
International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

DOI:10.5121/ijdps.2014.5502 13

SCALABLE FREQUENT ITEMSET MINING USING
HETEROGENEOUS COMPUTING: PARAPRIORI

ALGORITHM

V. B. Nikam and B. B. Meshram

Department of Computer Engineering

Veermata Jijabai Technological Institute, Matunga, Mumbai, India

ABSTRACT

Association Rule mining is one of the dominant tasks of data mining, which concerns in finding frequent
itemsets in large volumes of data in order to produce summarized models of mined rules. These models are
extended to generate association rules in various applications such as e-commerce, bio-informatics,
associations between image contents and non image features, analysis of effectiveness of sales and retail
industry, etc. In the vast increasing databases, the major challenge is the frequent itemsets mining in a
very short period of time. In the case of increasing data, the time taken to process the data should be
almost constant. Since high performance computing has many processors, and many cores, consistent run-
time performance for such very large databases on association rules mining is achieved. We, therefore,
must rely on high performance parallel and/or distributed computing. In literature survey, we have studied
the sequential Apriori algorithms and identified the fundamental problems in sequential environment and
parallel environment. In our proposed ParApriori, we have proposed parallel algorithm for GPGPU, and
we have also done the results analysis of our GPU parallel algorithm. We find that proposed algorithm
improved the computing time, consistency in performance over the increasing load. The empirical analysis
of the algorithm also shows that efficiency and scalability is verified over the series of datasets
experimented on many core GPU platform.

KEYWORDS

Association Rules Mining, Frequent Itemsets Mining, Scalability, Parallel Data Mining, GPU Computing

1. INTRODUCTION

The exponential growth of technology used in social, business, and scientific domain, database
sizes has made difficult to interpret meanings out of generated data. In this process, data mining
plays vital role in automatically extracting useful and hidden information from such large
databases [22]. Agrawal et. al.[12] first presented association rules mining for finding frequent
itemsets on market basket analysis. The performance for generating frequent itemsets will
subsequently decrease, or to compensate with the performance, candidate set need to reduce by
making use of sampling, pruning techniques, which may affect to accuracy of the results due to
reduction in the training data sets.

The promise of Data Mining is that it delivers technology that will enable the development of
new breed of decision support application; however the delivery performance will be a bottleneck
unless we prefer parallel computing. The major factors will influence the parallel mining of
Association Rules are; Availability of very large data sets, Memory limitations of sequential
computers, Since databases to be mined are often measured in gigabytes and even in terabytes,
parallel algorithms [14] would be required. For data intensive applications, rather than going for

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

14

traditional shared nothing architecture; Cloud, General Purpose computation on Graphics
Processing Units, the inexpensive that giving largest computing power per dollar and highly
scalable technologies are widely accepted today. Developing algorithms for GPU computation is
challenging, since the architecture imposes many requirements on the way algorithms work, if the
potential is to be fully utilized. The availability of hundreds of processing units has resulted in
large speed up and high scale-up [2]. It is well known that large speed gains can be obtained by
using a graphics processing unit (GPU) as a massively parallel computing device.

This paper is organized as follows; section2 discusses the detailed literature on Association rule
mining and GPU architecture. The proposed parallel and scalable Aprioiri algorithm approach on
General Purpose Graphics Processing Units is discussed in section3, the experimental work on
Graphics Processing Units (GPU) the massively parallel processing engines and result analysis
are discussed in section4. In section5 we concluded our work of implementing the scalability
aspects of parApriori algorithm.

2. LITERATURE SURVEY

In the association rule mining algorithms, the analysis is to be done on the candidates, which are
computationally very large. To accommodate the candidates for the computations, sampling is
preferred so far, but it may affect on accuracy. There are algorithms suggested without generating
candidate set also, but still has to compromise with the computing efficiency. Sharing the many
processor’s compute capability could be the efficient solution. Considering the many issues, it is
found that Apriori seems to be more convenient for parallelism.

Key Definitions:

Itemset: A collection of one or more items i used in transactions T of a database D, e.g. {Milk,
Bread, Diaper}, An item set that contains ‘k’ items, called as k-itemset.

 T = { i1, i1, i1, i1…. }, T D.

Frequent Itemsets: The sets of item which occurs above minimum predefined cut-off. This
minimum cut-off is called as minimum support threshold ‘σ’. Frequent item set is denoted by Li
for ith -Itemset.

Frequent Itemset : support of itemsets is equal or higher than predefined minsup threshold.
Candidate Itemsets: The itemsets, Ck for kth itemset, which are required to find out frequent
itemsets, called candidate itemsets. The candidate itemsets includes all the items of the
transactions. This can be generated using Lk-1 joining with itself.

Support count (): Frequency of occurrence of an itemset defined by the user to find frequent
itemsets. e.g. ({Milk, Bread, Diaper}) = 2.

Support: Fraction of transactions that contain an itemset, e.g. s ({Milk, Bread, Diaper}) = 2/5.

2.1. Sequential Apriori Algorithm

In association rules mining, we focus for the Apriori algorithm. Our proposed parallel algorithm
is built on top of the sequential Apriori, association rules mining algorithm [20]. The generic
Pseudo code of the Apriori algorithm is discussed in Figure1.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

15

Figure 1.Pseudo Code for Apriori Algorithm

Algorithm : Apriori Algorithm
Input: Transaction Database, D; Item T, Minimum Support Smin
Output: Frequent Item sets, F
Cj: candidate item sets of size j, Fj: frequent item sets of size j.

Apriori (D, T, Smin)
begin

k := 1;
Ck := i}};
Fk := prune (Ek, T, Smin)
While Fk do begin

Ck+1 := candidate (Fk)
Fk+1 := prune (Ck+1, T, Smin)
k := k+1;

End
Return

End

// Apriori algorithm

// initialize the item set size
// start with single Candidate
// determine whether item is frequent?
// repeat till the frequent item sets available
//create candidate with 1 item more
// determine whether frequent item sets

// increment the item counter

// return the frequent item sets

During iteration k of the algorithm, a set of candidate k-itemsets is generated. The database is then
scanned and the support for each candidate is found. Only the frequent k-itemsets are retained for
future iterations, and are used to generate a candidate set for the next iteration. A pruning step
eliminates all candidate sets which has an infrequent subset. This iterative process is repeated,
until there are no more frequent k-itemsets to be found. In Figure 1, Lk denotes the set of frequent
k-itemsets, and Ck the set of candidate k-itemsets. There are two main steps in this algorithm,

1. Candidate itemset generation and
2. Support counting.

2.1.1. Candidate Itemset Generation

In candidate itemsets generation, the candidates Ck for the k-th pass are generated by joining Lk−1
with itself, which can be expressed as

Ck = { x| x[1:k − 2] = A[1:k − 2] = B[1:k − 2], x[k − 1] = A[k − 1], x[k] = B[k − 1],
 A[k − 1] < B[k − 1], where A,B Lk−1 }

Where x[a:b] denotes items at index a through b in itemset x. Before inserting x into Ck we test
whether all (k−1)-subsets of x are frequent. If there is at least ‘one’ subset that is not frequent the
candidate can be pruned. Collecting the frequent item sets of size k in set Lk has drawbacks, i.e. a
frequent item set of size k+1 can be formed in j = k(k + 1)/2 possible ways. A core problem is
that an item set of size ‘k’ can be generated in ‘k!’ different ways. As a consequence, the
candidate generation step may carry out a lot of redundant work, since it suffices to generate each
candidate item set once. Can we reduce or even eliminate this redundant work? and this is the
computational challenge !

Support Counting: To count the support of candidate k-itemsets, for each transaction T in the
database, we conceptually form all k-subsets of T in lexicographical order. For each subset we
then traverse the ordered dataset and look for a matching candidate, and update its count.

Support (item i) =
tuples containing item 'i'

Total number of tuples in a transactional database 'D'
.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

16

It means support, s, is the probability that a transaction contains {i}.

2.1.2. Rule generation

The second phase is to generate rules from frequent item sets. Generating rules is much less
expensive than discovering frequent itemsets, as it does not require examination of data.
Given the frequent keyword set l, rule generation examines each non empty subset ‘a’, and
generates rule

r (l-a) on support(l), for Confidence =
sup po rt (l)

sup po rt (a)

2.2. Related Work in Sequential Environment

In general, much of the work in frequent itemset mining algorithm development is focused on
serial algorithms. Three of the best-known frequent itemset mining algorithms are Apriori [5],[6],
Eclat [7] and FP-Growth [8]. Apriori, 1. Iteratively generate k+1-sized candidate generation, 2.
After generating each new set of candidates, the algorithm scans the transaction database to count
the number of occurrences of each candidate. This step is called support counting.

The primary difference between Apriori and Eclat is the way they represent candidate and
transaction data; and the order that they scan the tree structure that stores the candidates. FP-
Growth is the most recently-developed algorithm; the main difference from the previous two
approaches is that FP-Growth doesn’t generate candidate sets iteratively. Though FP-Growth is
faster than Apriori and Eclat, for high support threshold, Apriori outperforms FP-Growth[9].
Among the few out performed implementations, Ferec Bodon implemented Apriori using trie-
based data structure and candidate hashing [10], Christian Borgelt implemented Apriori in his
work [11] using recursion pruning, Bart Goethals implemented Apriori based on Agrawal’s
algorithm [6] Comparison between those implementations can be found in Bodon’s work[15].
Bodon presented[19] faster implementations for frequent itemsets mining problem. These
implementations are the racing for the performance in sequential algorithm, and preferably
chosen Apriori algorithm for the research on frequent itemset mining.

2.3. Fundamental Problems in Apriori algorithm

Apriori is processed for the tasks of, frequent itemset generation and association rules findings.
The major and performance crunching task is frequent itemset generation, because of the large
itemset generations. Frequent itemset generation is the performance bottleneck. The Apriori
algorithm uses frequent (k – 1)-itemsets to generate candidate frequent k-itemsets. This uses
repeated database scan and pattern matching for support findings in the candidate itemsets. For
the 104 items datasets, in the worst scenario there could be 104 frequent 1-itemset will be
generated, which further may generate 107 candidate 2-itemsets, and so on till there are no
frequent itemsets remained from the candidate set. It needs to generate 2100 1030 candidates for
100, viz {a1, a2, …, a100 } item size frequent pattern. In addition, this candidate generation takes
multiple scans; for ‘n’ length datasets, it takes (n +1) scans.

Apriori has been observed for the inefficient and more I/O, also produces much more useless
candidates. To improve Apriori’s efficiency, the methodologies already discussed are,
Transaction reduction, Partitioning, Sampling, Dynamic itemset counting, Hash-based itemset
counting, Mine the rules without Generating Candidate sets, Increase of minimum support.
These methods can be implemented by reducing database size at each iteration, prune useless
candidates in advance, making use of efficient data structure, generate frequent itemsets without
candidate generations, etc. Using these means the Apriori’s efficiency is improved using Eclat,

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

17

Frequent-Pattern Growth, COFI tree(faster FP-Growth). However, these are improvements are
focused to sequential developments of the algorithms to improve the efficiency.

2.4. Related work in Parallel Environment

Bodon’s implementation for parallel computing is revised by Yanbin, et. Al [12] keeping the data
storage methodology and algorithm same. The performance is achieved by implementing a
disjoint partitioning of datasets on symmetric multiprocessing computer. They proved partitioning
a transaction database and fitting each partition into limited main memory for quick access and
allowing incremental generation of frequent itemsets improves the performance of frequent
itemsets mining. Puttegowda D, et. Al[13] used shared-nothing architecture where MPI are used
as the communication primitives. Data is evenly, 1/N partition, distributed on the disks attached
to the processors, they used data level parallelism. Each processor Pi receives a 1/N part of the
database, processor Pi performs a pass over data partition Di, develops local support count for
candidates in Ck. Each processor Pi now computes Lk from Ck, and makes the decision to
terminate or continue to next pass. Parthasarathy et al[15] addressed the Hash Tree structure for
data storage and load balancing. They have parallelized the Hash tree on shared memory
architecture for association rule mining. Rasmus Resen et al[16] chosen GPU for achieving
parallelism and addressed the data partitioning layout for each thread to compute with. They have
proved suggested data layout as a best partitioning for set intersection problems. George Teodoro
el al,[17] proposed tree projection-based frequent itemset mining algorithm. They further
extended for parallelization opportunities of the algorithm to shared-memory multi-core, and the
GPU environments. Distributed Data Mining (DDM)[3][4][21] works on partitioning the data,
applying the data mining algorithms to each local subset on processor and then combining the
local knowledge discovered by the algorithms into a global knowledge. But such global
knowledge is usually less accurate as the number of subsets increases [19].

2.5. GPGPU as Parallel Platform

Recent developments of GPGPU have made low cost high performance and scalable computing
for any applications. In addition, GPGPU supported programming models better exploit the
parallel power of the many core GPU architectures. Present Data mining tools are not able to
meet the requirement of large-scale databases in terms of speed and scalability. GPU technology
is the extensive scalable platform to deploy the data mining algorithms.

Due to the inherent parallelism of GPU many core architecture, it has become possible to
program GPU processors directly, as massively parallel processors. GPU computation is highly
scalable, inexpensive and high performance per dollar. Combining CPU with the GPU massively
parallelism as abstracted in 0 helps to scale up the algorithms for knowledge discovery by
applying the data mining algorithm on the entire dataset.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

18

Figure 2.CPU+GPU Scalable and Parallel Architecture

The GPU architectfure has Streaming Multiprocessors, which has many blocks. Each block has
multiple threads. All these threads executes on concurrent parallelism. We target for the GPU
implementation for Apriori Algorithm to implement the scalability of the algorithm. 0, explores
the CUDA memory hierarchy, which helps to exploit the parallelism on large datasets. The data
access on device memory, global memory, texture memory, and constant memory varies the
performance of the algorithm. Also, CUDA environment gives flexibility to share combined
memory, offers very less communication overheads.

 Figure 3.NVIDIA GPU - Memory Hierarchy

The maximum possible threads to be active for parallel execution can be computed by occupancy
formula as given below.

I/O HUB (PCIe Channel)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

19

blocks per SM threads per block
Occupancy

maximum threads per SM

Where SM is the acronym used for Stream Multiprocessors in GPU architecture.

CUDA threads are Lightweight and Fast switching, 1000s execute simultaneously. All threads
execute the same code, each thread has an ID, Threads are grouped into blocks, Blocks are
grouped into a grid and A kernel is executed as a grid of blocks of threads.

3. PROPOSED PARALLEL APRIORI ALGORITHM : ParApriori

Given m items, there are potentially 2m frequent item sets; however, only a small fraction of the
whole space of itemsets is frequent. Discovering the frequent item sets requires a lot of
computation power, memory and I/O, which can only be provided by parallel environments [15].

3.1. Data Representation for Parallel Apriori Algorithm

Apriori algorithm assumes that candidate sets to be in memory, which can be expensive when the
candidate set is very large. Concerning speedup, memory optimized usage and sensitivity of
parameters, the data structure to accommodate the complete transactional data, and search
efficiency, the researchers [23] has suggested Trie, Hash Tree. However tree structure is not
convenient as compared to the transactional data; as transactional dataset is always the best
candidate to parallelize the transactions.

Horizontal Representation: The most straight forward way to store transactions is to store a list of
items that comprise each transaction, shown in Figure 4 : 0(a). This is called the horizontal
representation.

Vertical Representation: Stores the list of the transactions ids corresponding to items, shown in
Figure 4 : 0(b). The vertical representation has been referred by variants of Apriori algorithms.
Experimental results show that the vertical representations usually can speed up the algorithm by
one order of magnitude on most of the test dataset. This approach is referred to as a “Tidset”. This
method of candidate generation is called Equivalent-Class clustering [24]. This vertical data
structure is diffset. Zaki and Gouda[7] first introduced diffset to reduce the memory requirement
of the vertical tidset representation. It speeds up candidate generation by avoiding the slow O(n2)
complete join[25].

BitMap Representaion: The transaction list can also be represented as a bit corresponds to the
transactions and item id, as shown in Figure 4 : 0(c)., which we can refer as a “bitset”. When the
candidates are represented as bitsets, it takes comparatively less memory space than horizontal
and vertical representations, as it takes only Byte per item for representation. However, this could
be best effective if the matrix is dense.

Tid↓ Items ->
1 A D E
2 A B
3 C D E
4 A B D E
Figure 4 : 0(a) Horizontal Representation

 Items -> A B C D E
 1 2 3 1 1
 2 4 3 3
 4 4 4
Figure 4 : 0(b) Vertical Representation

(Tidset representation)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

20

↓Tid \ Items → A B C D E
1 1 0 0 1 1
2 1 1 0 0 0
3 0 0 1 1 1
4 1 1 0 1 1
Figure 4 : (c) Bitmap Representation

Figure 4 : Data Representations Techniques used for Apriori Processing

As shown in 0(b), Tidsets are stored as linear ordered arrays, and when traversing them during the
support counting operation, the resultant memory access pattern and instruction stream branching
behavior is unpredictable and leads to poor performance on the GPU. The Tidset representation is
compact but join operations on tidsets are highly data dependent and difficult to parallelize. On
the other hand, the bitset representation, as shown in 0(c), requires comparatively less memory
space and also it is more suitable for designing a parallel set join operation, which is better suited
for GPU. Joining two bit-represented transaction lists can be performed by a “bitwise and”
operation between the two bit vectors. We prefer to use the bitmap representation of the
transactional dataset.

3.2. Parallel and Scalable Apriori Algorithm using GPGPU

For associations rule mining algorithms, reduce the number of scans, promote small size dense
data sources, etc are the solutions to compensate main memory space requirement during
processing. CPU reads the dataset and is taken to CPU memory and then transferred to GPU’s
global memory. The dataset accommodates in the memory; performs k-item frequent itemset on
GPU cores parallel. The memory is reused for every next k+1 item frequent itemset finding, by
optimizing memory usage. The proposed model as shown in 0 aims to find the frequent itemset
for large transactional dataset on many core GPU architecture.

 Figure 5. Scalable model for finding Frequent Itemset on GPU cores.

The model finds itemsets generated from the transactional dataset. The dataset accommodates in
the memory; performs k-item frequent itemset on GPU cores parallel. The memory is reused for
every next k+1 item frequent itemset finding, by optimizing memory usage. When the length of
frequent pattern is long, the number of maximum frequent itemset increases exponentially which
makes the problem computationally difficult. Therefore, here, we have a focus on compute

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

21

efficiency in algorithm design. The pseudo code of the parallel Apriori algorithm for finding
frequent itemsets on GPU is shown in Figure 6:0 below.

Figure 6.Pseudo Code for Parallel Apriori Algorithm

Input: Transaction Database, D; Minimum Support- Smin;
Output :Frequent Item sets, FI

Cj: candidate item set, FI: frequent item sets.
Apriori (D,Smin)

Begin
While (!Eof) do begin

 // Load the Data Set ‘D’ from Disk,
 DatasetBuff = ReadFile(row); Row++;

 // Scan the data set, and find row, columns for the row matrix.
 FindMaxColmn();

 End
//Allocate GPU memory to accommodate this transaction,
 Malloc (Matrix_Size)

 // Create a Matrix for ‘D’ to accommodate the transaction in bit matrix.
 ConvertToBitMatrix();
 // Allocate memory space in GPU; Transform Smin and bitMatrix to GPU
memory
 End

// Call GPU Kernel for finding Frequent Itemset
 GPU_Kernel Begin

ReadItemSet Cm, Cn
 // ANDing the item transactions and finding support for itemset
 SupportCount = Sum(Cm &&Cn)
 If SupportCount < Smin
 prune (Cm,Cn)

 else
 // Add in frequent item sets list.

FI = AddCandidate()
 Kernel End

 Return FI.

As shown in Figure:60, each thread processes one row of the bitmap representation. All the
threads perform logical AND on the respective item sets and updates the array. Sum is computed
for every itemset on all transactional records. If computed sum, is the less than the given support
threshold, Pruning is done. The example below, illustrates the working principle of Figure:6
support counting and frequent itemset mining is done on GPU using CUDA environment.

ILLUSTRATIVE EXAMPLE

Let us take a transactional dataset,

Tid Transactions
1 1,2,4,5
2 1,3,5
3 2,4,5
4 3,4,5

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

22

The following is the bit map representation of the transactional dataset shown above.

 ↓ Tid \Candidate -> 1 2 3 4 5
1 1 1 0 1 1
2 1 0 1 0 1
3 0 1 0 1 1
4 0 0 1 1 1

Bitmap representation

Finding support for Item sets:

Candidate->
Tid ↓

1 2 3 4 5 1,
2

1,
3

1,
4

1,
5

2,
3

2,
4

2,
5

3,
4

3,
5

4,
5

1,
5,
2

1
,
5
,
4

1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1
2 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0
3 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0
4 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Support 2 2 2 3 4 1 1 1 2 0 2 2 1 1 2 1 1

Frequent item set computed with GPU Kernel for support threshold (σ) =2 is
 {1,2,3,4,(1,5), (2,4), (2,5), (4,5)}

In this paper, we presented our GPU based method for parallelization of an Apriori algorithm on
CUDA platform. Taking advantage of many cores, we proposed three-step technique to speed up
Apriori algorithm of data mining on the CUDA platform.

1. Scalable thread scheduling for logical ANDing scheme for all itemsets
2. Parallel distribution many threads for support counting
3. Parallel implementation of pruning based on threshold for finding FI

This method avoids using sampling of data sets to compute frequent itemsets. In case of difficulty
in occupation of the dataset in, we may proceed to horizontal partitioning of the dataset and
partial support can be computed which can be further merged to compute total support.

4. EXPERIMENTAL WORK AND RESULT ANALYSIS

The algorithm assumes the many core GPGPU and CUDA environment for execution of the
Apriori algorithm. BARC’s supercomputing computing facility and features of NVIDIA GPU
Fermi architecture we have used for experiment. Our work is experimented on the ANUPAM-
adhya 1U Rack mount server class machine with configuration CPU 6-Core, 2.93GHz, Dual
Intel Xeon Processors, 48GB RAM, Two NVIDIA TeslaC2050 Fermi GPUs, and Scientific
Linux5.5 GNU with CUDA4.0 toolkit., NVCC compiler & SDK. This work is carried out in at
supercomputing division of BARC, Trombay. Experiments are conducted to verify the
performance of the frequent pattern finding on heterogeneous platform. The languages used are
CUDA-C/C++ on scientific Linux platform. Input data is synthetic dataset generated from IBM
data generator. We have used small, medium and large datasets. The datasets we have used are
the synthetic datasets. The is statistical characteristic of datasets are shown in Table 1.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

23

Table 1 : Data Sets used for experiments: Database properties.

DataSet T I D Total size
T5I2D100K 5 2 100,000 19.3MB
T10.I4.D100K 10 4 100,000 4.3MB
T25I20D100K 25 20 100,000 12.1MB
T25I10D10K 25 10 10,000 1.1MB
T40I10D10K 40 10 100,000 5.08MB
T10I4D1M 10 4 100,000 4.1MB
T40I10D100K 40 10 100,000 15.5MB

Statistical Characteristic of Datasets: T- Avg Trans Len, I- Avg Len of Max Patterns, D-No of
Trans.

Results Graphs

 Figure 7. Item sets generated for DataSet=T10I4D1M for various support.

 Figure 8. Time is nearly constant for Figure 9: Almost Proportionate time taken 0by
increased load (FIM on supp=10%, 20%) varying load on same compute threads

Figure 10: CPU vs GPU time

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

24

 Figure 11: Xfactor speed up Figure 12: Moving of knee point

Figure7 shows that, as the support value (σ) decreases, the data size of an itemsets increases. We
have taken increasing load in terms of increased itemsets by taking small support value, i.e σ
0. Figure8 shows the drastic reduction in time when thread increased from 1 to 32; however
increase of threads from 32 to 448 does not observed reduction in recognizable compute time, it
is almost constant and linear. Figure9 measured speed up on increasing threads for two different
itemsets, computed from 10% and 20% support values. The scale up is almost constant if the
numbers of compute threads involved in computation are same.

We have measured speed up for different datasets as shown in Figure10. It shows that compute
time linearly increased with increase in dataset, however it is almost constant if used parallel
environment, GPU threads. Figure 11 shows that as the compute threads increases speed up
increases. Figure12 shows that if increased data load computed on increasing compute threads
then scale up is almost linear. This linear scale up is achieved on shifting of Knee point by
providing the additional compute threads. This empirical test proves that, compute time remains
almost constant if increasing data size computed with increasing compute threads, hence achieves
scalability.

5. CONCLUSION

In our work, we have designed and implemented parallel apriori to make association rules mining
scalable, efficient, and speedy process. On implementing the sequential Apriori algorithm, it has
been observed that, it is difficult to handle large amount of data for frequent itemset mining with
compute efficiency. It has been found that our ParApriori algorithm has linear scaleup on
increasing load. We observed that Apriori has good performance potential for multi- and many-
core platforms and is the best candidate for parallel implementation. Implementation on many
threaded GPU cores shown reasonable increase in scaleup for Apriori algorithm. Our empirical
analysis shows that ParApriori is an efficient way to parallelize the frequent itemset mining tasks
on heterogeneous computing platform to achieve good scaleup.

ACKNOWLEDGMENTS

The authors of this paper thanks to all the supporters, who has helped directly or indirectly in our
research work. Especially, we are very much thankful to Kislay Bhatt, Senior Scientific officer,
and Mr. Venkat PPK Scientific Officer from Supercomputing Section and Visualization Section
respectively of Computer Division, BARC, for their timely help. We also express thanks to
NVIDIA Pune team, especially Ms Jaya Panvelkar, Mr. Pradeep Gupta, and others, for providing
support to complete our work.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

25

REFERENCES

[1]. V.B.Nikam, B.B.Meshram, “Scalability Model for Data Mining”, ICIMT2010, Dec 28-30, 2010, 978-

1-4244-8882-7/2010, IEEE
[2]. V.B.Nikam, Kiran Joshi, B.B. Meshram, “An Approach for System Scalability for Video on

Demand”, International Conference on Network Infrastructure Management Systems (Interface2011),
Dec16-17, 2011.

[3]. Kargupta, H.Sivakumar, K. “Existential pleasures of distributed data mining”, In Data Mining: Next
Generation Challenges and Future Directions, edited by H. Kargupta, A. Joshi, K. Sivakumar, e Y.
Yesha, MIT/ AAAI Press, 2004.

[4]. Park, B.,Kargupta, H., “Distributed Data Mining: Algorithms, Systems, and Applications”, In The
Handbook of Data Mining, edited by N. Ye, Lawrence Erlbaum Associates, pp: 341-358, 2003.

[5] .R.Agrawal and H.Mannila, “Fast Discovery of Association Rules”, in Advances in Knowledge
Discovery and Data Mining. p. 307-328, 1996.

[6]. R.Agrawal and R.Srikant, “Fast algorithm for mining association rules”, VLDB, p. 487-499, 1994
[7]. M.J.Zaki and K.Gouda, “Fast Vertical Mining Using Diffsets”, Proc. SIGKDD, p. 326-335, 2003.
[8]. J.Han, H.Pei, and Y. Yin., “Mining Frequent Patterns without Candidate Generation”, SIGMOD. ,

2000.
[9]. N.Govindaraju and M. Zaki, “Advances in Frequent Itemset Mining Implementations”, FIMI 2003.
[10]. F.Bodon, “A Trie-based APRIORI Implementation for Mining Frequent Item Sequences”, OSDM,

2005.
[11]. C.Borgelt, “Efficient Implementations of Apriori and Eclat”, Proc.FIMI 2003.
[12]. Yanbin Ye, Chia-Chu Chiang, “A Parallel Apriori Algorithm for Frequent Itemsets Mining”,

Proceedings of the Fourth International Conference on Software Engineering Research, Management
and Applications, SERA'06, Pages 87-94, 2006.

[13]. Putte gowda D, Rajesh Shukala, Deepak N A, “Performance Evaluation of Sequential and Parallel
Mining of Association Rules using Apriori Algorithms”, Int. J. Advanced Networking and
Applications Volume: 02 Issue: 01 Pages: 458-463, 2010.

[14]. R.Agrawal, J.C. Shafer “Parallel Mining of Association Rules” IEEE Transactions on Knowledge and
Data Engineering, Volumes 8,Number 6, PP 962-969, December 1996.

[15]. S.arthasarathy, M. J. Zaki, M. Ogihara, W. Li, “Parallel Data Mining for Association Rules on
Shared-Memory Systems”, Knowledge and Information Systems, v3:p1-29, 2001.

[16]. Rasmus Resen Amossen, Rasmus Pagh, “A New Data Layout For Set Intersection on GPUs”,
Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium,IPDPS'11,
P:698-708,2011.

[17]. George Teodoro, Nathan Mariano, Wagner Meira Jr., Renato Ferreira, “Tree Projection-based
Frequent Itemset Mining on multi-core CPUs and GPUs”, Proceedings of the 22nd International
Symposium on Computer Architecture and High Performance Computing, P:47-54. SBAC-PAD '10,
2010

[18]. NVIDIA, NVIDIA CUDA SDK, 2009.
[19]. Freitas, A.;Lavington, S. H., “Mining very large databases with parallel processing”, Kluwer

Academic Publishers, The Netherlands, 1998.
[20]. William Gropp, Ewing Lusk, “Users Guide for MPICH a portable implementation of MPI Technical

reports ANL-96/6”, Argonne National Laboratory 1996.
[21]. Ana C.M.P.de Paula, Bráulio C.Ávila, Edson Scalabrin, FabrícioEnembreck, “Using Distributed Data

Mining and Distributed Artificial Intelligence for Knowledge Integration”, Proceedings of the 11th
international workshop on Cooperative Information Agents XI, CIA '07, P:89-103, 2007.

[22]. G.Piatetski-Shapiro, “Discovery, Analysis, and Presentation of Strong Rules”, Proceedings of
Knowledge Discovery in Databases, Piatetski-Shapiro, G., editor, AAAI/MIT Press, pp.241-248,
1991

[23]. Ferenc Bodon and L.R´onyai. “Trie: an alternative data structure for data mining algorithms”,
Computers and Mathematics with Applications, 2003.

[24]. M.Zaki and S.Parthasarathy, “New Algorithms for Fast Discovery of Association Rules”, in KDD. p.
283-296, 1997.

[25]. J.Ruoming, Y.Ge, G. Agrawal, “Shared memory parallelization of data mining algorithms:
techniques, programming interface, and performance” IEEE Transactions on Knowledge and Data
Engineering, Vol 17, Issue 1, 2005.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.5, September 2014

26

[26]. R.Agrawal, and R.Srikant, “Quest Synthetic Data Generator”, IBM Almaden Research Center, San
Jose, California,” 2009.

Authors

Valmik B Nikam has done Bachelor of Engineering (Computer Science and
Engineering) from Government College of Engineering Aurangabad, Master of
Engineering (Computer Engineering) from VJTI, Matunga, Mumbai, Maharashtra
state, now pursuing PhD in Computer Department of VJTI. He was faculty at Dr.
Babasaheb Ambedkar Technological University, Lonere. He has 12 years of academic
experience and 5 years of administrative experience as a Head of Department. He has
1 year of industry experience. He has attended many short term training programs and
has been invited for expert lectures in the workshops. Presently he is Associate
Professor at Computer Engineering & Information Technology Department of VJTI,
Matunga, Mumbai. His research interests include Scalability of Data Mining Algorithms, Parallel
Computing, Scalable algorithms, GPU Computing, and Cloud Computing, Data Mining, Data
Warehousing. Mr. Nikam is a member of CSI, ACM, IEEE research organizations, and also a life member
ISTE. He has been felicitated with IBM-DRONA award in 2011.

B.B.Meshram is a Professor and Head of Department of Computer Engineering and
Information Technology, Veermata Jijabai Technological Institute, Matunga,
Mumbai. He is Ph.D. in Computer Engineering. He has been in the academics and
research since 20 years. His current research includes database technologies, data
mining, securities, forensic analysis, video processing, distributed computing. He
has authored over 203 research publications, out of which over 38 publications at
National, 91 publications at international conferences, and more than 71 in
international journals, also he has filed 8 patents. He has given numerous invited
talks at various conferences, workshops, training programs and also served as chair/co-chair for many
conferences/workshops in the area of computer science and engineering. The industry demanded M.Tech
program on Network Infrastructure Management System, and the International conference "Interface" are
his brain childs to interface the industry, academia and researchers. Beyond the researcher, he also runs the
Jeman Educational Society to uplift the needy and deprived students of the society, as a responsibility
towards the society and hence the Nation.

