPC server to

implement some experiments.

I would like to thank all members of the committees of my state examination and thesis, for their

insightful comments.

Finally, I sincerely thank my family who encouraged and motivated me and created favorable

conditions during my PhD study.

 v

List of Abbreviations

BIDE BI-Directional Extension

CART Classification And Regression Trees

ClaSP Closed Sequential Patterns

CloFS-DBV Frequent Closed Sequences uses Dynamic Bit Vectors

CloGen Closed-Generator

CloSpan Closed Sequential pattern mining

CM-SPADE Co-occurence MAP SPADE

DAT Attribute of sequence such as the time stamp or space location

CRM Customer Relationship Management

DBV Dynamic bit vector

DBV-SPM Dynamic bit vector Sequential pattern mining

DDM Distributed Data Mining

DFS Depth First Search

DNA Deoxyribo Nucleic Acid

EISP-Miner Enhanced Inter-Sequence Pattern Miner

FITI First Intra Then Inter

FP-array Frequent Pattern array

FP-growth Frequent Pattern growth

FP-tree Frequent Pattern tree

FreeSpan Frequent pattern-projected Sequential PAttern mining

FSP Frequent Sequential Patterns

GapMis-OMP OpenMP-based version of GapMis

GPU Graphics Processing Units

GSP Generalized Sequential Pattern

gSpan graph-based Substructure PAttern mining

IAR Miner Inter-transaction Association Rule Miner

ICMiner Inter-transaction Closed patterns Miner

ID3 Iterative Dichotomiser 3

iISP-IC improved Inter-Sequence Pattern with Item Constraint mining

IMSR_PreTree Improved mining sequential rules based on the prefix-tree

ISP-IC Inter-Sequence Pattern with Item Constraint mining

ISP-tree Inter-Sequence Pattern tree

ITP-Miner Inter-Transaction Patterns Miner

 vi

KDD Knowledge Discovery from Databases

k-sequence Sequence with length k

LP List of position

LST Lexicographic Sequence Tree

MNSR-PreTree Mining Non-redundant Sequential Rules based on the Prefix-tree

MATI Multi-Core Apriori Transaction Identifiers

minsup User-specified minimum support threshold

OLAP Online Analytical Processing

Par-CSP Parallel Closed Sequential Pattern

pDBV-FCSP Parallel Dynamic Bit Vector Frequent Closed Sequential Patterns

pDBV-SPM Parallel Dynamic Bit Vector Sequential Pattern Mining

PFI-PrefixSpan Prefix-Frequent-Items PrefixSpan

PGP-mc Parallel Gradual Pattern Extraction

PIB-PRISM Parallel Independent Branch PRISM

piISP-IC parallel iISP-IC algorithm

PMFS-IB Parallel Mining Frequent Subgraphs with Independent Branch

PMFS-SB Parallel Mining Frequent Subgraphs with Shared Branch

PPL Parallel Patterns Library

PrefixSpan Prefix-projected Sequential pattern mining

PRISM PRIme-Encoding Based Sequence Mining

PSP Prefix-tree for Sequential Pattern

pSPADE Parallel Sequential Pattern Discovery using Equivalent classes

SID Sequence identifier

SIMD Single Instruction Multiple Data

SMP Symmetric Multiprocessor

SP Sequential Pattern

SPADE Sequential Pattern Discovery using Equivalent classes

SPAM Sequential PAttern Mining

SPaMi-FTS Sequential Pattern Mining based on Frequent Two-Sequences

SPM Sequential Pattern Mining

SPMD Single Program Multiple Data

SW Smith-Waterman

TPL Task Parallel Library

VLSI Very Large Scale Integration

 viii

Annotation

I I = {i1, i2, ..., im} Set of items

X X = (I1, I2, ..., Iu), Ik  I, 1≤ k ≤ u Itemset

S S = I1 I2... Iv, Ik  I, 1 ≤ k ≤ v Sequence

TDB TDB = {T1, T2,... ,Tn}, Ti = tid, X, 1 ≤ i ≤ n Transaction database

SDB SDB = {S1, S2,... ,Sn}, Si = sid, S, 1 ≤ i ≤ n Sequence database

 (p)  (p) = |{Si  SDB | p  Si}| Minimum support (minsup)

  = S1[0]  S2[d2 – d1] … Sk[dk – d1], k ≥ 1 Mega sequence

  = {u1, u2, …, uk} Set of constraint

  = a1 a2 ... au Sequence 

  = b1 b2 ... bv Sequence 

  = {α|α  L  β  L: α  β  (α) = (β)},

L is a completed set of frequent sequential patterns

Set of frequent closed sequential

pattern

G G = {2, 3, 5, 7, 11, 13,…} Set of prime numbers in ordered

P(G) P(G)  G Set of all subset of G

⨂S ⨂S = s1×s2×...×sn, si  S Multiplication operator of S

⨂P(G) ⨂P(G) = {⨂S: S ∈ P(G)} All sets S in P(G)

gcd(x, y) gcd(x, y) = ∏ 𝑝𝑖
𝑚𝑖

𝑖 Greatest common divisor

lcm(x, y) lcm(x, y) =
|𝑥 . 𝑦|

gcd (𝑥,𝑦)
 Least common multiple

Table of Contents

Abstract .. i

Acknowledgments ... iii

List of Abbreviations .. v

Annotation ... viii

Table of Contents ... x

List of Figures .. xiv

List of Tables .. xvii

Chapter 1 Introduction .. 1

1.1. Knowledge discovery process .. 2

1.2. Data Mining ... 5

1.3. Data Mining Tasks ... 7

1.3.1. Clustering ... 8

1.3.2. Summarization ... 9

1.3.3. Association Rules .. 9

1.3.4. Classification ... 10

1.3.5. Trend analysis .. 11

1.3.6. Rule Mining and Evaluation .. 11

1.3.7. Attribute Reduction .. 12

1.3.8. Missing Value Handling .. 12

1.4. Data Mining Applications .. 13

1.5. Motivation .. 14

1.6. Contributions ... 14

1.7. Organization of Thesis ... 15

1.8. Summary .. 16

Chapter 2 Background .. 18

2.1. Preliminaries .. 18

2.2. Sequential pattern mining .. 21

2.2.1. AprioriAll ... 23

2.2.2. GSP .. 23

2.2.3. SPAM ... 23

2.2.4. SPADE ... 23

2.2.5. FreeSpan .. 24

2.2.6. PrefixSpan .. 24

2.2.7. Limitations of sequential pattern mining ... 24

2.3. Frequent closed sequential pattern mining .. 25

2.4. Parallel computing ... 26

2.5. Multi-core processors architecture ... 30

2.6. Parallel programming... 32

Table of Contents xi

2.7. Task parallel programming .. 35

2.8. Parallel sequential pattern mining .. 36

2.9. Bit vectors .. 37

2.10. Dynamic bit vectors ... 37

2.10.1. Dynamic bit vector data structure .. 38

2.10.2. DBV-Pattern data structure .. 39

2.10.3. DBV-Tree .. 39

2.11. Summary .. 40

Chapter 3 Parallel methods for mining sequential patterns .. 42

3.1. Introduction .. 42

3.2. Parallel Independent Branch PRISM (PIB-PRISM) .. 43

3.2.1. Prime block encoding .. 43

3.2.2. Parallel Independent Branch PRISM ... 45

3.2.3. Experimental results .. 48

3.3. Parallel Dynamic Bit Vector Sequential Pattern Mining (pDBV-SPM) 49

3.3.1. Parallel Dynamic Bit Vector Sequential Pattern Mining ... 49

3.3.2. Experimental results .. 55

3.3.3. Runtime .. 56

3.3.4. Memory usage .. 58

3.4. Parallel mining inter-sequence patterns with item constraints 59

3.4.1. Inter-sequence pattern mining .. 60

3.4.2. DBV-PatternList data structure.. 62

3.4.3. Mining inter-sequence patterns with item constraints ... 63

3.4.4. Problem statement .. 63

3.4.5. ISP-IC algorithm .. 63

3.4.6. An illustrative example .. 66

3.4.7. iISP-IC algorithm ... 67

3.4.8. piISP-IC: a parallel version of iISP-IC algorithm ... 69

3.4.9. Experimental results .. 70

3.4.9.1. Runtime .. 70

3.4.9.2. Memory usage .. 74

3.5. Summary .. 78

Chapter 4 Parallel mining frequent closed sequential patterns... 80

4.1. Introduction .. 80

4.2. Parallel mining frequent closed sequential patterns... 81

4.3. Experimental results .. 87

4.3.1. Runtime .. 89

4.3.2. Memory usage .. 91

4.3.3. Scalability .. 94

4.4. Summary .. 94

Table of Contents xii

Chapter 5 Conclusions and Future works ... 96

5.1. Conclusion ... 96

5.2. Future works .. 98

5.3. Publications .. 98

References .. 101

List of Figures

Figure 1.1. Data mining in hierarchy [31] .. 1

Figure 1.2. The knowledge discovery process ... 3

Figure 1.3. Data mining tasks ... 8

Figure 2.1. Challenges of sequential pattern mining algorithms .. 25

Figure 2.2. Distributed shared memory .. 29

Figure 2.3. Concepts for parallel and distributed mining methods .. 30

Figure 2.4. Diagram of quad-core processor architecture .. 31

Figure 2.5. Parallel approaches... 33

Figure 2.6. Switching between pieces of work ... 35

Figure 2.7. DBV-Pattern tree for SDB in Table 2.2 with minsup = 50%. 40

Figure 3.1. Bit encoded position block of item A .. 44

Figure 3.2. Bit-encoded sid for items ... 45

Figure 3.3. Full primal block .. 45

Figure 3.4. Compact encoded blocks ... 45

Figure 3.5. An example of a transformed database from Table 3.1 ... 46

Figure 3.6. The PIB-PRISM strategy ... 47

Figure 3.7. Procedure pGenerates-SPs ... 47

Figure 3.8. Runtime on C6T5N1kD1k ... 48

Figure 3.9. Runtime on C6T5N1kD10k ... 48

Figure 3.10. Example of task tree ... 51

Figure 3.11. pDBV-SPM strategy .. 52

Figure 3.12. Procedure Generate-SPs. .. 52

Figure 3.13. Procedure DBV-SPM-Extension ... 53

Figure 3.14. Runtime on C6T5N1kD1k ... 56

Figure 3.15. Runtime on C6T5N1kD10k ... 56

Figure 3.16. Runtime on Kosarak25k ... 56

Figure 3.17. Runtime on BMSWebView1 ... 56

Figure 3.18. Runtime on BMSWebView2 ... 57

Figure 3.19.Memory usage for C6T5N1kD1k ... 58

Figure 3.20.Memory usage for C6T5N1kD10k ... 58

Figure 3.21.Memory usage for Kosarak25k ... 58

Figure 3.22. Memory usage for BMSWebView1... 58

Figure 3.23. Memory usage for BMSWebView2... 58

Figure 3.24. Structures of (a) PatternList and (b) DBV-PatternList of A[0] 62

Figure 3.25. ISP-IC algorithm .. 66

Figure 3.26. DBV-PatternList of A[0], B[0] and C[0] ... 66

Figure 3.27. DBV-tree extended on A[0] .. 67

Figure 3.28. iISP-IC algorithm ... 68

Figure 3.29. DBV-tree extended on A[0] using iISP-IC algorithm 69

Figure 3.30. Example of task tree ... 69

 xv

Figure 3.31. Mining time of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

C6T5S4I4N1KD10K database with 15 random item constraints and (A) maxspan = 1; (B)

maxspan = 2; (C) maxspan = 3; (D) maxspan = 4; (E) maxspan = 5; (F) threshold = 21%. ... 72

Figure 3.32. Mining time of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

T10I4D100K database with 15 random item constraints and (A) maxspan = 1; (B) maxspan =

2; (C) maxspan = 3; (D) maxspan = 4; (E) maxspan = 5; (F) threshold = 4% 73

Figure 3.33. Mining time of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

BMSWebView2 dataset with 15 random item constraints and (A) maxspan = 1; (B) maxspan

= 2; (C) maxspan = 3; (D) maxspan = 4; (E) maxspan = 5; (D) threshold = 1%. 74

Figure 3.34. Memory usage of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

C6T5S4I4N1KD10K database with 15 random item constraints and (A) maxspan = 1; (B)

maxspan = 2; (C) maxspan = 3; (D) maxspan = 4; (E) maxspan = 5; (F) threshold = 21%. ... 75

Figure 3.35. Memory usage of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

T10I4D100K database with 15 random item constraints and (A) maxspan = 1; (B) maxspan =

2; (C) maxspan = 3; (D) maxspan = 4; (E) maxspan = 5; (F) threshold = 4%. 76

Figure 3.36. Memory usage of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

BMSWebView2 dataset with 15 random item constraints and (A) maxspan = 1; (B) maxspan

= 2; (C) maxspan = 3; (D) maxspan = 4; (E) maxspan = 5; (F) threshold = 1%. 77

Figure 4.1. Frequent closed pattern candidates in Table 2.2 with minsup = 50%. 82

Figure 4.2. pDBV-FCSP strategy ... 84

Figure 4.3. Generate1SPs procedure. ... 84

Figure 4.4. FCSP-Extension procedure. ... 86

Figure 4.5. Runtimes on C6T5N1kD10k ... 89

Figure 4.6. Runtimes on T10I4D100K ... 89

Figure 4.7. Runtimes on Kosarak25k ... 89

Figure 4.8. Runtimes on BMSWebView1 .. 90

Figure 4.9. Runtimes on BMSWebView2 .. 90

Figure 4.10. Runtimes on MSNBC_Short .. 90

Figure 4.11. Memory usage for C6T5N1kD10k .. 91

Figure 4.12. Memory usage for T10I4D100K .. 91

Figure 4.13. Memory usage for Kosarak25k .. 92

Figure 4.14. Memory usage for BMSWebView1... 92

Figure 4.15. Memory usage for BMSWebView2... 92

Figure 4.16. Memory usage for MSNBC (short).. 93

Figure 4.17. Scalability of pDBV-FCSP and CloFS-DBV for MSNBC database with

minsup=7% and various database sizes .. 94

List of Tables

Table 2.1. An example transaction database .. 18

Table 2.2. Sequence database ... 19

Table 2.3. The vertical representation of database shown in Table 2.2 20

Table 2.4. Parameters for synthetic databases .. 20

Table 2.5. Example of 24-byte bit vector ... 38

Table 2.6. Conversion of SDB in Table 2.2 to DBV format .. 38

Table 2.7. Conversion of bit vector to DBV... 39

Table 2.8. DBV-Pattern for item A .. 39

Table 3.1. Example of a sequence database ... 44

Table 3.2. Databases used in experiments .. 48

Table 3.3. Sequences A, B and C in SDB after conversion to DBV .. 53

Table 3.4 Sequence extension (minsup = 50%) ... 53

Table 3.5. Itemset extension (minsup = 50%) .. 54

Table 3.6. Set of FSP from Table 2.2 with minsup = 50% ... 55

Table 3.7. Three databases used in experiments. ... 55

Table 3.8. The mining results of PIB-PRISM, DBV-SPM, pDBV-SPM. 56

Table 3.9. Example sequence database .. 60

Table 3.10. Megasequences of SDB with maxspan = 1 ... 61

Table 3.11. Binary vectors of BitTable and their transformation into BitArray 66

Table 3.12. Databases used in experiments .. 70

Table 4.1. Sequences A, B and C in SDB after conversion to DBV .. 86

Table 4.2. Sequence extension (minsup = 50%) .. 86

Table 4.3. Itemset extension (minsup = 50%) .. 86

Table 4.4. Set of frequent closed sequential patterns from Table 2.2 with minsup = 50% 87

Table 4.5. Databases used in experiments. ... 87

Table 4.6. The mining results of pDBV-FCSP and CloFS-DBV ... 88

Chapter 1

Introduction

In the past few decades, the explosion of data science, the growth of technological advances in

hardware and data storage have led to a growth in the size of databases. However, extracting useful

information is extremely challenging because traditional data analysis methods cannot be used due to

the massive size of databases.

Many techniques have been implemented in order to efficiently store and retrieve data from database

systems. SQL and all other database query languages allow efficiently retrieving data, but they do not

help users to automatically extract hidden knowledge. Artificial intelligence can help us in creating

models and extracting information, but usually the proposed approaches do not scale well on a large set

of data.

Data mining [42] is an important part of computer science, a main step in knowledge discovery in

databases (KDD) [31] process, a research field that is focused on automatic extraction of hidden useful

information from huge databases. It combines traditional database system techniques with information

retrieval and artificial intelligence techniques (Figure 1.1). The data mining goal is to automatically

identify correlations among data in order to extract useful and previously unknown information. On the

other hand, recent progress in data mining research has led to the development of numerous efficient

and scalable methods for mining interesting patterns and knowledge in large databases.

Figure 1.1. Data mining in hierarchy [31]1

1 http://frontender.com/blog/enablers/data-mining/

Chapter 1. Introduction 2

From a commercial viewpoint, there is the need of data mining because lots of data are being

collected and warehoused (web data, e-commerce, bank transactions, etc.). The extracted information is

frequently used to support marketing decisions. For example, results of a data mining tools can support

a wide range of business intelligence applications such as customer profiling, targeted marketing and

fraud detection. Hence, sales can use this information to implement more efficient strategies.

Furthermore, from a scientific viewpoint, data are collected and stored at enormous speeds (sensors on

satellites, telescopes, microarrays generating gene expression data, etc.) and traditional techniques are

infeasible to treat them. Thus, data mining may help scientists in classifying and segmenting data, as

well as in hypothesis formation.

Be it science, marketing, finance, health care, retail, or any other fields, the classical approach to

data analysis relies fundamentally on one or more analysts becoming intimately familiar with the data

and serving as an interface between the data, the users and products. For these applications, this form of

manual probing of a data set is slow, expensive and highly subjective. In fact, as data volumes grow

dramatically, this type of manual data analysis is becoming completely impractical in many domains

[31].

1.1. Knowledge discovery process

Traditional methods of data analysis, based mainly on a person dealing directly with the data, do

not scale to enormous databases. While database technology has provided us with the basic tools for the

efficient storage and retrieval of large databases, the issue of how to help humans analyze data remains

a difficult and unsolved problem.

However, it is clear that the manual analysis of such amounts of data is impossible. For this reason,

it is important to develop tools that can access and analyze such data to extract interesting knowledge

that can be helpful in the decision making process. Knowledge discovery is a technique that can discover

interesting information from such large databases. "Knowledge discovery in databases is the nontrivial

process of identifying valid, novel, potentially useful and ultimately understandable patterns in data"

[31]. The process is nontrivial means that it is not straightforward and some methodologies need to be

used to obtain patterns. The extracted patterns should be novel or in other words unknown previously.

They also should be useful, this usefulness implies that the patterns can play important role in the

decision making process. Finally, they must be understandable at least for the data analyst.

Finding useful patterns in data has been given, including data mining, knowledge extraction,

information discovery, information harvesting, data archeology and data processing. The term data

mining has mostly been used by statisticians, data analysts and the management information systems

communities. It has also gained popularity in the database field. The phrase KDD was coined to

emphasize the knowledge of the product of a data-driven discovery.

KDD is the nontrivial process of identifying valid, novel, potentially useful and ultimately

understandable patterns in data. Here, data are a set of facts and a pattern is an expression in some

language describing a subset of the data or a model applicable to the subset. Hence, extracting a pattern

also designates fitting a model to data, finding structure from data, or making any high-level description

of a set of data.

Chapter 1. Introduction 3

The nontrivial term means that some search or inference is involved. Hence, it is not a

straightforward computation of predefined quantities like computing the average value of a set of

numbers. The discovered patterns should be valid on new data with some degree of certainty. The

discovered patterns should also be novel and potentially useful to lead some benefit to the user. Finally,

the patterns should be understandable, if not immediately, then after some post processing.

In order to uncover the interesting patterns hidden in large data, efficient and scalable knowledge

extraction methods are needed. Knowledge is valuable only when it can be used effectively to improve

the decision making process of an organization. The effective and efficient analysis of data from such

different forms of data by integration of information retrieval, data mining and information network

analysis technologies is a challenging task.

Traditionally, data were turned into knowledge by means of manual analysis. Since amount of data

is growing at a phenomenal rate, this type of manual data analysis is becoming impractical in many

domains. This motivates the need for efficient automated knowledge discovery processes. KDD is an

organized process of identifying valid, novel, useful and understandable patterns from large and

complex databases.

Figure 1.2. The knowledge discovery process2

The KDD process starts with the developing and understanding of the application domain, the

relevant prior knowledge and the goals of the end-user. Then, a target of database is created by selecting

from data sources or focusing on a subset of variables, or data samples, on which discovery is to be

performed. After that, data are cleaned and preprocessed to transform the raw input data into a suitable

format for subsequent analyzes. This step includes fusing data from multiple sources, cleaning data to

remove noise or duplicated, collecting necessary information to model or account for noise, handling

2 http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html

Chapter 1. Introduction 4

missing data fields and accounting for time sequence information and known changes. Because of the

many ways data can be collected and stored, data preprocessing is perhaps the most laborious and time-

consuming step in the overall knowledge discovery process. Then, data are reduced and useful features

are found to represent the data depending on the goal of the task. Furthermore, the appropriate data

mining task and algorithms are selected and executed. At the end, as post-processing phase, mining

patterns have to be interpreted and validated, thus consolidating the discovered knowledge.

KDD refers to the overall process of discovering useful knowledge from data which involve data

preparation, search for patterns, knowledge evaluation and refinement, all repeated in multiple

iterations, as shown in Figure 1.2. Data mining refers to a particular step in KDD process.

Data Selection: At this stage a target database relevant to the domain of application is selected or

created from many different and heterogeneous data sources.

Data cleaning/Preprocessing: High quality data is a requirement for the KDD process to produce

reliable knowledge. Hence this stage includes tasks such as missing value imputation, removal of noise

or outliers, mapping of feature values onto appropriate domains and attribute discretization to improve

the quality of data contained in the database.

Data reduction: In a high dimensional database all attributes are not equally significant. The task of

data reduction is to identify predominant attributes and remove non-relevant ones from the database by

preserving the knowledge involved in the database as much as possible. The process of attribute

reduction will significantly reduce the complexity of the data mining operations and also increase the

quality of the mined results.

Data mining: Data mining is the most important step in the knowledge discovery process. It is a

process to extract hidden information from real world databases. Depending on the goals of the

knowledge discovery process such as prediction or description, this step applies algorithms to extract

the knowledge from the transformed data. Prediction is often referred to as supervised data mining while

descriptive data mining includes the unsupervised and visualization aspects. Most data mining

techniques are based on inductive learning where a model is constructed explicitly or implicitly by

generalizing a sufficient number of training examples. This is usually called the generalization of

knowledge and it is assumed that this trained model is applicable to future cases.

Interpretation and evaluation: The knowledge obtained as a result of performing a data mining task

must be correctly interpreted and properly evaluated to ensure that the resulting information is

meaningful and accurate. Also, it is to be presented to the users in an understandable manner. Generally

visualization is the technique used to show the complex results of a data mining task in a simplified

manner.

Knowledge presentation: To better understand and analyze the discovered knowledge of different

visualization techniques are used to present the mined knowledge to the user.

Most of these steps are often repeated iteratively to reach some satisfying level of the expected

results. For example, in the data mining step, the data analyst may repeat the data mining process by

using another method to obtain better and refined results of the knowledge discovery process. The data

Chapter 1. Introduction 5

analyst can also jump to different steps. If the data analyst is using some data mining algorithms and

needs different data format, then it may go back to the data preprocessing step in order to convert the

target data to the suitable format. In the next sections, we discuss data mining as the most important step

in the knowledge discovery process.

1.2. Data Mining

Information or patterns can be extracted from huge data repositories with data mining. The data can

be analyzed with the purpose to find rules and patterns that describe its distinguished properties by using

the data mining [2, 42] methods. A model representing the semantic structure of the database can be

formed with the discovered information. This representation could further be used on new data for

classification or prediction. Data mining is one of the main process of Knowledge Discovery in

Databases.

Data mining is an extremely important step in the knowledge discovery process. It is the process of

extracting interesting patterns from large amounts of data [42, 110], analyzes the data with the objective

of finding rules and patterns to categorize the data [2]. Data mining also can solve problems by analyzing

data already presented in databases. It provides tools for automated learning from historical data and

developing models to predict future trends and behaviors. The essence of data mining is the nontrivial

process of identifying valid, novel, potentially useful and ultimately understandable patterns in data. It

has wide application in all fields like market-basket analysis [2, 46], bioinformatics [27, 53],

recommender systems [24, 52], web-mining [64, 84, 97], medicine [88, 116], weather prediction [78,

91], fraud detection [35], network intrusion detection [13, 19], smart health [54] and others. It can be

performed on different type of data repositories including databases as well as transient data. These data

repositories include flat files, relational databases, data warehouses, transactional databases and

advanced data and information systems such as multimedia databases, spatial databases, time series

databases and the World Wide Web, among several others. The challenges and techniques of data

mining vary with the type of data repository [42]. Here we discuss briefly some of them.

 Flat files: Flat files are the most used data sources in data mining. This kind of data may be the

simplest such as a text file with a comma separated format. It is normally a simple data file with text

or binary format with a structure that can be recognized by the used data mining algorithm.

 Relational databases: In most organizations today, data are stored in relational databases. A

relational database consists of a set of tables. Each table has a number of columns (attributes or

fields) and rows (tuples or records). Each tuple in a relational table represents an object or a

relationship between objects and identifies by a set of attributes that represent a unique key. SQL is

the most common language for this kind of data. Running data mining algorithms using relational

databases can be more efficient and easier than using flat files due to the ability to take advantage

of the functionalities that are provided by SQL.

 Data warehouses: Data warehouses were conceived as a means to facilitate the compilation of

regular reports on the status of the business by continuously collecting, cleaning and summarizing

the core data of the organization. According to Inmon [51], a data warehouse is defined as “a subject

oriented, integrated, time variant and nonvolatile collection of data in support of management’s

decision making process”. A data warehouse is a repository of data collected from multiple data

sources and stored under a unified schema at a single site. Data warehouses provide a clean and

Chapter 1. Introduction 6

organized source of data for data mining. Data warehouses are usually modeled as a

multidimensional data structure, where each dimension represents a set of attributes in the schema

and each cell stores a value of some aggregate measures [30]. A data cube provides a

multidimensional view of data and allows the pre-computation and fast accessing of summarized

data. For this reason, data warehouse systems are well suited for online analytical processing

(OLAP). OLAP allows the navigation of data at different levels of abstraction, such as drill-down,

roll-up, slice, dice and pivot. As the data in the data warehouse are cleaned and integrated, many

times do not need for the data to be further preprocessed and prepared to be mined.

 Transaction databases: A transactional database is a set of records representing transactions, each

with a unique identifier and a set of items. The transactional database may have additional

information. One typical data mining application on such data is called market basket analysis that

uses mostly association rule mining to study the relationship between different items in a transaction

database.

 Multimedia databases: Multimedia databases store images, audio and video. A multimedia object is

high dimensional which makes data mining a challenging process. For multimedia data mining,

storage and search techniques need to be integrated with standard data mining methods.

 Spatial databases: This type of data contains spatial-related information. Examples include

geography databases, very large scale integration (VLSI) or computed aided design databases and

medical and satellite image databases.

 Time series databases: It is obvious that time stamp is an important attribute of each database and it

can give us more accurate and useful information and rules. A database consists of sequences of

values or events that change with time are called a time series database. Data mining can be applied

on such kind of data to study the changing behavior of items with respect to time.

 The World Wide Web (WWW): The WWW is a heterogeneous and dynamic data repository. A

heterogeneous database consists of a set of interconnected, autonomous component databases. The

WWW includes a huge number of data types varying from text, audio, video, raw data and

application. The WWW is composed of three main parts: web content, structure of the web and

usage of the web. The web content represents the documents available on the web. The structure of

the web is represented by the hyperlinks and the relationships between different documents in the

web. The usage of the web describes how the web documents and resources are being accessed and

used.

Data mining functionalities are used to specify the kind of patterns to be found in data mining tasks.

In general, data mining tasks can be classified into two categories: descriptive and predictive.

Descriptive data mining models try to extract useful patterns that can describe the mined data and

explore its properties and characterize the general properties of the data in the database, while predictive

mining tasks perform inference on the current data in order to make predictions, in other words, try to

predict unknown values or future trends or behaviors depending on other variables or historical values

presented in the mined database [42]. These two processes are sometimes referred to as supervised and

unsupervised learning. Supervised learning has tagged data that are used to identify and categorize the

future data. Unsupervised learning finds correlations without any external inputs other than the raw data

to identify and categorize them. These techniques determine the type of patterns that are discovered

from the data repositories. Among the various descriptive data mining tasks, frequent mining,

association rule mining and sequential mining have been the most commonly employed tasks to facilitate

Chapter 1. Introduction 7

business development. The patterns that occur frequently in the database are called as frequent patterns.

These patterns may include itemsets that appear together, correlated and frequent, such data when

extracted from the transaction databases or other data repositories is called association rule mining [5,

46], for example, a customer buying soap and shampoo together. However, frequently occurring

subsequence like a pattern where the customer purchase a butter followed by bread is a frequent

sequential pattern.

Sequential pattern mining is similar to association rule mining, with an important difference of

having the events being linked by time [2, 42, 92, 125]. Sequential patterns indicate the correlation

between transactions while association rule represents intra transaction relationships [96, 102]. The

mining results are based on the items being brought together frequently within the same transaction in

case of the association rule mining [69]. While the results of sequential pattern mining are about which

items are bought in a certain order, with those items coming from different transactions [2, 92].

Sequential patterns are generated by finding the correlation between transactions while association rule

mining is based on intra transactions. To elaborate it further, association rule mining results are based

on items that are purchased together frequently and belong to the same transaction [17]. However, results

generated by sequential pattern mining are based on items that are brought in a certain order by the same

customer and can be from different transactions.

Data mining has attracted a great deal of attention in the information industry and in society as a

whole in recent years, due to the wide availability of huge amounts of data and the imminent need for

turning such data into useful information and knowledge. The information and knowledge gained can

be used for applications ranging from market analysis, fraud detection and customer retention, for

production control and science exploration. This research study is based on sequential pattern mining

and the next section discusses other important aspects of this data mining task.

1.3. Data Mining Tasks

The tasks of data mining are very diverse and distinct because there are many patterns in a large

database. A data mining task can be considered as a kind of problem to be solved by a data mining

algorithm. There are several data mining tasks and each task has its own requirements. In general, data

mining task can be classified into two classes – descriptive and predictive (Figure 1.3). Descriptive

mining tasks characterize the general properties of the data in the database. Predictive mining task

perform inference on the current data in order to make predictions. This section reviews some of the

basic data mining tasks.

Chapter 1. Introduction 8

Figure 1.3. Data mining tasks

1.3.1. Clustering

Clustering is the identification of classes, also called clusters or groups, for a set of objects whose

classes are unknown. The objected are so clustered that the intra class similarities are maximized and

the interclass similarities are minimized based on some criteria defined on the attributes of objects. Once

the clusters are decided, the objects are labeled with their corresponding clusters and common features

of the objects in a cluster are summarized to form the class description.

For example, a bank may cluster its customers into several groups based on the similarities of their

age, income, residence, etc. and the common characteristics of the customers in a group can be used to

describe that group of customers. The clusters will help the bank to understand its customers better and

thus provide more suitable products and customized services.

Clustering has many different methods and techniques. In the following we discuss the main

clustering methods, briefly [12].

 Partitioning methods [56]: In partitioning methods the database is divided into non overlapping

clusters such that each data object belongs to exactly one cluster. Objects in one cluster are similar

or close to each other, but are far away from objects in other clusters. The K-Means and the K-

medoids [8, 11, 67] are two major and well known algorithms in this category. In the K-Means, each

cluster is represented by the mean value of the objects in the cluster and in the K-medoids, each

cluster is represented by one of the objects located near the center of the cluster. To find clusters

with complex shapes and for clustering very large databases, partitioning based methods need to be

extended.

 Hierarchical methods [81]: If we permit a cluster to have sub-clusters, then we obtain hierarchical

clusters. Hierarchical clusters are sets of nested clusters that are organized as a tree, where each

node in the tree represents a cluster and its sub-nodes represent the sub-clusters. The root of the tree

Data mining

Descriptive

Association Rules

Clustering

Summarization

Sequence Discovery

Predictive

Classification

Regression

Prediction

Time Series

Chapter 1. Introduction 9

represents the cluster that contains all the objects. Hierarchical methods can be classified as being

either agglomerative or divisive, based on how the hierarchical decomposition is formed. The

agglomerative (bottom-up) approaches, starts with each object as a single cluster and then repeatedly

merge the two closest clusters until all clusters are merged in one cluster or a termination condition

holds. In contrast to agglomerative approach, the divisive approach (top-down) starts with a one big

cluster and repeatedly splits each cluster into smaller clusters until reaching the point that each object

is in one cluster or until a termination condition holds. The BIRCH [124] is well known hierarchical

clustering algorithms.

 Density based methods [58]: These methods group neighboring objects into clusters based on

density conditions. In other words, a cluster is a dense region of objects that is surrounded by a

region of low density. The DBSCAN [112], OPTICS [7] and DENCLUE [50, 83] are the famous

density based clustering algorithms.

 Grid based methods [26]: the methods quantize the space into a finite number of the cells that form

a grid structure and then perform clustering on the grid structure. The STING [108] is a typical

example of a grid based method.

 Model based methods [10]: Model based methods hypothesize a model for each of the clusters and

find the best fit of the data to the given model. Typical model based methods involve statistical

approaches as COBWEB [61] or neural network approaches [90, 95].

1.3.2. Summarization

Summarization is the abstraction or generalization of data. A set of task-relevant data is summarized

and abstracted, resulting a smaller set which gives a general overview of the data and usually with

aggregation information. For example, the long distance calls of a costumer can be summarized into

total-minutes, total-spending, total-calls, etc. Such high-level, summary information, instead of detailed

calls is presented to the sales managers for customer analysis.

The summarization can go up to different abstraction levels and can be viewed from different angles.

For example, the calling minutes and spending can be totaled along the calling period in weeks, months,

quarters or years. Similarly, the calls can be summarized into in-state calls, state-to-state calls, Asia

calls, Europe calls, etc., which can be further summarized into domestic calls and international calls.

Different combinations of abstraction levels and dimensions reveal various kinds of patterns and

regularities.

1.3.3. Association Rules

Mining association rules is the discover of togetherness or connection of objects. Such kind of

togetherness or connection is termed as association rule. An association rule reveals the associative

relationships among objects, i.e., the appearance of a set of objects in a database is strongly related to

the appearance of another set of objects. For example, in a telecommunication database, an association

rule that “call waiting” is associated with “call display”, denoted as “call waiting call display”, says if a

customer subscribes to the “call waiting” service, he or she very likely also has “call display”.

The association rules can be useful for marketing, commodity management, advertising, etc. For

example, a retail store may discover that people tend to buy soft drinks together with potato chips and

then put the potato chips on sale to promote the sale of soft drinks.

Chapter 1. Introduction 10

1.3.4. Classification

Classification is the derivation of a function or model which determines the class of an object based

on its attributes. A set of objects is given as the training set in which every object is represented by a

vector of attributes along with its class. A classification function or model is constructed by analyzing

the relationship between the attributes and the classes of the objects in the training set. Such a

classification function or model can be used to classify future objects and develop a better understanding

of the classes of the objects in the database.

For example, from a set of diagnosed patients, who serve as the training set, a classification model

can be built, which concludes a patient’s disease from his/her diagnostic data. The classification model

can be used to diagnose a new patient’s disease based on the patient’s diagnostic data, such as age, sex,

weight, temperature, blood pressure, etc.

To perform the classification, the target database is divided into two mutually exclusive and

exhaustive sets called training set and test set. From the training data, by studying the relationship

between the conditional attributes and the decision attributes, a model is derived to describe the

concepts. The derived model can be presented in various forms such as prediction rules, decision trees,

mathematical formula, or neural networks. The model is then used to predict the class of each data

instance in the test set. The main goal of the classification task is to maximize the classification accuracy

rate which is the ratio of the number of correct predictions to the total number of predictions in the test

database.

Classification and prediction are two forms of data analysis that can be used to extract models

describing important data classes or to predict future data trends. Classification also known as supervised

learning is the process of finding a set of models or functions that describe and distinguish data classes

or concepts where the models derived based on a set of training data. Decision tree classifiers, Bayesian

classifiers and rule based classifiers are basic and well known techniques for data classification.

 Decision tree classifiers [93]: The decision tree classification method is one of the most useful

methods in data mining. Classifications based on trees are methodologies to classify data into

discrete ones using the tree structured algorithms. The decision tree nodes are tested values that need

to be decided or questions that need to be answered in order to decide the branches that should be

followed depending on the decided value. Each node may have some branches and each of them

will lead to another decision node or to the bottom of the tree. Decision tree algorithms such as ID3

[32], C4.5 [71] and CART [66] are used in classification to make predictions of current and future

values of some attributes.

 Bayesian classifiers [99, 113]: Bayesian classification is based on Bayes’ theorem. This method

assumes that the effect of an attribute value of a given class is independent of the values of the other

attributes.

 Rule based classifiers [73, 85]: A rule based classifier uses a set of IF-THEN rules for classification.

Rules can be extracted from a decision tree. Rules may also be generated directly from training data

using sequential covering algorithms and associative classification algorithms.

Chapter 1. Introduction 11

1.3.5. Trend analysis

A lot of data available now are time series data that is accumulated over time. For example, a

company’s sales, a customer’s credit card transaction and stock prices are all time series data. Such kind

of data can be viewed as objects with an attribute time and the objects are the snapshots of entities with

values that changes over time. It is interesting to find the patterns and regularities in the data evolutions

along the dimension of time.

Trend analysis discovers interesting patterns in the evolution history of the objects. One topic in

trend analysis is the identification of patterns in an object’s evolution, such as up, down, peak, valley,

etc. A model or function is constructed to simulate the behaviors of the object, which can be used to

predict the future behaviors. For example, we can estimate this year’s profit of a company from its last

year’s profit and the estimated annual increasing rate.

Another topic in trend analysis is the matching of the objects’ changing trends, such as increasing

streaks, decreasing streaks, etc. By comparing two or more objects’ historical changing curves or tracks,

similar and dissimilar trends can be discovered which will help us to understand the behaviors of the

objects. For example, a company’s sales and profit figures can be analyzed to find the disagreeing trends

and search for the reasons behind such disagreements.

1.3.6. Rule Mining and Evaluation

Rule mining is a process to discover interesting relationships among data items in large databases.

These relationships always represent the knowledge involved in the given database. This knowledge is

expressed as implications in propositional logic. In data mining these rules are useful for analyzing and

predicting the occurrence of an item based on the occurrences of other items in the transactions. Hence,

these rules are commonly referred to as association rules. In an association rule the antecedent part

represents an item or combination of items found in the given database and the consequent part is an

item that is found in combination with the antecedent.

A challenging problem in rule generation is the assessment of derived rules based on the quality.

The quality of a decision rule is measured in terms of its predictive accuracy, comprehensiveness and

interestingness. The predictive accuracy of a decision rule generated from a training database is

measured by applying the rule on a separate test database containing data instances that were not seen

during training.

Most of the rule mining algorithms produce a large number of decision rules even for small

databases. A large set of rules may give high predictive accuracy but it is not comprehensible in the

sense that it is infeasible for the humans to manually inspect them to gain insight into the application

domain. Hence, as a post processing operation to rule mining, efficient and effective methods are

required to extract interesting, relevant and novel rules automatically. With this idea in mind, a new rule

evaluation measure is introduced in this thesis, based on which an objective and automatic approach to

rank and extract significant rules is proposed.

Chapter 1. Introduction 12

1.3.7. Attribute Reduction

The entire knowledge available in a high dimensional database is not always necessary to define

various categories represented in the database. Though the machine learning and data mining techniques

are suitable for handling data mining problems, they may not be effective for handling high dimensional

data. When the dimension of the input data increases, the accuracy and efficiency of the results produced

by the data mining operations decrease rapidly. This motivates the need for efficient automated feature

selection processes in the area of data mining. Feature selection is a problem closely related to attribute

reduction. It is a process which selects an optimal subset of features according to an objective function.

The process of feature selection maps the original high dimensional feature space into a low dimensional

space. The main objective of feature selection is to reduce the dimensionality of the database so as to

improve mining performance such as speed of learning, predictive accuracy and comprehensibility of

the mined results.

Different perspectives of feature selection include searching a feature subset followed by an

evaluation criterion to test the optimality and feature ranking. Generally, a combinatorial nature of

searching for an optimal subset is employed in most conventional feature selection methods. Due to the

high computational cost involved in the searching process these methods are impractical in many cases.

So modern feature selection approaches follow random search methods where an initial feature subset

is selected as a starting point of search and features are added or removed iteratively until an optimal

feature subset is obtained. Random search methods are also computationally expensive when dealing

with high dimensional databases.

Another commonly used approach adopted in feature selection is to assign weights to the features

based on some criteria and then rank individual features. After setting a suitable threshold value, the top

ranked features are selected. Even though this method is efficient and easy to implement the selection

of an appropriate threshold value is sometimes difficult. Another disadvantage of this method is that, at

the time of weighting and ranking it does not consider the domain knowledge or the correlation between

the features. These issues are handled in the attribute reduction part of this thesis. As a result, a domain

dependent attribute weighting measure is proposed by exploiting the discrimination information

involved in the conditional attributes to discriminate various objects of a decision table. Based on this

measure a novel method is suggested to rank and select the significant features automatically.

1.3.8. Missing Value Handling

In a real world database, missing data have been one of the major factors affecting the quality of the

data. Even a small percentage of missing data can cause serious problems with the analysis leading to

wrong conclusions and imperfect knowledge. Fortunately, missing data imputation techniques can be

used to improve the data quality. The conventional methods available to handle missing values focused

on either by ignoring all cases with missing attribute values or by substituting plausible values for the

missing items. Though these methods are easy to implement they have some serious drawbacks. Later,

methods are suggested for knowledge acquisition directly from the original database with missing

attribute values.

Chapter 1. Introduction 13

1.4. Data Mining Applications

Data mining is an important technology that has been integrated with many domains such as

industrial, governmental and academic applications. Data mining made substantial contributions to the

success of different industries and application fields. In the following, we examine the use of data mining

in some application domains.

 Data mining in medicine: The first general application area we will explore is medical informatics.

The reason for treating it first is that in no other discipline has statistical and data mining applications

applied for a longer time, it is an area in which analytical results can have such profound effects in

both positive and negative directions. In bioinformatics, it can be used to analyze DNA sequences

to find the relationship between some specific gene sequences and a specific disease. In other words,

the change of the DNA sequence can give an indication of the high probability of the development

of some diseases. Data mining is used also in medical decision support. Patient records include

patient demographic information, symptoms, blood measurements and laboratory test results.

Mining those data can find the correlation between two different diseases, or the relationship

between social and environmental issues and some diseases or how a group of patients reacts to a

specific drug.

 Data mining for security applications: Ensuring the integrity of computer networks, both in relation

to security and with regard to the institutional life of the nation in general is a growing concern. In

addition, we need techniques to detect security breaches. Intrusion detection involves processing

and learning a large number of examples in order to detect intrusions. Such a process becomes

computationally costly and impractical when the number of records to train against grows

dramatically. Eventually, this limits our choice of which data mining technique to apply.

 Data mining in customer relationship management: The crushing practical needs of business to

extract knowledge from data that could be leveraged immediately to increase revenues required new

analytical techniques that enable analysis of highly nonlinear relationships in very large databases

with an unknown distribution. Customer Relationship Management (CRM) tries to use all measures

to understand customer behaviors and invest the extracted knowledge to implement marketing

strategies, control production and coordinate the supply chain. Data mining is one of those tools

used by CRM to study customer behavior and interests and use the extracted knowledge to manage

the customer life cycle, attract new customers and retain good customers.

 Data mining in marketing: Most computer databases in business were designed for the efficient

storage and retrieval of account or product information. Market basket analysis uses data mining

techniques to analyze customer transactions in a retail transactional database.

 Data mining in insurance: Companies in the insurance industry collect enormous amounts of data

about their clients such as information about customer behavior, activities and preferences.

Applying data mining on such data might be useful in detecting and predicting fraud or risky

customers and predicting which customers will get benefit from new services and policies.

Chapter 1. Introduction 14

 Web mining: Applying data mining techniques to extract interesting patterns from web data is called

web mining. Improvements in web search engines can also be achieved using predictive models.

 Data mining in fraud detection: In telecommunication companies, a huge amount of data is collected

daily varying from transactional data to other customer data such as billing information or customer

profiles and additional data such as network load. Fraud detection techniques can also help in finding

stolen mobile phones or phone cards.

1.5. Motivation

Mining sequential patterns in sequence databases have been demonstrated to be useful and

technically feasible in several application areas and it becomes every day more important in many

applications. Although research in this area has been going on for more than one decade; today, mining

such patterns is still one of the most popular methods in knowledge discovery and data mining.

In the last decade, a number of algorithms and techniques have been proposed to deal with the

problem of sequential pattern mining. The main approaches to sequential pattern mining, namely

Apriori-based and pattern-growth methods are being used as the basis for other structured pattern mining

algorithms. However, despite the fact that pattern-growth algorithms have shown better performance in

the majority of the situations, its advantages over Apriori-based methods are not sufficiently understood.

Although efficiency of mining the complete set of sequential patterns has been improved

substantially, in many cases, sequential pattern mining still faces tough challenges in both effectiveness

and efficiency. There could be a large number of sequential patterns in a huge database, especially large

and dense sequence databases. A user is often interested in only a small subset of such patterns.

Presenting the complete set of sequential patterns may make the mining result hard to understand and

hard to use. Besides, although efficient algorithms have been proposed, mining large databases require

powerful computational resources. In fact, data mining algorithms working with very large databases

take a very long time on conventional computers to get results. One approach to reduce response time

is sampling. But, in some cases reducing data might result in inaccurate models, in some other cases it

is not useful. Another approach is parallel computing. High performance computers and parallel data

mining algorithms can offer a very efficient way to mine very large databases by analyzing them in

parallel. This motivates our research and development parallel methods for mining frequent sequential

patterns in large sequence databases. This thesis is especially concerned with improving the efficiency

of parallel processing methods on multi-core processors architectures for enormous amounts of data for

future parallel data mining systems.

1.6. Contributions

This section describes the contributions of this thesis to develop a model for large sequence database

mining and parallel this model. Parallel methods for mining frequent sequential patterns are the main

subject of this thesis.

The main goal is to introduce data mining techniques on parallel architectures and to show how

large scale data mining and knowledge discovery applications can achieve scalability by using systems,

tools and performance offered by parallel processing systems. Our approach is to efficient mining

Chapter 1. Introduction 15

sequential patterns in parallel environment, where the whole computation is broken up into tasks

parallel. Two common ways to partition computation are task and data partitioning. We explore data

parallel to extract patterns from sequence databases.

The contributions of this research as follow:

1. Presenting overview sequential pattern mining, parallel computing and data structure for

representing compact sequence database.

2. Developing parallel methods for mining frequent sequential pattern that utilizes task parallel.

Parallel approaches are propose for extracting sequential patterns in large sequence database, these

methods have several advantages over task parallel. This simplifies programming and leads to a

development time significantly smaller than the one associated with task parallel programming,

because a lot of previously written serial code can be reused.

3. Developing a parallel method for mining frequent closed sequential pattern with dynamic load

balancing. Parallel approach is propose for extracting closed sequential patterns in large sequence

database that solves the load balance issues of the workload between processors with a dynamic

mechanism that re-distributes the work when some processes are out of work to minimize the idle

CPU time.

4. Proposing three novel methods for mining inter-sequence patterns with item constraints. In that,

apply parallel processing to find patterns led to improving the performance. In our research, we

demonstrated that algorithms have good performance and a good work loading as well. In fact, it

tries to optimize local mining at processors while minimizing the data transfer among them.

1.7. Organization of Thesis

In this section, we summarize the content of the remaining chapters of this thesis. The chapters are

described briefly as follows:

Chapter 2: Background. In this chapter introduces some basic concepts and models of sequential pattern

mining, theoretically, we show the kinds of sequential patterns and some properties of them.

We presented overview some traditional frequent pattern mining framework, parallel

computing and a compact data structure.

Chapter 3: Parallel sequential pattern mining. This chapter introduces efficiency parallel approaches

for mining frequent sequential pattern, mining inter-sequence patterns with item constraints.

We presented the experimental results of our proposed methods for proven the efficiency.

Chapter 4: Parallel closed sequential pattern mining. We introduce an approach for mining frequent

closed sequential pattern on large database. We show that there are rarely parallel methods

using multi-core processors for closed sequential pattern deal with dynamic load balancing

on large sequence databases and it can be one of the most important motivations and

advantages of our approach.

Chapter 1. Introduction 16

Chapter 5: Conclusion and future works. Summarizing the whole thesis and giving directions for future

works.

1.8. Summary

In this chapter, we provide an overview of the knowledge discovery process, data mining and its

basic approaches. In addition, a brief introduction of data mining tasks and data mining applications.

The motivations and contributions are primarily content presented in this chapter, includes:

 Presenting a data structure for representing compact sequence database.

 Developing parallel methods for mining frequent sequential pattern that utilizing task parallel.

 Developing a parallel method for mining frequent closed sequential pattern with dynamic load

balancing.

 Proposing three novel methods for mining inter-sequence patterns with item constraints.

Chapter 2

Background

In this chapter, we introduce some basic concepts of sequential pattern mining and overview some

traditional frequent pattern mining methods, which include sequence mining and closed pattern mining.

Then we introduce the parallel computing, multi-core processors architecture, review some parallel

sequential patterns and present a compact data structure to store database for sequential pattern mining.

2.1. Preliminaries

Definition 2.1 (itemset). Let I = {i1, i2, ..., im} be a set of m distinct attributes, also called items. An

itemset X = (I1, I2, ..., Iu), such that Ik  I (1 ≤ k ≤ u) is a non-empty unordered collection of items. Each

itemset is given in brackets; for itemsets that contain only a single item, the brackets are omitted. For

example, the itemset (ABC) represents the sets of items A, B, C and itemset (B) can be written as B.

Definition 2.2 (transaction database). A transaction database is a set of transactions, denoted TDB =

{T1, T2,... ,Tn}, where n is the number of transaction in TDB, each transaction Ti = tid, X (1 ≤ i ≤ n)

consists of a set of items where tid is the transaction identifier and X is an itemset.

Definition 2.3 (itemset support). The absolute support of an itemset X  I in TDB, denoted (X), is the

number of transactions in TDB which contain X. The relative support of X in TDB is the probability that

X occurs in a transaction or in other words, the support of X divided by the total number of transactions

in the database. An itemset is frequent if its support is not less than an user specified threshold called

minimum support (denoted minsup).

Table 2.1. An example transaction database

tid Items

T1 bread, milk, cheese

T2 cheese, butter, cereal

T3 milk, cheese, cereal

T4 bread, milk, cereal

For example, assume I = {bread, milk, cheese, butter, cereal}, TDB = {T1, T2, T3, T4} as Table 2.1,

where T1 = bread, milk, cheese, T2 = cheese, butter, cereal, T3 = milk, cheese, cereal, T4 = bread,

milk, cereal and minsup = 2 = 50%. The absolute support of cheese is (cheese) = 3 since three

transactions, namely T1, T2 and T3 contain cheese and the relative support is 75% > 50% so cheese is a

frequent itemset, butter is infrequent because (butter) = 1 = 25% < minsup.

Definition 2.4 (sequence database). A sequence database is a set of sequences, denoted SDB = {S1, S2,...

,Sn}, where n is the number of sequences in SDB and each sequence Si (1≤ i ≤ n) has the form sid, S,

Chapter 2. Background 19

where each sid is a unique sequence identifier of sequence and S = I1 I2... Iv, such that Ij  I (1 ≤ j ≤ v)

is a ordered list of event or itemsets.

Definition 2.5 (sequence). A sequence α = a1 a2... au is an ordered list of itemsets, where itemset a1

occurs before a2, which occurs before a3 and so on. A sequence element ai is an itemset and u (the size

of a sequence) is the number of itemsets (or elements) in the sequence. An item can occur at most once

in an itemset of a sequence, but can occur multiple times in different itemsets of a sequence. For

example, Table 2.2 have four sequences having the sids are S1, S2, S3 and S4. The first sequence S1 =

CAA(AC) contains four itemsets. It indicates that item C, were followed by A, then A and lastly are

items A and C occurred at the same time.

Definition 2.6 (length of sequence). Given a sequence α = a1 a2... au, the length of a sequence is the

total number of items in the sequence, denoted as 𝑘 = ∑ |𝑎𝑗|𝑗 . A sequence with length k is called a k-

sequence. For example, the sequence B(AC) is a 3-sequence of size 2.

Definition 2.7 (extending the length of a sequence). Given a sequence α = a1, a2, …, au and an item

ek. Sequence  is called the extending length of the sequence α with the item ek if and only if  = a1, a2,

…, au, au + 1 and au + 1 = ek.

Definition 2.8 (prefix). A sequence α = a1, a2, …, au is called a prefix of a sequence  = b1, b2, …,

bv if and only if u < v then a1 = b1, a2 = b2,…, au = bv.

Definition 2.9 (pattern). A pattern is a subsequence of ordered itemsets, each itemset in a pattern is

called an element. For example, the sequence B(AC) is a subsequence of (AB)E(ACD) so that it is a

pattern.

Table 2.2. Sequence database

sid Sequence

S1 CAA(AC)

S2 AB(ABC)B

S3 A(BC)ABCE

S4 AB(BC)AD

Definition 2.10 (subsequence and super sequence). A sequence  = b1 b2 ... bv is called a subsequence

of sequence  = a1 a2 ... au and  is a super sequence of  , denoted as   , if there exists integers

1  j1 < j2 < ... < ju  v such that bk  ajk, 1  k  u. For example, the sequence B(AC) is a subsequence

of (AB)E(ACD), but (AB)E is not a subsequence of ABE.

Definition 2.11 (support). The absolute support of a sequence α in SDB is defined as the total number

of sequences in SDB that contain α, denoted as  (α) = |{Si  SDB | α  Si}|. The relative support of α

is given as the fraction of sequences that contain α in a database. Absolute and relative supports are

sometimes used interchangeably.

Chapter 2. Background 20

Definition 2.12 (horizontal database format). A sequence database in the horizontal format is database

where each row is a transaction in the form sid-itemset, where sid is a sequence ID and itemset is a set

of items that appear in that sequence, Table 2.2 shows an horizontal sequence database.

Definition 2.13 (vertical database format). A sequence database in vertical format is a database where

each row has a transaction in the form item, sid, where sid is a set of sequence IDs containing item.

Table 2.3 shows the vertical representation of the database of Table 2.2.

Table 2.3. The vertical representation of database shown in Table 2.2

 A B C D E

S1 2, 3, 4 1, 4

S2 1, 3 2, 3, 4 3

S3 1, 3 2, 4 2, 5 6

S4 1, 4 2, 3 3 5

Definition 2.14 (sequential pattern mining). Given a SDB and a user-specified threshold, called the

minimum support (denoted minsup), a sequence α is said to be a frequent sequential pattern if it occurs

more than minsup times, that is  (α)  minsup.

Definition 2.15 (maximal sequential pattern). A sequential pattern is maximal if it is not a subsequence

of any other sequential patterns.

Definition 2.16 (closed sequential pattern). A sequential pattern is closed if it is not a subsequence of

any other sequential patterns with the same support.

Definition 2.17 (s-extension). The s-extension of a sequential pattern a1, a2,…, au by item Ix is

defined a1, a2,…, an, Ix.

Definition 2.18 (i-extension). The i-extension of a sequential pattern a1, a2,…, au by item Ix is defined

a1, a2,…, au  Ix.

Definition 2.19 (parameters for standard databases). Synthetic databases were generated using the IBM

synthetic data generator to mimic transactions in a retail environment. The synthetic data generation

program used the following parameters. (Notes: parameters in Table 2.4 is different with Anotation

table)

Table 2.4. Parameters for synthetic databases

C Average number of items per sequences

T Average number of items per itemset

S Average number of itemsets in maximal sequences

I Average number of items in maximal sequences

N Number of distinct items

D Number of sequences

Chapter 2. Background 21

Property 2.1 (Apriori Property) All non-empty subsets of a frequent itemset must also be frequent, any

superset of some infrequent itemset cannot be frequent. An itemset is said “frequent pattern” if its

frequency is no less than a given minimum support threshold. The property can be explained as follows.

Assuming X and Y are two patterns,  (X) ≤  (Y) if X  Y. For example, assuming A, B, C is frequent,

all of its sub-itemsets such as A, C are also frequent. If D, E is infrequent, its supersets such as A,

D, E and D, E, F are infrequent.

Proposition 2.1 (pruning a prefix). Considering the prefix αp = a1a2…au. If there exists an item a before

the starting position of prefix αp in each of the transactions containing αp in SDB, the extension can be

pruned by prefix αp. For example, considering SDB in Table 2.2, there is no need to extend prefix B

because there exists a sequence A that occurs before B in each transaction that contains prefix B. If

we extend prefix B, the obtained results will be absorbed due to the extension of prefix B already

containing B and having the same support.

Proposition 2.2 (checking sequence closure). If there exists a sequence  that is a forward-extension or

backward-extension of sequence α, sequence α is not closed and α can be safely absorbed by .

Considering the above example, supposed that α = CC:2 and  = CAC:2, then CC:2 will be absorbed

by CAC because CC  CAC and (CC) = (CAC) = 2.

2.2. Sequential pattern mining

The sequential pattern mining problem was first introduced by Agrawal and Srikant in 1995 [2]

based on their study of customer purchase sequences, as follows: “Given a set of sequences, where each

sequence consists of a list of events (or elements) and each event consists of a set of items and given a

user-specified minimum support threshold of minsup, sequential pattern mining finds all frequent

subsequences, that is, the subsequences whose occurrence frequency in the set of sequences is no less

than minsup.”

Sequential pattern mining (SPM) is an important task in data mining with computationally

challenging because such mining may generate and/or test a combinatorically explosive number of

intermediate subsequences and is applied in many domains, such as analysis of buying behavior of

customers [2], analyzing web access [84, 97], weather prediction [78, 91], network anomaly detection

[13, 19, 127], DNA sequence analysis [114, 126], or genetic structure [129], etc. The input data, called

a sequence database, are a set of sequences. Each sequence is an ordered list of events (or elements),

each of which contains a set of items. The problem is to find all frequent subsequences which satisfy the

user-specified minimum support threshold. For example, when customers buy a computer, they will buy

from potential together with the projector or when they will buy more RAM, HDD. Sales can use this

information to analyze customer behavior, to understand the concerns as well as the satisfaction of our

customers, anticipate and satisfy customer needs in the future.

It is challenging to discover all frequent subsequences in huge databases as the search space is

extremely large. The factors that make sequential pattern mining difficult and time consuming are as

follows:

 The pattern can be formed using single item as well as itemsets.

Chapter 2. Background 22

 The details regarding the number of itemsets in a pattern or the number of items in an itemset is not

known beforehand.

 The permutation and combination of all possible items in the database are used to form patterns.

Recent developments have made progress in two directions: (1) efficient methods for mining the

full set of sequential patterns and (2) efficient methods for mining only the set of closed sequential

patterns, where a sequential pattern α is closed if there exists no sequential pattern  where  is a proper

super sequence of α and  has the same support as α. Because all of the subsequences of a frequent

sequence are also frequent, mining the set of closed sequential patterns may avoid the generation of

unnecessary subsequences and thus lead to more compact results as well as more efficient methods than

mining the full set. This section will examine methods for mining the full set and then study how they

can be extended for mining the closed set.

There are many efficient algorithms for mining the full set of frequent sequential patterns (FSP),

including GSP [96], AprioriAll [2], PrefixSpan [79], SPADE [121], PRISM [37], CM-SPADE [34] and

SPaMi-FTS [44].

All approaches either directly or indirectly explore the Apriori property, stated as follows: every

nonempty subsequence of a sequential pattern is a sequential pattern. The Apriori property is anti-

monotonic (or downward-closed) in that, if a sequence is infrequent, all of its super sequences will be

infrequent. Use of this property to prune the search space can help make the discovery of sequential

patterns more efficient.

The general idea of all existing methods is to start with general (short) sequences and then extend

them towards specific (long) ones. Existing methods can be divided into the following three main types

as below.

(1) Horizontal methods. Databases are organized in the horizontal format, where each row has a

transaction in the form sid-itemset, where sid is a sequence (customer) ID and itemset is a set of

items that appear in that sequence. The Generalized Sequential Pattern (GSP) [96], AprioriAll [2]

and Prefix-tree for Sequential Pattern (PSP) [70] algorithms are examples of horizontal methods.

(2) Vertical methods. Databases are organized in the vertical format, where each row has a transaction

in the form item, sid, where sid is a set of sequence IDs containing item. In this layout, the support

of a sequence is the size of the set of sids. Represented for this layout are SPADE [121], SPAM [9],

PRISM [37] and PIB-PRISM [47].

(3) Projection methods. Projection methods are hybrid methods that combine horizontal and vertical

approaches. Given any prefix sequence P, the main idea is to project the horizontal databases based

on the methodology of pattern-growth mining of frequent patterns in transaction databases

developed in the FP-growth algorithm [41]. Hence, the projected database contains only those

sequences that have P. The frequency of extensions of P can be directly counted in the projection

database. PrefixSpan [79], an extension of FreeSpan [40, 79], is an example. The prefix tree

Chapter 2. Background 23

architecture is efficient for organizing and storing candidate sequences it was represented by

IMSR_PreTree [105], MNSR-PreTree [80] and PFI-PrefixSpan [43].

In this section, we briefly introduce some algorithms for sequential pattern mining.

2.2.1. AprioriAll

AprioriAll [2] is believed to be the first algorithm solving sequential pattern mining. First, it finds

all frequent 1-patterns whose support values satisfy a user-defined minimum support. Then, it initializes

and maintains two types of list containers, namely the candidate lists and the frequent pattern lists. For

every (k+1)-candidate constructed by joining two frequent k-patterns, the support needs to be scanned

from the original database. The process repeats until no further patterns can be found.

2.2.2. GSP

GSP (Generalized Sequential Patterns) algorithm [18, 96] is a very popular method of sequential

pattern mining. It is an extension of the Apriori algorithm [2] for sequence mining. The main structure

is similar to AprioriAll and the details are as follows. First, it scans the database to obtain the frequent

1-sequences. Then it generates the next level candidates by joining the previous level frequent

sequences, the same as AprioriAll. The differences are in the candidate generation and candidate support

counting. In the candidate generation stage, they use a mechanism to prune the unpromising candidates.

Thus in the same level, the number of candidates is no more than that of AprioriAll. In the support

counting stage, a hash-tree data structure is used to reduce the number of candidates to be checked. The

representation of the database is transformed to efficiently determine whether a specific candidate is

contained in the database.

2.2.3. SPAM

SPAM (Sequential Pattern Mining) algorithm [9] is a depth-first algorithm that integrates the ideas

of GSP [96], SPADE [121] and FreeSpan [40]. A group of novel concepts such as the sequence-

extension step, itemset-extension step and the lexicographical tree are firstly introduced. Similar to

FreeSpan, SPAM uses a depth-first strategy to traverse the lexicographical tree to extract the complete

set of frequent sequential patterns. More importantly, SPAM encodes the id-list from SPADE to a

vertical bitmap data structure and puts them in the memory so that the “joining” operation between two

id-lists is extremely fast. That is the key reason why SPAM outperforms any of the previous algorithms.

2.2.4. SPADE

SPADE (Sequential Pattern Discovery using Equivalent classes) algorithm [121] is also a level-wise

sequential pattern mining algorithm that uses a vertical data format. The sequential database is converted

into a vertical id-list database format and each id is associated with corresponding items and the time

stamp. This algorithm aims to find frequent sequences using efficient lattice search techniques and

simple joins. All the sequences are discovered with only three passes over the database. The frequent

items are discovered in first scan, the frequent sequences of length 2 are searched in the second scan and

the last scan associates a table of the sequences id and itemsets id in the database to the corresponding

frequent sequences of length 2. The method forms the enumeration of the candidate sequences, based

on their common prefixes. The key difference between SPADE with AprioriAll [2] and GSP [96] is that

Chapter 2. Background 24

SPADE avoids scanning the original database or a representation. Instead, SPADE builds an id-list for

each candidate. The support count of the candidate can be easily calculated from its id-list, which greatly

reduces the cost of scanning.

2.2.5. FreeSpan

FreeSpan (Frequent pattern-projected Sequential pattern mining) algorithm [40] is the first

projection-based depth first algorithm. Similar to the previous algorithms, FreeSpan scans the database

once to obtain the frequent 1-sequences and put them in the f-list. Then it constructs a matrix called s-

matrix which contains the 2-sequences and their supports generated from the f-list and the infrequent

ones are filtered. Each sequential pattern in the s-matrix corresponds to a projected database that all the

sequences contain the sequential pattern itself. The next step is to construct level-2-sequences from the

s-matrix and find annotations for repeating items and projected databases in order to discard the matrix

and generate level-3 projected databases. The process repeats until no candidates can be generated.

2.2.6. PrefixSpan

PrefixSpan (Prefix-projected Sequential pattern mining) algorithm [79] is an extends of the pattern-

growth approach for frequent pattern mining and the first algorithm that does not generate a candidate.

As an enhanced algorithm of FreeSpan [40] is the first algorithm proposed that considers the projection

method for SPM. PrefixSpan uses the “prefix” of the sequence to project the database. Then it scans the

projected database for the items to be concatenated to the prefix and counts the support for each item.

The infrequent concatenation items will be discarded and frequent items will be retained. Lastly, for

each frequent concatenation item, a new prefix and its corresponding smaller projected database can be

constructed. The process continues until no more frequent concatenation items can be scanned.

2.2.7. Limitations of sequential pattern mining

A major challenge in frequent patterns mining from large database is the fact that the large number

of patterns is usually generated and many of them are redundant. This happens especially when the

minimum support threshold is low. This is because if a pattern is frequent, all of its sub-patterns are

frequent as well. A very long pattern will contain an exponential number of smaller, frequent sub-

patterns, which makes the number of patterns grows explosively. On the other hand, truly valuable

patterns in which users might be interested might be flooded in hundreds of thousands of similar

patterns.

Although there is an improvement in the efficiency of mining completed set of sequential patterns,

but still in many cases, sequential pattern mining faces strong challenges (Figure 2.1). The limitations

of SPM algorithms can be summarized as below:

 Efficiency: A huge set of sequential patterns are generated especially if the database is large.

Generally, only a small subset of such patterns is of an interest for the user.

 Understandability and Usefulness: It is difficult to understand and hard to use the large number

of mined sequential patterns for a real world application.

Chapter 2. Background 25

Figure 2.1. Challenges of sequential pattern mining algorithms

 Effectiveness: In addition, the algorithms may reduce the number of patterns but unimportant

patterns are still found in the result patterns. It would be better if the unimportant patterns could

be pruned first, resulting in fewer but important patterns after mining.

 Certainty: Although efficient algorithms have been developed to tackle these problems, the

performance of the algorithms dramatically degrades in case of mining long sequential patterns in

dense databases or using low minimum supports.

 Interestingness: In general, SPM considers subsequences and items in a sequence uniformly. The

data elements that have different importance in real world applications are not differentiated and

thus general sequential pattern mining is limited in finding more interesting characteristics

embedded in the real world applications. There are several applications in which specific

sequences are more important or have more priority than other sequences.

 Computation Time: Mining a large amount of sequential patterns from large sequence databases

is a computationally expensive task. If we can focus on only those sequential patterns that are

interesting to users, we may be able to save a lot of computation cost [96].

 Accuracy: To ensure that the results of sequential pattern mining are completed and accurate is a

challenge.

2.3. Frequent closed sequential pattern mining

Frequent closed sequential pattern mining is slightly different from frequent sequential pattern

mining. The definition is as follows. Given a SDB and a minimum support , assume L contains all the

frequent sequential patterns in SDB that satisfies . The set of frequent closed sequential pattern  is

defined as  = {α|α ∈ L  β ∈ L such that α  β  (α) = (β)}.

Because mining the completed set of frequent subsequences can generate a huge number of

sequential patterns, an interesting alternative is to mine frequent closed subsequences only, that is, those

containing no super sequence with the same support. Frequent closed sequential patterns (FCSP) mining

can produce a significantly less number of sequences than the full set of sequential patterns. Note that

the full set of frequent subsequences, together with their supports, can easily be derived from the closed

subsequences. Thus, closed subsequences have the same expressive power as the corresponding full set

of subsequences. Because of their compactness, they may also be quicker to find.

Accuracy

Certainty

Usefulness

Computation
Time

Problems with General
Sequential Pattern Mining

Effectiveness

Interesting

Efficiency
Understandability

Chapter 2. Background 26

Many algorithms have been proposed for mining frequent closed sequential patterns to reduce the

required storage space and runtime. Popular algorithms for frequent closed sequential pattern mining

are CloSpan [117], ClaSP [36], BIDE [109, 111] and CloFS-DBV [101]. CloSpan uses a maintain-and-

test pattern method and combines a hash-index structure with a tree structure for storing sequences. This

algorithm prunes the patterns using techniques such as Common Prefix and Backward Sub-Pattern to

reduce the search space. The ClaSP algorithm uses a vertical database format strategy and a heuristic to

prune non-closed sequences. This algorithm maintains previous candidates to test the closure of

sequences and remove them later. The maintenance of candidates increases memory consumption and

the number of test candidates increases with the number of generated frequent closed sequences. Most

of these algorithms maintain mined frequent itemsets in order to test frequent closed sequences, which

requires a lot of memory.

BIDE does not need to keep track of any single historical frequent closed sequences (or candidates)

for a new pattern’s closure checking. It uses bi-directional extension techniques to examine frequent

closed patterns as candidates before extending a sequence. Moreover, the algorithm uses a BackScan

process to determine candidates that cannot be extended to reduce mining time and pseudo projection

techniques to reduce database storage space and is efficient for low support thresholds. However, this

method has to project and scan databases many times for each prefix, making it inefficient. In addition,

CloFS-DBV [101] algorithm uses dynamic bit vector (DBV) structure combined with location

information in the structure of the transaction CloFS-DBVPattern to mine frequent closed sequences.

CloFS-DBV early prunes of prefix sequences and checks the backward extension and forward extension

quickly based on CloFS-DBVPattern structure. For each transaction, it just considers the start position

or the last position of the sequence. Therefore, if the sequence has N transactions, the CloFS-DBV takes

only N operations to check each candidate. In contrast, BIDE algorithm that is more efficient than

CloSpan algorithm in almost all the cases use a local database to check backward extension and use a

projected local database to check forward extension. Let k be the sequence length and N be the number

transaction of sequence. Thus, BIDE requires k × N operations to check each candidate.

2.4. Parallel computing

Data mining is often a computing intensive and time requiring process. For this reason, several data

mining systems have been implemented on parallel computing platforms to achieve high performance

in the analysis of large database. Exploring useful information from huge data will require efficient

parallel algorithms running on high performance computing systems with powerful parallel I/O

capabilities. When data mining tools are implemented on these computers, they can analyze massive

databases in a reasonable time.

We get higher I/O bandwidth, larger memory and computational power than the limits of existing

serial systems, all these factors leading to lower response time and improve scalability to larger

databases. The common drawback is that algorithm and application design become more complex in

order to enjoy higher performance. We need to devise algorithms and techniques that distribute the I/O

and the computation in parallel, minimize communication and data transfer to avoid wasting resources

[23].

With the availability of huge databases in many applications like medical informatics, financial

Chapter 2. Background 27

analysis, scientific data analysis, retailing and marketing, it is becoming increasingly important to

execute data mining tasks in parallel. Since serial algorithms are not scalable, high performance parallel

and distributed computing become essential.

Parallel computing is a form of computation in which many calculations are carried out

simultaneously [3]. It is based on the principle that large problems can often be divided into smaller

ones, which are then solved concurrently. Some of the more commonly used terms associated with

parallel computing are listed below [115].

Speedup: It is one of the simplest and most widely used indicators for a parallel program’s

performance. It is defined as: 𝑠𝑛 =
𝑡𝑠

𝑡𝑝
, where ts is the execution time using only one processor and tp is

the execution time using n processors. The maximum speedup that can be reached is linear speedup.

Scale up: It captures how well the parallel algorithm handles larger databases when more processors

are available. Scale up study measures execution times by keeping the problem size per processor fixed

while increasing the number of processors.

Shared memory system: Multiple processors can operate independently but share the same

memory resources. Thus, data sharing between tasks is both fast and uniform due to the proximity of

memory to CPUs. However, adding more CPUs can geometrically increase traffic on the shared

memory-CPU path.

Distributed memory system: Each processor has its own local memory, a communication network

is used to connect the inter-processor memory. Increasing the number of processors can increase size of

memory proportionately. Since the concept of cache coherency and global address do not apply in a

distributed memory system, the programmer is responsible for many of the details associated with data

communication among processors.

Currently, hardware architects are no longer using the additional transistors afforded by Moore's

Law to make sequential processors faster, but instead to put more processing cores on a single chip,

leaded to so-called chip multiprocessors [94] or simply multi-core processors which lead to an increasing

interest in parallel computing strategies. Some researches take full advantage of these architectures in

order to improve performance of data mining tasks.

Using multiple processors to compute in parallel may allow us to obtain a solution sooner and if

each processor has its own memory, partitioning the data among the processors may allow larger

problems to be handled that could not be handled on a single processor. By adding additional processing

elements, more data can be processed and can be improved performance. Performance improvement is

main goal of using parallel computing technologies in the data mining field. In fact, a successful

approach tries to use parallel techniques for optimizing the local mining at a site and uses distributed

techniques for construction global patterns or model, while minimizing the amount of results

communicated.

Throughput and response time are two main measures of performance improvement, which are

normally quantified by the following metrics: speed up and scale up. The first metric can be measured

Chapter 2. Background 28

by dividing the run time of a job on single processor with the run time of that job on multiprocessors. In

parallel systems, equal workload among processors plays the critical role to achieve linear speed up.

Loading one processor, heavier than others is certainly undesirable. The second metric is scale up, which

can be measured by dividing the run time on a small system and the run time on a large system. We

would like to maintain system performance when the number of tasks and size of the data to be mined

increase.

There are some factors which work against speed up and scale up such as initialize and

communication cost, shared resources competition, workload unbalancing and consolidation. In parallel

environment, there is a startup cost associated with initiating each process. In this situation, often one

process for communication with others may be forced to wait. System resources are limited, both speed

up and scale up are affected by sharing these resources. Performance of parallel system is dependent

upon how the workload distribution, uniform workload among processors is most desirable. In parallel

processing, it is necessary to gather the results produced by each processor and system performance is

affected by this phenomenon.

Parallel and distributed data mining algorithms can be classified in term of five main components

[55, 123]:

 Distributed versus shared memory systems

 Data versus task parallel

 Static versus dynamic load balancing

 Complete versus heuristic candidate generation

 Horizontal versus vertical data format

In distributed memory architecture, each processor has a private memory and a message passing

mechanism needs to be employed for exchanging data among processors. On the other side, in shared

memory architecture, all processors can access a common memory. In this architecture different

processors may simultaneously read the same memory location, but may not simultaneously write to the

same memory. A typical shared memory machine consists of several CPUs. A larger number of CPUs

is not too common due to the scaling up limitation. Hybrid architecture is a mixture between shared

memory and distributed memory architectures. Communication between the processors is crucial in

distributed memory systems and I/O can become a bottleneck in shared memory systems.

Communication costs can be balanced by the improved knowledge that a data mining algorithm can get

from parallelization.

Chapter 2. Background 29

Figure 2.2. Distributed shared memory3

Parallel algorithms can further be classified as having a static or dynamic load balancing. Static load

balancing refers to some heuristic cost functions. In contrast, dynamic load balancing refers to the

environment where data is continuously moved from heavily loaded processors to less busy ones. In

static load balancing, there is no subsequent data or computation movement to correct load imbalances

which result from the dynamic nature of mining algorithms. Dynamic load balancing is especially

important in multi-user environments with transient load and in heterogeneous platforms, which have

different processors and network speeds. The operating system can play an important role to allocate

tasks to each processor. Once a processor is idle, a task in the queue will be immediately allocated to it.

Mining algorithms can differ in the way that new candidates are generated for evaluation. Complete

search approaches generate and test all valid candidates, while in heuristic approaches, at each step, it

only examines a limited number of candidates.

An easy way to discuss the many parallels and distributed mining methods is to describe them in

terms of the computation and data partitioning methods used (Figure 2.3). For example, the database

itself can be shared (in shared memory or shared disk architectures), partially or totally replicated, or

partitioned (using round robin, hash, or range scheduling) among the available nodes (in distributed

memory architectures). Similarly, the generated and evaluated candidate concepts in the different

mining methods can be shared, replicated or partitioned. If they are shared then all processors evaluate

a single copy of the candidate set. In the replicated approach the candidate concepts are replicated on

each machine and are first evaluated locally, before global results are obtained by merging them. Finally,

in the partitioned approach, each processor generates and tests a disjoint candidate concept set.

3 https://en.wikipedia.org/wiki/Distributed_shared_memory

Process Process Process

Memory

manager

Memory

manager

Memory

manager

Shared Virtual Memory

In
v
o
catio

n

In
v
o
catio

n

In
v
o
catio

n

R
es

p
o
n
e

R
es

p
o
n
e

R
es

p
o
n
e

……

……

Chapter 2. Background 30

Figure 2.3. Concepts for parallel and distributed mining methods

Recently, there is a distributed programming model called MapReduce [62, 82] raise researchers

and developers concerns. MapReduce is developed by Google, intended for processing massive amounts

of data in large clusters. It is an implemented as two functions, Map which applies a function to all the

members of a collection and returns a list of results based on that processing and Reduce, which collates

and resolves the results from two or more Maps executed in parallel by multiple threads, processors, or

stand-alone systems. Both Map and Reduce may run in parallel, though not necessarily in the same

system at the same time.

The recent improvements of Graphics Processing Units (GPU) offer a powerful processing platform

for both graphics and non-graphics applications [77]. GPU has a parallel “multi-core” architecture, each

core capable of running thousands of threads simultaneously - if an application is suited to this kind of

an architecture, the GPU can offer large performance benefits. However, a typical computation running

on the GPU must express thousands of threads in order to effectively use the hardware capabilities.

Therefore, finding large scale parallel is important for programming on GPU. The introduction of the

NVIDIA CUDA, through a C-based API, an easy way to take advantage of the high performance of

GPUs for parallel computing.

2.5. Multi-core processors architecture

The computers with single processors which has limited the performance and efficiency of the

computers. The classic way of overcoming the performance issue was to use bigger processors for

executing the data with higher speed. Big processor did improve the performance to certain extent but

these processors consumed a lot of power which started over heating the internal circuits. To achieve

the efficiency and the speed simultaneously the CPU architectures developed multi-core processors units

in which two or more processors were used to execute the task. The multi-core technology offered better

response-time while running big applications, better power management and faster execution time.

Multiple cores are embedded in modern CPU, using non trivial cache hierarchies to access the main

memory and equipped with a large set of SIMD instructions. In multi-core processors architecture, a

processor includes two or more independent cores in the same physical package [6, 94, 104], with each

Data / Concept

SharedReplicated

TotallyPartially

Partitioned

Chapter 2. Background 31

processing unit having separate memory and shared main memory. An example of a quad-core processor

is shown in Figure 2.4. Multi-core processors allow multiple tasks or processes to be executed

simultaneously to increase performance.

Figure 2.4. Diagram of quad-core processor architecture4

The main advantage of multi-core processors that signals between different CPUs travel shorter

distances and therefore those signals degrade less. These higher quality signals allow more data to be

sent in a given time period since individual signals can be shorter and do not need to be repeated as

often. The performance improved largest while running CPU intensive processes.

In physically, the multi-core CPU designs require much less Printed Circuit Board (PCB) space than

multi-chip symmetric multiprocessing (SMP) designs. Also, a dual-core processor uses slightly less

power than two coupled single-core processors, principally because of the decreased power required to

drive signals external to the chip. Furthermore, the cores share some circuitry, like the L2 cache and the

interface to the front side bus (FSB). In terms of technologies, multi-core design can make use of proven

CPU core library designs and produce a product with lower risk of design error than devising a new

wider core design.

Multi-core processors are an improvement over the deficiencies of single-core processors, as

processor speed increases, the amount of heat produced and the amount of power consumed by the

processor increase with it. Multi-core processors can perform more works within a given amount of time

by dividing the work between two or more cores while reducing the power consumption and dissipate

the heat [22]. Due to the computing power and cost-to-performance effectiveness, the multi-core

processors are widely used in modern computers. Applications of multi-core processors are to speed up

the work of operating systems and to support multithreading.

One basic difference between single processor and multi-core processors is that a single processor

has a unique L1 cache along with a L2 cache whereas each independent processor in a multi-core system

4 Understanding Multiprocessing and Multiple Cores

Core 1 Core 2 Core 3 Core 4

Individual

Memory

Individual

Memory

Individual

Memory
Individual

Memory

Chip Boundary

Shared Memory

Bus Interface

Off-chip Components

Chapter 2. Background 32

has a common shared L2 cache in addition to an individual L1 cache. Therefore, number of caches and

memories required become less than if single core processor is used for the equal number of jobs that

need to be performed.

The overall performance of a microprocessor is determined by interconnect characteristics. Several

interconnection mechanisms have been proposed in [16, 57] to speed up the interconnect performance.

Among them, a shared bus fabric (SBF) is most commonly used. A shared bus fabric is a high speed

link which can communicate data between processors, caches, I/O and memory in a multi-processor

system. The effectiveness of such an approach depends on the probability that an L2 miss is serviced on

a local cache.

The interaction between cores in multi-core CPU's can be implemented by various mechanisms,

affecting overall CPU performance due to shared workloads between cores. The most efficient way to

allow on chip interprocess communication (IPC) is through the use of shared memory. This is a very

important feature for efficient hardware utilization of multi-core systems. Shared memory IPC is more

efficient because data does not need to be copied from one process memory space to another. Instead, a

memory space that is shared between the communicating processes is created. By this way, IPC that

uses shared memory avoids many costly memory operations.

Task scheduling for multi-core processors is a key factor on the performance of the multi-core

processors. Most traditional task scheduling strategies focused on single-core processor and they cannot

work well for multi-core processors system. With the widespread use of multi-core processors,

designing an effective task scheduling strategy has been a hot issue.

The advent of multi-core processors has refocused attention on the cognitive challenges of parallel

programming. As single core performance reaches a max threshold, programs do not automatically

increase in performance when run on new hardware. Instead, programs must run in parallel if they are

to make use of new hardware resources. The parallel required to exploit new hardware fully is growing

exponentially with each generation.

Multi-core processors also gave developer an opportunity to parallel programming to execute the

task in parallel. Parallel programming is used to execute a task by distributing it in smaller instructions

and executing them on different cores. By using parallel programming, the complex tasks that are carried

out in a multi-core environment can be executed with higher efficiency and performance.

Programming for multi-core processors poses new challenges. The main objective of multi-core

processors architecture is the extraction of higher performance from multi-cores which depend upon an

efficient parallel programming mechanism and its implementation.

2.6. Parallel programming

Parallel programming is difficult because it adds synchronization as a new problem area to be dealt

with. Synchronization defects such as race conditions, deadlocks and livelocks are known to be difficult

to detect [4].

Although previous work in algorithms [39], database systems [72] and high performance computing

[38, 68] including dealt with these problems, the novel challenge now is to develop general purpose

Chapter 2. Background 33

engineering approaches for assisting ordinary programmers with the creation of potentially large,

parallel applications. These approaches must not only target algorithmic levels, but also higher

abstraction levels such as design patterns [14]. Strategic engineering aspects on how to approach

parallelization on different abstraction levels are not well-developed. Other approaches with different

underlying paradigms, such as transactional memory [89] or stream programs [98] are active areas of

research.

Multi-core programming is a form of parallel programming in which the code takes advantage of

the multiple execution cores to run many instructions in parallel at the same time. Multi-core and multi-

processor computers offer more than one processing core in a single machine. Hence, the goal is to do

more in less time by distributing the work to be done in the available cores.

The multi-threading model was not designed to help developers tackle the multi-core revolution. In

fact, creating a new thread requires a lot of processor instructions and can introduce a lot of overhead

for each algorithm that has to be split into parallelized threads. Because this multi-threading model is

too complex to handle the multi-core revolution, it is known as heavyweight concurrency.

Multi-threading requires adding too many lines of code to handle potential problems because of its

lack of support of multi-threaded access at the framework level and it makes the code complex to

understand. The aforementioned problems associated with the multi-threading model and the increasing

number of logical cores offered in modern microprocessors motivated the creation of new models to

allow creating parallelized sections of code.

The new model is known as lightweight concurrency because it reduces the overall overhead needed

to create and execute code in different logical cores. The lightweight concurrency model takes into

account the new micro-architectures in which many logical cores are supported by some physical cores.

This model is not just about scheduling work in different logical cores. It also adds support for multi-

threaded access at the framework level and it makes the code much simpler to understand.

Two main approaches were used for parallelization are task parallel and data parallel.

Figure 2.5. Parallel approaches

With task parallel, each processor has or needs access to the entire database and multiple operations

are concurrently executed. Task parallel algorithms assign portions of the search space to separate

Parallel

Task parallel

Divide and Conquer

Task Queue

Data parallel

Record Based

Attribute Based

Chapter 2. Background 34

processors. The task parallel approaches can again be divided in two groups. The first group is based on

a divide-and-conquer strategy that divides the search space and assigns each partition to a specific

processor. The second group is based on a task queue that dynamically assigns small portions of the

search space to a processor whenever it becomes available.

A task parallel implementation of search tree induction will form tasks associated with branches of

the tree. A divide and conquer approach seems a natural reflection of the recursive nature of search trees.

Task parallel implementation of search trees that seems to work well due to the independent nature of

the subtasks are presented in [123]. However, the task parallel implementations suffer from load

balancing problems caused by uneven distributions of records between branches. The success of a task

parallel implementation of search trees seems to be highly dependent on the structure of the database.

The second approaches, called data parallel, distribute the data set over the available processors, the

database is partitioned among the processors and the same operation is executed on multiple partitions

at the same time. Data parallel approaches come in two flavors. A partitioning based on records will

assign non-overlapping sets of records to each of the processors. Alternatively, a partitioning of

attributes will assign sets of attributes to each of the processors.

Attribute based approaches are based on the observation that many algorithms can be expressed in

terms of primitives that consider every attribute in turn. If attributes are distributed over multiple

processors, these primitives may be executed in parallel. These approaches work well if a good load

balancing can be achieved by a careful distribution of attributes. Unfortunately, the number of attributes

usually is in the same order of magnitude as the number of processors, which makes an uneven

distribution of attributes more likely. Also, the set of attributes that is considered during the course of

the algorithm may differ. Many data mining primitives consider multiple attributes at once, which may

require duplication of data in order to minimize communication between processors.

Record based partitioning is based on the notion that most primitives common in data mining that

consider all records can be executed in parallel if the records are distributed over the processors. Record-

based approaches are dependent on the fact that every record has an equal probability of being

considered during the execution of a primitive. For a random distribution of records this is the case. The

number of records is usually several orders of magnitude larger than the number of processors. This will

facilitate an equal distribution of the data over the available processors.

From a data mining viewpoint, data parallel has several advantages over task parallel. In a lot of

previously written, serial code can be reused in a data parallel fashion. This simplifies programming and

leads to a development time significantly smaller than one associated with task parallel programming.

Data parallel has a higher degree of machine architecture independence, in comparison with task

parallel. But problem of machine architecture dependence is not completely eliminated in data parallel.

In most applications, the amount of data can increase arbitrarily fast, while the number of lines of code

typically increases at a much slower rate. To put it in simple terms, the more data is available, the more

opportunity to exploit data parallel. Despite the above advantages of data parallel, it should be

emphasized that the exploitation of task parallel is also useful in data mining. To summarize, data

parallel addresses the problem of very large databases, whereas task parallel addresses the problem of

very large search spaces. Note that if a large enough number of processors are available, both types of

Chapter 2. Background 35

parallel can be used at the same time, which can greatly speed up the execution of data mining algorithms

[1].

2.7. Task parallel programming

Traditional task parallel programming models try to abstract over threads and offer a higher-level

abstraction for expressing parallel. Cilk [15] is a task based, shared memory, programming model that

allows the programmer to specify recursively spawned tasks, which are efficiently scheduled on threads

using continuations.

 With .NET framework 4.0, task is part of the Task Parallel Library (TPL), which is a new collection

of very, very useful classes aimed at not only making parallel programming easier to read, but also offers

lighter weight objects when compared to the classic threading alternatives. The TPL dynamically scales

the degree of parallel to most efficiently use all the processors that are available. In addition, the TPL

assists in the partitioning of work and the scheduling of tasks in the .NET thread pool. The library

provides cancellation support, state management and other services.

Work 1
Switch

context
Work 2

Switch

context
Work 1

Switch

context
Work 2

Work 1 Work 1 Work 2 Work 2

Figure 2.6. Switching between pieces of work

One of the first advantages of using task is that it becomes easier to guarantee that you are going to

maximize the performance of applications on any given system. For example, if we are going to fire off

multiple threads that are all going to be doing heavy CPU bound work. On a single core machine we are

likely to cause the work to take significantly longer. It is clear, threading has overhead and if you are

trying to execute more CPU bound threads on a machine than you have available cores for them to run,

then you can possibly run into problems. Each time the CPU has to switch from thread to thread, there

is a bit of overhead and if you have many threads running at once, then this switching can happen quite

often, causing the work to take longer than if it had just been executed synchronously.

If we are not switching between pieces of work, then we do not have the context switches between

threads as shown in Figure 2.6. So, the total cumulative time to process in that manner is much longer,

even though the same amount of work was done. If these are being processed by two different cores,

then we could simply execute them on two cores and the two sets of work would get executed

simultaneously, providing the highest possible efficiency.

Tasks allow programmers to express the maximum parallel in an algorithm without hard-wiring

such parallel into threads and making assumptions about the parallel available in hardware. The compiler

and runtime system can then extract parallel as needed by mapping tasks to available cores,

automatically detect dependencies, perform synchronization and even produce deterministic parallel

executions [103]. Task parallel programming models offer a much better abstraction for checkpointing

Chapter 2. Background 36

an application, as tasks are atomic units of work that do not communicate or synchronize with other

tasks and have a fixed set of inputs and outputs.

2.8. Parallel sequential pattern mining

Traditional methods typically made the assumption that the data is memory resident. This

assumption is no longer acceptable. Implementation of data mining algorithms in high performance

parallel computing environment is becoming crucial for ensuring system scalability and interactivity as

data continues to grow extremely in size and complexity. In fact, a fundamental challenge is to extend

data mining to large databases. There are many issues to implement data mining techniques with

different parallel strategies, must be taken into account. These parallel approaches may be combined to

form different hybrid parallelization strategies to improve both performance and accuracy. There are

different forms of parallel in data mining depending on the context of the problem and appropriate

parallelization strategy could depend upon the data mining algorithm that is being parallelized. The main

challenges of parallel and distributed algorithms face today include communication overhead

minimization, synchronization, workload balancing, data decomposition, efficient memory usage and

disk I/O minimization.

Many FSP and FCSP mining algorithms are implemented based on a sequential strategy and single-

task processing. This means that a task must be completed before the next one can be started. Hence,

these methods are time-consuming for large databases. To improve performance, some researchers have

applied parallel computing approaches to speed up the processing such as pSPADE algorithm [122] is

a parallel sequential pattern mining algorithm was proposed for fast discovering the set of all frequent

subsequences on computers with shared memory, which is based on SPADE algorithm [121]. pSPADE

is the first algorithm for shared memory systems, pSPADE treats the pattern space as a tree of

independent suffix-based classes. Each class can be solved independently on each processor requiring

no synchronization.

Many algorithms have been proposed for mining frequent closed sequential patterns to reduce the

required storage space and runtime. Popular algorithms for closed sequential pattern mining are CloSpan

[117], ClaSP [36], BIDE [109, 111] and CloFS-DBV [101].

Par-CSP [25] and Par-ClosP [128] algorithms were proposed for a distributed memory system, it

partitions the work among the processors based on the divide-and-conquer property so that the overhead

of inter-processor communication is minimized. The Par-CSP algorithm is a method for mining closed

sequential patterns on computers with distributed memory, it is an extended from BIDE [109]. To

efficiently parallelize BIDE, the Par-CSP uses the divide-and-conquer strategy to minimize inter-

processor communications. A method called dynamic scheduling is used to reduce processor idle time

and the authors devise a technique called selective sampling to estimate the relative mining time of the

subtasks and achieve load balancing. BIDE-MR algorithm [120] is a parallel implementation of BIDE

algorithm on MapReduce. It iteratively assigns the tasks of closure checking and pruning to different

nodes in cluster.

In addition, multi-core processors [6, 39, 104] allow for multiple tasks to be executed in parallel to

enhance performance. Based on the multi-core processors architecture, some data mining researches

Chapter 2. Background 37

developed parallel data mining algorithms to speed up the execution process, thereby reducing

computational cost and improving the efficiency of systems. Such as a cache-conscious FP-array and a

mechanism for parallel data lock-free dataset tiling [65] for mining frequent itemsets on multi-core

computers. Multi-Core Apriori Transaction Identifiers (MATI) algorithm [119] proposed a strategy for

effective load balancing to reduce the number of duplicate candidates generated. In addition, parallel

mining has been applied to closed itemset mining [87, 119], correlated pattern mining [21], class

association rule mining [76], frequent subgraph mining [48], generic pattern mining [74] and frequent

sequential pattern mining [47, 49].

Other methods based on multi-core architectures includes PGP-mc, which uses parallel gradual

pattern extraction [59], GapMis-OMP, which is a tool for pairwise short-read alignment [33], SW

(Smith-Waterman), which compares sequence lengths [86], PIB-PRISM and pDBV-SPM, which mining

frequent sequential pattern on multi-core processors [47, 49].

2.9. Bit vectors

A bit vector is an array of bits (also known as a bitmap) that compactly stores bits. It can be used to

implement a simple set data structure. Since there are only two possible values, they can be stored in

one bit. A bit vector is built to represent the positions of an item X appearing in a sequence α. If the i-th

itemset in α contains item X, then the i-th bit in the bit vector is 1, otherwise, it is 0.

For example, Table 2.5 shows a 24-byte bit vector. Table 2.6 is a mapping of SDB in Table 2.2 to a

bit vector. Item A appears in all sequences so its bit vector is 1111, item E appears only in sequense S3

so its bit vector is 0010 and so on. The length of a bit vector is the number of sequences in the database.

Bit vectors have been widely used for mining frequent itemsets, with good results obtained.

However, the sizes of bit vectors for itemsets are always the same, i.e., equal to the number of

transactions in the database. When the number of transactions is large, it is difficult to store them all in

main memory. In addition, a lot of memory and time are needed for computing the intersection among

bit vectors. There are usually many ‘0’ bits in a bit vector. The bit vector of an itemset with many ‘0’

bits can be shortened to reduce storage space and computation time. DBVs were thus proposed [107] to

reduce memory usage and computation time. A DBV represents a bit vector in bytes after removing the

‘0’ bits at the front and end of the vector. Itemsets with many ‘0’ bits are thus more efficiently stored in

a DBV, different itemsets can have different vector lengths.

2.10. Dynamic bit vectors

Some sequential pattern mining (SPM) algorithms based on a vertical data format have proven to

be more efficient than those based on a horizontal data format. These algorithms scan the database only

once and quickly calculate the support of patterns. However, they require a lot of memory to store

additional information. The main drawback of the bit vector structure is its fixed size, which depends

on the number of sequences in a sequence database. During sequence extension, ‘0’ bits thus appear

often, which increases the required memory and processing time. The DBV data structure is used to

overcome this problem.

Chapter 2. Background 38

2.10.1. Dynamic bit vector data structure

The DBV structure is used to store transactions in a vertical format. The supports can be quickly

calculated by counting the number of ‘1’ bits.

A DBV consists of two parts:

 Start bit: the position of the first appearance of a ‘1’ bit.

 Bit vector: a sequence of bits starting from the first non-zero byte to the last non-zero byte.

Suppose that there are 24 sequences in a sequence database. An item i exists in sequences 5, 6, 9,

11 and 13. The bit vector for item i needs 24 bytes, as shown in Table 2.5. Using the DBV structure,

only 11 bytes are required (9 bytes for the bit vector and 2 bytes for position). Let X and Y be two bit

vectors, v1 and v2 are the probabilities of ‘1’ bits in bit vectors X and Y, respectively. Let h be the

probability of ‘0’ bits after joining X and Y to get XY via sequence extension. Therefore, the probability

of ‘1’ bits in bit vector XY is min(v1, v2) - h, where min(v1, v2) is the minimum value of v1 and v2. The

gap between v1 and v2 increases quickly after several sequence extensions.

Table 2.5. Example of 24-byte bit vector

0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

In Table 2.5, the first non-zero byte appears at position 5. The conversion of the bit vector to a DBV

is shown in Table 2.7.

Table 2.6. Conversion of SDB in Table 2.2 to DBV format

Item sid Bit encoding

Conversion

to DBV

Start bit Bit vector Value

A 1, 2, 3, 4 1111 1 1111 15

B 2, 3, 4 0111 2 111 7

C 1, 2, 3, 4 1111 1 1111 15

D 4 0001 4 1 1

E 3 0010 3 1 1

Consider SDB in Table 2.2. Item A exists in sequences S1, S2, S3 and S4, the start bit is 1, the bit

vector is 1111 and thus (A) is 4 because the bit vector has four ‘1’ bits. Item B exists in sequences S2,

S3 and S4, the start bit is 2, the bit vector is 0111 and thus (B) is 3 because the bit vector has three ‘1’

bits. Similarly, (C) is 4, (D) and (E) is 1. Table 2.6 shows the conversion of SDB in Table 2.2 to the

DBV format.

Chapter 2. Background 39

Table 2.7. Conversion of bit vector to DBV

0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

We use a byte to represent a block of 8 bits to speed up the counting. For example, a block of 8 bits,

00001111, is represented by number 15 in byte. In Table 2.6, value of item A is 15 (1111) and that of

item B is 7 (0111). The intersection of 15 & 7 is equal to 1111 & 0111. Using DBV helps to reduce

memory storage and computational cost in bitwise AND operator.

2.10.2. DBV-Pattern data structure

The DBV-Pattern data structure combines the DBV structure with a representation of a sequence.

Each DBV-Pattern consists of three parts, namely S, BitArray and LP, where:

 S is a sequence.

 BitArray is a DBV.

 LP is list of positions of the occurrence in the sequence of each transaction. List positions are

represented in the form startPos:{list position}, where startPos is the first appearance of the

sequence in each transaction.

In SDB, item A exists in sequences S1, S2, S3 and S4. In sequence S1, item A appears at positions {2,

3, 4}. The starting position is 2, so LP is 2:{2, 3, 4}. In sequence S2, item A appears at positions 1 and

3. The starting position is 1, so LP is 1:{1, 3}. Similarly, LP of item A is 1:{1, 3} in sequence S3 and

1:{1, 4} in sequence S4. Table 2.8 presents the DBV-Pattern for item A in Table 2.2.

Table 2.8. DBV-Pattern for item A

Sequence A

Start bit 1

Value 15

Index 4 3 2 1

List Positions 1:{1, 4} 1:{1, 3} 1:{1, 3} 2:{2, 3, 4}

2.10.3. DBV-Tree

The DBV-Tree is an extension of the prefix-tree with the top level labeled NULL. Each node in a

DBV-Tree is a DBV-Pattern. Each node X at level k in the tree can be extended via sequence extension

or itemset extension by adding one item to get a child node X at level k+1. A new node XY is created by

joining nodes X and Y, which must have the same length and the same |X| - 1 prefix item. Typical

Start bit

=5

DBV = {5, 110010101}

Chapter 2. Background 40

algorithms for building a prefix-tree are IMSR_PreTree [105] and MNSR_PreTree [80]. Figure 2.7

shows candidates for SDB in Table 2.2.

Figure 2.7. DBV-Pattern tree for SDB in Table 2.2 with minsup = 50%.

2.11. Summary

In this chapter, we presented the basic concepts of sequential pattern mining and overviewed some

traditional frequent pattern mining methods, which contains frequent sequential pattern mining and

frequent closed sequential pattern mining. Then we introduced the parallel computing, multi-core

processors architecture, parallel programming and reviewed some parallel frequent sequential patterns

methods. Specially, a novel compact data structure was presented to store database for sequential pattern

mining.

Chapter 3

Parallel methods for mining sequential patterns

In this chapter, we propose parallel methods for sequential pattern mining (SPM) on large sequence

database using multi-core processors architecture. This section also describes models for compact sequence

database and scalable parallel algorithms based on data parallel. These algorithms follow the level-wise

approach and all participating processors generate candidate sequences and count their supports

independently. The main target is usually to reduce the execution time as much as possible by using multi-

core processors.

3.1. Introduction

Sequential pattern mining is to find a set of patterns that occur frequently together in some sequences.

The general idea of all existing methods is to start with general sequences and then extend them towards

specific ones.

Many sequential pattern mining algorithms are implemented based on a sequential strategy and single-

task processing. Hence, these methods are time-consuming for large databases, especially large and dense

databases. To improve performance, some researchers have applied parallel computing approaches to speed

up the processing. Such as pSPADE algorithm [122], which is based on SPADE algorithm [121], pSPADE

is the first algorithm for shared memory systems, pSPADE treats the pattern space as a tree of independent

suffix-based classes. Each class can be solved independently on each processor requiring no

synchronization. Par-CSP algorithm [25] was proposed for a distributed memory system, it partitions the

work among the processors based on the divide-and-conquer property so that the overhead of inter-

processor communication is minimized. In addition, multi-core processors [6, 94, 104] allow for multiple

tasks to be executed in parallel to enhance performance.

Some data mining researchers have developed parallel algorithms for multi-core processors

architectures such as cache-conscious FP-array and a mechanism for parallel data lock-free database tiling

[65] and MATI algorithm [119] was proposed a strategy for effective load balancing to reduce the number

of duplicate candidates generated. Parallel mining has been applied for mining closed frequent itemsets

[119], correlated pattern mining [21], generic pattern mining [74], class association rule mining [76] and

frequent graph mining [48]. Existing parallel algorithms only considered to distribute memory systems

based on data parallel. This caused a high load imbalance and a higher synchronization happening at the

end of each step. In this thesis, we utilize multi-core systems to solve these problems. In addition, parallel

mining process invokes the Parallel Patterns Library (PPL) in .NET framework 4.0 which allows a

simultaneous access to the whole available cores on modern computers. In this chapter, some efficient

approaches for sequential pattern mining in parallel are presented.

Chapter 3. Parallel methods for mining sequential patterns 43

3.2. Parallel Independent Branch PRISM (PIB-PRISM)

3.2.1. Prime block encoding

The PRISM algorithm was proposed as an effective approach for frequent sequence mining via prime

block encoding [37]. It is briefly introduced as follows.

An integer p is a prime integer if p > 1 and the only positive divisors of p are 1 and p. Let p1, p2, …, pr

be the distinct prime factors of n, arranged in order, so that p1 < p2 < … < pr. All repeated factors can be

collected together and expressed using exponents, so that 𝑛 = 𝑝1
𝑚1𝑝2

𝑚2 … 𝑝𝑟
𝑚𝑟, where each mi is a

positive integer, called the multiplicity of pi and this factorization of n is called the standard form of n.

Given two integers 𝑥 = ∏ 𝑝𝑖𝑥
𝑚𝑖𝑥𝑟𝑥

𝑖=1 and 𝑦 = ∏ 𝑝
𝑖𝑦

𝑚𝑖𝑦𝑟𝑦

𝑖=1
 in their standard forms, the greatest common

divisor of the two numbers is given as gcd(x, y) = ∏ 𝑝𝑖
𝑚𝑖

𝑖 , where pi = pjx = pky is a factor common to both

x and y and mi = min(mjx, mky), with 1 ≤ j ≤ rx, 1 ≤ k ≤ ry.

Given a set G of items is arranged, let P(G) is a set of all subset of G and indexed by the set {1, 2, …,

|G|}. Considering S ∈ P(G), any subset S can be represented as a bit vector contains n bit (denoted by SB).

𝑆𝐵 = 1 if the i-th element of G is in S, vice versa 𝑆𝐵 = 0. Given a set S has n items, S ∈ P(G), we define

multiplication operator of S denoted is ⨂S = s1×s2×...×sn, with si  S. If S = , define ⨂S = 1. Meanwhile,

⨂P(G) = {⨂S: S ∈ P(G)} is a set obtained when applying multiplication operator ⨂ on all sets S in P(G).

In this case, G also is a generator of ⨂P(G) under the multiplication operator. A set G is a square-free

generator if each. In case a generator G consists of only prime intergers, it was called a prime generator.

Theorem 3.1 [37]. A set P is a square-free semi-group with operator ⨂ iff it has a square-free prime

generator G. In other words, P is a square-free semi-group iff P = ⨂P(G).

Theorem 3.2 [37]. Let ⨂P(G) be a square-free semi-group with prime generator G and let 𝑋, 𝑌 ∈ ⨂P(G)

be two distinct elements, then gcd(X, Y) = ⨂(SX  SY) and lcm(X, Y) = ⨂(SX  SY), where 𝑋 = ⨂SX and

𝑌 = ⨂SY and SX, SY ∈P(G) are the prime factors of X and Y, respectively.

Given a set G of prime numbers sorted in increasing order, assume that N is a multiple of |G| and B be

a bit vector of length N. Then B can be partitioned into m =
𝑁

|𝐺|
 continuous blocks. Each block Bi includes

the segment from B[(i - 1) × |G| +1] to B[i × |G|], 1 ≤ i ≤ m. Let Bi[j] be the j-th bit in block Bi and G[j] be

the j-th prime number in G. The value of Bi with respect to G, denoted v(Bi, G), is defined as ⨂{𝐺[𝑗]𝐵𝑖[𝑗]}.

The prime block encoding of a bit vector B with respect to a base prime set G is denoted v(B, G), which is

the set of all v(Bi, G), 1 ≤ i ≤ m. We can write v(Bi, G) as v(Bi) and v(B, G) as v(B) for simplicity. Note that

a bit vector with all zeros is encoded as 1.

Given a bit vector A = A1×A2×...×Am, where Ai is an array that contains |G| bits, let fA be the position of

the first “1” bit in A. Then, the j-th bit in a mask operator (𝐴)⊳ is defined as:

(𝐴)⊳[𝑗] = {
0, for 𝑗 ≤ 𝑓𝐴

1, for 𝑗 > 𝑓𝐴

Chapter 3. Parallel methods for mining sequential patterns 44

Each item can appear in different sequences and in different positions of a sequence. Therefore, two

encoding mechanisms are executed for each item, including ID encoding of sequence data and position

encoding of items in each sequence.

Step 1. Position block encoding

A bit vector, named BIT, is built to represent the positions of an item Ix appearing in a sequence S. If

the i-th itemset in S contains item Ix, then BIT[i] = 1, otherwise, BIT[i] = 0. Extra “0” bits are appended to

the bit vector such that the vector size is a multiple of |G|. For example, Table 3.1 shows an example of 5

sequences with set of items I = {A, B, C}.

Table 3.1. Example of a sequence database

sid sequences

S1 (AB)BB(AB)B(AC)

S2 (AB)(BC)(BC)

S3 B(AB) 

S4 BB(BC)

S5 (AB)(AB)(AB)A(BC)

In the first sequence, item A appears in positions 1, 4 and 6, so the bit encoding of A is 100101. Assume

G = {2, 3, 5, 7}. Because |G| = 4 = 22, two extra “0” bits are added and the bit encoding becomes 10010100.

v(1001) and v(0100) are then calculated as 14 and 3, respectively. Figure 3.1 shows all the encoded positions

of item A in the given five sequences. The same procedure is repeated for the other two items, B and C.

sid Bit encoded pos Prime encoded pos

S1 1001 0100 {14, 3}

S2 1000 {2}

S3 0100 {3}

S4 0000 {1}

S5 1111 000 {210, 1}

Figure 3.1. Bit encoded position block of item A

Step 2. Sequence block encoding

Another bit vector can be used to represent the sequences in which an item appears. In the example

above, since item A appears in all sequences except for the 4th sequence, the bit vector, 11101, is then used

to represent the case. The bit vector is then encoded into a prime block based on the given prime set G.

Again, extra “0” bits are appended to the bit vector such that the vector size is a multiple of |G|. Thus, three

bits of “0” are added and the resulting bit vector of A is 11101000. The prime coding v(A) generated from

the bit vector for item A is v(1110) v(1000), which is {30, 2}. The results for all the three items are shown

in Figure 3.2 and Figure 3.3 shows the final prime encoding, including sequence and position encoding.

Chapter 3. Parallel methods for mining sequential patterns 45

Item Bit-encoded sid Prime-Encoded sid support

A 1110 1000 {30, 2} 4

B 1111 1000 {210, 2} 5

C 1101 1000 {42, 2} 4

Figure 3.2. Bit-encoded sid for items

Item Sequence block Position block

A {30, 2} {14, 3}, {2}, {3}, {1}, {210, 1}

B {210, 2} {210, 2}, {30}, {6}, {30}, {30, 2}

C {42, 2} {1, 3}, {15}, {1}, {5}, {1, 2}

Figure 3.3. Full primal block

Compression of prime block encoding

A sequential pattern (SP) appears in only some sequences of a database and in each sequence only

occurs in some positions of a sequence. Therefore, a bit vector usually includes many bits of zero. A block

with all bits being zero is called an empty block. To reduce size, PRISM retains only non-empty blocks

after prime encoding. Hence, it keeps an index with each sequence block to indicate which non-empty

position blocks correspond to a given sequence block. Figure 3.4 shows the compact prime block encoding

for item A. The first sequence block is 30, with a factor-cardinality of ||30||G = 3, meaning that there are 3

valid (non-empty position blocks) sequences in this block. For each of these, the offsets are stored in the

position blocks.

Figure 3.4. Compact encoded blocks

Support counting via prime block join

Consider a sequence α, with P(Sα, Pα) denoting its prime encoding, where Sα is the set of all encoded

sequence blocks α and Pα is the set of all encoded position blocks for α. The support of sequence α can be

directly determined from the prime block encoding given by (α) =∑𝑣𝑖∈𝑆𝛼
∥ 𝑣𝑖 ∥𝐺. For example, α = A

and v(A) = {30, 2}. We have (α) = ||30||G + ||2||G = 3 + 1 = 4.

3.2.2. Parallel Independent Branch PRISM

To improve the efficiency and reduce the processing time of SPM method, this approach presents a

parallel model based on PRISM theory and multi-core processors architecture.

Chapter 3. Parallel methods for mining sequential patterns 46

We propose Parallel Independent Branch PRISM (PIB-PRISM) algorithm. PIB-PRISM is implemented

based on the parallel model in .NET Framework 4.0, using tasks instead of threads. The algorithm using

tasks has advantages over using threads [20, 45, 60]. First, tasks require less memory than threads do.

Second, a thread runs on only one core, whereas a task can run on multiple cores. Finally, threads require

more processing time than tasks do because the operating system needs to allocate data structures for

threads, as initialization and destruction and also perform the context switch among threads.

In .NET framework 4.0 was enhanced with higher-level constructs. A new concept is introduced –

Task, it is part of TPL, which is a new collection of classes that focus on parallel programming as well as

offering lightweight object compared to traditional threading system. Using task has many benefits - not

only are tasks more efficient, but they also abstract away from the underlying hardware and the OS specific

thread scheduler. One other great feature about TPL is that it aims to use each core of CPU so no core will

be idle.

The primary advantage of PIB-PRISM strategy is that each task is assigned to searching branches of

the search tree and processed independently from other tasks without any synchronization. Our

implementation can solve the high computational cost problem. The parallel mining process for finding

FSPs from a task is shown as follows.

 Step 1. Construct the search tree from the set of frequent 1-itemset sequences.

 Step 2. Assign each branch of the tree to a processor and mine FSPs independently.

In PIB-PRISM, a database must be preprocessed into the vertical data format. This step is performed

only once. After preprocessing, the database is called a transformed database D’ and has a structure as

shown in Figure 3.5, the first line indicates the number of transactions in the database, the second line

includes an item and its support count of a task and the next lines (called support lines) are in the form of

sid and positions, which indicate the item appeared in the positions of the sequence sid.

Figure 3.5. An example of a transformed database from Table 3.1

The pseudo code of the PIB-PRISM strategy is shown in Figure 3.6.

Chapter 3. Parallel methods for mining sequential patterns 47

Procedure PIB-PRISM(D’, minsup)

Input Sequence database D’, minsup

Output: All FSPs satisfying minsup

1 Begin

2 Let dbpat = NULL

3 pGenarate-SPs(D’, minsup)

4 For each item i in dpbat.Pats do

5 Create new task ti

6 ti call extendTree(dbpat.Pats[i], dbpat)

7 End for

8 For each ti in the list of created tasks do

9 collect the set of patterns (Ps) returned by each task

10 totalPs = totalPs  Ps

11 End

Figure 3.6. The PIB-PRISM strategy

In the PIB-PRISM strategy, the root of the tree was initialized NULL. The pGenarate-SPs procedure

is called to identify all frequent 1-sequences from the database D’ (line 2). Next, this procedure creates a

new task corresponding to each pattern (line 5) and each task executes the procedure of extendTree (line

6) to extend itemsets and sequences. Tasks run parallel together and each task is then performed

independently on a processor core to generate a partial set of FSPs. The final set of FSPs is then the union

of the partial results. The procedure of pGenerate-SPs is stated in Figure 3.7.

Procedure pGenerate-SPs(D’, minsup)

1 Begin

2 Create n tasks, with n = ⌈
𝐼

𝑃
⌉

 where I is the number of single items in D’ and P is the number of processor cores

3 For each item i in I do

4 Assign item i for tasks[i]

5 Generate-SP(i)

6 End for

7 End

Figure 3.7. Procedure pGenerates-SPs

The pGenerate-SPs procedure creates n tasks (line 2) and assigns these tasks to cores for executing

the Generate-SP procedure (line 5) based on PRISM to find frequent 1-sequences. The procedure

Generate-SP checks support count for each item, the items that satisfy minsup threshold will be encoded

based on PRISM.

Chapter 3. Parallel methods for mining sequential patterns 48

3.2.3. Experimental results

Experiments were conducted to evaluate the proposed parallel algorithm. The experiments were

performed on a personal computer with an Intel Core i7-4790 3.6-GHz CPU with 8 cores, 3 MB of L3

cache and 8 GB of RAM, running Windows 7, the algorithm was implemented using .Net Framework 4.0.

The information about the databases are shown in Table 3.2.

Table 3.2. Databases used in experiments

Database No. of sequences No. of items

C6T5N1kD1k 1,000 1,000

C6T5N1kD10k 10,000 1,000

Experiments were then conducted to compare the execution times of the two algorithms for various

minsup values (0.5-0.8%). The results are shown in Figure 3.8 and Figure 3.9 for the two databases,

respectively.

Figure 3.8. Runtime on C6T5N1kD1k

Figure 3.9. Runtime on C6T5N1kD10k

In this section, we compare the execution time of PIB-PRISM and PRISM for C6T5N1kD1k and

C6T5N1kD10k database with various settings. When the threshold changes from 0.5% to 0.8%, we easily

found that the runtime of the PIB-PRISM is faster than PRISM for all two databases and nearly twice. For

example, consider C6T5N1kD1k database with minsup = 0.8%. The runtime of PRISM and PIB-PRISM

were 145.454 and 69.803 seconds. When minsup decreased, the number of patterns increased so that

execute times also increased. With minsup = 0.5%, the runtime of PRISM and PIB-PRISM were 431.34

and 216.58 seconds, respectively. In a similar way for C6T5N1kD10k database.

PIB-PRISM had a lower runtime than its counterpart because parallel processing divided the tasks to

independent branches without synchronize. The experimental results show that the proposed algorithm

significantly improved execution time, compared to the original algorithm for the two synthetic databases.

When decreasing the minsup values, there were more FSPs obtained and thus the runtime increased.

0

100

200

300

400

500

0.8 0.7 0.6 0.5

R
u

n
ti

m
e

(s
)

minsup (%)

C6T5N1kD1k

PIB-PRISM PRISM

0

1000

2000

3000

4000

5000

0.8 0.7 0.6 0.5

R
u

n
ti

m
e

(s
)

minsup (%)

C6T5N1kD10k

PIB-PRISM PRISM

Chapter 3. Parallel methods for mining sequential patterns 49

3.3. Parallel Dynamic Bit Vector Sequential Pattern Mining (pDBV-SPM)

This section proposes a parallel approach called Parallel Dynamic Bit Vector Sequential Pattern Mining

(pDBV-SPM) based on a multi-core processors architecture and the dynamic bit vector (DBV) data

structure which was described in Chapter 2. pDBV-SPM overcomes the drawbacks of the PIB-PRISM and

further reduces the computational cost of mining. The main contributions of pDBV-SPM are as follows:

1. Support values are fast determined and storage space is reduced by using the DBV data structure.

2. Quick mining is achieved based on a multi-core processors architecture.

3. Load balancing of the workload between processors is used.

3.3.1. Parallel Dynamic Bit Vector Sequential Pattern Mining

This section describes the proposed pDBV-SPM algorithm, which uses the DBV structure combined

with location information in the structure of the transaction DBV-Pattern to mine FSPs based on a multi-

core processors architecture.

Definition 3.1 (substring). Let α be a sequence. Then, subi,j(α) (i  j) is defined as a substring of length (j-

i+1) from position i to position j of α. For example, sub2,4(ABCBD) is BCB and sub1,3(ABCBD) is

ABC.

Definition 3.2 (extending a sequence from 1-sequence). Let  and  be two frequent 1-sequences. {t, p}

and {t, p} are the transaction and position of sequences  and , respectively. There are two forms of

sequence extension.

Itemset extension: (){t, p}, if (  )  (t = t)  (p = p) (1)

Sequence extension: {t, p}, if (t = t)  (p < p) (2)

For example, considering a SDB in Table 2.2, A and B are two frequent 1-sequences. Itemset extension

yields (AB) because A  B and (tA = tB) is 2 (sequence S2) and (pA = pB) is 3 (position 3 in sequence

S2). Sequence extension yields AB because (tA = tB) is 2 and the position of sequence A is 1, which is

smaller than all positions of sequence B, positions of B are {2, 3, 4}.

Definition 3.3 (extending a sequence from k-sequence). Let  and  be two frequent k-sequences (k ≥ 1),

u = subk,k() and v = subk,k(). {t, p} and {t, p} are the transaction and position of sequences  and ,

respectively. There are two forms of sequence extension.

Itemset extension:

 +i = sub1,k-1()(uv){t, p}, if (u  v)  (t = t)  (p = p)  (sub1,k-1() = sub1,k-1()) (3)

Sequence extension:

 +s = v{t, p}, if (t = t)  (p < p)  (sub1,k-1() = sub1,k-1()) (4)

Chapter 3. Parallel methods for mining sequential patterns 50

For example, AB and AC are two frequent 2-sequences. Itemset extension yields A(BC) and sequence

extension yields ABA, ABB, ABC because AB and AC have the same prefix A).

Definition 3.4. Let α = a1 a2... au. An item ak can be added to a pattern extension of α in one of three

positions.

 = a1a2... auak  (() = (α)) (5)

i (1  i < n) such that  = a1a2... aiak…au  (() = (α)) (6)

 = aka1a2…au  (() = (α)) (7)

In (5), item ak appears after au, so item ak is called a forward extension and  is called a forward

extension sequence. In (6) and (7), item ak appears before au, so item ak is called a backward extension and

 is called a backward extension sequence. For example, sequence AC:4 is a forward extension of

sequence A:4 because sequence C is extended after sequence A. Sequence CAC:2 is a backward

extension of sequence CC:2 because sequence A is extended in the middle of sequence CC.

Definition 3.5. Consider α = a1 a2... au, the starting position of sequence α is the position of the first

appearance of itemset a1. For example, in the sequence AB(BC)AD, the starting position of sequence

(BC) is 3 and sequence ABD is 1.

Consider a SDB, the relations of subsequences are typically represented as a search tree, defined

recursively as follows. The root of the tree is at level zero and is labeled as the null sequence. A node

labeled sequence α at level k, called the k-sequence is repeatedly extended by adding one item I to generate

a child node at the next level called (k+1)-sequence. A (k+1)-sequence can be extended via sequence

extension or itemset extension. In sequence extension, an item is appended to the sequential pattern to create

a new itemset. In itemset extension, an item is added to the last itemset in the pattern.

In the parallel mining of FSPs, each branch of the search tree can be regarded as a single task, which

can be processed independently to generate FSPs. An example is given in Figure 3.10, there are three tasks

on level 1 of the task tree. Tasks 1, 2 and 3 process branches A, B and C, respectively.

Chapter 3. Parallel methods for mining sequential patterns 51

Figure 3.10. Example of task tree

The main steps of the pDBV-SPM algorithm are as follows.

1. Conversion of the sequence database to the DBV-Pattern structure.

2. Early pruning of prefix sequences.

3. Extension of sequences.

Since pDBV-SPM uses the DBV-Pattern structure, it can check the backward and forward extensions

quickly. For each transaction, pDBV-SPM considers only the start position or the last position of the

sequence. Therefore, if the database has N transactions, pDBV-SPM requires only N operations to check

each candidate.

The mining of FSPs from the tree is divided into separate branches as follows.

1. Construct the search tree from the set of frequent 1-sequences.

2. Assign each branch of the tree to a task to parallel mine FSPs, the mining process is performed

independently on each branch.

3. Synchronize results. This is done only at the end of the mining pattern on each branch.

The pseudo code of the pDBV-SPM strategy is shown in Figure 3.11. root is initialized to NULL. The

Generate-SPs procedure is called to identify all frequent 1-sequences from SDB (line 3). These sequences

are stored in L1. The items in L1 are sorted in ascending order by support (line 4) to reduce the steps in the

extension phase of the itemset and to more effectively balance the workload in the system. Next, pDBV-

SPM creates new tasks corresponding to each pattern in L1 (line 7). Each CPU core pi is assigned a set of

Chapter 3. Parallel methods for mining sequential patterns 52

M = I/p task, where p is the number of CPU cores and I is the number of frequent 1-sequences (equal to the

number of tasks). Each task executes the procedure DBV-SPM-Extension (line 8) to extend itemsets and

sequences. Tasks are run in parallel (i.e., independently) to generate a partial set of FSPs. The final set of

FSPs is the union of the partial results. The procedure of Generate-SPs is shown in Figure 3.12.

Procedure pDBV-SPM(SDB, minsup)

Input SDB, minsup

Output: All FSPs that satisfy minsup

1

2

3

4

5

6

7

8

9

Begin

 Let root = NULL

 L1= Generate-SPs(SDB, minsup)

 Sort (L1) in increasing order of support

 Add L1 to child node of root

 For (each node i in root) do

 Create new task ti

 call DBV-SPM-Extension(i, minsup)

End begin

Figure 3.11. pDBV-SPM strategy

First, the Generate-SPs procedure finds frequent 1-sequences (L1) based on the DBV structure for each

item that satisfies the minsup threshold (line 4). Consider SDB in Table 2.2 and minsup = 50%. After this

procedure is executed, three frequent 1-sequences are stored and thus L1 = {A:4, B: 3, C:4}, as shown

in Table 3.3.

Procedure Generate-SPs(SDB, minsup)

Input: SDB, minsup

Output: Set of frequent 1-sequences

1 Begin

2 For (each t in T) do

3 if ((t) ≥ minsup) then

4 L1 = L1  t

5 End for

6 End

Figure 3.12. Procedure Generate-SPs.

The procedure DBV-SPM-Extension is shown in Figure 3.13. This procedure expands the search tree by

executing procedures extendItemset (line 6) and extendSequence (line 9). For each node in the search

tree, the pattern for that node is extended by calling extendItemset and extendSequence to create a new

pattern. This process is repeated until no frequent sequences are generated (line 13). The results of executing

sequence extension and itemset extension for SDB in Table 2.2 are shown in Table 3.4 and Table 3.5,

respectively.

Chapter 3. Parallel methods for mining sequential patterns 53

Procedure DBV-SPM-Extension(p, minsup)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Begin

 Let list= child nodes of p

 For each Sx in list do

 If (Sx is not pruned) then

 For each Sy in list do

 If ((Sxy = extendItemset(Sx, Sy)) then

 Add Sxy to child nodes of Sx

 End if

 If ((Sxy = extendSequence(Sx,Sy)) then

 Add Sxy to child nodes of Sx

 End if

 End for

 Call DBV-SPM-Extension(Sx, minsup)

 End if

 End for

End begin

Figure 3.13. Procedure DBV-SPM-Extension

Consider a pattern with prefix A. Pattern with prefix A extends using extendSequence by

concatenation with A, B and C to make new patterns AA, AB and AC, respectively, as shown in

Table 3.4 and extends using extendItemset by concatenation with B and C to make new patterns (AB)

and (AC), respectively, as shown in Table 3.5. It is then checked whether the support count of these

patterns satisfies the threshold based on the DBV-Pattern structure. This process is repeated for each task

until all FSPs are obtained, as shown in Table 3.6.

Table 3.3. Sequences A, B and C in SDB after conversion to DBV

Sequence A B C

Start bit 1 2 1

Value 15 7 15

Index 4 3 2 1 4 3 2 4 3 2 1

Position 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4} 2:{2,3} 2:{2,4} 2:{2,3,4} 3:{3} 2:{2,5} 3:{3} 1:{1,4}

Table 3.4 Sequence extension (minsup = 50%)

Sequence AA

Start bit 1

Value 15

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Chapter 3. Parallel methods for mining sequential patterns 54

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position AA 1:{4} 1:{3} 1:{3} 2:{3,4}

Sequence AB

Start bit 2

Value 7

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position B 2:{2,3} 2:{2,4} 2:{2,3,4} 

Position AB 1:{2,3} 1:{2,4} 1:{2,3,4} 

Sequence AC

Start bit 1

Value 15

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position C 3:{3} 2:{2,5} 3:{3} 1:{1,4}

Position AC 1:{3} 1:{2,5} 1:{3} 2:{4}

Table 3.5. Itemset extension (minsup = 50%)

Sequence (AB)

Start bit 2

Value 1

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position B 2:{2,3} 2:{2,4} 2:{2,3,4} 

Position (AB)   3:{3} 

Sequence (AC)

Start bit 1

Value 3

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position C 3:{3} 2:{2,5} 3:{3} 1:{1,4}

Position (AC)   3:{3} 4:{4}

Chapter 3. Parallel methods for mining sequential patterns 55

Table 3.6. Set of FSP from Table 2.2 with minsup = 50%

No. Item FSPs – Support

1 A A:4, AA:4, AB:3, AC:4, (AC):2, AAB:2, AAC:2, A(AC):2, ABA:3,

ABB:3, ABC:3, A(BC):3, ACA:2, ACB:2, ABAB:2, AB(BC):2, A(BC)A:2,

A(BC)B:2

2 B B:3, BA:3, BB:3, BC:3, (BC):3, BAB:2, B(BC):2, (BC)A:2, (BC)B:2

3 C C:4, CA:3, CB:2, CC:2, CAC:2

3.3.2. Experimental results

Experiments were conducted to evaluate the proposed parallel algorithm. The experiments were

performed on a personal computer with an Intel Core i7-4500 1.8-GHz CPU with 4 cores, 3 MB of L3

cache, 4 GB of RAM and running 64-bit Windows 10 Home. The algorithm was implemented using .Net

Framework 4.5.

Two of the five databases used for comparison were generated using the IBM synthetic data generator.

The third database was provided by Ferenc Bodon (http://fimi.ua.ac.be/data/). The fourth and fifth

databases were provided by Fournier-Viger (http://www.philippe-fournier-viger.com/spmf/). Information

of the databases is shown in Table 3.7. The definitions of parameters used to generate the databases are

shown in Table 2.4.

Table 3.7. Three databases used in experiments.

Database # sequences #items

C6T5N1kD1k 1,000 1,000
Synthetic databases

C6T5N1kD10k 10,000 1,000

Kosarak25k 25,000 41,270 Click stream data of a Hungarian online news portal

BMSWebView1 59,601 497 Click stream data from an e-commerce site

BMSWebView2 77,512 3,340 Click stream data from the KDD-CUP 2000

Although many sequence mining algorithms have been proposed, none performs sequence mining on

multi-core processors. The PIB-PRISM algorithm was proposed [47] based on a multi-core processors

architecture for SPM and it used prime encoding theory for fast determining the support values. We also

implemented DBV-SPM (a mining method that uses the DBV structure) for comparison with the proposed

algorithm.

Experiments were conducted to compare PIB-PRISM, DBV-SPM and the proposed pDBV-SPM for

various minsup values (0.5-0.8%). The runtime results are shown in Figure 3.14 - Figure 3.18 and memory

usage results are shown in Figure 3.19 - Figure 3.23 for the five databases, respectively.

Parallel mining improved performance without affecting the results. Table 3.8 shown the mining

results of the PIB-PRISM, DBV-SPM and pDBV-SPM. We can see that the results of those algorithms

http://fimi.ua.ac.be/data/
http://www.philippe-fournier-viger.com/spmf/

Chapter 3. Parallel methods for mining sequential patterns 56

have been always the same for all databases to prove the correctness of pDBV-SPM.

 Table 3.8. The mining results of PIB-PRISM, DBV-SPM, pDBV-SPM.

#FSPs Database
minsup (%)

0.5 0.6 0.7 0.8

PIB-PRISM

DBV-SPM

pDBV-SPM

C6T5S4I4N1kD1k 13631 7035 4304 2856

C6T5S4I4N1kD10k 4761 2912 1914 1382

Kosarak25k 1668 1148 826 593

BMSWebView1 201 162 133 105

BMSWebView2 408 257 187 138

3.3.3. Runtime

Figure 3.14. Runtime on C6T5N1kD1k

Figure 3.15. Runtime on C6T5N1kD10k

Figure 3.16. Runtime on Kosarak25k

Figure 3.17. Runtime on BMSWebView1

0

500

1000

1500

0.8 0.7 0.6 0.5

R
u

n
ti

m
e

(s
)

minsup (%)

C6T5N1kD1k

PIB-PRISM DBV-SPM pDBV-SPM

0

2000

4000

6000

8000

0.8 0.7 0.6 0.5

R
u

n
ti

m
e

(s
)

minsup (%)

C6T5N1kD10k

PIB-PRISM DBV-SPM pDBV-SPM

0

100

200

300

400

0.8 0.7 0.6 0.5

R
u
n

ti
m

e
(s

)

minsup (%)

Kosarak25k

PIB-PRISM DBV-SPM pDBV-SPM

0

100

200

300

400

0.8 0.7 0.6 0.5

R
u
n

ti
m

e
(s

)

minsup (%)

BMSWebView1

PIB-PRISM DBV-SPM pDBV-SPM

Chapter 3. Parallel methods for mining sequential patterns 57

Figure 3.18. Runtime on BMSWebView2

The experimental results show that pDBV-SPM is faster than PIB-PRISM for all five databases. In

Figure 3.14, we compare the runtime for the C6T5N1kD1k database with minsup changes from 0.5% to

0.8%, we easily found that the runtime of pDBV-SPM is faster than PIB-PRISM and DBV-SPM (14.69,

427 and 60.59 seconds, respectively). In a similar way, pDBV-SPM is always the best algorithm for

C6T5N1kD10k database, as shown in Figure 3.15 (runtimes are 201.75, 3123.25 and 613.29 seconds).

Especially, when we decrease minsup, the runtime of PIB-PRISM and DBV-SPM have significantly

increase while that of pDBV-SPM has softly increase. In general, pDBV-SPM outperform PIB-PRISM and

DBV-SPM for this database. Figure 3.16 compares the runtime of pDBV-SPM, PIB-PRISM and DBV-

SPM for Kosarak25k database. With minsup changes from 0.5% to 0.8%, pDBV-SPM is always the best

algorithm for mining frequent sequential patterns. Especially, with the smaller minsup, the time gaps

between the runtime of pDBV-SPM and those of the PIB-PRISM and DBV-SPM is larger. Similar results

were obtained for the other databases (runtimes are 16.53, 78.24 and 58.60 seconds for BMSWebView1, as

shown in Figure 3.17, runtimes are 36.73, 119.77 and 97.88 seconds for BMSWebView2, as shown in Figure

3.18, respectively). When minsup was changed from 0.8% to 0.5%, the runtimes of pDBV-SPM have been

always faster than those of PIB-PRISM.

In short, through the above experiments, we can conclude that pDBV-SPM outperform PIB-PRISM

and DBV-SPM for mining frequent sequential patterns.

0

200

400

600

800

1000

0.8 0.7 0.6 0.5
R

u
n

ti
m

e
(s

)

minsup (%)

BMSWebView2

PIB-PRISM DBV-SPM pDBV-SPM

Chapter 3. Parallel methods for mining sequential patterns 58

3.3.4. Memory usage

Figure 3.19.Memory usage for C6T5N1kD1k

Figure 3.20.Memory usage for C6T5N1kD10k

Figure 3.21.Memory usage for Kosarak25k

Figure 3.22. Memory usage for BMSWebView1

Figure 3.23. Memory usage for BMSWebView2

0

5

10

15

20

25

0.8 0.7 0.6 0.5

M
em

o
ry

 (
M

B
)

minsup (%)

C6T5N1kD1k

PIB-PRISM DBV-SPM pDBV-SPM

0

20

40

60

80

100

120

0.8 0.7 0.6 0.5

M
em

o
ry

 (
M

B
)

minsup (%)

C6T5N1kD10k

PIB-PRISM DBV-SPM pDBV-SPM

0.8 0.7 0.6 0.5

M
em

o
ry

 (
M

B
)

minsup (%)

Kosarak25k

PIB-PRISM DBV-SPM pDBV-SPM

0

20

40

60

80

0.8 0.7 0.6 0.5

M
em

o
ry

 (
M

B
)

minsup (%)

BMSWebView1

PIB-PRISM DBV-SPM pDBV-SPM

0

50

100

150

0.8 0.7 0.6 0.5

M
em

o
ry

 (
M

B
)

minsup (%)

BMSWebView2

PIB-PRISM DBV-SPM pDBV-SPM

Chapter 3. Parallel methods for mining sequential patterns 59

The memory usage of pDBV-SPM was lower than that of PIB-PRISM for all five databases. Figure

3.19 reports the memory usage of pDBV-SPM, PIB-PRISM and DBV-SPM for the C6T5N1kD1k database

with various minsup settings. With minsup = 0.8%, the memory usage values of the PIB-PRISM is the

largest (pDBV-SPM is 4.96 and PIB-PRISM is 13.74). In a similar way, the results were obtained for the

other databases (memory usage values of 83.71 and 34.67 MB for C6T5N1kD10k, as shown in Figure 3.20,

41.70 and 32.43 MB for Kosarak25k, as shown in Figure 3.21, 33.14 and 13.27 MB for BMSWebView1, as

shown in Figure 3.22, 64.65 and 22.46 MB for BMSWebView2, as shown in Figure 3.23, respectively). The

results confirm that statement again.

However, the gap between the memory usage of DBV-SPM and that of pDBV-SPM was insignificant

for all databases. The memory usage values are 4.10 and 4.96 MB for C6T5N1kD1k, 32.81 and 34.67 MB

for C6T5N1kD10k, 30.28 and 32.43 MB for Kosarak25k, 12.37 and 13.27 MB for BMSWebView1, 22.19

and 22.46 MB for BMSWebView2, as shown in Figure 3.19 - Figure 3.23, respectively.

pDBV-SPM had lower memory usage because parallel processing divides the tasks to be processed

into independent branches. The experimental results show that the proposed algorithm significantly reduces

execution time and memory usage compared to those of PIB-PRISM for the five databases. When minsup

was decreased, more FSPs were obtained and thus the runtime and memory usage increased.

The numbers of nodes in the search tree of these methods were the same. The main difference between

pDBV-SPM and PIB-PRISM is the data structure. pDBV-SPM uses DBV-Pattern and thus can check the

backward and forward extensions quickly. Moreover, pDBV-SPM operations are based on bit manipulation

and thus it requires less memory. Therefore, pDBV-SPM is more efficient in terms of execution time and

memory usage. PIB-PRISM, based on prime theory, requires more processing time than that of pDBV-

SPM because the greatest common divisor operation has to switch between binary value and primes.

A disadvantage of PIB-PRISM is its unbalanced search tree (i.e., some branches have more nodes and

thus need more processing time). This problem is avoided in pDBV-SPM by sorting items according to

their support values in ascending order. In pDBV-SPM, the set of frequent 1-sequences are sorted before

task assignment. Most nodes on the leftmost branches are infrequent and are pruned during the search.

Nodes in the rightmost branches are frequent and not pruned during the search. This strategy balances the

search tree for parallel processing and thus the search times for branches of the search tree are similar.

3.4. Parallel mining inter-sequence patterns with item constraints

The problem of mining inter-sequence pattern is a sub-task in data mining. Several algorithms for

such mining have been proposed in the recent years. However, these algorithms only focus on the problem

of mining frequent inter-sequence patterns without constraints. Most frequent inter-sequence patterns are

either redundant or insignificant.

In essence, end users usually consider a small number of patterns which contain at least one item

from a set of given item constraints. For example, when analyzing the sequence databases of

supermarkets, there are a lot of inter-sequence patterns. However, at a time, managers only concerned the

patterns contained a number of specific items. Therefore, the problem of mining inter-sequence patterns

with item constraints requires thorough studies. However, this problem has not been previously

considered.

Chapter 3. Parallel methods for mining sequential patterns 60

This section, we propose two novel algorithms for fast mining inter-sequence patterns with item

constraints. First, the problem of mining inter-sequence patterns with item constraints is introduced.

Then, we develop a theorem to reduce the time of determining whether a candidate sequence satisfies the

constraints. The ISP-IC (Inter-Sequence Pattern with Item Constraint mining) algorithm based on the

above theorem for mining inter-sequence patterns with item constraints is then proposed. Next, a lemma

and the second algorithm, named iISP-IC, are proposed. Then, we present a parallel version of iISP-IC,

named piISP-IC algorithm. Final, experiments are conducted to show the effectiveness of the piISP-IC

in terms of mining time and memory usage compared to the post-processing of the-state-of-the-art

method for mining inter-sequence patterns (EISP-Miner) which is called by POST-EISP-Miner, ISP-IC

and iISP-IC algorithms.

3.4.1. Inter-sequence pattern mining

Consider the set of items I = {i1, i2, i3,…, im}, where ii is an item (1 ≤ i ≤ m). A sequence S = I1, I2,

I3,…, Iu is the set of ordered itemsets, where Ik  I (1 ≤ k ≤ u) is an itemset. A sequence database SDB =

{S1, S2, S3,…, Sn}, where n is the number of sequences in SDB and Si (1 ≤ i ≤ n) is a tuple DAT, Sequence,

where DAT is the property of Si used to describe the contextual information, such as time stamp or space

location associated with Table 3.9 shows an example sequence database. This database is used throughout

this section.

Table 3.9. Example sequence database

Let d1 and d2 be two DAT values associated with sequences S1 and S2, respectively. Let d1 be the

reference point, [d2 - d1] is the span between S2 and S1. The sequence S2 at domain attribute (DAT) d2 with

respect to d1, denoted by S2[d2 - d1], is called an e-sequence (extended sequence). For example, with SBD

shown in Table 3.9, let the first sequence be the reference point. Then, the e-sequence of the second

transaction is C(ABC)A[1].

Let S[d] = I1, I2, I3,…, Iu[d] be a sequence where Ik is an itemset (1 ≤ k ≤ u) and [d] is the span of S.

The Ik associated with [d] is defined as an extended itemset (e-itemset), denoted by Ik[d]. If Ik = (i1, i2,

i3,…, im), where each ij is the items (1 ≤ j ≤ m), then the ij associated with [d] is defined as an extended item

(e-item), denoted by (ij)[d]. For example, C(ABC)A[1] has 3 e-itemsets (C[1], (ABC)[1] and A[1]) and

3 e-items ((C)[1], (A)[1] and (B)[1]).

Dat Sequences

1 C(AB)

2 C(ABC)A

3 AD

4 ABD

5 AC

6 BCD

7 (AB)C

Chapter 3. Parallel methods for mining sequential patterns 61

Given the set of k sequences d1, S1, d2, S2,…, dk, Sk in SDB,  = S1[0]  S2[d2 – d1] … Sk[dk –

d1] is called a mega-sequence with k ≥ 1. In a mega-sequence, the span between DAT of the first transaction

and that of the last transaction have to be less than or equal to maxspan (i.e., dk – d1 ≤ maxspan in ). For

SDB shown in Table 3.9, with maxspan = 1 and Dat = 1 as the reference point, the list of mega-sequences

is shown in Table 3.10.

Table 3.10. Megasequences of SDB with maxspan = 1

Dat Megasequences

1 C(AB)[0] C(ABC)A[1]

2 C(ABC)A[0]AD[1]

3 AD[0] ABD[1]

4 ABD[0] AC[1]

5 AC[0]BCD[1]

6 BCD[0] (AB)C[1]

7 (AB)C[0]

Consider the pattern  = (u1)[v1], (u2)[v2],…, (un)[vn], where (ui)[vi] (1 ≤ i ≤ n) is an e-item (extended

item). The number of e-items in  is called the length of  and a sequence with length k is denoted as a k-

sequence. There are three types of relationship between two e-items (ui)[vi] and (ui+1)[vi+1] in  (1 ≤ i < n).

1. Itemset extension: if vi = vi+1 and (uiui+1) is an itemset, then (ui+1)[vi+1] is an itemset extension (+I)

of (ui)[vi].

2. Sequence extension: if vi = vi+1 and uiui+1 is a sequence, then (ui+1)[vi+1] is a sequence extension

(+S) of (ui)[vi].

3. Inter extension: if vi  vi+1, then (ui+1)[vi+1] is an inter extension (+T) of (ui)[vi].

For example, in SDB, BCD[0] (AB)C[1] is a 6-sequence. (B)[0] is an itemset extension of (CD)[0].

(B)[0] is an inter extension of (C)[1] and AB[1] is a sequence extension of (C)[1]. In other words, (B)[0] +I

(CD)[0] = (BCD)[0], (AB)[0] +S (C)[0] = (AB)C[0] and (B)[0] +T (C)[1] = B[0]C[1].

Given two sequences, S = S1, S2,…, Sn and S' = S'1, S'2,…, S'm with n ≤ m, S is the subsequence of S'

if and only if n, j1, j2,…, jn such that (1) 1 ≤ j1 < j2 <… < jn ≤ m and (2) S1  𝑆′𝑗1
, S2  𝑆′𝑗2

, …, Sn  𝑆′𝑗𝑛
.

For example, a sequence A(BC)DF is the subsequence of A(ABC)(AC)D(CF), but it is not a subsequence

of (ABC)(AC)D(CF). Consider two patterns  = S1[i1], S2[i2], …, Sn[in] and  = S'1[j1], S'2[j2],…., S'm[jm],

with 1 ≤ n ≤ m.  is a subsequence of  if and only if there exist n e-sequences denoted by S'k1[jk1],

S'k2[jk2],…, S'kn[jkn] in , such that i1 = jk1 and S1 is a subsequence of S'k1; i2 = jk2 and S2 is a subsequence of

S'k2;….; in = jkn and Sn is a subsequence of S'kn. In this case,  is a super-pattern of . For example, both

D[0]BAC[3] and (AD)[0](AC)C[1] are subsequences of D(AD)[0] B(AC)C[1]B(A)CC[3].

Definition 3.6: Let a = (im)[x] and b = (in)[y] be 2 e-items a = b if and only if (im = in)  (x = y) and a < b,

if and only if x < y or ((x = y)  (im < in)).

For example, (C)[1] = (C)[1], (B)[1] < (A)[2] and (A)[1] < (C)[1].

Chapter 3. Parallel methods for mining sequential patterns 62

Definition 3.7: Let p be a pattern. Function subij(p) is defined as (j-i+1) subset e-items of p from position i

to position j.

For example, sub1,4((AD)[0](AC)C[1]) = (AD)[0](AC)[1] and sub5,5((AD)[0] (AC)C[1]) = (C)[1].

Definition 3.8: Let  = u[0] and  = v[0] be two frequent 1-patterns.  is joinable to  in any instance.

There are three types of join operation:

1. itemset extension:  I  = {(uv)[0]}| {(uv)[0]}

2. sequence extension:  S  = {(uv)[0]}

3. inter extension:  T  = {u[0]v[x] | 1 ≤ x ≤ maxspan}

For example, let maxspan = 2, A[0] I B[0] = (AB)[0]; A[0] S B[0] = AB[0] and A[0] T B[0]

= {A[0]B[1], A[0]B[2]}.

Definition 3.9: Let  and  be 2 frequent k-patterns, where k > 1, subk,k() = (u)[i] and subk,k() = (v)[j]. 

is joinable to  if sub1,k-1() = sub1,k-1() and i ≤ j, which generates three types of join operations: (1) itemset

extension:  I  = { +I (v)[j] | (i = j)  (u < v)}; (2) sequence extension:  S  = { +S (v)[j] | (i = j)};

(3) inter extension:  T  = { +T (v)[j] | (i < j)}.

 For example, AB[0] I AC[0] = A(BC)[0], AB[0] S AC[0] = ABC[0] and AB[0] T

A[0]C[2] = AB[0]C[2].

3.4.2. DBV-PatternList data structure

DBV structure is based on the BitTable structure including two elements. (1) Start position: the position

of the first non-zero byte in the bit vector; (2) Bit-vector: the list of bytes after removing all zero byte at the

beginning. For example, give a BitTable “000011”, the DBV is {Start: 5, Bit-vector: “11”}.

 Using DBV structure reduces the memory usage and computational operations in intersection between

two bit vectors. Using a look-up table [107], the algorithm traverses the DBV once to determine the support

of its pattern and therefore the complexity is O(n) where n is the number of elements in its Bit-vector.

Based on the DBV concept, the DBV-PatternList structure that combines DBV and PatternList was

proposed [106]. The structure includes: (1) Sequence: storage information of the sequence; (2) Block

sequence: one DBV and a list of transaction positions corresponding to each sequence. For example, in

SDB, consider the structure of sequence A[0], where A appears at sequences 1, 2, 3, 4, 5 and 7. DBV-

PatternList of A[0] is shown in Figure 3.24.

(a) (b)

Figure 3.24. Structures of (a) PatternList and (b) DBV-PatternList of A[0]

Chapter 3. Parallel methods for mining sequential patterns 63

In Figure 3.24 (b), the structure of a DBV-PatternList contains a number of block sequences. Each

block sequence is placed in a cell containing information regarding the position of sequences that appear in

the sequence database and the position of the sequence in each transaction. For detail, A appears at

sequences 1, 2, 3, 4, 5 and 7, so, bit vector of A is 11111010 and therefore, DBV of A is {15, 10} (note that

we use 4 bits for an integer). To find the appropriate extended sequence based on the sequence extension

operation, the intersection operation has to be carried out on each block sequence. In Figure 3.24,

PatternList of A[0] requires 26 bytes, whereas DBV-PatternList of A[0] requires only 20 bytes.

3.4.3. Mining inter-sequence patterns with item constraints

Various strategies have been proposed for mining frequent pattern with itemset constraints. There are

three main approaches including post-processing, pre-processing and constrained patterns filtering. Post-

processing approaches for mining patterns with item constraints firstly mine patterns and then check them

against the constraints [63, 75]. Pre-processing approaches firstly restricts the source database for records

that contain the constraints and then find patterns in the filtered database [63]. Constrained patterns filtering

approaches integrate the constraints into the actual mining process to generate only patterns that satisfy the

constraints. CAP [75] and MFS_DoubleCons [29] algorithms use this strategy for mining frequent patterns

with item constraints.

This section presents the problem of inter-sequence pattern mining with item constraints and proposes

two efficient algorithms (ISP-IC and iISP-IC algorithms) for its solving. In addition, we will use multi-core

processors architecture for parallel mining inter-sequence patterns with item constraints to speed up the

execution process, thereby reducing cost and improving the efficiency of systems. In the parallel mining of

ISPs, each branch of the search tree can be regarded as a single task, which can be processed independently

to generate ISPs.

3.4.4. Problem statement

Given a sequence database (SBD), the minimum support (minsup) and a set of items constraint = {u1,

u2, …, uk}, the problem of mining inter-sequence patterns with item constraints is to find all sequences  =

S1[w1], S2[w2],…, Sm[wm] such that Si[wi]  ,  bj  Si[wi]: bj  .

 For example, let  = {C}. Then, the sequence C(AB)[0] C(ABC)A[1] satisfies the constraints,

whereas the sequence AD[0]A[1] does not.

3.4.5. ISP-IC algorithm

Theorem 3.3. If sequence  satisfies constraint , then the sequence , generated from , also satisfies

constraint .

Proof. If  satisfies the constraint, it means that Si[wi]  α, bj  Si[wi]: bj  . There are three cases to

consider:

1. Itemset extension: There are two sub-cases. (i) If itemset extension  itemseti of , then itemseti

in  that contains item bj  . (ii) If itemset extension  itemseti, then itemseti()  itemseti() and

thus bj  itemseti() such that bj  .

Chapter 3. Parallel methods for mining sequential patterns 64

2. Itemset extension: itemseti is not changed. Therefore, itemseti   includes item bj such that bj 

.

3. Inter extension: Based on the inter extension definition, itemsets in the sequence just have their

indices changed and therefore itemseti contains item bj  

Based on Theorem 3.3, we propose the ISP-IC algorithm for mining inter-sequence patterns with item

constraints. First, the ISP-IC algorithm finds all items (F1) that satisfy the threshold. Then, the algorithm

inserts p  F1 into the DBV-tree. p  F1 such that p , cs(p) = true. Next, the algorithm calls Join_1-

PatternList to combine 1-PatternLists. Finally, for each p  DBV-Tree.root, the algorithm calls the Join_k-

PatternList function to combine p with other k-PatternLists that follow it. The details of the ISP-IC

algorithm are presented in Figure 3.25.

Algorithm 1. ISP-IC algorithm

Input: SDB, minsup, maxspan and  = {u1, u2, …, uk}

Output: DBV-results

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

DBV-Tree = NULL

F1 = {DBV-PatternList(i) | i  I and (i) ≥ minsup}

For each p in F1 do

 Add p to childnodes(DBV-Tree)

 If IC-Check (p, ) = true then

 Add p to DBV-results

 Mark cs(p) as true

Join_1-PatternList(DBV-Tree, minsup, maxspan, DBV-results, )

For each p in childnodes(DBV-Tree) do

 Join_k-PatternList (p, minsup, maxspan, DBV-results, )

Return DBV-results

Function Join_1-PatternList (DBV-Tree, minsup, maxspan, DBV-results, )

Let lists = childnodes(DBV-Tree)

For each X in lists do

 For each Y in lists do

 If ((Z = X I Y) ≥ minsup then

 Add Z to childnodes(X)

 If cs(X) = true or cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) as true

 If ((Z = X S Y) ≥ minsup then

Chapter 3. Parallel methods for mining sequential patterns 65

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

 Add Z to childnodes(X)

 If cs(X) = true or cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) is true

 For d = 1 to maxspan do

 If ((Z = X T Y) ≥ minsup then

 Add Z to childnodes(X)

 If cs(X) = true or cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) is true

Function Join_k-PatternList (p, minsup, maxspan, DBV-results, )

Let lists = childnodes(p)

For each X in lists do

 For each Y in lists do

 If ((Z = X I Y) ≥ minsup then

 Add Z to childnodes(X)

 If cs(X) = true or cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) as true

 If ((Z = X S Y) ≥ minsup then

 Add Z to childnodes(X)

 If cs(X) = true or cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) is true

 If ((Z = X T Y) ≥ minsup then

 Add Z to childnodes(X)

 If cs(X) = true or cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) is true

 Join_k-PatternList(X, minsup, maxspan, DBV-results, )

Function IC-Check(sequence, )

For each S in sequence do

 For each  in S do

Chapter 3. Parallel methods for mining sequential patterns 66

55

56

57

 If    then

 Return true

Return false

Figure 3.25. ISP-IC algorithm

3.4.6. An illustrative example

Consider SDB, which includes 7 sequences with items I = {A, B, C, D}, maxpan = 1, minsup = 25%

and  = {C}. DBV-PatternList of each item was shown in Table 3.11.

Table 3.11. Binary vectors of BitTable and their transformation into BitArray

(a) (b)

Item Bit array Bit vector Dat A B C

A 1111,1010 15,10 1 2 2 1

B 1101,0110 13,6 2 2, 3 2 1, 2

C 1100,1110 12,14 3 1
 4 1 2

 5 1 2

 6 1 2

 7 1 1 2

Table 3.11(a) shows the bit arrays for the items in SDB. In this example, assume that each block is

encoded by 4 bits. In SDB, bit array of A is {1111, 1010} and bit vector of A is {15, 10}. For each sequence,

the position of each item in the sequence is stored as Table 3.11(b).

 Once the sequences have been encoded into binary form and the positions in the sequence have become

sequence blocks (with each sequence block containing 4 bits), the sequence database is transformed into a

vertical format database and DBV-PatternList structures are created, as shown in Figure 3.26. Note that

index column the transaction position and come from Table 3.11(b).

Figure 3.26. DBV-PatternList of A[0], B[0] and C[0]

 Then, the branch of A[0] with two levels is obtained. The nodes on the second-level branch are then

computed, followed by those on the third-level branch and so on, until no extended sequences are found.

Figure 3.27 shows a part of a DBV-tree extended on branch A[0]. Note that the node C[0] (red node) is

the constraint and the nodes AC[0] and A[0]C[1] (gray node) are inserted into the results without being

checked whether they satisfy the constraint because their parent C[0] satisfies the constraint.

Chapter 3. Parallel methods for mining sequential patterns 67

Figure 3.27. DBV-tree extended on A[0]

3.4.7. iISP-IC algorithm

Lemma 3.1. Let  satisfy constraint  then , following sequences I =  I , S =  S  and T = 

T  also satisfy constraint .

Based on Lemma 3.1, we propose the iISP-IC algorithm. For each p  childnodes(DBV-Tree), if p

satisfies , iISP-IC calls the Join_k-PatternList_NoChecking function to combine p with other k-

PatternLists that follow it. Otherwise, iISP-IC calls the Join_k-PatternList_Plus function. The details of

the iISP-IC algorithm are presented in Figure 3.28.

Algorithm 2. iISP-IC algorithm

Input: SDB, minsup, maxspan and  = {u1, u2, …, uk}

Output: DBV-results

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Let DBV-Tree = NULL

F1 = {DBV-PatternList(i) | i  I and (i) ≥ minsup}

For each p in F1 do

 Add p to childnodes(DBV-Tree)

 If IC-Check (p, ) = true then

 Add p to DBV-results

 Mark cs(p) as true

Join_1-PatternList(DBV-Tree, minsup, maxspan, DBV-results, )

For each p in childnodes(DBV-Tree) do

 If cs(p) = true then

 Join_k-PatternList_Plus(p, minsup, maxspan, DBV-results, )

 Else

 Join_k-PatternList _NoChecking(p, minsup, maxspan, DBV-results)

Return DBV- results

Function Join_k-PatternList_Plus(p, minsup, maxspan, DBV-results, )

NULL

A[0] Start:1

15{2,2 3,1,1}, 10{1,1}

C[0] Start:1

12{1,1 2}, 14{2,2,2}

B[0] Start:1

13{2,2,2}, 6{1,1}

AC[0] Start:2
10{2,2}

A[0]C[1] Start:1
2{2}, 2{2}

(AB)[0] Start:1
12{2,2}, 2{1}

A[0]B[1] Start:1
2{2}, 8{2}

i: Itemset extension

s: Sequence extension

t: Inter-sequence extension

s
t t

i

Chapter 3. Parallel methods for mining sequential patterns 68

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Let lists = childnodes(p)

For each X in lists do

 For each Y in lists do

 If ((Z = X I Y) ≥ minsup then

 Add Z to childnodes(X)

 If cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) as true

 If ((Z = X S Y) ≥ minsup then

 Add Z to childnodes(X)

 If cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) is true

 If ((Z = X t Y) ≥ minsup then

 Add Z to childnodes(X)

 If cs(Y) = true or IC-Check(Z, ) = true then

 Add Z to DBV-results

 Mark cs(Z) is true

 If cs(X) = true then

 Join_k-PatternList_NoChecking(X, minsup, maxspan, DBV-results)

 Else

 Join_k-PatternList_Plus(X, minsup, maxspan, DBV-results, )

Function Join_k-PatternList_NoChecking(p, minsup, maxspan, DBV-results)

Let lists = childnodes(p)

For each X in lists do

 For each Y in lists do

 If ((Z = X I Y) ≥ minsup then

 Add Z to DBV-results and childnodes(X)

 If ((Z = X S Y) ≥ minsup then

 Add Z to DBV-results and childnodes(X)

 If ((Z = X T Y) ≥ minsup then

 Add Z DBV-results and childnodes(X)

 Join_k-PatternList_NoChecking(X, minsup, maxspan, DBV-results)

Figure 3.28. iISP-IC algorithm

Chapter 3. Parallel methods for mining sequential patterns 69

In the example, suppose that  = {A}, the red node in Figure 3.29. The iISP-IC algorithm calls the

Join_k-PatternList_NoChecking function to expand the node A[0], as shown in Figure 3.29. Based on

Lemma 3.1, this function does not check all its child nodes.

Figure 3.29. DBV-tree extended on A[0] using iISP-IC algorithm

3.4.8. piISP-IC: a parallel version of iISP-IC algorithm

In the parallel mining of ISPs, each branch of the search tree can be regarded as a single task, which

can be processed independently to generate ISPs. An example is given in Figure 3.30. There are three tasks

on level 1 of the task tree. Tasks 1, 2 and 3 process branches A, B and C, respectively.

Figure 3.30. Example of task tree

 piISP-IC algorithm is generally based on iISP-IC algorithm and add a parallel implementation of tasks

instead of threads. The advantage of piISP-IC is that each task is assigned to searching a branch of the tree

NULL

A[0] Start:1

15{2,2 3,1,1}, 10{1,1}

C[0] Start:1

12{1,1 2}, 14{2,2,2}

B[0] Start:1

13{2,2,2}, 6{1,1}

AC[0] Start:2
10{2,2}

A[0]C[1] Start:1
2{2}, 2{2}

(AB)[0] Start:1
12{2,2}, 2{1}

A[0]B[1] Start:1
2{2}, 8{2}

i: Itemset extension

s: Sequence extension

t: Inter-sequence extension

s
t t

i

A[0]

(AB)[0]

AA[0]

A[0]A[1]

AB[0] AC[0] (AC)[0]

A[0]B[1]

A[0]C[1]

B[0]

(BA)[0]

BA[0]

B[0]A[1]

BB[0] BC[0] (BC)[0]

B[0]B[1]

B[0]C[1]

C[0]

(CB)[0]

CA[0]

C[0]A[1]

CB[0] CC[0] (CA)[0]

C[0]B[1]

C[0]C[1]

{}

Task1 Task2 Task3

Chapter 3. Parallel methods for mining sequential patterns 70

and is processed independently. The advantages over using threads are as follows. First, tasks require less

memory than do threads. Second, a thread runs on only one core, whereas a task can run on multiple cores.

Finally, threads require more processing time than do tasks because the operating system needs to allocate

data structures for threads, such as initialization and destruction and must perform context switching

between threads.

The time complexity of sequential pattern mining algorithms depends on the number of patterns in the

search space and the cost of the operations of generating and processing each itemset. In multi-core

processors, a key factor is task scheduling. With the widespread use of multi-core processors, designing an

effective task scheduling strategy has been a hot issue. Currently, the time complexity of task scheduling

for multi-core processors is considered as an NP (Non-Deterministic Polynomial) problem and no exists

the optimal solutions. The existing scheduling algorithms can only get the suboptimal solutions based on

solution approximated by heuristics. Heuristic is generally considered as the most suitable method to find

the suboptimal solutions for NP problems.

3.4.9. Experimental results

This section compares the mining time of POST-EISP-Miner, ISP-IC, iISP-IC and piISP-IC, to confirm

the effectiveness of the proposed methods. All the experiments were performed on a PC with Intel Xeon

Processor E5-2680 v2 (25M Cache, 2.80 GHz, 20 threads) CPUs installed with 768 GB of main memory

and coded in C# in Visual Studio 2015. Synthetic databases were generated using the IBM synthetic data

generator to mimic transactions in a retail environment. The definitions of parameters used to generate the

databases are shown in Table 2.4.

Two synthetic databases (C6T5S4I4N1KD10K and T10I4D100K) used for comparison were generated

using the IBM synthetic data generator, was provided by Bodon (http://fimi.ua.ac.be/data/) and other

databases were provided by Fournier-Viger (http://www.philippe-fournier-viger.com/spmf/). Information

of the databases is shown in Table 3.12.

Table 3.12. Databases used in experiments

Database #sequences #items

C6T5S4I4N1KD10K 10,000 1,000 Synthetic database

T10I4D100K 100,000 1,000 Synthetic database

BMSWebView2 77,512 3,340 Click stream data from the KDD-CUP 2000

3.4.9.1. Runtime

In Figure 3.31, we compare the runtime of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

C6T5S4I4N1KD10K database with various setting. Figure 3.31(A) fixes maxspan = 1 and changes

threshold from 21 to 25 and we easily found that the runtime of iISP-IC is less than that of ISP-IC and

nearly twice as that of piISP-IC, while POST-EISP-Miner was decreased so small. In a similar way, Figure

3.31(B) fixes maxspan = 2, Figure 3.31(C) fixes maxspan = 3, Figure 3.31(D) fixes maxspan = 4 and Figure

3.31(E) fixes maxspan = 5, piISP-IC is always the best algorithm for C6T5S4I4N1KD10K database. POST-

EISP-Miner cannot perform with maxspan = 5 with any threshold, takes a long time without results. Next,

in Figure 3.31(F), we fix threshold = 21 and change maxspan from 1 to 5. piISP-IC is still better than iISP-

http://fimi.ua.ac.be/data/
http://www.philippe-fournier-viger.com/spmf/

Chapter 3. Parallel methods for mining sequential patterns 71

IC, ISP-IC and POST-EISP-Miner algorithms. Especially, when we decrease threshold, the runtime of iISP-

IC, ISP-IC and POST-EISP-Miner have significantly increase while that of piISP-IC has softly increase. In

general, piISP-IC outperforms iISP-IC, ISP-IC and POST-EISP-Miner for this database.

Figure 3.32 performs the same for T10I4D100K dataset. We easy found that the runtimes of iISP-IC

and ISP-IC are nearly the same, POST-EISP-Miner is highest while the runtime of piISP-IC is much better

than that of iISP-IC, ISP-IC and POST-EISP-Miner. POST-EISP-Miner cannot perform with minsup = 4

and maxspan = 5.

0

200

400

600

800

1000

1200

21 22 23 24 25

R
u

n
ti

m
e

(s
)

Threshold (%)

(A)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 1

0

500

1000

1500

21 22 23 24 25

R
u

n
ti

m
e

(s
)

Threshold (%)

(B)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 2

0

500

1000

1500

2000

21 22 23 24 25

R
u

n
ti

m
e

(s
)

Threshold (%)

(C)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 3

0

2000

4000

6000

8000

21 22 23 24 25

R
u

n
ti

m
e

(s
)

Threshold (%)

(D)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 4

Chapter 3. Parallel methods for mining sequential patterns 72

Figure 3.31. Mining time of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for C6T5S4I4N1KD10K

database with 15 random item constraints and (A) maxspan = 1; (B) maxspan = 2; (C) maxspan = 3; (D)

maxspan = 4; (E) maxspan = 5; (F) threshold = 21%.

0

1000

2000

3000

4000

5000

21 22 23 24 25

R
u

n
ti

m
e

(s
)

Threshold (%)

(E)

ISP-IC iISP-IC piISP-IC

maxspan = 5

0

2000

4000

6000

8000

1 2 3 4 5

R
u

n
ti

m
e

(s
)

Maxspan

(F)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

threshold = 21%

0

1000

2000

3000

4000

4 5 6 7

R
u

n
ti

m
e

(s
)

Threshold (%)

(A)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 1

0

1000

2000

3000

4000

5000

4 5 6 7

R
u

n
ti

m
e

(s
)

Threshold (%)

(B)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 2

0

1000

2000

3000

4000

5000

4 5 6 7

R
u
n

ti
m

e
(s

)

Threshold (%)

(C)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 3

0

1000

2000

3000

4000

5000

6000

4 5 6 7

R
u
n

ti
m

e
(s

)

Threshold (%)

(D)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 4

Chapter 3. Parallel methods for mining sequential patterns 73

Figure 3.32. Mining time of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for T10I4D100K database

with 15 random item constraints and (A) maxspan = 1; (B) maxspan = 2; (C) maxspan = 3; (D) maxspan

= 4; (E) maxspan = 5; (F) threshold = 4%

0

500

1000

1500

2000

2500

5 6 7

R
u

n
ti

m
e

(s
)

Threshold (%)

(E)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 5

0

1000

2000

3000

4000

5000

6000

1 2 3 4

R
u

n
ti

m
e

(s
)

Maxspan

(F)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

threshold = 4%

0

100

200

300

400

500

600

1 2 3 4

R
u

n
ti

m
e

(s
)

Threshold (%)

(A)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 1

0

200

400

600

800

1 2 3 4

R
u

n
ti

m
e

(s
)

Threshold (%)

(B)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 2

0

200

400

600

800

1000

1 2 3 4

R
u
n

ti
m

e
(s

)

Threshold (%)

(C)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 3

0

200

400

600

800

1000

1200

1 2 3 4

R
u
n

ti
m

e
(s

)

Threshold (%)

(D)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 4

Chapter 3. Parallel methods for mining sequential patterns 74

Figure 3.33. Mining time of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for BMSWebView2 dataset

with 15 random item constraints and (A) maxspan = 1; (B) maxspan = 2; (C) maxspan = 3; (D) maxspan

= 4; (E) maxspan = 5; (D) threshold = 1%.

Figure 3.33 compares the runtime of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

BMSWebView2 dataset with various settings. Figure 3.33(A) fixes maxspan = 1, Figure 3.33(B) fixes

maxspan = 2, Figure 3.33(C) fixes maxspan = 3, Figure 3.33(D) fixes maxspan = 4 and Figure 3.33(E) fixes

maxspan = 5, piISP-IC is always the best algorithm for mining inter-sequence patterns with item constraints

for BMSWebView2 dataset. Especially, with the smaller threshold, the time gaps between the runtime of

piISP-IC and those of iISP-IC, ISP-IC and POST-EISP-Miner are larger. In Figure 3.33(F), we fix threshold

= 1 and change maxspan from 1 to 5, the runtime of piISP-IC is less than those of iISP-IC, ISP-IC and

POST-EISP-Miner. Therefore, piISP-IC outperform iISP-IC, ISP-IC and POST-EISP-Miner for this

dataset. In short, through the above experiments, we can conclude that piISP-IC outperform iISP-IC, ISP-

IC and POST-EISP-Miner for mining inter-sequence patterns with item constraints.

3.4.9.2. Memory usage

0

500

1000

1500

2000

1 2 3 4

R
u

n
ti

m
e

(s
)

Threshold (%)

(E)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 5

0

500

1000

1500

2000

1 2 3 4 5

R
u

n
ti

m
e

(s
)

Maxspan

(F)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

threshold = 1%

0

10

20

30

40

50

60

21 22 23 24 25

M
em

o
ry

 (
M

B
)

Threshold (%)

(A)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 1

0

50

100

150

21 22 23 24 25

M
em

o
ry

 (
M

B
)

Threshold (%)

(B)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 2

Chapter 3. Parallel methods for mining sequential patterns 75

Figure 3.34. Memory usage of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for C6T5S4I4N1KD10K

database with 15 random item constraints and (A) maxspan = 1; (B) maxspan = 2; (C) maxspan = 3; (D)

maxspan = 4; (E) maxspan = 5; (F) threshold = 21%.

Figure 3.34 reports the memory usage of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for

C6T5S4I4N1KD10K database with various setting. Figure 3.34(A) fixes maxspan = 1, Figure 3.34(B) fixes

maxspan = 2, Figure 3.34(C) fixes maxspan = 3, Figure 3.34(D) fixes maxspan = 4 and Figure 3.34(E) fixes

maxspan = 5, we found that the memory usage of POST-EISP-Miner is the largest. However, the gap

between the memory usage of piISP-IC and those of iISP-IC and ISP-IC are insignificant for

C6T5S4I4N1KD10K database. Then, Figure 3.34(F), which shows the memory usage of piISP-IC, iISP-

IC, ISP-IC and POST-EISP-Miner when we fix threshold = 21 and change maxspan from 1 to 5, confirm

that statement again. POST-EISP-Miner cannot perform with maxspan = 5 and threshold = 21, the memory

value with maxspan = 5 in Figure 3.34(F) is an example.

Figure 3.35 - Figure 3.36 reports the memory usage of piISP-IC, iISP-IC, ISP-IC and POST-EISP-

Miner for T10I4D100K and BMSWebView2 databases. The results show that the memory usages of these

algorithms are nearly the same. Summary, although the memory usage of piISP-IC is largest (compared to

those of iISP-IC, ISP-IC and POST-EISP-Miner), the gap between the memory usage of piISP-IC and those

of iISP-IC, ISP-IC and POST-EISP-Miner are insignificant.

0

100

200

300

400

500

21 22 23 24 25

M
em

o
ry

 (
M

B
)

Threshold (%)

(C)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 3

0

500

1000

1500

21 22 23 24 25

M
em

o
ry

 (
M

B
)

Threshold (%)

(D)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 4

5000

5500

6000

6500

7000

21 22 23 24 25

M
em

o
ry

 (
M

B
)

Threshold (%)

(E)

ISP-IC iISP-IC piISP-IC

maxspan = 5

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

M
em

o
ry

 (
M

B
)

Maxspan

(F)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

threshold = 21%

Chapter 3. Parallel methods for mining sequential patterns 76

Figure 3.35. Memory usage of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for T10I4D100K

database with 15 random item constraints and (A) maxspan = 1; (B) maxspan = 2; (C) maxspan = 3; (D)

maxspan = 4; (E) maxspan = 5; (F) threshold = 4%.

95

100

105

110

115

120

4 5 6 7

M
em

o
ry

 (
M

B
)

Threshold (%)

(A)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 1

95

100

105

110

115

120

4 5 6 7

M
em

o
ry

 (
M

B
)

Threshold (%)

(B)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 2

100

105

110

115

120

125

130

4 5 6 7

M
em

o
ry

 (
M

B
)

Threshold (%)

(C)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 3

0

50

100

150

200

250

4 5 6 7

M
em

o
ry

 (
M

B
)

Threshold (%)

(D)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 4

0

50

100

150

200

5 6 7

M
em

o
ry

 (
M

B
)

Threshold (%)

(E)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan =5

0

50

100

150

200

250

1 2 3 4

M
em

o
ry

 (
M

B
)

Maxspan

(F)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

Threshold = 4%

Chapter 3. Parallel methods for mining sequential patterns 77

Figure 3.36. Memory usage of piISP-IC, iISP-IC, ISP-IC and POST-EISP-Miner for BMSWebView2

dataset with 15 random item constraints and (A) maxspan = 1; (B) maxspan = 2; (C) maxspan = 3; (D)

maxspan = 4; (E) maxspan = 5; (F) threshold = 1%.

0

10

20

30

40

50

1 2 3 4

M
em

o
ry

 (
M

B
)

Threshold (%)

(A)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 1

0

10

20

30

40

50

60

1 2 3 4

M
em

o
ry

 (
M

B
)

Threshold (%)

(B)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 2

0

20

40

60

80

100

1 2 3 4

M
em

o
ry

 (
M

B
)

Threshold (%)

(C)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 3

0

50

100

150

1 2 3 4

M
em

o
ry

 (
M

B
)

Threshold (%)

(D)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 4

0

200

400

600

800

1000

1 2 3 4

M
em

o
ry

 (
M

B
)

Threshold (%)

(E)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

maxspan = 5

0

200

400

600

800

1000

1 2 3 4 5

M
em

o
ry

 (
M

B
)

Maxspan

(F)

POST-EISP-Miner ISP-IC iISP-IC piISP-IC

threshold = 1%

Chapter 3. Parallel methods for mining sequential patterns 78

3.5. Summary

In this chapter, we proposed parallel methods for mining sequential pattern based on multi-core

processors architecture, includes:

 Parallel Independent Branch PRISM: This section proposed a parallel method for mining frequent

sequential pattern used prime theory for a fast determining support count of sequence pattern. Based

on this theory, an efficient algorithm for mining sequential patterns (PIB-PRISM algorithm) was

proposed.

 Parallel Dynamic Bit Vector Sequential Pattern Mining: This section proposed parallel efficient

methods for mining used dynamic bit vector data structure (pDBV-SPM) for reducing computational

cost and being speedup mining time. These methods also solved the load balancing workload among

processors.

 Parallel mining inter-sequence patterns with item constraints: This section proposed three novel

methods for mining inter-sequence patterns with item constraints. Firstly, a theorem was developed for

fast determining whether an inter-sequence pattern satisfies item constraints. This theorem reduces

mining time. Based on this theorem, an efficient algorithm for mining inter-sequence patterns with

constraints (ISP-IC algorithm) was proposed. Secondly, a lemma was presented for improving the

strategy of ISP-IC. Based on this lemma, the iISP-IC algorithm was proposed. Thirdly, we presented a

parallel version of iISP-IC named piISP-IC to improve the performance.

Chapter 4

Parallel mining frequent closed sequential patterns

In this chapter, we propose a parallel approach called Parallel Dynamic Bit Vector Frequent Closed

Sequential Patterns (pDBV-FCSP) for mining frequent closed sequential pattern (FCSP) from large

databases. The pDBV-FCSP performs closure checking of prefix sequences early to reduce execution

time for mining frequent closed sequential patterns. In addition, this approach also solves the load

balance issues of the workload between processors by a dynamic mechanism that re-distributes the work

when some processes are out of work to minimize the idle CPU time.

4.1. Introduction

Mining sequential pattern generates an exponential number of patterns when the database contains

long sequences which need high computational cost in both time and space. Therefore, instead of mining

the complete set of sequential patterns, it is better to mine closed sequential patterns only. A closed

sequential pattern is a sequential pattern having no super sequence with the same support. Unlike the

general mining of frequent sequential patterns, the mining of frequent closed sequential patterns has not

been extensively studied. Although some algorithms have been proposed, such as CloSpan [117], BIDE

[109, 111], ClaSP [36] and CloFS-DBV [101], their performance is not good for processing on large

databases. CloSpan works under candidate maintenance-and-test paradigm, hence it is not scalable.

BIDE follows a strict depth-first search in order to generate the closed sequential patterns, it does not

need to keep track of any single historical frequent closed sequential (or candidate) patterns for a new

pattern’s closure checking. ClaSP uses a vertical database format strategy and a heuristic to prune non-

closed sequences. CloFS-DBV uses a vertical data format and dynamic bit vector (DBV) structure

combined with location information in the structure of the transaction CloFS-DBVPattern to mine

frequent closed sequences. However, the mining time of these algorithms is still high because they have

to explore a huge search space, moreover, they have very expensive computationally. The computational

cost increases with increasing complexity of the patterns to be mined, especially for long sequence or

dense databases.

Parallel processing has been widely applied to improve processing speed for various problems.

Although there have been many parallel methods based on distributed system or shared memory system

for mining frequent itemsets [122], frequent sequential patterns [49], frequent closed sequential patterns

[25, 128], sub-graph mining [100]. But there are no methods for mining frequent closed sequential

pattern on multi-core processors architecture.

Multi-core systems have placed more pressure on system programmers as well as application

developers to make efficient use of the multiple computing cores. These challenges include determining

how to divide applications into separate tasks and minimizes CPU idle time. These tasks must be

balanced such that each task is doing an equal amount of work. Just as tasks must be separated, data

must also be divided so that it can be accessed by the tasks running on separate cores.

Chapter 4. Parallel mining frequent closed sequential patterns 81

In this chapter, we propose an algorithm, called pDBV-FCSP (Parallel Dynamic Bit Vector Frequent

Closed Sequential Patterns), for mining frequent closed sequential pattern. The main contributions are

as follows:

1. First parallel mining method for closed sequential patterns using multi-core processors

architecture.

2. Partitioning the work into multiple independent tasks so that the overhead of inter-processor

communication is minimized.

3. Load balance of the workload between processors using a dynamic mechanism that re-

distributes the work when some processes are out of work.

4. Perform closure checking of prefix sequences early to prune infrequent and non-closed

sequences.

4.2. Parallel mining frequent closed sequential patterns

This section describes the proposed pDBV-FCSP algorithm for mining frequent closed sequential

patterns based on multi-core processors architecture computer that utilizes task parallel along with

dynamic load balancing and uses a dynamic bit vector (DBV) data structure was presented in Chapter 2

to reduce cost.

In the parallel mining, each branch of the search tree can be regarded as a single task, the

computation at each node becomes an independent task and the overall computation can be parallelized

by distributing these tasks among the available processors which can be processed independently to

generate FCSPs. The task parallel formulation distributes the tasks among the processors in the

following way. First, the tree is expanded using the data-parallel algorithm at level k + 1, with k > 0.

Then, the different nodes at level k are distributed among the processors. Once this initial distribution is

done, each processor proceeds to generate the subtrees underneath the nodes to which they have been

assigned.

Each node X at level k in the tree can be extended via sequence extension or itemset extension by

adding one item to get a child node X at level k+1. A new node XY is created by joining nodes X and Y,

which must have the same length and the same |X| - 1 prefix item. Figure 4.1 shows frequent closed

pattern candidates (with fill color) for SDB in Table 2.2 obtained using the pDBV-FCSP algorithm.

Chapter 4. Parallel mining frequent closed sequential patterns 82

Figure 4.1. Frequent closed pattern candidates in Table 2.2 with minsup = 50%.

One of the primary challenges in parallel mining is that the candidate generation tree is usually not

balanced. This skewness (one subtree is very deep compared to the others) of the tree can cause the

performance of the parallel algorithm is not good. Therefore, dynamically redistributing the works when

some processes are out of work is necessary.

The proposed pDBV-FCSP algorithm uses the DBV data structure and it uses a parallel form of the

depth first search that relies on dynamic load balancing, where each process can perform a DFS on the

subtree, since they are computed independently. In addition, a parallel implementation of tasks instead

of threads because each task is assigned to searching a branch of the tree and is processed independently.

Using tasks has advantages over using threads. Firstly, tasks require less memory than do threads.

Secondly, a thread runs on only one core, whereas a task can run on multiple cores. Finally, threads

require more processing time than do tasks because the operating system needs to allocate resources for

threads, which require initialization and destruction and must perform context switching among threads.

When a process finishes finding all frequent patterns in its corresponding part of the tree, it actively

requests an unexplored part of the tree from other processes. In this scheme, as a processor becomes

idle, it randomly selects a donor processor and sends it a work request. The donor sends a response

indicating whether or not it has additional work. If a response indicates that a donor does not have any

more work, the processor selects another donor and sends work request to that donor. Otherwise, the

processor receives nodes to expand, along with the portion of the database associated with those nodes.

Upon receiving new works the processor starts extending newly received nodes. This process continues

until every processor completely extended the nodes assigned to it. Dijkstra’s token termination

Chapter 4. Parallel mining frequent closed sequential patterns 83

algorithm [28] can be used to detect whether all processors have become idle. The work in our case is

the DFS code prefixes of the patterns stored at each level of the candidate generation tree. We maintain

a DFS prefix queue for each level of the tree. The queue is populated in the order of the DFS code

extensions. The DFS code of a candidate pattern can be constructed by concatenating the current

expanded prefixes from level 1 to the current level.

The main steps of the pDBV-FCSP algorithm are as follows.

1. Convert the sequence database to the DBV-Pattern structure.

2. Identify the frequent 1-sequences.

3. Project the database along each frequent 1-sequences and check the closure of frequent

sequences to early eliminate infrequent sequences.

4. Prune the prefix sequences early.

5. Extend sequences.

Since pDBV-FCSP uses the DBV-Pattern structure, it can check the backward and forward extensions

quickly. For each transaction, pDBV-FCSP considers only the start position or the last position of the

sequence. Therefore, if the database has N transactions, pDBV-FCSP requires only N operations to

check each candidate.

The mining of FCSPs from a tree is divided into separate branches as follows.

1. Construct the search tree from the set of frequent 1-sequences.

2. Mine FCSPs parallel, assign each branch of the tree to a task. The mining process is performed

independently on each branch, no inter-processor communication is needed during the local

mining.

3. Synchronize results. This is done only at the end of the mining pattern on each branch.

The pseudo code of the pDBV-FCSP strategy is shown in Figure 4.2. The value of root is initialized

to NULL. The Generate1SPs procedure is called to identify all frequent 1-sequences from SDB (line 3).

These sequences are stored in L1. The items in L1 are sorted in ascending order by support (line 4) to

reduce the steps in the extension phase of the itemset and gain more effectively balance of the work load

in the system. Next, pDBV-FCSP creates new tasks corresponding to each pattern in L1 (line 7) where

each core pi receives M = I/p tasks, where p is the number of CPU cores and I is the number of frequent

1-sequences (equal to the number of tasks). Each task executes the procedure FCSP-Extension (line 8)

to extend itemsets and sequences. Tasks are configured to run in parallel (i.e., independently) to generate

a partial set of FCSPs. The final set of FCSPs is the union of the partial results. The procedure of

Generate1SPs is shown in Figure 4.3.

Chapter 4. Parallel mining frequent closed sequential patterns 84

Procedure pDBV-FCSP(SDB, minsup)

Input SDB, minsup

Output: All FCSPs that satisfy minsup

1

2

3

4

5

6

7

8

9

Begin

 Let root = NULL

 L1= Generate1SPs(SDB, minsup)

 Sort (L1) in increasing order of support

 Add L1 to child node of root

 For (each node i in root) do

 Create new task ti

 Call FCSP-Extension(i, minsup)

End begin

Figure 4.2. pDBV-FCSP strategy

Initially, the Generate1SPs procedure finds frequent 1-sequences (L1) based on the DBV structure

for each item that satisfies the minsup threshold (line 4). Consider SDB in Table 2.2 and minsup = 50%.

After this procedure is executed, three frequent 1-sequences are stored and thus L1 = {A:4, B: 3,

C:4}, as shown in Table 4.1.

Procedure Generate1SPs(SDB, minsup)

Input: SDB, minsup

Output: Set of frequent 1-sequences

1 Begin

2 For (each t in T) do

3 if ((t) ≥ minsup) then

4 L1 = L1  t

5 End for

6 End

Figure 4.3. Generate1SPs procedure.

The procedure FCSP-Extension is shown in Figure 4.4. This procedure expands the search tree by

executing procedures extendItemset (line 6) and extendSequence (line 9). For each node in the search

tree, the pattern for that node is extended by calling extendItemset and extendSequence to create a

new pattern. Before sequence extension, the algorithm tests and eliminates prefixes that cannot extend

frequent closed sequences using Proposition 2.1 (line 4). This process is repeated (line 13) until no

frequent closed sequences are generated. Lines 16 - 22 uses Proposition 2.2 to check the prefix Sx. If Sx

is not a frequent closed sequence, it will be set to NULL. After each level expansion the processors

communicate between each other to determine whether the work needs to be re-balanced (line 23).

The description of dynamic load balancing is stated as the following. If a work request comes in the

early stages of a counting phase, an active processor discards work done so far and shares its workload

with the recipient. If a work request comes in the middle stages of the counting phase, an active processor

lets the receiver know that while it has work, the work is not available immediately. Along with this

message, the active processor also sends an estimated time before completion as well as an estimated

Chapter 4. Parallel mining frequent closed sequential patterns 85

relative amount of workload at the next level. Towards the end of the counting phase, an active processor

ignores the work requests. The requests received during that time are processed upon completion of the

counting phase at that level.

If an idle processor does not receive work from a potential donor, it chooses another processor to

inquire about work. If after polling all available processors, an idle processor did not get any work, this

processor picks an active processor with work and lets it know that it will wait for work until it gets it.

To ensure that idle processors will pick different active processors, an idle processor will pick top n

active processors and will randomly choose one to attach itself to.

The results of executing sequence extension and itemset extension for SDB in Table 2.2 are shown

in Table 4.2 and Table 4.3.

Consider a pattern with prefix A, prefix A is not a closed sequence after the backward-extension

process and prefix B can be pruned after the pruning prefix process. The algorithm performs sequence

extension to create new frequent closed 2-sequences, pattern with prefix A extends using

extendSequence by concatenation with A, B and C to make new patterns AA, AB and AC,

respectively, as shown in Table 4.2 and extends using extendItemset by concatenation with B and C

to make new patterns (AB) and (AC), respectively, as shown in Table 4.3. It is then checked whether

the support count of these patterns satisfies the threshold based on the DBV-Pattern structure or not.

This process is repeated for each task until all FCSPs are obtained, as shown in Table 4.4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Procedure FCSP-Extension(p, minsup)

Begin

 Let list= child nodes of p

 For each Sx in list do

 If (Sx is not pruned) then

 For each Sy in list do

 If ((Sxy = extendItemset(Sx, Sy)) ≥ minsup) then

 Add Sxy to child nodes of Sx

 End if

 If ((Sxy = extendSequence(Sx,Sy)) ≥ minsup) then

 Add Sxy to child node of Sx

 End if

 End for

 Call FCSP-Extension(Sx, minsup)

 End if

 If (checkBackwardExtension(Sx,Sy) = true) then

 Sx.isClosed = false

 Else (checkForwardExtension(Sx,Sy) = true) then

 Sx.isClosed = false

 End if

 If (Sx.isClosed = false) then

Chapter 4. Parallel mining frequent closed sequential patterns 86

21

22

23

24

25

 Sx = NULL

 End if

 Load_balancing()

 End for

End begin

Figure 4.4. FCSP-Extension procedure.

Table 4.1. Sequences A, B and C in SDB after conversion to DBV

Sequence A B C

Start bit 1 2 1

Value 15 7 15

Index 4 3 2 1 4 3 2 4 3 2 1

Position 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4} 2:{2,3} 2:{2,4} 2:{2,3,4} 3:{3} 2:{2,5} 3:{3} 1:{1,4}

Table 4.2. Sequence extension (minsup = 50%)

Sequence AA

Start bit 1

Value 15

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position AA 1:{4} 1:{3} 1:{3} 2:{3,4}

Sequence AB

Start bit 2

Value 7

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position B 2:{2,3} 2:{2,4} 2:{2,3,4} 

Position AB 1:{2,3} 1:{2,4} 1:{2,3,4} 

Sequence AC

Start bit 1

Value 15

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position C 3:{3} 2:{2,5} 3:{3} 1:{1,4}

Position AC 1:{3} 1:{2,5} 1:{3} 2:{4}

Table 4.3. Itemset extension (minsup = 50%)

Sequence (AB)

Start bit 2

Value 1

Chapter 4. Parallel mining frequent closed sequential patterns 87

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position B 2:{2,3} 2:{2,4} 2:{2,3,4} 

Position (AB)   3:{3} 

Sequence (AC)

Start bit 1

Value 3

Index 4 3 2 1

Position A 1:{1,4} 1:{1,3} 1:{1,3} 2:{2,3,4}

Position C 3:{3} 2:{2,5} 3:{3} 1:{1,4}

Position (AC)   3:{3} 4:{4}

Table 4.4. Set of frequent closed sequential patterns from Table 2.2 with minsup = 50%

No. Item FCSPs – Support

1 A AA:4, AC:4, AAC:2, A(AC):2, ABA:3, ABB:3, ABC:3, A(BC):3,

ABAB:2, AB(BC): 2, A(BC)A:2, A(BC)B:2

2 B 

3 C CA:3, CAC:2

4.3. Experimental results

Experiments were conducted to evaluate the proposed parallel algorithm. The experiments were

performed on a personal computer with an Intel Core i5-6200U 2.3-GHz CPU with 4 cores, 3 MB of L3

cache, 4 GB of RAM and running 64-bit Windows 10 Pro. The algorithm was implemented using .Net

Framework 4.5.

The first and second databases (C6T5N1kD10k and T10I4D100K) used for comparison were

generated using the IBM synthetic data generator. The third database (Kosarak25k) was provided by

Bodon (http://fimi.ua.ac.be/data/). Others databases were provided by Fournier-Viger

(http://www.philippe-fournier-viger.com/spmf/). Information of the databases is shown in Table 4.5.

The definitions of parameters used to generate the databases are shown in Table 2.4.

Table 4.5. Databases used in experiments.

Database #sequences #items

C6T5N1kD10k 10,000 1,000
Synthetic databases

T10I4D100K 100,000 870

Kosarak25k 25,000 41,270 Click stream data of a Hungarian online news portal

BMSWebView1 59,601 497 Click stream data from an e-commerce site

BMSWebView2 77,512 3,340 Click stream data from the KDD-CUP 2000

MSNBC (Short) 31,790 17
Click stream data from the UCI repository

MSNBC (Full) 989,818 17

http://fimi.ua.ac.be/data/
http://www.philippe-fournier-viger.com/spmf/

Chapter 4. Parallel mining frequent closed sequential patterns 88

Parallel mining improved performance without affected the results. Table 4.6 shown the mining

results of CloFS-DBV and pDBV-FCSP. The set of results of algorithms was always the same for all

databases to prove the correctness of pDBV-FCSP.

We also add a set of results of frequent sequential pattern (FSP) mining for comparison. With these

thresholds, the result is similar for all databases among frequent closed sequential pattern (FCSP) and

frequent sequential patterns. We just saw that the results are different between FCSP and FSP on the

Kosarak25k database and on two databases BMSWebView1 and BMSWebView2 with the lowest

threshold

Table 4.6. The mining results of pDBV-FCSP and CloFS-DBV

Some existing methods for parallel mining closed sequential patterns are designed on a distributed

memory system and are performed from 4, 8, 16, 32 and 64 nodes as Par-CSP [25] and Par-ClosP [128],

each node has a 1GHz Pentium III processor, 1GB main memory. Our proposed method is the first

method applied to multi-core processors for mining closed sequential pattern. The newest parallel

algorithm applied to multi-core processors to publish in Applied Intelligence is pDBV-FCSP [49] only

implemented for sequential pattern. So it is very difficult to compare our results with that method

because they are in different fields. Experiments were conducted to compare CloFS-DBV and the

proposed pDBV-FCSP for various minsup values and the proposed method running on two figures are

two and four cores. The runtime results are shown in Figure 4.5-Figure 4.10 and memory usage results

are shown in Figure 4.11-Figure 4.16 for the six regarding databases.

C6T5S4I4N1kD10k

minsup (%) 6 5 4 3 2 1

#FSP 83 117 188 281 418 863

#FCSP 83 117 188 281 418 863

T10I4D100K

minsup (%) 5.0 4.5 4.0 3.5 3.0 2.5 2.0

#FSP 10 17 26 40 60 107 155

#FCSP 10 17 26 40 60 107 155

BMSWebView1 BMSWebView2

minsup (%) 0.5 0.4 0.3 0.2 0.1 minsup (%) 0.5 0.4 0.3 0.2 0.1

#FSP 201 286 435 798 3991 #FSP 408 676 1340 3683 23294

#FCSP 201 286 435 798 3974 #FCSP 408 676 1340 3683 22245

Kosarak25k MSNBC (Short)

minsup (%) 0.6 0.5 0.4 0.3 0.2 minsup (%) 7 6 5 4 3

#FSP 1148 1668 2694 5167 15679 #FSP 721 987 1478 2352 4118

#FCSP 1026 1458 2248 3972 9005 #FCSP 721 987 1478 2352 4118

Chapter 4. Parallel mining frequent closed sequential patterns 89

4.3.1. Runtime

Figure 4.5. Runtimes on C6T5N1kD10k

Figure 4.6. Runtimes on T10I4D100K

Figure 4.7. Runtimes on Kosarak25k

0

50

100

150

200

250

300

1 2 3 4 5 6

R
u

n
ti

m
e

(s
)

minsup (%)

C6T5S4I4N1kD10k

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

0

50

100

150

200

250

5 4.5 4 3.5 3 2.5 2

R
u

n
ti

m
e

(s
)

minsup (%)

T10I4D100K

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

0

100

200

300

400

500

0.6 0.5 0.4 0.3 0.2

R
u
n

ti
m

e
(s

)

minsup (%)

Kosarak25k

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

Chapter 4. Parallel mining frequent closed sequential patterns 90

Figure 4.8. Runtimes on BMSWebView1

Figure 4.9. Runtimes on BMSWebView2

Figure 4.10. Runtimes on MSNBC_Short

0

50

100

150

200

250

300

0.5 0.4 0.3 0.2 0.1

R
u

n
ti

m
e

(s
)

minsup (%)

BMSWebView1

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

0

200

400

600

800

1000

0.5 0.4 0.3 0.2 0.1

R
u

n
ti

m
e

(s
)

minsup (%)

BMSWebView2

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

0

50

100

150

200

250

7 6 5 4 3

R
u
n

ti
m

e
(s

)

minsup (%)

MSNBC (Short)

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

Chapter 4. Parallel mining frequent closed sequential patterns 91

 The experimental results show that pDBV-FCSP is faster than CloFS-DBV in most cases,

especially, executed on a computer with more cores. With a large minsup, pDBV-FCSP is not faster

than CloFS-DBV, however, with a small minsup, pDBV-FCSP is much faster than CloFS-DBV. In

Figure 4.5, for the C6T5S4I4N1kD10k database, the runtimes of CloFS-DBV and pDBV-FCSP were

7.06 s, 3.59 s (two cores) and 0.91 s (four cores) seconds, respectively.

The runtimes of pDBV-FCSP have been always better than the others when executed on four cores

while CloFS-DBV increased rapidly when minsup was decreased from 6% to 1%. Similar results, the

runtimes of pDBV-FCSP were slower than the CloFS-DBV as shown in Figure 4.6 for T10I4D100K

database. In Figure 4.7-Figure 4.10, the runtimes of pDBV-FCSP for Kosarak25k, BMSWebView1,

BMSWebView2 and MSNBC (short) databases were better than CloFS-DBV in most cases, especially

with small minsup and running on a computer that has many cores. When minsup was decreased, the

runtimes of pDBV-FCSP have been always faster.

4.3.2. Memory usage

Figure 4.11. Memory usage for C6T5N1kD10k

Figure 4.12. Memory usage for T10I4D100K

0

10

20

30

40

1 2 3 4 5 6

M
em

o
ry

 (
M

B
)

minsup (%)

C6T5S4I4N1kD10k

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

0

20

40

60

80

5 4.5 4 3.5 3 2.5 2

M
em

o
ry

 (
M

B
)

minsup (%)

T10I4D100K

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

Chapter 4. Parallel mining frequent closed sequential patterns 92

Figure 4.13. Memory usage for Kosarak25k

Figure 4.14. Memory usage for BMSWebView1

Figure 4.15. Memory usage for BMSWebView2

0

100

200

300

400

0.6 0.5 0.4 0.3 0.2

M
em

o
ry

 (
M

B
)

minsup (%)

Kosarak25k

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

0

50

100

150

0.5 0.4 0.3 0.2 0.1

M
em

o
ry

 (
M

B
)

minsup (%)

BMSWebView1

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

0

100

200

300

400

0.5 0.4 0.3 0.2 0.1

M
em

o
ry

 (
M

B
)

minsup (%)

BMSWebView2

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

Chapter 4. Parallel mining frequent closed sequential patterns 93

Figure 4.16. Memory usage for MSNBC (short)

On all databases, CloFS-DBV is always better than pDBV-FCSP in terms of memory usage, as

shown in Figure 4.11 – Figure 4.16. This can be explained as follows. Although, both algorithms used

the DBV data structure for storing sequence information. pDBV-FCSP using more memory usage

because parallel processing divided the tasks to be processed into independent branches, needing more

memory to store the results. When minsup was decreased, more FCSPs were obtained and thus the

runtime and memory usage increased. The memory usage of pDBV-FCSP between two and four cores

was equivalents because the numbers of nodes in the search tree of was the same.

An advantage of pDBV-FCSP is that it helps to balance the search tree using a dynamic mechanism

that re-distributes the works when some processes are out of work to minimize the CPU idle time and

sorting patterns according to their support values in ascending order. In pDBV-FCSP, the set of frequent

1-sequences are sorted before task assignment. Most nodes in the leftmost branches are infrequent and

are pruned during the search. Nodes on the rightmost branches are frequent and not pruned during the

search. This strategy balances the search tree for parallel processing and thus the search times for

branches of the search tree are similar.

0

200

400

600

800

1000

7 6 5 4 3

M
em

o
ry

 (
M

B
)

minsup (%)

MSNBC (Short)

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

Chapter 4. Parallel mining frequent closed sequential patterns 94

4.3.3. Scalability

Figure 4.17. Scalability of pDBV-FCSP and CloFS-DBV for MSNBC database with minsup=7% and

various database sizes

In this section, we performed scalability experiments on various numbers of sequences for MSNBC

full database which is the largest one in the experimental databases. The goal of this experiment is to

observe the influence of the number of sequences at execution time. The results in Figure 4.17 show that

pDBV-FCSP had the best scalability. We tried this database with CM-ClaSP approach proposed by

Philippe et al. [34], even the CMClaSP could not run for MSNBC database from 500K sequences.

4.4. Summary

This chapter proposed a strategy for mining FCSPs in parallel using a multi-core processors

architecture. The proposed algorithm distributed SP search tasks on a multi-core processors with a

dynamic load balancing and used an efficient data structure (DBV) for quickly mining FCSPs. The

experimental results showed that the proposed algorithm outperformed the CloFS-DBV algorithm and

the runtime reduced when the number of cores increased.

0

5000

10000

15000

20000

25000

30000

400 500 600 700 800 900

R
u

n
ti

m
e

(s
)

Dataset size (K)

MSNBC (Full)

DBV-Closed pDBV-FCSP (2 cores)

pDBV-FCSP (3 cores) pDBV-FCSP (4 cores)

Chapter 5

Conclusions and Future works

In this chapter, we conclude the thesis by summarizing our contributions. Then, we highlight the

ongoing works we are conducting to extend this thesis.

5.1. Conclusion

This thesis deals with sequential pattern mining from huge sequence databases, it has been attracting

attention in recent researches into data mining. Very large search space and data volume have made

many problems for serial algorithms to mine sequential patterns. In order to mine effectively, efficient

parallel algorithms are necessary.

In the main part of this thesis, we are based on multi-core processors architecture and SPMD (Single

Program Multiple Data) strategy to parallel sequential pattern mining. The database is partitioned into

multiple continuous blocks and distributed tasks on a multi-core computer. According to this

mechanism, a set of processors execute in parallel with the same algorithm on different partitions of a

database.

Our approach has several main advantages over task parallel: i) tasks require less memory than

threads do; ii) a thread runs on only one core, whereas a task can run on multiple cores; iii) threads

require more processing time than tasks do because the operating system need to allocate data structures

for threads, as initialization and destruction and also performs the context switch between threads. This

simplifies programming and leads to a significant development time smaller than one associated with

task parallel programming because a lot of previously written serial code can be reused. It has also a

higher degree of machine architecture independence, in comparison with task parallel. In most

applications, the amount of data can increase arbitrarily fast, while the number of lines of code typically

increases at a much slower rate. To put it in simple terms, the more data is available, the more

opportunity to exploit data parallel.

Besides, the main goal of the algorithm is to reduce cost and increase effective processed. The load

balanced workload among the processors and good scalability is interesting. We use strategy dynamic

load balanced and sort the first candidates list (set of 1-sequences) to improve the main parallel

algorithms. In other words, the improved algorithm is good behavior and scalability when length of

patterns grows up while main parallel algorithm face to very high computation time.

The contributes of thesis can be summarized as follows:

Firstly, we propose a method named PIB-PRISM (Parallel Independent Branch PRISM) [R1]. This

method applied prime theory to encode sequences, including ID encoding of sequence data and position

encoding of items in each sequence. A sequential pattern appears in only some sequences of a database

and in each sequence only occurs in some positions of a sequence. Therefore, a bit vector usually

includes many bits of zero. To reduce storage space, PIB-PRISM retains only non-empty blocks after

prime encoding. Hence, it keeps an index with each sequence block to indicate which non-empty

position blocks correspond to a given sequence block, so it is more compressed and easily determined

Chapter 5. Conclusions and Future works 97

the support value of each sequence. The primary advantages of the PIB-PRISM strategy is that each task

is assigned to searching branches of the search tree and processed independently from other tasks

without any synchronization.

Secondly, we propose a method called pDBV-SPM (Parallel Dynamic Bit Vector Sequential Pattern

Mining) [R3] used dynamic bit vector (DBV) data structure. pDBV-SPM overcomes the drawbacks of

PIB-PRISM and further reduces the computational cost of mining. The advantages of this method are:

i) fast determined support and reduced storage space; ii) quick mining; iii) load balancing of the

workload between processors.

The main disadvantage of the bit vector structure is its fixed size, which depends on the number of

sequences in a sequence database. During sequence extension, ‘0’ bits thus appear often, which increases

the required memory and processing time. The DBV is a compact data structure, using DBV helps to

reduce memory storage and computational cost in bitwise AND operator.

Thirdly, we propose a method called pDBV-FCSP (Parallel Dynamic Bit Vector Frequent Closed

Sequential Patterns) [R4] also based on DBV data structure, for mining frequent closed sequential

patterns with dynamic load balancing. pDBV-FCSP is the first parallel mining method for closed

sequential patterns using multi-core processors architecture. This method performs closure checking of

prefix sequences early to prune infrequent and non-closed sequences and it solves the load balance issues

of the workload between processors with a dynamic mechanism that re-distributes the work when some

processes are out of work to minimize the idle CPU time.

Next, we propose a parallel approach named MCM-SPADE [R6] uses the vertical data format and

a data structure named CMAP (Co-occurrence MAP) for storing co-occurrence information. This

algorithm performs early pruning of the candidates to reduce the search space and it partitions the related

tasks to each processor core by using the divide-and-conquer property. The proposed algorithm also

uses dynamic scheduling to avoid task idling and achieve load balancing between processor cores.

Finally, we propose three novel algorithms for fast mining inter-sequence patterns with item

constraints [R5, R7]. First, the problem of mining inter-sequence patterns with item constraints is

introduced. Then, we develop a theorem to reduce the time of determining whether a candidate sequence

satisfies the constraints. The ISP-IC (Inter-Sequence Pattern with Item Constraint mining) algorithm

based on the above theorem for mining inter-sequence patterns with item constraints is then proposed.

Next, a lemma and the second algorithm, named iISP-IC, are proposed. Then, we present a parallel

version of iISP-IC, named piISP-IC algorithm. Experiments are conducted to show the effectiveness of

the piISP-IC in terms of mining time and memory usage compared to ISP-IC and iISP-IC algorithms.

We have implemented our parallel algorithm using .NET framework. In that, a new concept is

introduced – Task. The task is part of TPL, which is a new collection of classes that focus on parallel

programming as well as offer light weight object compared to traditional threading system. Using tasks

has many benefits, not only are tasks more efficient, but they also abstract away from the underlying

hardware and the OS specific thread scheduler. One other great feature about TPL is that it aims to use

each core of CPU so no core will be idle. Our experimental results indicate that proposed algorithms

have good performance, greatly reduce the storage and search space and a good work loading as well.

Chapter 5. Conclusions and Future works 98

5.2. Future works

We are currently working on two major categories. In the first category, we are working on

improving frequent subgraph mining on parallel environment. The second category is to research and

apply hybrid parallel models, a combination of distributed environment and multi-core processors

architecture to improve the scalability sequential pattern mining for biological sequences.

In the first category, we propose two efficient parallel algorithms for mining frequent subgraphs

based on gSpan algorithm basic framework and multi-core processors architecture with good parallel

and scale up [R2]. The first strategy called PMFS-IB, we distribute each branch of the DFS tree to a

single task which mines assigned branch independently from other tasks. It explores all frequent

subgraphs in the same way as gSpan [118] does, except that PMFS-IB mines each branch of the DFS

tree in parallel. The second parallel strategy called PMFS-SB, assigns each branch of the DFS tree to

multiple tasks.

The experimental results show that the proposed methods are superior to the sequential algorithm

gSpan in terms of mining time on two databases, namely Chemical and Compound. However, when

minimum support values are very low, the cost of context switching between tasks is still very high. The

memory consumption is also high, which may cause the memory leakage.

In the future, we will continue researching this trend and scalable sequential pattern mining for

biological sequences with hybrid parallel models, a combination of multi-core processors architecture

and distributed environment. We also focus on distributed data mining because distributed computing

plays an important role in the data mining process for several reasons. Firstly, data mining often requires

huge amounts of resources in storage space and computation time. To make systems scalable, it is

important to develop mechanisms that distribute the workload among several sites in a flexible way.

Secondly, data are often inherently distributed into several databases, making a centralized processing

of this data very inefficient and prone to security risks. Distributed data mining explores techniques of

how to apply data mining in a non-centralized way.

5.3. Publications

The experimental results prove that our proposed methods are better for tackling the problems

mining frequent sequential patterns and frequent closed sequential patterns, especially is on large and

dense database. The proposed methods and their experimental results have been presented and published

in high-quality international journals. The publications are listed as follows.

[R1]. Bao Huynh, Bay Vo (2015). Using multi-core processors for mining frequent sequential

patterns. ICIC Express Letters, 9 (11), pp. 3071-3079 (Scopus)

[R2]. Bao Huynh, Dang Nguyen, Bay Vo (2016). Parallel Frequent Subgraph Mining On Multi-Core

Processor Systems. ICIC Express Letters, 10 (9), pp. 2105-2113 (Scopus)

[R3]. Bao Huynh, Bay Vo, Vaclav Snasel (2017). An Efficient Method for Mining Frequent

Sequential Patterns Using Multi-Core Processors. Applied Intelligence, 46(3), pp. 703-716

(SCI, IF = 1.904)

Chapter 5. Conclusions and Future works 99

[R4]. Bao Huynh, Bay Vo, Vaclav Snasel (2017). An Efficient Parallel Method for Mining Frequent

Closed Sequential Patterns. IEEE Access, 5(1), pp. 17392-17402 (SCIE, IF = 3.244)

[R5]. Tuong Le, Anh Nguyen, Bao Huynh, Bay Vo and Witold Pedrycz. Mining Constrained Inter-

Sequence Patterns: A Novel Approach to Cope with Item Constraints. Applied Intelligence

(accepted, SCI, IF = 1.904)

[R6]. Bao Huynh, Cuong Trinh, Huy Huynh, Trang Van, Bay Vo, Vaclav Snasel. An Efficient

Approach for Mining Sequential Patterns Using Multiple Threads on Very Large Databases.

Engineering Applications of Artificial Intelligence (submitted, SCIE, IF = 2.894)

[R7]. Thanh-Long Nguyen, Bay Vo, Bao Huynh, Vaclav Snasel, Loan T.T. Nguyen (2017).

Constraint-Based Method for Mining Colossal Patterns in High Dimensional Databases. ISAT,

655(1), pp. 195-204 (AISC)

References

[1]. Abbass H., Sarker R., Newton C.S., Data Mining: A Heuristic Approach. Idea Group

Publishing, pp. 261-289 (2002)

[2]. Agrawal R., Srikant R., Mining Sequential Patterns. ICDE’95, pp. 3-14 (1995)

[3]. Almasi S., Gottlieb A., Highly parallel computing. Benjamin-Cummings Publishing Co., Inc.

Redwood City, CA, USA (2nd ed.). ISBN:0-8053-0443-6 (1994)

[4]. Akhter S., Roberts J., Multi-Core Programming. Intel Press (2006)

[5]. Altaf W., Shahbaz M., Guergachi A., Applications of association rule mining in health

informatics: a survey. Artif. Intell. Rev., 47(3), pp. 313-340 (2017)

[6]. András V., Multi-core and Many-core Processor Architectures. Springer Science Business

Media, LLC 2011, pp. 9-43 (2011). http://www.springer.com/gp/book/9781441997388

[7]. Ankerst M., Breunig M.M., Kriegel H.P., Sander J., OPTICS: Ordering Points to Identify the

Clustering Structure. SIGMOD'99, 28(2), pp. 49-60 (1999)

[8]. Arora P., Deepali Dr., Varshney S., Analysis of K-Means and K-Medoids Algorithm For Big

Data. Procedia Computer Science, 78, pp. 507-512 (2016)

[9]. Ayres J., Flannick J., Gehrke J., Yiu T., Sequential pattern mining using a bitmap

representation. KDD’02, pp. 429-435 (2002)

[10]. Bartz-Beielstein T., Zaefferer M., Model-based methods for continuous and discrete global

optimization. Applied Soft Computing, 55, pp. 154–167 (2017)

[11]. Beg A.H., Islam Z., A novel genetic algorithm-based clustering technique and its suitability

for knowledge discovery from a brain data set. CEC, pp. 948-956 (2016)

[12]. Berkhin P., Dhillon I., Knowledge Discovery: Clustering. Encyclopedia of Complexity and

Systems Science, pp. 5051-5064 (2009)

[13]. Bhuyan M.H., Bhattacharyya D.K., Kalita J.K., Towards Generating Real-life Datasets for

Network Intrusion Detection. I. J. Network Security, 17(6), pp. 683-701 (2015)

[14]. Bischof C., Bucker M., Gibbon P., Joubert G., Lippert T., Parallel Computing: Architectures,

Algorithms and Applications. Volume 15 Advances in Parallel Computing, IOS Press, ISBN-

13: 978-1586037963 (2008)

[15]. Blumofe R.D., Joerg C.F., Kuszmaul B.C., Leiserson C.E., Randall K.H., Zhou Y., Cilk: An

Efficient Multithreaded Runtime System. 37(1), pp. 55-69 (1996)

[16]. Boyd-Wickizer S., Optimizing communication bottlenecks in multiprocessor operating

system kernels. Massachusetts Institute of Technology, Cambridge, MA, USA (2014)

[17]. Buckzak A.L., Baugher B., Guven E., Thomas L.R., Elbert Y., Babin S.M., Lewis S., Fuzzy

association rule mining and classification for the prediction of malaria in South Korea.

BMC Med. Inf. & Decision Making, 15:47 (2015)

http://www.springer.com/gp/book/9781441997388

References 102

[18]. Bureva V., Sotirova E., Chountas P., Generalized Net of the Process of Sequential Pattern

Mining by Generalized Sequential Pattern Algorithm (GSP). IEEE Conf. on Intelligent

Systems, 2, pp. 831-838 (2015)

[19]. Campos L.M.L., Oliveira R.C.L., Roisenberg M., Network Intrusion Detection System Using

Data Mining. EANN, pp. 104-113 (2012)

[20]. Campbell C., Johnson R., Miller A., Toub S., Parallel Programming with Microsoft®.NET:

Design Patterns for Decomposition and Coordination on Multicore Architectures. Microsoft

Press (2010)

[21]. Casali A., Ernst C., Extracting Correlated Patterns on Multi-core Architectures. CD-

ARES’13, pp. 118-133 (2013)

[22]. Chai L., Gao Q., Panda D.K., Understanding the Impact of Multi-Core Architecture in Cluster

Computing: A Case Study with Intel Dual-Core System. CCGRID 2007. pp. 471-478 (2007)

[23]. Che D., Safran M.S., Peng Z., From Big Data to Big Data Mining: Challenges, Issues and

Opportunities. DASFAA Workshops, pp. 1-15 (2013)

[24]. Choi K., Yoo D., Kim G., Suh Y., A hybrid online-product recommendation system:

Combining implicit rating-based collaborative filtering and sequential pattern analysis.

Electronic Commerce Research and Applications, 11(4), pp. 309-317 (2012)

[25]. Cong S., Han J., Padua D.A., Parallel Mining of Closed Sequential Patterns. KDD’05, pp.

562-567 (2005)

[26]. Congiusta A., Talia D., Trunfio P., Parallel and Grid-Based Data Mining - Algorithms,

Models and Systems for High-Performance KDD. Data Mining and Knowledge Discovery

Handbook, pp. 1009-1028 (2010)

[27]. Copp S.M., Bogdanov P., Debord M., Singh A., Gwinn E., Base Motif Recognition and

Design of DNA Templates for Fluorescent Silver Clusters by Machine Learning. Advanced

Materials, 28(33), pp.5839-5845 (2014)

[28]. Dijkstra E.W., Feijen W.H.J., Gasteren A.J.M., Derivation of a termination detection

algorithm for a distributed computation. Inf. Process. Lett, 16(5), pp. 217-219 (1983)

[29]. Duong H.V., Truong T.C., Vo B., An efficient method for mining frequent itemsets with

double constraints. Eng. Appl. of AI, 27, pp. 148-154 (2014)

[30]. Elmasri R., Navath S.B., Fundamentals of Database Systems 7th Edition. John Wiley & Sons.

ISBN-13: 978-0133970777 (2016)

[31]. Fayyad U.M., Piatetsky-Shapiro G., Smyth P., From Data Mining to Knowledge Discovery

in Databases. AI Magazine, 17(3), pp. 37-54 (1996)

[32]. Feng W., Cai X., The Application and Improvement of ID3 Algorithm in WEB Log Data

Mining. LNEE'16, 393, pp. 577-583 (2016)

[33]. Flouri T., Iliopoulos C.S., Park K., Pissis S.P., GapMis-OMP: Pairwise Short-Read

Alignment on Multi-core Architectures. AIAI, 2, pp. 593-601 (2012)

References 103

[34]. Fournier-Viger P., Gomariz A., Campos M., Thomas R., Fast Vertical Mining of Sequential

Patterns Using Co-occurrence Information. PAKDD’14, 1, pp. 40-52 (2014)

[35]. Golmohammadi K., Zaïane O.R., Time series contextual anomaly detection for detecting

market manipulation in stock market. DSAA, pp. 1-10 (2015)

[36]. Gomariz A., Campos M., Marin R., Goethals B., ClaSP: An Efficient Algorithm for Mining

Frequent Closed Sequences. PAKDD’13, 1, pp. 50-61 (2013)

[37]. Gouda K., Hassaan M., Zaki M.J., Prism: An Effective Approach for Frequent Sequence

Mining via Prime-Block Encoding. J. Comput. Syst. Sci., 76(1), pp. 88-102 (2010)

[38]. Goyal N., Balasubramaniam S., Goyal P., Islam S., Sati M., A High Performance Computing

Framework for Data Mining. HiPC Workshops, pp.11-18 (2016)

[39]. Grama A., Karypis G., Kumar V., Gupta A., Introduction to Parallel Computing 2nd Edition.

Addison Wesley, ISBN-13: 978-0201648652 (2003)

[40]. Han J., Pei J., Mortazavi-Asl B., Chen Q., Dayal U., Hsu M., Freespan: Frequent Pattern-

Projected Sequential Pattern Mining. KDD’00, pp. 355-359 (2000)

[41]. Han J., Pei J., Yin Y., Mining Frequent Patterns Without Candidate Generation. ACM

SIGMOD'00, pp. 1-12 (2000)

[42]. Han J., Kamber M., Pei J., Data Mining: Concepts and Techniques 3rd Edition. Morgan

Kaufmann, USA. ISBN 978-0-12-381479-1 (2011)

[43]. Han M., Wang Z., Yuan J., Efficient Method for Mining Patterns from Highly Similar and

Dense Database based on Prefix-Frequent-Items. JSW, 9(8), pp. 2080-2086 (2014)

[44]. Hernández J.K.F., Palancar J.H., León R.H., Uribe C.F., SPaMi-FTS: An Efficient Algorithm

for Mining Frequent Sequential Patterns. CIARR, 8827, pp. 470-477 (2014)

[45]. Hillar G.C., Professional Parallel Programming with C#: Master Parallel Extensions With

.NET 4. Wiley Publishing, ISBN: 978-0-470-49599-5 (2011)

[46]. Höppner F., Association Rules. Data Mining and Knowledge Discovery Handbook, pp. 299-

319 (2010)

[47]. Huynh B., Vo B., Using Multi-Core Processors for Mining Frequent Sequential Patterns.

ICIC Express Letters, 9(11), pp. 3071-3079 (2015)

[48]. Huynh B., Nguyen D., Vo B., Parallel frequent subgraph mining on multi-core processor

systems. ICIC Express Letters, 10(9), pp. 2105-2113 (2016)

[49]. Huynh B., Vo B., Snasel V., An efficient method for mining frequent sequential patterns using

multi-Core processors. Appl. Intell., 46(3), pp. 703-716 (2017)

[50]. Idrissi A., Rehioui H., Laghrissi A., Retal S., An improvement of DENCLUE algorithm for

the data clustering. ICTA, pp. 1-6 (2015)

[51]. Inmon W.H., Building the Data Warehouse 4th Edition. John Wiley & Sons. ISBN: 978-0-

7645-9944-6 (2005)

References 104

[52]. Isinkaye F.O., Folajimi Y.O., Ojokoh B.A., Recommendation systems: Principles, methods

and evaluation. Egyptian Informatics Journal, 16(3), pp. 261-273 (2015)

[53]. Jeyabharathi J., Shanthi D., Enhanced sequence identification technique for protein sequence

database mining with hybrid frequent pattern mining algorithm. IJDMB'16, 16(3), pp. 205-

229 (2016)

[54]. Jung H., Chung K., Sequential pattern profiling based bio-detection for smart health service.

Cluster Computing, 18(1), pp. 209-219 (2015)

[55]. Katti A., Fatta G.D., Dynamic group communication for large-scale parallel data mining.

Concurrent Engineering: R&A, 21(3), pp. 227-234 (2013)

[56]. Khan S.S., Ahmad A., Cluster center initialization algorithm for K-modes clustering. Expert

Syst. Appl. , 40(18), pp. 7444-7456 (2013)

[57]. Kumar R., Zyuban V., Tulsen D.M., Interconnections in multi-core architecture:

understanding mechanisms, overheads and scaling. International Symposium on Computer

Architecture, 1-11 (2005)

[58]. Kriegel H.P., Kröger P., Sander J., Zimek A., Density-based clustering. Wiley Interdisc.

Rew.: Data Mining and Knowledge Discovery, 1(3), pp. 231-240 (2011)

[59]. Laurent A., Négrevergne B., Sicard N., Termier A., Efficient Parallel Mining of Gradual

Patterns on Multi-core Processors. Advances in Knowledge Discovery and Management,

398, pp. 137-151 (2012)

[60]. Leijen D., Schulte W., Burckhardt S., The design of a task parallel library. ACM SIGPLAN

Not., 44(10), pp. 227–242 (2009)

[61]. Li M., Holmes G., Pfahringer B., Clustering Large Datasets Using Cobweb and K-Means in

Tandem. Australian Conference on Artificial Intelligence, pp. 368-379 (2004)

[62]. Li R., Hu H., Li H., Wu Y., Yang J., MapReduce Parallel Programming Model: A State-of-

the-Art Survey. Int J Parallel Prog , 44(4), pp. 832-866 (2016)

[63]. Lin W.Y., Huang K.W., Wu C.A., MCFPTree: An FP-tree-based algorithm for multi

constraint patterns discovery. IJBIDM, 5(3), pp. 231-246 (2010)

[64]. Lin C.J., Wu C., Chaovalitwongse W.A., Integrating Human Behavior Modeling and Data

Mining Techniques to Predict Human Errors in Numerical Typing. IEEE Trans. Human-

Machine Systems, 45(1), pp. 39-50 (2015)

[65]. Liu L., Li E., Zhang Y., Tang Z., Optimization of Frequent Itemset Mining on Multiple-Core

Processor. VLDB '07, pp. 1275-1285 (2007)

[66]. Loh W.Y., Classification and regression trees. Wiley Interdisc. Rew.: Data Mining and

Knowledge Discovery, 1(1), pp. 14-23 (2011)

[67]. MacQueen J., Some Methods for Classification and Analysis of Multivariate Observations.

Proceeding 5th Berkeley Symposium Mathematics, Statistics and Probability, 1, pp. 281-297

(1967)

References 105

[68]. Magoules F., Zhao H.X., Data Mining and Machine Learning in Building Energy Analysis:

Towards High Performance Computing. Wiley-ISTE, ISBN: 978-1-84821-422-4 (2016)

[69]. Maragatham G., Lakshmi M., UTARM: an efficient algorithm for mining of utility-oriented

temporal association rules. IJKEDM, 3(2), pp. 208-237 (2015)

[70]. Masseglia F., Cathala F., Poncelet P., The PSP Approach for Mining Sequential Patterns.

PKDD’98, pp. 176-184 (1998)

[71]. Mazid M.M., Shawkat Ali A.B.M., Tickle K.S., Improved C4.5 algorithm for rule based

classification. AIKED'10, pp. 296-301 (2010)

[72]. Garcia-Molina H., Ullman J. D., Widom J., Database Systems: The Complete Book 2nd

Edition. Pearson, ISBN-13: 978-0131873254 (2009)

[73]. Napierala K., Stefanowski J., Types of minority class examples and their influence on learning

classifiers from imbalanced data. J. Intell. Inf. Syst., 46(3), pp. 563-597 (2016)

[74]. Negrevergne B., Termier A., Rousset M.C., Méhaut J.F., Para Miner: A Generic Pattern

Mining Algorithm for Multi-Core Architectures. Data Min. Knowl. Discov., 28(3), pp. 593-

633 (2014)

[75]. Ng R.T., Lakshmanan L.V.S., Han J., Pang A., Exploratory mining and pruning optimizations

of constrained association rules. SIGMOD’98, pp. 13-24 (1998)

[76]. Nguyen D., Vo B., Le B., Efficient Strategies for Parallel Mining Class Association Rules.

Expert Systems with Applications, 41(10), pp. 4716-4729 (2014)

[77]. Nobile M.S., Tangherloni A., Besozzi D., Cazzaniga P., GPU-powered and settings-free

parameter estimation of biochemical systems. CEC, pp. 32-39 (2016)

[78]. Olaiya F., Adeyemo A.B., Application of Data Mining Techniques in Weather Prediction and

Climate Change Studies. I.J. Information Engineering and Electronic Business, 1, pp. 51-59

(2012)

[79]. Pei J., Han J., Mortazavi-Asl B., Wang J., Pinto H., Chen Q., Dayal U., Hsu M., Mining

Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE Trans. Knowl. Data

Eng., 16(11), pp. 1424-1440 (2004)

[80]. Pham T.T., Luo J., Hong T.P., Vo B., An efficient method for mining non-redundant

sequential rules using attributed prefix-trees. Eng. Appl. of AI, 32, pp.88-99 (2014)

[81]. Qardaji W.H., Yang W., Li N., Understanding Hierarchical Methods for Differentially

Private Histograms. PVLDB, 6(14), pp. 1954-1965 (2013)

[82]. Rajaraman A., Leskovec J., Ullman J., Mining of Massive Datasets. Stanford University

(2014)

[83]. Rehioui H., Idrissi A., Abourezq M., Zegrari F., DENCLUE-IM: A New Approach for Big

Data Clustering. NT/SEIT, pp. 560-567 (2016)

[84]. Ren Y., Tomko M., Salim F.D., Ong K., Sanderson M., Analyzing Web behavior in indoor

retail spaces. JASIST, 68(1), pp. 62-76 (2017)

References 106

[85]. Riid A., Preden J.S., Design of Fuzzy Rule-based Classifiers through Granulation and

Consolidation. JAISCR, 7(2), pp. 137-147 (2017)

[86]. Sánchez F., Cabarcas F., Ramirez A., Valero M., Long DNA Sequence Comparison on Multi-

core Architectures. Euro-Par, 2, pp. 247-259 (2010)

[87]. Schlegel B., Karnagel T., Kiefer T., Lehner W., Scalable Frequent Itemset Mining on Many-

Core Processors. DaMoN'13, page 3. DOI:10.1145/2485278.2485281 (2013)

[88]. Schönbach C., Verma C., Bond P.J., Ranganathan S., Bioinformatics and systems biology

research update from the 15th International Conference on Bioinformatics (InCoB2016).

BMC Bioinformatics, 17(S-19), pp. 87-90 (2016)

[89]. Scott M.L., Transactional Memory Today. SIGACT News, 46(2), pp. 96-104 (2015)

[90]. Serban I.V., Sordoni A., Bengio Y., Courville A.C., Pineau J., Building End-To-End Dialogue

Systems Using Generative Hierarchical Neural Network Models. AAAI, pp. 3776-3784

(2016)

[91]. Sheikh F., Karthick S., Malathi D., Sudarsan J.S., Arun C., Analysis of Data Mining

Techniques for Weather Prediction. Indian Journal of Science and Technology, 9(38). DOI:

10.17485/ijst/2016/v9i38/101962 (2016)

[92]. Slimani T., Lazzez A., Sequential Mining: Patterns and Algorithms Analysis. Corr

abs/International Journal of Computer and Electronics Research, 2(5), pp. 639-647 (2013)

[93]. Song S., Lu Y., Decision tree methods: applications for classification and prediction.

Shanghai Archives of Psychiatry, 27(2), pp. 130-135 (2015)

[94]. Solihin Y., Fundamentals of Parallel Computer Architecture. Chapman and Hall/CRC, ISBN

9781482211184 - CAT# K21675 (2015)

[95]. Sordoni A., Galley M., Auli M., Brockett C., Ji Y., Mitchell M., Nie J.Y., Gao J., Dolan B.,

A Neural Network Approach to Context-Sensitive Generation of Conversational Responses.

HLT-NAACL, pp. 196-205 (2015)

[96]. Srikant R., Agrawal R., Mining Sequential Patterns: Generalizations and Performance

Improvements. EDBT’96, pp. 3-17 (1996)

[97]. Srikantaiah K.C., Kumar N.K., Venugopal K.R., Patnaik L.M., Web caching and prefetching

with cyclic model analysis of web object sequences. I. J. Knowledge and Web Intelligence,

5(1), pp. 76-103 (2014)

[98]. Su Y., Shi F., Talpur S., Wang Y., Hu S., Wei J., Achieving self-aware parallelism in stream

programs. Cluster Computing, 18(2), pp. 949-962 (2015)

[99]. Taheri S., Mammadov M.A., Structure learning of Bayesian Networks using global

optimization with applications in data classification. Optimization Letters, 9(5), pp. 931-948

(2015)

[100]. Talukder N., Zaki M.J., Parallel graph mining with dynamic load balancing. BigData, pp.

3352-3359 (2016)

References 107

[101]. Tran M.T., Le B., Vo B., Combination of Dynamic Bit Vectors and Transaction Information

for Mining Frequent Closed Sequences Efficiently. Eng. Appl. of AI, 38, pp. 183-189 (2015)

[102]. Tung A.K.H., Lu H., Han J., Feng L., Efficient mining of Inter-transaction association rules.

IEEE Trans. Knowl. Data Eng., 15(1), pp. 43-56 (2003)

[103]. Tzenakis G., Papatriantafyllou A., Kesapides J., Pratikakis P., Vandierendonck H.,

Nikolopoulos D.S., BDDT: block-level dynamic dependence analysis for deterministic task-

based parallelism. PPOPP, pp. 301-302 (2012)

[104]. Vajda A., Multi-core and Many-core Processor Architectures. Programming Many-Core

Chips, pp. 9-43 (2011)

[105]. Van T.T., Vo B., Le B., IMSR_PreTree: An Improved Algorithm for Mining Sequential Rules

based on The Prefix-Tree. Vietnam J. Computer Science, 1(2), pp. 97-105 (2014)

[106]. Vo B., Tran M.T., Hong T.P., Nguyen H., Le B., A dynamic bit-vector approach for efficiently

mining inter-sequence patterns. IBICA’12, pp. 51-56 (2012a)

[107]. Vo B., Hong T.P., Le B., DBV-Miner: A dynamic bit-vector approach for fast mining frequent

closed itemsets. Expert Syst. Appl., 39(8), pp. 7196-7206 (2012b)

[108]. Wang W., Yang J., Muntz R., STING: A Statistical Information Grid Approach to Spatial

Data Mining. VLDB’97, pp. 186-195 (1997)

[109]. Wang J., Han J., BIDE: Efficient Mining of Frequent Closed Sequences. ICDE '04, pp. 79-90

(2004)

[110]. Wang W., Yang J., Mining Sequential Patterns from Large Data Sets. Advances in Database

Systems, 28, pp. 1-161 (2005)

[111]. Wang J., Han J., Li C., Frequent closed sequence mining without candidate maintenance.

IEEE Trans. Knowl. Data Eng., 19(8), pp. 1042-1056 (2007)

[112]. Wang P., Liu S., Liu M., Wang Q., Wang J., Zhang C., The Improved DBSCAN Algorithm

Study on Maize Purity Identification. CCTA, 2, pp. 648-656 (2011)

[113]. Wang S., Jiang L., Li C., Adapting naive Bayes tree for text classification. Knowl. Inf. Syst.,

44(1), pp. 77-89 (2015)

[114]. Weitschek E., Fiscon G., Felici G., Supervised DNA Barcodes species classification: analysis,

comparisons and results. BioData Mining, 7:4 (2014)

[115]. Wilkinson B., Parallel Programming Techniques And Applications. Pearson Education,

ISBN-13: 978-0131405639 (2006)

[116]. Wright A.P., Wright A., McCoy A.B., Sittig D.F., The use of sequential pattern mining to

predict next prescribed medications. Journal of Biomedical Informatics, 53, pp. 73-80 (2015)

[117]. Yan X., Han J., Afshar R., CloSpan: Mining Closed Sequential Patterns in Large Datasets.

SDM’03, pp. 166-177 (2003)

[118]. Yan X., Han J., gSpan: Graph-Based Substructure Pattern Mining. ICDM’02, pp. 721-724

(2002)

References 108

[119]. Yu K.M., Wu S.H., An Efficient Load Balancing Multi-Core Frequent Patterns Mining

Algorithm. TrustCom’11, pp. 1408-1412 (2011)

[120]. Yu D., Wu W., Zheng S., Zhu Z., BIDE-Based Parallel Mining of Frequent Closed Sequences

with MapReduce. ICA3PP’12, 7440, pp. 177- 186 (2012)

[121]. Zaki M.J., SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine

Learning, 42(1/2), pp. 31-60 (2001a)

[122]. Zaki M.J., Parallel Sequence Mining on Shared-Memory Machines. J. Parallel Distrib.

Comput., 61(3), pp. 401-426 (2001b)

[123]. Zaki M.J., Ho C.T., Large-Scale Parallel Data Mining (Lecture Notes in Computer Science).

Lecture Notes in Artificial Intelligence, 1759 (2010).

[124]. Zhang T., Ramakrishnan R., Livny M., BIRCH: An Efficient Data Clustering Method for Very

Large Databases. SIGMOD'96, 25(2), pp. 103-114 (1996)

[125]. Zhang S.J., Du Z., Wang J.T.L., New techniques for mining frequent patterns in unordered

trees. IEEE Trans. Cybernetics, 45(6), pp. 1113-1125 (2015)

[126]. Zhao W., Chen J.J., Perskin R., Wang Y., Liu Z., Hong H., Tong W., Zou W., A novel

procedure on next generation sequencing data analysis using text mining algorithm. BMC

Bioinformatics, 17, pp. 17:213 (2016)

[127]. Zhao Y., Network intrusion detection system model based on data mining. SNPD'16, pp. 155-

160 (2016)

[128]. Zhu T., Bai S., A Parallel Mining Algorithm for Closed Sequential Patterns. AINA

Workshops, 1, pp. 392-395 (2007)

[129]. Zou Q., Zeng J.C., Cao L., Jida R., A novel features ranking metric with application to

scalable visual and bioinformatics data classification. Neurocomputing, 173, pp. 346-354

(2016)

	Abstract
	Acknowledgments
	List of Abbreviations
	Annotation
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1. Knowledge discovery process
	1.2. Data Mining
	1.3. Data Mining Tasks
	1.3.1. Clustering
	1.3.2. Summarization
	1.3.3. Association Rules
	1.3.4. Classification
	1.3.5. Trend analysis
	1.3.6. Rule Mining and Evaluation
	1.3.7. Attribute Reduction
	1.3.8. Missing Value Handling
	1.4. Data Mining Applications
	1.5. Motivation
	1.6. Contributions
	1.7. Organization of Thesis
	1.8. Summary

	Chapter 2 Background
	2.1. Preliminaries
	2.2. Sequential pattern mining
	2.2.1. AprioriAll
	2.2.2. GSP
	2.2.3. SPAM
	2.2.4. SPADE
	2.2.5. FreeSpan
	2.2.6. PrefixSpan
	2.2.7. Limitations of sequential pattern mining
	2.3. Frequent closed sequential pattern mining
	2.4. Parallel computing
	2.5. Multi-core processors architecture
	2.6. Parallel programming
	2.7. Task parallel programming
	2.8. Parallel sequential pattern mining
	2.9. Bit vectors
	2.10. Dynamic bit vectors
	2.10.1. Dynamic bit vector data structure
	2.10.2. DBV-Pattern data structure
	2.10.3. DBV-Tree
	2.11. Summary

	Chapter 3 Parallel methods for mining sequential patterns
	3.1. Introduction
	3.2. Parallel Independent Branch PRISM (PIB-PRISM)
	3.2.1. Prime block encoding
	3.2.2. Parallel Independent Branch PRISM
	3.2.3. Experimental results
	3.3. Parallel Dynamic Bit Vector Sequential Pattern Mining (pDBV-SPM)
	3.3.1. Parallel Dynamic Bit Vector Sequential Pattern Mining
	3.3.2. Experimental results
	3.3.3. Runtime
	3.3.4. Memory usage
	3.4. Parallel mining inter-sequence patterns with item constraints
	3.4.1. Inter-sequence pattern mining
	3.4.2. DBV-PatternList data structure
	3.4.3. Mining inter-sequence patterns with item constraints
	3.4.4. Problem statement
	3.4.5. ISP-IC algorithm
	3.4.6. An illustrative example
	3.4.7. iISP-IC algorithm
	3.4.8. piISP-IC: a parallel version of iISP-IC algorithm
	3.4.9. Experimental results
	3.4.9.1. Runtime
	3.4.9.2. Memory usage
	3.5. Summary

	Chapter 4 Parallel mining frequent closed sequential patterns
	4.1. Introduction
	4.2. Parallel mining frequent closed sequential patterns
	4.3. Experimental results
	4.3.1. Runtime
	4.3.2. Memory usage
	4.3.3. Scalability
	4.4. Summary

	Chapter 5 Conclusions and Future works
	5.1. Conclusion
	5.2. Future works
	5.3. Publications

	References

