23 research outputs found

    PFPM: Discovering Periodic Frequent Patterns with Novel Periodicity Measures

    Get PDF
    Periodic pattern mining is the task of discovering patterns that periodically appear in transactions. Typically, periodic pattern mining algorithms will discard a pattern as being nonperiodic if it has a single period greater than a maximal periodicity threshold, defined by the user. A major drawback of this approach is that it is not flexible, as a pattern can be discarded based on only one of its periods. In this chapter, we present a solution to this issue by proposing to discover periodic patterns using three measures: the minimum periodicity, the maximum periodicity, and the average periodicity. The combination of these measures has the advantage of being more flexible. Properties of these measures are studied. Moreover, an efficient algorithm named PFPM (Periodic Frequent Pattern Miner) is proposed to discover all frequent periodic patterns using these measures. An experimental evaluation on real data sets shows that the proposed PFPM algorithm is efficient and can filter a huge number of nonperiodic patterns to reveal only the desired periodic patterns

    Personalized Market Basket Prediction with Temporal Annotated Recurring Sequences

    Get PDF
    Nowadays, a hot challenge for supermarket chains is to offer personalized services to their customers. Market basket prediction, i.e., supplying the customer a shopping list for the next purchase according to her current needs, is one of these services. Current approaches are not capable of capturing at the same time the different factors influencing the customer's decision process: co-occurrence, sequentuality, periodicity and recurrency of the purchased items. To this aim, we define a pattern Temporal Annotated Recurring Sequence (TARS) able to capture simultaneously and adaptively all these factors. We define the method to extract TARS and develop a predictor for next basket named TBP (TARS Based Predictor) that, on top of TARS, is able to understand the level of the customer's stocks and recommend the set of most necessary items. By adopting the TBP the supermarket chains could crop tailored suggestions for each individual customer which in turn could effectively speed up their shopping sessions. A deep experimentation shows that TARS are able to explain the customer purchase behavior, and that TBP outperforms the state-of-the-art competitors

    Similarity processing in multi-observation data

    Get PDF
    Many real-world application domains such as sensor-monitoring systems for environmental research or medical diagnostic systems are dealing with data that is represented by multiple observations. In contrast to single-observation data, where each object is assigned to exactly one occurrence, multi-observation data is based on several occurrences that are subject to two key properties: temporal variability and uncertainty. When defining similarity between data objects, these properties play a significant role. In general, methods designed for single-observation data hardly apply for multi-observation data, as they are either not supported by the data models or do not provide sufficiently efficient or effective solutions. Prominent directions incorporating the key properties are the fields of time series, where data is created by temporally successive observations, and uncertain data, where observations are mutually exclusive. This thesis provides research contributions for similarity processing - similarity search and data mining - on time series and uncertain data. The first part of this thesis focuses on similarity processing in time series databases. A variety of similarity measures have recently been proposed that support similarity processing w.r.t. various aspects. In particular, this part deals with time series that consist of periodic occurrences of patterns. Examining an application scenario from the medical domain, a solution for activity recognition is presented. Finally, the extraction of feature vectors allows the application of spatial index structures, which support the acceleration of search and mining tasks resulting in a significant efficiency gain. As feature vectors are potentially of high dimensionality, this part introduces indexing approaches for the high-dimensional space for the full-dimensional case as well as for arbitrary subspaces. The second part of this thesis focuses on similarity processing in probabilistic databases. The presence of uncertainty is inherent in many applications dealing with data collected by sensing devices. Often, the collected information is noisy or incomplete due to measurement or transmission errors. Furthermore, data may be rendered uncertain due to privacy-preserving issues with the presence of confidential information. This creates a number of challenges in terms of effectively and efficiently querying and mining uncertain data. Existing work in this field either neglects the presence of dependencies or provides only approximate results while applying methods designed for certain data. Other approaches dealing with uncertain data are not able to provide efficient solutions. This part presents query processing approaches that outperform existing solutions of probabilistic similarity ranking. This part finally leads to the application of the introduced techniques to data mining tasks, such as the prominent problem of probabilistic frequent itemset mining.Viele Anwendungsgebiete, wie beispielsweise die Umweltforschung oder die medizinische Diagnostik, nutzen Systeme der Sensorüberwachung. Solche Systeme müssen oftmals in der Lage sein, mit Daten umzugehen, welche durch mehrere Beobachtungen repräsentiert werden. Im Gegensatz zu Daten mit nur einer Beobachtung (Single-Observation Data) basieren Daten aus mehreren Beobachtungen (Multi-Observation Data) auf einer Vielzahl von Beobachtungen, welche zwei Schlüsseleigenschaften unterliegen: Zeitliche Veränderlichkeit und Datenunsicherheit. Im Bereich der Ähnlichkeitssuche und im Data Mining spielen diese Eigenschaften eine wichtige Rolle. Gängige Lösungen in diesen Bereichen, die für Single-Observation Data entwickelt wurden, sind in der Regel für den Umgang mit mehreren Beobachtungen pro Objekt nicht anwendbar. Der Grund dafür liegt darin, dass diese Ansätze entweder nicht mit den Datenmodellen vereinbar sind oder keine Lösungen anbieten, die den aktuellen Ansprüchen an Lösungsqualität oder Effizienz genügen. Bekannte Forschungsrichtungen, die sich mit Multi-Observation Data und deren Schlüsseleigenschaften beschäftigen, sind die Analyse von Zeitreihen und die Ähnlichkeitssuche in probabilistischen Datenbanken. Während erstere Richtung eine zeitliche Ordnung der Beobachtungen eines Objekts voraussetzt, basieren unsichere Datenobjekte auf Beobachtungen, die sich gegenseitig bedingen oder ausschließen. Diese Dissertation umfasst aktuelle Forschungsbeiträge aus den beiden genannten Bereichen, wobei Methoden zur Ähnlichkeitssuche und zur Anwendung im Data Mining vorgestellt werden. Der erste Teil dieser Arbeit beschäftigt sich mit Ähnlichkeitssuche und Data Mining in Zeitreihendatenbanken. Insbesondere werden Zeitreihen betrachtet, welche aus periodisch auftretenden Mustern bestehen. Im Kontext eines medizinischen Anwendungsszenarios wird ein Ansatz zur Aktivitätserkennung vorgestellt. Dieser erlaubt mittels Merkmalsextraktion eine effiziente Speicherung und Analyse mit Hilfe von räumlichen Indexstrukturen. Für den Fall hochdimensionaler Merkmalsvektoren stellt dieser Teil zwei Indexierungsmethoden zur Beschleunigung von ähnlichkeitsanfragen vor. Die erste Methode berücksichtigt alle Attribute der Merkmalsvektoren, während die zweite Methode eine Projektion der Anfrage auf eine benutzerdefinierten Unterraum des Vektorraums erlaubt. Im zweiten Teil dieser Arbeit wird die Ähnlichkeitssuche im Kontext probabilistischer Datenbanken behandelt. Daten aus Sensormessungen besitzen häufig Eigenschaften, die einer gewissen Unsicherheit unterliegen. Aufgrund von Mess- oder übertragungsfehlern sind gemessene Werte oftmals unvollständig oder mit Rauschen behaftet. In diversen Szenarien, wie beispielsweise mit persönlichen oder medizinisch vertraulichen Daten, können Daten auch nachträglich von Hand verrauscht werden, so dass eine genaue Rekonstruktion der ursprünglichen Informationen nicht möglich ist. Diese Gegebenheiten stellen Anfragetechniken und Methoden des Data Mining vor einige Herausforderungen. In bestehenden Forschungsarbeiten aus dem Bereich der unsicheren Datenbanken werden diverse Probleme oftmals nicht beachtet. Entweder wird die Präsenz von Abhängigkeiten ignoriert, oder es werden lediglich approximative Lösungen angeboten, welche die Anwendung von Methoden für sichere Daten erlaubt. Andere Ansätze berechnen genaue Lösungen, liefern die Antworten aber nicht in annehmbarer Laufzeit zurück. Dieser Teil der Arbeit präsentiert effiziente Methoden zur Beantwortung von Ähnlichkeitsanfragen, welche die Ergebnisse absteigend nach ihrer Relevanz, also eine Rangliste der Ergebnisse, zurückliefern. Die angewandten Techniken werden schließlich auf Problemstellungen im probabilistischen Data Mining übertragen, um beispielsweise das Problem des Frequent Itemset Mining unter Berücksichtigung des vollen Gehalts an Unsicherheitsinformation zu lösen

    Learning lost temporal fuzzy association rules

    Get PDF
    Fuzzy association rule mining discovers patterns in transactions, such as shopping baskets in a supermarket, or Web page accesses by a visitor to a Web site. Temporal patterns can be present in fuzzy association rules because the underlying process generating the data can be dynamic. However, existing solutions may not discover all interesting patterns because of a previously unrecognised problem that is revealed in this thesis. The contextual meaning of fuzzy association rules changes because of the dynamic feature of data. The static fuzzy representation and traditional search method are inadequate. The Genetic Iterative Temporal Fuzzy Association Rule Mining (GITFARM) framework solves the problem by utilising flexible fuzzy representations from a fuzzy rule-based system (FRBS). The combination of temporal, fuzzy and itemset space was simultaneously searched with a genetic algorithm (GA) to overcome the problem. The framework transforms the dataset to a graph for efficiently searching the dataset. A choice of model in fuzzy representation provides a trade-off in usage between an approximate and descriptive model. A method for verifying the solution to the hypothesised problem was presented. The proposed GA-based solution was compared with a traditional approach that uses an exhaustive search method. It was shown how the GA-based solution discovered rules that the traditional approach did not. This shows that simultaneously searching for rules and membership functions with a GA is a suitable solution for mining temporal fuzzy association rules. So, in practice, more knowledge can be discovered for making well-informed decisions that would otherwise be lost with a traditional approach.EPSRC DT

    Acta Cybernetica : Volume 16. Number 1.

    Get PDF

    A Survey and Taxonomy of Sequential Recommender Systems for E-commerce Product Recommendation

    Get PDF
    E-commerce recommendation systems facilitate customers’ purchase decision by recommending products or services of interest (e.g., Amazon). Designing a recommender system tailored toward an individual customer’s need is crucial for retailers to increase revenue and retain customers’ loyalty. As users’ interests and preferences change with time, the time stamp of a user interaction (click, view or purchase event) is an important characteristic to learn sequential patterns from these user interactions and, hence, understand users’ long- and short-term preferences to predict the next item(s) for recommendation. This paper presents a taxonomy of sequential recommendation systems (SRecSys) with a focus on e-commerce product recommendation as an application and classifies SRecSys under three main categories as: (i) traditional approaches (sequence similarity, frequent pattern mining and sequential pattern mining), (ii) factorization and latent representation (matrix factorization and Markov models) and (iii) neural network-based approaches (deep neural networks, advanced models). This classification contributes towards enhancing the understanding of existing SRecSys in the literature with the application domain of e-commerce product recommendation and provides current status of the solutions available alongwith future research directions. Furthermore, a classification of surveyed systems according to eight important key features supported by the techniques along with their limitations is also presented. A comparative performance analysis of the presented SRecSys based on experiments performed on e-commerce data sets (Amazon and Online Retail) showed that integrating sequential purchase patterns into the recommendation process and modeling users’ sequential behavior improves the quality of recommendations

    Database Streaming Compression on Memory-Limited Machines

    Get PDF
    Dynamic Huffman compression algorithms operate on data-streams with a bounded symbol list. With these algorithms, the complete list of symbols must be contained in main memory or secondary storage. A horizontal format transaction database that is streaming can have a very large item list. Many nodes tax both the processing hardware primary memory size, and the processing time to dynamically maintain the tree. This research investigated Huffman compression of a transaction-streaming database with a very large symbol list, where each item in the transaction database schema’s item list is a symbol to compress. The constraint of a large symbol list is, in this research, equivalent to the constraint of a memory-limited machine. A large symbol set will result if each item in a large database item list is a symbol to compress in a database stream. In addition, database streams may have some temporal component spanning months or years. Finally, the horizontal format is the format most suited to a streaming transaction database because the transaction IDs are not known beforehand This research prototypes an algorithm that will compresses a transaction database stream. There are several advantages to the memory limited dynamic Huffman algorithm. Dynamic Huffman algorithms are single pass algorithms. In many instances a second pass over the data is not possible, such as with streaming databases. Previous dynamic Huffman algorithms are not memory limited, they are asymptotic to O(n), where n is the number of distinct item IDs. Memory is required to grow to fit the n items. The improvement of the new memory limited Dynamic Huffman algorithm is that it would have an O(k) asymptotic memory requirement; where k is the maximum number of nodes in the Huffman tree, k \u3c n, and k is a user chosen constant. The new memory limited Dynamic Huffman algorithm compresses horizontally encoded transaction databases that do not contain long runs of 0’s or 1’s

    Network Traffic Measurements, Applications to Internet Services and Security

    Get PDF
    The Internet has become along the years a pervasive network interconnecting billions of users and is now playing the role of collector for a multitude of tasks, ranging from professional activities to personal interactions. From a technical standpoint, novel architectures, e.g., cloud-based services and content delivery networks, innovative devices, e.g., smartphones and connected wearables, and security threats, e.g., DDoS attacks, are posing new challenges in understanding network dynamics. In such complex scenario, network measurements play a central role to guide traffic management, improve network design, and evaluate application requirements. In addition, increasing importance is devoted to the quality of experience provided to final users, which requires thorough investigations on both the transport network and the design of Internet services. In this thesis, we stress the importance of users’ centrality by focusing on the traffic they exchange with the network. To do so, we design methodologies complementing passive and active measurements, as well as post-processing techniques belonging to the machine learning and statistics domains. Traffic exchanged by Internet users can be classified in three macro-groups: (i) Outbound, produced by users’ devices and pushed to the network; (ii) unsolicited, part of malicious attacks threatening users’ security; and (iii) inbound, directed to users’ devices and retrieved from remote servers. For each of the above categories, we address specific research topics consisting in the benchmarking of personal cloud storage services, the automatic identification of Internet threats, and the assessment of quality of experience in the Web domain, respectively. Results comprise several contributions in the scope of each research topic. In short, they shed light on (i) the interplay among design choices of cloud storage services, which severely impact the performance provided to end users; (ii) the feasibility of designing a general purpose classifier to detect malicious attacks, without chasing threat specificities; and (iii) the relevance of appropriate means to evaluate the perceived quality of Web pages delivery, strengthening the need of users’ feedbacks for a factual assessment

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore