1,469 research outputs found

    A genetic algorithm coupled with tree-based pruning for mining closed association rules

    Get PDF
    Due to the voluminous amount of itemsets that are generated, the association rules extracted from these itemsets contain redundancy, and designing an effective approach to address this issue is of paramount importance. Although multiple algorithms were proposed in recent years for mining closed association rules most of them underperform in terms of run time or memory. Another issue that remains challenging is the nature of the dataset. While some of the existing algorithms perform well on dense datasets others perform well on sparse datasets. This paper aims to handle these drawbacks by using a genetic algorithm for mining closed association rules. Recent studies have shown that genetic algorithms perform better than conventional algorithms due to their bitwise operations of crossover and mutation. Bitwise operations are predominantly faster than conventional approaches and bits consume lesser memory thereby improving the overall performance of the algorithm. To address the redundancy in the mined association rules a tree-based pruning algorithm has been designed here. This works on the principle of minimal antecedent and maximal consequent. Experiments have shown that the proposed approach works well on both dense and sparse datasets while surpassing existing techniques with regard to run time and memory

    Frequent itemset mining on multiprocessor systems

    Get PDF
    Frequent itemset mining is an important building block in many data mining applications like market basket analysis, recommendation, web-mining, fraud detection, and gene expression analysis. In many of them, the datasets being mined can easily grow up to hundreds of gigabytes or even terabytes of data. Hence, efficient algorithms are required to process such large amounts of data. In recent years, there have been many frequent-itemset mining algorithms proposed, which however (1) often have high memory requirements and (2) do not exploit the large degrees of parallelism provided by modern multiprocessor systems. The high memory requirements arise mainly from inefficient data structures that have only been shown to be sufficient for small datasets. For large datasets, however, the use of these data structures force the algorithms to go out-of-core, i.e., they have to access secondary memory, which leads to serious performance degradations. Exploiting available parallelism is further required to mine large datasets because the serial performance of processors almost stopped increasing. Algorithms should therefore exploit the large number of available threads and also the other kinds of parallelism (e.g., vector instruction sets) besides thread-level parallelism. In this work, we tackle the high memory requirements of frequent itemset mining twofold: we (1) compress the datasets being mined because they must be kept in main memory during several mining invocations and (2) improve existing mining algorithms with memory-efficient data structures. For compressing the datasets, we employ efficient encodings that show a good compression performance on a wide variety of realistic datasets, i.e., the size of the datasets is reduced by up to 6.4x. The encodings can further be applied directly while loading the dataset from disk or network. Since encoding and decoding is repeatedly required for loading and mining the datasets, we reduce its costs by providing parallel encodings that achieve high throughputs for both tasks. For a memory-efficient representation of the mining algorithms’ intermediate data, we propose compact data structures and even employ explicit compression. Both methods together reduce the intermediate data’s size by up to 25x. The smaller memory requirements avoid or delay expensive out-of-core computation when large datasets are mined. For coping with the high parallelism provided by current multiprocessor systems, we identify the performance hot spots and scalability issues of existing frequent-itemset mining algorithms. The hot spots, which form basic building blocks of these algorithms, cover (1) counting the frequency of fixed-length strings, (2) building prefix trees, (3) compressing integer values, and (4) intersecting lists of sorted integer values or bitmaps. For all of them, we discuss how to exploit available parallelism and provide scalable solutions. Furthermore, almost all components of the mining algorithms must be parallelized to keep the sequential fraction of the algorithms as small as possible. We integrate the parallelized building blocks and components into three well-known mining algorithms and further analyze the impact of certain existing optimizations. Our algorithms are already single-threaded often up an order of magnitude faster than existing highly optimized algorithms and further scale almost linear on a large 32-core multiprocessor system. Although our optimizations are intended for frequent-itemset mining algorithms, they can be applied with only minor changes to algorithms that are used for mining of other types of itemsets

    Efficient k-NN search on vertically decomposed data

    Get PDF
    Applications like multimedia retrieval require efficient support for similarity search on large data collections. Yet, nearest neighbor search is a difficult problem in high dimensional spaces, rendering efficient applications hard to realize: index structures degrade rapidly with increasing dimensionality, while sequential search is not an attractive solution for repositories with millions of objects. This paper approaches the problem from a different angle. A solution is sought in an unconventional storage scheme, that opens up a new range of techniques for processing k-NN queries, especially suited for high dimensional spaces. The suggested (physical) database design accommodates well a novel variant of branch-and-bound search, t

    Data distribution and performance optimization models for parallel data mining

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013.Thesis (Ph. D.) -- Bilkent University, 2013.Includes bibliographical references leaves 117-128.We have embarked upon a multitude of approaches to improve the efficiency of selected fundamental tasks in data mining. The present thesis is concerned with improving the efficiency of parallel processing methods for large amounts of data. We have devised new parallel frequent itemset mining algorithms that work on both sparse and dense datasets, and 1-D and 2-D parallel algorithms for the all-pairs similarity problem. Two new parallel frequent itemset mining (FIM) algorithms named NoClique and NoClique2 parallelize our sequential vertical frequent itemset mining algorithm named bitdrill, and uses a method based on graph partitioning by vertex separator (GPVS) to distribute and selectively replicate items. The method operates on a graph where vertices correspond to frequent items and edges correspond to frequent itemsets of size two. We show that partitioning this graph by a vertex separator is sufficient to decide a distribution of the items such that the sub-databases determined by the item distribution can be mined independently. This distribution entails an amount of data replication, which may be reduced by setting appropriate weights to vertices. The data distribution scheme is used in the design of two new parallel frequent itemset mining algorithms. Both algorithms replicate the items that correspond to the separator. NoClique replicates the work induced by the separator and NoClique2 computes the same work collectively. Computational load balancing and minimization of redundant or collective work may be achieved by assigning appropriate load estimates to vertices. The performance is compared to another parallelization that replicates all items, and ParDCI algorithm. We introduce another parallel FIM method using a variation of item distribution with selective item replication. We extend the GPVS model for parallel FIM we have proposed earlier, by relaxing the condition of independent mining. Instead of finding independently mined item sets, we may minimize the amount of communication and partition the candidates in a fine-grained manner. We introduce a hypergraph partitioning model of the parallel computation where vertices correspond to candidates and hyperedges correspond to items. A load estimate is assigned to each candidate with vertex weights, and item frequencies are given as hyperedge weights. The model is shown to minimize data replication and balance load accurately. We also introduce a re-partitioning model since we can generate only so many levels of candidates at once, using fixed vertices to model previous item distribution/replication. Experiments show that we improve over the higher load imbalance of NoClique2 algorithm for the same problem instances at the cost of additional parallel overhead. For the all-pairs similarity problem, we extend recent efficient sequential algorithms to a parallel setting, and obtain document-wise and term-wise parallelizations of a fast sequential algorithm, as well as an elegant combination of two algorithms that yield a 2-D distribution of the data. Two effective algorithmic optimizations for the term-wise case are reported that make the term-wise parallelization feasible. These optimizations exploit local pruning and block processing of a number of vectors, in order to decrease communication costs, the number of candidates, and communication/computation imbalance. The correctness of local pruning is proven. Also, a recursive term-wise parallelization is introduced. The performance of the algorithms are shown to be favorable in extensive experiments, as well as the utility of two major optimizations.Özkural, ErayPh.D

    SCALABLE FREQUENT ITEMSET MINING USING HETEROGENEOUS COMPUTING: PARAPRIORI ALGORITHM

    Get PDF
    ABSTRACT Association Rule mining is one of the dominant tasks of data mining, which concerns in finding frequen

    Parallel Methods for Mining Frequent Sequential patterns

    Get PDF
    The explosive growth of data and the rapid progress of technology have led to a huge amount of data that is collected every day. In that data volume contains much valuable information. Data mining is the emerging field of applying statistical and artificial intelligence techniques to the problem of finding novel, useful and non-trivial patterns from large databases. It is the task of discovering interesting patterns from large amounts of data. This is achieved by determining both implicit and explicit unidentified patterns in data that can direct the process of decision making. There are many data mining tasks, such as classification, clustering, association rule mining and sequential pattern mining. In that, sequential pattern mining is an important problem in data mining. It provides an effective way to analyze the sequence data. The goal of sequential pattern mining is to discover interesting, unexpected and useful patterns from sequence databases. This task is used in many wide applications such as financial data analysis of banks, retail industry, customer shopping history, goods transportation, consumption and services, telecommunication industry, biological data analysis, scientific applications, network intrusion detection, scientific research, etc. Different types of sequential pattern mining can be performed, they are sequential patterns, maximal sequential patterns, closed sequences, constraint based and time interval based sequential patterns. Sequential pattern mining refers to the identification of frequent subsequences in sequence databases as patterns. In the last two decades, researchers have proposed many techniques and algorithms for extracting the frequent sequential patterns, in which the downward closure property plays a fundamental role. Sequential pattern is a sequence of itemsets that frequently occur in a specific order, where all items in the same itemsets are supposed to have the same transaction time value. One of the challenges for sequential pattern mining is the computational costs beside that is the potentially huge number of extracted patterns. In this thesis, we present an overview of the work done for sequential pattern mining and develop parallel methods for mining frequent sequential patterns in sequence databases that can tackle emerging data processing workloads while coping with larger and larger scales.The explosive growth of data and the rapid progress of technology have led to a huge amount of data that is collected every day. In that data volume contains much valuable information. Data mining is the emerging field of applying statistical and artificial intelligence techniques to the problem of finding novel, useful and non-trivial patterns from large databases. It is the task of discovering interesting patterns from large amounts of data. This is achieved by determining both implicit and explicit unidentified patterns in data that can direct the process of decision making. There are many data mining tasks, such as classification, clustering, association rule mining and sequential pattern mining. In that, sequential pattern mining is an important problem in data mining. It provides an effective way to analyze the sequence data. The goal of sequential pattern mining is to discover interesting, unexpected and useful patterns from sequence databases. This task is used in many wide applications such as financial data analysis of banks, retail industry, customer shopping history, goods transportation, consumption and services, telecommunication industry, biological data analysis, scientific applications, network intrusion detection, scientific research, etc. Different types of sequential pattern mining can be performed, they are sequential patterns, maximal sequential patterns, closed sequences, constraint based and time interval based sequential patterns. Sequential pattern mining refers to the identification of frequent subsequences in sequence databases as patterns. In the last two decades, researchers have proposed many techniques and algorithms for extracting the frequent sequential patterns, in which the downward closure property plays a fundamental role. Sequential pattern is a sequence of itemsets that frequently occur in a specific order, where all items in the same itemsets are supposed to have the same transaction time value. One of the challenges for sequential pattern mining is the computational costs beside that is the potentially huge number of extracted patterns. In this thesis, we present an overview of the work done for sequential pattern mining and develop parallel methods for mining frequent sequential patterns in sequence databases that can tackle emerging data processing workloads while coping with larger and larger scales.460 - Katedra informatikyvyhově
    corecore