
DATA DISTRIBUTION AND
PERFORMANCE OPTIMIZATION MODELS

FOR PARALLEL DATA MINING

a dissertation submitted to

the department of computer engineering

and the Graduate School of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Eray Özkural

August, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. H. Altay Güvenir

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Ömer Morgül

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. İsmail Hakkı Toroslu

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Asst. Dr. Ali Aydın Selçuk

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

iii

ABSTRACT

DATA DISTRIBUTION AND PERFORMANCE
OPTIMIZATION MODELS FOR PARALLEL DATA

MINING

Eray Özkural

PhD in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

August, 2013

We have embarked upon a multitude of approaches to improve the efficiency of

selected fundamental tasks in data mining. The present thesis is concerned with

improving the efficiency of parallel processing methods for large amounts of data.

We have devised new parallel frequent itemset mining algorithms that work on

both sparse and dense datasets, and 1-D and 2-D parallel algorithms for the

all-pairs similarity problem.

Two new parallel frequent itemset mining (FIM) algorithms named NoClique

and NoClique2 parallelize our sequential vertical frequent itemset mining algo-

rithm named bitdrill, and uses a method based on graph partitioning by vertex

separator (GPVS) to distribute and selectively replicate items. The method oper-

ates on a graph where vertices correspond to frequent items and edges correspond

to frequent itemsets of size two. We show that partitioning this graph by a ver-

tex separator is sufficient to decide a distribution of the items such that the

sub-databases determined by the item distribution can be mined independently.

This distribution entails an amount of data replication, which may be reduced

by setting appropriate weights to vertices. The data distribution scheme is used

in the design of two new parallel frequent itemset mining algorithms. Both algo-

rithms replicate the items that correspond to the separator. NoClique replicates

the work induced by the separator and NoClique2 computes the same work collec-

tively. Computational load balancing and minimization of redundant or collective

work may be achieved by assigning appropriate load estimates to vertices. The

performance is compared to another parallelization that replicates all items, and

ParDCI algorithm.

iv

v

We introduce another parallel FIM method using a variation of item distri-

bution with selective item replication. We extend the GPVS model for parallel

FIM we have proposed earlier, by relaxing the condition of independent mining.

Instead of finding independently mined item sets, we may minimize the amount of

communication and partition the candidates in a fine-grained manner. We intro-

duce a hypergraph partitioning model of the parallel computation where vertices

correspond to candidates and hyperedges correspond to items. A load estimate is

assigned to each candidate with vertex weights, and item frequencies are given as

hyperedge weights. The model is shown to minimize data replication and balance

load accurately. We also introduce a re-partitioning model since we can generate

only so many levels of candidates at once, using fixed vertices to model previous

item distribution/replication. Experiments show that we improve over the higher

load imbalance of NoClique2 algorithm for the same problem instances at the

cost of additional parallel overhead.

For the all-pairs similarity problem, we extend recent efficient sequential al-

gorithms to a parallel setting, and obtain document-wise and term-wise paral-

lelizations of a fast sequential algorithm, as well as an elegant combination of two

algorithms that yield a 2-D distribution of the data. Two effective algorithmic

optimizations for the term-wise case are reported that make the term-wise paral-

lelization feasible. These optimizations exploit local pruning and block processing

of a number of vectors, in order to decrease communication costs, the number of

candidates, and communication/computation imbalance. The correctness of local

pruning is proven. Also, a recursive term-wise parallelization is introduced. The

performance of the algorithms are shown to be favorable in extensive experiments,

as well as the utility of two major optimizations.

Keywords: parallel data mining, graph partitioning by vertex separator, hyper-

graph partitioning, all pairs similarity, data distribution, data replication.

ÖZET

KOŞUT VERİ MADENCİLİĞİ İÇİN VERİ DAĞITIMI

VE BAŞARIM OPTİMİZASYON MODELLERİ

Eray Özkural

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ağustos, 2013

Seçilmiş temel veri madenciliği görevlerini iyileştirmek için bir çok yaklaşım

üzerinde yoğunlaştık. Şu andaki tez büyük miktardaki veri için paralel işleme

metodlarının iyileştirilmesiyle alakalıdır. Hem seyrek hem yoğun verikümeleri

için yeni koşut veri madenciliği algoritmaları geliştirdik, ve bütün-çiftler benzer-

lik problemi için 1-B ve 2-B koşut algoritmalar önerdik.

NoClique ve NoClique2 adında iki yeni koşut veri madenciliği algoritması bit-

drill adındaki kendi ardışık dikey sık kalemkümesi madenciliği (SKM) algorit-

mamızı koşutlaştırmaktadır, ve düğüm ayracı ile çizge bölümleme (DAÇB) kul-

lanan bir metodla kalemleri dağıtmakta ve seçici biçimde yinelemektedir. Metod

düğümlerin sık kalemlere ve kenarların iki boyutundaki sık kalem kümelerine

karşılık geldiği bir çizge üzerinde çalışmaktadır. Bu çizgenin düğüm ayracının bu-

lunmasının kalem dağıtımı tarafından tespit edilen alt-veritabanlarının bağımsız

biçimde işlenmesi için yeterli olduğunu gösterdik. Bu dağıtım uygun ağırlıkların

düğümlere verilmesiyle minimize edilen bir veri yinelemesine yol açmaktadır.

Veri dağıtımı şeması iki yeni koşut sık kalemkümesi madenciliği algoritmasının

tasarımında kullanılmaktadır. Iki algoritma da ayraca karşılık gelen kalemleri

yineler. NoClique ayracın sebep olduğu işi yineler ve NoClique2 ayni işi kolek-

tif olarak hesaplar. Hesapsal yük dengeleme ve yinelenen yahut kolektif işin

minimizasyonu uygun yük tahminlerinin düğümlere atanmasıyla başarılabilir.

Başarım bütün kalemleri yineleyen başka bir koşutlaştırmayla ve ParDCI algorit-

masıyla kaŗsılaştırılır.

Seçici kalem yinelemeyle kalem dağıtımını kullanan başka bir koşut SKM

algoritması tanıtıyoruz. Daha önce önerdiğimiz koşut SKM için DAÇB mod-

elini, bağımsız madencilik koşulunu gevşetme suretiyle, genişletiyoruz. Bağımsız

vi

vii

keşfedilen kalem kümeleri bulmak yerine, iletişim miktarını minimize edebili-

riz ve adayları ince-gözenekli biçimde bölümleyebiliriz. Koşut hesaplamanın

düğümlerin adaylara ve hiperkenarların kalemlere karşılık geldiği bir hiperçizge

bölümleme modelini öneriyoruz. Her adaya düğüm ağırlıklarıyla bir yük tah-

mini atanır, ve kalem sıklıkları hiperkenar ağırlıkları olarak atanır. Modelin veri

yinelemesini minimize ettiği ve yükleri yüksek kesinlikle dengelediği gösterilir.

Aynı zamanda sadece belli bir sayıda seviyenin adaylarını üretebileceğimiz

için, önceki kalem dağıtımını temsil eden sabit düğümlerin olduğu bir yeniden

bölumleme modeli de tanıtıyoruz. Deneyler NoClique2’nin daha yüksek yük den-

gesizliğine göre aynı problem örnekleri için, ek koşut fazla hesaplama bedeliyle,

hatırı sayılır iyileştirme elde ettiğimizi göstermektedir.

Bütün-çiftler benzerlik problemi için, yakın zamandaki etkin ardışık algorit-

maları koşut çerçeveye genişletiyoruz, ve hızlı bir ardışık algoritmanın vektör-başı

ve boyut-başı koşutlaştırılmalarını, ve aynı zamanda iki algoritmanın 2-B bir algo-

ritma üreten zarif bir birleşimini elde ediyoruz. Boyut-başı durumu için iki etkin

algoritmik optimizasyonun boyut-başı koşutlastırmayı yeterince etkin hale ge-

tirdiği gösterilmektedir. Bu optimizasyonlar iletişim bedellerini, aday sayısını ve

hesaplama/iletişim dengesizliğini azaltmak için yerel budama ve belli bir sayıdaki

vektörun blok işlemesini hedeflemektedir. Yerel budamanın doğruluğu ispatlanır.

Ayrıca, özyinelemeli boyut-başı koşutlaştırma sunulur. Geniş deneylerde, al-

goritmaların başarımının olumlu çıktıgı, ve iki önemli optimizasyonun faydası

gösterilmiştir.

Anahtar sözcükler : koşut veri madenciliği, düğüm ayracı ile çizge bölümleme,

hiperçizge bölümleme, bütün-çiftler benzerlik, veri dağıtımı, veri yineleme.

Acknowledgement

I acknowledge the following contributions of people who helped with my thesis.

Bora Ucar and Cevdet Aykanat came up with the original idea of using graph

partitioning by vertex separator for independent mining. I contributed the No-

Clique algorithm and proved that it would work. I later developed the NoClique2

algorithm in response to reviews. Cevdet Aykanat contributed the hypergraph

based graph partitioning by vertex separator algorithm for NoClique2, which was

critical for the surprisingly well results that we obtained. The hypergraph par-

titioning model of frequent itemset mining was based on Aykanat’s hypergraph

partitioning formulation of graph partitioning by vertex separator problem which

we applied to NoClique2. Part of the experimental tests were carried out at the

TUBITAK ULAKBIM High Performance Computing Center. We thank Clau-

dio Luchesse for making ParDCI available to us. We thank Bart Goethals for

providing the benchmark results of FIMI 2004 experiments. The repartition-

ing model of the hypergraph partitioning approach to frequent itemset mining

problem was contributed by Cevdet Aykanat, Ata Turk and Cevdet Aykanat

contributed the idea that a two-dimensional algorithm could work for frequent

itemset mining, and offered a parallelization based on a mesh network. I later re-

fined that approach to optimize it for non-blocking networks, and also developed

the algorithms for it, including the pruning approach. Ata Turk also provided

the real world datasets for the parallel all pairs algorithm. Ata also contributed

to the theoretical research on that problem, some of which did not make it to the

thesis. Cevdet Aykanat carefully reviewed and guided all theoretical research on

these problems and contributed the performance analysis frameworks for them,

and other miscalleneous bits and pieces that I forgot. Thanks to anonymous re-

viewers for recommending many improvements. Apologies to others who helped

which I may have neglected to mention.

viii

Contents

1 Introduction 1

1.1 Frequent Itemset Mining Problem 4

1.1.1 Problem Definition . 4

1.1.2 Related work and motivation 5

1.2 All Pairs Similarity Problem . 5

2 Background 8

2.1 Frequent Itemset Mining . 8

2.1.1 Frequent itemset mining algorithms 8

2.1.2 Other studies and remarks 13

2.2 All Pairs Similarity . 15

2.2.1 Problem definition . 15

2.2.2 Applications . 16

2.2.3 k-nearest neighbors problem 17

2.2.4 Related sequential algorithms 17

ix

CONTENTS x

2.2.5 Related parallel algorithms 23

3 Parallel Frequent Itemset Mining with Selective Item Replica-

tion 27

3.1 Transaction Database Distribution 27

3.1.1 Optimizing parallel frequent itemset discovery 29

3.1.2 Two-way item-wise transaction database distribution . . . 31

3.1.3 Minimizing data replication 36

3.1.4 Minimizing collective work 37

3.1.5 Extension to n-way distribution and any level k of mining 38

3.1.6 Maximal and Closed FIM problems 40

3.2 Two Data-Parallel Algorithms . 40

3.2.1 NoClique: the black-box parallelization 40

3.2.2 Bitdrill: our sequential mining algorithm 41

3.2.3 NoClique2 algorithm . 42

3.2.4 Repl-Bitdrill algorithm . 45

3.2.5 Comparison with Par-Eclat 46

3.2.6 Implementation . 46

3.2.7 Applicability to dense data 47

3.3 Experiments . 47

3.3.1 Data . 48

CONTENTS xi

3.3.2 Experimental setup . 50

3.3.3 Speedup . 51

3.3.4 Partitioning quality . 53

3.3.5 Running time dissection 55

3.3.6 NoClique parallelizations and superlinear speedups 56

4 Intelligent Candidate Distribution with Selective Item Replica-

tion 59

4.1 Introduction . 59

4.2 Hypergraph Partitioning Model 60

4.2.1 Comparison to GPVS model 66

4.3 Intelligent Candidate and Item Distribution Algorithm 66

4.4 Re-partitioning Model for Incremental Algorithm 67

4.5 Implementation . 70

4.6 Performance Study . 72

4.6.1 Experimental Setup . 72

4.6.2 Partitioning quality . 73

4.6.3 Running time dissection 74

4.6.4 Speedup . 77

4.6.5 Discussion . 78

CONTENTS xii

5 1-D and 2-D Parallel Algorithms for All-Pairs Similarity Prob-

lem 80

5.1 Optimizations to the sequential algorithm 80

5.2 1-D Parallel Algorithms . 81

5.2.1 Vertical algorithm: partitioning dimensions 82

5.2.2 Horizontal algorithm: partitioning vectors 91

5.3 2-D Parallel Algorithm . 94

5.4 Performance Study . 95

5.4.1 Datasets . 95

5.4.2 Implementation details . 96

5.4.3 Sequential performance . 97

5.4.4 Parallel performance . 99

5.4.5 Local pruning and block processing optimizations 104

6 Conclusion 112

6.1 NoClique and NoClique2 methods 112

6.2 Intelligent Candidate and Item Distribution method 113

6.3 Parallel All Pairs Similarity . 114

6.4 Future Work . 114

List of Figures

3.1 Top: A sample database T with 15 transactions and 9 items. Bot-

tom: GF2
graph of T with a support threshold of 3. The vertices

are labeled with the number of times an item occurs in the database. 32

3.2 Top: A GPVS of the GF2
graph of Fig. 3.1. Parts A, B, and

separator S are shown. Middle: Distribution D(T) = (T1, T2) of

transaction database. Bottom: The GF2
graphs of T1 and T2. . . . 34

3.3 Proof by contradiction: assume there were a frequent itemset with

a vertex in A, a vertex in B and a vertex in S of ΠV S = {A,B : S}

of GF2
. This is impossible since in the GPVS, there cannot be any

edges between A and B. Hence, there can be no such frequent

itemsets. 35

3.4 Speedups of NoClique2, Repl-Bitdrill and ParDCI for the problem

instances given in Table 3.3. ParDCI unfortunately crashed on

trec database, and those were omitted. 52

3.5 Load imbalance of NoClique2. 53

3.6 Replication ratio of NoClique2. 54

3.7 Dissection of running time of NoClique2. 55

xiii

LIST OF FIGURES xiv

3.8 Relative speedups for NoClique parallelization of AIM on

T20.I6.1000K and T40.I8.1000K using various relative supports

(1 is 100%). 57

4.1 Hypergraph model of parallel FIM task for the example database

of Fig. 3.1. 63

4.2 A bi-partition of the hypergraph model in Fig. 4.1. 63

4.3 Adding fixed vertices to the hypergraph partitioning model of

Fig. 4.2. 69

4.4 Load imbalance of ICID. 75

4.5 Replication ratio of ICID. 76

4.6 Dissection of running time of ICID. 76

4.7 Speedup of ICID for various databases. 78

5.1 Parallel speedup of horizontal and vertical algorithms on small

datasets radikal and 20-newsgroups 101

5.2 Parallel speedup of the 2D algorithm on small datasets radikal and

20-newsgroups . 101

5.3 Parallel speedup of horizontal and vertical algorithms on the large

datasets: wikipedia, facebook, virginia-tech 102

5.4 Parallel speedup of the 2D algorithm on the large datasets:

wikipedia, facebook, virginia-tech 103

5.5 Speedup comparison of three parallel algorithms on radikal and

20-newsgroups datasets . 104

5.6 Speedup comparison of varying block sizes on radikal and 20-

newsgroups datasets . 105

List of Tables

3.1 Speedup Values . 47

3.2 Databases . 49

3.3 Problem instances . 50

4.1 Problem instances . 73

5.1 Real-world datasets used in our performance study. 95

5.2 Sequential running time on radikal dataset 97

5.3 Sequential running time on 20-newsgroups dataset 98

5.4 The problem instances used in our study 100

5.5 Profiling of vertical variants on radikal dataset 108

5.6 Profiling of vertical variants on 20-newsgroups dataset 109

5.7 Profiling of various block sizes on radikal dataset 110

5.8 Profiling of various block sizes on 20-newsgroups dataset 111

xv

Chapter 1

Introduction

We introduce new parallelization approaches for two fundamental tasks in data

mining, that of frequent itemset mining and all pairs similarity, which are the

computational basis of several data mining applications. We have embarked upon

a multitude of approaches to improve the efficiency of these selected fundamental

tasks in data mining. The present thesis is especially concerned with improving

the efficiency of parallel processing methods on distributed memory architectures,

for large amounts of data for future parallel data mining systems, although the

results are applicable to shared memory architectures, as well.

We have devised new parallel frequent itemset mining algorithms that work

on both sparse and dense datasets, and 1-D and 2-D parallel algorithms for the

all-pairs similarity problem. We propose two new parallel frequent itemset min-

ing (FIM) algorithms named NoClique and NoClique2, the first of which can

parallelize any sequential algorithm, and the latter of which parallelizes our own

sequential vertical frequent itemset mining algorithm called bitdrill. These algo-

rithms model the parallel FIM task with a graph partitioning by vertex separator

(GPVS) model to distribute and selectively replicate items, minimizing data repli-

cation. The method operates on a graph where vertices correspond to frequent

items and edges correspond to frequent itemsets of size two. We show that par-

titioning this graph by a vertex separator is sufficient to decide a distribution of

the items such that the sub-databases determined by the item distribution can

1

be mined independently. This distribution entails an amount of data replication,

which may be reduced by setting appropriate weights to vertices. The data dis-

tribution scheme is used in the design of two new parallel frequent itemset mining

algorithms. Both algorithms replicate the items that correspond to the separator.

NoClique replicates the work induced by the separator and NoClique2 computes

the same work collectively. Computational load balancing and minimization of

redundant or collective work may be achieved by assigning appropriate load es-

timates to vertices. NoClique is a black-box algorithm, and it incurs redundant

processing. While it can parallelize any sequential FIM algorithm, as the number

of items in the separator grow, so does redundant work. On the other hand,

NoClique2 parallelizes a level-wise vertical sequential FIM algorithm we have de-

veloped (bitdrill), and the items in the separator correspond to collective work

which is mined with a ParDCI like parallelization of bitdrill, and the itemsets

are merged with a new frequent itemset merging algorithm which we introduce.

NoClique performs very well on sparse datasets, resulting in superlinear speedup

for multiple sequential FIM algorithms, but not so well on dense datasets, which

is why we had to develop NoClique2. The performance of NoClique2 is compared

to another parallelization that replicates all items, and ParDCI algorithm. The

experimental results on a linux cluster with 32 single-core compute nodes are

consistent and suggest that NoClique2 performs well both on sparse and dense

datasets, and compares favorably to state-of-the-art parallel FIM algorithms. The

only real shortcoming of this algorithm that we observed was that it sometimes

results in large load imbalance.

We additionally introduce another parallel FIM method called Intelligent Can-

didate and Item Distribution (ICID) using a variation of the NoClique2 model for

item distribution with selective item replication. We extend the GPVS model for

parallel FIM we have proposed earlier, by relaxing the condition of independent

mining. Instead of finding independently mined item sets, we may minimize the

amount of communication and partition the candidates in a fine-grained manner.

We introduce a hypergraph model of the parallel computation where vertices cor-

respond to candidates and hyperedges correspond to items. A load estimate is

assigned to each candidate with vertex weights, and item frequencies are given

2

as hyperedge weights. The model is shown to minimize data replication and

balance load accurately. We introduce the ICID algorithm which is quite sim-

ilar to the algorithm of NoClique2 which first generates the candidates, then

applies the hypergraph partitioning model to decide candidate and item distri-

bution, which it uses to redistribute the database that is horizontally partitioned

initially, finishing with simultaneous and independent mining of assigned candi-

dates. We also introduce a repartitioning model since we can generate only so

many levels of candidates at once, using fixed vertices to model previous item

distribution/replication. Experiments show that we improve over the higher load

imbalance of NoClique2 algorithm for the same problem instances at the cost of

additional parallel overhead.

For the all-pairs similarity problem, we extend recent efficient sequential al-

gorithms to a parallel setting, and obtain document-wise and term-wise paral-

lelizations of a fast sequential algorithm, as well as an elegant combination of two

algorithms that yield a 2-D distribution of the data. Two effective algorithmic

optimizations for the term-wise case are reported that make the term-wise paral-

lelization feasible. These optimizations exploit local pruning and block processing

of a number of vectors, in order to decrease communication costs, the number

of candidates, and communication/computation imbalance. The correctness of

local pruning is proven. Also, a recursive term-wise parallelization is introduced.

The performance of the algorithms are shown to be favorable in extensive exper-

iments, as well as the utility of two major optimizations. In particular, we see

promising results up to 256 processors, showing that the term-wise distribution

may be quite significant for larger scale, where the typical vector-wise distribu-

tion will suffer from the huge bottleneck of full data broadcast required by that

distribution.

3

1.1 Frequent Itemset Mining Problem

1.1.1 Problem Definition

A transaction database consists of a multiset T = {X | X ⊆ I} of transactions.

Each transaction is an itemset and it is drawn from a set I of all items. In

practice, the number of items, |I|, is in the order of magnitude of 103 or more. The

number of transactions, |T |, is usually larger than 105.1 A pattern (or itemset)

is X ⊆ I, any subset of I, while the set of all patterns is 2I . The frequency

function f(T, x) = |{X ∈ T | x ∈ X}| computes the number of times a given

item x ∈ I occurs in the transaction database T , and it is extended to itemsets

as f(T,X) = |{Y ∈ T | X ⊆ Y }| to compute the frequency of a pattern. We use

just f(x) or f(X) when T is clear from the context.

Frequent itemset mining (FIM) is the discovery of patterns in a transaction

database with a frequency of support threshold ǫ and more. The set of all frequent

patterns is F(T, ǫ) = {X ∈ 2I | f(T,X) ≥ ǫ}. We use just F when T and ǫ are

clear from the context. In our algorithms, two sets require special consideration.

F = {x ∈ I | f(T, x) ≥ ǫ} is the set of frequent items, and F2 = {X ∈ F | |X| =

2} is the set of frequent patterns with cardinality 2. In general, Fk is the set

of frequent patterns with cardinality k. A significant property of FIM known as

downward closure states that subsets of a frequent pattern are frequent, i.e., if

X ∈ F(T, ǫ) then ∀Z ⊂ X,Z ∈ F(T, ǫ) [1].

If all itemsets in F are enumerated the problem is known as the all FIM

problem. Since the size of F can be large, smaller enumeration problems have

been defined such as closed [2] and maximal [3] FIM problems.

1These numbers come from the parameters used for the synthetic data generator in [1].

4

1.1.2 Related work and motivation

FIM comprises the core of several data mining algorithms, such as association

rule mining and sequence mining. Frequent pattern discovery usually domi-

nates the running time of these algorithms, therefore much research has been

devoted to increasing the efficiency of this task. Since both the data size and the

computational costs are large, parallel algorithms have been studied extensively

[4, 5, 6, 7, 8, 9, 10, 11, 12]. FIM has become a challenge for parallel computing

since it is a complex operation on huge databases requiring efficient and scalable

algorithms.

While there are a host of advanced algorithms for parallel FIM, it is desirable

to achieve better flexibility and efficiency. We have been inspired by the Partition

algorithm [13] which divides the database horizontally and merges individual re-

sults, as well as Zaki’s Par-Eclat algorithm [5] which redistributes the database

into parts that can be mined independently. Also of immediate interest are the

parallelizations of Apriori [1], most notably Candidate-Distribution [4] which pi-

oneered independent mining. We ask the following questions. Can we design a

parallel algorithm that exploits data-parallelism and task-parallelism? Can we

find a model to optimize its performance? The present thesis gives an affirmative

answer to these questions by introducing an algorithm that divides the database

into independently mined parts in a top-down fashion, according to an optimized

distribution of the item set.

1.2 All Pairs Similarity Problem

Given a set V of m-dimensional n vectors and a similarity threshold t, the all-

pairs similarity problem asks to find all vector pairs with a similarity of t and

more. Given the high dimensionality of many real-world problems, such as those

arising in data mining and information-retrieval, this task has proven itself to

be quite costly in practice, as we are forced to use the brute-force algorithms

that have a quadratic running time complexity. Recently, Bayardo et. al [14]

5

have developed time and memory optimizations to the brute force algorithm of

calculating the similarity of each pair in V × V and filtering them according to

whether the similarity exceeds t. We may assume the vectors are in Rm and the

similarity function is inner product without much loss of generality.

Two 1-D data distributions are considered: by dimensions (vertical) and by

vectors (horizontal). We introduce useful parallelizations for both cases. We have

observed that the optimized serial algorithms are suitable for parallelization in

this fashion, thus we have designed our algorithms based upon the fastest such

algorithm. It turns out that our horizontal algorithms especially attain a good

amount of speedup, while the elaborate vertical algorithms can attain a more

limited speedup, partially due to limitations in our implementation. Additional

contributions to the 1-D vertical distribution includes a local pruning strategy to

reduce the number of candidates, a recursive pruning algorithm, and block pro-

cessing to reduce imbalance. We have also combined the two data distribution

strategies to obtain a 2-D parallel algorithm. We also take a look at the per-

formance of a previously proposed family of optimized sequential algorithms and

determine which of those optimizations may be beneficial for a distributed mem-

ory parallel algorithm design. A performance study compares the performance of

the proposed algorithms on small and large real-world datasets.

6

The rest of the thesis is organized as follows. Chapter 2 gives the back-

ground of our target problems, extensive review and analysis of related work.

Chapter 3 introduces our GPVS model for parallel FIM task which distributes

and selectively replicates items, and proposes two algorithms called NoClique

and NoClique2 that apply our model. It also presents an extensive performance

study showing both the speedup and quality of the proposed parallel algorithms.

Chapter 4 proposes a hypergraph partitioning model that improves upon the

load imbalance of the GPVS model, and we also present an elegant algorithm

called ICID which achieves fine-grain load balancing while eschewing indepen-

dent mining. We also present a re-partitioning model that allows us to minimize

further replication of items, because ICID requires multiple iterations to process

complex real-world databases. Performance study proves that load imbalance is

vastly improved with respect to NoClique2 and that even without re-partitioning

the algorithm surpasses the speedup of NoClique2 in some cases. We propose new

1−D and 2−D parallelizations of the all-pairs similarity problem in Chapter 5

that distribute either dimensions, vectors, or both. We introduce two effective

optimizations called local pruning, and block processing that address the ineffi-

ciency of the algorithm that distributes dimensions. Our extensive experiments

show that the performance depends on the dataset. Chapter 6 provides some

concluding remarks.

7

Chapter 2

Background

2.1 Frequent Itemset Mining

2.1.1 Frequent itemset mining algorithms

FIM problem comprises the core of a myriad of data mining tasks [15]. Many

mining algorithms append a phase to FIM for extracting useful knowledge from

frequent patterns, for instance in association rule mining [16], or their discovery

algorithm is remarkably similar or derived from frequent itemset mining such as

sequence mining [17] and their derivatives: correlation [18], dependence rule [19],

and episode [20] mining. There are several sequential algorithms that have been

proposed [15, 1, 21, 22, 13]. With so many algorithms available, a classification

is useful. In Zaki’s survey paper [23], the large variety of sequential mining

algorithms are classified according to their database layout, data structure, search

strategy, enumeration, optimizations and number of database scans while Hipp

et al. classify them according to search strategy and frequency computation [24].

As the transaction databases are large in both the number of items and trans-

actions, scalability is desirable for FIM algorithms. High performance computing

has become an essential element of data mining as very large data is becoming

8

available in both scientific and business applications. While the sensor data and

simulation results accumulate, scientists need better means to analyze them for

discovering new knowledge [9, 25].

We must depend on parallel systems to analyze the massive volumes of data

in FIM problem [4]. The survey of association rule mining algorithms in [23]

not only classifies sequential and parallel mining algorithms according to their

design choices but also gives a list of open problems in parallel frequent itemset

mining: high dimensionality, large size, data location, data skew, rule discovery,

parallel system software, and generalizations of rules. The survey [23] points

out the challenges for obtaining good performance as communication minimiza-

tion, load balancing, suitable data representation, decomposition, and disk I/O

minimization. In addition to the requirements of a typical parallel algorithm,

a parallel mining algorithm must consider parallelism in disk operations. Zaki

identifies three design dimensions: parallel architecture, type of parallelism and

load balancing strategy [23]. We refer the reader to Zaki’s survey of parallel as-

sociation rule mining algorithms [23] for a description of some of the algorithms

mentioned. Also in [26], the authors analyze the hardware and software require-

ments of parallel data mining, especially databases, file systems and parallel I/O

techniques.

In the following, we review parallelizations of Apriori [1] and Eclat [22] closely

because our work is built upon these two threads of research. Both the Candidate-

Distribution algorithm (a parallelization of Apriori summarized below) and the

Par-Eclat algorithm are based on the idea of independent mining of database

parts. The latter algorithm is especially relevant to our work because it uses the

connectivity information in the graph of itemsets with length two. We also point

out other related and recent work.

9

2.1.1.1 Apriori based parallel algorithms

Apriori [1] employs BFS and uses a hash tree structure to count candidate item-

sets efficiently. The algorithm generates the set Ck of candidate itemsets (pat-

terns) of length k from the frequent itemsets of length k − 1 in Fk−1. Then, the

candidate patterns that have an infrequent sub-pattern are pruned. According

to the downward closure lemma, the pruned candidate set contains all frequent

itemsets of length k. Following that, the whole transaction database is scanned

to determine the set Fk of frequent itemsets among the pruned candidates. This

generate and test process is repeated until we have an empty Fk. For higher

efficiency, the algorithm uses a hash tree to store candidate item sets (a hash tree

has itemsets at the leaves and hash tables at internal nodes [23]).

In [4], the designers of Apriori suggest three parallelizations of it. Count-

Distributionminimizes communication and Data-Distribution tries to make use of

collective system memory, while Candidate-Distribution reduces communication

costs by taking task-data dependencies into account and then redistributing data

accordingly. Each algorithm parallelizes the iteration which is comprised of a

concurrent computation phase and a collective communication phase (except in

the largely asynchronous phase of Candidate-Distribution).

In Count-Distribution, given Fk−1, each processor computes all Ck at the

beginning of the iteration and scans its local database to determine the local

counts. Then, the global counts are computed with a global sum-reduction to all

processors. Each processor computes all Fk from global counts.

The objective of Data-Distribution is to exploit total system memory better.

Each processor generates |Ck|/n candidates. The algorithm is communication

intensive since each processor must scan the entire database to determine counts

of the candidate sets it owns. As the authors indicate, this algorithm requires

fine-grain architectures with low communication-to-computation ratio.

Candidate-Distribution is the most sophisticated of three algorithms as it par-

titions both data and candidate sets permitting independent mining of parts. This

10

design was due to the fact that no load balancing is done in Count-Distribution

and Data Distribution, a processor has to wait for all other processors at the

synchronization step of each iteration. Either of the previous algorithms is used

to compute Fk−1, an intermediate level in the computation. At the beginning

of the kth iteration, the algorithm partitions the set Fk−1 of frequent itemsets

into n parts (on n processors) such that each processor can compute the global

counts of its itemsets independently while attaining load balance. At the end of

the iteration, the database is redistributed according to the item set partition-

ing. The partitioning algorithm considers a lexicographical ordering of Fk and

Fk−1. The itemsets X in Fk−1 which happen to be the (k − 1)-length prefixes

of itemsets Y in Fk are sufficient to compute the candidates and results of Y

[27]. Load balance in partitioning of item sets is achieved by distributing the

connected components in a weighted dependency graph which represents candi-

date generation dependencies among (k−1)-length prefixes of Fk. After iteration

k, each processor proceeds independently only using pruning information from

other processors as it becomes available (a good summary of these algorithms

can be found in [23]). Among three algorithms Count-Distribution is reported

to perform best, in a rather unexpected way since Candidate-Distribution is the

most advanced design.

2.1.1.2 Parallel algorithms based on Eclat and Clique

Parallel versions of Eclat and Clique are remarkable in their task distribution

strategy which is relevant to our work. Zaki et al. employ two itemset clustering

schemes for task parallelism, namely equivalence class clustering and maximal

uniform hypergraph clique clustering [5].

Equivalence class clustering uses the same idea as the partitioning in

Candidate-Distribution. Here we shall demonstrate this scheme with an example

from [27]. Fk’s in this example have their itemsets represented as lexicographically

ordered strings. Let F3 = {abc, abd, abe, acd, ace, bcd, bce, bde, cde}, F4 = {abcd,

abce, abde, acde, bcde}, F5 = {abcde}. Consider a cluster α = {abc, abd, abe} in F3

with the common prefix ab. Computation of candidates abcd, abcde, abde, abcde

11

with the same prefix depends only on items in α. Depending on this property,

each set of items with the same (k−1)-length prefix in Fk is identified as a cluster.

One of the clusters in this case would be α.

Maximal uniform hypergraph clique clustering obtains a more accurate parti-

tioning by making use of a graph theoretical observation. Let us interpret Fk as a

k-uniform hypergraph in which vertices are items and hyper-edges are itemsets of

length k. In this hypergraph, the set C of maximal cliques contains all maximal

frequent itemsets [5]. In other words, C gives us a good estimate of maximal fre-

quent itemsets, containing all maximal frequent itemsets together with infrequent

ones and thus |C| gives us an upper bound on the number of maximal frequent

patterns. Clusters are derived in the same way as in equivalence clustering, for

each unique (k − 1)-length prefix in Fk. In the example F3, the cluster for prefix

ab is identified as a set of maximal cliques containing one element {abcde}.

The number of clusters obtained by the maximal uniform hypergraph clique

clustering scheme is greater than the number of processors. These clusters must

be assigned to processors so as to maintain load balance. For this purpose, each

cluster’s load must be weighed. A cluster α is given weight
(

|α|
2

)

which estimates

the computational load of frequency mining within the cluster. The clusters are

binned to processors with a greedy heuristic.

Vertical representation of a transaction database stores lists of transaction

ID’s, which are called tidlists, instead of lists of items. It is assumed that F2 has

been computed and tidlists are arbitrarily partitioned in a preprocessing step.

Parallel algorithms in [5] are comprised of three phases:

1. itemset clustering and scheduling of clusters among processors,

2. Redistribution of vertical database according to a schedule,

3. Independent computation of frequent patterns.

In all algorithms, F2 is used for partitioning so that redistribution can be

made as soon as possible. Independent mining is performed by either a BFS or

hybrid DFS/BFS search strategy.

12

Zaki et al. [5] underline the advantages of their algorithms as distribution of

data, decoupling of the processors in the beginning, vertical database layout, and

fast intersections avoiding structure overhead. In the experiments, it is seen that

the more advanced maximal clique clustering does in fact improve upon equiv-

alence class clustering by providing more exact load balancing information. An

important contribution of [5] is the application of itemset clustering to determine

independent mining sub-tasks.

Candidate-Distribution algorithm [4, 27] and Par-Eclat [5] are built on the

idea of independent mining of database parts. Both algorithms mine up to a

level using a simple parallelization and then redistribute the data such that the

processors mine independently. Par-Eclat algorithm is especially relevant to our

work because it uses the connectivity information in the graph of itemsets with

length two (however it could have been any level using a hypergraph). It dis-

tributes candidate itemsets by clustering maximal cliques.

2.1.2 Other studies and remarks

A tight upper bound on the number of maximal candidate patterns given Fk is

presented in [28]. It is also shown experimentally that the estimates are fairly

accurate in mining artificial data sets. It is suggested that the results may be

used in the optimization of mining algorithms. This theoretical work may be

useful for improving load balance in parallel mining algorithms.

Some relevant algorithms are as follows. ParDCI [10, 29] is a practical par-

allelization of DCI [30] which mines using a level-wise method up to a level and

replicates the entire database when it fits into memory; good speedups are re-

ported on a cluster of SMP’s. A recent theoretical paper on the closed FIM

problem [11] partitions the search space so that each part can be mined inde-

pendently, and thus in parallel. A parallel association rule mining algorithm is

introduced in [31] which replicates a novel layout of the database on all processors.

In [7], a parallel implementation of FP-Growth is presented and good speedups

are reported on a distributed collective-memory SGI Origin machine with very

13

sparse databases (there are hundreds of thousands of items). Another paralleliza-

tion of FP-Growth distributes N − 1 projections of the database for N items (a

technique which was first described in [15]), and reports experiments on a PC

cluster [8]. A recent parallelization of FP-Growth uses the novel method of selec-

tive sampling to improve load balancing [32]. Intelligent-Data-Distribution and

Hybrid-Distribution are scalable parallel association rule algorithms tested on the

Cray T3D [9]. In [33], parallel tree-projection-based sequence mining algorithms

for data and task-parallel formulations have been introduced, the latter of which

uses graph partitioning. In [34], a distributed FIM algorithm suitable for large

distributed systems with scarce communication resources is presented. Recently,

a distributed FP-Growth implementation has been used for query recommenda-

tion [12]. Parallel reconfigurable computing architectures have also been explored

in the context of frequent itemset mining [35, 36].

Also of interest to our work is applications of hypergraph partitioning to

problems with complex task-data dependencies. A very good example of such a

problem is direct volume rendering. Cambazoglu and Aykanat model the image-

space parallelization of this problem in [37], where pixel block rendering tasks

correspond to vertices and hyperedges correspond to object-space data (cell clus-

ters). They also propose a particularly interesting remapping model that provides

an incremental algorithm which models the past mapping using fixed processor

vertices, by which we are inspired in the redistribution model of our hypergraph

partitioning approach to FIM problem. Aykanat et. al also propose a view-

dependent parallelization of the problem in object space, this time presenting a

graph model of the parallel task in [38], where the vertices correspond to cells

and edges correspond to shared faces.

14

2.2 All Pairs Similarity

2.2.1 Problem definition

Following a similar terminology to [14], let V = {v1, v2, v3, ..., vn} be the set of

sparse input vectors in Rm. Let t be the similarity threshold. Let a sparse vector

x be made up of m components x[i], where some x[i] = 0; such a sparse vector

can be represented by a list of pairs [(i, x[i])] in which only non-zero components

are stored. Let |x| be the number of non-zero components in the vector, that is

the length of its list representation. Let ||x|| be the vector’s magnitude. Let also

size(V) =
∑

v∈V |v| be the number of non-zero values in V . Each vector vi is made

up of components per dimension d, where the vector’s dth component is denoted

as vi[d]. The similarity function is defined as the summation of input values from

similarity among individual components: sim(x, y) =
∑

i sim(x[i], y[i]). Another

accumulation function instead of summation may be used (for instance any other

binary operation which has the same algebraic properties), however summation

is enough for many purposes. The problem is to find the set of all matches

M = {(vi, vj) | vi ∈ V ∧ vi ∈ V ∧ i 6= j ∧ sim(vi, vj) ≥ t}.

Without much loss of generality, we assume that input vectors are normalized

(for all x ∈ V, ||x|| = 1), and for vectors x and y, sim(x, y) function is the

dot-product function dot(x, y) =
∑

i x[i].y[i], that is sim(x[i], y[i]) = x[i].y[i].

The algorithms can be easily generalized to other similarity functions which are

composed from similarities sim(x[i], y[i]) across individual dimensions.

The input dataset V may also be interpreted as a data matrix D where row

i is vector vi. In this case, we may represent similarities by the similarity matrix

S = D.DT where Sij = dot(vi, vj) obviously, and we find the set of matches

M = {(i, j) | Sij ≥ t}. More naturally, we may interpret the output as a match

matrix M that is defined as:

M ′
ij =

0 if Sij < t,

Sij if Sij ≥ t
(2.1)

15

The output set of matches M may be considered to define an undirected sim-

ilarity graph GS(V, t) = (V,M). In this case an edge u↔ v denotes a similarity

relation between vectors u and v; the edge weight w(u, v) = u.v.

2.2.2 Applications

An all pairs similarity algorithm may be viewed as a computational kernel for

several tasks in data mining and information retrieval domains. In data mining

and machine learning, the similarity graph may be supplied as input to efficient

graph transduction [39, 40], graph clustering algorithms [41] and near-duplicate

detection (by using a high threshold to filter edges). Obviously, once a similarity

graph is computed, classical k-means [42, 43] or k-nn algorithms [44, 45], which are

widely used in data mining due to their effectiveness in low number of dimensions,

may be adapted to use the graph instead of making the geometric calculations

directly over input vectors. As frequent itemset mining may be viewed as the

costly phase of association rule mining class of algorithms; likewise, the graph

similarity problem may be viewed as the costly phase of several classification,

transduction, and clustering algorithms.

Calculating the similarity graph may be alternately viewed as capturing the

essential geometry of (the similarities in) the dataset, on which any number of

computational geometry algorithms may be run. This is basically what a classi-

fication or clustering algorithm does given similarities in the data: the algorithm

tries to find geometric distinctions, either determining a class boundary for clas-

sification, or identification of clusters by grouping similar points according to the

similarity geometry. Note also that with an adequate similarity threshold, we

can obtain a connected graph and therefore approximate all similarities in the

dataset.

Constructing the similarity graph also has the unique advantage in that it can

be re-used later for additional data mining tasks. For instance, one application

can make a hierarchical clustering of the data, and another one can use it for

transduction. Basically, we think that any data mining task that has a geometric

16

interpretation can use the similarity graph as input successfully. Therefore, we

anticipate that the parallel similarity graph construction will be a staple of future

parallel data mining systems.

2.2.3 k-nearest neighbors problem

The problem of constructing a similarity graph can be contrasted with k-nearest

neighbors problem, which is a slightly harder problem but can be solved ap-

proximately using a distance threshold. Our use of the dot-product between

two vectors should not be misleading either, as that corresponds to range search

in a corresponding metric space, to emphasize the close relation between these

problems. At any rate, some of the same approaches can be adapted to similar-

ity graph construction, therefore we should take them into account. Especially,

note that most of the difficulties with nearest neighbor search carry over to our

problem.

Due to the curse of dimensionality [46], the brute-force algorithm of nearest

neighbor search is quite difficult to improve upon [47]. In practice, there are no

advanced geometric data structures that will give us algorithmic shortcuts [48, 49].

In the general setting of metric spaces, the nearest neighbor problem is non-trivial

and data structures are not very effective for high dimensionality [50]. This

implies that we cannot rely on space partitioning or metric data structures that

work well in low number of dimensions, although of course, non-trivial extensions

of those methods may prove to be effective such as combining dimensionality

reduction with geometric data structures.

2.2.4 Related sequential algorithms

2.2.4.1 Sequential knn algorithms

Some popular approaches to solving the nearest neighbor problem may be sum-

marized as geometric data structures such as R-Tree[51]; VP-Tree [52], GNAT [53]

17

and M-Tree [54] for general metric spaces, pivot-based algorithms [55, 56], ran-

dom projections for ǫ-approximate solutions to the knn problem [57], combining

random projections and rank aggregation for approximation [58], locally sensitive

hashing [59, 60, 61], and other data structures and algorithms for approximations

[62, 63]. An algorithm related to our area of interest detects duplicates by using

an inverted index [64]. Space-filling curves have also been applied to the knn

problem [65, 66, 67].

Space-partitioning approaches usually do not work well for very high-

dimensional data due to the curse of dimensionality, a thorough treatment of

which is available in [47]. Weber et. al quantify in that article lower bounds on

the average performance of nearest neighbor search for space and data partition-

ing assuming uniformly distributed points, which show that for space partitioning

like k-d trees, the expected NN-distance grows with increasing dimensionality,

rendering such methods ineffective for high-dimensional data (full scan needed

when d > 60), and for data-partitioning the number of blocks that have to be

inspected increase rapidly with increasing number of dimensions, for both rectan-

gular (full scan is faster when d > 26) and spherical bounding regions (full scan

when d > 45), and they also generalize their results to any clustering scheme that

uses convex clusters, not just these. Their conclusion is that in high-dimensional

data, the partitioning methods all degenerate to sequential search, in uniformly

distributed data. We emphasize that their results imply that trivial geometric

partitions of the data using hyperplanes or hyperspheres are mostly ineffective

in very high-dimensional data, although they can in some cases work well for

datasets with limited dimensionality or different distribution. Weber et. al for

this reason propose the VA-file, which approximates vectors using bitstrings [47]

and improves upon sequential scan.

In general, it seems that for solving proximity problems exactly in very high-

dimensional datasets, techniques that prune candidates work well. Kulkarni and

Orlandic, on the contrary, successfully use a data clustering method to optimize

knn search in databases, which the authors show to be better than sequential

scan and VA-file up to 100 dimensions on random datasets and 56 dimensions on

real-world datasets [68], although it is impossible to know the true efficiency of

18

these algorithms proposed by database researchers unless they are compared to

fast in-memory algorithms since disk access time dominates the running time of

algorithms that work on secondary storage. Also, such approaches do not usually

scale up to very high number of dimensions.

Note that there are asymptotically optimal nearest neighbor algorithms in

the literature. Vaidya introduces an asymptotically optimal algorithm for the

all nearest neighbors problem which has O(n log n) time complexity [69]. The

same algorithm solves k-nearest neighbors problem in O(n log n+ kn log k) time,

while Callahan and Korasaraju propose an optimal k nearest neighbors algorithm

which runs in O(n log n + kn) time [70]. It is not immediately obvious why

there are no experiments measuring the real-world performance of these optimal

algorithms, however, it is conceivable that they may not have been practical for

high-dimensional datasets, or it may have been considered that they require large

constant factors.

We refer the reader to Chavez’s survey of search methods in metric spaces [71]

for more information on the myriad algorithms. Chavez identifies three kinds of

search algorithms for metric spaces: pivot-based algorithms, range coarsening

algorithms, and compact partitioning algorithms, and he emphasizes that the

search time of exact algorithms grow with intrinsic dimensionality of the metric

space, which also increases the search radius, and thus makes it harder to compete

with brute-force algorithms. As we have seen, similar problems also plague search

algorithms in Euclidian spaces. For these reasons, researchers in recent years have

turned to practical optimizations over brute-force algorithms, which we shall now

examine briefly with a good example.

2.2.4.2 Practical sequential similarity search

In Bayardo et. al [14], the authors propose three main algorithms which embody a

number of heuristic improvements over the quadratic brute force all-pairs similar-

ity algorithm. These algorithms are summarized below. In the algorithms, each

vector x has components with weights x[i], there are m dimensions (or features)

19

Algorithm 1 All-Pairs-0(V, t)

M ← ∅
I ← Make-Sparse-Matrix(m,n)
for all vi ∈ V do

M ←M ∪ Find-Matches-0(vi, I, t)
for all vi[j] where vi[j] > 0 do

Iji ← vi[j]
return M

Algorithm 2 Find-Matches-0(x, I, t)

A← Make-HashTable()
for all (i, x[i]) ∈ x where x[i] 6= 0 do

for all (y, y[i]) ∈ Ii do
A[y]← A[y] + x[i].y[i]

return {(y, A[y]) | A[y] ≥ t}

numbered from 1 to m, maxweighti(V) is the maximum weight in dimension i

of the entire dataset V , and maxweight(x) is the maximum weight in a vector x,

following the notation in their paper.

all-pairs-0 This is equivalent to the brute force algorithm, with the additional

on-the-fly construction of an inverted index as each vector is matched and

indexed in turn. The calculation of the dot-product scores are achieved

by consulting the inverted index. Thus each vector is compared to all the

previous vectors that have been indexed, and then the vector itself is added

to the index. This algorithm is thus slower than the brute force algorithm.

In the matching of a new vector x, the algorithm uses a hash table A to store

the weights of candidates to match against x, since the vectors are sparse.

The pseudocode for all-pairs-0 is given in Algorithm 1 and Algorithm 2.

all-pairs-1 This algorithm orders the dimensions in the order of decreasing num-

ber of non-zeroes. It corresponds to an important optimization that we call

“partial indexing” which works as follows. In preprocessing, we calculate

maxweighti(V) for each dimension. This allows us to calculate an upper

bound for the dot-product of a vector x with any vector in V : ∀y ∈ V

x.y ≤
∑

i x[i].maxweighti(V). Using this upper bound it is possible to

20

avoid indexing the most dense dimensions by calculating a partial upper

bound b while processing the components of new vector x for indexing.

Remember that we are processing the components in a certain order (de-

creasing number of non-zeroes of dimensions in V). The components are

added to the inverted index only when the partial upper bound b exceeds

t, the initial components that have small b are not indexed at all, they

are kept as a partial vector x′. Indexing as such ensures that all admissi-

ble candidate pairs are generated. The dot-product is fixed by adding the

dot-products of the partial x′’s later on.

all-pairs-2 This algorithm affords three optimizations over all-pairs-1.

Minsize optimization: This optimization aims to prune candidate vectors

with few components. We know that for a vector x, for all matches y,

x.y ≥ t. If the input vectors are normalized, then each component can

be at most 1: x.y < maxweight(x).|y|. Two inequalities entail that

|y| ≥ t/maxweight(x). Let the quantity on the right be called minsize’.

Minsize optimization requires the vectors to be ordered in order of increas-

ing maxweight(x), thus decreasing minsize. If ordered such and the input

vectors are normalized, during matching a new vector x, the minimum size

of a candidate vector y that x can be matched against is t/maxweight(x).

If the candidates in the inverted index that are smaller than minsize are

pruned when matching a new vector, this will hold true for all the subse-

quent vectors since minsize for subsequent vectors cannot be greater. The

minsize optimization does not prune a lot of candidates, but it may be ef-

fective since there may be a lot of very small vectors. It is suggested that

all-pairs-2 prunes only vectors in the beginning of the inverted list, which

is easy to implement using dynamically sized arrays.

Remscore optimization: This optimization calculates a maximum remain-

ing score (remscore) while processing the components of a vector x during

matching, using maxweighti(V) function. When remscore drops below t

the algorithm switches to a strategy that avoids adding any new candidates

to the candidate map, while continuing to update the candidates already in

the map. This avoids calculation of scores for candidates that cannot match.

21

Remscore is initialized as
∑

i x[i].maxweighti(V) and as each component

i is processed its contribution to the upper bound x[i].maxweighti(V) is

subtracted from the upper bound. And while calculating the scores in the

candidate map, the aforementioned conditional is executed. While this

seems to be an excellent optimization, in the real-world data we have seen

it has only inflated the running time, because not the calculation of rem-

score but the conditional reasoning is too expensive within the main loop

of matching algorithm.

Upperbound optimization: While fixing the scores in the candidate map

with dot-products of partial vectors (parts of vectors that are not indexed),

we can avoid the dot-product if the following upper bound is not enough to

make the score exceed t: min(|y′|, |x|).maxweight(x).maxweight(y′) which

is to say that each scalar product in an inner product cannot be more than

the product of the maximum values in either vector, and only non-zero

components contribute to the inner product. While this too seems to be a

nice optimization, it suffers from using conditionals in an otherwise efficient

code as the partial vectors tend to be short.

2.2.4.3 Analysis of all-pairs-0

All-pairs-0 maintains an inverted index I, which stores an inverted list for each

of m dimensions in the dataset, such that after all the matches are found, for a

vector vi and for all vi[j], the inverted index I stores vi[j], that is Iji = vi[j].

If the inverted index I is interpreted as a matrix, the rows Ij of the inverted

index are the dimensions in the dataset, and I is merely the transposition of the

input matrix D, I = DT . Algorithm all-pairs-0 performs
∑m

d=1

(

|Id|
2

)

floating-

point multiplications, dominating the running time complexity, therefore each

dimension d contributes
(

|Id|
2

)

= O(|Id|
2) multiplications.

Since in practice there are usually a few dense dimensions, the running time

complexity is expected to be quadratic in n for real-world datasets.

22

2.2.5 Related parallel algorithms

There are only a few relevant studies on efficient parallelization of the all pairs

similarity problem in the literature that we have been able to detect.

Lin [72] parallelizes the all-pairs similarity problem comparing parallelizations

of both the brute force algorithm that uses no intermediate data structures and

two algorithms that use an inverted index of the data, one horizontal and one

vertical parallelization (called Posting Queries and Postings Cartesian Queries

algorithms), implemented with the map/reduce framework Hadoop. The algo-

rithm is cast in an information retrieval context where documents are vectors and

terms are dimensions. The experiments are quite comprehensive and utilize real-

istic life sciences datasets. The study in question also compares the performance

of three approximate solutions: limiting the number of accumulators, considering

only top n terms in a document, and omitting terms above a document frequency

threshold; their results show that significant performance gains can be obtained

from approximate solutions at acceptable loss of precision. Therefore, Lin sug-

gests that parallelizing the exact algorithms easily carry over to more efficient

inexact algorithms. However, there is a slight drawback of this careful study,

as the use of Java language may have caused significant performance loss in the

sequential algorithms, making the job of parallelization easier, as for 90 thousand

documents, their sequential algorithm takes on the order of hundreds of minutes

on a cluster system. Lin does mention that the code is not optimized and run

on a shared, virtualized environment. In our experience, shared environments

are not suitable for working on memory and communication intensive problems

such as those in information retrieval and data mining. Thus, we are looking

forward to the repetition of the said experiments on a dedicated parallel com-

puter with a more appropriate high-performance implementation. This study is

also important in that the author correctly observes the influence of the Zipf-like

distribution of terms on parallel performance.

Recently Awekar et. al [73] introduced a task parallelization of the all pairs

similarity problem, sharing a read-only inverted index of the entire dataset. The

23

authors use a fast sequential algorithm which is very similar to our all-pairs-0-

array, which we also found to be the best sequential algorithm, and thus make

adequate speedup measurements. The authors test three load balancing strate-

gies, namely block partitioning, round-robin partitioning, and dynamic partition-

ing on high-dimensional sparse data-sets with a power law distribution of vector

sizes. Their experiments are executed on up to 8 processors for large real-world

datasets, on both a shared-memory architecture and a multi-processor system.

The speedups on the multi-processor system turn out to be superior to the shared

memory system as cache-thrashing and memory-bandwidth limitation prevents

near-ideal performance for larger number of processors on shared-memory sys-

tems. In this study [73], however, there is a major shortcoming as the index

construction and replication costs were not taken into account in the experi-

ments, which raises doubts as to how much time is needed for broadcasting such

large datasets (e.g., Orkut dataset has 223 million non-zeroes), as the replication

of the entire inverted index would be a bottleneck for high number of processors.

Therefore, the replicated index algorithm should be taken with a grain of salt, as

well as any parallel algorithm that replicates the entire dataset, since the size of

the inverted index is the same as the size of the dataset. At any rate, near-ideal

speedup on up to 8 processors is not surprising as our vector-wise parallelization

shows similar performance, as will be seen.

Following are parallelizations of related problems. Plaku and Kavraki pro-

pose a distributed, message-passing algorithms for constructing knn graphs of

large point sets with arbitrary distance metric [74]. They can use any local knn

data structure for faster queries (such as a metric tree), which must be built once

the points are distributed to processors. In addition to this, they can exploit

the triangle inequality of metric function and this information can be used to

construct local queries using the metric data structure as well as pruning dis-

tributed queries, by representing the bounding hyperspheres of points on other

processors. The dimensionality of their datasets increases to non-trivial numbers

(up to 1001), and their speed-up results on 100 processors are quite encouraging.

We think that their method might be applied to our work as well in the future,

to optimize our horizontal parallel algorithms, however the effectiveness of their

24

approach on very high-dimensional datasets as we are using remains to be seen, as

no sort of space partitioning usually works well for very high-dimensional datasets

due to the curse of dimensionality. However, it is conceivable that the methods

of Plaku and Kavraki could be used in hybrid approaches to deal with much

higher dimensionality. A shortcoming of this paper is that it does not discuss the

partitioning of the point set, any partition is assumed.

Alsabti et al. [75] parallelize all pairs similarity search with a k-d tree variant

using two space-partitioning methods based on quantiles and workload; they

find that their method works well for 12-d randomly generated points on up

to 16 processors. Their workload based partitioning scales better than quantile

based partitioning, and is comparable for uniform and gaussian distributions.

Apaŕıcio et. al [76] use a three-level parallelization of knn problem at the Grid,

MPI and shared memory levels and integrate all three to optimize performance.

An interesting paper proposes a parallel clustering algorithm which partitions a

similarity graph, constructs minimum spanning trees for each subgraph and then

merges the minimum spanning trees, which is then used to identify clusters [77];

this algorithm can be applied to the output of our algorithms. Schneider [78]

evaluates four parallel join algorithms for distributed memory parallel computers

from a database perspective. Vernica et al. [79] propose a three-stage map/reduce

based approach to calculate set similarity joins and report results using Hadoop;

they do consider the self-join case.

Callahan and Kosaroj [70, 80] examine the well-separated pair decomposition

of a point set in Euclidian space, which decomposes the set of all pairs in a point

set into pairs of sets with the constraint of well-separation (defined in a certain

geometric sense), wherein each pair is uniquely represented by a pair of point sets

in the decomposition. Using their decomposition, they also obtain an asymptot-

ically optimal parallel knn algorithm which has O(log2 n) total parallel time on

O(n) processors with the CREW PRAM model. The real-world applicability of

this wonderfully efficient algorithm remains to be seen, however. In our initial

inspection, we have seen their splitting logic may be somewhat problematic in

text data sets where each co-ordinate corresponds to the frequency of a term. It

seems that one way such space decomposition based algorithms may escape the

25

curse of dimensionality is that the decomposition is far from random, and that the

distribution is not uniform in real-world datasets, although one may still expect

that the approach might break down in very high-dimensional datasets as their

approach is conceptually similar to well known k-d tree construction algorithms

that fail in high-dimensional datasets.

26

Chapter 3

Parallel Frequent Itemset Mining

with Selective Item Replication

We introduce our transaction database distribution scheme for parallel frequent

itemset mining problem and its theoretical analysis in Section 3.1, while Sec-

tion 3.2 introduces the NoClique and NoClique2 parallel algorithms which iden-

tify lack of cliques among sets of itemsets. Section 3.3 presents an extensive

performance study of the proposed algorithms.

3.1 Transaction Database Distribution

In this section, we describe our theoretical contributions which will be developed

into a parallel algorithm in Section 3.2. We make heavy use of the GPVS problem,

which is briefly explained in the following.

The GPVS problem is to find a minimum weighted vertex separator Vs,

removal of which decomposes a graph into components with roughly equal

weights [81]. Let G = (V,E) be a graph where w(u) is the weight of vertex

u. Let w(U) =
∑

u∈U w(u) be the weight of a vertex set U . Let Adj(u) denote

the set of vertices that are adjacent to u, i.e., Adj(u) = {v|(u, v) ∈ E}. This

27

operator can be extended to vertex sets by letting Adj(U) =
⋃

u∈U Adj(u)− U .

Definition 1 (n-way GPVS). ΠV S(G)={V1, V2, . . . , Vn :Vs} is a partition of the

vertex set V into n+1 subsets V1, V2, . . . , Vn and Vs such that for all 1 ≤ i < j ≤ n

Adj(Vi) ∩ Vj = ∅ (i.e., Adj(Vi) ⊆ Vs). The partitioning objective is to minimize

w(Vs). The partitioning constraint is, for all 1 ≤ i ≤ n, w(Vi) ∼= [w(V)−w(Vs)]/n

(parts have roughly the same weight).

The problem is NP-complete [82, ND 25 Minimum b-vertex separator]. A

separator Vs is said to be minimal if there is no subset of Vs that is also a separator.

The two-way GPVS will be denoted as ΠV S(G) = {A,B : S}.

We introduce a distribution method that can be used to divide the FIM task

in a top-down fashion. The method operates on the graph GF2
which is defined

as follows.

Definition 2. GF2
(T, ǫ) = (F, F2) is an undirected graph in which each vertex

u ∈ F is a frequent item and each edge {u, v} ∈ F2 is a frequent pattern of length

two, for a given database T and support threshold ǫ. The parameters T and ǫ will

be dropped when they are clear from the context.

We decode a two-way GPVS of the GF2
graph as a two-way distribution of

the transaction database such that the two sub-databases obtained can be mined

independently and therefore utilized for concurrency. In order for this property

to hold, there is an amount of replication dictated by the vertex separator of GF2
,

which corresponds to the partitioning objective of GPVS. In the following, we first

present the optimization aspects of our transaction database distribution tech-

nique. Then, we expound on our GPVS model for two-way transaction database

distribution. Afterwards, we discuss minimization of data replication, followed

by minimization of collective work and load balancing in the GPVS model. We

then extend the two-way distribution scheme to n-way (for n processors). Last,

we show that our method is applicable to maximal and closed FIM problems.

28

3.1.1 Optimizing parallel frequent itemset discovery

Our objective of transaction database distribution is to divide a transaction

database such that each sub-database can be mined independently, while not in-

flating the data prohibitively and keeping the computational load balanced across

sub-databases. Once such a distribution is obtained, a coarse-grain parallel fre-

quent itemset mining algorithm similar to Par-Eclat can be designed. Par-Eclat

consists of a redistribution phase and a following local mining phase with no

communication [5]. We present two algorithms: NoClique features completely

independent mining with no communication just like Par-Eclat, while NoClique2

has a collective phase in which the running time is minimized and the rest of

mining is independent. Since some data mining tasks on the sub-databases are

performed independently in either algorithm, our method may be classified as

a data-parallel algorithm that adopts input data partitioning with replication.

This input data partitioning induces a task partitioning according to the owner-

computes rule [83, Sec. 3.2.2], which states that the process assigned a particular

data item is responsible for all computation associated with it.

We show that GPVS on GF2
is sufficient to designate such a distribution on

the transaction database. Our work assumes that GF2
is sparse, because GPVS

may not be feasible on dense graphs. Note that a sparse GF2
does not necessarily

require the input database to be sparse.

We may begin formulating a problem for the coarse-grain data-parallel fre-

quent itemset mining algorithm as follows: Let database T contain a smaller

database Ti. Ti is a sub-database of database T if and only if, for every trans-

action X ∈ Ti, there is a distinct transaction Y ∈ T such that X ⊆ Y (recall

that T and Ti are multisets). We will denote this ordering relation with Ti ≺ T .

The input database T is distributed to a number of processors such that each

processor has a sub-database of the original transaction database. We denote

this distribution by D(T) = {Ti|Ti ≺ T}, possibly with replication. Also, we

require the union of frequent patterns discovered in individual processors to be

the set of frequent patterns of the entire data, i.e., F(T, ǫ) =
⋃

Ti∈D(T)F(Ti, ǫ).

We call this the independent mining condition for a distribution D(T).

29

In the following optimization problem, w(·) is any sensible cost measure that

relates to mining a database, e.g., computational work, data size:

minimize

(

∑

Ti∈D(T)

w(Ti)

)

− w(T) (3.1)

subject to Ti ≺ T, for all Ti ∈ D(T) (3.2)

F(T, ǫ) =
⋃

Ti∈D(T)

F(Ti, ǫ) (3.3)

w(Ti)’s are approximately equal (3.4)

The objective in Equation 3.1 seeks to minimize the total amount of re-

dundancy that the distribution D(T) entails. We subtract the cost of the en-

tire database from the sum of costs of distributed sub-databases Ti’s to denote

this. Equation 3.2 is the distribution condition which states that the transac-

tion database is distributed in any fashion, e.g., transaction-wise, item-wise or

hybrid. Equation 3.3 is the independent mining condition, which ensures that

independent mining of the sub-databases yields the frequent patterns of the en-

tire database. The balancing condition (Equation 3.4) ensures that all processors

share the cost fairly. At this stage, we do not explicitly state whether we are min-

imizing data redundancy or parallel overhead. However, some amount of data

replication is often necessary for the independent mining condition to hold.

We will now expose our particular item redistribution scheme using informa-

tion in frequent itemsets of length two, which can be easily computed in parallel

like in the design of Par-Eclat [5]. First, we will show how we can satisfy the

distribution and independent mining conditions by showing a two-way item dis-

tribution. We will then analyze the objective and the balancing condition, ex-

plaining how we can assign weights and achieve load balance so that it becomes

an acceptable solution to the coarse-grain parallel FIM problem.

30

3.1.2 Two-way item-wise transaction database distribu-

tion

GF2
is relatively easy to compute with respect to the complexity of the whole min-

ing task, and its computation is amenable to efficient parallelization. It contains

information that can be used to predict computational properties. For instance,

the maximal cliques in GF2
give us potentially maximal patterns [5], which in

turn can be used to achieve task parallelism. Our data decomposition method,

on the other hand, does not require finding maximal cliques. Instead, we use

the GPVS of GF2
, which allows us to define independent mining on the trans-

action database by finding a particular distribution of the item set I. Our item

distribution identifies the absence of cliques across two sets of items rather than

enumerating all cliques as in [5].

We will start by observing the similarity of GPVS objectives to ours. It turns

out that we can use a GPVS of GF2
to satisfy the independent mining conditions

and to optimize parallelism at the same time. FIM task can be decomposed into

mining two item-wise projections of the transaction database using GPVS. We

use the projection operator π to explicitly show the vertical projections.

Definition 3. A transaction database projected from T over a set of items X is

πX(T) = {Y ∩X | Y ∈ T} where Y is a transaction in T .

Recall that two-way GPVS is denoted as ΠV S(G) = {A,B : S} where S is the

vertex separator; and A and B are vertex parts. GPVS of GF2
corresponds to a

certain two-way distribution {A ∪ S, B ∪ S} of the itemset I. This distribution

induces a two-way transaction set distribution as follows.

Definition 4. A two-way transaction database distribution D(T) = {T1, T2} is

induced by ΠV S(GF2
) = {A,B : S}, where T1 = πA∪S(T) and T2 = πB∪S(T).

We require S to be a minimal separator. If S were not minimal, since the

cost induced by the separator is included in both projections, removing a vertex

from the separator would decrease the parallel cost. For that reason, it is better

31

to choose a minimal separator, in case the GPVS heuristic does not find one.

Figure 3.1 depicts a sample transaction database and its GF2
graph. ΠV S of

this graph and the transaction database distribution D(T) induced by ΠV S is

illustrated in Fig. 3.2. In the following text, we show that mining the database

parts separately results in complete FIM of the original transaction database T

satisfying Equation 3.3.

Transaction

t1 = {b, c, f, g}
t2 = {c, g}
t3 = {b, h, i}
t4 = {b, e}
t5 = {a, d, g, h}
t6 = {d, e}
t7 = {b, c, e, f}
t8 = {a, b, c, f}
t9 = {b, c, d, h, i}
t10 = {b, c, e, g}
t11 = {a, d, e, g}
t12 = {d, h}
t13 = {a, d, e, h}
t14 = {b, e}
t15 = {a, e, g}

a b c d e f g h i

× × × ×
× ×

× × ×
× ×

× × × ×
× ×

× × × ×
× × × ×
× × × × ×
× × × ×

× × × ×
× ×

× × × ×
× ×

× × ×

6

3 8 8

6 5

6 5

c

f b

g a

d he

Figure 3.1: Top: A sample database T with 15 transactions and 9 items. Bottom:
GF2

graph of T with a support threshold of 3. The vertices are labeled with the
number of times an item occurs in the database.

Lemma 1. If there is a frequent pattern P in T , then there is a corresponding

clique in GF2
, with vertices corresponding to items in P .

Proof. Due to the downward closure property, a pattern P can be frequent if

and only if all subsets of the pattern are frequent patterns. A frequent pattern

32

P ⊆ F contains
(

|P |
2

)

subsets (sub-patterns) with cardinality 2. That is, for all

u, v ∈ P, {u, v} is a frequent pattern. By the definition of GF2
, each frequent

pattern of length 2 is an edge in GF2
; hence for all u, v ∈ P, {u, v} ∈ F2 showing

the existence of a corresponding clique in GF2
.

Lemma 2 (No Clique). There is no frequent pattern with items in both A and B

parts of ΠV S = {A,B : S} of GF2
.

Proof. This follows from Lemma 1 that there is no clique in GF2
with vertices in

both A and B of ΠV S = {A,B : S} of GF2
. See Fig. 3.3 for an illustration of the

proof.

Corollary 1. There is no frequent pattern with items in both A and B parts of

ΠV S = {A,B : S} of GF2
.

Proof. Since there can be no clique in GF2
that contains items in both A and B,

there can be no such frequent pattern.

Theorem 1 (Independent Mining). Independent discovery of frequent patterns

in projected databases T1 = πA∪S(T) and T2 = πB∪S(T) results in discovery of all

frequent patterns in T .

Proof. Consider a frequent pattern P ⊆ V . Since it cannot have items in both

A and B (by Lemma 2), P is a subset of either A ∪ S or B ∪ S. For every

P ∈ F(T, ǫ), the following are true:

1. If P ⊆ A ∪ S, then P ∈ F(T1, ǫ),

2. If P ⊆ B ∪ S, then P ∈ F(T2, ǫ).

Therefore, every frequent pattern is discovered in one database at least. Observe

that if P ⊆ S, then P is discovered in both projected databases.

33

6

3 8

8

6

5

6 5

S

A
B

c

b

f

g

e
a

d h

b c e f g

× × × ×
× ×

×
× ×

×
×

× × × ×
× × ×
× ×
× × × ×

× ×

×
× ×

× ×

a d e g h

×
×
×

×
× × × ×
× ×
×

×
× ×
× ×

× × × ×
× ×

× × × ×
×

× ×

6

3 8 8

6

c

f b

g

e

8

6 5

6 5

g a

d he

Figure 3.2: Top: A GPVS of the GF2
graph of Fig. 3.1. Parts A, B, and separator

S are shown. Middle: Distribution D(T) = (T1, T2) of transaction database.
Bottom: The GF2

graphs of T1 and T2.

34

S

A B

Figure 3.3: Proof by contradiction: assume there were a frequent itemset with a
vertex in A, a vertex in B and a vertex in S of ΠV S = {A,B : S} of GF2

. This
is impossible since in the GPVS, there cannot be any edges between A and B.
Hence, there can be no such frequent itemsets.

Theorem 1 can be improved slightly to suggest a more efficient parallelization.

The frequent itemsets within S do not have to be mined redundantly.

Corollary 2 (Collective Work). Consider the partition of items in Theorem 1.

All patterns in T can be mined by mining frequent itemsets that fall within S,

independently mining A and B, and then extending frequent itemsets within S by

those itemsets mined within A and B.

Proof. Consider a frequent pattern P ⊆ V . By Theorem 1 it is either a subset

of A ∪ S or B ∪ S. Assume P ⊆ A ∪ S. If P ⊆ S, then it can be discovered

by mining items in S. If P ⊆ A, then it can be discovered by mining items in

A. Otherwise, we can mine it by merging the frequent itemsets in A and in S

using a suitable efficient algorithm (without re-mining frequent itemsets already

found in respective item-sets), i.e., extending frequent itemsets in S by items in

A until all frequent items are discovered. Likewise for the case that P ⊆ B ∪ S.

Therefore, the mining task has been decomposed into 5 sub-tasks. First, A, B,

and S can be mined independently of each other. And then using the results

of these sub-tasks, the remaining frequent itemsets in A ∪ S and B ∪ S may be

mined again independently.

35

3.1.3 Minimizing data replication

Data replication in distribution D(T) = {T1, T2} is determined by the vertex

separator S. By definition of the two-way distribution, for every transaction

X ∈ T , X ∩ S is projected in both T1 and T2.

Lemma 3. The amount of data replication in two-way transaction database dis-

tribution D(T) given in Definition 4 is equal to
∑

u∈S f(u).

Proof. The frequency function f(·) gives us how many times a given item occurs

in T . Since f(u) gives us the size of the tidlist of an item,
∑

u∈X f(u) measures

the size of data in ΠX(T). Since S exists in both A ∪ S and B ∪ S, the amount

of data replication is the size of data projected over S.

The amount of data replication is related to the sparsity of GF2
graph. We

expect the replication to grow rapidly beyond a certain edge density that is de-

termined by the support threshold.

Lemma 4 (Minimum Replication). GPVS of GF2
with item frequencies as vertex

weights minimizes the amount of data replication.

Proof. GPVS of a vertex-weighted graph will minimize the weight of the separator

as its partitioning objective. GPVS of GF2
minimizes data replication since the

weight of the separator is equal to the amount of data replication.

Minimizing data replication is also correlated to minimizing the total volume

of communication during database redistribution. If the database is to be pro-

vided from a central server, then both objective functions are identical. Moreover,

for an initial random distribution of the database, we are minimizing the upper

bound of total communication volume during the redistribution phase. Note

that the GPVS model will maintain storage balance among processors due to the

partitioning constraint.

36

3.1.4 Minimizing collective work

Here we take a look at possible choices for w(·) to minimize collective work. If

the computational work estimate for a projection over a set of items X is in the

form of a summation of individual load estimates l(·) for items:

w(πX(T)) =
∑

u∈X

l(u) (3.5)

then the proposed GPVS model will minimize collective work instead of min-

imizing data replication. It will also balance computational load due to the

partitioning constraint.

Estimating the computational load is non-trivial, since we cannot know in ad-

vance how many patterns are present in the data. However, we can reason about

the potential number of itemsets in the search space that the mining algorithm

will need to traverse. Although every algorithm follows a different strategy for

determining frequent patterns, a measure of the portion of the search space con-

taining potentially frequent patterns gives us a good estimate as in [4, 5]. In our

method however, computing the maximal cliques in GF2
(like in [5]) will incur

additional overhead. Therefore we use simpler functions for load estimation such

as the following:

w1(πX(T)) =
∑

u∈X f(u) (3.6)

w2(πX(T)) =
∑

u∈X

(

d(u)
2

)

(3.7)

w3(πX(T)) =
1
2

∑

(u,v)∈X2 f({u, v}) (3.8)

For estimating computation time, we can use Equation 3.6 which calculates the

data size within the projection over a given itemset X in a fashion resembling [4].

Equation 3.6 does not take into account the actual complexity of the task. An

alternative approximation, which is inexpensive, can be found in [5]. Equation 3.7

is based on Zaki et al.’s itemset clustering [5] where d(u) is the degree of vertex

u in GF2
. This estimate is an upper bound on the number of potential frequent

patterns of length 3 obtained by calculating the number of 2-combinations of

patterns with length 2. Naturally, more advanced load estimate methods can be

used to improve the accuracy. An obvious choice among the simpler functions is

37

the total frequency of GF2
edges that fall within a given itemset X which gives

us Equation 3.8. Although w3(·) does not strictly conform to Equation 3.5, it

can be made so by evenly distributing the weight of each edge among its incident

vertices, which yields an approximation to Equation 3.8. In our experiments,

we have found that w1(·) performed better or as well as w2(·) and w3(·) perhaps

because it tends to reduce both data and task overhead.

3.1.5 Extension to n-way distribution and any level k of

mining

We will now show means to extend two-way transaction database distribution to

an n-way distribution D(T) = {T1, T2, . . . , Tn}, where the independent mining

conditions are generalized in the obvious way. The two-way transaction database

distribution can be applied recursively to divide the two projected databases.

Since the resulting projected databases are transaction databases themselves, we

can apply the same method to divide them further.

In order to distribute the derived databases, one must obtain the GF2
of the

two parts. This can be accomplished by simply running the same algorithm for

the projected transaction database, however this can be costly. In the following,

we present facts that lead to an efficient computational scheme to calculate an

n-way distribution directly over GF2
. By making use of this simple observation,

we avoid constructing intermediate projected databases. There is no need to

recompute F and GF2
, since they are already known as shown by the following

lemma.

Lemma 5 (GF2
of a projection). For a given itemset X ⊆ I, GF2

(πX(T), ǫ) is

the subgraph of GF2
(T, ǫ) induced by the vertex set X.

Proof. By the definition of πX(T) and F .

We thus observe that we do not need to construct intermediate databases to

calculate the GF2
’s of the sub-databases in D(T).

38

Corollary 3 (Fast Recursive Distribution). Regarding the distribution D(T) =

{πA∪S(T), πB∪S(T)} induced by ΠV S(GF2
)={A,B : S}, the GF2

(πA∪S(T), ǫ) and

GF2
(πB∪S(T), ǫ) can be calculated as vertex induced subgraphs of GF2

(T, ǫ) by

vertex sets A ∪ S and B ∪ S, respectively.

The simplest way to obtain an n-way distribution is to use an n-way GPVS

directly. Independent mining results extend to the n-way case in an obvious

fashion. Thus, we will not prove them separately. However, there are a few

differences from the two-way case, which we will now portray. In an n-way GPVS

ΠV S(GF2
) = {V1, V2, . . . , Vn : S} of the GF2

graph, we note that the projection of

S ∪Vi will result in independent mining. Although S is a minimal separator (i.e.,

no subset of it is a separator), we observe that not all S need to be replicated in

all parts. In general, a portion of S will have to be replicated on processor i (i.e.,

Adj(Vi) ∩ S) which may in the worst case correspond to S. This implies that an

item in S may be replicated in a different number of projected databases than

others in the resulting distribution. The n-way GPVS model does not encapsulate

this fact. However, as will be seen, it is easier to implement with an n-way GPVS

tool.

Our formulation is also applicable to levels higher than 2 in case GF2
is too

dense. We define a graph GFk
of k-length frequent itemsets as follows:

Definition 5. GFk
(T, ǫ) = (F,E) is an undirected graph in which each vertex

u ∈ F is a frequent item. For each frequent itemset X of length k in Fk, we insert

a clique of items in X into this graph, i.e., one edge for each length 2 support of

X.

This definition allows us to use all the relevant results with no modification.

The extension of results is trivial and will not be detailed due to space consider-

ations. However, one property is important:

Lemma 6 (Sparsity of Higher Levels). GFk+1
is not denser than GFk

.

Proof. The edge set of GFk+1
is a subset of the edge set of GFk

because some of

39

the k-length frequent items will not be subsets of (k+1)-length frequent patterns,

hence they will be pruned when constructing the GFk+1
.

3.1.6 Maximal and Closed FIM problems

Our method is applicable to both variations of the FIM problem that compute

subsets of F . In maximal FIM, no set that is a subset of a frequent itemset is

output [3, 84]. In closed FIM, no set that is a subset of a frequent itemset and is

supported by the same transactions is output [2]. For instance, consider frequent

itemset X = {a, b, c}. In maximal FIM, no subset of X like {b, c} will be output,

and in closed FIM, {b, c} will be output if and only if it occurs in a different set of

transactions than X. After item distribution, if a processor has a set of frequent

items X, it also has all transactions belonging to all subsets of X. Thus, both

maximal and closed itemset mining can be parallelized with our method.

3.2 Two Data-Parallel Algorithms

In this section, we present NoClique and NoClique2, which are coarse-grain data-

parallel algorithms based on the theoretical observations of Section 3.1. Our

algorithms compute the set of frequent itemsets and their frequencies for a given

global transaction database T and a support threshold ǫ on n processors. The

implementation of NoClique2 is built upon our new vertical serial FIM algorithm

Bitdrill.

3.2.1 NoClique: the black-box parallelization

NoClique is a direct application of Theorem 1 and Corollary 3. First, we com-

pute GF2
. Then, we recursively apply the two-way database distribution of Def-

inition 4 until we have n parts, using fast recursive distribution (Corollary 3).

For instance, assume n = 4. Consider the two-level partitioning that results

40

in the GF2
graphs of T1 and T2 in Fig. 3.2. We have parts A, B, and sep-

arator S at the top level; we take two vertex-induced subgraphs of GF2
over

A ∪ S and B ∪ S. If we apply GPVS recursively on GF2
(T1) and GF2

(T2), we

can obtain four overlapping itemsets that define an item distribution such as

D(I) = {{b, c, f, g}, {b, e, g}, {a, d, e, g}, {d, e, h}}. Now, each itemset in D(I) can

be assigned to a processor. The database is redistributed to processors according

to this assignment. Afterwards, we can run any given sequential FIM algorithm

on each processor simultaneously and independently, with no further communica-

tion. The main advantage of this parallelization is that any serial FIM algorithm

that starts from level 3 can be used. The disadvantage is that, since some sub-

graphs of GF2
(T) are replicated, there is some redundant work. Therefore, this

algorithm is suitable only for sparse problem instances that do not require much

replication. The recursive application of the two-way item distribution can be

carried out in parallel, and of course it is much better if a parallel GPVS algo-

rithm can be used. We have obtained extremely high superlinear speedups in the

parallelization of FP-Growth and AIM2 which prompted us to continue research

in this direction. We applied NoClique to parallelize kDCI [11, 85, 29], LCM [86]

(all FIM), DCI-Closed [11], AIM [87] (version 2), and FP-Growth-Tiny [88].

3.2.2 Bitdrill: our sequential mining algorithm

Bitdrill is a new efficient sequential FIM code that we developed as a basis for our

NoClique2 algorithm. It uses tries (prefix trees) to store sets of itemsets, where

each itemset is a string of items in decreasing order of frequency. It uses tidlists

(a tidlist is a list of transaction id’s an item occurs in) to store the database in

memory; linked lists of items are used for sparse items and bit vectors are used

for dense items. The algorithm proceeds in BFS order and affords fast candidate

generation in a fashion similar to kDCI (which is one of the most efficient FIM

algorithms together with LCM). We use a regular tree data structure instead of

prefix arrays in kDCI. Fast candidate generation relies on the fact that the prefix

tree already captures much of the proximity between two itemsets needed for

generating a candidate. Let A and B be two frequent itemsets of length k that

41

share a prefix of length k−1. Both will be the children of the same internal node

in the prefix tree. Thus, one can simply take their union and generate a (k + 1)-

length candidate itemset. When we consider the Downward Closure lemma, we

will see that all candidates can be generated in this fashion since any subset of

a candidate must be frequent and will have frequent subsets with all possible

(k−1)-length prefixes. Thus, we can simply traverse the prefix tree and generate

all candidates by taking 2-combinations of the children of each internal tree node

that corresponds to a (k−1)-length prefix. After the candidate is generated, it

is subject to further pruning employing the Downward Closure lemma. Since we

use a vertical representation, the frequency of candidates can be calculated on

the fly. To speed up the tidlist intersections, we use a cache to hold all the tidlist

intersections in the path to the root, so that a single additional intersection is

sufficient to count the transactions in a candidate itemset. The overall algorithm

is quite efficient; its performance is comparable to kDCI for dense databases and is

faster than kDCI for sparse databases (due to the dynamic tidlist representation).

3.2.3 NoClique2 algorithm

3.2.3.1 Assumptions

We assume that the number of items is much greater than n (the number of

processors). We assume that the database has already been mined up to level l

and a GPVS of GFl
has been computed. In the following, we use k as a variable

level and we start mining from level l+1. Our algorithm will work better when

GFl
can be partitioned well. In many cases, there is a suitable l.

3.2.3.2 Overview

Using our n-way GPVS-based item distribution/replication scheme, we decom-

pose the mining problem into a collective work phase (with communication), and

independent work phase (with no communication) following the observations in

Corollary 2. The algorithm takes as input at each processor a local transaction

42

database Tlocal, and an absolute support threshold ǫ. We assume that T has been

partitioned transaction-wise into Tlocal’s prior to the execution of the mining al-

gorithm. We also supply the set of frequent itemsets up to and including level l,

the graph GFl
corresponding to level l, and a heuristic GPVS solution ΠV S(GFl

).

The algorithm is comprised of four phases:

1. Redistribute items with selective replication.

2. Mine replicated items in parallel.

3. Mine non-replicated items independently.

4. Merge frequent itemsets across replicated and non-replicated sets of items.

The phases of our algorithm explained in the following.

3.2.3.3 Redistribution of items

Items are distributed according to an n-way GPVS of GFl
. The items in the

separator Vs are replicated on each processor. Every other part Vi in the partition

contains items collected on a distinct processor. Using the notation of NoClique:

D(I) = {Vi ∪ Vs|Vi ∈ ΠV S(GFl
)}.

The horizontal input databases are scanned and using all-to-all personalized

communication, each processor receives the parts of transactions that it requires

according to the item distribution. After that each processor constructs tidlists

of those items.

3.2.3.4 Mining replicated items in parallel

Since each processor has the tidlists of all the items in Vs, we can parallelize can-

didate generation and testing steps fairly well, starting from level l + 1. Assume

that for a previous level k, we have the frequent itemsets inserted in decreas-

ing frequency order into a prefix tree. On the prefix tree, we can efficiently

43

generate candidates for level k+1 using fast candidate generation of Bitdrill.

While traversing an internal node for a k−1 length prefix during fast candidate

generation (Section 3.2.2), for a children (all of which are leaves) at most a2 can-

didates can be generated. Those internal nodes are each given the just mentioned

upper-bound of a2 as weight and we partition the prefix tree into n sub-trees of

alphanumerically consecutive itemsets, where each sub-tree has a roughly equal

sum of weights. Each processor generates a distinct set of candidates with fast

candidate generation on the assigned sub-tree, and then intersects tidlists to check

their frequencies, simultaneously. At the end of the iteration, the (locally out-

put) frequent itemsets of length k+1 are gathered on all processors. The iteration

continues until frequent itemsets are exhausted. Since both candidate generation

and testing steps are parallel, and the sub-tree based distribution of candidates

makes local tidlist caches useful, this phase works fairly fast.

3.2.3.5 Independent mining

On each processor i, there is a distinct set of tidlists corresponding to items in Vi

not present on any other processor. The frequent itemsets within Vi are mined

using a level-wise vertical mining algorithm (Bitdrill) starting from level l + 1.

3.2.3.6 Merging frequent itemsets

As the last step, we mine frequent itemsets that have items in both the replicated

Vs and the non-replicated items Vi (for a processor i). We use the output of two

preceding phases to achieve this. We start with level l + 1 again. For merging

frequent itemsets in a level k+1, assume that we have the frequent itemsets in

level k. We use both the frequent items in level k and the already mined frequent

itemsets in Vs and Vi to prune as many frequent itemsets as possible. We apply the

well-known Downward Closure pruning. Furthermore, any generated candidate

must be combined from already-mined two sets of frequent items that we are

merging. We have adapted fast candidate generation to work with our itemset

merging logic. We have achieved this in two complementary steps explained

44

below:

First step: For any candidate itemset that has at least 2 items in either

part (Vs or Vi), we can use ordinary fast candidate generation over the frequent

itemsets in level k that have items in both Vs and Vi sets. After that, we check

for a candidate C if C ∩Vs is frequent in replicated database, which is the output

of phase (ii), and C ∩Vi is frequent in independent database, which is the output

of phase (iii).

Second step: Consider a (k+1)-length candidate C with one item x in one

part and k items in the other part. Not all of its k-length supports have at

least 1 item in either part, therefore C cannot always be generated from the

frequent itemsets between parts in level k with fast candidate generation. We

make use of the observation that if C is frequent, Vs will have k k-length subsets

that include x. While traversing the (k−1) length prefixes in the prefix tree,

for each item x, we construct a set of conditional (k−1)-length patterns that

have items in only one part by removing x. Then, for each item x, we generate

k-length candidates from the corresponding set of conditional patterns using fast

candidate generation. These k-length candidates have items in only one part and

are checked if they are already frequent in that part. If so, then we add x back to

generate C and apply Downward Closure pruning restricted to k-length subsets

across both parts.

After fast candidate generation, we use the ordinary caching and intersection

routines of Bitdrill to calculate frequencies. Iteration continues until exhaustion

of merged patterns. Note that this step can be used for any distribution of items,

not just for our GPVS-based distribution.

3.2.4 Repl-Bitdrill algorithm

The phase of mining replicated items in parallel can be considered as a stand-

alone parallel FIM algorithm, which is similar to the second phase of ParDCI [10].

When used on its own, we call it Repl-Bitdrill as it replicates the tidlists of all

45

frequent itemsets on all processors, at the level that it starts mining. Note that

NoClique2 degenerates to Repl-Bitdrill when partitioning is impossible, i.e., all

items are replicated. Repl-Bitdrill is used in Section 3.3 to experimentally show

the merits of partitioning in NoClique2.

3.2.5 Comparison with Par-Eclat

To put things in perspective, it may help to note the ancestry of our algorithm.

Our algorithm is close to Par-Eclat [5]. The most important similarities between

two algorithms are: (i) We use the same graph of two-items when l = 2. (ii)

We also use graph theoretic observations to cluster items. (iii) We also distribute

items so that each processor mines independently with no further communication.

On the other hand, we highlight the following differences: (i) We propose a novel

itemset clustering method based on GPVS. (ii) Our item distribution method

can minimize data replication by setting vertex weights appropriately. (iii) Our

algorithm is fairly independent of the underlying serial mining algorithm (but

needs further work to implement phases (ii) and (iv) of NoClique2). (iv) Work

over replicated items is parallelized.

3.2.6 Implementation

Our implementations of Bitdrill, Repl-Bitdrill, NoClique and NoClique2 are writ-

ten in C++ using MPI. The computation of GPVS in NoClique2 is relevant to

the experiments. We use the hypergraph partitioning-based formulation for com-

puting a GPVS of GFl
[89, 90]. To that end, we use the hypergraph partitioner

PaToH [91, 92].

46

4 processors 8 processors
Database NC2 RBD PDCI NC2 RBD PDCI

T60.I10.2000K 3.4 2.3 1.2 4.3 4.0 2.3
user-likesmovies 2.9 2.9 2.8 5.0 5.0 7.4

trec 2.6 2.7 – 4.2 4.5 –
trec.lp.200000 2.8 2.8 0.7 4.9 4.9 1.5

16 processors 32 processors
Database NC2 RBD PDCI NC2 RBD PDCI

T60.I10.2000K 7.7 6.2 4.4 11.1 2.6 8.7
user-likesmovies 7.5 7.9 11.4 10.7 10.6 8.2

trec 6.3 5.1 – 8.7 7.1 –
trec.lp.200000 7.9 1.6 2.8 13.0 1.7 5.2

Table 3.1: Speedup Values

3.2.7 Applicability to dense data

We have indicated that our algorithm is not supposed to work well with problem

instances that give rise to a dense graph. In dense databases, this is not nec-

essarily the case and we have observed that our method works even with such

databases. When the graph is quite dense, a large number of items is replicated

and our algorithm degenerates into an algorithm like the second phase of kDCI

that replicates all items. Often, choosing a more suitable support threshold or a

starting level for our algorithm helps.

3.3 Experiments

We have run our algorithms NoClique2 and Repl-Bitdrill as well as ParDCI on

one synthetic (T60.I10.2000K) and three real-world databases on a Beowulf clus-

ter. In Table 3.1, NoClique2, Repl-Bitdrill and ParDCI are abbreviated as NC2,

RBD, and PDCI, respectively. As seen in Table 3.1, out of 16 parallel mining

cases, NoClique2 achieves considerably higher speedup in 8 cases, whereas No-

Clique2 and Repl-Bitdrill attain close speedups in 8 cases. ParDCI achieves the

highest speedup in 2 cases. For the trec database, ParDCI unfortunately crashed

47

and we could not measure its running time. We would expect it to have good per-

formance as in user-likesmovies which is similarly dense. For the sparser database

T60.I10.2000K, NoClique2 achieves better speedups than the other algorithms.

Only NoClique2 attains increasing speedup with increasing number of processors

for all the databases. Repl-Bitdrill and ParDCI show this nice property only for

2 databases each.

We now present a detailed explanation of the databases, experimental setup,

speedup, partitioning quality, running time dissection, speedups of NoClique par-

allelizations and discussion of observed superlinear speedups in NoClique. With

regards to partitioning quality, we have examined expected vs. actual load imbal-

ance and data replication ratio. We have seen that our heuristic load estimates

work but could be much improved. Data replication is controlled well enough

but it is better for small number of processors. It turns out that in the sparse

database, independent mining phase dominates and in the dense databases (user-

likesmovies and trec) the collective work phase dominates. For these databases

the replication approach of Repl-Bitdrill and ParDCI is effective. However, in

an important other case (trec.lp.200000) which represents the “long tail” in a

real-world dataset, there is a mixture of both phases and ultimately NoClique2

does much better than Repl-Bitdrill and ParDCI, showing the true potential of

our approach. The trec.lp.200000 database contains items in the trec database

with a frequency of 200000 and lower. In the trec database, it is not possible to

mine frequent itemsets beyond a narrow set of items due to the power-law like

distribution of items, however in such real-world databases we are interested in

relationships among a large number of items.

3.3.1 Data

Table 3.2 shows the synthetic and real-world databases we have used for our

experiments. In the table, |T |, |I|, |X|avg denote the number of transactions, the

number of items, the average transaction size, respectively, and the last column

gives the database size.

48

Database |T | |I| |X|avg Size (MB)

T60.I10.2000K 2× 106 6000 60 553
user-likesmovies 4.78×105 17700 118.6 292.9
trec 1.68×106 5267657 177.2 1414.8
trec.lp.200000 1.68×106 5267657 138.63 1172.3

Table 3.2: Databases

3.3.1.1 Synthetic database

We have used the association rule generator described in [1] to generate the

synthetic database T60.I10.2000K, based on parameters found in previous work

such as [5]. The average length of maximal patterns is 10, and the number of

patterns is 10000 for the synthetic database.

3.3.1.2 Real-world databases

The user-likesmovies database is derived from the NETFLIX competition, where

items are movies and transactions are the movies that a user has liked by rating

them more than 3 over 5. The frequent itemsets are movies that many users

like together, which can be used for movie recommendations. The trec database

is the WebDocs database [93], which is basically a binary term-document ma-

trix derived from the TREC data. The trec.lp.200000 database is constructed in

the the same way as WebDocs database but it only includes items with a fre-

quency of 200000 and lower. This database is included because we cannot reach

many interesting patterns in a feasible time if we do not discard the few high-

frequency items. We cannot use the small (usually smaller than 40 MB) dense

databases that are popular in dense data mining research since those have very

few items while our algorithm requires many, and obviously replicating a small

dense database and mining it with a very low support threshold is best achieved

with ParDCI [10], Repl-Bitdrill, or a similar parallel algorithm, not NoClique2.

On the other hand, we expect there to be many databases that are not too dense

for any decomposition to work, like the real-world databases that we use (in

49

Database Support |F | |F| Bitdrill runtime

T60.I10.2000K 5000 4470 2075540 1114.2 sec.
user-likesmovies 20000 716 325806 223.1 sec.
trec 150000 313 587969 329.5 sec.
trec.lp.200000 20000 2225 412057 829.3 sec.

Table 3.3: Problem instances

particular trec.lp.200000).

Table 3.3 depicts the problem instances we have used in the experiments. The

second column is the support threshold, |F | is the number of frequent items, |F|

is the number of frequent itemsets, and the last column gives the running time

of Bitdrill after level 3.

3.3.2 Experimental setup

We measured the performance of our parallel FIM program on a Beowulf su-

percomputer [94] comprised of 32 compute nodes, a switched Gigabit Ethernet

interconnection network and an interface node. Each node has a 3 GHz Pentium

IV processor and a local disk, running Linux kernel 2.6. The interface node and

the first 16 processors have 2 GB memory each and the rest have 1 GB memory

each.

The proposed algorithms NoClique2, Repl-Bitdrill and the previous algorithm

ParDCI [10] were run on 4, 8, 16, 32 processors. Support thresholds are given as

absolute. We give the times for Repl-Bitdrill because comparing NoClique2 to

Repl-Bitdrill shows how much partitioning helps in NoClique2. We have acquired

the state-of-the-art ParDCI [10, 29] and compared it to our algorithms. We have

not been able to find any other efficient MPI-based FIM program for comparison.

NoClique2 was run on GF3
, starting mining from level 4. Likewise, Repl-Bitdrill

and ParDCI start mining from level 4, the times for Repl-Bitdrill and ParDCI

include database replication. ParDCI decides dynamically when to switch to

50

a replicated vertical representation. The support threshold that we used for

T60.I10.2000K was similar to support thresholds used in previous FIM papers

that dealt with sparse databases. We took the 0.25% value from [5].

Sequential PaToH was used for HP-based GPVS. We have incorporated the

parallel running time for GPVS calculation assuming that parallel PaToH would

have 80% efficiency. Since the PaToH tool [91] used for GPVS involves ran-

domized algorithms, it yields different transaction database distributions for the

same problem instance (graph/hypergraph partitioning programs use randomized

heuristics to ensure stable partitioning quality). Thus, each experiment has been

repeated 5 times and the average values have been plotted in the following figures.

3.3.3 Speedup

Speedup is defined as the ratio of the serial runtime of the best sequential algo-

rithm to the parallel runtime [83, Chapter 2]. The plots in Fig. 3.4 convey the

average speedup results for NoClique2 and the deterministic speedup results for

Repl-Bitdrill and ParDCI on 4, 8,16, and 32 processors. Since Bitdrill is the best

or close to the best for all of our problem instances, we calculate speedup relative

to Bitdrill.

As seen in Fig. 3.4, out of 16 parallel mining cases, NoClique2 achieves con-

siderably higher speedup in 8 cases, whereas NoClique2 and Repl-Bitdrill at-

tain close speedups in 8 cases. ParDCI achieves the highest speedup in 2 cases.

ParDCI has crashed on the trec database, however in that database we expect

that it has close performance to Repl-Bitdrill as is the case with user-likesmovies

which is a dense database like trec.

For the sparser database T60.I10.2000K, NoClique2 achieves better speedups

than the other algorithms. Only NoClique2 attains increasing speedup with in-

creasing number of processors for all of the databases. Repl-Bitdrill and ParDCI

show this nice property only for 2 databases each.

The speedups of NoClique2 in Fig. 3.4 pertain to the phases succeeding the

51

 0

 5

 10

 15

 20

 25

 30

4 8 16 32

P
ar

al
le

l S
pe

ed
up

Processors

NoClique2
Repl-BitDrill

ParDCI

(a) T60.I10.2000K database

 0

 5

 10

 15

 20

 25

 30

4 8 16 32

P
ar

al
le

l S
pe

ed
up

Processors

NoClique2
Repl-BitDrill

ParDCI

(b) user-likesmovies database

 0

 5

 10

 15

 20

 25

 30

4 8 16 32

P
ar

al
le

l S
pe

ed
up

Processors

NoClique2
Repl-BitDrill

ParDCI

(c) trec database

 0

 5

 10

 15

 20

 25

 30

4 8 16 32

P
ar

al
le

l S
pe

ed
up

Processors

NoClique2
Repl-BitDrill

ParDCI

(d) trec.lp.200000 database

Figure 3.4: Speedups of NoClique2, Repl-Bitdrill and ParDCI for the problem
instances given in Table 3.3. ParDCI unfortunately crashed on trec database,
and those were omitted.

52

 0

 50

 100

 150

 200

 250

 300

4 8 16 32

E
xp

ec
te

d
Im

ba
la

nc
e

(%
)

Processors

T60.I10.2000K
user-likesmovies

trec
trec.lp.200000

(a) Expected load imbalance

 0

 50

 100

 150

 200

 250

 300

4 8 16 32

Im
ba

la
nc

e
(%

)

Processors

T60.I10.2000K
user-likesmovies

trec
trec.lp.200000

(b) Actual load imbalance

Figure 3.5: Load imbalance of NoClique2.

computation of GF3
and its GPVS, including database redistribution overheads.

It is seen that the speedups in the portion of the task we are parallelizing are

promising.

3.3.4 Partitioning quality

We show the quality of our GPVS model by computational load imbalance and

data replication ratio. Figure 3.5 shows the expected and actual load imbalance

versus the number of processors for the parallelization of kDCI. We define the

actual imbalance of a parallel run as LIact = (tmax/tavg) − 1 where tavg is the

average running time of the independent work phase (independent mining and

itemset merging together), and tmax its maximum. Consider the item distribu-

tion D(I) = {I1, I2, . . . , In}, we can define the expected load imbalance by the

estimates derived from the distribution as follows:

LIexp =
max{w(πIp(T))|Ip ∈ D(I)}

1
n

∑

1≤p≤n w(πIp(T))
− 1 (3.9)

For the load estimate function, we have used the function w1 which was also used

in implementing the algorithm.

As it would be expected from an estimate that takes into account only data

53

 0

 500

 1000

 1500

 2000

 2500

4 8 16 32

D
at

a
R

ep
lic

at
io

n
(%

)

Processors

T60.I10.2000K
user-likesmovies

trec
trec.lp.200000

Figure 3.6: Replication ratio of NoClique2.

size, the w1 function does not make precise estimates. However, even the expected

imbalances are imperfect, which suggests that improvements in GPVS algorithms

could be reflected in our speedups. On the other hand, there is usually a gap

between actual imbalance and expected imbalance, suggesting that there is room

for improvement in load estimation. For the dense user-likesmovies database, the

small actual load imbalance is due to the collective work phase, which dominates

the running time for that database.

NoClique2 is geared towards keeping the total amount of data replication

low. Figure 3.6 shows the ratio of average data replication for each database and

varying number of processors. The replication ratio is measured according to:

Rdata =
1

|P |

∑

q∈P

∑

u∈Iq f(u)
∑

u∈I f(u)
− 1, (3.10)

where P is the set of processors, Iq is the set of items assigned to processor q.

Recall that we are mining itemsets of length k+1 and greater.

As seen in Fig. 3.6, data replication increases with growing number of pro-

cessors as expected. For the denser problem instances, we see that there is more

replication. The higher data replication ratio for user-likesmovies database par-

tially accounts for the close performance of NoClique2 and Repl-Bitdrill for this

particular database.

54

 0

 20

 40

 60

 80

 100

T60.I10.2000K-4

T60.I10.2000K-8

T60.I10.2000K-16

T60.I10.2000K-32

user-likesm
ovies-4

user-likesm
ovies-8

user-likesm
ovies-16

user-likesm
ovies-32

trec-4
trec-8

trec-16

trec-32

trec.lp.200000-4

trec.lp.200000-8

trec.lp.200000-16

trec.lp.200000-32

P
ar

al
le

l R
un

tim
e

(%
)

Database-Redistribution
Collective-Work
Independent-Work
GPVS

Figure 3.7: Dissection of running time of NoClique2.

3.3.5 Running time dissection

Figure 3.7 shows the parallel running time dissection of the three phases in No-

Clique2: database redistribution, collective work (Repl-Bitdrill running on the

items in separator basically), independent work (comprising independent min-

ing and itemset merging sub-phases), and parallel GPVS. The time dissection is

shown varying number of processors. In the labels of the x-axis, the database

names and the numbers of processors are separated by dashes, and the y-axis

shows the percentage of running time taken by a task. We see that parallel

GPVS time is almost insignificant in the running times, it takes about 1% time

in trec.lp.200000 experiments.

There are three main sources of parallel overhead in NoClique2. First, the

more data replication there is, the longer database redistribution takes. Second,

the amount of collective work phase can invoke a lot of communication since all

the frequent itemsets have to be broadcast at each level. And third, the load

imbalance in the independent work phase, comprising independent mining and

55

merging frequent itemsets, can limit speedup. The influences of those factors

depend on the problem instance as our experiments demonstrate.

3.3.6 NoClique parallelizations and superlinear speedups

We have parallelized several sequential (all and closed) FIM algorithms using

NoClique. However, we will only demonstrate our parallelization of AIM and

FP-Growth-Tiny as they were extremely effective in some cases.

Speedup plots for the black-box parallelization of AIM [87] with two syn-

thetic databases are shown in Fig. 3.8. T20.I6.1000K has an average transaction

length of 20 and an average maximal pattern length of 6. T40.I8.1000K has an

average transaction size of 40, and average maximal pattern length of 8. Both

databases have a million transactions. In Fig. 3.8 and the following discussion

of superlinearity, speedups are calculated relative to the parallelized sequential

algorithm instead of the best sequential algorithm, and they consider the entire

mining time. It turns out that our technique speeds up AIM significantly. All

the speedups in Fig. 3.8 are highly superlinear. For instance, we see a speedup

of 63 on 8 processors for 0.002 support. However, note that serial kDCI works

20 times faster than serial AIM in this case; kDCI takes 77 seconds while AIM

takes 1544 seconds. For that case, AIM is quite slow.

Theoretically, superlinear speedup is not possible except when the serial algo-

rithm that we are comparing to is suboptimal (provided that the serial computer

has the same amount of memory). This can be easily shown by noting that

the parallel algorithm can be simulated by a serial algorithm. In the significant

speedups that we observe, it is indeed possible to speed up the serial algorithm by

simulating our parallel program on a serial computer. This will of course be pos-

sible only if the serial computer has enough RAM, thus for the larger databases

we could not do that. We will mention two cases. First, NoClique paralleliza-

tion of FP-Growth-Tiny with the T40.I8.500K database (a smaller version of

T40.I8.2000K), using a support threshold of 0.4% run on a single processor sim-

ulating 4 processors completes in 31.5 seconds, while the original serial algorithm

56

 0

 10

 20

 30

 40

 50

 60

 70

1 4 8 16 32

P
ar

al
le

l S
pe

ed
up

Processors

T20.I6.1000K.aim

0.001
0.0015

0.00125

 0

 20

 40

 60

 80

 100

 120

1 4 8 16 32

P
ar

al
le

l S
pe

ed
up

Processors

T40.I8.1000K.aim

0.002
0.003
0.004

Figure 3.8: Relative speedups for NoClique parallelization of AIM on
T20.I6.1000K and T40.I8.1000K using various relative supports (1 is 100%).

runs in 353.4 seconds, achieving 11.2 speedup on a single processor. Likewise,

NoClique parallelization of AIM with T40.I8.1000K using 0.4% support on a sin-

gle processor simulating 4 processors completes in 53 seconds compared to 1146

seconds for the original serial algorithm, which is a speedup of 21.6 on a single pro-

cessor. Simulation of multiple processors on a single processor was done simply by

using a hosts file that included a single host in the LAM/MPI implementation.

Therefore, the superlinear speedups basically show that the serial algorithms

used were not the fastest for those sparse problem instances. Our interpretation

of the superlinear speedup results is that our decomposition method amends

scalability issues with some of the serial algorithms. It also makes better use of

the aggregate memory of the parallel system and the memory hierarchy of modern

processors. Interestingly, we have seen that our method can bring the NoClique

parallelization of slower algorithms like FP-Growth-Tiny to the performance level

of the NoClique parallelization of a faster algorithm (i.e., kDCI).

Since our distribution method tends to reduce the number of items stored

per processor, it can be helpful with FIM algorithms as they use costly data

structures to represent and process candidate sets. We have found that both

FP-Growth-Tiny and AIM are sensitive to the number of items. In the case of

FP-Growth-Tiny, the number of items directly influences execution time, since

57

for each item a new conditional Fp-Tree is constructed (recursively) [15].

After all, we do not really narrow down the search space, we just make it easier

for the programs to handle parts of the search space at once. Decomposing the

whole search task into a sequence of search sub-tasks can lead to faster mining.

Note that all the serial runs that we give do fit into physical RAM and they never

thrash the disk.

58

Chapter 4

Intelligent Candidate

Distribution with Selective Item

Replication

4.1 Introduction

We extend the Graph Partitioning by Vertex Separator model for parallel FIM

we had proposed earlier, by relaxing the condition of independent data mining.

Instead of finding independent sets, we may minimize the amount of communica-

tion and partition the candidates. When we do not require independent mining

in the sense of NoClique2, we may partition the candidates in a fine-grained man-

ner, amending the load imbalance problem that emanates from the coarse-grained

load balancing approach of the NoClique2 algorithm. Instead of frequent item-

sets, candidates of succeeding levels are generated and we construct the following

model which is inspired by the hypergraph transformation of the GPVS prob-

lem: each vertex represents a candidate and each hyperedge represents an item.

The hyperedges in the cut correspond to items that must be replicated on some

processors. Thus, the model minimizes the cost of data redistribution, in similar

manner to the chapter on the GPVS model. However, it also finely balances the

59

parallel load, as each candidate is a task. While this approach has better load

balance, it will also have different parallel overheads due to the need to generate

many candidates and solve multiple partitioning problems. The model can be

calculated only for 4-5 levels and then re-partitioning has to be made until all

levels are mined. Otherwise, there would be too many vertices. The partitioning

model for this algorithm has been implemented with PaToH and has been seen to

work quite well on sample datasets. The re-partitioning model is yet to be worked

out; it is an important optimization as it must reduce further data re-distribution

volume. An optimization we are considering in addition to re-partitioning is to

use a variable threshold for each item, for instance by a ratio of the frequency of

each item, so that we discard superfluous frequent patterns and obtain sparser

hypergraphs.

Section 4.2 introduces the hypergraph partitioning model. The Intelligent

Candidate and Item Distribution algorithm (ICID) is introduced in Section 4.3.

Section 4.4 proposes a re-partitioning model that augments the hypergraph par-

titioning model with fixed processor vertices. Section 4.5 explains the implemen-

tation details of ICID. Finally, Section 4.6 presents our performance study based

on the experiments of Section 3.3.

4.2 Hypergraph Partitioning Model

We introduce a hypergraph partitioning model for fine-grain load balancing and

item distribution for the parallel frequent itemset mining problem. The hyper-

graph partitioning model improves substantially over the graph partitioning by

vertex separator (GPVS) model (NoClique2 algorithm), as it exerts precise con-

trol over both task and data distribution at the same time.

The hypergraph partitioning model is motivated by the observation that the

task distribution induced by GPVS does not yield very low load imbalance. The

60

indirectness and the coarse-graininess of task distribution contribute to the in-

flated load imbalance in the case of NoClique2 algorithm. To amend this short-

coming, we have revisited the problem with the express purpose of repairing load

imbalance. While the GPVS model fares well in terms of decreasing data replica-

tion substantially, and finding independently mined subsets merely from supplied

frequent itemsets, with more input data, it is possible to make better decisions

regarding task distribution in parallel FIM.

Let a hypergraph H = (V,E) where V is a set of vertices, and E = {X|X ⊆

V }, a set of hyperedges, where each hyperedge X is a proper subset of V . Vertex

weights are given by the weighting function wV : V → R, and hyperedge weights

are given by wE : E → R. The weighting functions are extended to sets with

ws
V : 2V → R, ws

V (X) =
∑

x∈X wV (x), and ws
E : 2E → R, ws

E(A) =
∑

X∈A wE(X).

First, we formally define weighted hypergraph partitioning.

Definition 6. (n-way weighted hypergraph partitioning) Π(H) = {V1, V2, ..., Vn}

is a set-theoretic partition of V where the weight of the hyperedge-cut ws
V (EC) is

minimized, and where

EC = {X ⊆ V | ∃Vi, Vj ∈ Π(H) ∧ Vi 6= Vj ∧X ∩ Vi 6= ∅ ∧X ∩ Vj 6= ∅}, (4.1)

under the constraint that for all Vi ∈ Π(H) w(Vi) ∼= w(V)/n [parts have roughly

equal vertex weights].

A hyperedge-cut EC in this context is a set of hyperedges, removal of which

disconnects the hypergraph into separate sub-hypergraphs. Hypergraph parti-

tioning optimizes EC such that its weight is minimized, and the weights of vertex

parts are balanced.

Hypergraph partitioning can model the parallel computation of the FIM prob-

lem succeeding level k, for the input parameters transaction database T and

support threshold ǫ as follows.

Definition 7. Let H(Fk, l) = (C,N) be a hypergraph where C corresponds to the

set of candidate itemsets generated from Fk up to level l, and each hyperedge X

61

in the set of nets N corresponds to an item x ∈ I that occurs in all candidates

that are incident on X. Let i : N → I store the item that corresponds to a given

hyperedge.

The vertices represent atomic tasks, and the hyperedges represent data de-

pendencies in this partitioning model. We assign a vertex to each candidate to

establish fine-grain task distribution, while we assign a hyperedge to each item

to minimize communication volume.

The weight functions wV and wE respectively correspond to load estimate of

a candidate itemset, and datum size of an item. Load estimate of a candidate

itemset depends somewhat on the serial FIM algorithm used:

1. It may be given constant weight 1, neglecting differences between candi-

dates.

2. Similarly, for efficient vertical algorithms that use a tidlist cache over a

prefix-tree such as DCI and Bitdrill, it may be given by

wV (X) = min({f(x)|x ∈ X}) (4.2)

for candidate set X, since that is an upper bound on the number of items

that the tidlist intersection algorithm will perform at the fringe of the prefix-

tree, assuming the intersection of other tidlists ofX are present in the cache.

3. Conceivably, even more elaborate probabilistic load estimates may be pro-

posed. One such estimate weighs and sums the frequencies of items in the

candidate set X. First, the items are sorted in order of decreasing frequency

as that is the order they will be inserted in the prefix tree. For the ith item

x = X[i] in this order, we add f(X[i])/(|X| − (i− 1)) to the weight of this

candidate itemset. This weight informs that it is much more likely for the

tidlist intersections of the more frequent items to be available in the cache,

and the least frequent item at the end will incur full scanning cost.

The datum size of an item is its frequency, i.e., length of its tidlist, wE(Y) =

f(i(Y)).

62

6

c

3

f

8

b

6

g
5

a

6

d

8N:

c1

5V:

c2

5

c3

5

Figure 4.1: Hypergraph model of parallel FIM task for the example database of
Fig. 3.1.

V1 V2

6

c

3

f

8

b

6

g
5

a

6

d

8N:

c1

3V:

c2

5

c3

5

Figure 4.2: A bi-partition of the hypergraph model in Fig. 4.1.

63

The example of Fig. 3.1 has been adapted to the hypergraph partitioning

model in Fig. 4.1. The vertices (candidates) are drawn as squares, and the hy-

peredges (items) are drawn as circles. The weights are written inside vertices and

hyperedges. The labels are attached right next to vertices and hyperedges. The

candidate itemsets are labeled as cx. A solution of this partitioning problem is

depicted in Fig. 4.2. The dashed lines indicate vertex sets, and the double-lined

hyperedge connections indicate hyperedges that belong to the edge-cut.

As in NoClique2, we may assume that the data is initially partitioned

transaction-wise randomly, and has to be redistributed according to the parti-

tioning model. Then, the partitioning objective minimizes communication vol-

ume under some conditions.

Let us first define the replication size of a hyperedge X with respect to a given

partition Π(H).

Definition 8. The replication size of a hyperedge X in H = (V,N) is defined

with a size function λ : N 7→ N where

λ(X) = |{Vi | Vi ∈ Π(H) ∧X ∩ Vi 6= ∅}|. (4.3)

λ calculates the number of vertex sets in the partition Π that hyperedge X is

connected to.

That is, the item that corresponds to X must be replicated on λ(X) proces-

sors.

Theorem 2. Let EC be the hyperedge-cut corresponding to a weighted hyper-

graph partition Π(H(Fk, l)). Each hyperedge X in the cut is incident on some

vertex parts, and the item i(X) that corresponds to it must be replicated on those

processors. Then, total communication volume is

V =
∑

X∈N

λ(X).wE(X) (4.4)

for distributing the database T from a central server according to the partition.

64

Proof. For each hyperedge that is incident on a vertex part, the communication

volume increases by the datum-size (number of tid’s) of the item that corresponds

to the vertex part, which is given by wV .

The communication volume for a central server is approximately the same for

random horizontal distribution of the transaction database.

The hyperedges that do not remain in the hyperedge-cut, correspond to items

that are communicated only once to a home processor. If the cut weight is zero,

then the communication volume adds up to ws
E(E). This lemma illustrates a

relation to the GPV S model.

Lemma 7. Let EC be the hyperedge-cut corresponding to a weighted hypergraph

partition Π(H(Fk, l)). If we assume that each hyperedge in the cut is incident on

all vertex parts, then V = n.ws
E(EC).

Note that this only approximately holds since the hyperedge-cut likely con-

tains large hyperedges, but not necessarily ones that are incident on all vertex

parts. Therefore, Π(H(Fk, l)) relates to minimizing communication volume for re-

distributing the database T since an initial transaction-wise random distribution

is similar to the case with the central server.

To exactly minimize communication volume, we would have to change the

partitioning objective to minimize the sum of λ(E).w(E) for each edge E in the

hyperedge-cut, where λ(E) is the replication-size of hyperedge.

We may assume that each candidate itemset may be mined independently,

given its data dependencies are present on a processor, which our partitioning

model eloquently ensures. Then, each vertex part Vi may be mined on a separate

processor 1 ≤ i ≤ n.

Lemma 8. For all vertex parts in the partition Vi ∈ Π(H(Fk, l)), let the candidate

itemsets in Vi be assigned to processor i. If wV (X) is a load estimate of candidate

itemset X, then ws
V (Vi) is a cumulative load estimate of processor i.

65

Given these general observations, we may design a parallel FIM algorithm

that distributes candidate itemsets with selectively replicated item distribution.

4.2.1 Comparison to GPVS model

The primary computational differences of the hypergraph partitioning model are:

it represents both tasks and data separately using a hypergraph, it uses different

weights for task and data, and it uses the set of candidates to be mined in the

levels from k+1 up to l instead of the frequent itemsets Fk. These features endow

the hypergraph model with much flexibility compared to the graph partitioning

model, as now load is balanced in a fine-grained manner. The hypergraph model

also performs selective item replication differently, as each item is not always

replicated on each processor, and it is only sent to the processors that absolutely

need it.

On the other hand, the need to generate candidates in the successive levels

to be mined is a slight shortcoming, as this process is likely to generate spuri-

ous candidates for large l. Additional parallel overhead will arise from having to

redistribute the database multiple times, and therefore compute multiple hyper-

graph partitionings. We will later show how the consequent partitionings may be

optimized.

4.3 Intelligent Candidate and Item Distribution

Algorithm

We propose a new parallel algorithm called Intelligent Candidate and Item Distri-

bution (ICID) algorithm which employs the theoretical foundation of Section 4.2

in a practical manner.

We assume that the transaction database T =
⋃

1≤i≤n Ti has been partitioned

horizontally in any way prior to the algorithm. The algorithm also takes as

66

input parameters, the support threshold ǫ, k, l, and naturally the number of

processors n. Like NoClique2, we first mine all frequent itemsets, level-wise,

up to level k. Any level-wise horizontal parallel FIM algorithm patterned after

Count-Distribution may be used for this purpose.

Then, we construct H(Fk, l) = (C,N) and invoke an appropriate weighted

hypergraph partitioning tool to approximately solve the optimization problem.

After this step, we know how to distribute items with selective replication,

and to distribute candidate itemsets. We assume that each processor has access

to the entire hypergraph partition and that the root processor has the entire set

of candidates C to be mined. Each processor i is sent the candidate itemsets

Ci ∈ Π(H), corresponding to vertices in vertex part Vi.

A collective communication step is performed, and the horizontally distributed

transaction database is redistributed such that each processor i receives the

tidlists of hyperedges connected to candidate itemsets in Vi. This communi-

cation step ensures that after item distribution with selective replication, each

processor can proceed independently.

Thereafter, each processor mines its local transaction database that contains

a number of tidlists simultaneously and independently, such that mining is re-

stricted to only the candidate itemsets in Ci on processor i.

4.4 Re-partitioning Model for Incremental Al-

gorithm

Since l is usually a small number, multiple iterations of the algorithm are neces-

sary for mining the full set of frequent itemsets F , exactly q = ⌈(L(F)− k)/l⌉

times where L(·) is the number of levels in a set of itemsets. It seems a practical

choice to decrease the number of iterations, to prevent the solution of too many

hypergraph partitioning problems. However, if the database is loaded from the

horizontal parallel store and distributed from scratch each time, this would result

67

in excessive parallel overhead.

Instead, we must preserve the already distributed parallel vertical database

in memory, or on secondary storage, and then make as little additional commu-

nication as possible to process the new set of candidates in the next iteration.

We can solve this optimization problem by incorporating the current distribution

of items D (Equation 4.9) into our hypergraph partitioning model. This results

in a re-partitioning model which distributes the candidates as before, while min-

imizing the volume of item re-distribution, incrementally. Thus, the correctly

construed re-partitioning model that we are about to present becomes a major

optimization that we recommend for the ICID algorithm.

The modeling of the present distribution of items D(I) is achieved by adding

fixed sink vertices corresponding to each processor p ∈ 1 . . . n. See the one-phase

remapping method of [37] for an example of a hypergraph partitioning approach

which used fixed vertices. A fixed vertex is defined as follows:

Definition 9. (Fixed Vertex) A fixed vertex in hypergraph partitioning Π(H) is

a vertex that is pre-assigned, and cannot be moved. Fixed vertices VF have been

assigned their partition number with a function τ : VF 7→ 1 . . . n.

We propose the re-partitioning model as follows. Assume that ICID is per-

formed in q iterations. Let Dj be the item distribution at iteration j, for all

1 ≤ j ≤ q. Let us assume D0(x) = ∅ for each x ∈ I. If we assume that we

have Dj−1, then we can decide Dj with a hypergraph partitioning model. We

denote the partitioning at iteration j with Πj, starting from iteration 1. Let Cj

be the candidates generated for iteration j, and Nj be the nets for iteration j in

Definition 7. Let EC,j be the edge-cut of the partition at iteration j.

Definition 10. (Re-partitioning Model) For re-partitioning the candidates in it-

eration j, Definition 7 is reused where C = Cj and N = Nj augmented with a

model of present item distribution Dj−1. We add fixed vertices corresponding to

each processor, such that for all p ∈ 1 . . . n, there is a unique vertex u ∈ VF , and

τ(u) = p, where VF ∩ V = ∅ and VF = |n|. The vertices in VF are weighed zero

since the candidates corresponding to them have already been mined. The distri-

bution Dj−1 of the items with selective replication is modeled with the addition

68

V1 V2

6

c

3

f

8

b

6

g
5

a

6

d

8

e

N:

c1

3V:

c2

5

c3

5 0
0

p0 p1

Figure 4.3: Adding fixed vertices to the hypergraph partitioning model of Fig. 4.2.

of the already distributed processors to the new hyperedges that correspond to the

items that depend on candidates in Cj. More formally, we update the nets with:

∀X ∈ Nj, X ← X ∪ Dj−1(i(X)). After that, the new item distribution Dj is

determined from the new partition Πj.

We show how the fixed vertices are added in Fig. 4.3, where the fixed proces-

sor vertices corresponding to each processor are represented with triangles and

labeled as p0 and p1. The processor vertices in the example show that item d

has been replicated on both processors prior to re-partitioning (for some reason),

and the dashed bold lines show the hyperedges in the edge-cut that are caused

by fixed vertices; the partitioning result here does not change, it is intended as a

schematic example only.

Definition 11. Let the re-distribution of the items at iteration j may defined as

Rj[X] = Dj[X]−Dj−1[X] (4.5)

For mining at iteration j to succeed, only additional replication of items de-

fined by Rj is sufficient.

Let the stand-alone communication volume of iteration j be Vj = V of Equa-

tion 4.4 where N = Nj.

Definition 12. The communication volume for re-partitioning at iteration j is

V R
j = Vj − Vj−1. (4.6)

69

This definition is correct, because the distribution according to Dj−1 has al-

ready been achieved in the previous iteration j− 1. Thus, the volume of commu-

nication that has been incurred from iteration j − 1 is negligible during iteration

j. The following theorem clarifies the claim.

Theorem 3. Re-partitioning model of Definition 10 minimizes communication

volume V R
j .

Proof. The fixed vertices VF entail Vj−1 communication volume, for Vj−1 is equal

to the sum of weights of hyperedges in iteration j that are in the edge-cut Ec

among vertices in VF . Thus, minimizing Vj is sufficient to minimize V R
j . This is

easily proven by observing that the partitioning objective

min. Vj − Vj−1 (4.7)

is equivalent to

min. Vj (4.8)

since Vj ≥ Vj−1 and Vj−1 is constant during iteration j.

The ICID algorithm may be modified in a straightforward manner to obtain

the incremental variant. The re-partitioning model of Definition 10 is used in it-

eration j instead of Definition 7 using the previous item distribution Dj−1. Other

parameters are maintained and defined as explained above. The database redis-

tribution step assumes that the items in Dj−1 are already distributed/replicated

as such, therefore it merely replicates items in map Rj accordingly.

4.5 Implementation

ICID algorithm is implemented in similar manner to NoClique2.

We have adopted the serial miner Bitdrill, and extended it such that we can

now start from a level k, with given frequent itemsets Fk, and restrict all mining

to a given set of candidates.

70

As in NoClique2, we do not particularly focus on the steps prior to partition-

ing. That part of processing is not relevant to our present algorithm, therefore we

do not take it into account in our experiments. In the present implementation,

either the serial miner Bitdrill or Repl-Bitdrill may be used for computing Fk. We

use a python script to drive the various C++ programs invoked during various

stages of the algorithm, this a commonly used implementation method for data

mining which combines the flexibility of Python with the efficiency of C++.

We construct the hypergraph model H(Fk, l), which requires the computation

of the set C of candidate itemsets from Fk, up to level l. We accomplish this on

the root processor and we do not investigate the parallelization of this step.

For this reason, we focus on problem instances where the candidate generation

is not costly; it is usually much cheaper than mining since it does not use T .

We have assigned unit weight to candidate itemsets presently. For hypergraph

partitioning, we use PaToH [91, 92], where we balance on vertices – tasks in

our model, and minimize the net-cut – hyperedge-cut, by selecting connectivity-1

weighting in PaToH. After this, the present implementation distributes candidates

C according to Π(H), each Vi ∈ Π(H) corresponds to the set of candidate itemsets

that are to be sent to processor i. A distribution map D is calculated as follows,

for any item it maps items to processor sets:

D[x ∈ I] = {i | x is incident on Vi}. (4.9)

The present implementation partitions C on the root processor and then dis-

tributes them to n processors according to the hypergraph partition with a par-

allel C++/MPI program. Finally, a C++ program takes as input on processor i,

the horizontally distributed transaction database Ti, support threshold ǫ, Fk, Ci,

Π(H(Fk, l)), and D which contains the main body of the parallel FIM algorithm.

The data is first distributed according to D which provides the information re-

quired to distribute and replicate items. We have implemented this step similarly

to NoClique2’s redistribution where we assume horizontal database representa-

tion. Let Mn×n be a message buffer where Mi,j is a send buffer from processor

i to processor j. Processor i iterates over transactions in its local Ti. For each

transaction X ∈ Ti, we can calculate which projection of X must be sent to which

71

processor in the following manner. For each item x ∈ X, we append x to Mi,p

for each p ∈ D[x]. Then, we perform an all-to-all personalized communication

(AAPC) using the message buffer M . The second phase of the parallel miner

uses the aforementioned candidate set restricted bitdrill variant. On completion,

the frequent patterns are output to local disk on each processor in parallel, and

then the performance measurements are calculated and output.

4.6 Performance Study

We present a performance study to prove that the performance of ICID algo-

rithm is sound. As with NoClique2, we measure both the actual and expected

performance parameters, to be able to compare how successful the model has

fared in practice. We have measured the following parameters in similar fashion

to Section 3.3:

1. Parallel time: the total time, and the time for redistribution and indepen-

dent mining phases.

2. Preprocessing time: the serial time taken by candidate generation and the

PaToH parallel hypergraph partitioning tool.

3. Load imbalance: actual load imbalance, and load imbalance in the hyper-

graph model

4. Data replication: the amount of data that has been replicated in proportion

to the database T

4.6.1 Experimental Setup

We have used the same distributed memory supercomputer in Section 3.3 for

a healthy comparison, however, these results were seen to be quite similar on

a shared-memory machine, as well, therefore we do not think that the results

72

Database Support l |F | |F| Bitdrill runtime

T60.I10.2000K 5000 6 4470 1367233 645.2 sec.
user-likesmovies 20000 1 716 195130 134.6 sec.
trec 150000 313 2 173603 196.7 sec.
trec.lp.200000 20000 2225 1 76508 1051.0 sec.

Table 4.1: Problem instances

are specific to distributed memory. We have run the experiments on up to 16

processors, as all compute nodes were not available at the time. We have also

used the same problem instances, first given in Table 3.3.

The basic difference in the experiments is that we are not completing the whole

mining, only as many levels of mining as can be mined succeeding level 3. The

running time of these restricted problem instances is summarized in Table 4.6.1.

In the table the second column is the support threshold, l is the number of levels

mined after level 3, |F | is the number of frequent items, |F| is the number of

frequent itemsets, and the last column gives the running time of Bitdrill after

level 3 until level 3 + l. As the table shows, the single synthetic database allows

more levels to be mined at once, this is due to its sparser structure.

Our main goal in this experiment is to show that the load imbalance problem

of NoClique2 is addressed by the ICID algorithm, and that the new parallel

overheads are not prohibitive.

4.6.2 Partitioning quality

We examine whether the partitioning model improves partitioning quality with

respect to NoClique2 in the ICID experiments, especially load imbalance. In

the experiments, the second weight function, which is the minimum frequency of

items in a candidate itemset, was used for vertex weights.

Expected load imbalance, according to the hypergraph partitioning model,

73

was calculated as follows:

LIexp =
max{ws

V (Vi)|Vi ∈ Π(H(Fk, l))}

ws
V (V)

− 1 (4.10)

Fig. 4.4 shows the expected and actual load imbalance of ICID algorithm.

We observe that there is a very significant reduction in load imbalance compared

to Fig. 3.5. We also observe that the gap between expected and actual load

imbalance is fairly narrow, compared to NoClique2, suggesting that the finer

load estimate modeling works to our advantage. The worst load imbalance is

that of the synthetic database, which suggests that it may be due to either its

higher sparsity or synthetic origin. There is consistently low imbalance in real-

world database, which may be attributed to the numerosity of frequent itemsets,

which has likely allowed greater freedom for load balancing.

The promising improvement in load imbalance brings us to question whether

the partitioning quality suffers in some other respects compared to the GPVS

model. We use the data replication ratio given in Equation 3.10. We show the

data replication incurred by the ICID algorithm in Fig. 4.5, which seems compa-

rable qualitatively to NoClique2, although of course we must mention that the

full mining case would likely increase data replication a bit. Qualitatively, there is

no significant disadvantage in data replication that we my affirm in these results,

which shows that the partitioning quality overall in the hypergraph partitioning

model has substantially improved without suffering any apparent damage. In

particular, the high data replication ratio of user-likesmovies database is brought

down compared to Fig. 3.6. The replication ratios of other databases behave

similarly to NoClique2.

4.6.3 Running time dissection

We analyze the running time dissection of the algorithm for large databases and

varying number of processors, which is conveyed in Fig. 4.6. In the labels of the x-

axis, the database names and the numbers of processors are separated by dashes.

74

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16

E
xp

ec
te

d
Im

ba
la

nc
e

(%
)

Processors

T60.I10.2000K
user-likesmovies

trec
trec.lp.200000

(a) Expected load imbalance

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16

Im
ba

la
nc

e
(%

)

Processors

T60.I10.2000K
user-likesmovies

trec
trec.lp.200000

(b) Actual load imbalance

Figure 4.4: Load imbalance of ICID.

75

 100

 200

 300

 400

 500

 600

 700

4 8 16

D
at

a
R

ep
lic

at
io

n
(%

)

Processors

T60.I10.2000K
user-likesmovies

trec
trec.lp.200000

Figure 4.5: Replication ratio of ICID.

 0

 20

 40

 60

 80

 100

T60.I10.2000K-4

T60.I10.2000K-8

T60.I10.2000K-16

user-likesm
ovies-4

user-likesm
ovies-8

user-likesm
ovies-16

trec-4
trec-8

trec-16

trec.lp.200000-4

trec.lp.200000-8

trec.lp.200000-16

P
ar

al
le

l R
un

tim
e

(%
)

Independent-Work
Database-Redistribution
Patoh
Candidate-Generation

Figure 4.6: Dissection of running time of ICID.

76

The time dissection shows four phases of ICID algorithm, which are the candi-

date generation, hypergraph partitioning (PaToH), Database Redistribution, and

Independent Work, in the order of execution. We assume that the preprocessing

phases of candidate generation and PaToH may both be parallelized with 80%

parallel efficiency and scale linearly, and their contribution is calculated from se-

quential running time. The dissection shows a similar pattern to Fig. 3.7, and

the time is usually dominated by independent work, except for trec database.

As in the case with NoClique2, database redistribution takes more percentage

with increasing number of processors. The database redistribution of the full

mining algorithm should take less percentage, since full redistribution will not be

necessary for each iteration of the re-partitioning algorithm. Also, interestingly,

hypergraph partitioning seems to be as fast, or faster in percentage compared

to the independent mining model of NoClique2, which is quite encouraging, in

terms of signaling that a more complete implementation is likely to show excellent

speedup.

There are three parallel overhead differences in ICID compared to NoClique2.

First, the candidate generation step may generate more candidates compared

to the candidate generation of plain Bitdrill, for when mining multiple levels at

once, certain pruning steps cannot be applied to the candidates after the first level

of candidates generated. Secondly, the candidate partitioning model may get a

bit more expensive compared to NoClique2, since there may be many candidates

after level 3, which would keep the percentage of the PaToH step constant in time

dissection, even for the complete implementation. Thirdly, the more precise load

imbalance may sometimes increase communication volume, although we have not

seen that in present experiments.

4.6.4 Speedup

Our goal is not to demonstrate total speedup, but to demonstrate that speedup

can be obtained even when the whole database is redistributed for mining a small

number of levels. Interestingly, we can still obtain significant speedup in this case,

showing that the full culmination of our algorithm is likely to result in excellent

77

 0

 2

 4

 6

 8

 10

 12

 14

 16

4 8 16

P
ar

al
le

l S
pe

ed
up

Processors

all

T60.I10.2000K
user-likesmovies

trec
trec.lp.200000

Figure 4.7: Speedup of ICID for various databases.

performance. Fig. 4.7 demonstrates the speedup for the problem instances in

Table 4.6.1. Note that these speedups suffer the redistribution (with replication)

of the entire database, while mining only a part of the tasks in Table 4.6.1.

For entire tasks, the speedup should surpass that of NoClique2. Despite this

major shortcoming, ICID still outperforms NoClique2 for user-likesmovies and

trec.lp.200000 databases, proving the effectiveness of our candidate partitioning

model beyond any doubt.

4.6.5 Discussion

We use a particularly interesting problem instance from the chapter on NoClique2

algorithm to demonstrate our results in detail. The problem instance is the

trec.lp.200000 database with 20000 support threshold, which proved to be the

most challenging one for the GPVS model. In particular, the GPVS model has a

lot of difficulty balancing this instance, actual imbalance was always more than

1, even for 4 processors. This instance requires 1051 seconds for the fourth level,

on a single processor. All the NoClique2 problem instances were chosen carefully

to have several levels after 3. To simplify our understanding, we set k to 3 and

78

l to 1 for this particular problem instance, as seen in Table 4.6.1 . We present

the performance of ICID algorithm on 16 processors. The results turned out to

be extremely promising. The run took 136.3 seconds, which corresponds to 8.27

speedup. This is already better than the corresponding NoClique2 result of 7.9.

PaToH obtained near-perfect load balancing, a load balance of 2.6% was obtained,

and the actual imbalance turned out to be merely 8.5%, which we interpret as

an excellent result for this problem. Data replication ratio was about 6.2, less

than the GPVS model’s 6.7, but close enough. The near-zero load imbalance is

much better than the GPVS model, which has 242% actual load imbalance for

the same problem. Therefore, we think that this result confirms that our model

can address the load imbalance problem adequately while not inflating the data

replication, in fact it can do better in that respect as well. It turns out that

the new model allows more freedom to the optimizer for both the partitioning

objective and the partitioning constraint.

79

Chapter 5

1-D and 2-D Parallel Algorithms

for All-Pairs Similarity Problem

Optimizations to the sequential all pairs similarity algorithm are covered in Sec-

tion 5.1. Section 5.2 introduces the 1-D vertical and horizontal parallelizations,

and likewise Section 5.3 presents the 2-D parallelization. Section 5.4 contains the

performance study.

5.1 Optimizations to the sequential algorithm

In this section, we examine the optimizations in the sequential algorithms of

Section 2.2.4.2 detail, as they influence our parallel algorithm design.

In our work, we have made several other versions of these algorithms to under-

stand the impact of individual optimizations. This has aided us in understanding

the advantages and disadvantages of said optimizations and design parallel algo-

rithms. The slowness of all-pairs-2 compared to all-pairs-1 on our datasets urged

us to understand the impacts of optimizations better.

all-pairs-0-array Although the input vectors are sparse, some dimensions are

80

dense in the real-world data that we are using. Thus, the hash table A is in

fact dense. Using an array instead of a hash table improves running time.

all-pairs-0-array2 Tries to optimize all-pairs-0-array further by maintaining a

list of candidate indices that are used during matching, which are zeroed

before finding the matches of the next vector.

all-pairs-0-remscore remscore optimization added to all-pairs-0

all-pairs-0-minsize minsize optimization added to all-pairs-0

all-pairs-1-remscore remscore optimization added to all-pairs-1

all-pairs-1-upperbound remscore optimization added to all-pairs-1

all-pairs-1-minsize minsize optimization added to all-pairs-1

all-pairs-1-remscore-minsize minsize and remscore optimizations added to

all-pairs-1

all-pairs-bruteforce Brute force algorithm that uses no intermediate data

structures

The performance comparison of the various implementations on two datasets

is given in Section 5.4.3, in which we see that all-pairs-0-array is the fastest im-

plementation, therefore we focus on parallelizing that algorithm while we also

discuss how to parallelize others algorithms. Note that on another software plat-

form, perhaps one of the other variants could be as efficient as all-pairs-0-array,

however, we think that the wide performance gap would be non-trivial to close.

5.2 1-D Parallel Algorithms

In the following parallel algorithms, let p be the number of processors and pid

be the processor ID of the current processor. We will explain our dimension-

wise and vector-wise parallelizations, respectively. We call the dimension-wise

parallelization vertical, and vector-wise parallelization horizontal, for brevity and

in analogy with the matrix representation D of input where each vector is a row.

81

5.2.1 Vertical algorithm: partitioning dimensions

In vertical parallelizations, each processor holds a number of dimensions (fea-

tures), considered to be weighed by the square of number of non-zeros as for

finding the matches of each vector, the entire inverted list of a dimension has to

be scanned, and its contribution to the candidate matches calculated.

Each dimension d contributes

w[d] = |Id|.(|Id|+ 1)/2

multiplications, and thus the entire work may be assumed to take w =
∑

i w[i].

Since the dimensions are split across processors, each inverted list is stored

wholesome. To iterate, each dimension has a home processor and each inverted

list corresponding to that dimension also has the same home processor. Therefore,

each processor is responsible for calculating the matches in a subspace composed

of the dimensions assigned to it.

Our vertical parallel algorithms essentially parallelize the inner loop (find-

matches phase) of the all-pairs-0-array algorithm, while maintaining the sequen-

tial order of processing vectors. Therefore, much attention is devoted to efficient

processing of separate subspaces and merging the candidates, which is the main

parallel overhead of this parallelization.

5.2.1.1 Initial distribution

The simplest distribution is cyclic distribution of dimensions, which is a random

distribution of dimension, however it has turned out to result in too much load

imbalance. Therefore, we use the following simple partitioning algorithm. The

dimensions are sorted in order of decreasing non-zeroes and the dimensions are

binned to p bins so as to balance the load. To achieve this, we use a first-

fit algorithm that places the next dimension in the least loaded processor. We

distribute the dimensions before starting and timing the parallel algorithm.

82

Algorithm 3 Par-All-Pairs-0-Vert(V, t, comm)

M ← ∅
I ← Make-Sparse-Matrix(m,n)
for all x = vi ∈ V do

M ←M ∪ Par-Find-Matches-0-Vert(x, I, t)
for all x[j] ∈ V where x[j] > 0 do

Iji ← x[j]
return M

5.2.1.2 Inner-loop parallelization of all-pairs-0

Algorithm 3 depicts the pseudocode for the basic vertical parallelization of all-

pairs-0 kind of algorithms. The comm variable is the MPI communicator used

in the collective communication operations, it is given as a variable to make

the algorithm re-usable in the 2-D algorithm. In Par-All-Pairs-0-Vert, first, we

calculate the global number of dimensions by taking the maximum among all pro-

cessors. Then, we call the parallel find-matches algorithm for each input vector x,

which calculates separate candidate maps on all processors and then accumulates

the candidate scores in parallel before filtering the candidates. Each processor

thus computes partial candidate scores independently and synchronously. Then,

scores are accumulated via collective communication, which results in each pro-

cessor having a disjoint set of scores to filter, and the filtering is performed in

parallel.

5.2.1.3 Local pruning optimization

We propose a local pruning optimization for the matching phase. The paral-

lelization of the inner loop is shown in Algorithm 4. We employ local pruning

to decrease the number of candidates accumulated by collective communication

operations. Let us define tlocal, the local similarity threshold.

tlocal = t/p (5.1)

Lemma 9. Observe that, for any distribution of dimensions, if a candidate is

matched, that is sim(x, y) ≥ t, then the local similarity of at least one processor

83

Algorithm 4 Par-Find-Matches-0-Vert(x, I, t, comm)

tlocal ← t/p
A← Make-Array(n) such that A[i] = 0
for all (x, x[i]) ∈ x do

for all (y, y[j]) ∈ I[i] do
A[y]← A[y] + x[i].y[i]

C ← {(x, y)|A[y] ≥ tlocal}
return Accumulate-Scores-Vert(A,C, comm)

should be at least tlocal.

Proof. Assume that for all p processors, the local similarities sim(x, y) < tlocal.

Then, obviously, sim(x, y) < p.t/p, that is sim(x, y) < t which is a contradiction.

Therefore, on at least one processor, the local similarity is greater than tlocal.

Making use of this lemma, on each processor we compute the array A of

local scores of x, and a set of local candidates C which are the candidates that

meet local threshold tlocal effortlessly. These local scores and candidates are then

merged using a parallel score accumulation algorithm called Accumulate-Scores-

Vert.

Note that we use arrays for candidate map instead of a hash table because it

is more efficient in practice.

5.2.1.4 Score accumulation with local pruning

The scores are accumulated in two communication steps. In the first step, we

perform an all-reduce operation using the binary operation of set union. At the

end of this step, every processor obtains a Cg of global candidates. After this

step, since every processor already has the local scores A, which contain all the

local candidates in Cg, we take the local scores in A which are in Cg and put

them into a sparse vector A′. On each processor, for each candidate vector y with

weight w, we have

A′[y] = A[y] = w > tlocal.

84

Succeeding that, we compute Ag which is the summation of sparse vectors on

each processor, with the result partitioned over all processors, so each processor

stores a range of indices of Ag. That is, we use a parallel sparse vector addition

algorithm with input and output partitioning. Thereafter, the Ag can be filtered

in parallel to find scores that are at least t.

5.2.1.5 Recursive local pruning

In practice, local pruning works quite effectively on two processors, but due to

the nature of observed power-law like distribution of term frequencies, every bi-

nary subdivision almost doubles the number of candidates. If no local pruning

is applied, we have observed that about n/2 candidates are required on the av-

erage. With local pruning, we observe a significant reduction of that number on

two processors (about 10-fold) making the vertical partitioning competitive with

horizontal partitioning.

By observing that local pruning can be applied recursively, we can decrease

the communication volume of the score accumulation further. Let the dataset

matrix D be vertically partitioned Π(D) = {D1, D2} into roughly equal number

of dimensions. Local pruning (Lemma 9) entails that the set of candidates is the

union of all similar pairs in both sub-datasets with t/2. That is to say, we obtain

a set of candidates by taking the union of local matches with t/2 threshold:

C(D, t) ⊃ M(D, t) = M(D1, t/2) ∪ M(D2, t/2). This process can be applied

recursively. For instance, another level of application would yield: C(D1, t/2) =

M(D11, t/4) ∪M(D12, t/4) and C(D2, t/2) = M(D21, t/4) ∪M(D22, t/4) where

{D11, D12} is a vertical partition of D1 and {D21, D22} is a vertical partition of

D2.

This recursive sub-division suggests an algorithm. We first recursively parti-

tion the dimensions in k levels of recursion. At the bottom level k of recursion, we

can find the matches for M(Dp, t/2
k) where the dataset label p has k numerals,

and communicate these pair-wise to calculate their union as the 2k−1 candidate

sets for the higher level. Now, we must compute the matches in the higher level

85

to calculate the yet higher level candidates and so forth, until we have the can-

didates C(D, t) for D. The intention here is that, instead of broadcasting all

the bottom level candidates, we are communicating less. After computing candi-

dates this way, another pass could be used for score accumulation, but interleaved

execution of candidate generation and score addition steps would be faster.

In our example, consider that we have the candidates C(D1, t/2) and

C(D2, t/2) after the first two candidate union operations at the bottom level

2. We need a fast method to filter these candidate sets, and the processors cor-

responding to D1 must co-operate to calculate M(D1, t/2) and likewise for D2.

If the candidates are partitioned over processors in this step, the score accumu-

lation can be performed fast in parallel. Therefore, we split the candidate set

according to vector indices and communicate scores so that each processor mak-

ing up D1 has a portion of the global scores, which then it can filter to find its

portion of M(D1, t/2). Note that this is also a partial score which may be use-

ful to us later on, so we store it. Then, yet, in the top level when calculating

the matches M(D1, t), score accumulation can proceed among processors with

matching vector ranges of scores.

An important consideration in this algorithm is to be able to complete partial

scores. For instance, a vector x may not be a candidate in D1, D11 and D12, but

it may be a candidate in D2. Since it wasn’t a candidate in any of the candidates

in the recursion sub-tree corresponding to D1, the non-zero scores of x in D1

would have to be added. This requires knowing which processors contributed to

a score, and if there are missing we have to send requests to those processors and

get the missing information. The processors in a partial sum may be represented

with a bit-vector.

5.2.1.6 Functional recursive local pruning algorithm

In Algorithm 5, we give a straightforward functional algorithm for realizing re-

cursive local pruning. We assume that we have p = 2k processors, and we apply

vertical bi-partitioning recursively. The following algorithm assumes that local

86

scores have ben computed on each processors in array A. x is the vector for which

matches are sought, and t is the similarity threshold; i..j denotes an inclusive in-

teger range.

Algorithm 5 Merge-Scores-Rec(x,A, t, comm)

1: pid← MPI-Rank(comm)
2: p← MPI-Size(comm)
3: if p=1 then

4: M ← {(y, A[y]) | y ∈ (0...|A| − 1) ∧ A[y] > t}
5: else

6: color ← if pid ∈ (0, p/2− 1) then 0 else 1
7: comm′ ← MPI-Comm-Split(comm, color, pid)
8: M ′ ← Merge-Scores-Rec(x, a, t/2, comm′)
9: C ← Reduce-All(comm,M ′,Union)

10: AL← {(y, A[y]) | y ∈ C ∧ A[y] > 0}
11: AG← Accumulate-Scores(comm,AL)
12: M ← {(y, w) | (y, w) ∈ AG ∧ w > t}
13: return M

5.2.1.7 Flat accumulation algorithm

Alternatively, we can implement Accumulate-Scores-Vert using the MPI All-

gather function for constructing the set union of local C sets, and we can compute

Ag, where each candidate vector is stored on a processor. We can compute Ag

in distributed fashion by using p MPI Gather calls, and then locally adding the

partial scores across dimensions. This is a practical implementation we are using

in our experiments on compute clusters, however a more scalable implementation

may be also developed in the future.

5.2.1.8 Hypercube accumulation algorithm

For accumulation, we can utilize an algorithm inspired by the parallel quicksort

algorithm on hypercube topology. The input to the parallel accumulation algo-

rithm is an association list of vector id, score pairs for the current vector x. Each

association list is sorted in the order of vector id’s. In the partition step of the

87

quicksort-like accumulation algorithm, the pivot is chosen as the average of ran-

dom vector id’s from the current subcube, and partition is made according to the

vector id accordingly. After the communication step of the hypercube quicksort-

like algorithm, an association list merging algorithm combines the results so that

the entire association list at hand is sorted, and association pairs with identical

vector id’s are collapsed into a single pair with accumulated scores. In the end

of the accumulation algorithm, the output association list is partitioned over the

processors so that the filtering of scores is also carried out in parallel.

5.2.1.9 Processing in vector blocks

Since we process each vector separately in the basic parallelization outlined above,

although the total load of each processor is balanced, a fine-grain imbalance is

caused by the load imbalance of individual local score calculations of a vector x on

each processor. To prevent this fine-grain imbalance problem, and also decrease

the latency overhead, we process vectors not one by one, but in chunks of vectors,

so that we can use a burst-mode communication. This requires also bundling the

intermediate values so it naturally creates some algorithmic complexity, but in

practice we have seen this to be an effective optimization for cluster architectures.

Therefore we assume that this optimization has also been made.

5.2.1.10 Parallelization of partial indexing with global pruning

Par-All-Pairs-1-Vert is a parallelization of the partial indexing optimization that

maintains a global bound value while deciding which dimensions to index. The

partial indexing optimization is parallelized as follows. Each processor locally

orders dimensions in given local V in the order of decreasing number of non-zeros

along a dimension. Since each dimension has a home processor, each processor

holds part of unindexed partial vectors, and calculates only a part of partial

dot-products that are added to the candidate score maps. During indexing:

� An upper bound array myb is computed as prefix sum ofmaxweighti(V).x[i]’s

88

in the local order of features.

� Each processor computes a global upper bound array b by summing local

upper bound arrays myb’s (via a multi-node accumulation to all processors)

� After matching, partially indexes the current vector x according to global

upper bound during parallel matching.

During matching:

� The candidate maps on all processors are merged such that each processor

has accumulated all the global candidates, written to a hash table.

� Each processor calculates local partial dot products that correspond to the

vector id’s in the candidate map.

� Local dot-products are merged in parallel using the hypercube score accu-

mulation algorithm described earlier.

� Each processor adds the scores and global dot-products of the part of can-

didates it has been given from previous step, and filters results.

While a bit complex, this is an intuitive and correct parallelization of all-pairs-1,

however suffering from some of the complexities of parallel score accumulation

algorithms and the density of candidate maps.

5.2.1.11 An alternative parallelization of global pruning

An alternative parallelization of global pruning, Par-All-Pairs-1-Vert-Alt, violates

the home processor of dimensions, and instead partitions the partial vectors block-

wise so that each processor is responsible for partial vectors with consecutive

vector id’s. Therefore, each processor calculates a complete partial dot-product

and dot-product scores do not have to be accumulated. While indexing, each

unindexed partial vector is communicated to its home processor according to

block partitioning of vector id’s. The candidate scores are accumulated using a

89

variant of the hypercube score accumulation algorithm with output partitioning

that knows about the complete range of vector id’s so that each processor receives

only the candidates it already has the partial vectors for, and the complex pivot

selection is avoided.

5.2.1.12 Parallelization of partial indexing with local pruning

Par-All-Pairs-1-Vert-Local-Pruning does not maintain global upper bound values

when deciding to index partially. Instead, it uses a local pruning decision, and

it matches the pairs in parallel as in Par-All-Pairs-1-Vert. The actual matching

algorithm is the same, only indexing has changed.

5.2.1.13 Parallelization of all-pairs-1-minsize

Minsize optimization does not occur much overhead when it is useless and can be

implemented efficiently when distributing only dimensions. Since each inverted

list has a home processor, the minsize optimization works just as well in the

parallel setting, requiring no changes. For the parallel matching, we can re-use

the matching step of Par-All-Pairs-1-Vert or another one of the two alternative

implementations.

5.2.1.14 Implementation considerations

There are three main design options for Par-All-Pairs-0-Vert, which we shall detail

now: selecting whether to implement the local pruning optimization proposed in

Section 5.2.1.3, selecting the score accumulation algorithm which is either of flat

accumulation or hypercube accumulation, and selecting how many vectors to

process at each communication step for the block processing optimization.

We have implemented all of these different options and tested them. We

implement the local pruning algorithm in the present experiments, because it

is the fastest as it reduces the number of candidates considerably (an order of

90

magnitude), however there are some bottlenecks in the current implementation.

Currently, we process in blocks of 512 vectors. Since each vector incurs memory

storage for score arrays and candidate sets, we cannot process too many vectors

at once. However, a large block size is beneficial for reducing the processing and

communication imbalance across synchronization points.

5.2.2 Horizontal algorithm: partitioning vectors

The horizontal parallel algorithm partitions vectors instead of dimensions in the

vertical algorithm. In this parallelization, we partition the vectors and then

index and match in parallel without making much modification to the inner loop

(matching), executing matchings in parallel over disjoint sets of vectors, however

having to broadcast each vector. We distribute the vectors in cyclic fashion prior

to the invocation and timing of the horizontal algorithm.

5.2.2.1 Outer loop parallelization of all-pairs-0

We now discuss how to parallelize the outer loop of all-pairs-0 kind of algorithms.

In Par-All-Pairs-0-Horiz (Algorithm 6), each processor is given a disjoint set of

vectors, i.e. each vector has a home processor. Each processor indexes only

their local set of vectors; the inverted index being constructed is partitioned

horizontally, aligned with the input dataset partition. We pad local list V of

vectors with empty vectors so that each processor has the same number of vectors,

by calculating the maximum number of vectors on a processor with a collective

communication. For each iteration of the outer loop over local vectors, every

processor gathers their current vector on all processors, constructing an array of

vectors xa where xa[proc] contains the query vector from processor proc. We

then iterate over all processors 0..p−1, matching the entire set of p current query

vectors against the local inverted index I, using the sequential matching algorithm

Find-Matches-0 of all-pairs-0. We process in the same order on all processors to

avoid redundant matches. We carefully index the local current vector only after

it has been matched against the inverted index.

91

Algorithm 6 Par-All-Pairs-0-Horiz(V, t)

M ← ∅
I ← Make-Sparse-Matrix(m,n)
Pad V with empty vectors
for all x ∈ V do

xa← MPI-All-Gather(x)
for all proc← 0 to p− 1 do

M ←M ∪ Find-Matches-0(xa[proc], I, t)
if proc = pid then

for all x[j] ∈ V where x[j] > 0 do

Iji ← x[j]
return M

5.2.2.2 Horizontal parallelization of all-pairs-1

In Par-All-Pairs-1-Horiz, again the matching algorithm does not need to be par-

allelized but calculation of global maxweighti(V) function, reordering the di-

mensions in order of decreasing number of non-zeroes, and calculation of other

required global values like m and n have to be done in parallel. The partial

indexing itself is immune from changes in the horizontal parallelization, as each

processor holds as the home processor of each partial vector is the same as the

vector it is derived from, and it is used in the partial dot-product on its home

processor with no communication.

5.2.2.3 Horizontal parallelization of all-pairs-0-minsize and all-pairs-

1-minsize

Minsize optimization can be translated to horizontal parallelization as follows. On

each processor, the vectors are locally sorted in order of increasing maxweight(x)

for each vector x. However, the pruning has to be synchronized to the matching

of all vectors to maintain correctness. This can be easily accomplished by taking

the minimum of minsize’s of all the current parallel matchings. We take the

minimum as this conservative pruning does not introduce any errors that may

be caused by choosing a higher value, ensuring that on all processors the same

minsize is used, and the minimum of current minsizes in the matching algorithm

92

is the highest value that can be used without corrupting the result. Thus only

a small modification to the sequential matching algorithm is sufficient, simply

calculating a suitable global minsize value. Since the input vectors are assumed to

be distributed evenly, there should not be much of a drift among their synchronous

minsize values in large datasets.

5.2.2.4 Optimizations and scalability

The block processing optimization may be applied to the horizontal algorithm

(Par-All-Pairs-0-Horiz) to improve load balance, although load balance does not

suffer much in the horizontal parallelization. Initial distribution may be improved

with respect to the random distribution balancing the vector sizes processed in

each vector iteration of the parallel algorithm.

Compared to [74], we make use of the inverted index construction logic of

all-pairs-0-array, not depending on any complex geometric data structures, and

we make use of efficient collective communications of the message passing system,

and provide a very sensible synchronization of processing rather than having to

deal with dynamically load balancing, which results in a very elegant algorithm.

Nevertheless, one of their optimizations involving bounding hyperspheres of point

sets may be incorporated into the horizontal algorithm. If the vectors are ini-

tially partitioned geometrically, instead of cyclically or according to sizes, then

bounding regions may be defined over each processor, and it may be possible to

skip some communication and computation, although we would not expect much

gain from such a computation.

The most significant parallel overhead here is the broadcast of the vectors.

Therefore, there is a total communication volume of size(V).(p − 1) vector ele-

ments, which limits scalability in high number of processors in practice. While

the intermediate data structures of the vertical algorithm have size proportional

to the number of candidates in an iteration, the horizontal algorithm has to con-

struct the entire I on each processor. We have found no simple solution to this

obstacle to scalability without making a substantial re-design of the horizontal

93

algorithm. However, as we will see in experiments this scalability problem likely

manifests itself in only large number of processors.

5.3 2-D Parallel Algorithm

Let there be a 2-D processor mesh with q rows and r columns. The two-

dimensional data partitioning algorithm combines the vertical and horizontal par-

allelization as two respective levels of parallelization. First, we make a checker-

board partitioning of the input dataset where we distribute dimensions into r

columns so as to balance load across processor columns, and we distribute vec-

tors into q rows in cyclic order. Therefore, to each processor, we assign a set

of vectors and a set of dimensions. Algorithm 7 shows the pseudocode for the

Par-All-Pairs-0-2D algorithm. We assume in the following 2-D algorithm that

mycol is the processor column of the current processor, colid is the current pro-

cessor’s identifier in mycol, myrow is the processor row of the current processor,

and rowid is the current processor’s identifier in myrow.

Algorithm 7 Par-All-Pairs-0-2D(V, t)

M ← ∅
I ← Make-Sparse-Matrix(m,n)
Pad V with empty vectors
for all x = vi ∈ V do

xa← MPI-All-Gather(x,mycol)
for all proc← 0 to q − 1 do

M ←M ∪ Par-Find-Matches-0-Vert(xa[proc], I, t,myrow)
if proc = colid then

for all x[j] ∈ V where x[j] > 0 do

Iji ← x[j]
return M

The two parallelizations can be elegantly combined by re-using the horizontal

parallelization in the first level of parallelization and the vertical parallelization in

the second level. Passing the mycol communicator to the vertical parallelization

let us re-use the vertical algorithm with no modification.

94

num. of avg. avg.
Dataset n m non-zeroes vector size dim size sparsity (%)
radikal 6883 136447 1072472 155.8 7.8 0.114
20-newsgroups 20001 313389 2984809 149.2 9.5 0.0476
wikipedia 70115 1350761 43285850 617.3 32.0 0.0457
facebook 66568 4618973 14277455 214.5 3.1 0.00464
virgina-tech 85653 367098 25827347 301.5 70.3 0.0821

Table 5.1: Real-world datasets used in our performance study.

The block optimization of the vertical algorithm has also been tried in our 2D

experiments, but was found to cause more overhead compared to the one that does

not block input vectors. In general, the implementation of the vertical algorithm

was found to have a significant amount of garbage collection overhead since a lot

of intermediate data is constructed and then discarded in the vertical algorithm

(This accounts for about 30% of the running time). This overhead shows that

there is room for improvement in the implementation of our 1-D vertical and 2-D

algorithms due to the ocaml runtime overhead.

5.4 Performance Study

We first explain the datasets used and take a look at how the variants of the

sequential all-pairs algorithms stack up. We have based our parallelizations on

these results. Then, we demonstrate the parallel performance of our vertical,

horizontal and 2D parallelizations. The parallelizations do show enough diversity

in performance to justify the need for multiple parallelizations.

5.4.1 Datasets

We have based our performance study on real-world datasets, with no tuning

that will make our task easier. We have made our experiments on two small and

95

three large such datasets, the properties of which are summarized in Table 5.1.

The columns of Table 5.1 display the dataset name, number of vectors (n), num-

ber of dimensions (m), number of non-zeroes (sum of |x|’s), average vector size

(average of |x|’s), average dimension size (average of |Id|’s) and sparsity (number

of non-zeroes divided by n.m), respectively.

Radikal data set contains 6893 short news articles from the website of Radikal

Turkish newspaper, partitioned to 14 newspaper sections. The HTML documents

were converted to text and converted to vector space representation using TFIDF

weighting. 20-newsgroups is a classical text categorization dataset which consists

of one thousand posts taken from 20 USENET newsgroups. The large datasets

are downloaded from the Stanford WebBase Project [95]. The facebook dataset

is composed of pages collected from Facebook on 09/08/2008. The wikipedia

dataset is composed of pages collected from Wikipedia on 05/2006. The virgina-

tech dataset is composed of pages collected from sites related with Virginia Tech

shooting on 04/23/2007.

5.4.2 Implementation details

We have implemented the algorithms using Ocaml programming language 3.12,

and the Ocaml MPI bindings for communication.

Since Ocaml does not have 32-bit floating point values, we resorted to a fixed

point implementation that uses 32 bits to store numbers and reserves a number

of fixed bits to integer and decimal point parts. In very few cases there is some

loss of accuracy which causes some pairs to be missed but that is insignificant

enough that we will not analyze it.

We have in general paid attention to low-level issues and used fast data struc-

tures such as arrays and lists where applicable. For the hash tables in candi-

date maps of original all-pairs-0, all-pairs-1, and all-pairs-2 algorithms, we used

Ocaml’s Hashtbl implementation in the standard library. We initialize the hash

table with one fourth of the number of vectors. For document vectors we used

96

Algorithm t = 0.2 t = 0.3 t = 0.4
all-pairs-0 141.62 142.34 143.14
all-pairs-0-array 24.57 24.44 24.74
all-pairs-0-array2 29.50 29.37 29.53
all-pairs-0-remscore 180.21 179.75 180.41
all-pairs-0-minsize 149.37 149.70 149.43
all-pairs-1 87.10 79.05 71.73
all-pairs-1-array 73.02 69.54 64.40
all-pairs-1-remscore 180.55 181.79 182.02
all-pairs-1-upperbound 200.96 171.42 145.90
all-pairs-1-minsize 89.57 80.52 72.21
all-pairs-1-remscore-minsize 93.31 82.70 73.42
all-pairs-2 198.92 165.64 138.98
all-pairs-bruteforce 183.06 183.32 183.28

Table 5.2: Sequential running time on radikal dataset

compressed row storage, on arrays. For inverted lists we used dynamically sized

vectors with a fast way (O(1)) to pop the beginning of the inverted list, which is

required by the minsize optimization.

5.4.3 Sequential performance

Table 5.2 shows the running times of various sequential all-pairs algorithms on

radikal dataset with a few meaningful support thresholds. Likewise, Table 5.3

shows the running time on the 20-newsgroups dataset. The dot-product thresh-

olds were chosen so that we obtain roughly n. lg(n) pairs for n vectors and increase

the threshold until we have about n pairs. n. lg(n) pairs should be sufficient to

construct a well connected epsilon neighborhood graph, given each vector has

about lg(n) neighbors, since it is well-known that to establish inter-cluster con-

nectivity setting k ∼ log(n) is the lowest sufficient rate for knn graphs [96].

We have had to compare the effects of different optimization strategies so that

we could determine which algorithm could be parallelized best. In case, there is

a clearly best algorithm, the other parallelizations would be redundant. Not all

optimization strategies may be parallelized well, either. The effect of optimiza-

tions may also depend on the software and hardware platform used. Therefore,

97

Algorithm t = 0.4 t = 0.5 t = 0.6
all-pairs-0 2887.1 2904.7 2900.9
all-pairs-0-array 480.0 495.4 478.0
all-pairs-0-array2 596.4 618.0 595.6
all-pairs-0-remscore 3482.2 3486.1 3501.2
all-pairs-0-minsize 3171.6 3180.7 3191.4
all-pairs-1 1169.0 1035.6 882.9
all-pairs-1-array 883.8 837.0 757.5
all-pairs-1-remscore 3502.0 3499.9 3497.7
all-pairs-1-upperbound 1940.8 1649.5 1410.1
all-pairs-1-minsize 1190.0 1023.5 902.6
all-pairs-1-remscore-minsize 1288.5 1086.4 943.6
all-pairs-2 1733.8 1450 1190.2
all-pairs-bruteforce 1866.3 1867.2 1871.5

Table 5.3: Sequential running time on 20-newsgroups dataset

we made variations on the original all-pairs-0 algorithm so that optimizations

were tested individually and in combination. Surprisingly, it turns out that the

best algorithm is an optimization of all-pairs-0 itself that uses arrays instead of

hash tables for score accumulation, named all-pairs-0-array in the tables. The

running times show that it is actually quite difficult to improve upon the brute

force algorithm. While that may sound frustrating, it also means that there is

positive research potential in designing new all pairs similarity algorithms, since

it is known that the optimal nearest neighbor query algorithms in Rd have low

running time complexity [80]. With some work, those results could carry over to

real-world data with high dimensionality and sparse vectors.

Algorithm all-pairs-0-array2 fares worse than all-pairs-0-array unexpectedly,

the only difference in the former is maintaining a list so that the written entries

can be zeroed out in the next iteration. It seems that this list maintenance and

zeroing only written entries is more expensive than zeroing out the entire array,

suggesting that the non-zero entries are too many for this optimization. We

also see that, somewhat unexpectedly, all-pairs-2 does not improve on all-pairs-

1. However, the minsize optimization over all-pairs-1 improves on all-pairs-1,

which is part of all-pairs-2. The other two optimizations of all-pairs-2 (all-pairs-

1-remscore and all-pairs-1-upperbound) apparently slow down all-pairs-1 instead

98

of accelerating it. All-pairs-1-remscore-minsize is also worse than all-pairs-1-

minscore, suggesting that the remscore optimization is not useful at all. All-

pairs-2 is almost as slow as bruteforce for lower thresholds, so it may not be a

very meaningful algorithm to study. Even at higher thresholds, where there are

too few outputs, the results do not change significantly. Still, the most interesting

result is that, all-pairs-0-array is much better than all of those optimizations. The

array optimization carries over to all-pairs-1, but all-pairs-1-array still does not

match all-pairs-0-array, so we did not see a need to try to apply it to other

variants. Likewise, the optimizations over all-pairs-0 (all-pairs-0-remscore, and

all-pairs-0-minsize) seem to be worse than the brute force algorithm therefore

they were not worth pursuing.

While in this work, we focus on the parallelization of existing algorithms

and their variants, we have also examined the real reason for the high running

times. The first reason is that there are a lot of dimensions, breaking down

easy separability of points, and second and most importantly that the density

of the dimensions follow a power-law distribution which introduces an almost

irreducible complexity in the processing of the densest dimensions. The reason

why partial indexing optimization is more effective than the other optimizations

is that it separates the processing into a dense and a sparse phase, where a

brute force algorithm is applied to the dense part of the data and an indexing

approach is applied to the sparse part, definitely improving over the plain brute

force algorithm especially in the case of higher thresholds as can be seen in the

running times. Still, the improvement seems to be on a constant order, which is

interesting as it suggests that there is no asymptotic improvement.

5.4.4 Parallel performance

Our experiments were carried out at the TUBITAK ULAKBIM High Performance

Computing Center, which is comprised of 48-core multi-processor nodes built

with AMD Opteron 6172 processors, interconnected with an Infiniband network,

running GNU/Linux operating system. In the rest of the thesis, we use processor

and core interchangeably. For each dataset, we worked on a single, meaningful

99

Dataset t Time Matches
radikal 0.2 15.5 16810
20-newsgroups 0.4 317.3 64396
wikipedia 0.9 54424.0 747999
facebook 0.99 10777.8 819196
virgina-tech 0.99 10426.2 13447874

Table 5.4: The problem instances used in our study

similarity threshold. The similarity thresholds for each dataset were chosen so

that they would result in a well-connected similarity graph. We again followed the

notion of allowing about n log n similar pairs in the output as a rough guideline,

we made sure that we obtained a significant number of similar pairs. Table 5.4

shows the problem instances used in our parallel performance study; the columns

display the similarity threshold t, the running time of the sequential algorithm

all-pairs-0-array and the number of similar pairs output. For 1-D algorithms,

we ran our algorithms up to 256 processors on the small datasets and up to 64

processors on the large datasets due to resource limitations on the batch system

of the supercomputer (128 in one instance where we could run it). For the 2-D

algorithms, we have tried different combinations of numbers of processor rows and

columns in the virtual mesh, again going up to 256 at most for small datasets

and 128 processors at most for large datasets.

We have performed our experiments on three algorithms. The vertical paral-

lel algorithm is Algorithm 3 that uses the major optimization of score accumu-

lation with local pruning (Lemma 9). Otherwise, it is not possible to get good

speedup beyond 2 cores, the results of which would clutter the results and would

be infeasible for most of the experiments. We use the flat score accumulation

algorithm in the experiments (Section 5.2.1.7), the other choices were covered in

Section 5.2.1.14. The horizontal parallel algorithm is Algorithm 6, explained in

Section 5.2.2.

Fig. 5.1 shows the parallel speedup of our vertical and horizontal algorithms

on the smaller two datasets: radikal and 20-newsgroups. Likewise, Fig. 5.2 shows

the speedup of our 2-D algorithm on the same datasets. Similarly, Fig. 5.3 depicts

the parallel speedup of our 1-D algorithms on the larger three datasets: wikipedia,

100

 0

 2

 4

 6

 8

 10

 12

2 4 8 16 32 64

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of radikal

vertical-0.2
horizontal-0.2

(a) radikal

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8 16 32 64

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of 20-newsgroups

vertical-0.4
horizontal-0.4

(b) 20-newsgroups

Figure 5.1: Parallel speedup of horizontal and vertical algorithms on small
datasets radikal and 20-newsgroups

 0

 1

 2

 3

 4

 5

 6

 7

 8

2x2
4x2

4x4
8x2

8x4
8x8

16x2
16x4

16x8
32x2

32x4
32x8

64x2
64x4

P
ar

al
le

l S
pe

ed
up

Rows x Columns

Speedup of radikal

2d-0.2

(a) radikal

 0

 5

 10

 15

 20

 25

2x2
4x2

4x4
8x2

8x4
8x8

16x2
16x4

16x8
32x2

32x4
32x8

64x2
64x4

P
ar

al
le

l S
pe

ed
up

Rows x Columns

Speedup of 20-newsgroups

2d-0.4

(b) 20-newsgroups

Figure 5.2: Parallel speedup of the 2D algorithm on small datasets radikal and
20-newsgroups

101

 0

 20

 40

 60

 80

 100

 120

 140

 160

2 4 8 16 32 64 128

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of wikipedia

vertical-0.9
horizontal-0.9

(a) wikipedia

 0

 20

 40

 60

 80

 100

 120

2 4 8 16 32 64 128 256

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of facebook

vertical-0.99
horizontal-0.99

(b) facebook

 0

 10

 20

 30

 40

 50

 60

 70

2 4 8 16 32 64 128 256

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of virginia-tech

vertical-0.99
horizontal-0.99

(c) virginia-tech

Figure 5.3: Parallel speedup of horizontal and vertical algorithms on the large
datasets: wikipedia, facebook, virginia-tech

facebook and virgina-tech, while Fig. 5.4 gives the speedups of the 2-D algorithm

for the same three datasets. The processor configurations of the 2D algorithm

are indicated as p× q on the x-axis where p is the number of the processor rows

and q is the number of processor columns.

In all datasets, we see that the horizontal algorithm scales better than the

vertical algorithm. The vertical algorithm scales well up to 8 processors, but

after that it loses quite a bit of steam. It is still quite an achievement that the

vertical algorithm scales as much, since the number of processors increase the

102

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2x2
4x2

4x4
8x2

8x4
8x8

16x2
16x4

16x8
32x2

32x4
32x8

64x2
64x4

P
ar

al
le

l S
pe

ed
up

Rows x Columns

Speedup of wikipedia

2d-0.9

(a) wikipedia

 0

 5

 10

 15

 20

 25

2x2
4x2

4x4
8x2

8x4
8x8

16x2
16x4

16x8
32x2

32x4
32x8

64x2
64x4

P
ar

al
le

l S
pe

ed
up

Rows x Columns

Speedup of facebook

2d-0.99

(b) facebook

 0

 5

 10

 15

 20

 25

 30

2x2
4x2

4x4
8x2

8x4
8x8

16x2
16x4

16x8
32x2

32x4
32x8

64x2
64x4

P
ar

al
le

l S
pe

ed
up

Rows x Columns

Speedup of virginia-tech

2d-0.99

(c) virginia-tech

Figure 5.4: Parallel speedup of the 2D algorithm on the large datasets: wikipedia,
facebook, virginia-tech

communication volume and communication asynchrony rapidly despite the local

pruning optimization. The horizontal algorithm scales well up to 32 processors

and then starts to slow down due to the fact that the broadcast starts becom-

ing significant. This is most apparent in radikal dataset, but it is also seen in

other datasets that the speedup does not accelerate as much, as we go up to 64

processors. We observe that both vertical and horizontal parallelizations achieve

super-linear speedups in several cases, affirming the efficiency of our implemen-

tation, as in those cases the algorithms make better use of the memory hierarchy.

In two cases, we see that the vertical algorithm achieves better speedup than the

103

horizontal algorithm, justifying the usefulness of our vertical algorithm. The 2-D

algorithm shows varying performance according to the processor configuration.

Since the vertical algorithm did not scale further than 8 processors, we did not

try more processor columns in the virtual mesh. We sometimes see excellent

speedups with the 2-D algorithm, for instance in wikipedia, 4 × 4 yields super-

linear speedup and 16× 8 yields about 80 speedup. However, on the average, the

2-D algorithm’s performance is between that of the horizontal and vertical algo-

rithms, it is usually better than half of the speedup of the horizontal algorithm

for the maximum number of processors although for facebook dataset it’s slightly

worse than that.

5.4.5 Local pruning and block processing optimizations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

2 4 8 16

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of radikal

vertical-noopt-0.2
vertical-localpruning-0.2

vertical-bothopt-0.2

(a) radikal

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 4 8 16

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of 20-newsgroups

vertical-noopt-0.4
vertical-localpruning-0.4

vertical-bothopt-0.4

(b) 20-newsgroups

Figure 5.5: Speedup comparison of three parallel algorithms on radikal and 20-
newsgroups datasets

It is useful to understand the performance impact of local pruning and block

processing optimizations for the vertical algorithm. Without those optimiza-

tions, the vertical algorithm is futile, it would not be quite possible to apply it

to sufficiently many cases. Therefore, we show its performance, when neither

optimization is applied, and when only local pruning is applied, together with

happens when both optimizations are turned on.

104

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

2 4 8 16

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of radikal

vertical-bs1-0.2
vertical-bs4-0.2
vertical-bs8-0.2

vertical-bs16-0.2
vertical-bs32-0.2
vertical-bs64-0.2

(a) radikal

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 4 8 16

P
ar

al
le

l S
pe

ed
up

Processors

Speedup of 20-newsgroups

vertical-bs1-0.4
vertical-bs4-0.4
vertical-bs8-0.4

vertical-bs16-0.4
vertical-bs32-0.4
vertical-bs64-0.4

(b) 20-newsgroups

Figure 5.6: Speedup comparison of varying block sizes on radikal and 20-
newsgroups datasets

We have chosen the smaller two datasets radikal and 20-newsgroups for this

comparison, because some of the runs would be infeasible for the larger datasets.

We run them on up to 16 processors, which is sufficient to illustrate the perfor-

mance differences. Fig. 5.5 shows how speedup varies for different vertical algo-

rithms on small datasets, comparing the unoptimized vertical algorithm (vertical-

noopt), the vertical algorithm with local pruning optimization only (vertical-

localpruning) and the vertical algorithm with both local pruning and block pro-

cessing optimizations applied (vertical-bothopt). It is clearly seen that local prun-

ing improves over no optimization and both optimizations together improve on

local pruning only. Local pruning is more significant for smaller number of pro-

cessors and block processing is more significant for larger number of processors.

In fact, without these optimizations, we see that it would be impossible to get

a speedup greater than 1 on any number of processors. It is only due to these

effective optimizations that we have been able to obtain the speedups previously

demonstrated. The comparison is similar across two datasets. The optimizations

are most effective on 8 processors; on 16 processors, the effectiveness of the local

pruning algorithm declines greatly, which is why we did not extend the study to

a larger number of processors.

105

Comparing speedups alone does not give us much insight into how these speed

differences occur. We have thus profiled the algorithms in detail. We have mea-

sured the time elapsed for both communication and computation phases in the

algorithms. We have also calculated how the number of candidates vary when we

use the optimizations, and how many scores are actually accumulated. We have

also put a barrier before each collective communication operation, so that we can

measure how much processors wait before engaging in actual communication. We

give both average and maximum values for the measured values, to show how im-

balance for these values vary. In Table 5.5, Table 5.6, Table 5.7, and Table 5.8

we measure the following parameters for varying number of processors and al-

gorithms: p shows the number of processors, Algo. shows the algorithm being

used, Cavg shows the average time of communication, Cmax shows the maximum

time of communication, Wavg shows the average time of work, Wmax shows the

maximum time of work, Scores shows the total number of scores communicated,

Candavg shows the average number of candidates, Candmax shows the maximum

number of candidates Barravg shows the average barrier time, Barrmax shows

the maximum barrier time.

Table 5.5 and Table 5.6 show the profiling results for the three vertical algo-

rithm variants previously mentioned. The profiling data suggests that the local

pruning optimization is effective for reducing communication time, and the num-

ber of scores communicated. On 2 processors, we see that it reduces more than

100-fold. Even on 16 processors, there is a 10-fold improvement on the number

of scores communicated. The work time is also reduced due to fewer scores being

processed. The barrier time also reduces favorably for local pruning optimiza-

tion. However, block processing further reduces barrier time, and consequently,

the communication time. It turns out that block processing optimization is very

effective for the all-pairs similarity problem, as otherwise the effects of small com-

munication latencies and imbalances must be aggregating. We see that the work

time slightly increases, but this is offset by the huge savings in communication

time. For instance, on 8 processors, for 20-newsgroups dataset, the maximum

communication time reduces from 31.22 seconds to 7.02 seconds, while maximum

work time increases from 24.34 seconds to 25.89 seconds, and the barrier time

106

reduces from 15.87 to 5.73. These are quite significant savings for a parallel

algorithm.

Table 5.7 and Table 5.8 show the profiling results when only the processing

block size is varied in the fully optimized vertical algorithm, where algorithm

“vertical-bsx” means a block size of x. We see that, generally, enlarging block size

improves reduction of communication time and barrier time. The communication

imbalances also follow a decreasing trend as the block size increases, which shows

that our statistical reasoning works. Especially, the communication times become

much more even as the block size is increased. The barrier time also follows a

similar trend, but it does not become as finely balanced. The communication

and barrier times are very small already even for a block size of 64, so more

intelligent document partitioning methods may not be very effective in improving

communication performance. We did not increase the block size much further,

since every document in the block incurs a large memory penalty. We did get

out of memory errors with a block size of 256 on larger datasets. In general, the

block size must be specified with the dataset size in mind so as to prevent such

errors.

107

p Algo. Cavg Cmax Wavg Wmax Barravg Barrmax Scores Candavg Candmax

2 vertical-noopt 12.03 12.09 8.63 8.71 3.15 4.42 23684403 0.0 0
2 vertical-localpruning 1.27 1.32 5.81 5.86 0.74 0.81 42086 22886.5 23272
2 vertical-bothopt 0.04 0.04 6.26 6.36 0.24 0.34 42086 22886.5 23272

4 vertical-noopt 18.41 18.72 4.12 4.28 6.69 9.98 23684403 0.0 0
4 vertical-localpruning 2.34 2.38 2.78 2.87 0.97 1.04 116000 34393.8 38986
4 vertical-bothopt 0.10 0.12 3.17 3.25 0.25 0.27 116000 34393.8 38986

8 vertical-noopt 27.15 27.91 2.02 2.16 11.47 17.21 23684403 0.0 0
8 vertical-localpruning 4.55 4.60 1.55 1.65 1.51 1.93 355937 53711.8 73642
8 vertical-bothopt 0.41 0.51 1.87 2.02 0.42 0.60 355937 53711.8 73642

16 vertical-noopt 47.35 48.04 1.21 1.55 10.57 13.52 23684403 0.0 0
16 vertical-localpruning 17.07 17.36 0.93 1.06 1.69 2.90 1155714 89717.0 202112
16 vertical-bothopt 2.42 2.57 1.23 1.35 0.54 0.89 1155714 89717.0 202112

Table 5.5: Profiling of vertical variants on radikal dataset

108

p Algo. Cavg Cmax Wavg Wmax Barravg Barrmax Scores Candavg Candmax

2 vertical-noopt 123.08 124.63 153.79 155.23 34.17 44.30 194138198 0.0 0
2 vertical-localpruning 12.84 14.91 134.68 136.86 10.84 12.84 287786 148376.0 246016
2 vertical-bothopt 0.17 0.18 137.88 139.72 3.29 5.13 287786 148376.0 246016

4 vertical-noopt 177.56 178.94 78.42 79.00 70.60 99.58 188179681 0.0 0
4 vertical-localpruning 18.67 19.49 54.76 56.04 14.04 14.55 1060564 274885.0 398405
4 vertical-bothopt 0.81 1.04 56.62 57.79 4.03 4.79 1060564 274885.0 398405

8 vertical-noopt 266.82 274.48 42.87 62.64 114.28 158.89 180315935 0.0 0
8 vertical-localpruning 30.78 31.22 23.33 24.34 13.79 15.87 4165217 551323.0 1939290
8 vertical-bothopt 6.19 7.02 25.22 25.89 4.83 5.73 4165217 551323.0 1939290

16 vertical-noopt 434.75 440.22 22.93 23.98 120.81 144.17 172874767 0.0 0
16 vertical-localpruning 111.18 111.83 16.82 18.08 13.58 17.53 17454734 1203360.0 11294606
16 vertical-bothopt 47.05 48.16 15.53 19.16 5.40 6.87 17454734 1203360.0 11294606

Table 5.6: Profiling of vertical variants on 20-newsgroups dataset

109

p Algo. Cavg Cmax Wavg Wmax Barravg Barrmax Scores Candavg Candmax

2 vertical-bs1 0.73 0.74 6.48 6.61 0.90 0.99 42086 22886.5 23272
2 vertical-bs4 0.23 0.23 6.36 6.47 0.52 0.61 – – –
2 vertical-bs8 0.12 0.13 6.35 6.38 0.34 0.36 – – –
2 vertical-bs16 0.08 0.08 6.33 6.45 0.34 0.45 – – –
2 vertical-bs32 0.05 0.05 6.32 6.34 0.29 0.31 – – –
2 vertical-bs64 0.04 0.04 6.29 6.33 0.23 0.25 – – –

4 vertical-bs1 1.78 1.87 3.40 3.48 1.34 1.43 116000 34393.8 38986
4 vertical-bs4 0.50 0.52 3.29 3.36 0.67 0.76 – – –
4 vertical-bs8 0.28 0.30 3.22 3.29 0.42 0.47 – – –
4 vertical-bs16 0.20 0.23 3.20 3.29 0.36 0.41 – – –
4 vertical-bs32 0.14 0.16 3.17 3.26 0.27 0.31 – – –
4 vertical-bs64 0.10 0.11 3.16 3.26 0.24 0.28 – – –

8 vertical-bs1 3.61 3.91 2.02 2.16 1.94 2.27 355937 53711.8 73642
8 vertical-bs4 1.10 1.24 1.94 2.06 1.03 1.21 – – –
8 vertical-bs8 0.73 0.87 1.92 2.07 0.94 1.13 – – –
8 vertical-bs16 0.50 0.64 1.90 2.04 0.60 0.81 – – –
8 vertical-bs32 0.40 0.51 1.90 2.03 0.47 0.65 – – –
8 vertical-bs64 0.41 0.52 1.88 2.03 0.42 0.60 – – –

16 vertical-bs1 15.39 16.12 1.37 1.53 2.73 3.71 1155714 89717.0 202112
16 vertical-bs4 6.39 6.66 1.31 1.45 1.17 1.69 – – –
16 vertical-bs8 4.77 4.95 1.29 1.42 0.97 1.40 – – –
16 vertical-bs16 3.57 3.74 1.28 1.43 0.85 1.25 – – –
16 vertical-bs32 2.85 3.01 1.28 1.44 0.64 1.00 – – –
16 vertical-bs64 2.43 2.58 1.23 1.34 0.55 0.89 – – –

Table 5.7: Profiling of various block sizes on radikal dataset

110

p Algo. Cavg Cmax Wavg Wmax Barravg Barrmax Scores Candavg Candmax

2 vertical-bs1 2.66 2.69 138.96 140.97 11.56 13.88 287786 148376.0 246016
2 vertical-bs4 0.88 0.88 148.88 158.13 15.14 24.28 – – –
2 vertical-bs8 0.50 0.52 137.95 140.12 5.35 7.53 – – –
2 vertical-bs16 0.30 0.31 138.80 140.88 4.54 6.64 – – –
2 vertical-bs32 0.39 0.40 138.46 140.61 3.96 6.10 – – –
2 vertical-bs64 0.17 0.18 137.19 138.65 3.09 4.54 – – –

4 vertical-bs1 5.87 6.25 58.95 59.57 15.29 16.31 1060564 274885.0 398405
4 vertical-bs4 2.00 2.14 58.06 58.83 9.44 10.42 – – –
4 vertical-bs8 1.51 1.76 57.70 59.07 7.69 8.60 – – –
4 vertical-bs16 0.92 1.01 57.32 57.89 6.27 7.22 – – –
4 vertical-bs32 0.78 0.89 57.47 58.92 4.55 5.55 – – –
4 vertical-bs64 0.81 1.04 57.00 58.15 4.12 4.94 – – –

8 vertical-bs1 17.20 18.70 27.30 27.84 16.77 18.05 4165217 551323.0 1939290
8 vertical-bs4 11.28 12.47 28.66 35.00 15.51 18.36 – – –
8 vertical-bs8 8.61 9.55 26.53 27.17 9.16 9.90 – – –
8 vertical-bs16 6.93 7.94 26.06 26.72 7.72 8.90 – – –
8 vertical-bs32 6.62 7.55 25.71 26.30 5.87 6.83 – – –
8 vertical-bs64 6.19 7.02 25.30 25.97 4.84 5.70 – – –

16 vertical-bs1 92.72 96.26 20.55 21.68 18.74 21.27 17454734 1203360.0 11294606
16 vertical-bs4 59.00 61.03 18.62 20.42 10.41 12.41 – – –
16 vertical-bs8 50.25 52.13 17.44 19.17 7.88 9.74 – – –
16 vertical-bs16 44.52 46.23 16.49 18.98 6.60 8.32 – – –
16 vertical-bs32 43.04 44.83 15.89 18.67 5.35 7.05 – – –
16 vertical-bs64 47.19 48.26 15.52 19.02 5.30 7.00 – – –

Table 5.8: Profiling of various block sizes on 20-newsgroups dataset

111

Chapter 6

Conclusion

We have introduced three new coarse-grain data-parallel frequent itemset mining

(FIM) algorithms using a top-down data partitioning scheme with selective repli-

cation. Section 6.1 summarizes the results with the first two of these algorithms

that use a graph partitioning by vertex separator (GPVS) model, and Section 6.2

mentions the results obtained from the third algorithm that uses the hypergraph

partitioning model. Section 6.3 briefly discusses the conclusions from our 1−D

and 2−D algorithms for the parallel all pairs similarity problem, and Section 6.4

exposes future work related to the thesis.

6.1 NoClique and NoClique2 methods

We have proposed a novel divide-and-conquer strategy suitable for paralleliza-

tion of the FIM task. Our objective is to divide the whole transaction database

into parts that can be mined independently. It turns out that we can distribute

items so as to achieve our goal of independent mining, while replicating some

items selectively, implying an amount of work that cannot be divided further in

the same fashion. This optimization problem is cast as a Graph Partitioning by

Vertex Separator (GPVS) problem where the partitioning objective corresponds

to minimizing data replication or collective work (work that requires collective

112

communication) by setting appropriate weights to vertices, and the partitioning

constraint corresponds to maintaining storage balance or computational load by

setting appropriate weights likewise. The transaction database distribution is

independent of the underlying database representation and the serial mining al-

gorithms employed. We have proposed an item distribution method that depends

on theoretical observations that identify lack of cliques among two sets of items

in GF2
. The mining problem is decomposed into independent sub-problems using

a graph partitioning by vertex separator (GPVS) model which encapsulates the

minimization of task or data redundancy as well as computational load or storage

balance. We showed that this model can be extended to n-way distribution and

any level of mining. Based on our distribution model, we designed and imple-

mented two parallel FIM algorithms called NoClique and NoClique2. NoClique

algorithm is a black-box parallelization with redundant work that can parallelize

any given serial FIM algorithm and NoClique2 is a parallel vertical mining algo-

rithm based on our new serial mining algorithm called Bitdrill. Experiments with

synthetic and real-world databases on a Beowulf cluster showed that our method

has competitive performance with respect to a state-of-the-art parallel frequent

itemset mining implementation.

6.2 Intelligent Candidate and Item Distribution

method

We have addressed the load imbalance problem that we have observed in No-

Clique2 and NoClique2 by means of a new model. We also introduce a hy-

pergraph partitioning model for the parallel FIM task which improves the load

imbalance of the GPVS model. This model gives rise to a simple but powerful

parallel algorithm called Intelligent Candidate and Item Distribution ICID that

distributes both candidates and items, optimizing the amount of communication

and balancing the load in a fine-grain manner. We also introduce a re-partitioning

model because only a few levels can be mined in parallel with the new algorithm,

which requires the candidates for the next few levels to be generated in advance.

113

Experiments have shown that the new parallel FIM algorithm does have much

better load imbalance, and that it surpasses the performance of NoClique2 in

some cases.

6.3 Parallel All Pairs Similarity

We have designed new parallel algorithms for the efficient practical algorithms

proposed by Bayardo et. al [14]. We have compared various optimizations to

the practical algorithms, and we have found that a simple optimization to all-

pairs-0 which we call all-pairs-0-array gave the best results. We have been able

to distribute both vectors and dimensions in a way that is faithful to the original

processing order and data structures of all-pairs-0-array. The vertical parallel

algorithm distributes dimensions and parallelizes the inner loop, accumulating

candidates. We have proposed an effective pruning step to decrease the number

of candidates communicated in this step (Lemma 9). Various optimizations and

implementation choices for the vertical algorithm have been considered, including

a recursive similarity match search algorithm. The horizontal parallel algorithm

is easier and it parallelizes the outer loop of the algorithm. We have also pro-

posed a 2-D parallel algorithm which combines the inner-loop and outer-loop

parallelizations in an elegant fashion. Our experiments show that the variety of

parallelizations is useful for large-scale similarity graph construction.

6.4 Future Work

In the future, more appropriate optimization models may be developed for the

parallel FIM problem following our approach. For instance, the partitioning

constraint of GPVS may be modified such that the balance is defined on the

weights of the parts together with the separator rather than just those of parts.

Note that to optimize data and task redundancy at the same time, we may need

a multi-objective GPVS tool which uses multiple weights per vertex. Using a

114

parallel GPVS tool or a parallel hypergraph partitioning tool that is suitable

for hypergraph-based GPVS solution would be necessary for an efficient imple-

mentation. With regards to performance of the GPVS algorithm, FIM specific

optimizations may enhance the performance of GPVS. Since the effectiveness of

our approach depends on sufficient sparsity of GFl
for a given level l, it may also

be possible to automate the selection of parameters, for instance l or the sup-

port threshold. We have observed that the performance of the mining algorithm

depends on the probability distribution of items in the database, which suggests

that statistically aware parallel mining programs may be useful. We also think

that efficient and scalable parallel FIM algorithms (following the design in [9] for

instance) that work on terabyte scale databases are needed along with extensive

benchmarks on real-world databases.

Our ICID algorithm may be interpreted as an enhancement of Candidate-

Distribution. It seems logical to try to improve other previous parallel algorithms.

ICID may be implemented better with full parallelization of the candidate gen-

eration and PaToH steps, and experiments may include full mining results with

the re-partitioning model. Several optimizations are conceivable for ICID, for

instance the mining problem may be modified so that there will be fewer candi-

dates and frequent itemsets, or candidates may be clustered appropriately so that

blocks of candidates are represented by a single vertex, speeding up hypergraph

partitioning step.

In the future, we would like to see if we can incorporate more techniques to

prune candidates, or other optimizations into our framework for parallel all-pairs

similarity algorithms. For instance, it may be possible to exploit the Zipf-like dis-

tribution of dimension frequencies, in a better way. Or certain data decomposition

approaches, like that of [68], may be incorporated. It may also be worthwhile to

investigate the applicability of our data distribution approach to approximate

similarity search and knn algorithms, as well as different algorithmic approaches

to proximity search. The scalability of both the vertical and the 2-D algorithms

could be improved upon. For the vertical algorithm, a better recursive local

pruning algorithm could be useful, or more intelligent pruning heuristics could

be discovered. For the 2-D algorithm, a better implementation could make use

115

of asynchronous communication and burst-mode transfers. In general, it is an

open problem to find the best data decomposition for parallel solutions of this

problem which does not suffer from the replication bottleneck of the horizon-

tal distribution. Our present results may lead to better solutions in that area,

eventually.

116

Bibliography

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules

in large databases,” in VLDB ’94: Proceedings of the 20th International

Conference on Very Large Data Bases, (San Francisco, CA, USA), pp. 487–

499, Morgan Kaufmann Publishers Inc., 1994.

[2] M. J. Zaki, “Generating non-redundant association rules,” in Knowledge

Discovery and Data Mining, pp. 34–43, 2000.

[3] D.-I. Lin and Z. M. Kedem, “Pincer search: A new algorithm for discovering

the maximum frequent set,” in 6th Intl. Conf. Extending Database Technol-

ogy, pp. 105–119, 1998.

[4] R. Agrawal and J. C. Shafer, “Parallel mining of association rules,” IEEE

Trans. On Knowledge And Data Engineering, vol. 8, pp. 962–969, 1996.

[5] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel algorithms

for discovery of association rules,” Data Mining and Knowledge Discovery,

vol. 1, no. 4, pp. 343–373, 1997.

[6] D. W. Cheung, V. T. Ng, A. W. Fu, and Y. J. Fu, “Efficient mining of

association rules in distributed databases,” IEEE Trans. On Knowledge And

Data Engineering, vol. 8, pp. 911–922, 1996.

[7] O. Zäıane, M. El-Hajj, and P. Lu, “Fast parallel association rule mining

without candidacy generation,” in Proc. of the IEEE 2001 International

Conference on Data Mining (ICDM’2001), (San Jose, CA, USA), November

29–December 2 2001.

117

[8] A. Rudra, R. P. Gopalan, and Y. G. Sucahyo, “Scalable parallel min-

ing for frequent patterns from dense datasets using a cluster of pcs,” in

Proceedings of Sixth International Conference on Information Technology,

(Bhubaneswar, India), Dec 22–25 2003.

[9] E.-H. Han, G. Karypis, and V. Kumar, “Scalable parallel data mining for

association rules,” IEEE Transactions on Knowledge and Data Engineering,

vol. 12, pp. 337–352, May 2000.

[10] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, High Performance

Computing for Computational Science - VECPAR 2002: 5th International

Conference, Porto, Portugal, June 26-28, 2002. Selected Papers and Invited

Talks, vol. 2565, ch. An Efficient Parallel and Distributed Algorithm for

Counting Frequent Sets. Springer, 2003.

[11] C. Lucchese, S. Orlando, and R. Perego, “Fast and memory efficient mining

of frequent closed itemsets,” IEEE Transactions on Knowledge and Data

Engineering, vol. 18, no. 1, 2006.

[12] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: parallel

fp-growth for query recommendation,” in RecSys (P. Pu, D. G. Bridge,

B. Mobasher, and F. Ricci, eds.), pp. 107–114, ACM, 2008.

[13] A. Savasere, E. Omiecinski, and S. B. Navathe, “An efficient algorithm for

mining association rules in large databases,” in VLDB’95, Proceedings of

21th International Conference on Very Large Data Bases, September 11-15,

1995, Zurich, Switzerland, pp. 432–444, 1995.

[14] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity search,”

in Proceedings of the 16th international conference on World Wide Web,

WWW ’07, (New York, NY, USA), pp. 131–140, ACM, 2007.

[15] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate

generation,” in 2000 ACM SIGMOD Intl. Conference on Management of

Data (W. Chen, J. Naughton, and P. A. Bernstein, eds.), pp. 1–12, ACM

Press, May 2000.

118

[16] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules be-

tween sets of items in large databases,” in Proceedings of the 1993 ACM

SIGMOD International Conference on Management of Data (P. Buneman

and S. Jajodia, eds.), (Washington, D.C.), pp. 207–216, 26–28 1993.

[17] R. Agrawal and R. Srikant, “Mining sequential patterns,” in ICDE ’95:

Proceedings of the Eleventh International Conference on Data Engineering,

(Washington, DC, USA), pp. 3–14, IEEE Computer Society, 1995.

[18] S. Brin, R. Motwani, and C. Silverstein, “Beyond market baskets: General-

izing association rules to correlations,” in SIGMOD 1997, Proceedings ACM

SIGMOD International Conference on Management of Data, May 13-15,

1997, Tucson, Arizona, USA, pp. 265–276, ACM Press, 1997.

[19] C. Silverstein, S. Brin, and R. Motwani, “Beyond market baskets: Gener-

alizing association rules to dependence rules,” Data Mining and Knowledge

Discovery, vol. 2, no. 1, pp. 39–68, 1998.

[20] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent episodes

in event sequences,” Data Mining and Knowledge Discovery, vol. 1, no. 3,

pp. 259–289, 1997.

[21] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset counting

and implication rules for market basket data,” in SIGMOD 1997, Proceedings

ACM SIGMOD International Conference on Management of Data, May 13–

15, 1997, Tucson, Arizona, USA (J. Peckham, ed.), pp. 255–264, ACM Press,

May 1997.

[22] M. J. Zaki, “Scalable algorithms for association mining,” Knowledge and

Data Engineering, vol. 12, no. 2, pp. 372–390, 2000.

[23] M. Zaki, “Parallel and distributed association mining: A survey,” IEEE

Concurrency, vol. 7, no. 4, pp. 14–25, 1999.

[24] J. Hipp, U. Güntzer, and G. Nakhaeizadeh, “Algorithms for association rule

mining – a general survey and comparison,” SIGKDD Explorations, vol. 2,

pp. 58–64, July 2000.

119

[25] U. M. Fayyad, D. Haussler, and P. E. Stolorz, “KDD for science data analysis:

Issues and examples,” in Proceedings of the Second International Conference

on Knowledge Discovery and Data Mining (KDD-96). Portland, Oregon,

pp. 50–56, AAAI Press, 1996.

[26] W. A. Maniatty and M. J. Zaki, Parallel and Distributed Processing, vol. 1800

of Lecture Notes in Computer Science, ch. A Requirements Analysis for Par-

allel KDD Systems. Springer Berlin / Heidelberg, 358–365.

[27] R. Agrawal and J. C. Shafer, “Parallel mining of association rules: Design,

implementation and experience,” tech. rep., IBM Almaden Research Center,

IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, Ca, 95120, 1996.

[28] F. Geerts, B. Goethals, and J. V. den Bussche, “A tight upper bound on

the number of candidate patterns,” in Proceedings of the First IEEE Inter-

national Conference on Data Mining, 2001.

[29] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, “Adaptive and

resource-aware mining of frequent sets,” in Proceedings of the 2002 IEEE In-

ternational Conference on Data Mining (ICDM 2002), 9–12 December 2002,

Maebashi City, Japan, pp. 338–345, IEEE Computer Society, 2002.

[30] S. Orlando, P. Palmerini, and R. Perego, “Dci: a hybrid algorithm for fre-

quent set counting,” Tech. Rep. TR-CS-01-9, Dip. di Informatica, Universit

Ca’ Foscari di Venezia, 2001.

[31] M. El-Hajj and O. R. Zäıane, “Parallel association rule mining with min-

imum inter-processor communication,” in DEXA ’03: Proceedings of the

14th International Workshop on Database and Expert Systems Applications,

(Washington, DC, USA), IEEE Computer Society, 2003.

[32] S. Cong, J. Han, J. Hoeflinger, and D. Padua, “A sampling-based framework

for parallel data mining,” in PPoPP ’05: Proceedings of the tenth ACM

SIGPLAN symposium on Principles and practice of parallel programming,

(New York, NY, USA), pp. 255–265, ACM Press, 2005.

[33] V. Guralnik and G. Karypis, “Parallel tree-projection-based sequence mining

algorithms,” Parallel Computing, vol. 30, pp. 443–472, April 2004.

120

[34] A. Schuster and R. Wolff, “Communication-efficient distributed mining of

association rules,” Data Mining and Knowledge Discovery, vol. 8, pp. 171–

196, March 2004.

[35] Z. K. Baker and V. K. Prasanna, “Efficient hardware data mining with

the apriori algorithm on fpgas,” in FCCM ’05: Proceedings of the 13th

Annual IEEE Symposium on Field-Programmable Custom Computing Ma-

chines, (Washington, DC, USA), pp. 3–12, IEEE Computer Society, 2005.

[36] Z. K. Baker and V. K. Prasanna, “An architecture for efficient hardware data

mining using reconfigurable computing systems,” in FCCM ’06: Proceed-

ings of the 14th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, (Washington, DC, USA), pp. 67–75, IEEE Computer

Society, 2006.

[37] B. B. Cambazoglu and C. Aykanat, “Hypergraph-partitioning-based remap-

ping models for image-space-parallel direct volume rendering of unstructured

grids,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 1, pp. 3–16, 2007.

[38] C. Aykanat, B. B. Cambazoglu, F. Findik, and T. M. Kurç, “Adaptive de-

composition and remapping algorithms for object-space-parallel direct vol-

ume rendering of unstructured grids,” J. Parallel Distrib. Comput., vol. 67,

no. 1, pp. 77–99, 2007.

[39] T. Joachims, “Transductive learning via spectral graph partitioning,” in In

ICML, pp. 290–297, 2003.

[40] J. Wang, T. Jebara, and S. fu Chang, “Graph transduction via alternating

minimization,” in Proc. 25th ICML, 2008.

[41] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on graph clustering

algorithms,” in Algorithms - ESA 2003 (G. Di Battista and U. Zwick, eds.),

vol. 2832 of Lecture Notes in Computer Science, pp. 568–579, Springer Berlin

/ Heidelberg, 2003.

121

[42] J. B. MacQueen, “Some methods for classification and analysis of multi-

variate observations,” in Proceedings of 5th Berkeley Symposium on Mathe-

matical Statistics and Probability, p. 281297, University of California Press,

1967.

[43] S. P. Lloyd, “Least square quantization in pcm,” IEEE Transactions on

Information Theory, 1982. Originally published in 1957 in Bell Telephone

Laboratories Paper.

[44] E. Fix and J. Hodges, “Discriminatory analysis, nonparametric discrimina-

tion: Consistency properties,” Tech. Rep. Technical Report 4, USAF School

of Aviation Medicine, 1951.

[45] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans-

actions on Information Theory, 1967.

[46] R. B. Marimont and M. B. Shapir, “Nearest neighbour searches and the

curse of dimensionality,” Journal of the Institute of Mathematics and its

Applications, pp. 59–70, 1979.

[47] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and perfor-

mance study for similarity-search methods in high-dimensional spaces,” in

Proceedings of the 24rd International Conference on Very Large Data Bases,

VLDB ’98, (San Francisco, CA, USA), pp. 194–205, Morgan Kaufmann Pub-

lishers Inc., 1998.

[48] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúın, “Searching in

metric spaces,” ACM Comput. Surv., vol. 33, pp. 273–321, September 2001.

[49] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer, “Space filling

curves and their use in the design of geometric data structures,” in LATIN

’95: Theoretical Informatics (R. Baeza-Yates, E. Goles, and P. Poblete, eds.),

vol. 911 of Lecture Notes in Computer Science, pp. 36–48, Springer Berlin /

Heidelberg, 1995.

[50] K. Clarkson, Nearest-Neighbor Methods for Learning and Vision: Theory

and Practice, ch. Nearest-neighbor searching and metric space dimensions.

MIT Press, 2006.

122

[51] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in

International Conference On Management of Data, pp. 47–57, ACM, 1984.

[52] P. N. Yianilos, “Data structures and algorithms for nearest neighbor search

in general metric spaces,” in Proceedings of the Fifth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 1993.

[53] S. Brin, “Near neighbor search in large metric spaces,” in Proceedings of the

21th International Conference on Very Large Data Bases, VLDB ’95, (San

Francisco, CA, USA), pp. 574–584, Morgan Kaufmann Publishers Inc., 1995.

[54] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method

for similarity search in metric spaces,” in Proceedings of the 23rd Interna-

tional Conference on Very Large Data Bases, VLDB ’97, (San Francisco,

CA, USA), pp. 426–435, Morgan Kaufmann Publishers Inc., 1997.

[55] A. Faragó, T. Linder, and G. Lugosi, “Fast nearest-neighbor search in dissim-

ilarity spaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, pp. 957–

962, September 1993.

[56] B. Bustos and N. Morales, “On the asymptotic behavior of nearest neighbor

search using pivot-based indexes,” in Proceedings of the Third International

Conference on SImilarity Search and APplications, SISAP ’10, (New York,

NY, USA), pp. 33–39, ACM, 2010.

[57] J. M. Kleinberg, “Two algorithms for nearest-neighbor search in high di-

mensions,” in Proceedings of the twenty-ninth annual ACM symposium on

Theory of computing, STOC ’97, (New York, NY, USA), pp. 599–608, ACM,

1997.

[58] R. Fagin, R. Kumar, and D. Sivakumar, “Efficient similarity search and clas-

sification via rank aggregation,” in Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, SIGMOD ’03, (New York,

NY, USA), pp. 301–312, ACM, 2003.

[59] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions

via hashing,” in Proceedings of the 25th International Conference on Very

123

Large Data Bases, VLDB ’99, (San Francisco, CA, USA), pp. 518–529, Mor-

gan Kaufmann Publishers Inc., 1999.

[60] N. Ailon and B. Chazelle, “Approximate nearest neighbors and the fast

johnson-lindenstrauss transform,” in Proceedings of the thirty-eighth annual

ACM symposium on Theory of computing, STOC ’06, (New York, NY, USA),

pp. 557–563, ACM, 2006.

[61] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions,” Commun. ACM, vol. 51, pp. 117–122,

January 2008.

[62] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for approx-

imate nearest neighbor in high dimensional spaces,” in Proceedings of the

thirtieth annual ACM symposium on Theory of computing, STOC ’98, (New

York, NY, USA), pp. 614–623, ACM, 1998.

[63] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,

“An optimal algorithm for approximate nearest neighbor searching in fixed

dimensions,” in ACM-SIAM Symposium on Discrete Algorithms, pp. 573–

582, 1994.

[64] S. Ilyinsky, M. Kuzmin, A. Melkov, and I. Segalovich, “An efficient method

to detect duplicates of web documents with the use of inverted index,” in

Proc 11 th Int World Wide Web Conference WWW2002, 2002.

[65] A. Skubalska-Rafajlowicz, E.; Krzyzak, “Fast k-nn classification rule using

metric on space-filling curves,” in Pattern Recognition, 1996., Proceedings of

the 13th International Conference on, pp. 121–125, Aug 1996.

[66] S. Liao, M. A. Lopez, and S. T. Leutenegger, “High dimensional similar-

ity search with space filling curves,” in In Proceedings of the 17th Inter-

national Conference on Data Engineering, pp. 615–622, IEEE Computer

Society, 2000.

[67] G. Mainar-Ruiz and J.-C. Perez-Cortes, “Approximate nearest neighbor

search using a single space-filling curve and multiple representations of the

124

data points,” in Proceedings of the 18th International Conference on Pattern

Recognition - Volume 02, ICPR ’06, (Washington, DC, USA), pp. 502–505,

IEEE Computer Society, 2006.

[68] S. Kulkarni and R. Orlandic, “High-dimensional similarity search using data-

sensitive space partitioning,” in Proc. 17th Int. Conf. On Database and Ex-

pert Systems Dexa, 2006.

[69] P. Vaidya, “An o(n log n) algorithm for the all-nearest-neighbors prob-

lem,” Discrete & Computational Geometry, vol. 4, pp. 101–115, 1989.

10.1007/BF02187718.

[70] P. B. Callahan and S. R. Kosaraju, “A decomposition of multi-dimensional

point sets with applications to k-nearest-neighbors and n-body potential

fields,” J. ACM, vol. 42, pp. 546–556, 1992.

[71] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúın, “Searching in

metric spaces,” ACM Comput. Surv., vol. 33, pp. 273–321, September 2001.

[72] J. Lin, “Brute force and indexed approaches to pairwise document similarity

comparisons with mapreduce,” in Proceedings of the 32nd international ACM

SIGIR conference on Research and development in information retrieval,

SIGIR ’09, (New York, NY, USA), pp. 155–162, ACM, 2009.

[73] A. Awekar and N. F. Samatova, “Parallel all pairs similarity search,” in

Proceedings of the 2010 International Conference on Information Knowledge

Engineering, (Las Vegas, Nevada, USA), July 2010.

[74] E. Plaku and L. E. Kavraki, “Distributed computation of the knn graph

for large high-dimensional point sets,” J. Parallel Distrib. Comput., vol. 67,

pp. 346–359, 2007.

[75] Alsabti, Ranka, and Singh, “An Efficient Parallel Algorithm for High Di-

mensional Similarity Join,” in IPPS: 11th International Parallel Processing

Symposium, IEEE Computer Society Press, 1998.

[76] G. Aparcio, I. Blanquer, and V. Hernndez, “A parallel implementation of

the k nearest neighbours classifier in three levels: Threads, mpi processes

125

and the grid,” in High Performance Computing for Computational Science

- VECPAR 2006 (M. Dayd, J. Palma, . Coutinho, E. Pacitti, and J. Lopes,

eds.), vol. 4395 of Lecture Notes in Computer Science, pp. 225–235, Springer

Berlin / Heidelberg, 2007.

[77] V. Olman, F. Mao, H. Wu, and Y. Xu, “Parallel clustering algorithm for large

data sets with applications in bioinformatics,” IEEE/ACM Trans. Comput.

Biol. Bioinformatics, vol. 6, pp. 344–352, April 2009.

[78] D. A. Schneider and D. J. DeWitt, “A performance evaluation of four parallel

join algorithms in a shared-nothing multiprocessor environment,” SIGMOD

Rec., vol. 18, pp. 110–121, June 1989.

[79] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity joins

using mapreduce,” in Proceedings of the 2010 international conference on

Management of data, SIGMOD ’10, (New York, NY, USA), pp. 495–506,

ACM, 2010.

[80] P. B. Callahan and S. R. Kosaraju, “A decomposition of multidimensional

point sets with applications to k-nearest-neighbors and n-body potential

fields,” J. ACM, vol. 42, pp. 67–90, January 1995.

[81] J. W. H. Liu, “A graph partitioning algortihm by node separators,” ACM

Transactions on Mathematical Software, vol. 15, pp. 198–219, September

1989.

[82] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,

and M. Protasi, Complexity and Approximation: Combinatorial Optimiza-

tion Problems and Their Approximability Properties. Springer, January 1999.

[83] A. Grama, V. Kumar, A. Gupta, and G. Karypis, An Introduction to Parallel

Computing: Design and Analysis of Algorithms. Addison-Wesley, second ed.,

2003.

[84] R. J. Bayardo Jr., “Efficiently mining long patterns from databases,” SIG-

MOD Rec., vol. 27, no. 2, pp. 85–93, 1998.

126

[85] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and F. Silvestri, “kdci:

a multi-strategy algorithm for mining frequent sets,” in Proceedings of the

Second IEEE ICDM Workshop on Frequent Itemset Mining Implementations

(FIMI’04), (Brighton, UK), 2004.

[86] T. Uno, M. Kiyomi, and H. Arimura, “Lcm ver. 2: Efficient mining al-

gorithms for frequent/closed/maximal itemsets,” in Proceedings of the Sec-

ond IEEE ICDM Workshop on Frequent Itemset Mining Implementations

(FIMI’04), (Brighton, UK), 2004.

[87] A. Fiat and S. Shporer, “Aim2: Another itemset miner,” in Proceedings of the

Second IEEE ICDM Workshop on Frequent Itemset Mining Implementations

(FIMI’04), (Brighton, UK), 2004.

[88] E. Özkural and C. Aykanat, “A space optimization for fp-growth,” in Pro-

ceedings of the Second IEEE ICDM Workshop on Frequent Itemset Mining

Implementations (FIMI’04), (Brighton, UK), 2004.

[89] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based sparse

matrix ordering,” in Second International Workshop on Combinatorial Sci-

entific Computing (CSC05), Toulouse, France, June 2005.

[90] U. Catalyurek, C. Aykanat, and E. Kayaaslan, “Hypergraph partitioning-

based fill-reducing ordering,” tech. rep., Bilkent University Institute of Sci-

ence and Engineering, 2009. BU-CE-0904 (Submitted to SIAM Journal on

Scientific Computing. Revised version under review.).

[91] Ü. V. Çatalyürek and C. Aykanat, “Patoh: A multilevel hypergraph parti-

tioning tool, version 3.0,” tech. rep., Bilkent University, Computer Engineer-

ing Department, 1999.

[92] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based decom-

position for parallel sparse-matrix vector multiplication,” IEEE Trans. Par-

allel Distrib. Syst., vol. 10, no. 7, pp. 673–693, 1999.

127

[93] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri, “Webdocs: a real-life

huge transactional dataset,” in Proceedings of the Second IEEE ICDM Work-

shop on Frequent Itemset Mining Implementations (FIMI’04), (Brighton,

UK), 2004.

[94] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake,

and C. V. Packer, “BEOWULF: A parallel workstation for scientific com-

putation,” in Proceedings of the 24th International Conference on Parallel

Processing, (Oconomowoc, WI), pp. I:11–14, 1995.

[95] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke, “Webbase: a

repository of web pages,” Comput. Netw., vol. 33, pp. 277–293, June 2000.

[96] M. Brito, E. Chvez, A. Quiroz, and J. Yukich, “Connectivity of the mutual

k-nearest-neighbor graph in clustering and outlier detection,” Statistics &

Probability Letters, vol. 35, no. 1, pp. 33 – 42, 1997.

128

