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Abstract

Fuzzy association rule mining discovers patterns in transactions, such as shopping baskets

in a supermarket, or Web page accesses by a visitor to a Web site. Temporal patterns can be

present in fuzzy association rules because the underlying process generating the data can be

dynamic. However, existing solutions may not discover all interesting patterns because of a

previously unrecognised problem that is revealed in this thesis. The contextual meaning of fuzzy

association rules changes because of the dynamic feature of data. The static fuzzy representation

and traditional search method are inadequate.

The Genetic Iterative Temporal Fuzzy Association Rule Mining (GITFARM) framework

solves the problem by utilising flexible fuzzy representations from a fuzzy rule-based system

(FRBS). The combination of temporal, fuzzy and itemset space was simultaneously searched with

a genetic algorithm (GA) to overcome the problem. The framework transforms the dataset to a

graph for efficiently searching the dataset. A choice of model in fuzzy representation provides

a trade-off in usage between an approximate and descriptive model. A method for verifying

the solution to the hypothesised problem was presented. The proposed GA-based solution was

compared with a traditional approach that uses an exhaustive search method. It was shown how

the GA-based solution discovered rules that the traditional approach did not. This shows that

simultaneously searching for rules and membership functions with a GA is a suitable solution for

mining temporal fuzzy association rules. So, in practice, more knowledge can be discovered for

making well-informed decisions that would otherwise be lost with a traditional approach.
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Chapter 1

Introduction

Advances in information technology have accelerated the collection, storage and processing of

various sources of data in recent decades (Manyika et al., 2011). To acquire useful information

from databases, the term Knowledge Discovery in Databases (KDD) has emerged (Piatetsky-

Shapiro, 1990). Data mining is one step of KDD where the goal is to discover knowledge that is

accurate, comprehensible and interesting (Freitas, 2002). Commercial benefit can be gained from

information about customer purchases and credit card transactions, to mention a few. Another

beneficiary is science where information about measurements, such as those from microarrays or

telescopes, can be used to help form hypotheses, and classify or segment data (Tan et al., 2005).

There are a variety of methods in data mining that discover different types of information.

Association rule mining (Agrawal et al., 1993) is one that discovers interesting correlations

between items in a database. Agrawal et al. mined association rules from a retail company’s

database. An example of a rule is one that says “20% of customers who purchased pizza also

purchased beer”.

There are two extensions to association rule mining that incorporate additional knowledge.

The challenges of the composition of the two extensions are investigated in this thesis. One

extension is fuzzy association rules that uses fuzzy sets. The quantities of items in an association

rule are represented with words such that they are more interpretable to a human. For example, a

fuzzy association rule could take the form “customers who purchased a large quantity of pizza also

purchased a medium quantity of beer”. The other extension is temporal association rule mining.

This type of association rule mining incorporates information about when the rules occur more

frequently in time. For example, “customers on a Monday morning who purchased pizza also

purchased beer”. This research investigates a problem with mining association rules that have

both fuzzy quantities and temporal features.

It is demonstrated how the traditional approach to mining association rules that are both

temporal and fuzzy does not discover all rules. The assumptions and decisions made in the

traditional approach limit the temporal fuzzy association rules that can be discovered. This thesis

proposes the Genetic Iterative Temporal Fuzzy Association Rule Mining (GITFARM) framework

that provides flexibility to allow for the discovery of rules that a traditional approach cannot.

The problem is now introduced with an example in Section 1.1, the research hypothesis is

defined in Section 1.2 and the structure of thesis is explained in Section 1.3.

1



1.1 The Problem

The composition of fuzzy quantities and temporal features in association rule mining presents an

interesting problem. Association rules that combine these features are referred to as temporal

fuzzy association rules. Association rules, temporal association rules and fuzzy association rules

will be introduced in Sections 2.3.2, 2.4 and 2.5.3 respectively. There is a traditional approach to

finding temporal fuzzy association rules that has a previously unrecognised problem.

The traditional method of finding fuzzy association rules is a two-stage process consisting of

the following ordered steps:

1. Define parameters (linguistic terms and membership function parameters).

2. Mine the rules using the parameters.

The parameters defined in the first stage are described in detail in the literature review; the

membership functions define how words, or linguistic terms, are used to describe quantities. For

example, Figure 1.1 shows the membership functions that describe three linguistic terms low,

medium and high.

5 10 15 20
0

0.5

1 low medium high

Quantity

D
eg

re
e

of
m

em
be

rs
hi

p

Fig. 1.1. Example membership functions

Once these are defined, the parameters are then used for mining fuzzy association rules.

However, mining fuzzy association rules that occur more frequently across a finite duration of

time presents a new problem. The traditional approach for mining temporal fuzzy association

rules assumes the parameters are static. The membership functions, which determine the linguistic

terms, do not change throughout the duration of the whole dataset. The contextual meaning

of linguistic terms may change with factors such as seasonal weather, sports events (Saleh and

Masseglia, 2010), or unforeseen events, e.g., hurricanes (Leonard, 2005). For example, a low

quantity of beer on an average weekday may have a different meaning on the day of a sporting

event. A change in contextual meaning is not represented with static membership functions.

Different membership functions from those defined before the mining process may yield more

significant rules in some temporal periods of the dataset. More significant rules may be present

when a quantity is near to the intersection of membership function boundaries. It is for this reason

that traditional approaches to mining temporal fuzzy association rules can lose some interesting

rules. An example of how rules are lost is given. Some preliminaries are discussed in the literature

review. Such as fuzzy support, which measures the frequency (i.e., strength) of a rule and is

discussed in Section 2.5.3.
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Consider a hypothetical situation where a set of rules are mined with a traditional approach

using the linguistic terms and membership functions previously illustrated in Figure 1.1. One

fuzzy association rule from the results is “customers who purchased a medium amount of pizza

also purchased a medium amount of beer”. On Monday, two customers both purchase 11 pizzas

and 11 beers, i.e., identical shopping baskets. The quantities of those items belongs to the medium

fuzzy set to a degree of 0.94. This is illustrated in Figure 1.2 with a dashed line from the input

of 11 items to the degree of membership of 0.94. When calculating the fuzzy support (frequency)

of this fuzzy association rule, the minimum degree of membership is taken of both items in a rule

(minimum operator used for implication, which is explained in Section 2.2.1). Two transactions

with 11 pizzas and 11 beers have a fuzzy support of (0.94 + 0.94)/10 = 0.188. It is divided by 10,

because there are 10 transactions in each day. This is how the rule is measured for one temporal

period, i.e., Monday. On Friday, the same rule occurs in three transactions where there are 15

pizzas and 15 beers. Figure 1.2 illustrates how the degree of membership is determined. On

Friday, the fuzzy support of the same rule is (0.52 + 0.52 + 0.52)/10 = 0.156. So, the rule occurs

twice every day of the week with a fuzzy support of 0.188 and three times on Friday with a fuzzy

support of 0.156. Note that the fuzzy support is lower on Friday even though the rule occurs

in one extra transaction. A problem arises: if the minimum threshold is above 0.156, then the

rule on Friday will not be discovered. Despite more transactions and more quantities of items

on Friday, the rule can be lost when the threshold is sufficiently low. The membership functions

underrepresent the rule on the Friday.

Table 1.1. Example of fuzzy support measure of one rule for each day in a sample dataset
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Fig. 1.2. Example membership function occurring (dashed line) on intersection of two adjacent membership functions
in a temporal period of a dataset

Although traditional methods do find temporal patterns of fuzzy association rules, they may

not discover all significant patterns because of this problem. This thesis addresses the problem

of how to define these membership functions so they can have different meanings in different

temporal periods and how to discover rules associated with those membership functions.
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1.2 Research Hypothesis

The following hypothesis is the focus of this thesis.

“Traditional intra-transaction temporal fuzzy association rule mining algorithms may not discover

some rules because the degree of membership may occur at the intersection of membership

function boundaries. A fuzzy representation that provides flexibility in membership functions

is suitable for discovering these rules. The combination of a GA-based approach and flexible

fuzzy representation can discover fuzzy association rules, which exhibit intra-transaction temporal

patterns, that a traditional approach cannot.”

The traditional approach to intra-transaction temporal fuzzy association rule mining refers

to a search algorithm that uses an exhaustive and deterministic search method on membership

functions that are static/in-flexible and so do not change.

The GITFARM framework is created for mining intra-transaction temporal fuzzy association

rules. A GA is required to adapt a fuzzy representation so it is not static throughout the entire

dataset. A method for analysing the GA-based approach with a traditional approach is created.

Both real-world and synthetic datasets that have different dimensions are used to analyse the ability

to generalise and scale to different datasets.

1.3 Thesis Structure

The thesis is structured as follows:

• Chapter 2 surveys the literature that relates to the hypothesis. The background behind this

thesis’s core topics of computational intelligence (CI) and data mining is discussed. Specific

fields of literature focus on: the hybridisation of GAs and fuzzy logic, temporal association

rule mining and fuzzy association rule mining. Significant developments and state of the art

are discussed.

• Chapter 3 discusses a synthetic dataset generator and a real-world dataset. The features and

preprocessing of the datasets are described to provide an understanding of the type of data

and aid the justification of design decisions in the solution.

• Chapter 4 proposes a GA-framework for discovering intra-transaction temporal fuzzy

association rules. The framework is composed of multiple components: a data

transformation, a model of fuzzy representation, and a GA.

• Chapter 5 presents a comparative analysis framework that encompasses an experimental

methodology for analysing the GA-based framework.

• Chapter 6 presents a series of experiments designed to support the research hypothesis.

Preliminary results demonstrate the ability of the GA-based framework in finding rules.

The comparative analysis framework is then utilised to support the hypothesis.
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• Chapter 7 briefly summarises this research, draws conclusions from the research, discusses

the conclusions and presents scope for future research.
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Chapter 2

Literature Review

This thesis combines the fields of computational intelligence (CI) with data mining. Foundational

literature in both of these fields is presented to provide the required background knowledge. This

review sets the context of the field to enhance the accessibility for both the CI and data mining

communities. Key methods of CI and data mining are reviewed to understand previous work and

the relevance of this thesis.

The first section of this chapter, Section 2.1, introduces the CI methods used in this thesis.

Specifically, fuzzy logic and evolutionary computation. Section 2.2 provides an overview of the

hybridisation of CI methods used in this research referred to as Genetic Fuzzy Systems (GFSs).

Section 2.3 provides background information about data mining and focuses on association rule

mining. Section 2.4 reviews the temporal features of association rule mining and Section 2.5

reviews the fuzzy features of association rule mining. Section 2.6 highlights previous research

that tackles similar questions to this research.

2.1 Computational Intelligence

The question “Can machines think?” was posed by Turing (1950) when he introduced what is

now known as the Turing test for assessing a machine’s ability to exhibit intelligence. Artificial

intelligence is a broad field that has been defined by Hopgood (2005) as “the science of mimicking

human mental faculties in a computer”.

CI is a subfield of artificial intelligence (Bezdek, 1992) that aims to replicate intelligence in

machines using nature inspired methods. However, there is much debate about the definition of

the term CI and its interpretation can be considered subjective as discussed by Bezdek (2013)

who traced the origins of the term CI back to the 1970s. These methods are inspired from

observations of intelligent behaviour in the environment. The main areas of research in CI are

fuzzy logic, evolutionary computation and artificial neural networks. Fuzzy logic and evolutionary

computation are used in this thesis so these are introduced to provide preliminary knowledge

required for the literature review and the research.
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2.1.1 Fuzzy Logic

Classical set theory uses Boolean logic to determine an object’s membership of a set. An object

is either a member of a set, or it is not. For example, the set tall in Figure 2.1 states that a person

with height between 1.8m and 2m is considered to be tall. There is a sharp boundary between

membership and non membership, which is described as being crisp.
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Fig. 2.1. Crisp set tall

The sharp boundary between belonging and not belonging to a set is very different to how

humans interpret this. A person who is 1.75m in height is considered not to be tall according to

the above crisp set tall, despite their being a difference of only 5cm to the minimum boundary

of the set tall. There is the notion that a person with height 1.75m is a member of the set tall to

a degree and also a member to other sets to a degree, such as short. Fuzzy logic (Zadeh, 1973)

uses fuzzy sets (Zadeh, 1965) to model the imprecision of such notions with a variable degree

of set membership. For example, a person of height 1.75m in the fuzzy set tall in Figure 2.2 is

considered to be tall to a degree of 0.25.
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Fig. 2.2. Fuzzy set tall

For any fuzzy set A, a membership function µA determines the degree of membership within

the interval [0, 1] for a value x in the universe of discourse X . The degree of membership, or

degree of belonging, to a fuzzy set is defined as

µA(x) : X → [0, 1]. (2.1)

For a triangular membership function, a fuzzy set is determined by
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µA(x) =


x−a
b−a , if a ≤ x < b,

c−x
c−b , if b ≤ x ≤ c,

0, otherwise.

(2.2)

where a, b and c are the parameters of the triangular membership function.

Fuzzy sets are suitable for problems with specific features. Vagueness and linguistic

uncertainty are present in words so fuzzy sets have been used to model the imprecision of notions,

concepts and perceptions used by humans. For example, there is uncertainty in low risk and high

risk loans issued by banks, and the perception of a hot temperature can be quite different between

humans. Imprecision is present in many physical system measurements, such as the measurement

of height. A measurement can be modelled with a fuzzy set to attempt to handle the imprecision.

Fuzzy numbers were introduced by Zadeh (1975) for approximating with real numbers that can

deal with the uncertainty and imprecision of quantities. A fuzzy number can model approximate

quantities such as the height of a person, e.g., about 1.7m, or the weight of fruit in a greengrocer,

e.g., approximately 0.5 kg. There is no linguistic term, such as low and high, associated with a

fuzzy number. A fuzzy number has a central point for modelling a number that has a maximum

degree of membership of 1 and the degree of membership for other numbers close to the central

number is reflected according to the proximity (Klir et al., 1997).

A fuzzy inference system utilises fuzzy logic in a FRBS. The description of FRBSs is

presented in the context of GFSs in Section 2.2.1 because the learning/tuning aspect of GFSs

is tightly coupled with FRBSs so they are discussed together.

2.1.1.1 The 2-tuple Linguistic Representation

The 2-tuple linguistic representation is an extension of the fuzzy representation previously

described in this chapter. The 2-tuple linguistic representation is described here because it forms

part of the solution presented in this thesis.

The 2-tuple linguistic representation is based on a symbolic translation of a fuzzy set and

has been introduced by Herrera and Martı́nez (2000). A symbolic translation is the lateral

displacement of the fuzzy set within the interval [−0.5, 0.5) that expresses the domain of a label

when it is displaced between two linguistic labels. The 2-tuple linguistic representation maintains

the shape of a fuzzy set whilst it is shifted left or right from its original membership function, but

not beyond the middle point between itself and a neighbouring membership function (dashed line

in Figure 2.3). The 2-tuple linguistic representation is defined as

{(sj , αj)|sj ∈ S, αj ∈ [−0.5, 0.5)}, (2.3)

where S represents a set of linguistic labels and α quantifies the lateral displacement of a linguistic

label within the interval [−0.5, 0.5) (the term α does not refer to an α-cut). Figure 2.3 is
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an example of three membership functions, where s1 is laterally displaced to give a 2-tuple

membership function (s1,−0.3).
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Fig. 2.3. Example of a 2-tuple membership function, (s1,−0.3) (light grey) that is displaced from s1 (dark grey)

The 2-tuple linguistic representation was proposed for computing with words. The

computational methods for computing with words can lose information and the 2-tuple linguistic

representation was used to overcome this limitation.

2.1.2 Evolutionary Computation

Evolutionary Computation is a broad field of CI that focuses on methods inspired by the principles

of natural selection and genetics. This section of the literature review introduces evolutionary

computation before focusing on the GA. However, other evolutionary computation algorithms are

also briefly discussed because of their application in the review of data mining. In this thesis, a

GA is the method for searching for temporal fuzzy association rules. Two variants of the classical

evolutionary computation model, i.e., a GA, are presented because they are important aspects used

in this thesis.

Following preliminary work in the 1950s and 1960s, the GA was introduced in Holland (1975).

Fogel (1998) discusses the history behind evolutionary computation. A GA is a search method

inspired by natural evolution of living organisms. Animals and plants have evolved over many

generations to reach a near-optimum state by modifying the genes of organisms and using natural

selection (Hopgood, 2012). A GA is a basic model of natural evolution that encodes a solution

to a problem in a chromosome. A population contains many chromosomes and the population

undergoes a series of steps defined in Figure 2.4.

The information in the genes of a chromosome is referred to as the genotype. The phenotype

is the observable characteristics of the chromosome in the environment. The positions of genes in

the chromosome are referred to as loci.

A GA starts by initialising a population with chromosomes. A chromosome traditionally

contains a bit string where each bit represents a variable in a given problem. Other chromosome

representations are possible, such as real values. Every chromosome’s ability as a solution to a

given problem is evaluated with a fitness function and a fitness value is assigned. Chromosomes

are then selected from the population at random, but more preference is given to the solutions that

have a better fitness value. For example, in roulette wheel selection, individuals are allocated slots

on a roulette wheel so that fitter individuals have more slots compared to weaker individuals that
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have fewer slots. If elitism is used then the best individual is automatically copied to the new

population. Reproduction occurs with crossover and mutation, which are applied to the selected

chromosomes to modify them, and the resulting chromosomes are known as the offspring. The

offspring from reproduction form the new population, along with other selected chromosomes that

are copied into the new population. The new population is a new generation of solutions and the

whole process is repeated until the termination criteria are met.

Start

Initialise population

Evaluate fitness

Selection

Reproduction

Terminate?

Finish

Yes

No

Fig. 2.4. Process of genetic algorithm

The reproduction stage modifies parent chromosomes from the current population using either

crossover or mutation to produce offspring in the next population. The crossover operator splices

two chromosomes at one or more points in each chromosome. The spliced parts are swapped so

each chromosome contains genes of the other chromosome. The purpose of crossing over parts

of genes is to exploit parts of good chromosomes with the intention of creating better offspring.

Mutation operates on a single chromosome by randomly choosing one gene in the chromosome

and changing it to a random value. Mutation provides a mechanism for exploration of the search

space by introducing new solutions. Exploitation and exploration are essential aspects in many

evolutionary computation algorithms, such as a GA. In this thesis, a GA is used for mining

temporal fuzzy association rules.

There are other algorithms similar to GAs. A heuristic is a “rule of thumb” that is a means

for an educated guess or an informal judgement. A heuristic method provides a “good-enough

solution” to some complex problems that are otherwise difficult to solve. A metaheuristic was

introduced by Glover (1986), as a “meta-heuristic”. A metaheuristic is an upper level methodology

used to guide strategies in underlying heuristics for optimisation problems. A GA is in the category

of metaheuristic.

This is a classical model of a GA and there are many variants in evolutionary computation that

are suitable for different problems. For example, variations cited in this thesis are:

• Genetic programming (Koza, 1990) uses a tree structure to represent and evolve computer

programs.
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• Grammatical evolution (Ryan et al., 1998) has a user-defined grammar (such as Backus-

Naur Form) to evolve solutions.

• Differential evolution (Storn and Price, 1995) mutates a candidate first to produce a trial

vector that is then used by the crossover operator to produce an offspring.

• Evolution strategies (Schwefel, 1965) are based on the concept of evolution where

parameters control evolution.

Other evolutionary computation paradigms can be found in Engelbrecht (2007). There are

two variations of a classical GA that are now described. The foundational literature on GAs has

focused on solving problems that have one objective to search/optimise, which are referred to as

single-objective evolutionary algorithms. The first variation is a GA for problems with multiple

objectives. The second variation is a single-objective evolutionary algorithm that applies genetic

operators in a very different manner to classical GAs.

2.1.2.1 Multi-Objective Evolutionary Algorithm

Many problems have two or more objectives, often competing, where a trade-off between these

objectives is required to solve a problem. For example, the time-cost trade-off is common in

many areas because something that can be done quickly incurs a higher cost, so a balance between

objectives is required. The origins of work that recognise this type of problem dates back many

centuries and covers fields such as economics and game theory (Coello et al., 2007). The focus of

this review covers the multi-objective optimisation problem using evolutionary algorithms.

Classical approaches to multi-objective optimisation aggregate fitness values from multiple

objectives into one function (Hopgood, 2012). If there is a preference towards a particular trade-

off, weights are applied to the appropriate components of the fitness function. This is known

as preference-based multi-objective optimisation (Deb, 2005) and was first used by Gass and

Saaty (1955). It is subjective and an understanding of the application is required to identify the

preference. It is also sensitive towards the preferences because these can yield very different

solutions. This approach is straightforward and finds one near-optimal solution.

The vector evaluated GA (VEGA) was introduced by Schaffer (1985) as the first method

of a multi-objective evolutionary algorithm (MOEA). VEGA creates n subpopulations for n

objectives. Individuals of a subpopulation are chosen according to the same objective measure

and each subpopulation aims to contain good solutions for one objective. A common feature of

later MOEAs is the concept of Pareto dominance: two solutions are compared to identify if one

dominates the other. An objective vector x(1) of a solution dominates the objective vector x(2)

of another solution if: (1) the solution x(1) is no worse than x(2) in all objectives, and (2) the

solution x(1) is better than x(2) in at least one objective (Deb, 2005). So, a solution is said to

be Pareto optimal when no change in the solution will improve one objective without degrading

another objective. The set of Pareto-optimal solutions is known as the Pareto-optimal set. The

corresponding set of objectives for a Pareto-optimal set is known as the Pareto-optimal front.

Figure 2.5 illustrates solutions of the Pareto-optimal front for minimising two objectives, these are
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indicated as the non-dominated solutions. The Pareto-optimal front is used by an expert to select

a solution that is most suitable for the given problem considering the trade-off.

Objective 1
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Non-dominated solutions
Dominated solutions

Fig. 2.5. Pareto front for minimising two objectives

2.1.2.2 CHC

The Cross-generational elitist selection, Heterogeneous re-combination, and Cataclysmic muta-

tion (CHC) algorithm was created by Eshelman (1991). CHC is reviewed because it is the

algorithm used in this thesis for mining temporal fuzzy association rules. The justification for

choosing CHC was made while reviewing the literature on fuzzy association rules as presented in

Section 2.5.3. The descriptions of each part of CHC’s abbreviation explain the key concepts of

CHC that distinguish it from a classical GA.

Cross-generational elitist selection
Selecting individuals for the next population occurs across parents and offsprings. This

selection method is the same as that used in the (µ+λ) evolutionary strategy (Schwefel,

1975) where µ refers to the number of parents and λ indicates the number of offspring.

Selection uses elitism to select the best µ parents from a population, or the best λ offspring,

and always copies these to the next population.

Heterogeneous re-combination
Uniform crossover is applied where the probability of crossing over each bit in a binary

representation is 50%, rather than crossing over segments of bits. Uniform crossover is said

to be highly disruptive by Eshelman (1991) because it swaps about half the genes during

crossover. The incest prevention mechanism only performs crossover on chromosomes

whose measured difference is above a difference threshold. The Hamming distance

measures the number of positions in a bit string that are different. So when two individuals

are selected for crossover, the Hamming distance is measured and if the difference is
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above the threshold then crossover is performed, otherwise it is not. The aim of the incest

prevention mechanism is to prevent reproduction between similar chromosomes.

Cataclysmic mutation
The mutation operator is not present in CHC. Instead, a restart operator provides the

exploration ability that is crucial for a GA. Restart reintroduces diversity when the

population converges and there have been no new chromosomes for multiple generations.

Instead of mutating every generation, a population is restarted in only those generations

where the level of diversity drops below a threshold, which is determined by the incest

prevention mechanism. Note that convergence is not used as a termination criterion. When

a population is restarted, each individual is reinitialised, except the best individual, which

is just copied. Each individual is evaluated and the algorithm continues. A Boolean

representation is used and a percentage of bits is flipped. The percentage of bits is referred to

as divergence rate (Eshelman, 1991). The best individual is used as a template for creating

other individuals.

The incest prevention mechanism helps to slow convergence and it is integral to CHC’s

operation because it influences crossover and restart. The difference threshold (d) is decremented

when there are no new chromosomes. Crossover uses the threshold to determine when to crossover

individuals based on their difference. Figure 2.6 illustrates the CHC algorithm with an emphasise

on its restart method.

Initialise population,
initialise d = L/4

and evaluate

Crossover Evaluate

Select

If no new individuals
Then d = d− 0.05(L/4)d < 0

Restart and
initialise d = L/4 No

Yes

Fig. 2.6. Process of CHC (Cross-generational elitist selection, Heterogeneous re-combination, and Cataclysmic
mutation)

The difference threshold d is initialised to L/4. The numerator L is the length of bits in a

chromosome and so L represents the maximum difference between two chromosomes. To explain

the value of the difference threshold, it is recalled that CHC only crosses over chromosomes when

the parents are more than 50% different, i.e., more than L/2. Considering uniform crossover then

crosses over about half of the genes, which are known to be least 50% different, L/4 is half the

expected difference between parent chromosomes.
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2.1.3 Discussion

CI has been presented and important areas of CI used in this thesis have been introduced. The

literature on fuzzy logic has introduced the basic concepts of fuzzy sets, linguistic terms and fuzzy

numbers. The application of fuzzy sets in fuzzy logic systems is described more in Section 2.2.1

in the context of a hybrid method that combines evolutionary computation and fuzzy logic. GAs

can be categorised as metaheuristics and this term is used throughout this literature review to

encompass similar search and optimisation methods. The classical GA and a variation of this,

CHC, are introduced to provide an understanding of the method that is central to this thesis.

2.2 Genetic Fuzzy System

The thesis focuses on the hybridisation of two CI methods: evolutionary computation and fuzzy

logic. Evolutionary computation is applied as a learning/tuning method to a fuzzy rule-based

system (FRBS). Aspects that are important to the design of a Genetic Fuzzy System (GFS) are

reviewed here, such as the accuracy-interpretability problem, taxonomy of a GFS application to a

FRBS and the various learning approaches.

The use of evolutionary computation for system identification of FRBSs has been very

successful and GFSs have been used for a variety of tasks such as fuzzy modelling, classification,

control and prediction (Herrera, 2008; Cordón, 2011).

2.2.1 Fuzzy Rule-Based System

Knowledge-based systems are used in artificial intelligence to store and use information

(Hopgood, 2012). Knowledge-based systems contain two components: a knowledge base (KB)

and an inference system. Knowledge is stored in a structured manner in the KB and the inference

system is explicitly separate from the knowledge. A FRBS is a type of knowledge-based system

that uses fuzzy rules in the KB. The principles of FRBSs are at the foundations of how this thesis

supports the hypothesis. The search method for temporal fuzzy association rules uses principles

taken from FRBSs. This section therefore reviews FRBSs.

Mamdani (1974) introduced a Mamdani FRBS that uses fuzzy-rules, and fuzzification and

defuzzification components. Figure 2.7 shows the components of a Mamdani FRBS. The

fuzzification and defuzzification components are not present in a non-fuzzy knowledge-based

system, they are specific to a FRBS. Fuzzification maps the crisp values from the input domain to

fuzzy sets, and defuzzification performs the opposite operation of mapping fuzzy sets to crisp

output values. The inference system determines the fuzzy outputs from the fuzzy inputs by

applying an implication operator to each rule. Defuzzification then applies an aggregation operator

to produce a final fuzzy set that is then defuzzified to give a crisp output.

The KB stores the fuzzy rules in the rule base (RB) and the data base (DB)∗ contains the

linguistic terms and the associated fuzzy sets. Fuzzy rules have the following form
∗DB refers to the collection of membership functions and linguistic terms. In this thesis it has a different meaning

to dataset.
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Fig. 2.7. Mamdani fuzzy rule-based system

IF X1 is A1 and . . . and Xn is An THEN Y is B

where Xi and Y are variables and A and B are linguistic terms for a multiple inputs-single output

FRBS. A clause in a rule is a unit containing a proposition. For example, a clause in a rule contains

one variable and one linguistic term, e.g., X1 is A1. Multiple clauses can form the antecedent or

consequent. The fuzzy rule represents a relation between A and B. Zadeh (1973) extended the

modus ponens of classical logic to generalised modus ponens. The generalised modus ponens

allows an inference about the rule to be made. A fuzzy relation between two variables is expressed

as fuzzy set R whose membership function is

µR(x, y) = I(µA(x), µB(y)),∀x ∈ X, y ∈ Y, (2.4)

where µA(x) and µB(y) are the membership functions of the fuzzy sets A and B respectively for

a fuzzy implication operator I that models a fuzzy relation mapping the input domain X to the

output domain Y .

FRBSs that use this model of rule are referred to as linguistic or descriptive Mamdani FRBSs

because they use linguistic terms to describe variables. Usage of such systems was first reported in

Mamdani (1974) and Mamdani and Assilian (1975) for control problems. They are thus referred to

as Mamdani FRBSs and they use linguistic terms for both the antecedent and consequent. Cordón

et al. (2001a) state that the advantages of a Mamdani FRBS are:

• It is a “natural framework for including expert knowledge in the form of linguistic rules”

(Cordón et al., 2001a, p.15).

• The KB can be automatically generated from datasets.

• Components of the Mamdani model can be adapted easily (e.g., fuzzification, inference

system and defuzzification).

• They are interpretable by humans because linguistic terms are used in the antecedent and

consequent of rules.

Despite these advantages, Cordón et al. (2001a) state there are the following drawbacks to a

Mamdani FRBS:
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• A lack of flexibility caused by the rigid partitioning of input and output spaces. Partitioning

refers to how linguistic terms cover the universe of discourse. A linguistic term is one

partition.

• Difficulties in finding the fuzzy partitions of input space when input variables are mutually

dependent.

• “The homogeneous partition of the input and output space does not scale well as the

dimensionality and complexity of input-output mappings increases” (Cordón et al., 2001a,

p.16).

• The size of the KB increases rapidly when the number of variables and linguistic terms

increases. An increase in linguistic terms provides finer granularity and enhances accuracy

but the system becomes less interpretable for humans.

There are two approaches that aim to overcome the shortcomings of descriptive Mamdani

FRBS by allowing more flexibility. The disjunctive normal form (DNF) fuzzy rule has a set of

linguistic terms that describe each variable (González et al., 1994). A DNF fuzzy rule has the

form

IF X is Ã THEN Y is B

where the input variable X has a set of linguistic terms Ã and the output variable B has one

linguistic term B. The linguistic terms in Ã are joined by a disjunctive operator and this operator

provides flexibility in linguistic terms. The set of linguistic terms in a DNF fuzzy rule have the

form

Ã = {A1 or . . . or An}

Another model that allows more flexibility is the approximate Mamdani FRBS. An

approximate Mamdani FRBS has the same rule structure as a descriptive Mamdani FRBS but the

fuzzy sets are independent of each other. Rules in a descriptive Mamdani FRBS have linguistic

terms and the linguistic terms have the same meaning amongst rules. However, rules in an

approximate Mamdani FRBS each have their own meaning (Cordón and Herrera, 1995a). A rule

from an approximate Mamdani FRBS has the form

IF X is A THEN Y is B

where X and Y are variables and A and B are independent fuzzy variables. Where as a descriptive

Mamdani FRBS uses linguistic variables, an approximate Mamdani FRBS uses fuzzy variables

represented by fuzzy numbers. Rules from an approximate Mamdani FRBS are described as

being “semantic free” (Cordón et al., 2001a, p.18) because they have no linguistic label. For this

reason the KB does not contain a DB. Figure 2.8 illustrates the differences between the KBs of a

descriptive and an approximate Mamdani FRBS. According to Carse et al. (1996) the advantages

of an approximate Mamdani FRBS are:
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R1: If X is VL Then Y is VL
R2: If X is L Then Y is L
R3: If X is M Then Y is VH
R4: If X is H Then Y is H
R5: If X is VH Then Y is M

(a) Descriptive KB: DB and RB

R1: If X is Then Y is
R2: If X is Then Y is
R3: If X is Then Y is
R4: If X is Then Y is

(b) Approximate KB: fuzzy RB

Fig. 2.8. Comparison of descriptive and approximate Mamdani fuzzy rule-based system features (adapted from Cordón
et al. (2001a))

• Additional degrees of freedom and enhanced expressiveness.

• The number of rules can be modified according to the complexity of the problem. This

can alleviate the scaling problem that is related to the dimensionality and complexity of

increasing the of number input-output mappings.

The disadvantages of an approximate Mamdani FRBS are:

• There is a lack of interpretability because the fuzzy variables do not share linguistic terms,

which is why there is no DB in the KB.

• Over-fitting of training data is possible.

The FRBSs described so far deal with linguistic/fuzzy rules and are referred to as Mamdani

FRBS. Takagi and Sugeno (1985) and Sugeno and Kang (1988) introduced the Takagi-Sugeno-

Kang (TSK) FRBS where the consequent is a function of the input variables. The consequent of a

TSK FRBS is a polynomial function and a rule has the following form

IF X1 is A1 and . . . and Xn is An THEN Y = p1 ·X1 + · · ·+ pn ·Xn + p0

where Xi and Y are variables, Ai is either a fuzzy variable (as used in an approximate Mamdani

FRBS) or a linguistic term (as used in a descriptive Mamdani FRBS) and p is a real parameter for

n polynomial terms. A weighted sum of each rule’s output is taken and this is the output of the

TSK FRBS. TSK FRBSs are suitable for fuzzy modelling and control tasks (Cordón et al., 2001a).

Although classical methods can estimate the parameters of the consequent in TSK FRBSs, such as

least squares method in Takagi and Sugeno (1985), they are more difficult for humans to interpret

than Mamdani FRBSs.
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Linguistic labels are often easily identifiable for applications, but when they are not, a domain

expert is used. To determine the membership functions for either Mamdani or TSK FRBSs there

are two broad approaches that are dependent on the FRBS application. The first is to manually

determine the membership functions from experts by determining the frequency of experts that

assert an object belongs to a group, or by asking experts to grade the degree of belonging of

an object (Dubois and Prade, 1980). The second method is to automatically determine the

membership functions from data with methods such as ad hoc data-driven methods, GAs and

artificial neural networks, to mention a few (Cordón et al., 2001a). Ad hoc data-driven methods

are supervised learning methods that use training data (discussed more in Section 2.3.1).

A domain expert is required for generating linguistic rules for a descriptive Mamdani FRBS. If

the domain expert cannot fully determine the KB then some aspect of learning either the linguistic

labels, fuzzy sets or rules is required. Cordón et al. (2001a) assert that an approximate Mamdani

FRBS can be generated in three ways. An approximate Mamdani FRBS can be generated directly

from a descriptive Mamdani FRBS by tuning the descriptive rules so they become approximate.

Another similar approach is that the rules are provided by a domain expert and the fuzzy sets

are learnt from data. The third approach is to use preliminary partitions of fuzzy sets provided

by the domain expert to constrain the learning process. This third approach has several types of

constraints for learning approximate FRBSs. A taxonomy of constrained learning was proposed

by Alcalá et al. (2001). Constrained learning has two types of constraints. Hard constraints restrict

each parameter of a membership function to an interval (e.g., Cordón and Herrera (1995b)). Soft

constraints are more relaxed by restricting all parameters of a membership function to the same

interval (e.g., Cordón and Herrera (1997b)). Unconstrained learning imposes no restrictions on

the parameters of membership functions (e.g., Cordón and Herrera (1997a)). There is a trade-off

between the freedom of defining membership function parameters anywhere on the universe of

discourse (hard constrained learning) and the size of search space (unconstrained learning) (Alcalá

et al., 2001). Soft constrained learning is a good trade-off between flexibility and size of the search

space.

FRBSs are referred to in the remaining parts of the literature review. FRBSs are drawn upon

when discussing the solution that this thesis proposes. There is a distinction between the type of

FRBS (TSK/Mamdani) and the Mamdani models (approximate/descriptive). Methods for defining

the linguistic labels, fuzzy sets and rules were also reviewed.

2.2.2 Accuracy Versus Interpretability

For modelling real-world systems there are two conflicting aims: creating a true model of

the system that is accurate and creating a model for humans to be able to understand that is

interpretable (Cordón, 2011). This problem is referred to as the accuracy-interpretability trade-off

(Casillas et al., 2003a,c). The accuracy-interpretability trade-off is an important consideration for

a GFS.

It is a challenging problem to achieve a good level of accuracy and also a good level of

interpretability. So, in practice, it is common for one of these features to take preference over the
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other (Herrera, 2008). For a Mamdani FRBS there are two approaches to tackling the accuracy-

interpretability trade-off. One approach is to enhance the accuracy of a highly interpretable FRBS

(Casillas et al., 2003a,b); the other approach is to enhance the interpretability of a highly accurate

FRBS (Casillas et al., 2003c,d).

A descriptive Mamdani FRBS is suitable for maintaining interpretability because all fuzzy

sets are assigned linguistic labels in a rule. A TSK FRBS can achieve high accuracy because

of the degrees of freedom in the consequent (a polynomial function) and the availability of

numerical approximation methods to derive this, however, the consequent lacks interpretability.

An approximate Mamdani FRBS can also provide high accuracy because there is flexibility from

not having linguistic labels.

To assess these features of FRBSs, it is necessary to quantify them. Measures of accuracy

are well defined, for example, classification accuracy metrics the number of correctly classified

samples and regression typically uses mean square error. For interpretability there are many

measures that are subjective and this is still an open research question (Cordón, 2011). In recent

years there has been work that seeks to define the interpretability of FRBS and these are now

discussed.

Alonso et al. (2009) conducted an experiment to evaluate widely used interpretability indices.

A web poll with experts and non experts was setup to assess their views on different interpretability

measures for a specific problem. They concluded that a numerical index was not widely accepted

and this demonstrates the subjectivity of interpretability. They recommend a fuzzy index that

can be adapted to different situations and user preferences. Mencar and Fanelli (2008) have

defined a taxonomy of interpretability constraints for fuzzy sets, universe of discourse, fuzzy

information granules, fuzzy rules, fuzzy models and learning algorithms. Within the wider field of

fuzzy systems, Zhou and Gan (2008) created a taxonomy that includes low-level interpretability

and high-level interpretability. Low-level interpretability refers to the interpretability of the

membership functions whilst high-level interpretability refers to that of fuzzy rules. This

works serves to highlight surveys, frameworks and taxonomies of interpretability in FRBSs and

more broadly, fuzzy systems. Ishibuchi (2007) reviewed the use of MOEA in tackling the

accuracy-interpretability problem and highlighted different combinations of objectives designed

for interpretability. Comprehensive reviews of the many approaches to interpretability can be

found in Cordón (2011) and Gacto et al. (2011).

To date, the most comprehensive taxonomy of interpretability is found in Gacto et al. (2011).

Their taxonomy focuses on two dimensions of the meaning for interpretability. The first dimension

considers whether interpretability is semantic-based or complexity-based. Semantic-based

interpretability focuses on maintaining the semantics of membership functions and complexity-

based interpretability focuses on decreasing the complexity of models. The second dimension

considers the level at which interpretability refers to. It is either at the RB level or the fuzzy

partition level. Combining these dimensions creates four categories of interpretability in the

taxonomy of Gacto et al. (2011). The taxonomy of Gacto et al. is reproduced in Table 2.1, which

shows the four categories as quadrants of the table.

The taxonomy of interpretability of Gacto et al. (2011) is used throughout remaining chapters
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Table 2.1. A taxonomy to analyse the interpretability of linguistic FRBS (Gacto et al., 2011)

Rule base level Fuzzy partition level

Q1 Q2

Complexity-based number of rules number of membership functions
interpretability number of conditions number of features

Q3 Q4

Semantic-based consistency of rules completeness or coverage
interpretability rules fired at the same time normalisation

transparency of rule structure distinguishability
(rule weights, etc.) complementarity
cointension relative measures

of this thesis to describe the type of interpretability.

2.2.3 Taxonomy

This section presents a taxonomy of how GFSs can be applied to different areas of a FRBS. This

review will identify important aspects of using a GFS in this thesis. Herrera (2008) reviewed the

current literature and presented a refined taxonomy to that of previous taxonomies proposed in

Cordón et al. (2001b, 2004). The GFS taxonomy by Herrera (2008) has the following distinction

between the tasks of learning and tuning components of GFSs.

Genetic tuning Tuning a FRBS by tuning the DB but without altering the RB.

Genetic learning Learning KB components of a FRBS such as the RB or the DB.

The tuning and learning methods for GFSs are essential for the GA-based search method for

learning temporal fuzzy association rules. The principles of the tuning and learning methods are

the crucial aspect for the problem of learning lost rules, which was outlined in Section 1.1.

2.2.3.1 Tuning

Once a KB has been derived, a GFS can tune the DB of the FRBS to improve performance. This

can be achieved by tuning only the membership functions so they are optimised for the RB. This

was first applied to fuzzy logic controllers by Karr (1991a,b). This approach of tuning parameters

of derived membership functions is a common task of tuning GFSs. Crockett et al. (2006) extended

the parts of a FRBS that could be tuned by simultaneously tuning both the membership function

parameters and weights of fuzzy inference operators to achieve cooperation between fuzzy rules.

The weights of defuzzification operators have also been tuned (Kim et al., 2002). This reports on

the first methods that tune pre-defined components of a FRBS.

The RB is usually derived from heuristic knowledge of a domain expert. The heuristic

knowledge is usually valid independently of the environment, meaning that the RB model does

not change with the environment. Thus, the RB is considered to be a context-free model and the

meaning of the linguistic terms is context dependent (Botta et al., 2008b). For example, given a
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rule “IF temperature is hot THEN fan speed is high” there may be different perceptions of the

term hot because of geographical location of domain experts. According to Gudwin and Gomide

(1994), psychologists have been interested in how context can effect perception of events, an

observation that also applies in the context of rules such as those above.

The context of fuzzy sets can be tuned so that the linguistic terms stay the same but the meaning

changes slightly in some context. This is another method of tuning a Mamdani FRBS (Cordón,

2011), which extends the discussion of tuning/learning GFSs from Section 2.2.3. The types of

methods for tuning the context of fuzzy sets are now reviewed.

Scaling the fuzzy set is an early approach to adapting the context pioneered by Gudwin and

Gomide (1994). The normalised universe of discourse [0, 1] is mapped to a contextualised universe

of discourse with a scaling function. The scaling function is tuned so the fuzzy sets for a variable

are tuned. Non-linear scaling has also been applied in Magdalena (1997).

Fuzzy modifiers have also been used to tune the context of fuzzy sets. A fuzzy modifier

maps a fuzzy set to another fuzzy set. Scaling a fuzzy set changes the partition of the universe

of discourse and fuzzy modifiers tune fuzzy sets while the partition of the universe of discourse

remains the same. Fuzzy modifiers have been implemented in the form of linguistic modifiers

such as extremely, very and more or less (De Cock and Kerre, 2000). Botta et al. (2008a) have

applied both scaling functions and fuzzy modifiers in a single framework.

The 2-tuple linguistic representation (discussed in Section 2.1.1.1) has been used by Alcalá

et al. (2005, 2007) for lateral tuning of fuzzy sets. Rather than scaling or modifying a fuzzy

set, the fuzzy set is laterally displaced along the universe of discourse whilst maintaining the

membership function shape. Alcalá et al. (2005, 2007) used a GA to tune the fuzzy sets to

achieve higher accuracy for a descriptive Mamdani FRBSs controller of a heating, ventilation,

and air conditioning system. The 2-tuple linguistic representation provides a reduction in the

search space because one parameter, α, is used to describe the membership function instead of

multiple parameters, e.g., parameters a, b and c for a triangular membership function. From the

perspective of the accuracy-interpretability trade-off, the 2-tuple linguistic representation reduces

the complexity-based interpretability at the fuzzy partition level because the dimensionality of

representing features is reduced (i.e., one parameter).

2.2.3.2 Learning

The other task of a GFS is to learn components of a FRBS. Thrift (1991) learnt the RB with a GA

for a fuzzy controller with a predefined DB. Some applications of FRBSs may produce many rules

that can be irrelevant, redundant, erroneous or contradictory. So, Ishibuchi et al. (1995) used a GA

to learn the significant rules for classification that were selected for the RB. As well as learning the

RB, the DB can also be learnt by two approaches. The a priori DB learning approach learns the

DB first using an evaluation measure and then a RB is derived from the DB. The embedded DB

learning approach incorporates the DB generation and RB generation into one step of the learning

process that is repeated (Filipič and Juricic, 1996; Glorennec, 1996; Ishibuchi and Murata, 1996).

Another use of genetic learning is to simultaneously learn both components of the KB: RB and
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DB. Simultaneously evolving both membership functions and fuzzy rules in FRBSs is particularly

suitable for FRBS controllers (Homaifar and McCormick, 1995; Carse et al., 1996; Mucientes

et al., 2007), FRBS classifiers (Zhou and Khotanzad, 2007) and FRBS models (Delgado et al.,

1997; Cordón and Herrera, 2001). In these works the purpose of simultaneously evolving both the

definition of membership functions and induction of rules focuses more on improving accuracy

rather than interpretability.

GAs can be seen as either learning or optimisation algorithms as explained in Yao et al. (1996).

For learning, more than one solution in a population is used as there is much information present

in a population. For optimisation, there is only one optimal solution considered to be the best that

is the final result. The different approaches to learning are reviewed here.

In the context of machine learning there are two distinct approaches to applying a GA.

The Pittsburgh representation (Smith, 1980) represents a set of rules in one chromosome. A

Pittsburgh representation evolves the entire RB with one run of a GA. The first use of a Pittsburgh

representation specifically for a GFS was by Thrift (1991) and Carse et al. (1996). The Michigan

representation (Holland and Reitman, 1977) represents a single rule in one chromosome. The first

use of a Michigan representation specifically for a GFS was by Valenzuela-Rendón (1991). The

genetic cooperative-competitive learning (GCCL) approach is based on the Michigan approach

and the population represents the RB. The first use of a GCCL approach specifically for a GFS was

by Greene and Smith (1993). The RB is learnt by the chromosomes cooperating and competing in

a population.

Iterative Rule Learning (IRL) is a Michigan-based approach for learning multiple rules by

repeatedly running an algorithm such as a GA. The best solution from one run of a GA is taken

and this contributes to one part of the whole solution. Repeated iterations of a GA produce more

rules that eventually complete the whole solution. This is demonstrated in Figure 2.9.

Start

Run GA

Max Rules?

Add rule to
final rule set

Finish

No
Yes

Fig. 2.9. Process of Iterative Rule Learning

Criteria for IRL have been defined (González and Herrera, 1997, p. 238) as:

“1. a criterion for selecting the best rule in each iteration,

2. a penalization criterion, and

3. a criterion for determining when enough rules are available to represent the examples in the

training set.”
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González and Pérez (1998) applied IRL to a classification problem where a GA is restarted

after a rule is discovered. Venturini (1993) used IRL with a steady state GA that continually

evolved classification rules whilst labelling the remaining examples as “uncovered”. The approach

by Venturini differs from typical IRL methods because the GA is not stopped, instead the same GA

continually runs. IRL has been used for fuzzy controllers by penalising rules that match existing

rules with same antecedent but different consequent (Herrera et al., 1995, 1998). Mata et al. (2002)

mined quantitative association rules and also penalised rules that have previously been covered.

The method in Shimada et al. (2006) used IRL by updating a pool of rules every generation.

2.2.4 Discussion

The hybridisation of GAs and fuzzy logic is a proven synergy of CI paradigms that is used in this

thesis.

The FRBS has been discussed in this section by expanding on the discussion of fuzzy logic

from Section 2.1.1. Different models of FRBSs systems have advantages and disadvantages that

are suitable for certain situations. Fuzzy association rule mining is not a FRBS because it has

no inference mechanism, but knowledge of FRBSs supports the design of fuzzy association rule

mining in this thesis.

The accuracy–interpretability problem is a trade-off between the two features when designing

a FRBS. There have been several taxonomies describing methods for tackling the accuracy–

interpretability problem and one of these taxonomies is used throughout the remainder of the

thesis.

The taxonomy of how GFSs are applied to the structure of FRBS highlights two key

paradigms: learning and tuning. Tuning FRBSs and context adaptation with the 2-tuples linguistic

representation have both been reviewed in Section 2.2.3.1. Learning has also been reviewed and

the simultaneous learning of membership functions and rules has been reviewed in Section 2.2.3.2.

Of particular interest to this thesis is the method for learning multiple rules by repeatedly iterating

a learning algorithm, i.e., IRL, because it is used in the solution that this thesis proposes.

2.3 Association Rule Mining

The CI methods relevant to this thesis have been reviewed and discussed. The other core field

of computer science that this thesis relates to is data mining. Data mining is reviewed first to

introduce the broad field. The review then focuses on a specific method of data mining, association

rule mining. The scope of the review narrows as temporal association rule mining and fuzzy

association rule mining are reviewed. CI methods from the previous section are now called upon

in multiple areas of the remaining review of literature.

2.3.1 Data Mining

Data mining is one step of KDD that extracts and identifies patterns in data. There are a variety

of methodologies and processes that define the steps in KDD, such as the KDD Process (Fayyad
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et al., 1996a) and CRoss Industry Standard Process for Data Mining (CRISP-DM), to mention a

few. The KDD Process can be considered to be an academic methodology, whilst CRISP-DM

was created by a consortium of European companies. To understand the role of data mining, an

overview of the KDD Process is given. Whilst the KDD Process methodology is not as popular

as CRISP-DM, according to polls of practitioners (Piatetsky-Shapiro, 2002, 2004, 2007), it best

explains the key steps of KDD that are related to this research. The steps of the KDD Process are

reproduced from Fayyad et al. (1996b)† below.

“1. Developing an understanding of the application domain, the relevant prior knowledge, and

the goals of the end-user.

2. Creating a target data set: selecting a data set, or focusing on a subset of variables or data

samples, on which discovery is to be performed.

3. Data cleaning and preprocessing: basic operations such as the removal of noise or outliers

if appropriate, collecting the necessary information to model or account for noise, deciding

on strategies for handling missing data fields, accounting for time sequence information and

known changes.

4. Data reduction and projection: finding useful features to represent the data depending on

the goal of the task. Using dimensionality reduction or transformation methods to reduce

the effective number of variables under consideration or to find invariant representations for

the data.

5. Choosing the data mining task: deciding whether the goal of the KDD process is

classification, regression, clustering, etc.

6. Choosing the data mining algorithm(s): selecting method(s) to be used for searching

for patterns in the data. This includes deciding which models and parameters may be

appropriate (e.g. models for categorical data are different than models on vectors over

the reals) and matching a particular data mining method with the overall criteria of the

KDD process (e.g. the end-user may be more interested in understanding the model than its

predictive capabilities).

7. Data mining: searching for patterns of interest in a particular representational form or a

set of such representations: classification rules or trees, regression, clustering, and so forth.

The user can significantly aid the data mining method by correctly performing the preceding

steps.

8. Interpreting mined patterns, possible return to any of steps 1–7 for further iteration.

9. Consolidating discovered knowledge: incorporating this knowledge into the performance

system, or simply documenting it and reporting it to the interested parties. This also includes

checking for and resolving potential conflicts with previously believed (or extracted)

knowledge.”
†The reproduced text does not include references to sections present in the original text.
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The structure of this thesis, discussed in Section 1.3, follows the KDD process. Step 1 is

considered to be the literature review in this section that demonstrates our goal of mining temporal

fuzzy association rules. Steps 2 and 3 are discussed in Chapter 3 when the datasets are selected,

cleaned and preprocessed. Steps 4 to 7 are presented with the framework in Chapter 4 where the

dataset undergoes a transformation and decisions are made about how to run the framework. Steps

7 to 9 are covered by the results in Chapter 6.

When choosing a data mining task there are two aims, which relate to a user’s goals.

Descriptive tasks mine patterns that describe historical data and this is useful for exploring data.

Descriptive data mining methods are association rule mining and clustering. The other type of

data mining tasks are predictive tasks that mine patterns to make predictions and forecasts, such

as classification and regression (e.g., time series analysis).

Within the context of machine learning, data mining methods can also be classified according

to how data mining is performed. Supervised methods use training data that has a labelled target to

guide/supervise the learning process. For example, classification methods are trained to correctly

classify target classes before being tested on unseen data. Unsupervised methods learn patterns

from data without labelled targets. Association rule mining is in the category of unsupervised

learning. This is important because in Section 2.2.3 it was shown that GFSs are often used for

supervised learning tasks. But, in this thesis a GFS is used for an unsupervised learning task,

temporal fuzzy association rule mining.

This section has presented the KDD Process and explained the role of data mining in the KDD

Process. The descriptive and unsupervised nature of association rule mining has been explained

to identify how association rule mining can be categorised.

2.3.2 Association Rule Mining

Association rule mining is the process of identifying significant correlations between items in

transaction datasets (Agrawal et al., 1993). Association rule mining is commonly used for market

basket analysis to mine point-of-sale data from a shop, typically a supermarket. Each transaction

has a transaction ID (TID) and a list of purchased items that are present in a customer’s shopping

basket. The aim of market basket analysis is to learn about customer behaviour by discovering

common purchase patterns. This information can support businesses by informing actions such as

cross-marketing promotions (Olson and Delen, 2008), positioning stock on shelves (Power, 2002),

inventory management and customer relationship management (Tan et al., 2005), to mention a few.

An example of a market basket dataset is shown in Table 2.2. Association rules are expressed

as an implication of the form X ⇒ Y where the antecedent and consequent are sets of Boolean

items that are disjoint, i.e., X ∩ Y = ∅. The following rule could be mined from the example

dataset:

{pizza} ⇒ {beer}

A formal definition is presented. A dataset contains a set of N transactions T =

{t1, t2, ..., tN}. Each transaction comprises a subset of items, referred to as an itemset, from
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Table 2.2. Example market basket dataset

TID Items

1 {bread, pizza, beer}
2 {eggs, milk, cheese}
3 {beer, eggs, pizza}
4 {bread, cheese, pizza}
5 {cheese, pizza, beer, milk}

M items I = {i1, i2, ..., iM}. To extract association rules from datasets the support-confidence

framework was introduced (Agrawal and Srikant, 1994). The support count of an itemset measures

the number of transactions that contain an itemset. The support count for an itemset, σ(X), is

defined as

σ(X) = |{ti|X ⊆ ti, ti ∈ T}|. (2.5)

Support determines the strength of a relationship by measuring how often the rule occurs in a

dataset according to

support(X ⇒ Y ) =
σ(X ∪ Y )

N
. (2.6)

Confidence determines the reliability of the rule and it is determined by how frequently the items

in the consequent occur in transactions containing the antecedent and is defined as

confidence(X ⇒ Y ) =
σ(X ∪ Y )

σ(X)
. (2.7)

The support and confidence of the rule {pizza} ⇒ {beer} are calculated from the dataset in

Table 2.2 to demonstrate this. The support count, σ({pizza, beer}), is 3 and the total number of

transactions is 5 so the support is 3/5 = 0.6. The rule’s confidence includes the support count of

both the antecedent and consequent, and just the antecedent, so the confidence is 3/4 = 0.75.

The significance of correlations is measured with support and confidence that are based on

support count. These measures have minimum thresholds that are used by a search algorithm

to disregard rules that are considered to be less significant. Rules are kept if their metrics are

greater than or equal to their respective thresholds. The support-confidence framework is a well-

known set of measurements and there are also other methods to measure significance such as

those reviewed by Omiecinski (2003) and Geng and Hamilton (2006). For example, lift (Brin

et al., 1997), originally called interest, is a measure of “departure of independence”. Lift does not

measure implication, only co-occurrence.

lift(X ⇒ Y ) =
support(X ⇒ Y )

support(X)support(Y )
. (2.8)

Caution is taken when analysing and interpreting the meaning of association rules.

Discovering association rules does not mean that the correlation between items is meaningful and
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interesting (Han and Kamber, 2005). There may be a correlation between items that is coincidental

and meaningless within an application domain. Another interpretation of an association rule is

causality. An association rule means there is a strong occurrence of a set of items, but it does not

mean they are caused by those items. Association rule mining also requires more knowledge of

the application domain to ascertain causality.

2.3.3 Algorithms

Association rule mining is a well-established field with many algorithms. The Apriori algorithm

is reviewed here because an extension of the algorithm is used in this thesis. The extension

incorporates fuzzy set theory into the algorithm and this is discussed in Section 2.5.3. Other

Boolean association rule mining algorithms are reviewed to highlight suitability with certain

features of datasets.

2.3.3.1 Apriori

The Apriori‡ algorithm was introduced by Agrawal and Srikant (1994). Apriori allowed more than

one item in the consequent and Apriori was demonstrated to have better performance compared

to previous approaches (Agrawal et al., 1993). The Apriori method, and many others, use a two

stage process of:

1. Frequent Itemset Generation. This stage searches for all itemsets that have a support greater

than or equal to the minimum support threshold. Candidate itemsets that satisfy the support

threshold are referred to as frequent itemsets.

2. Rule Generation. This stage searches for all rules in the frequent itemsets that have

confidence greater than or equal to the minimum confidence threshold. Candidate rules

that satisfy the confidence threshold are referred to as strong rules.

Apriori is a breadth-first search algorithm that first discovers all frequent 1-itemsets (itemset

of size 1) then discovers the next size of itemset, i.e., 2-itemset, and increases the itemset size

until the search space is exhausted. Traversing the entire search space of itemsets is a large task

in itself that requires evaluating candidate itemsets. Agrawal and Srikant (1994) discovered that

the downward closure property (also referred to in literature as the Apriori principle and anti-

monotonicity) prunes the itemset generation of the search space and so reduces the number of

scans on the dataset when counting support of candidate itemsets. The downward closure property

states that if an itemset is frequent then all of its subsets are also frequent. Conversely, if an itemset

is infrequent then all of its subsets are also infrequent. The number of frequent itemsets that can be

generated with the Apriori algorithm is large so there are two compact representations from which

other frequent itemsets can be derived (Tan et al., 2005). A maximal frequent itemset is a frequent

‡The name of the algorithm, Apriori, is a noun that is based on the meaning of the Latin term a priori, which is an
adjective that describes knowledge known ahead of time. The term Apriori is used throughout the thesis as the name of
the algorithm.
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itemset where none of its supersets are frequent. Maximal frequent itemsets allow pruning of the

search space for itemset generation. This method is based on a generate-and-test paradigm.

A data transformation in Apriori allows the efficiency of support counting for candidate

itemsets to be improved. The raw data is transformed into a hash tree data structure where nodes

contain items and leaf nodes represent a set of candidate itemsets that have common prefixes.

When counting support, the itemsets contained in each transaction are enumerated in a prefix tree.

The support counts of matching candidate itemsets are incremented.

2.3.3.2 FP-growth

Frequent Pattern growth (FP-growth) (Han et al., 2000) is a depth-first search algorithm that uses

a condensed representation of the data, a Frequent Pattern tree (FP-tree). The first stage scans the

dataset to construct the FP-tree, which is an extended prefix tree that contains support counts of

itemsets. The second stage searches for and extracts frequent itemsets directly from the FP-tree.

FP-growth differs from the generate-and-test paradigm used by the Apriori algorithm. A divide-

and-conquer strategy splits the problem into smaller subproblems and searches the tree from the

bottom up. The FP-tree is more suited to sparse datasets that have few items per transaction.

2.3.3.3 Eclat

A different approach to support counting is used in Equivalence CLASS Transformation (Eclat)

(Zaki, 2000). The Apriori and FP-growth algorithms mine frequent itemsets from datasets that are

in a horizontal data format. A horizontal data format identifies a row of itemsets in a transaction

using the TID, whilst the vertical data format lists all TIDs for each item. Table 2.3 illustrates both

formats and another common format, tabular.

Table 2.3. Horizontal, vertical and tabular data formats of the same example dataset

(a) Horizontal layout

TID Items

1 {A, B, C}
2 {B, D, E}
3 {A, C, D}
4 {A, B, E}
5 {A, B, D, E}

(b) Vertical layout

A B C D E

1 1 1 2 2
3 2 3 3 5
4 4
5 5

(c) Tabular layout

TID A B C D E

1 1 1 1 0 0
2 0 1 0 1 1
3 1 0 1 1 0
4 1 1 0 0 1
5 1 1 0 1 1

Intersection counting is a method for counting support on a vertical data format. Lists of

TID for items in a candidate itemset are joined to determine the number of shared TID to give a

support count. Similar to FP-growth, a depth-first search is performed. Eclat is more suited to

dense datasets with many items in each transaction because this is best represented with a vertical

data format.
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2.3.3.4 Partition

Partition (Savasere et al., 1995) also uses vertical data format with a breadth-first search. Partition

splits the dataset into several logical non-overlapping partitions. Each partition is transformed into

a vertical data format and locally frequent itemsets are generated. The final stage scans the dataset

to check that locally frequent itemsets are also globally frequent.

2.3.4 Data Representations

Data representations are of crucial importance for algorithms, because there is a synergy between

a search algorithm and its data representation. A data transformation forms part of the solution

proposed in this thesis. Existing methods that use data representations for association rule mining

are reviewed here.

Tree structures are commonly used in association rule mining (Yan et al., 2007). A hash

tree (Agrawal and Srikant, 1994), a FP-tree (Han et al., 2000), and a P-tree and a T-tree

(Goulbourne et al., 2000; Coenen et al., 2004a) were applied to efficiently count support for

Boolean association rules. A generalised tree structure is an acyclic directed graph that provides

a suitable schema for representing the downward closure property (Agrawal and Srikant, 1994)

(discussed in Section 2.3.3.1).

Graphs have previously been used for association rule mining in the DLG algorithm (Yen

and Chen, 1996) and Similis (Cavique, 2004). Cavique (2004) transformed the dataset into an

undirected graph with the method from Chen et al. (2001) and formulated the market basket

problem as a maximum weighted clique problem (Bomze et al., 1999). The Primal-Tabu algorithm

(a metaheuristic) searches for cliques that represent rules. A grammar-based genetic programming

method for association rule mining aims to prevent producing invalid candidate solutions that are

not in the dataset (Luna et al., 2010b).

Graph data structures provide a suitable and natural representation of networks. Holme and

Saramäki (2012) have reviewed temporal networks and identified a class of graphs called contact

sequences. An edge of a contact sequence is a triple containing two vertices and a non-empty list

of time contacts. The time contacts are timestamps representing when contact is made between

two vertices. Although Holme and Saramäki (2012) do not focus on association rule mining, the

class of graphs referred to as contact sequences are relevant to the data structure used in this thesis

and a similar data structure is discussed in Section 4.1.

2.3.5 Types of Association Rule Mining

Association rule mining is a broad task and there are multiple variations of Boolean association

rule mining, some of which have subtle differences. A variety of association rules can be mined

from different datasets or for different purposes. Two types of association are combined in this

thesis so other commonly used types of association rule mining are reviewed. The purpose is to

define the boundaries of what type of association rule is the focus of this thesis.
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2.3.5.1 Generalised/Multiple-Level Association Rule Mining

Srikant and Agrawal (1995) and Han and Fu (1995) both disseminated work at the same conference

that extended association rules by incorporating a taxonomy of items. Han and Fu (1995)

introduced multiple-level association rule mining, whilst Srikant and Agrawal (1995) introduced

generalised association rule mining. This allows more generalised association rules, such as

“people who buy outerwear tend to buy shoes” (Srikant and Agrawal, 1995).

2.3.5.2 Weighted Association Rule Mining

Cai et al. (1998) assign weights to items in a rule to assign more importance to those rules. The

weights are entirely application and end-user dependent.

2.3.5.3 Associative Classification Rule Mining

Liu et al. (1998) created a classifier using association rule mining where the consequent is limited

to a target class. Class association rules are mined from a training dataset and pruned to prevent

overfitting before used as a classifier.

2.3.5.4 Mining Multiple Minimum Supports

Mining association rules with multiple minimum supports of items can yield rules that have

different frequencies of items or items that are of a different nature (Liu et al., 1999). For example,

the sale of items such as champagne or microwaves occurs less frequently than beer or pizza.

Minimum support values are assigned to each item and the Apriori algorithm was extended.

2.3.5.5 Negative Association Rule Mining

Negative association rules (Savasere et al., 1998) search for rules that contain associations between

items that are sold and items that are not. For example, a negative association rule could be “5%

of customers who purchase pizza do not purchase water”.

2.3.6 Metaheuristic Approaches

The Boolean association rule mining algorithms that have been reviewed here employ exhaustive

methods. This thesis proposes the use of a metaheuristic for a specific type of association rule.

Metaheuristics for other particular types of association rule mining are briefly reviewed here. A

review of all types of association rule mining that focuses on evolutionary algorithms can be found

in del Jesus et al. (2011).

Kuo et al. (2007) clustered a dataset with an Ant Colony System (ACS) and then applied

ACS to mine association rules. ACS is a search method based on ants’ behaviours that seeks

to find a path between a colony and a food source. Kuo et al. demonstrate their approach

could be suitable for larger datasets. Another swarm intelligence method for association rule

mining is particle swarm optimisation (PSO) (Kuo et al., 2011). PSO has a population (swarm)
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of solutions (particles) that moves through the search space by controlling particles’ positions

and velocities. Kuo et al. applied PSO to improve the efficiency of association rule mining and

automatically determine threshold values. A grammar-based approach is presented in Luna et al.

(2010a). Grammar-guided genetic programming searches for association rules by using genetic

programming to represent the rule in a tree structure and a grammar to specify the tree’s schema.

Ghosh and Nath (2004) extracted association rules with a Pareto-based MOEA that has

objectives for support count, comprehensibility and interestingness. Ghosh and Nath treated

the mining problem as a multi-objective problem because some objectives are conflicting. For

example, a rule may have lower support but be very interesting to the end-user. Dehuri et al. (2006)

use a MOEA parallelised across a cluster of workstations with three objectives: comprehensibility,

confidence and interestingness. Another multi-objective approach has been used in Nasiri et al.

(2010) but with simulated annealing. Simulated Annealing models the excitation of particles in

metals when they are heated to search for association rules.

Yan et al. (2005) applied IRL with a GA for mining Boolean association rules. An important

aspect of the approach by Yan et al. (2005) is that it does not require the minimum threshold values

to be specified, so Yan et al. refer to this approach as being database-independent.

2.3.7 Discussion

The broad area of knowledge discovery has been introduced. A knowledge discovery methodology

has been identified and is used later in this thesis. The task of association rule mining is

fundamental to this thesis and the Apriori algorithm has been introduced because this forms the

basis of the temporal fuzzy association rule mining algorithm. Association rule mining algorithms

that are seminal in the field were reviewed because the algorithms are suitable for datasets with

certain features. Other types of association rule mining were given a brief overview to distinguish

other types of rule. Metaheuristic methods for Boolean association rule mining were discussed

to identify the suitability of metaheuristics. This is important because the solution proposed in

this thesis searches for items in a rule. A variety of metaheuristic methods have been applied

and MOEAs are common for finding a trade-off in rule metrics. Graphs and trees are two

common data representations that were reviewed. The data representations are also used for

temporal, quantitative and fuzzy association rule mining, which is reviewed later in this chapter.

In particular, the contact sequence graph that incorporates temporal information is relevant to the

data transformation used in this thesis.

2.4 Temporal Association Rule Mining

The fundamentals of association rule mining have been introduced in the previous section. The

hypothesised problem is caused by the composition of temporal and fuzzy association rules. The

temporal aspect of association rule mining is discussed here.

Temporal association rule mining is a large field with a plethora of work (Mitsa, 2010). The

term temporal can be ambiguous because it often has different interpretations. The meaning of the
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word is clarified in this section. Two broad categories of temporal patterns are explained here and

specific types of temporal pattern in each category are reviewed. The specific type of temporal

association rule used in this thesis is identified.

The types of association rules discussed in the previous section can be applied to datasets that

have no temporal information. A feature of the data used in temporal association rule mining

is that each transaction consists of a tuple containing a time-ordered transaction ID (TID) and an

itemset.

2.4.1 Inter-Transaction

An inter-transaction pattern is a correlation between items spread across different transactions.

Table 2.4 shows an example of two occurrences of a generic inter-transaction pattern that covers

multiple transactions, i.e., {B} ⇒ {D}. Implication refers to itemsets in different transactions.

Only key research in this area is reviewed, but a more in-depth review of inter-transaction patterns

can be found in Mörchen (2007).

Table 2.4. Inter-transaction patterns

TID Items

1 A B C
2 B D E
3 A C D
4 A B E
5 A B D E

2.4.1.1 Sequence Mining

Shortly after association rule mining was introduced, the type of pattern was extended to sequence

mining with the AprioriAll algorithm (Agrawal and Srikant, 1995). An example sequence rule

from Agrawal and Srikant (1995) is “customers typically rent Star Wars, then Empire Strikes

Back, and then Return of the Jedi”. Items are not necessarily sold consecutively allowing other

items to be sold in between. The items that form a sequence are found in different transactions.

The temporal order of the items is important.

The tuple used in a sequence is extended so that it includes the TID, itemset and also the

customer ID. The customer ID allows the identification of transactions made by the same customer

with methods such as loyalty cards or payment cards. An example of a dataset for sequence mining

is shown in Table 2.5. A transaction is denoted with brackets. For example, customer ID 1 has

two transactions, (A, B) and (C).

Agrawal and Srikant (1995) proposed three algorithms to mine frequent sequences, which

are all based on the Apriori algorithm. The algorithms follow a similar process to the Apriori

algorithm where candidates are generated that satisfy the minimum support threshold. These

algorithms and applications of sequence mining can be considered as the first applications of

temporal data mining (Laxman and Sastry, 2006), which disregards time series analysis.
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Table 2.5. Transaction sequences for individual customers

Customer ID Items

1 (A, B), (C)
2 (B), (D, E)
3 (A, C, D), (B, E)
4 (A), (B, C, E)
5 (D, E), (A), (C, F)

2.4.1.2 Metaheuristic Approaches

Hetland and Sætrom (2002, 2005) implemented genetic programming in hardware for both

supervised and unsupervised mining of temporal rules from time series for inter-transaction and

intra-transaction patterns. Hetland and Sætrom recommend their approach for mining different

types of patterns because the fitness function is flexible so it can be configured to other temporal

patterns.

Shenoy et al. (2005) have adopted a sliding window mechanism with a GA for mining either

inter-transaction or intra-transaction association rules. This is shown to be quicker and more

efficient than non-metaheuristic methods.

2.4.2 Intra-Transaction

Intra-transaction patterns identify correlations between items in the same transaction. The

temporal feature of this type of rule is based on the number of times this pattern occurs in a

temporal period. For example, Table 2.6 shows itemset {B,D} in the same transaction appearing

twice in the dataset. These are the types of temporal pattern that are investigated in this thesis.

Table 2.6. Intra-transaction patterns

TID Items

1 A B C
2 B D E
3 A C D
4 A B E
5 A B D E

Before intra-transaction patterns were recognised as being of interest, there was some initial

work that led to the development of temporal association rule mining. Some of this prior work is

now discussed to demonstrate the importance of temporal knowledge and identify how the field

emerged. Discussion of specific types of intra-transaction temporal patterns then follow.

2.4.2.1 Incremental Association Rule Mining

Databases, particularly transactional databases, are continuously updated with new records such

as when a purchase is made. New transactions are inserted into a database and so existing
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association rules may be invalidated as new rules are introduced. It would be inefficient to

rerun the entire algorithm just to include the newly inserted transactions. So, the Fast Update

(FUP) algorithm (Cheung et al., 1996) was introduced to incrementally update existing association

rules. This is suitable for a non-trivial number of new transactions that are inserted frequently or

occasionally. For deletion, the FUP2 algorithm was introduced (Cheung et al., 1997). Incremental

updating has been extensively researched and is a method of maintenance that focuses only on

updating existing knowledge. Gharib et al. (2010) introduced an incremental mining algorithm

called Incremental Temporal Association Rules Mining (ITARM) for maintaining intra-transaction

temporal association rules. The Incremental Temporal Association Rule (ITAR) algorithm (Ng

et al., 2007) tackles the same task of maintaining temporal association rules that have numeric

attributes.

Prior to update algorithms, Agrawal and Psaila (1995) focused on analysing historical

association rules using active data mining. This method partitioned a database, mined association

rules from each partition and stored rules in a database of rules with the corresponding support

and confidence measures. The historical behaviour of association rules can be queried with

shape operators that define the temporal behaviour, such as a rule’s frequency going up, down,

or remaining stable. User defined triggers are based on rule conditions and provide a mechanism

for applying actions when triggers are activated. Although it does not mine or predict the changes

in association rules, it demonstrates an appreciation for changes and historical data.

Traditionally association rule mining assumes the entire dataset to be static meaning that the

rule is representative for the entire temporal period. The support value of a rule is calculated across

the entire dataset so resulting rules are assumed to be relevant for the entire period. However, in

real-world datasets this is not the case. Rules may occur over small temporal periods (e.g., music

festivals, religious events) or exhibit some recurring behaviour (e.g., weekends). Detecting and

adapting to changes is critical for businesses to be successful. Preventing lost opportunities can be

achieved with making timely decisions based on current and up-to-date information. Products or

services can be tailored with emerging knowledge of trends and requirements.

Dong and Li (1999) highlighted the importance of changing association rules for predictive

and descriptive data mining tasks. Au and Chan (2002) recognise the importance of changing

association rules, particularly so for predictive tasks such as classification. A dataset of flat prices

for the housing market was partitioned into years and then association rules were extracted. The

approach of Au and Chan constructed fuzzy rules from the association rules that represent the

changes in support and confidence through the years. These rules were used for associative

classification rule mining to predict flat prices. This demonstrates the widening importance of

association rules in dynamic environments and that is not limited solely to descriptive tasks.

2.4.2.2 Cyclic Association Rules

Cyclic association rules have support measures that change in temporal periods of a dataset (Özden

et al., 1998). For example, these rules can analyse regular fluctuations of items. The dataset

is partitioned to a desired time granularity, e.g., day or week, and rules are induced from each

34



partition. Cyclic patterns are identified by transforming support values to a binary sequence

and performing pattern matching. These rules are considered to be fully periodic because they

repeatedly occur at regular intervals.

2.4.2.3 Partially Periodic Association Rules

Real-world datasets may not always be fully periodic and so partially periodic association rules

relax the regularity found in fully periodic rules (Han et al., 1998). The cyclic behaviour is found

in only some segments of the dataset, so it is irregular, and some cycles are skipped.

2.4.2.4 Exhibit Association Rules

Some association rules can have low support throughout a dataset but then increased support in

one temporal period, e.g., the Olympic Games. The lifespan property (Ale and Rossi, 2000) for

Boolean association rules is an example that measures itemset support across a subset of a dataset

from when the items were first made available to when they stopped being available, or taken

off the shelf. This captures an element of the dynamic nature of a dataset because the support

measure is not static across the dataset. For example, some supermarket items may be sold only

during particular seasonal periods, resulting in annual support values going below a minimum

threshold, despite having sufficient support values in a seasonal period. An example is seasonal

products that are only available during certain times of the year, such as British asparagus during

summer.

The downward closure property (see Section 2.3.3.1) does not hold for the lifespan property

of association rules because a subset of an itemset might not be frequent across the lifespan of that

subset. For example, consider the rule {B} ⇒ {C} for week 2 is above the minimum temporal

support threshold. The temporal support of item B, a subset of {B,C}, is greater than or equal to

the minimum support during weeks 1 and 2. But item C’s temporal support from week number

1 to 3 is below the minimum temporal support threshold. This is a scenario that can occur and

an Apriori-based algorithm will prune the search space to remove item C because it is below the

support threshold. In the example, the result of pruning the search space is the temporal rule

{B} ⇒ {C}, which would not be discovered.

The Progressive Partition Miner (PPM) (Lee et al., 2001, 2003) also mines temporal rules that

appear in a temporal period of a dataset. The PPM analyses itemsets in partitions of a dataset

and progressively accumulates counts between successive partitions. Where as the exhibition

times of items can have different endpoints in the lifespan property (Ale and Rossi, 2000, 2002),

PPM assumes the items are not withdrawn after they are added to the dataset. Because of this,

PPM is not an Apriori-based algorithm. The Segmented Progressive Filter (SPF) (Chang et al.,

2002) mines association rules where the exhibition periods of items in a dataset can have different

start and end points. This is the same assumption applied to the lifespan property of Ale and

Rossi (2000, 2002). SPF initially segments the dataset to group only the items with similar

exhibition periods. The exhibition period of an itemset is defined as the intersection of item

exhibition periods, i.e., itemsets have a common exhibition period between all items. The TWo
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end AssocIation miNer (TWAIN) algorithm (Huang et al., 2007) is another exhibition rule mining

algorithm. TWAIN is able to discover more precise exhibition rules than PPM and SPF because

exhibition periods of items in an itemset can have different start and end points, i.e., the exhibition

period of each item does not necessarily overlap with the other items in an itemset.

2.4.2.5 Calendar-based Association Rules

Cyclic rules, partially periodic rules and exhibition rules use a single time granularity but

calendars express temporal patterns with multiple granularities, which is particularly suitable

for complicated temporal patterns. A calendric algebra has been created to formerly specify

complicated temporal patterns in Ramaswamy et al. (1998). The user specifies the calendar periods

for mining temporal association rules before the algorithm is executed. A calendar-based method

aims to be more applicable to real-world problems where periodicity has limited capabilities in

expressing change.

Calendar schemas (Li et al., 2001a, 2003) define the temporal intervals for discovering

association rules. The Apriori algorithm was modified to discover temporal patterns using

calendar-based schemas. Less prior knowledge is required than the calendric algebra of

Ramaswamy et al. (1998). A calendar pattern is defined from calendar units such as day, week

and month.

To enhance the general interpretability of expressing temporal patterns, fuzzy calendars were

introduced by Lee and Lee (2004) to allow rules to be described according to user requirements in

a calendar. For example, temporal patterns can be represented with linguistic terms such as every

summer and at the weekends.

Lee et al. (2008) and Lee (2008) use fuzzy calendars to express imprecise periodicities and

disturbances. The fuzzy periodic calendar has three types of components: crisp, fuzzy and cyclic.

Each calendar is required to have at least one cyclic component. The example provided by Lee

et al. (2008) states, “close to 15, June in every year” where “close to 15” is the fuzzy component,

“June” is the crisp component and “every year” is the cyclic component.

Verma et al. (2005) used tree data structures to enhance the execution time for mining calendar-

based association rules. The approach by Verma et al. utilised a Total-tree and a Partial-tree

(Coenen et al., 2001, 2004b,a).

2.4.2.6 Emerging Patterns

Emerging Patterns have an increase in support from one dataset to another. Early work constructed

models of datasets, which can be used for different mining tasks (e.g., classification, prediction),

and the difference between models is quantified by a deviation measure (Ganti et al., 1999). This

describes the amount of work required to transform one model to the other, for example, comparing

popular items sold in different stores. Although this does not model any explicit temporal aspect,

the same approach has also been used by Dong and Li (1999) to detect temporal patterns. A

framework proposed by Dong and Li (1999) measures the differences between two datasets for
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the purpose of discovering emerging patterns. The difference in frequency of patterns, i.e., support,

between different datasets has been analysed. These approaches are restricted to two datasets.

2.4.2.7 Other types

This section of the literature review has focused on the temporal element of association rules being

expressed as either cyclic, partially periodic, exhibit period, calendar based or an emerging pattern.

All of which require prior knowledge of the type of temporal pattern sought to determine the most

suitable method. Li et al. (2006) created a framework to identify the type of temporal pattern

so specifying the type is not required before running the algorithm. The only prior knowledge

required is a time period of interest to the end-user.

Rare associations may occur infrequently (low support) but when it occurs it is simultaneous

with the specific data in high proportion (high confidence). Yun et al. (2003) have investigated

rare association rule mining. Association rules that are interesting because of rare or temporal

properties can be lost within association rule mining because measures can be below minimum

thresholds.

In real-world data there is often a temporal pattern present and there can be several types of

temporal pattern occurring simultaneously. This was first investigated by Zimbrao et al. (2002)

who incorporated lifespan into calendar based rules. Schlüter and Conrad (2010) and Schlüter

(2012) incorporated more than two elements of temporal association rules by using an efficient

approach with two tree structures: i) the extended partial support tree (EP Tree), and ii) the

extended target tree (ET Tree).

2.4.2.8 Metaheuristic Approaches

The intra-transaction temporal association rule mining algorithms that have been reviewed above

employ exhaustive search methods. The metaheuristics used for intra-transaction temporal

association rule mining are briefly reviewed here. Note that in Section 2.4.1.2 metaheuristic

approaches for inter-transaction temporal pattern were reviewed and Hetland and Sætrom (2002),

Hetland and Sætrom (2005) and Shenoy et al. (2005) are also relevant to this section because they

also mine intra-transaction patterns.

Martı́nez-Ballesteros et al. (2009, 2011) investigated intra-transaction patterns by using a GA

to find the intervals of quantitative attributes of association rules (reviewed in see Section 2.5.1)

from time series data. Their approach finds the temporal periods when specific quantitative

association rules occur.

2.4.3 Discussion

The main purpose of this section was to distinguish the different types of temporal pattern from

each other because the word temporal is ambiguous.

The different types of intra-transaction pattern were reviewed to clarify the exact type of

temporal patterns used in this thesis. Exhibit association rules are the type of temporal pattern

37



that are sought. It will be discussed in Section 7.3 that future work could be directed towards other

types of temporal pattern than those reviewed here.

Metaheuristics have been applied to both inter-transaction and intra-transaction rule mining.

The main benefits of metaheuristics for temporal association rule mining are the flexibility in

defining the type of pattern and the ability to find rules that are specific to certain temporal periods.

The review has also noted how tree data structures have been used for intra-transaction

temporal association rule mining.

2.5 Fuzzy Association Rule Mining

This section focuses on the other extension to classical association rule mining, the fuzzy feature.

Research using classical set theory in quantitative association rule mining and utility association

rule mining is reviewed first. Fuzzy association rule mining is then reviewed. Each subsection

reviews the use of exhaustive search methods as well as metaheuristics.

2.5.1 Quantitative Association Rule Mining

Association rule mining finds correlations among items in Boolean data. Quantitative association

rule mining extends this by discovering correlations in quantitative attributes. Research into this

area preceded fuzzy association rule mining.

Srikant and Agrawal (1996) introduced mining quantitative and categorical association rules.

Quantitative items were uniformly discretised into crisp sets and a descriptive label was mapped to

each set. Categories and crisp sets of quantities are handled as items so that the Apriori algorithm

can be applied. For example, a gender attribute has two values, so instead of one item for both

male and female there is one item for male and one item for female. The inclusion of quantities

makes this a problem of discovering correlations between the intervals of items, rather than just

the items. Partitioning attributes is considered to be another stage in a KDD methodology to that

of data mining (step 6 of the KDD Process in Section 2.3.1). Srikant and Agrawal recognised

that partitioning attributes into intervals causes a loss of information. They introduced the partial

completeness measure to quantify the information loss, which considered minimum support, and

used the measure to determine the number of partitions. The number of partitions was chosen to

satisfy the level of partial completeness. The partitions were defined using equal width partitioning

by splitting the range of an attribute’s value into equal width intervals.

The Birch clustering algorithm was used by Miller and Yang (1997) for equal frequency

partitioning, which places an equal number of values into an interval. This is more suitable for

data that can have transactions that are skewed within individual partitions. They also proposed a

distance-based association rule mining process for improving the semantics of the intervals. These

methods of equal width and equal frequency partitioning are common methods of discretisation

for unsupervised learning (Yang et al., 2010).

Statistical inference theory was used by Aumann and Lindell (2003) for quantitative

association rule mining. A new definition was introduced that has the form
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{population-subset} ⇒ {extraordinary-behavior}

The population-subset describes a subset of the population and the extraordinary-behavior is a

description of a behaviour particular to that subset. For example, ‘Sex = female⇒ mean wage =

$7.90 p/hr’ (Aumann and Lindell, 2003).

Further to the discretisation and statistical methods, there are many methods that have used

evolutionary computation (del Jesus et al., 2011). Mata et al. (2001) have used a GA for

quantitative association rule mining. Mata et al. (2002) used a GA for quantitative itemset mining.

Both methods search for attribute intervals specific to each rule and use IRL. Once a rule/itemset

is discovered, the corresponding records of the database that match that rule/itemset are penalised.

The fitness function then penalises individuals according to the number of records that the

individual has covered in previous iterations. Another example of evolutionary computation

applied to quantitative association rule mining is Differential Evolution (Alatas et al., 2008).

Association rule mining can be applied to different types of dataset such as transaction datasets

and relational datasets. The GAs methods reviewed here are applied to relational datasets so they

have fixed length chromosomes to match the number of attributes in the dataset.

Alcala-Fdez et al. (2010) have compared several approaches that use GAs for quantitative

association rule mining. Alcala-Fdez et al. demonstrated good confidence values, linear scalability

with respect to time and a reduced set of rules where the total number is restricted by the number

of iterations in IRL.

A disadvantage of quantitative association rule mining is the crisp boundaries of discretised

values that potentially hide rules and lose information (Mata et al., 2002). The next section

presents a closely related area, utility association rule mining, and the section following that

introduces the use of fuzzy logic to overcome this problem.

2.5.2 Utility Association Rule Mining

The numeric attribute of an item can represent more than the quantity of an item, it can represent

some notion of the item’s utility. Utility association rule mining discovers patterns that can have

high importance but low support values. For example, high value products may be sold less

frequently, e.g., Champagne. This type of problem was first recognised by Cai et al. (1998) who

assigned weights to items in a rule (see Section 2.3.5.2). Barber and Hamilton (2003) use the share

measure for mining quantitative itemsets where the transaction is attributed with a total quantity

of items sold or a total profit. Yao et al. (2004) provided a clear definition of two types of utilities

that explains the difference well: transaction utility and external utility. The transaction utility is

defined by information present in the transaction, such as the quantities of items. The external

utility is defined by information from other sources that are outside of the transaction, such as

profit, or nutritional information. Muyeba et al. (2009) and Khan et al. (2011) used composite

association rules with nutritional information because each item contains multiple attributes such

as protein and fibre, to mention a few.

The temporal aspect of utility association rule mining has been investigated. This is of interest
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to this thesis because the temporal feature is combined with a numeric feature. Lin et al. (2010)

handle the incremental update problem (see Section 2.4.2.1) where new transactions are added to

the dataset. An HUP tree is an extension of the FP-tree used for updating with new transactions

from the dataset. Tseng et al. (2006) and Chu et al. (2008) investigated temporal patterns that occur

in data streams by analysing patterns in a current time window. Maragatham and Lakshmi (2010)

have explored temporal patterns in utility mining by modelling the utility of items as dynamic. A

dataset is partitioned according to a temporal unit, such as day, week and month. Specific utilities

of items are assigned to each partition so the utilities are different in each temporal period.

2.5.3 Fuzzy Association Rule Mining

Classical set theory has been applied to quantitative association rule mining. The review is now

extended to include the use of fuzzy set theory for fuzzy association rule mining. Methods

that search for fuzzy association rules using exhaustive search methods are reviewed here.

Metaheuristic approaches for fuzzy association rule mining then follow.

Yager (1982) suggested fuzzy sets for summarising data with linguistic terms in data mining.

This provided a less terse summarisation than typical average and sum measures that can help

to understand the data. Maeda et al. (1995) extend this to rule induction by introducing the idea

that fuzzy sets can enhance the interpretability and improve robustness to noise for rule induction.

Fuzzy association rules were introduced to express quantitative attributes with linguistic labels

in a way that is more natural to human reasoning. Chan and Au (1997) proposed F-APACS for

mining fuzzy association rules and this improved the representation of quantitative attributes with

inaccuracies in physical measurements. Rather than use a subjective measure of user-defined

thresholds, such as minimum support, Chan and Au used an objective measure called adjusted-

difference. The linguistic terms and membership functions were elicited from an expert. This

approach followed the following two-stage procedure:

1. Define the linguistic terms and membership functions.

2. Mine fuzzy association rules using the defined linguistic terms and membership functions.

Fuzzy association rules also deal with unnatural boundaries of crisp intervals (Kuok et al.,

1998). The crisp boundary problem (also referred to as the sharp boundary problem) exists because

an attribute may occur near a boundary of a crisp interval but has the same set membership as

if it occurred in the middle. Fuzzy sets overcome this because they provide variability in set

membership near the boundaries of fuzzy sets. Kuok et al. also elicited linguistic terms and

membership functions from experts. Kuok et al. used product implication and divided the total

support (referred to as significance in their paper) by the total number of records.

Various algorithms that perform Boolean association rule mining have been adapted for fuzzy

association rule mining. Fuzzy Frequent Pattern-growth (FFP-growth) (Wang et al., 2010) is an

algorithm based on FP-growth (see Section 2.3.3.2). Hong et al. (1999) introduced the Fuzzy

Transaction Data-mining Algorithm (FTDA). Hong et al. later improved upon this work with

FuzzyApriori in Hong et al. (2001), which is an adaptation of Apriori. The fuzzy support measure
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used minimum implication. Fuzzy Apriori-T (Khan et al., 2008) is based on the T-tree structure

(Coenen et al., 2004a) that enhances the efficiency of the search process. Muyeba et al. (2009)

adapted the Apriori algorithm to handle fuzzy values and also included a tree structure. A common

feature of these algorithms adapted for fuzzy association rule mining is the measure of fuzzy

support, which is Boolean support adapted to handle fuzzy sets.

Chan and Au (1997) and Kuok et al. (1998) used domain experts to define linguistic terms

and membership functions for fuzzy association rule mining. To automatically define the

membership function parameters specifically for association rule mining there has been clustering

(Fu et al., 1998; Kaya et al., 2002), GA-based clustering (Kaya and Alhajj, 2003, 2005) and GAs

(Hong et al., 2008). Hong et al. (2008) used a divide and conquer strategy with a GA to learn

membership functions before running FuzzyApriori. The divide and conquer strategy had multiple

populations and each population was assigned to learn the membership function of one item.

The evolutionary process only selects and recombines chromosomes from the same populations.

These methods serve the purpose of automatically defining the membership functions, which is

considered learning in the taxonomy of how GFSs are applied (discussed in Section 2.2.3). They

have also been used to tune the membership functions.

Chen et al. (2007) mine fuzzy association rules with multiple minimum support thresholds.

They initially cluster items with similar characteristics and assign “reasonable membership

functions” (Chen et al., 2007, p.1734) to initialise the population. This is considered to

automatically identify the membership functions and then tune the parameters with a GA.

Alcalá-Fdez et al. (2009a) learnt the context of membership functions by using the 2-tuple

linguistic representation (Herrera and Martı́nez, 2000). The linguistic labels and membership

functions were defined first from a domain expert so the GA is considered to be tuning the

membership functions parameters and learning the contexts of those membership functions.

Alcalá-Fdez et al. also demonstrated how CHC can outperform other methods such as the divide

and conquer strategy of Hong et al. (2008).

The work reviewed so far in this section has followed the two-stage procedure, discussed

earlier in this section, where the linguistic labels and membership functions are defined first

before mining fuzzy association rules. The review of quantitative association rules in Section 2.5.1

revealed how a GA can be used to simultaneously evolve the crisp intervals and association rules

(i.e., Mata et al. (2001, 2002)). The approach of simultaneously evolving both components has

been applied to only one fuzzy association rule mining algorithm. Kaya (2006) investigated a

similar approach with MOEA for simultaneously learning membership function parameters and

fuzzy association rules. The reason for simultaneously learning both components is unclear.

However, in this thesis there is a well-justified reason of discovering rules that are otherwise lost

with a traditional approach. This will be discussed more in Chapter 4.

Despite fuzzy association rule mining being a popular research field, which is evident from

the many reviews and surveys, e.g., Hong and Lee (2008), Chen et al. (2009) and del Jesus

et al. (2011), there has been some debate over the suitability of using fuzzy sets in association

rule mining. The use of fuzzy association rule mining over crisp association rule mining should

be justifiable in terms of the crisp boundary problem and the interpretability of knowledge
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represented as linguistic terms. Verlinde et al. (2005) compared quantitative association rules with

fuzzy association rules using a data-driven approach of determining the membership functions

by clustering the data. They concluded that there is no significant difference between fuzzy

rule mining and quantitative rule mining. The discussion on their analysis was welcomed by

Hullermeier and Yi (2007) who extended the experimental analysis. Hullermeier and Yi claim

their results are not proof of the usefulness of fuzzy association rules. But, they conclude that

using different partitioning methods, focusing on more complex rules (with antecedents greater

than one), and analysing the best rules can produce very different results between both fuzzy and

crisp association rule mining.

Subgroup discovery is very similar to fuzzy association rule mining. Subgroup discovery is

a task of knowledge discovery introduced by Klösgen (1996) and Wrobel (1997) and defined by

(Lavrač, 1998, p.19) as: “Given a population of individuals and a property of those individuals

we are interested in, find population subgroups that are statistically ‘most interesting’, i.e., are as

large as possible and have the most unusual statistical characteristics with respect to the property

of interest”. Subgroup discovery is a method of supervised inductive learning that draws concepts

from both descriptive induction and predictive induction. Subgroup discovery is considered to be

descriptive induction because the aim is to locate subgroups with interesting patterns through a

process of search and discovery. Subgroup discovery is also considered to be predictive induction

because of the subgroup description, which takes the form Cond⇒ Class. Carmona et al. (2010)

have applied nondominated sorting genetic algorithm II (NSGA-II) to subgroup discovery with

Non-dominated Multiobjective Evolutionary algorithm for Extracting Fuzzy rules in Subgroup

Discovery (NMEEF-SD). NSGA-II is a multi-objective evolutionary algorithm created by Deb

et al. (2002). Subgroup discovery looks for unusualness of a class and associative classification

rules do not (see Section 2.3.5.3).

Utility association rules have been extended with fuzzy logic to describe the quantities of

utilities with words. The approaches by Muyeba et al. (2009) and Khan et al. (2011) for composite

association rules are examples that also use fuzzy association rules.

The origins of Boolean association rule mining come from market basket analysis (Agrawal

et al., 1993). Applications of fuzzy association rule mining have also followed this, for example,

the following have all used transaction market basket datasets: Au and Chan (2002); Kaya and

Alhajj (2004); Xie (2005); Chen et al. (2006, 2007); Hong et al. (2008); Chen et al. (2009). Other

applications on transaction datasets include: network intrusion detection (Su et al., 2011), web

mining (Wong et al., 2001; Arotaritei and Mitra, 2004), bioinformatics (Lopez et al., 2008) to

mention a few. Applications on relational datasets are also popular with fuzzy association rule

mining, such as: population surveys (Delgado et al., 2003; Alhajj and Kaya, 2008; Alcalá-Fdez

et al., 2009a) and marketing (Orriols-Puig et al., 2009) to mention a few.

2.5.4 Discussion

The literature has shown how the first type of association rule mining with numeric attributes

discretised the values into crisp sets. This was later improved by using fuzzy sets instead of
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crisp sets. Historically, modelling of systems focused on accuracy first, before soft computing

techniques were available such as fuzzy logic (Cordón, 2011). For association rule mining, the

same historical approach is evident from the literature review. This shows the application of crisp

sets for interval-based association rules before fuzzy sets and linguistic labels were applied to the

problem. GAs have been applied to define the crisp sets for quantitative association rule mining

and the fuzzy sets for fuzzy association rule mining. A closely related area is utility association

rule mining.

For fuzzy association rule mining there have been a variety of methods for learning and

tuning the fuzzy sets of linguistic terms. Literature on this subject has demonstrated how

fuzzy association rule mining involves either: learning membership functions first before mining

rules; simultaneously learning both membership functions and rules; or, learning the membership

functions and then tuning the membership function parameters before mining rules. Methods of

learning rules include both exhaustive search processes and metaheuristic methods, specifically

GAs.

2.6 Temporal Fuzzy Association Rule Mining

This thesis explores a previously unrecognised problem of how some fuzzy association rules can

be lost because the contextual meaning of linguistic terms changes in temporal periods of the

dataset. This section highlights existing research that is close to this thesis but differs in some way.

The review now contextualises previous research within the scope of this previously unrecognised

problem. Academic and news articles from industry were both reviewed in this section.

2.6.1 Academia

Early work on temporal fuzzy association rule mining explored how the quantitative values can

change over time. For example, the prices/sales of items rising over a week/month (Wang et al.,

2001). The temporal aspect of Wang et al. (2001) focused on the quantitative values changing

and the temporal feature is described as “evolving numerical attributes”. This is similar to the

incremental approach of maintaining quantitative association rules in Ng et al. (2007).

Martı́nez-Ballesteros et al. (2011) focused on intra-transaction temporal patterns found in

quantitative association rules. Multi-dimensional time series data was used and crisp partitions

of attribute intervals were specific to each rule. The research of Martı́nez-Ballesteros et al. (2011)

differs from this thesis because crisp intervals of attributes and multi-variate time series data are

used.

Balasubramanian and Duraiswamy (2009) and Balasubramanian et al. (2010) investigated

intra-transaction temporal association rule mining and also fuzzy association rule mining.

Investigations on the two types of association rule mining were reported in each individual paper

but the types of association rule mining were not combined.

Tseng et al. (2006) mined intra-transaction temporal patterns of utility itemsets. Tseng et al.

(2006) focused on data streams where the patterns discovered were relevant in a current time
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window. Maragatham and Lakshmi (2010) have focused on the same problem of discovering

intra-transaction temporal patterns in utility mining. They partition a dataset into temporal units,

such as day, week and month. Specific utilities of items are assigned to each partition so the

utilities are different from one temporal period to the next, which means that the temporal aspect

of the utilities is more dynamic than the approach in Tseng et al. (2006). Pillai et al. (2010)

investigated mining intra-transactional temporal patterns for utility itemsets. The aim of Pillai et al.

(2010) was to find rare itemsets that have high utility such as profit. The temporal behaviour of

utility values was modelled such that the cyclic, semi-cyclic or non-cyclic behaviour was recorded.

Yun and Ryu (2011) recognise that changes in weights of items, in noisy environments, can

cause large changes in weighted association rules. One aspect of Yun and Ryu (2011) is similar to

this because this thesis also focuses on a change that may be present in the data, however, Yun and

Ryu (2011) use crisp weight values. The approximate factor in Yun and Ryu allows for variability

in the support of a weighted association rule.

The works surveyed here all use crisp values of partitions of the quantitative/weight/utility

attributes. Hong et al. (2002), Huang and Kao (2005) and Hong et al. (2006) used fuzzy logic to

partition quantitative attributes for inter-transactional temporal patterns, i.e., sequence rules.

Shenghan et al. (2011) have used the 2-tuple linguistic representation in a temporal context.

The lateral displacement was used to model an event occurring in the past (α = −0.5), present

(α = 0) or future (α = 0.5). A fuzzy model was developed for evaluating risk and when risk

occurs.

Fuzzy Apriori Rare Itemset Mining (FARIM) discovers fuzzy association rules whose

frequency in a dataset is referred to as rare (Weng, 2011). Weng apply FARIM to educational data

to discover patterns that can identify students who have different scores to the average student that

could suggest there is a problem. The problem proposed by Weng (2011) is similar to the problem

stated in this thesis because fuzzy association rules can be lost because of their frequency in a

dataset. In the case of Weng (2011), the lose is only caused by a pattern’s rareness. But, in this

thesis the problem relates to how the fuzzy sets are defined.

2.6.2 Industry

The discussion of business activities can be commercially sensitive for businesses and there

is much less literature available from industry. Activities of businesses are important for

understanding the wider significance of the previously unrecognised problem presented in this

thesis.

An article in FORTUNE magazine (Leonard, 2005) reports on how temporal patterns in

supermarket datasets occurred during Hurricane Katrina. The sale of items, such as water and

flashlights (torches in British English), are associated with Strawberry Pop-Tarts (a pre-baked

product heated up in a toaster that consists of two layers of pastry with a sweet filling from the

USA). This appears to be an odd association that may be present because the items co-occur

in transactions by chance. However, in the context of Hurricane Katrina, a causality that can

be speculated: Pop-Tarts are high-energy comfort food that may be considered to be of equal
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usefulness and importance as emergency items, such as water and flashlights. As suggested in

Yoo and Shekhar (2009), this knowledge can be used to improve the operation of supply chains

and improve the visibility of items during key times.

Saleh and Masseglia (2010) report on the increase in sales of specific items during the Super

Bowl (a championship game for American football in the USA). There were an increase in sales

of guacamole, chips (crisps in British English) and antacid during the period of the Super Bowl.

This does not state that there were associations between the items in a transaction (intra) or

across multiple transactions (inter). However, it exemplifies how a scheduled event can change

the context for quantities of items sold.

An article in The New York Times Magazine (Duhigg, 2012) reports on how quantitative

and temporal patterns in data can be used to identify and develop profiles of potential customers.

Knowledge of these profiles allows companies to target advertising more effectively.

Although fuzzy logic is not stated as having been used in the literature from industry, the

literature does refer to quantitative data that can be represented with fuzzy sets.

2.6.3 Discussion

The review of the literature has focused on previous research and applications that explore the

composition of temporal association rule mining and fuzzy/quantitative association rule mining.

The review has not identified previous work that either recognises or tackles the problem defined

in this thesis (Section 1.1). Some of the literature reviewed is similar to the problem proposed

in this thesis. However, no literature has been discovered that tackles the same problem as this

thesis. So, this supports the identification of the previously unrecognised problem. Furthermore,

the importance of the problem is evident in industry from the literature in internationally renowned

magazines, such as FORTUNE magazine and The New York Times Magazine.

There are algorithms that incorporate both the fuzzy and temporal elements of association

rules. However, the temporal element is for inter-transactional temporal patterns, i.e., sequence

rules, and not intra-transactional temporal patterns such as exhibition periods. The algorithms

reviewed here are unsuitable for evaluating the research hypothesis, because the temporal pattern

is different to that sought in this thesis, so they are not used in this thesis.

2.7 Web Mining

The real-world dataset used in this thesis is a Web log dataset. Literature from this domain is

reviewed here to provide background and state-of-the-art knowledge.

Etzioni (1996) defined Web mining as “the use of data mining techniques to automatically

discover and extract information from World Wide Web documents and services”. Three

categories of Web mining were later defined by Madria et al. (1999) and Borges and Levene (2000)

as: i) Web content mining, ii) Web structure mining, and iii) Web usage mining. A survey of the

categories has been conducted by Srivastava et al. (2000) and an explanation of each category is

now given. The terminology and definitions for discussing the Web were defined by the World
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Wide Web Consortium (1999) and are used throughout this thesis.

Web content mining is the task of discovering useful knowledge from the content/data of

Web sites, such as text, images and videos. Cooley et al. (1997b) have further categorised the

purpose of Web content mining based on the perspectives stated by Srivastava et al. (2000) as

either information retrieval or database. The information retrieval perspective attempts to find

or retrieve information from large sources. Web content mining, from the database perspective,

attempts to model data to allow further analysis with database queries.

Web structure mining attempts to discover knowledge about the underlying structures that link

Web pages (Chakrabarti et al., 1999). Hyperlinks in Web pages can be used to identify Web sites

that are authoritative on a subject and model the topology of Web sites for comparison with other

Web sites.

Web usage mining attempts to discover patterns of user behaviours that are recorded in the logs

of Web servers as users browse and navigate Web sites (Cooley et al., 1997b). This is the Web

mining category of the real-world application of this thesis. Web usage mining uses secondary

Web data that is generated from the users, whilst Web content mining and Web structure mining

use primary data (Srivastava et al., 2000). Web usage data can include Web server access logs,

proxy logs, user sessions, cookies, to mention a few.

Srivastava et al. (2000) categorised the application of Web usage mining is either personalised

for learning user profiles, or unpersonalised for user navigation patterns. The knowledge

discovered from Web usage mining can be used in many ways, for example, redesigning parts

of a Web site so they are more effective and supporting business decisions. Association rules,

and sequential rules, can represent user navigation patterns on the Web. Facca and Lanzi (2005)

reviewed the methods of Web usage mining and their application.

2.7.1 Data Cleaning and Preprocessing

Data cleaning and preprocessing is an important stage of the KDD Process (see Section 2.3.1).

Data cleaning for Web usage mining involves removing records in a Web log that are not important

(Cooley et al., 1997b). Typically this is accomplished by removing records with uniform resource

locator (URL) requests that have suffixes, such as jpg.

User identification is a problem for two reasons (Cooley et al., 1997b; Cooley, 1999). First,

when a proxy server is present, the machine name of a request may refer to the proxy server that

can have multiple users behind it. Proxy servers may be present in Internet Service Providers and

companies/organisations. Also, a proxy server may provide local proxy caching of Web pages to

one or more users. When a cache is used the content is provided by the cache system and not

the Web site. The second problem of user identification is again related to cache, but at the PC

where a user is viewing the Web site. For example, when a user clicks back the Web page is

often loaded from cache and not the Web site. There are numerous solutions to the problem of

user identification and some of these are mentioned here. Pirolli et al. (1996) used a web site’s

topology of hyperlinks/structure to provide knowledge of which Web pages were traversable from

a current Web page in order to ascertain users from the same incoming request. Pitkow (1997)
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suggest using members who have registered on a Web site or Internet protocols, such as the Ident

Protocol and the Finger protocol, to identify a single user at the other end of a request. Elo-Dean

(1997) used cookies to identify users accessing the 1996 Olympics Web site.

Transaction identification is the problem of breaking down a user session into transactions

(Cooley et al., 1997a). This is also referred to as sessionisation. A user session is a sequence of

URL requests from the same user and the transaction identification problem refers to creating a

subset of sequences of URL requests. For example, a session may contain a request at 9am and

then a request at 3pm in the same day. It cannot be assumed that the user has viewed the Web

page for 6 hours because they may have minimised the Web browser or walked away from the

PC. Also, the problems behind user identification mean that it cannot be assumed that this request

came from the same user.

Unlike market basket datasets, Web log datasets comprise many URL requests that are not

naturally clustered into transactions. There are three methods for transaction identification:

reference length, time window and maximal forward reference. These are now explained.

Reference length transaction identification uses the concept that a Web page can be categorised

as either navigation or content (Cooley et al., 1997a). A navigation reference is a Web page that

a user traverses in order to find the information they require on a content reference Web page.

Cooley et al. (1997a) proposed a method of analysing the Web page view times and asserting a

cutoff time to categorise Web pages as either navigation or content references. The usefulness

of this depends on the goal of applying Web usage mining to a specific problem, i.e., to find

navigation and content patterns or content-only patterns.

Time window transaction identification is a time-oriented heuristic where by the duration of

a session must not exceed a threshold (Cooley et al., 1997a). The time threshold is a crucial

parameter in time window transaction identification. This is also a method of user identification,

which was discussed before transaction identification.

Maximal forward reference transaction identification creates a new transaction when a user

makes a backward reference (i.e., revisits a previous page in the current transaction) and then a

forward reference to a new Web page (Chen et al., 1996). A new transaction is created when a

forward reference is made. For example, the traversal path of a user {A,B,C,D,C,E,G} would

be split into transactions {ABCD,ABEG}, which are known as the maximal forward references.

2.7.2 Computational Intelligence in Web Usage Mining

CI is particularly useful in Web usage mining. Fuzzy logic is suitable for handling uncertainties

and the human interpretation of notions such as a short or long time spent viewing a Web page.

Evolutionary computation is suitable for searching large and complex search spaces that are found

in Web usage mining. Artificial neural networks are omitted because this is beyond the scope of

this thesis. The application of CI in Web usage mining is reviewed.
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2.7.2.1 Fuzzy Logic

Fuzzy logic has been applied to the three categories of Web mining defined in Section 2.7

(Nikravesh et al., 2002; Arotaritei and Mitra, 2004). The review of fuzzy logic focuses on Web

usage mining.

Wong et al. (2001) mined fuzzy association rules from Web log data where the fuzzy attribute

was the time spent on a Web page. The number of fuzzy association rules were reduced after

the mining process by merging similar rules. The real-world dataset used by Wong et al. was

augmented with random values for the time spent on a Web page. The fuzzy rules were integrated

with a case based reasoning system that was demonstrated to have good prediction accuracy.

Martı́nez et al. (2003) regarded the support and confidence measures of Boolean association

rules as fuzzy variables. Martı́nez et al. created a FRBS applied to the Apriori algorithm, to

enhance the level of intuitiveness of defining the minimum thresholds.

Fuzzy association rule mining has been used for a recommender system to make personalised

learning recommendations in an e-learning environment (Jie, 2004). Fuzzy associations are

generated that correlate a student’s requirements to a list of learning materials.

As previously discussed in Section 2.7, Hong et al. (2002) mined inter-transaction temporal

fuzzy association rules, i.e., sequences. The application of the work was in Web usage mining

where the sequence of Web pages visited was analysed.

2.7.2.2 Evolutionary Computation

Anandarajan (2002) learnt the weights of an artificial neural network, with a GA, for classifying

employee profiles according to employee Web usage behaviour. Nasraoui and Krishnapuram

(2002) use a GA-based clustering algorithm to identify associations amongst URLs. Nasraoui

and Rojas (2003) used a GA to mine Web user profiles from dynamic Web log data. The benefit

of the approach by Nasraoui and Rojas (2003) is the capability of learning Web user profiles that

are dynamic and continuously changing. Streaming data is continuously passed to the algorithm

rather than reading an entire dataset in one operation that may not fit in memory. Tuğ et al. (2006)

used a GA for mining inter-transaction temporal fuzzy association rules, i.e., sequences.

2.7.2.3 Genetic Fuzzy Systems

The use of hybrid CI methods has been less common in the literature. A theme amongst the

use of GFSs for Web usage mining is the data mining task, subgroup discovery (discussed in

Section 2.5.3). Romero et al. (2009) mine fuzzy rules for subgroup discovery for an e-learning

system called Moodle. Carmona et al. (2012) applied NMEEF-SD to subgroup discovery for a

commercial Web site.

2.7.3 Discussion

This review of literature has shown that Web mining has been applied in three key areas. The

real-world dataset used in this thesis is a Web log dataset for Web usage mining. Methods for
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cleaning and preprocessing the data have been identified that will be discussed further when they

are applied in Section 3.2. This review of CI methods in Web usage mining has focused on the CI

methods used in this thesis.
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Chapter 3

Datasets

Understanding the decisions made in creating a solution for the hypothesised problem requires

understanding of the datasets. So the type of dataset and its features are clarified here before

presenting the GA-based framework in the next chapter. Both the synthetic and real-world datasets

required modifications to how the dataset is either generated or preprocessed. Two datasets were

used to demonstrate the ability of the proposed solution to generalise to synthetic and real-world

datasets as well as different domains.

3.1 Synthetic

A synthetic dataset generator was used for controlled experiments and analysis of datasets with

different dimensions. There are synthetic dataset generators for association rule mining that were

designed for market basket analysis: i) the IBM Quest synthetic dataset generator (Sourceforge,

2010), ii) ARMiner (Cristofor, 2000), and iii) ARtool (Cristofor, 2001). The IBM Quest synthetic

dataset generator is used in this thesis and can be considered as a benchmark because of its use in

many previous research projects on Boolean association rule mining, such as the seminal Apriori

algorithm, FP-growth and Eclat (see Section 2.3.3 for a description of each).

The IBM Quest synthetic dataset generator is suitable for mining Boolean association rules

and was created by Agrawal and Srikant (1994) to accompany the Apriori algorithm. The dataset

generator produces a market basket dataset that consists of transactions containing items. The

dataset generator is a computer program that produces datasets from input arguments. The input

parameters of the IBM Quest synthetic dataset generator are listed in Table 3.1 with the default

values. A random seed is also supplied to the dataset generator.

Table 3.1. Parameters of the IBM Quest synthetic dataset generator

Notation Default Description

|D| 1000000 Number of transactions
|T | 10 Average size of the transactions
|I| 4 Average size of the maximal potentially large itemsets
|L| 10000 Number of maximal potentially large itemsets
N 100000 Number of items
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An overview of the algorithm for the IBM Quest synthetic dataset generator is provided below

and further details are available in Agrawal and Srikant (1994).

1. A set of maximal potentially large itemsets τ is set to a size of |L|. The maximal

potentially large itemsets in τ are the patterns that transactions will be constructed from.

They are maximal frequent itemsets that can potentially create patterns in transactions (see

Section 2.3.3.1 for a definition of maximal frequent itemset). For example, a maximal

frequent itemset can represent a bicycle, helmet and gloves, from which some customers

may purchase only a bicycle and helmet. Thus, multiple patterns can be generated from the

same maximal frequent itemset. To generate the first maximal potentially large itemset in

τ , its size is generated from a Poisson distribution with mean λ = |I|. The items are then

randomly generated from N items for the first maximal potentially large itemset. Remaining

members of set τ are randomly generated from the previously generated itemset (with a

specified level of correlation) to model the phenomenon of common items in large itemsets.

2. The size of each transaction (i.e., number of items in each transaction) is selected from a

Poisson distribution with mean λ = |T |.

3. For each transaction, of the total number |D|, a series of maximal potentially large itemsets

are randomly chosen from τ and assigned to a transaction. At this stage, no items are in the

transaction, there is only a series of itemsets associated with the transaction.

4. Itemsets are then selected and placed into the transaction from the series of maximal

potentially large itemsets that were assigned to a transaction. Each maximal potentially

large itemset in τ is assigned a weight that determines the probability of being selected. If

the selected itemset does not fit in the transaction then, in 50% of cases it is added regardless,

and in the other 50% of cases it is added to the next transaction.

The dataset generator defined in Agrawal and Srikant (1994) does not generate transactions

with quantitative attributes. So the dataset generator was extended in this thesis to include

quantitative attributes. The extension is a similar approach to Liu et al. (2005) and Tsai and

Chen (2006). In the last stage of the algorithm for creating datasets (stage 4 in the overview for the

dataset generation algorithm of Agrawal and Srikant (1994)) the quantities of items were randomly

generated from a uniform distribution and assigned to each item in a transaction. Table 3.2 shows

a sample dataset generated from modifications to the IBM Quest synthetic dataset generator. Note

that the number of items in each transaction varies and each item is not stored in a separate column

(i.e., not a table data with fixed columns).

The dataset generator has the option of producing inter-transaction temporal patterns (i.e.,

sequences), but there is no option for intra-transaction temporal patterns. Although there are

intra-transaction temporal dataset generators, they do not include quantitative attributes and they

are not widely used in the research community. These include: tBasket (Li et al., 2001b), TARtool

(Omari et al., 2008) and TARGEN (Schlüter and Conrad, 2009).
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Table 3.2. Sample dataset from IBM Quest synthetic dataset generator (item IDs are replaced with descriptive names
for illustrative purposes)

TID Items

1 {bread(12), pizza(2), beer(1)}
2 {eggs(6), milk(1)}
3 {eggs(2), pizza(4)}
4 {bread(4), cheese(18)}
5 {cheese(2), pizza(5), beer(15)}
6 {pizza(5), beer(15), milk(18)}
7 {eggs(18), cheese(3)}
8 {bread(3), eggs(12), cheese(1)}
9 {pizza(1), cheese(9)}
10 {bread(1), pizza(11)}

The IBM Quest synthetic dataset generator has a set of maximal potentially large itemsets that

all transactions are created from (stage 1 in the overview for the dataset generation algorithm

of Agrawal and Srikant (1994)). This stage ensures that the same patterns occur in multiple

transactions of the dataset. This feature makes the dataset generator suitable for intra-transaction

temporal association rule mining because there are common patterns (i.e., rules) amongst

transactions. The dataset generator produces a TID for each transaction and not a timestamp. The

assumption is made that transactions occur at uniform periods of time represented by a TID. The

IBM Quest synthetic dataset generator has been applied for intra-transaction temporal association

rule mining with cyclic patterns (Özden et al., 1998), exhibition periods (Chang et al., 2002) and

calendars (Li et al., 2003).

3.2 Real-World

Synthetic datasets do not capture features of the real-world and their inadequacies have been

recognised (Cooper and Zito, 2007). A real-world dataset was also used in this thesis for

demonstrating the GA-based framework.

Businesses generally do not release datasets of customer transactions because the data is

commercially sensitive. However, there are two real-world market basket datasets that have been

released into the public domain: the anonymous Belgian retailer dataset (Brijs et al., 1999) and

the Blue Martini Software Point of Sale (BMS-POS) dataset of Gazelle.com, an online legwear

and legcare retailer (Zheng et al., 2001). Both datasets have temporal attributes that are identified

with a TID and not a timestamp, which is similar to the synthetic datasets previously discussed.

The Belgian retailer dataset does not contain the quantities of items sold. The BMS-POS dataset

does contain quantities of each item sold, e.g., 3 tights and 2 pairs of socks. A histogram of the

BMS-POS dataset given in Figure 3.1 shows the quantities of items ordered made on the website

of Gazelle.com. A high frequency of low quantities can be observed. The dataset was raw; it

had not been preprocessed or cleaned. Hence there are some orders with quantities of -2 and -1.

A possible explanation could be refunds, promotions, or errors. There are very few quantities of
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individual items above 1 and 2 quantities in Figure 3.1. A possible reason for the small quantities

is the specialist nature of the retailer.
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Fig. 3.1. Histogram of quantities of items ordered in every transaction in the Blue Martini Software Point of Sale
dataset

A Web log dataset was used in this thesis because it has both temporal and quantitative

features where the quantities of many items are greater than 1. The quantitative value, which

was represented with fuzzy logic, is the time spent viewing the Web page. The Web log dataset

used in this thesis is from the United States Environmental Protection Agency (EPA). The EPA

dataset was collected from a 24-hour period of Hypertext Transfer Protocol (HTTP) requests to a

Web server. The geographical location of the Web server is Research Triangle Park, NC, USA. The

EPA dataset was recorded from 23:53:25 EDT 29th August 1995 to 23:53:07 30th August 1995.

The EPA dataset has 47748 requests: 46014 GET requests, 1622 POST requests, 107 HEAD

requests and 6 invalid requests. The Web log from the EPA is a real-world dataset and so the

dataset is assumed to have temporal patterns. Table 3.3 shows a sample of records from the EPA

dataset before cleaning and preprocessing.

Table 3.3. The first 4 records from the EPA dataset

Host Date Request
HTTPBytes
reply in
code reply

141.243.1.172 [29/Aug/1995:23:53:25]“GET /Software.html HTTP/1.0” 200 1497
query2.lycos.cs.cmu.edu[29/Aug/1995:23:53:36]“GET /Consumer.html HTTP/1.0”200 1325
tanuki.twics.com [29/Aug/1995:23:53:53]“GET /News.html HTTP/1.0” 200 1014
wpbfl2-45.gate.net [29/Aug/1995:23:54:15]“GET / HTTP/1.0” 200 4889

The type of data cleaning and preprocessing used in this thesis are described here. The

techniques are discussed in the chronological order they were applied. After data cleaning and

preprocessing, the EPA dataset had 2688 records and 5147 URLs/items.
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3.2.1 Data Cleaning

A set of all distinct suffixes of resources in HTTP requests was produced from the EPA dataset.

Records containing the suffixes listed in Table 3.4 were removed. Image files were removed

because they may form the design of the Web site, such as buttons and logos, or present

information such as graphs or pictures. HTTP requests with image files are generally located

very close to HTTP requests, in the dataset, for viewable pages (e.g., .html) from the same host.

Document files were removed because they are not considered to be a Web page. However, it is

recognised that for some Web sites this may be an important factor, e.g., identifying patterns of

publications downloaded from a research group’s Web site. Document files were assumed not to

be an important factor for the EPA dataset. Compressed and archived data were removed for the

same reason as document files. Executable files were removed because these are assumed not to

be viewable content. Audio files were removed because they are assumed to be used by the Web

site in the same manner as either image files or document files. Suffixes with txt have not been

cleaned because some Web pages provide data without any hypertext markup.

Table 3.4. Records removed with resource suffixes in HTTP request
Resource suffix in Name Description
HTTP request
gif Graphics Interchange Format Image file
xbm X BitMap Image file
zip Zip Compressed and archived data
pdf Portable Document Format Document file
exe exe Executable file
gz Gzip Compressed and archived data
wpd Word Perfect document Document file
wp Word Perfect document (old version) Document file
dct Unknown (Unable to determine type)
jpg JPEG Image file
imf Id Music File Audio file

Records were also removed from the EPA dataset by filtering the content of the request method.

All records that did not have a GET request method were removed. The GET method is of interest

because it retrieves information from the server and does not make changes, which can be done

with the POST request. The HEAD request is unimportant for association rule mining because it

does not include content, only metadata. Invalid requests were removed.

3.2.2 User and Transaction Identification

The EPA dataset provides the hostname of the requester, and if that could not be determined,

the IP address. There are no other data sources provided with the EPA dataset such as Web site

topology or data collected at the same time as the Web log (e.g., cookies and results of Ident/Finger

Protocols). So time window transaction identification is used for this purpose (discussed in

Section 2.7.1).
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Maximal forward reference transaction identification is applied to split transactions where a

user has previously visited pages (discussed in Section 2.7.1).

3.2.3 Preprocessing

After applying maximal forward reference transaction identification, there were some transactions

that contained identical URL items. For example, Table 3.5 demonstrates two items that have the

same index.html URL. A possible reason for this is that a user might reload the same page. These

duplicate items were removed from transactions.

Table 3.5. Example of transaction with identical URL items
URL request Timestamp Time spent on page (seconds)
index.html 446688000 30
index.html 446688030 60
contact.html 446688090 20
...

Transactions with two or fewer items were removed before calculating the time spent on

page. It is not possible to mine quantitative/fuzzy association rules from transactions with 2 items

because an end item is required for calculating the second quantitative attribute, time spent on

page. This problem only occurs when including the time spent on page, otherwise for identifying

Boolean association rules the problem would not exist. For example, Table 3.6 demonstrates how

the time spent on a page can only be calculated for 2 page visits when there are 3 records of a Web

log dataset.

Table 3.6. Example of calculating time spent on page
URL request Timestamp Time spent on page (seconds)
index.html 446688000 30
photos.html 446688030 30
contact.html 446688060 ?

The date and time field from the EPA dataset was converted to Unix time (considering the

EDT time zone) to allow for easy manipulation of time when calculating time spent on page. It is

possible for two or more transactions to have the same timestamp. For this reason, each transaction

is also associated with a TID to allow for unique identification of the transaction.

3.3 Discussion

The two datasets used in this thesis have been presented, the the IBM Quest synthetic dataset and

the EPA dataset. The method for generating the synthetic dataset, and cleaning and preprocessing

the real-world dataset have been discussed. Data cleaning and preprocessing of Web log dataset

has prepared the dataset so it is in a format that can be used for association rule mining. Also,

a model of the dataset has been integrated, specifically the forward reference model for the EPA
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dataset. For quantitative or fuzzy association rule mining it is important to retain and correctly

format the time spent on a Web page in the EPA dataset. The datasets are now in a suitable format

for association rule mining algorithms.

Common features of the Web log and market basket datasets are TIDs (timestamps for the

EPA dataset), quantities of each item and non-fixed transaction sizes. The TIDs represent the

temporal data and the quantities represent the quantitative attribute, both of which are essential

features for verifying the research hypothesis. Data can often have a fixed number of items such

as the number of variables in time-series data, or relational tables of a database. The non-fixed

transaction size of the market basket and Web log datasets is noteworthy because this is different

from many datasets often used in association rule mining. The datasets used in this thesis have

many items, or variables, that are not measured in each transaction. For example, a heart rate

monitor records the same variable every minute, but shopping transactions do not measure all

items in every transaction, only sold items are recorded.
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Chapter 4

GITFARM Framework

The literature review revealed a new problem in temporal fuzzy association rule mining where

some rules can be lost using the traditional approach. A hypothesis was created to guide the

creation of a solution to this problem and a methodology of analysing the solution. The solution

is presented here.

The Genetic Iterative Temporal Fuzzy Association Rule Mining (GITFARM) framework is

proposed to tackle the problem described in Section 1.1 and support the hypothesis in Section 1.2.

The meaning of each term in GITFARM is:

Genetic
A GA is used to learn rules.

Iterative
IRL is an important component of the framework that allows more than one rule to be learnt.

Temporal Fuzzy Association Rule Mining
The data mining task searches for fuzzy association rules that have an intra-transaction

temporal pattern called exhibit association rules.

Figure 4.1 illustrates how the GITFARM framework relates to the KDD Process. Steps 4 and

6 of the KDD Process are performed by the GITFARM framework and these steps are denoted

with rectangular boxes. The first part of the framework performs a data transformation, which

relates to step 4 of the KDD Process, and this is presented in Section 4.1. The framework can be

applied in either an approximate or descriptive model of a Mamdani FRBS. The choice of model

relates to step 6 of the KDD Process. The features and suitability of both models are discussed in

Section 4.2. The data mining algorithm is based on a GA, which also relates to step 6 of the KDD

Process, and this is presented in Section 4.3. Note that stage 5 of the KDD Process, choosing the

data mining task, is complete because this task is already known to be association rule mining.

The components of the GITFARM framework are interchangeable. For example, the GA could

be substituted for another evolutionary computation algorithm and different metrics for evaluating

rules, or different types of rules, can be used. The key features of the GITFARM framework are

the data transformation, the choice of an approximate/descriptive model of a Mamdani FRBS and

the learning method.
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1. Understand application domain

2. Create dataset

3. Data cleaning and preprocessing

4. Data reduction and projection (transformation)

5. Choose data mining task

6. Choose data mining algorithm(s), models and parameters

7. Perform data mining

8. Interpret mined patterns

9. Consolidate discovered knowledge

Fig. 4.1. Relationship between the GITFARM framework (steps 4, 5 and 6) and the KDD Process

4.1 Data Transformation

Step 4 of the KDD Process involves data transformation and this is discussed here.

A GA creates random chromosomes during initialisation that are then modified in the

evolutionary process with genetic operators. It is important that initialisation and the genetic

operators produce a chromosome where the itemset and fuzzy rule components are valid. A

chromosome with an invalid itemset has no occurrence of the itemset in the dataset and will

yield a support of 0. Invalid itemsets are detrimental to the search process. In exhaustive

search algorithms, such as FuzzyApriori, invalid itemsets are not produced. An invalid itemset

is considered to have an invalid phenotype because the observable features of the rule are not

present in the dataset. The data representation used in the transformation stage ensures that the

GA will only produce valid itemsets during initialisation and application of the genetic operators.

Details of how initialisation and genetic operators ensure valid itemsets are discussed with the GA

in Section 4.3.

The problem of mining temporal fuzzy association rules is complex, and has a large search

space that combines the itemset search space, the temporal search space and the membership

function parameter search space. The number of valid itemsets is smaller than all possible itemsets.

So, an advantage of the data transformation is the reduction in the itemset search space.

Data representations other than tables are common in Boolean association rule mining

(see Section 2.3.4), intra-transaction association rule mining (see Section 2.4.2), quantitative

association rule mining (see Section 2.5.1) and fuzzy association rule mining (see Section 2.5.3).

The dataset is transformed into a cyclical undirected graph. With respect to the work described in

this thesis the purpose is not to transform the market basket problem into a maximum weighted

clique problem (Cavique, 2004); the purpose is to ensure chromosomes contain valid itemsets that
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are present in the dataset and to reduce the itemset search space.

An undirected graph, G, consists of a pair of finite sets (V,E) where V is a non-empty set of

vertices and E is a set of pairs (e, t). Each pair in E consists of an edge, e, and a non-empty finite

set of TIDs, t. Each edge, e, is an unordered pair of vertices (a, b). The definition extends regular

graphs by including a set of TIDs for each edge.

An example is presented to demonstrate the construction of the graph. Table 4.1 is a small

example of a quantitative market basket dataset transformed into the graph of Figure 4.2. Each

edge represents the co-occurrence of two items in a transaction, or one item in a transaction. Items

are vertices. The TIDs of the co-occurrence are also on an edge. Edges are paired with a set of

TIDs to identify the co-occurrence of items. If there is no set of TIDs for an edge then an edge

does not exist.

Table 4.1. Example dataset containing three items (A, B and C) in vertical layout

TID A B C

1 4 6 12
2 0 2 14
3 16 11 0
4 1 0 13

A

B

C

1
3

1
2

1
4

1
3
4

1
2
3

1
2
4

Fig. 4.2. Example graph transformed from dataset in Table 4.1

The vertices and edges for the example graph are defined as

V = {A,B,C},

E = {((A,B), {1, 3}),

((B,C), {1, 2}),

((A,C), {1, 4}),

((A,A), {1, 3, 4}),

((B,B), {1, 2, 3}),

((C,C), {1, 2, 4})}.
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A loop connects a vertex to itself. These edges are shown in Figure 4.2 as lines that loop to the

same vertex, i.e., TIDs {1, 3, 4} for vertex A, TIDs {1, 2, 3} for vertex B and TIDs {1, 2, 4} for

vertex C.

The software implementation of the GITFARM framework represents an undirected graph

with an adjacency matrix. Each row/column is an item. Each cell in the adjacency matrix is a set

of TIDs for corresponding item–item co-occurrences. Table 4.2 shows the adjacency matrix from

the example dataset of Table 4.1. Note that the adjacency matrix does not store the quantitative

attributes of the dataset. Quantitative attributes are not stored in the graph. So, the raw data

structure resides in computer memory for calculating fuzzy rule support.

Table 4.2. Example adjacency matrix transformed from example dataset in Table 4.1
A B C

A {1,3,4} {1,3} {1,4}
B {1,2,3} {1,2}
C {1,2,4}

4.2 Model of Mamdani Fuzzy Rule-Based System

Step 6 of the KDD Process involves choosing the data mining algorithm, relevant models and

parameters. The GITFARM framework can be applied in either an approximate or a descriptive

model of a Mamdani FRBS. The data mining algorithm of step 6 is discussed later because the

choice in approximate or descriptive model is an important and influential decision.

Fuzzy association rule mining is a fundamentally different task to applications of FRBSs such

as classification, control, regression and modelling. The output of fuzzy association rule mining is

a set of rules that support making informed actions or decisions. Some mined rules might not be

used because the end-user decides they are unimportant, insignificant or irrelevant in the context of

a specific application and domain knowledge. However, all the rules from a FRBS contribute to the

intended task and none are discarded after the FRBS has been constructed. There is a difference in

where variables are placed in rules. All variables can be used in either the antecedent or consequent

parts of a fuzzy association rule, whilst a FRBS has a clear distinction between input and output

variables (e.g., variables for a target class or controller output). Despite the differences, both have

the same fundamental rule structure, both use fuzzy logic, and rule learning can be achieved with

evolutionary computation. For these reasons, knowledge of creating a FRBS has been applied to

creating an association rule mining algorithm.

The accuracy-interpretability trade-off of GFSs is discussed to support the choice for either

an approximate or descriptive Mamdani FRBS model for temporal fuzzy association rule mining.

Each model is now referred to as either the approximate model or the descriptive model when

discussing the GITFARM framework.
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4.2.1 Approximate

The problem of losing some temporal fuzzy association rules is related to the dynamic nature of

the environment and how fuzzy sets represent quantities of items. The flexibility of an approximate

model can overcome this problem by allowing fuzzy sets to be defined anywhere in the universe

of discourse, so they are not fixed. Fuzzy numbers are used in an approximate FRBS model

to represent the quantities of items. For example, a rule could take the form “customers on

a Monday morning who purchased approximately 4.5 pizzas also purchased approximately 15

beers”. Linguistic terms are not present in fuzzy numbers so there is no problem of contextual

meaning associated with linguistic terms. Instead, a change in context is modelled with a fuzzy

number that approximates a different number. A benefit of not using linguistic terms is that the

approximate model does not prescribe preconceptions about linguistic terms.

The benefits of an approximate model relate more to accuracy than interpretability. The

accuracy of an approximate model is crucial for discovering temporal fuzzy association rules,

because accuracy is achieved by flexibility in the rule structure. Figure 4.3 illustrates the

difference between approximate and descriptive membership functions, and their suitability for

either accuracy or interpretability. The descriptive model is discussed in the next section. The

problem with applying traditional fuzzy association rule mining algorithms to temporal datasets

is that the linguistic terms are defined a priori and so the induction of rules is limited to those

linguistic terms. Flexibility is crucial for discovering temporal fuzzy association rules because it

allows rules to be discovered that would otherwise fall on the intersections of membership function

boundaries. A descriptive model that uses linguistic terms has a rigid partitioning of the input and

output spaces that limits the flexibility of rule structure. An approximate model has no rigid

partitions, and removes the problem of rules occurring at the intersection of membership function

boundaries. This flexibility allows an increase in the degrees of freedom and expressiveness of the

rules, because each rule has its own distinct membership functions that are specific to a temporal

period of the dataset.

Mining temporal fuzzy association rules is a complex problem because of the different types

of search space and the size of each search space. An approximate model is good for expressing

temporal patterns because it provides a mechanism to model the fine detail that can be hidden

amongst multiple search spaces. Furthermore, a flexible approach to the definition of fuzzy sets

also allows complex problems to be modelled with as many rules as required. This means that

many temporal patterns with many different fuzzy sets can be discovered.

However, the flexibility of an approximate model creates a lack of semantic-based inter-

pretability because the membership functions are not assigned linguistic labels — they are said

to be semantic free. Instead, fuzzy numbers model approximate quantities. Fuzzy numbers are

less interpretable than linguistic terms. However, fuzzy numbers do describe quantities, albeit in

a different format.

Mining fuzzy association rules with fuzzy numbers has a larger search space than with

descriptive rules. This is a disadvantage for a GA, because the size of the search space increases

Carse et al. (1996).
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Fig. 4.3. Suitability of approximate (variable A) and descriptive (variable B) membership functions for accuracy and
interpretability

4.2.2 Descriptive

A descriptive model has a rigid partitioning of the input and output spaces that leads to the

problem of losing temporal fuzzy association rules. However, the 2-tuple linguistic representation

can provide a solution to the lack of flexibility in a descriptive model. The 2-tuple linguistic

representation was presented in Section 2.1.1.1 and its use for fuzzy association rule mining has

been reviewed in Section 2.5.3. An example rule, with the 2-tuple linguistic representation, could

take the form “customers on a Monday morning who purchased a (low, 0.1) quantity of pizza also

purchased a (medium, 0.2) quantity of beer”.

The benefit of a descriptive model relates to interpretability rather than accuracy. Sec-

tion 2.2.3.1 of the literature review has shown how context adaptation can be applied as a method of

tuning the accuracy of a FRBS. The crucial benefit of context adaptation was the ability to maintain

the semantic-based interpretability of a linguistic term whilst only slightly changing the meaning.

The 2-tuple linguistic representation adapts the context of a linguistic term by performing a lateral

displacement of a fuzzy set. The lateral displacement provides the rule flexibility required for

mining temporal fuzzy association rules.

The approximate model uses fuzzy numbers in rules so that each rule has its own distinct

membership functions. This principle is relevant to how the 2-tuple linguistic representation is

applied in the descriptive model. Each rule mined from the GITFARM framework has its own

lateral displacements that are specific to the context of each rule. For example, if identical rules

exist, but with different lateral displacements, then the rules are specific to the context of each

rule. Also, if identical rules exist, but with different lateral displacements for different temporal

periods, then the rules are specific to the context of the temporal periods. The application of the

2-tuple linguistic representation is considered to be learning, and not tuning, because the lateral

displacements are specific to each rule produced, so the context is learnt.

As previously mentioned in the data transformation stage of the framework (Section 4.1), the

search space is large and complex. An advantage of the 2-tuple linguistic representation is the

reduction in search space. The 2-tuple linguistic representation has two parameters (linguistic

term and lateral displacement) instead of three parameters of a triangular membership function

for an approximate model. Note that the search space of linguistic terms (nominal data type)

62



is smaller than that of lateral displacement (interval data type). The benefit of a reduced search

space is only applicable to the 2-tuple linguistic representation, and not the descriptive model.

Other representations in the descriptive model may have a different number of parameters and

different data types.

4.3 Genetic Algorithm

The choice of Mamdani FRBS model has been discussed. The remaining part in step 6 of the

KDD Process involves defining the data mining algorithm, which is discussed here.

A GA is chosen for mining temporal fuzzy association rules because the search space is large

and complex. The literature review has shown that an exhaustive search is recognised as being

prohibitive for searching only the membership function parameter space, and that a GA is often

used. The CHC algorithm is selected because CHC has been shown to be very effective in learning

the context of fuzzy association rules (Alcalá-Fdez et al., 2009a). CHC has a slow convergence,

so it can run for a long time to achieve high quality solutions (Alcalá et al., 2007). Furthermore,

CHC has a good balance between exploration and exploitation, so in complex problems CHC is

less likely to become stuck in local optima.

CHC serves two purposes; CHC simultaneously evolves the temporal fuzzy association

rules and the membership functions. CHC simultaneously performs a discrete (combinatorial)

search for the items in a rule and a continuous search for the membership function parameters.

Simultaneously evolving both parts overcomes the cause of losing temporal fuzzy association rules

where the linguistic terms (and membership function parameters) are defined before the mining

process. This is an important reason why the GITFARM framework is capable of solving the

hypothesised problem.

4.3.1 Chromosome

In the original CHC algorithm a binary representation is used. A mixed representation is required

for temporal fuzzy association rule mining. A chromosome C has mixed types and is defined

using the Michigan representation as

Approximate:
C = (el, eu, p1, i1, a1, b1, c1, . . . , pk, ik, ak, bk, ck)

Descriptive:
C = (el, eu, p1, i1, s1, α1, . . . , pk, ik, sk, αk)

where el is the lower temporal endpoint, eu is the upper temporal endpoint, p is a flag to determine

the antecedent-consequent part, i is the item (e.g., beer) and k is the number of items in a rule.

For an approximate model, the parameters a, b and c refer to the triangular membership function

parameters. For a descriptive model, s is the linguistic term and α is the lateral displacement

for that term in a rule. A clause in a rule defines a unit of a proposition (defined in Section 4).
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So a clause of a rule is defined as: the item, membership function parameters and antecedent-

consequent part for an approximate model; and, the item, linguistic term, lateral displacement

and antecedent-consequent part for a descriptive model. A clause is identified as having the same

index where k is the length of a rule.

The following example rules shows the genotype (chromosome) mapping to the phenotype

(rule). Note that the antecedent has a clause index of 2 meaning the antecedent-consequent

parameter for p1 is 0 and p2 is 1, for both approximate and descriptive rules.

Approximate:

For endpoints 0 (el) – 10 (eu)

IF quantity of pizza (i2) is approximately 4.5 (a=3.5, b=4.5, c=5)

THEN quantity of beer (i1) is approximately 15 (a=14, b=15, c=17)

Descriptive:

For endpoints 0 (el) – 10 (eu)

IF quantity of pizza (i2) is (low (s2), 0.1 (α2))

THEN quantity of beer (i1) is (medium (s1), 0.2 (α1))

Minimum temporal granularity restricts the length of the endpoints (i.e., the number of

transactions). Otherwise the GA evolves towards the smallest temporal period because the

temporal fuzzy support (defined next in Section 4.3.2) is higher when relative to one transaction

rather than when relative to two or more transactions. For example, 1 of 10 transactions has a fuzzy

support of 1/10 = 0.1 for a given rule. Without a minimum temporal granularity it is possible for

the GA to evolve endpoints that cover only 1 transaction so the temporal fuzzy support is 1/1 =

1. A rule that covers one transaction is undesirable. Minimum temporal granularity prevents this

problem. Two other restrictions are placed on the temporal endpoints. The maximum temporal

granularity defines the largest temporal period. Temporal granularity defines the granularity of

temporal periods.

Approximate: Soft constrained learning restricts the triangular membership function parameters

of the fuzzy numbers. As discussed in Section 2.2.1, soft constrained learning is a good trade-off

between the flexibility of defining membership functions and the size of the membership function

search space. Soft constrained learning restricts membership function parameters so there is a limit

on the maximum distance between parameters a and c, which is referred to as width. Without soft

constrained learning, the membership functions evolve to cover the entire universe of discourse

because this yields higher fuzzy support, but at the cost of losing semantic-based interpretability.

Figure 4.4 illustrates the constraints applied to the membership functions.

Descriptive: The linguistic labels are modelled with symmetric triangular fuzzy sets, which is the

original proposal of the 2-tuple linguistic representation (Herrera and Martı́nez, 2000). There is

assumed to be no unbalanced linguistic information that would otherwise require an unbalanced

scale of linguistic terms (Martı́nez and Herrera, 2012). Lateral displacement is encoded with one
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Fig. 4.4. Soft constrained learning for membership function parameters in an approximate rule with constraints a <=
b <= c

parameter and the advantage is a reduction in the search space of membership function parameters.

Reducing one dimension of the search space is important because it alleviates the increase in

overall search space that arises from the simultaneous need to search for rules, learn the contexts of

membership functions and search the temporal space. However, the flexibility of the membership

function’s shape is reduced, because it is only displaced along the universe of discourse.

Not all items are represented in the chromosome because there can be a large number of

items to consider in real-world applications, particularly market basket applications. So, items are

randomly selected to appear in chromosomes during initialisation and restarts.

Triangular membership functions were used because of their prevalence in fuzzy association

rule mining literature (Kaya et al., 2002; Hong et al., 2008; Alcalá-Fdez et al., 2009a) and their

similar performance to other membership function types (Alcalá et al., 2007). Other types of

membership function are possible, but the main focus of the hypothesis is to demonstrate how

temporal fuzzy association rules are lost. This loss is caused by temporal patterns occurring at the

intersection of membership function boundaries and so the problem is present in many types of

membership function.

The rules produced from running FuzzyApriori on all datasets showed that all rules had one

clause in the consequent, so the chromosome is restricted to one clause in the consequent. This

is beneficial for complexity-based interpretability because the readability of rules is easier with

fewer clauses/conditions (Gacto et al., 2011).

The graph is not represented in the chromosome. The purpose of the graph is to identify valid

itemsets, which are present in the dataset, and these itemsets are represented in the chromosome.

4.3.2 Fitness Evaluation

Fitness of a chromosome is evaluated by the addition of temporal fuzzy support and weighted

confidence. Temporal fuzzy support divides the fuzzy count of itemsets (Hong et al., 2001) by the

size of a temporal partition (Ale and Rossi, 2000). So temporal fuzzy support measures the fuzzy

support of a rule relative to the size of the temporal period. Temporal fuzzy support models an

exhibition period for a temporal association rule (see Section 2.4.2.4 of the literature review). This

is a preference-based multi-objective approach that maximises the objectives of temporal fuzzy

support and confidence.

65



The fuzzy support count of a chromosome measures the fuzzy support of a rule for one

transaction. The fuzzy support count performs the same measurement on the approximate and

descriptive models, but the definitions of how this is calculated differs slightly because of the

membership functions. The fuzzy support count of a chromosome C in a single transaction tj is

defined from Hong et al. (2001) as

Approximate:

FuzSupTran(C(tj)) =
k

min
n=1

µf (t
(in)
j ), (4.1)

Descriptive:

FuzSupTran(C(tj)) =
k

min
n=1

µ(sm,αn)(t
(in)
j ), (4.2)

where µ is the degree of membership (calculated for either a fuzzy number (µf ), or a linguistic

label and lateral displacement (µ(sn,αn))) for item in with a rule of length k and for one transaction.

The minimum is used for intersection of all the clauses, which is the same method of intersection

used in FuzzyApriori.

FuzSupTran is then used to calculate fuzzy support counts across multiple transactions and

the fitness is defined in this thesis as

Fitness(C) =

∑eu
j=el

FuzSupTran(C
(tj)
X ∩ C

(tj)
Y )

eu − el

 (4.3)

+w

∑eu
j=el

FuzSupTran(C
(tj)
X ∩ C

(tj)
Y )∑eu

j=el
FuzSupTran(C

(tj)
X )

 ,

where C is a chromosome, X is the rule antecedent, Y is the rule consequent, j is a dataset TID

from the el lower endpoint to the eu upper endpoint, and w is a weight applied to the confidence

measure. Hence, C(tj)
X and C

(tj)
Y are the rule antecedent and the rule consequent respectively for

one transaction in the dataset. A weight is required to avoid local minima that occur as a result

of the magnitude of confidence being higher than the magnitude of temporal fuzzy support; a GA

produces high confidence values (Matthews et al., 2012; Alcala-Fdez et al., 2010) compared with

a smaller magnitude of support values. For example, a temporal fuzzy support value of 0.001

is smaller than a confidence value of 0.1, so the confidence value has more influence than the

temporal fuzzy support. The weight was determined from multiple runs of the algorithm so that

the temporal fuzzy support and weighted confidence had the same order of magnitude.

A worked example is given for both approximate and descriptive models to demonstrate fitness

evaluation. Consider the example dataset in Table 4.3 and the membership functions of Figure 4.5

and Figure 4.6. The membership functions are assumed to be the same for both items (i.e., pizza

and beer) in this example. The fuzzy support count is calculated for the first TID, i.e., t1, for

both approximate and descriptive models. Values are rounded to 2 significant figures. The fuzzy

support count is then repeated for each transaction in the example dataset to calculate the fuzzy
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support and confidence. So for the same rules the fitness is calculated as follows.

Table 4.3. Example dataset for demonstrating fitness evaluation

TID Items

1 {cheese(2), pizza(5), beer(15)}
2 {pizza(4), beer(16), milk(18)}

1 5 10 15 20
0

0.5

1 (low, 0.1)(medium, 0.2)(high, 0)

Quantity
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Fig. 4.5. Membership functions for approximately 4.5
and approximately 15

1 5 10 15 20
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1 approx. 4.5 approx. 15
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Fig. 4.6. Membership functions for low, medium and
high

Approximate: Descriptive:

IF pizza is approximately 4.5 IF pizza is (low, 0.1)

THEN beer is approximately 15 THEN beer is (medium, 0.2)

FuzSupTran(C(t1))=
2

min
n=1

µf (t
(in)
1 )

=min(µ4.5(5), µ15(15))

=min(0.5, 1)

=0.5

FuzSupTran(C(t1))=
2

min
n=1

µ(sn,αn)(t
(in)
1 )

=min(µ(l,0.1)(5), µ(m,0.2)(15))

=min(0.68, 0.73)

=0.68

FuzSupTran(C(t2))=
2

min
n=1

µf (t
(in)
2 )

=min(µ4.5(4), µ15(16))

=min(0.75, 0.5)

=0.5

FuzSupTran(C(t2))=
2

min
n=1

µ(sn,αn)(t
(in)
2 )

=min(µ(l,0.1)(4), µ(m,0.2)(16))

=min(0.78, 0.62)

=0.62

FuzSup(C(tj))=

2∑
j=1

min(µ4.5(tj), µ15(tj))

2

=

(
min(µ4.5(5), µ15(15))+

min(µ4.5(4), µ15(16))

)
2

=
min(0.5, 1) + min(0.75, 0.5)

2

=
0.5 + 0.5

2
=0.5

FuzSup(C(tj))=

2∑
j=1

min(µ(l,0.1)(tj), µ(m,0.2)(tj))

2

=

(
min(µ(l,0.1)(5), µ(m,0.2)(15))+

min(µ(l,0.1)(4), µ(m,0.2)(16))

)
2

=
min(0.68, 0.73) + min(0.78, 0.62)

2

=
0.68 + 0.62

2
=1.3
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Conf(C(tj))=

2∑
j=1

min(µ4.5(tj), µ15(tj))

2∑
j=1

min(µ4.5(tj))

=

(
min(µ4.5(5), µ15(15))+

min(µ4.5(4), µ15(16))

)
(
min(µ4.5(5))+

min(µ4.5(4))

)

=
min(0.5, 1) + min(0.75, 0.5)

min(0.5) + min(0.75)

=
0.5 + 0.5

0.5 + 0.75
=0.8

Conf(C(tj))=

2∑
j=1

min(l,0.1)(tj), µ(m,0.2)(tj))

2∑
j=1

min(µ(l,0.1)(tj))

=

(
min(µ(l,0.1)(5), µ(m,0.2)(15))+

min(µ(l,0.1)(4), µ(m,0.2)(16))

)
(
min(µ(l,0.1)(5))+

min(µ(l,0.1)(4))

)

=
min(0.68, 0.73) + min(0.78, 0.62)

min(0.68) + min(0.78)

=
0.68 + 0.62

0.68 + 0.78
=0.89

Fitness(C(tj))=FuzSup(C(tj)) + wConf(C(tj))

=0.5 + w0.8

Fitness(C(tj))=FuzSup(C(tj)) + wConf(C(tj))

=1.3 + w0.89

Note: l is low and m is medium.

4.3.3 Initialisation

The first generation is randomly initialised. Each chromosome requires four parts to be initialised:

the temporal endpoints, items, parameters for either the fuzzy number or lateral displacement, and

antecedent-consequent parameters.

The temporal endpoints are initialised to have a temporal granularity that is between the

minimum and maximum temporal granularity (defined in Section 4.3.1). Initialisation of itemsets

and temporal endpoints requires knowledge of both of these parts to ensure the itemset is present

in a temporal period. Algorithm CreateItemsetAndEndpoints creates the itemset and the temporal

endpoints in a chromosome so that the itemsets are within the temporal endpoints and no items are

duplicated. CreateItemsetAndEndpoints makes use of the graph for looking up transaction IDs,

and the raw data structure for selecting items from a transaction.

Algorithm 1 CreateItemsetAndEndpoints
Inputs:

k ← Length of itemset;

M ← Adjacency matrix of graph of dataset;

Outputs:

I; // An itemset of length k

(el, eu); // Lower and upper endpoints

Begin
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n← 0; // Initialise loop variable to first index

(el, eu) ← Randomly select endpoints so that el < eu and at least one transaction has a

minimum of k items;

t← Randomly select transaction ID that is >= el and < eu, and contains more than k items;

In ← Randomly select one item from transaction t;

T ← Get transaction IDs from adjacency matrix (MIn,In) within (el, eu) that contain item In;

n← n+ 1; // Increment loop variable

While n < k do // Loop through every index in itemset

t← Randomly select one transaction from T that contains all items in I;

In ← Randomly select one item from t that is not present in chromosome;

Q ← Get transaction IDs from adjacency matrix for current item (In) and previous item

(In−1), i.e., MIn,In−1 ;

T ← T ∩Q; // Update set with new item’s transaction IDs

n← n+ 1; // Increment loop variable

End (While)

End

The antecedent-consequent parameters are randomly initialised for each clause whilst ensuring

that only one clause is present in the consequent. The membership function parameters are defined

according to either an approximate or descriptive model.

Approximate: Soft constrained learning is applied to the membership functions of a fuzzy

number, which has been discussed in Section 4.3.1. Parameters of a triangular membership

function are randomly generated by

b = Random(Amin, Amax), (4.4)

a = Random(b− (W/2), b), (4.5)

c = Random(b, b+ (W/2)), (4.6)

where Amin and Amax are the smallest and largest values of an attribute respectively, W is the

width that a fuzzy number is constrained to and Random(x, y) produces random values >= x

and <= y.

Descriptive: A linguistic label is randomly generated from labels describing an item. Lateral

displacement is randomly generated from [−0.5, 0.5).
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The difference threshold is described in detail in the discussion on restart (Section 4.3.4), but

is briefly mentioned here because the difference threshold is initialised. The difference threshold

d is initialised to L/4, which is shown in Figure 2.6 on page 13. The value of the difference

threshold is set according to the reason given in Eshelman (1991) for bit string representations,

which is discussed in Section 2.1.2.2. The same principle is extended in this thesis for mixed-

type chromosomes. In the original CHC algorithm, the numerator L represents the length of

bit strings used in the Hamming distance, i.e., number of genes multiplied by the number of

bits representing each gene (the importance of the Hamming distance is yet to be discussed in

Section 4.3.5). L represents the maximum difference between two bit strings. In this thesis, a

value of 1 is assigned to L because the maximum value of the hybrid distance measure is 1 (the

hybrid difference measure is yet to be discussed in Section 4.3.5).

4.3.4 Restart

The restart operator is used instead of mutation, which is discussed in the literature review (see

Section 2.1.2.2). This means CHC is good at maintaining diversity (Eshelman, 1991).

Population convergence is measured to identify when a restart is required. Population

convergence is measured by the number of generations where no new individuals are introduced.

The incest prevention mechanism uses a difference threshold (d in Figure 2.6 on page 13) that

is decremented by 5% of its initial value at every generation when there is no new individual.

The population is restarted when the difference threshold is below 0. The incest prevention

mechanism is linked with the crossover operator because it is a threshold for determining whether

two chromosomes are sufficiently different before performing crossover (see Section 4.3.5 on

crossover). Note that although the difference threshold is described as a threshold, it is not used as

a threshold in the restart operation, it is only used as a threshold in crossover.

Restart performs the same task as initialisation (see Section 4.3.3), but with one crucial

difference. The divergence rate, in the original CHC algorithm, is the percentage of bits that

are flipped in a binary representation during restarts. However, as mentioned in Section 4.3.1,

the chromosome has a mixed representation of a ratio data type (time), an interval data type

(membership function parameters of fuzzy number, or lateral displacement) and nominal data

types (item, attribute). The divergence rate is incompatible with a mixed representation. Bits

should not be flipped for nominal types because there is no order amongst elements as there is

with interval data types. So, the divergence rate is redefined as a threshold for determining the

probability of reinitialising a gene. The divergence rate assigns a probability of reinitialising a gene

of the chromosome, for every gene. The same probability value is applied for every chromosome.

For example, the first item gene in the chromosome is initialised, the second item gene is not, and

so on.

4.3.5 Crossover: Difference Check

Crossover is only performed on two individuals when the difference in genotypes is above

the difference threshold (defined in Section 4.3.4). Crossover is referred to as heterogeneous
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re-combination in CHC because the parent chromosomes must be sufficiently different. The

method for evaluating the difference in chromosomes is presented first followed by the method

for performing crossover.

In the original CHC algorithm, the Hamming distance (Hamming, 1950) evaluates the

difference between two bit strings. However, as mentioned in Section 4.3.1, the chromosome

has a mixed representation of a ratio data type (time), an interval data type (membership function

parameters of fuzzy number or lateral displacement) and nominal data types (item, attribute). To

allow the Hamming distance to be used, the interval data types (membership function parameters

of fuzzy number or lateral displacement) are converted into a Gray code (Gray, 1953). Such an

approach has shown good performance in Alcalá et al. (2007) and Alcalá-Fdez et al. (2009a) where

CHC learnt lateral displacements with the 2-tuple linguistic representation for fuzzy control and

fuzzy association rule mining.

For coherence, the Hamming distance is only evaluated for membership functions when the

clauses are the same. It is unsuitable to calculate the Hamming distance between two membership

functions of different items because they have different semantics. For example, the linguistic

terms for quantities of pizza and beer may be different because the perspectives of the quantities

for those specific items are different. Each clause in a rule is checked to identify if a clause’s

content is the same as the clause from the other chromosome. This is performed differently for the

approximate and descriptive models, each are defined below.

The chromosome only represents items in the rule, and not every possible item in the dataset.

So it is possible for the same item to exist in both parent chromosomes, but at different loci. This

is a problem when using the Hamming distance because a bitwise comparison is performed at

each locus in a bit string. To overcome this problem, all matching genes are temporarily (only

for purpose of calculating Hamming distance) moved to the same loci to ensure the Hamming

distance is semantically correct. After the genes are moved, comparisons are then made.

Approximate: For coherence, membership function parameters are only compared using the

Hamming distance when the clauses have the same antecedent-consequent parameter and item.

If a clause does not match, then the maximum difference in Gray Code is assigned for each

chromosome (e.g., all 0s for one chromosome and all 1s for the other).

Descriptive: For coherence, lateral displacements are only compared, using the Hamming

distance, when the clauses have the same antecedent-consequent parameter, item and linguistic

term. If a clause does not match, then the maximum difference in Gray Code is assigned for each

chromosome (e.g., all 0s for one chromosome and all 1s for the other).

The Hamming distance is defined as

H(f, g) =
1

q

q∑
n=1

δ(fn, gn), (4.7)

where f and g are Gray Codes of bit strings with length q and a position in a bit string is n. The
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term δ is an exclusive XOR operation defined as

δ(x, y) =

0 (x > 0 ∧ y > 0) ∨ (x = 0 ∧ y = 0),

1 otherwise.
(4.8)

So a clause is considered to be a nominal type when it contains an item, a linguistic label (only

for descriptive model) and an antecedent-consequent parameter. In order to define the Jaccard

distance, the Jaccard coefficient is defined as

J(A,B) =
|A ∩B|
|A ∪B|

, (4.9)

where A and B are sets of tuples for either: i) temporal endpoint; ii) an antecedent-consequent

parameter and an item for an approximate model; or iii) an antecedent-consequent parameter, an

item, and a linguistic label for a descriptive model. The Jaccard distance is defined as

J ′(A,B) = 1− J(A,B). (4.10)

The Hamming distance and the Jaccard distance evaluate the different genes of parent

chromosomes according to either an approximate or descriptive model. Each measure is

normalised and aggregated.

Approximate: The following measures are aggregated using the arithmetic mean: the

Hamming distance of the temporal endpoints (el, eu), the sum of all Jaccard distances of

(p(antecedent-consequent parameter), i(item)) tuples and the sum of all Hamming distances

of membership function parameters of fuzzy numbers (a, b, c). The temporal endpoints are

concatenated in the order they appear in the chromosome and so are the membership function

parameters. The hybrid difference measure h, for two chromosomes C1 and C2 of an approximate

model, is defined as

h =
1

3

(
H(gray(C1(el,eu)), gray(C2(el,eu)))

g

+
1

k

k∑
n=1

J ′(C1(in,pn), C2(in,pn))

+
1

k

k∑
n=1

H(gray(C1(an,bn,cn)), gray(C2(an,bn,cn)))

g

)
, (4.11)

where g is the number of bits for representing the Gray Code. For example, assuming 30 bits are

used in the Gray Code for two hypothetical rules:
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C1 = (0, 10, pizza, 2.5, 4.5, 5.5, 0,beer, 14, 15, 17, 1)

C2 = (0, 10, pizza, 2.5, 4.5, 5.5, 0,beer, 10, 11, 13, 1)

h=
1

3

(
H(C1(0,10), C2(0,10))

30

+
1

2
(J ′(C1(pizza,0), C2(pizza,0)) + J ′(C1(beer,1), C2(beer,1)))

+
1

2

(
H(gray(C1(2.5,4.5,5.5)), gray(C2(2.5,4.5,5.5)))

30
+

H(gray(C1(14,15,17)), gray(C2(10,11,13)))

30

))
=

1

3

(
30

30
+

1

2
(1 + 1) +

1

2

(
30

30
+

0

30

))
=

1

3
(1 + 1 + 0.5)

= 0.83̇

Descriptive: The following measures are aggregated using the arithmetic mean: the Hamming dis-

tance of the endpoints, the sum of all Jaccard distances of (a(antecedent-consequent parameter),

i(item), s(linguistic label)) tuples and the sum of all Hamming distances of lateral displacements.

The hybrid difference measure h, for two chromosomes C1 and C2 of a descriptive model, is

defined as

h =
1

3

(
H(gray(C1(el,eu)), gray(C2(el,eu)))

g

+
1

k

k∑
n=1

J ′(C1(in,sn,pn), C2(in,sn,pn))

+
1

k

k∑
n=1

H(gray(C1(αn)), gray(C2(αn)))

g

)
, (4.12)

where g is the number of bits for representing the Gray Code. For example, assuming 3

membership functions with uniform partitioning across a domain of [1, 20] and 30 bits are used in

the Gray Code:
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C1 = (0, 10,pizza, low, 0.1, 0, beer,medium, 0.5, 1)

C2 = (0, 10,pizza, low, 0.1, 0, beer,medium,−0.3, 1)

h =
1

3

(
H(C1(0,10), C2(0,10))

30

+
1

2
(J ′(C1(pizza,low,0), C2(pizza,low,0)) + J ′(C1(beer,medium,1), C2(beer,medium,1)))

+
1

2

(
H(gray(C1(0.1)), gray(C2(0.1)))

30
+

H(gray(C1(0.5)), gray(C2(−0.5)))

30

))
=

1

3

(
30

30
+

1

2
(1 + 1) +

1

2

(
30

30
+

0

30

))
=

1

3
(1 + 1 + 0.5)

= 0.83̇

When h < d for two chromosomes, for either an approximate or a descriptive model, they are

sufficiently different so crossover is performed.

4.3.6 Crossover: HybridCrossover

The method for performing crossover is now presented. HybridCrossover is an algorithm that

applies suitable operators to genes that have different data types. The crossover operators are

applied to the genes according to the following.

Approximate:

C = (el, eu, p1, i1︸ ︷︷ ︸
swap

,

PCBLX-α︷ ︸︸ ︷
a1, b1, c1, . . . , pk, ik︸ ︷︷ ︸

swap

,

PCBLX-α︷ ︸︸ ︷
ak, bk, ck)

Descriptive:

C = (el, eu, p1, i1, s1︸ ︷︷ ︸
swap

,

PCBLX-α︷︸︸︷
α1 , . . . , pk, ik, sk︸ ︷︷ ︸

swap

,

PCBLX-α︷︸︸︷
αk )

HybridCrossover does not apply a crossover operator to the temporal endpoints because the

itemsets for temporal endpoints of offspring might not be valid. For example, a rule from

one temporal period might not contain any items in a rule from another temporal period. To

ensure the itemset is valid, the endpoints remain the same during crossover and new temporal

endpoints can be introduced during restart operations. For nominal data types, i.e., antecedent-

consequent parameter, item and linguistic label, the genes are swapped. For interval types, i.e.,

membership function parameters of fuzzy numbers and lateral displacements, the parent centric

BLX-α (PCBLX-α) (Lozano et al., 2004) crossover operator is applied.

Both approximate and descriptive models use PCBLX-α. The descriptive model performs

crossover on each lateral displacement gene in a descriptive model. PCBLX-α is performed as
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follows. Assume that x, y ∈ [a, b] ⊂ < are two interval data types from two chromosomes. An

offspring from an interval data type is randomly chosen from either z1 or z2, where z1 is randomly

generated in the interval [l1, u1] near parent x with

l1 = max {a, x− I · α} and u1 = min {b, x+ I · α} ,

and z2 is randomly generated in the interval [l2, u2] near parent y with

l2 = max {a, y − I · α} and u2 = min {b, y + I · α} ,

where I = |x − y|. PCBLX-α has a high probability of creating offspring near the parents. The

α parameter in PCBLX-α is different from the α term that expresses lateral displacement in the

2-tuple linguistic representation.

For the approximate model crossover is performed on three genes for the membership function

parameters of a fuzzy number. The same PCBLX-α operator is applied to each parameter but in a

different order to adhere to the restrictions of soft constrained learning. Each parameter a, b and c

of two offspring chromosomes O1 and O2 are defined by

O1(b) = Random(max(Amin, P1(b) − I · α),min(Amax, P1(b) + I · α)), (4.13)

O2(b) = Random(max(Amin, P2(b) − I · α),min(Amax, P2(b) + I · α)), (4.14)

O1(a) = Random(max(O1(b) − 0.5 ·W,P1(a) − I · α),min(O1(b), P1(a) + I · α)), (4.15)

O2(a) = Random(max(O2(b) − 0.5 ·W,P2(a) − I · α),min(O2(b), P2(a) + I · α)), (4.16)

O1(c) = Random(max(O1(b), P1(c) − I · α),min(O1(b) + 0.5 ·W,P1(c) + I · α)), (4.17)

O2(c) = Random(max(O2(b), P2(c) − I · α),min(O2(b) + 0.5 ·W,P2(c) + I · α)), (4.18)

where I is (re)calculated for each parameter in each chromosome and W is the width of a fuzzy

number (defined when the chromosome was presented in Section 4.3.1). For parameters a and

c, the respective lower and upper bounds for generating a random number are limited to the soft

constraints.

Crossover is only performed on the relevant genes when the items match in an approximate

model or when the items and linguistic labels match in a descriptive model. The purpose is to

ensure the result of crossover is semantically correct. This is a similar principle to only applying

the Hamming distance and the Jaccard distance to specific genes when evaluating the difference

between two chromosomes (see Section 4.3.5). However, there is one difference with how these

checks are performed. The antecedent-consequent parameter is not checked when performing

crossover. Not checking the antecedent-consequent parameter allows genes to crossover between

the antecedent and consequent parts of a rule. The algorithm for crossover is dependent on the

approximate or descriptive model used. Two crossover algorithms are listed below for each model.

Algorithm 1 HybridCrossover for approximate model
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Inputs:

k ← Length of rule;

P ← Two parent chromosomes;

Outputs:

O; // Two offspring chromosomes

Begin

n← 0; // Initialise loop variable to first index

O ← P ; // Create offsprings from identical copies of parents;

If O have matching items Then

Move clauses, containing matching items, to same loci;

End (If)

While n < k do // Loop through every index in rule

If O items are identical Then

Uniform crossover of membership function parameters of fuzzy number using PCBLX-α;

Uniform crossover of antecedent-consequent parameter using swap;

End (If)

If O items are not identical Then

If O1 is present in endpoints of O2 using Algorithm CheckGraph AND O2 is present in

endpoints of O1 using Algorithm CheckGraph Then

Uniform crossover of {item, membership function parameters of fuzzy number}
using swap;

Uniform crossover of antecedent-consequent parameter using swap;

End (If)

End (If)

n← n+ 1; // Increment loop variable

End (While)

End

Algorithm 2 HybridCrossover for descriptive model
Inputs:

k ← Length of rule;

P ← Two parent chromosomes;
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Outputs:

O; // Two offspring chromosomes

Begin

n← 0; // Initialise loop variable to first index

O ← P ; // Create offsprings from identical copies of parents;

If offspring have matching items Then

Move clauses, containing matching items, to same loci;

End (If)

While n < k do // Loop through every index in rule

If O items are identical AND linguistic labels are identical Then

Uniform crossover of lateral displacement using PCBLX-α;

Uniform crossover of antecedent-consequent parameter using swap;

End (If)

If O items are identical AND linguistic labels are not identical Then

Uniform crossover of {linguistic label, lateral displacement} using swap;

Uniform crossover of antecedent-consequent parameter using swap;

End (If)

If O items are not identical Then

If O1 is present in endpoints of O2 using Algorithm CheckGraph AND O2 is present in

endpoints of O1 using Algorithm CheckGraph Then

Uniform crossover of {item, linguistic label, lateral displacement} using swap;

Uniform crossover of antecedent-consequent parameter using swap;

End (If)

End (If)

n← n+ 1; // Increment loop variable

End (While)

End

In the HybridCrossover, for both the approximate and descriptive models, if the items to be

swapped are different then a check is performed before swapping the items. The purpose is to

prevent crossover from producing invalid itemsets. Potential offspring are first checked to identify

if the resulting itemsets are present in the specific temporal partitions of the dataset. If the resulting

offspring are not present then the items are not swapped. Algorithm CheckGraph uses the graph
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data structure to ensure offspring are valid itemsets in a temporal period. Algorithm CheckGraph

is defined below.

Algorithm 3 CheckGraph
Inputs:

k ← Length of itemset to be checked;

I ← Itemset to be checked;

j ← Candidate item from itemset I that is to be checked;

M ← Adjacency matrix of graph of dataset;

(el, eu)← Lower and upper endpoints of temporal period;

Outputs:

TRUE or FALSE

Begin

n← 0; // Initialise loop variable to first index

T ← ∅; // Initialise set of transactions to the empty set

p← Clause index of candidate item j;

While n < k do // Loop through every index in itemset

// If index of candidate item not equal to current index

If n 6= p Then

// If T used for first time

If n = 0 OR p = 0 Then

// Initialise

T ←MIn,j that are >= el and < eu;

Else

T ← T ∩MIn,j ; // Update transaction IDs set with transactions containing candidate

item (j) and current item (In)

End (If)

End (If)

n← n+ 1; // Increment loop variable

End (While)

If T = ∅ Then return FALSE;

Else return TRUE;

End (If)

End
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4.3.7 Iterative Rule Learning

IRL records the best rule from each run of the GA. Chromosomes are penalised in the fitness

function by setting their fitness to 0 if the candidate rule matches a rule from the final set of rules.

Penalisation helps to guide the search away from previously discovered rules so the final rule set

is diverse. The final rule set contains all discovered rules. IRL is terminated after a set number

of iterations has passed. The selection, penalisation and termination criteria are the three criteria

for IRL defined by González and Herrera (1997), which has been discussed in Section 2.2.3.2.

IRL helps to reduce the search space by focusing on learning one rule at a time (Venturini, 1993;

González and Herrera, 1997). In terms of FRBSs, the GITFARM framework tackles a difficult

problem because learning both the DB and the RB are combined (Herrera, 2008). The method of

identifying matching rules is different for the approximate and descriptive models.

Approximate: For two rules, all components, except the membership function parameters of the

fuzzy number are compared. If all components of both rules match, then the fuzzy sets of the fuzzy

number are compared. A similarity measure is used to compare the fuzzy sets. Setnes et al. (1998)

state there are two groups of similarity measures, those that are geometric similarity measures

and those that are set-theoretic similarity measures. According to Zwick et al. (1987) geometric

measures are better suited to distinct fuzzy sets that do not overlap whilst set-theoretic measures

are better for fuzzy sets that do overlap. For this reason a set-theoretic similarity measure is used

that is based on intersection, union and cardinality (Dubois and Prade, 1980, p .24). The similarity

measure for two fuzzy sets, E and F , is defined as

S(E,F ) = ‖(E ∩ F )‖/‖(E ∪ F )‖, (4.19)

where the notation ‘‖‖’ represents scalar cardinality. If the similarity of the two fuzzy sets is

greater than or equal to the similarity threshold then the clauses are considered to be a match and

the candidate rule is penalised.

Descriptive: For two rules, all components, except the lateral displacement are compared. If

all components of both rules match then the lateral displacements are compared. The lateral

displacements are considered to be the same if the difference in absolute values of lateral

displacements is less than a lateral displacement threshold. For example, for a lateral displacement

threshold of 0.5 and two lateral displacements, -0.45 and -0.05, the absolute difference is 0.4 so the

fuzzy sets are considered to be the same. The membership functions are symmetric, so comparing

the fuzzy sets with the lateral displacement is fair. If the membership functions were asymmetric

then another measure would be required, such as the similarity measure used in the approximate

model for IRL. This approach, of using lateral displacement, is different to the approach in the

approximate model because it is more computationally efficient.

The approximate and descriptive models require a parameter to be set for comparing fuzzy

numbers and lateral displacements. This is an important parameter because it determines the
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degree of overlap between two fuzzy sets that is used for penalising rules during evolution. If

there is a high degree of overlap then the final rule set can contain very similar rules. If there is a

low degree of overlap then some rules may be penalised when there temporal fuzzy support and

confidence may be important to a domain expert.

The rule length is fixed in one run of the GA. The rule length in IRL is configurable to allow

different length rules in the final rule set. Percentages of IRL iterations with specific rule lengths

are assigned. For example, in 100 iterations, 75% could be allocated to rules of length 2 and the

remaining 25% search for rules of length 3. The rule length is fixed in a chromosome, for each

iteration of IRL, otherwise rules evolve to have the minimum length. Fewer clauses in a rule yield

higher temporal fuzzy support values because smaller rules form the building blocks of larger

rules (i.e., the downward closure property in Boolean association rule mining). Furthermore, a

flexible configuration of rule lengths provides a fair comparison with existing approaches, which

is discussed further in Section 5.2.7.

4.4 Discussion

The GITFARM framework has been presented in this chapter. GITFARM is a framework for

mining intra-transaction temporal fuzzy association rules. The GITFARM framework comprises

three components that justify the decision for GITFARM to be a framework. Three steps of the

KDD Process relate to the GITFARM framework.

The first component of the GITFARM framework transforms the dataset from a table into

a graph. The purpose of this component is to use a data structure that explicitly represents the

co-occurrence of items in the dataset. The GA uses the graph to ensure that candidate rules exist

in the dataset. Without the graph structure, it would be possible for the GA to generate rules that

do not exist, non-existing rules are considered to be invalid.

The second component is the choice of model; either approximate or descriptive. The

approximate and descriptive models relate to FRBSs and the fuzzy sets used. The approximate

model provides flexibility in the membership functions so that temporal patterns can be discovered.

The descriptive model provides flexibility in the membership functions, but whilst maintaining the

interpretability of the membership function with a linguistic term. There is a trade-off between the

accuracy and interpretability when choosing between an approximate or descriptive model, for the

GITFARM framework.

The third component is the search method for mining intra-transaction temporal fuzzy

association rules. CHC is the type of GA used. The decision on the approximate/descriptive model

is important because there are small changes in CHC for handling the membership functions that

reflect the choice of model. CHC simultaneously searches for rules and membership functions.

The metaheuristic approach for discovering rules does not guarantee that lost rules are

discovered. The metaheuristic approach may discover rules already discovered with another

approach. In the following chapter a methodology is presented for analysing the ability of this

framework at discovering lost rules.
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Chapter 5

Experimental Methodology

The GITFARM framework has been proposed as a solution to the hypothesised problem. The

comparative analysis framework is a methodology for testing the hypothesis. The comparative

analysis framework runs the GITFARM framework and a traditional approach. The rules from

both approaches are compared and analysed to verify the hypothesis.

The comparative analysis is presented first in Section 5.1. The variables configured with the

comparative analysis are then discussed in Section 5.2. These include variables for the GITFARM

framework, the traditional approach and the comparative analysis framework.

5.1 Comparative Analysis Framework

The aim of the comparison is to explore the ability of the GITFARM framework to discover intra-

transaction fuzzy association rules that might be lost with a traditional approach. The comparative

analysis framework directly compares both approaches. The concept behind the comparative

analysis framework is to compare rules found by the GITFARM framework with the traditional

approach so that matching rules are identified. The comparison identifies what rules the GITFARM

framework has discovered that were not discovered by the traditional approach.

The comparative analysis framework is created to allow for two search algorithms to be

analysed. The comparative analysis framework has three components that relate to three steps in

the KDD Process, which is shown in Figure 5.1. The figure illustrates how the three components

align with three steps of the KDD Process. Each component of the comparative analysis

framework is now discussed.

5.1.1 Define Model and Parameters

The first component of the comparative analysis framework (step 6 of the KDD Process) is to

choose the data mining algorithm(s), models and parameters. For the purposes of investigating the

hypothesis, the GITFARM framework and the traditional approach are chosen as the data mining

algorithms. As discussed in Section 4.2, the model in the GITFARM framework can be either

approximate or descriptive. Another choice for the model is the linguistic labels for modelling

perceptions such as a quantity, for market basket datasets, and time, for Web log datasets. After

defining the linguistic labels, the membership function parameters are defined. The models and
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Fig. 5.1. Comparative analysis framework

parameters must be the same in the GITFARM framework and the traditional approach to ensure

a fair test.

5.1.2 Algorithm Execution

The second component of the comparative analysis framework is to perform the data mining

task. The GITFARM framework is compared to a traditional approach so both are executed. The

methods and configuration are described here.

The GITFARM framework is compared to a traditional approach, the FuzzyApriori algorithm.

As discussed in Section 2.5.3, FuzzyApriori is an extension to the classical Apriori algorithm

(Agrawal and Srikant, 1994) that uses an exhaustive search to mine fuzzy association rules.

FuzzyApriori is described as traditional because FuzzyApriori follows the two-stage process of

defining linguistic labels and membership functions, and then mining rules exhaustively. The

problem that this thesis explores, defined in Section 1.1, is caused by the two-stage process of

a traditional approach. The GITFARM framework is not considered to be traditional because the

mining stage is not exhaustive and the membership functions are not predefined in the approximate

model.

FuzzyApriori only discovers fuzzy association rules, but not temporal association rules. So
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to mine temporal fuzzy association rules with FuzzyApriori a systematic search of the temporal

space is conducted. For example, partitioning a dataset containing a week of data, according to

the day, would create seven datasets that FuzzyApriori is then applied to. The rules produced

from FuzzyApriori on each dataset partition are then aggregated into a final rule set. Applying

an exhaustive search method to multiple partitions is similar to cyclic association rule mining

demonstrated by Özden et al. (1998). When referring to FuzzyApriori in the experimentation of

this thesis, it should be noted that FuzzyApriori is conducted with a systematic search of a dataset,

and not the entire dataset.

Figure 5.1 illustrates the difference in how the datasets are used by the GITFARM framework

and FuzzyApriori. The GITFARM framework is applied directly on the dataset, but FuzzyApriori

is applied to many smaller subsets of the same dataset that has been partitioned.

Fuzzy support is a measure used in FuzzyApriori to analyse the frequency of a rule.

FuzzyApriori is applied in a systematic search of the temporal space, so FuzzyApriori is referred

to as having temporal fuzzy support because the fuzzy support is relative to one temporal

partition. Minimum temporal fuzzy support extends minimum fuzzy support (see Section 2.5.3)

to incorporate the temporal aspect. Temporal fuzzy support is an identical measure used in both

the GITFARM framework and the systematic search with FuzzyApriori. Minimum confidence is

the same.

Note that partitioning the dataset is considered to be different to step 3 of the KDD Process,

which focuses on data cleaning and preprocessing, because the only purpose of partitioning is to

perform a comparative analysis. Also, partitioning the dataset is specific to the approach of how

the FuzzyApriori algorithm is applied and partitioning the dataset may not be required with other

association rule mining algorithms/approaches.

The GITFARM framework and FuzzyApriori can be substituted for other approaches in the

comparative analysis framework. The GITFARM framework is chosen because it is the focus

of this thesis. The literature review identified algorithms that mine temporal patterns in fuzzy

association rules, but none that have an intra-transactional pattern of an exhibition period. The

literature review did not identify an algorithm that mines fuzzy association rules that have an

exhibition period temporal pattern. A logical alternative is to perform a systematic search of

the temporal space and apply an exhaustive search method on each partition. FuzzyApriori was

chosen as the exhaustive search algorithm because it is based on a seminal algorithm in the field

of association rule mining, i.e., the Apriori algorithm. Alternatives are available that can offer

enhanced performance such as those discussed in the literature review (Section 2.5.3), i.e., Fuzzy

Apriori-T and FFP-growth. However, enhancing algorithm performance is not the focus of the

hypothesis.

5.1.3 Rule Analysis

When both approaches for temporal fuzzy association rule mining have been completed, the

third component of the comparative analysis framework compares the rules mined using both

approaches. The purpose is to interpret the results, which is step 8 of the KDD Process, to support
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the hypothesis. Rules mined with both approaches are compared to identify whether there are new

rules mined with the GITFARM framework that were not mined with FuzzyApriori.

The method for comparing the rules is the same as the method used for IRL in Section 4.3.7.

Each part of a clause is compared between two rules and if all the clauses match then the rules are

the same. For an approximate model, a fuzzy similarity measure compares fuzzy numbers based

on intersection, union and cardinality (Dubois and Prade, 1980, p.24). For a descriptive model,

the lateral displacements of membership functions are compared. Both models apply a threshold

to the measures.

Comparing rules in the descriptive model involves identifying linguistic terms that match.

However, the same method is not possible with the approximate approach because fuzzy numbers

do not have linguistic terms. So to compare fuzzy sets between the approximate and descriptive

models, the descriptive fuzzy set that best matches the approximate fuzzy set is identified. The

matching for an approximate model is done in two stages. First, the descriptive fuzzy sets that

overlap with the approximate fuzzy set are identified. Second, the most similar descriptive fuzzy

set, from the overlapping fuzzy sets, is then identified and this is the descriptive fuzzy set that is

used in the comparison. For example, the fuzzy number approximately 12 forms a clause of a rule

from the GITFARM framework that is to be compared with rules from FuzzyApriori. Figure 5.2

illustrates three fuzzy sets with linguistic terms for the descriptive model, and one fuzzy number

for the approximate model. The fuzzy number, approximately 12, overlaps with the medium and

high fuzzy sets. Of the medium and high fuzzy sets, approximately 12 is more similar to medium.

So the medium fuzzy set is used for making comparisons for a particular clause in a rule. For

remaining clauses in a rule, the process is repeated to identify the most similar fuzzy set.
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Fig. 5.2. Overlapping approximate/descriptive membership functions

A rule from the GITFARM framework that matches a rule from FuzzyApriori is not considered

to be a new rule. In this case, FuzzyApriori is capable of discovering the rule and it is not

considered to be lost. A rule from the GITFARM framework that does not match any rules from

FuzzyApriori is considered to be a new rule. In this case, only the GITFARM framework can

discover the rule. A lost rule is a rule that is only discovered with the GITFARM framework,

i.e., it is new, and satisfies both minimum thresholds. If a temporal fuzzy association rule exists

in a dataset then it is possible for FuzzyApriori to discover it when the minimum temporal fuzzy

support and minimum confidence measures are sufficiently low so the rule would not be discarded.

For existing and new temporal fuzzy association rules the difference in temporal fuzzy support and

confidence measures can be analysed to ascertain the performance of the GITFARM framework.
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5.2 Variables

The design of the comparative analysis framework is intended to facilitate a fair comparison of the

two approaches in order to support the hypothesis. However, the configuration of the comparative

analysis is crucial for a fair comparison. The comparative analysis framework has dependent

variables that affect the comparison. These variables are described here to justify the setup of the

experiments for a fair comparison of the GITFARM framework and FuzzyApriori. Any variables

that were changed in an experiment are stated in the results.

The GITFARM framework and FuzzyApriori were implemented in Java within the Knowledge

Extraction based on Evolutionary Learning (KEEL) tool (Alcalá-Fdez et al., 2009b, 2011). The

experiments were conducted on a personal computer with a 32-bit 2.80GHz dual-core processor

and 4GB RAM.

5.2.1 GITFARM Parameters

All parameters for CHC were determined empirically and are specified here. Experiments were

run with initial parameters and then tuned by hand from observing the results. The population size

was set to 50. The population size is relatively small, but the restart approach is more beneficial

than a larger population (Eshelman, 1991). The divergence rate was set to 0.35, which is the

probability of reinitialising a gene when performing a restart. The α term in PCBLX-α was set

to 1.0, which is the maximum value. Temporal granularity was 100 for the IBM dataset and 3600

seconds the for EPA dataset. The confidence weight w in the fitness function was set to 0.001 for

both approximate and descriptive models with both the EPA dataset and the set of IBM datasets.

The termination criterion for CHC was set to 50000 fitness evaluations. The number of iterations

in IRL was set to 200 for all experiments. The number of rules in IRL assigned to different rule

lengths is stated in the results for different experiments. The temporal granularity was set to the

same values of minimum temporal fuzzy support defined in FuzzyApriori.

5.2.2 FuzzyApriori Parameters

The minimum thresholds for FuzzyApriori were determined empirically and are specified here.

Thresholds for minimum temporal fuzzy support and minimum confidence were set at 0.01 and

0.1 respectively for the FuzzyApriori algorithm with approximate and descriptive models on the

IBM datasets. Thresholds for minimum temporal fuzzy support and minimum confidence were set

at 0.0011 and 0.5 respectively for the FuzzyApriori algorithm with approximate and descriptive

models on the EPA dataset. It was found that rules with low confidence values can have high

temporal fuzzy support so the confidence levels were set relatively low.

5.2.3 Linguistic Labels and Membership Function Parameters

Both approaches used the same linguistic labels and membership functions to ensure a fair

comparison of results. The membership functions are defined from uniform partitions of the

universe of discourse for each item/URL. For example, a medium quantity of pizza has the same
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meaning as a medium quantity of beer, and a short time spent viewing one Web page has the same

meaning as the short time spent viewing another. The lower boundary for the universe of discourse

of items was set to 1. The KEEL dataset format uses a vertical layout (see Figure 2.3(c) on page 28)

where the non presence of an item is marked with a 0 quantity. The FuzzyApriori algorithm in

KEEL is designed for fixed width attributes in a record and so each quantity of items in the dataset

is assigned a membership value. The FuzzyApriori algorithm in KEEL was modified to ignore 0

quantity items in market basket datasets, otherwise a very large number of rules is mined that have

have low quantities of items, i.e., a quantity of 0.

Uniform partitions of the universe of discourse are chosen and linguistic labels that best

describe the partitions are assigned. All methods for defining the linguistic labels and membership

function parameters evaluate the entire dataset, so they suffer from the same problem because

the meaning of the linguistic labels and membership functions can change in temporal periods

of the dataset. In absence of knowledge from a domain expert, uniform partitioning is a suitable

option that also provides high semantic-based interpretability, which are referred to as strong fuzzy

partitions (Gacto et al., 2011).

5.2.4 Size of Temporal Partitions

The GITFARM framework has a temporal granularity that defines the size of a temporal period

in a chromosome. FuzzyApriori uses the the same parameter, temporal granularity, to define the

size of dataset partitions. The sizes of the temporal partitions in both approaches were the same to

ensure a fair comparison. So the temporal granularity parameter in the GITFARM framework was

set to be the same size as the dataset partitions used with FuzzyApriori.

5.2.5 Similarity Measures

Similarity measures of fuzzy sets are used in IRL (see Section 4.3.7) and the comparative analysis

framework (see Section 5.1). IRL compares fuzzy sets using similarity measures to identify

if a rule exists in the final rule set when the GITFARM framework is discovering rules. The

comparative analysis framework compares rules for the purpose of identifying rules discovered

in both approaches, after the data mining approaches have completed. The similarity measures

require correct configuration of similarity thresholds to ensure fair comparisons. The configuration

of the similarity thresholds is important for both IRL and the comparative analysis framework.

In a descriptive model, IRL uses the lateral displacement of the 2-tuple linguistic repre-

sentation to compare membership functions. The lateral displacement threshold determines the

similarity of two membership functions. The lateral displacement threshold is set to 0.5 because

this is half of the full range of lateral displacement in [−0.5, 0.5). Figure 5.3 illustrates two fuzzy

sets that have a difference in lateral displacement of 0.5, which is equal to the lateral displacement

threshold, therefore the fuzzy sets are considered to be different. If the difference in lateral

displacement is less than the lateral displacement threshold 0.5 then the fuzzy sets are considered

to be the same.

The methods for comparing fuzzy sets in the approximate and descriptive models are different
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Fig. 5.3. Example of two 2-tuple membership functions (s1, 0) and (s1, 0.5)

so the thresholds for both are configured so they have the same meaning. The similarity measure

for the two fuzzy sets in Figure 5.3 was calculated to be 0.39 (2 decimal places), which is

equivalent to the difference in lateral displacement of 0.5. So the similarity threshold is set to

0.39 in the approximate model to ensure the similarity measures are standardised between the

approximate and descriptive models.

The configurations of the similarity threshold and the lateral displacement threshold are

used in IRL for the approximate and the descriptive models respectively. The comparative

analysis framework also uses these thresholds when comparing rules between the GITFARM

framework and FuzzyApriori. The configurations must also be considered in the comparative

analysis framework to ensure consistency in experimentation. So, to ensure consistency in

the experimentation, both threshold values are set to be the same in the comparative analysis

framework as they are in IRL.

In practice, the values of the similarity and lateral displacement threshold would be adjusted

according to the domain application and domain expert. More diversity in the mined rules can

be created with smaller fuzzy similarity thresholds or larger lateral displacement thresholds.

Conversely, more similarity in the mined rules can be created by larger fuzzy similarity thresholds

and smaller lateral displacement thresholds. However, the purpose of the threshold values in this

thesis is to support the hypothesis.

5.2.6 Width

As described in Section 4.3.1, width refers to the distance between parameters a and c of a fuzzy

number in the approximate model. The width of a fuzzy number is set to be the same as the

corresponding width of membership functions in a descriptive model. Width must be configured

in the approximate model to have the same width in the descriptive model. This is for the same

reason as ensuring the similarity thresholds are the same, as previously discussed in Section 5.2.5.

Consistency of the widths ensures a fair experiment when varying the number of membership

functions, which is to be discussed more in Section 6.3.

It is noted that the width of a fuzzy number in the approximate model is the maximum possible

width. Soft constrained learning means that the widths of fuzzy numbers are variable, but with

a maximum width. However, the fuzzy sets are fixed in the descriptive model, so the size of the

fuzzy sets can be different. It is possible to fix the width of fuzzy numbers in the approximate

model and not use soft constrained learning. However, this would reduce the flexibility that is
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intended for the discovery of intra-transaction temporal patterns in fuzzy association rules, which

has been discussed in Section 4.2.1.

5.2.7 Rule Lengths in IRL

A flexible configuration of the rule lengths produced from the GITFARM framework allows a

more fair comparison. The systematic search with FuzzyApriori is run first and the rule lengths

are analysed. The number of rules with rule lengths is configured in the GITFARM framework

to approximately match those discovered with the systematic search with FuzzyApriori. Such

a configuration ensures both approaches have the same proportion of rules with the same rule

lengths.

5.3 Discussion

An experimental methodology, called the comparative analysis framework, has been presented.

The comparative analysis framework has been created for verifying the hypothesis. It consists

of three stages. The first stage defines the models and parameters for both of the data mining

approaches, i.e., the linguistic terms and membership function parameters. The second stage

performs the action of data mining. The traditional approach performs a systematic search of the

temporal space and applies an exhaustive search (FuzzyApriori) to each temporal partition. The

third stage compares the results of each data mining approach to identify rules that are common

between both results and rules that are new.

The comparative analysis framework and the proposed solution, the GITFARM framework,

have multiple variables. Correct configuration of these variables is crucial for running a fair

experiment to support the hypothesis.
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Chapter 6

Learning Lost Temporal Fuzzy Association Rules

The GITFARM framework is proposed as a solution to the previously unrecognised problem

defined in this thesis. A comparative analysis framework has been created specifically to test

the hypothesis. Preliminary experiments were run to demonstrate the GITFARM framework is

capable of evolving rules in a large search space. Both approaches were run to demonstrate the

operation of both the GITFARM framework and traditional approach, a systematic search with

FuzzyApriori. The comparative analysis framework was then utilised to verify the hypothesis.

6.1 Preliminary Results

Before applying the comparative analysis framework, several experiments were conducted to

analyse the efficacy of the GITFARM framework. It is important to understand whether the

GITFARM framework is capable of learning temporal fuzzy association rules before utilising

the comparative analysis framework. The first sets of results introduce the GITFARM framework

to demonstrate how the GA evolves rules. Both the GITFARM framework and systematic search

with FuzzyApriori are then run to demonstrate how the GITFARM framework produces multiple

rules. Results are then presented to support the hypothesis of losing rules.

All datasets used in the experiments were either the EPA dataset, or produced by the IBM

Quest synthetic dataset generator. The IBM Quest synthetic dataset generator was used to generate

a dataset with 10000 transactions, 1000 items and a maximum quantitative value of 20. Other

parameters were the default values, as defined in Table 3.1 on page 50. The EPA dataset was

preprocessed with a 10 minute time window for the maximal forward reference (see Section 2.7.1).

6.1.1 Evolving Rules

To analyse the efficacy of the GITFARM framework in mining temporal fuzzy association rules,

only the GITFARM framework was run. IRL was configured to mine 7 rules where each rule had

a different length ranging from 2 to 8. The GITFARM framework was run on both datasets using

both the approximate and descriptive models. So a total of four model-dataset experiments were

conducted.

Figure 6.1 shows the best fitness at each generation whilst the GITFARM framework is

evolving a rule. Each point represents the best (highest) fitness in a generation. Each sub-
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(a) Descriptive model with the IBM dataset
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(b) Descriptive model with the EPA dataset
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(c) Approximate model with the EPA dataset

Fig. 6.1. Best fitness during one run of the GITFARM framework with different rule lengths (k) for approximate and
descriptive models with EPA dataset and IBM dataset

figure contains the best fitness values for a dataset-model experiment. For example, Figure 6.1(a)

illustrates evolution with the a descriptive model in the GITFARM framework on an IBM dataset.
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(d) Approximate model with the IBM dataset

Fig. 6.1. Best fitness during one run of the GITFARM framework with different rule lengths (k) for approximate and
descriptive models with EPA dataset and IBM dataset (cont.)

Each set of coloured points in a figure represents one run of CHC with a rule length set to k. There

were seven different rule lengths so there are seven sets of coloured points.

Each sub-figure in Figure 6.1 shows that the first generation of CHC starts with a low fitness

that increases in subsequent generations. Figure 6.1 demonstrates how the fitness of the best rule in

each generation evolves so that its fitness increases. In early generations the best fitness increases

quickly, in later generations the best fitness changes less frequently. This phenomenon is referred

to as convergence and it occurs when the solutions in a population of a GA move towards the same

solution, or when a near-optimal solution is discovered. It is also possible that the GA has become

stuck in a local optima. It is not possible to identify true optimal solutions because this requires an

exhaustive search of the dataset. The purpose of using a metaheuristic algorithm, such as a GA,

is to search a very large search space that is computationally infeasible with a traditional search

method such as FuzzyApriori.

It can be observed in Figure 6.1 that there are multiple occurrences of large increases in best

fitness over a small number of generations. For example, the rules with length k = 2 increase

near generation 300 in Figure 6.1(a) and near generation 550 in Figure 6.1(d). A large increase in

fitness over a small number of generations is likely to be caused by a change in nominal data (e.g.,

item, linguistic label) rather than an interval data type (e.g., membership function parameters or

lateral displacement).

It can be observed in Figure 6.1 that many iterations in IRL have different numbers of

generations. A restart is performed at the end of a generation and before the next generation. As a

result of a restart, the population changes and so all individuals in the population are evaluated. It

is the number of restart operations that cause the number of generations to differ because CHC’s

termination criteria is the number of evaluations, and not the number of generations. Fewer

generations in a run of CHC shows that CHC has converged more frequently than a run of CHC

that has produced more generations. Each run of CHC has fewer generations when the rule size

increases. This behaviour can be observed in each model-dataset experiment. This is for only one
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run of each model-dataset experiment but a trend that can be observed amongst all model-dataset

experiments. Another trend amongst the sub-figures of Figure 6.1 is that smaller rules produce

higher fitness values than larger rules.

Figure 6.1 illustrates that the GITFARM framework is capable of evolving temporal fuzzy

association rules. One run of the GITFARM framework was executed to demonstrate how the

framework functions. This has provided some early insight into the performance of the GITFARM

framework.

6.1.2 Evolving Multiple Rules

The next experiment ran the GITFARM framework and the systematic search with FuzzyApriori

to demonstrate how both approaches operate. An understanding of how the GITFARM framework

operates is required before using the comparative analysis framework, which follows this

subsection.

A systematic search with FuzzyApriori was run first and the results were aggregated into one

final rule set. This was applied on both the IBM and EPA datasets. Table 6.1 shows the percentage

of total rules that have the specified rule lengths from the systematic search with FuzzyApriori.

The percentages of rule values were used to configure the GITFARM framework by adjusting the

percentages to a granularity of 0.5%. A granularity of 0.5% was chosen because the GITFARM

framework was configured to produce 200 rules, so the smallest granularity that represents one

rule is 0.5%. It is ensured that the sum of percentages is 100%.

Table 6.1. Percentage of rules with assigned rule lengths for IRL in the GITFARM framework

(a) EPA dataset with both approximate and descriptive
models

Rule GITFARM Systematic search
length framework with FuzzyApriori

2 23.00 23.23
3 32.50 32.26
4 24.00 24.00
5 13.00 13.07
6 5.50 5.52
7 1.50 1.66
8 0.50 0.23

(b) IBM dataset with both approximate and descriptive
models

Rule GITFARM Systematic search
length framework with FuzzyApriori

2 78.50 78.56
3 16.50 16.73
4 4.00 3.90
5 0.50 0.73
6 0.50 0.05
7 0.00 0.00
8 0.00 0.00

The number of rules and arithmetic means of both rule measures are summarised for each

model-dataset experiment in Table 6.2. There were more rules produced, in each model-dataset

experiment, from the systematic search with FuzzyApriori. The number of rules is not predefined

in the exhaustive search method of FuzzyApriori, but the GITFARM framework restricts the

number of rules because it uses IRL. For all model-dataset experiments, the arithmetic mean

of temporal fuzzy support was higher with the GITFARM framework. For experiments on the

IBM dataset, the arithmetic mean of confidence was higher with the GITFARM framework.

For experiments on the EPA dataset, the arithmetic mean of confidence was higher with the
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systematic search with FuzzyApriori. These model-dataset experiments are only conducted once

to demonstrate the number of rules and rule measures of each approach.

Table 6.2. Results of approximate/descriptive GITFARM and FuzzyApriori (EPA dataset: 0.0011 minimum temporal
fuzzy support and 0.5 confidence. IBM dataset: 0.01 minimum temporal fuzzy support and 0.1 confidence)

(a) Approximate model with the EPA dataset

Measure GITFARM FuzzyApriori

Number of Rules 200 3366
Arithmetic mean of temporal fuzzy support (4 d.p.) 0.0026 0.0015
Arithmetic mean of confidence (4 d.p.) 0.7854 0.8964

(b) Approximate model with an IBM dataset

Measure GITFARM FuzzyApriori

Number of Rules 200 10234
Arithmetic mean of temporal fuzzy support (4 d.p.) 0.0135 0.0108
Arithmetic mean of confidence (4 d.p.) 0.9538 0.7616

(c) Descriptive model with the EPA dataset

Measure GITFARM FuzzyApriori

Number of Rules 200 3366
Arithmetic mean of temporal fuzzy support (4 d.p.) 0.0020 0.0015
Arithmetic mean of confidence (4 d.p.) 0.7783 0.8964

(d) Descriptive model with an IBM dataset

Measure GITFARM FuzzyApriori

Number of Rules 200 10234
Arithmetic mean of temporal fuzzy support (4 d.p.) 0.0154 0.0108
Arithmetic mean of confidence (4 d.p.) 0.8616 0.7616

Figure 6.2 contains box plots of both rule measures for both the GITFARM framework and the

systematic search with FuzzyApriori for each model-dataset experiment. The box plots illustrate

the distributions of rule measures. The minimum value of a rule produced from the systematic

search with FuzzyApriori is limited to FuzzyApriori’s minimum thresholds. It is not possible for

FuzzyApriori to produce rules that are smaller than the minimum thresholds. The GITFARM

framework does not have this restriction and so rules with lower temporal fuzzy support and

confidence were mined.

The maximum and arithmetic mean temporal fuzzy support was higher in the GITFARM

framework for all model-dataset experiments. This demonstrates that, in these experiments,

the GITFARM framework has produced higher quality rules with respect to temporal fuzzy

support. For confidence, the maximum value was the same in all model-dataset experiments,

but the arithmetic mean was higher with the IBM dataset, which has previously been shown in

Table 6.2. It can be observed that the dispersion of temporal fuzzy support was larger for the

rules produced from the GITFARM framework for all model-dataset experiments. The dispersion
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Fig. 6.2. Box plots of temporal fuzzy support and confidence for approximate/descriptive models of the GITFARM
framework and FuzzyApriori (FA) for one run with different datasets
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of confidence was also larger for the rules produced from the GITFARM framework for the

EPA dataset. Furthermore, the arithmetic mean of confidence for the rules produced from the

GITFARM framework was lower for the EPA dataset. A lower arithmetic mean of confidence

on the EPA dataset may suggest the GITFARM framework has weaker performance on the EPA

dataset with respect to confidence. The opposite is observed with the IBM dataset where the

dispersion of confidence is smaller and the arithmetic mean of confidence is higher.

6.2 Comparative Analysis

The GITFARM framework has been presented and its operation has been demonstrated in the

previous section. The GITFARM framework learns fuzzy association rules that have an intra-

transaction temporal pattern. The purpose of the GITFARM framework is to discover rules that

a traditional approach (FuzzyApriori) cannot. The previous section demonstrated preliminary

results with the approximate and descriptive models of the GITFARM framework on two datasets.

It is now understood that the GITFARM framework is capable of evolving rules. Experiments in

this section now focus on the hypothesis, which was defined in Section 1.2.

All runs of the GITFARM framework were repeated 30 times for all experiments. The same

two datasets used in the previous section were used in these experiments.

The previous model-dataset experiments, from Section 6.1.1, were used again. There were

four sets of experiments with different combinations of dataset and model. The percentage of

rules with assigned rule lengths for IRL in the GITFARM framework were assigned the same

values as in the previous section, i.e., Table 6.1.

The rules were analysed in the comparative analysis framework and are presented in Table 6.3.

The percentages refers to the ratio of rules discovered with the GITFARM framework, i.e., the

percentage of 200 rules. The terms describing the rows are:

GITFARM and FA The percentage of rules from the GITFARM framework that matched the

rules discovered with FuzzyApriori. These are considered to be existing rules.

GITFARM only The percentage of rules from the GITFARM framework that did not match the

rules discovered with FuzzyApriori. These are considered to be new rules, or rules that have

been lost with FuzzyApriori.

Rules discovered by both approaches are discussed first, i.e., percentages described as

GITFARM and FA. The change in temporal fuzzy support and confidence for those rules was

analysed to determine increases, decreases and no changes. By analysing the change in values for

both metrics more information can be deduced about the behaviour of the GITFARM framework.

Rules are said to be improved by the GITFARM framework when two conditions are met: a) rule

discovered with both methods; and b) the change in metric is an increase. So, 39.13% and 33.62%

of rules had increases in temporal fuzzy support and confidence respectively, for an approximate

model with the EPA dataset. 36.60% and 31.40% of rules had increases in temporal fuzzy support

and confidence respectively, for an approximate model with the IBM dataset. 46.03% and 32.75%
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of rules had increases in temporal fuzzy support and confidence respectively, for a descriptive

model with the EPA dataset. 56.12% and 45.78% of rules had increases in temporal fuzzy support

and confidence respectively, for a descriptive model with the IBM dataset. It can be observed that

the descriptive approach had more improved rules with both datasets except the confidence with

the EPA dataset. A possible reason for this is the search space size is smaller with a descriptive

model because the membership function parameters are represented with only one real-value

parameter, whilst there are three real-value parameters in the approximate model.

It has been demonstrated how the GITFARM framework produces rules that are an

improvement over the rules produced with FuzzyApriori. The hypothesis of this thesis focuses

on exploring a method for discovering rules that a traditional approach cannot. Table 6.3 also

presents the total number of rules that were only discovered with the GITFARM framework. There

were 54.87% of rules only discovered with the GITFARM framework for an approximate model

with the EPA dataset, 61.40% with the approximate and IBM dataset, 53.40% with the descriptive

dataset and 40.53% with the descriptive and IBM dataset. These figures show rules that were only

discovered with the GITFARM framework. For example, 54.87% of 200 rules is 109.74 rules,

which is the arithmetic mean of 30 runs. Further analysis is required to identify why these rules

are not present in the results of FuzzyApriori, i.e., why the rules were lost.

An analysis of why the rules are only discovered with the GITFARM framework, and not

FuzzyApriori, is presented in Table 6.4. Table 6.4 provides a more detailed analysis of the data

from Table 6.3. For example, Table 6.3(a) shows a total of 54.87% rules were only discovered

with the GITFARM framework, Table 6.4(a) analyses those 54.87% of rules to discover why they

were lost for that particular model-dataset experiment. The terms describing the columns are:

Discarded by threshold(s) Rules not discovered with FuzzyApriori because of one or more

minimum thresholds.

Above threshold(s) Rules not discovered with FuzzyApriori that are now greater than or equal

to both minimum thresholds. These are referred to as lost rules.

Rules were discarded with FuzzyApriori because rules were below the minimum temporal

fuzzy support threshold, the minimum confidence threshold, or both minimum thresholds.

The traditional approach discarded rules, but when the GITFARM framework discovers those

discarded rules, they are referred to as new rules. When the new rules are greater than or equal to

the minimum thresholds, they are referred to as lost rules.

The largest cause of rules being discarded by FuzzyApriori was the temporal fuzzy support

threshold in all model-dataset experiments. This observation could suggest that minimum

temporal fuzzy support is an influential factor in discovering rules. Temporal fuzzy support and

confidence were factors in losing rules with the EPA dataset. Temporal fuzzy support was a factor

in losing rules with the IBM dataset and confidence only lost a small percentage (0.01%) for the

descriptive model. More lost rules were discovered with the IBM dataset than the EPA dataset.

Having analysed why rules were lost, it is important to identify the GITFARM framework’s

ability in discovering rules that are now greater than or equal to the minimum thresholds. This

96



Table 6.3. Analysis of temporal fuzzy support and confidence for rules discovered with the approximate and descriptive
models of GITFARM framework and the systematic search with FuzzyApriori (FA)

(a) Temporal fuzzy support and confidence for approximate model and EPA dataset

Arithmetic mean of change in Arithmetic mean of change in
Temporal Fuzzy Support (%) Confidence (%)

-ve 0 +ve Total -ve 0 +ve Total

GITFARM and FA 6.00 0.00 39.13 45.13 5.47 6.05 33.62 45.13
GITFARM only 1.35 4.80 48.72 54.87 2.65 36.63 15.58 54.87

(b) Temporal fuzzy support and confidence for approximate model and IBM dataset

Arithmetic mean of change in Arithmetic mean of change in
Temporal Fuzzy Support (%) Confidence (%)

-ve 0 +ve Total -ve 0 +ve Total

GITFARM and FA 2.00 0.00 36.60 38.60 4.00 3.20 31.40 38.60
GITFARM only 0.00 0.00 61.40 61.40 5.30 24.30 31.80 61.40

(c) Temporal fuzzy support and confidence for descriptive model and EPA dataset

Arithmetic mean of change in Arithmetic mean of change in
Temporal Fuzzy Support (%) Confidence (%)

-ve 0 +ve Total -ve 0 +ve Total

GITFARM and FA 0.57 0.00 46.03 46.60 6.97 6.88 32.75 46.60
GITFARM only 0.55 0.23 52.62 53.40 4.00 30.15 19.25 53.40

(d) Temporal fuzzy support and confidence for descriptive model and IBM dataset

Arithmetic mean of change in Arithmetic mean of change in
Temporal Fuzzy Support (%) Confidence (%)

-ve 0 +ve Total -ve 0 +ve Total

GITFARM and FA 0.23 3.12 56.12 59.47 9.82 3.87 45.78 59.47
GITFARM only 0.00 0.00 40.53 40.53 7.97 15.73 16.83 40.53

will support the verification of the hypothesis. Since the thresholds are determined by the user

as levels of significance for rules, only rules that have evolved to be greater than or equal to the

minimum temporal fuzzy support threshold are of interest. Table 6.4 shows the percentage of rules

discovered only by the GITFARM framework that are now greater than or equal to the minimum

thresholds. It can be observed that all model-dataset experiments produced rules with measures

that are greater than or equal to one or both minimum thresholds. It is these rules, which are now

greater than or equal to the minimum thresholds, that are considered to be the lost rules that are

only discovered with the GITFARM framework. Without the GITFARM framework, these rules
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Table 6.4. Rules discovered with the approximate and descriptive models of GITFARM framework that were lost and
are now greater than or equal to the threshold(s)The EPA dataset was preprocessed with a 10 minute time window
for forward reference model. The IBM dataset was generated with 10000 transactions, 1000 items and a maximum
quantitative value of 20.

(a) Approximate model and EPA dataset

Discarded by Greater than or equal to
threshold(s) (%) threshold(s) (%)

Below min. temporal fuzzy support only 43.07 3.35
Below min. confidence only 6.53 1.05
Below both (greater than or equal to both) 5.27 0.05

Total 54.87 4.45

(b) Approximate model and IBM dataset

Discarded by Greater than or equal to
threshold(s) (%) threshold(s) (%)

Below min. temporal fuzzy support only 61.40 11.65
Below min. confidence only 0.00 0.00
Below both (greater than or equal to both) 0.00 0.00

Total 61.40 11.65

(c) Descriptive model and EPA dataset

Discarded by Greater than or equal to
threshold(s) (%) threshold(s) (%)

Below min. temporal fuzzy support only 42.02 6.03
Below min. confidence only 8.60 2.07
Below both (greater than or equal to both) 2.78 1.98

Total 53.40 10.08

(d) Descriptive model and IBM dataset

Discarded by Greater than or equal to
threshold(s) (%) threshold(s) (%)

Below min. temporal fuzzy support only 40.52 17.67
Below min. confidence only 0.00 0.00
Below both (greater than or equal to both) 0.01 0.01

Total 40.53 17.68

would not have been discovered. However, as previously stated, lowering the minimum threshold

values would allow FuzzyApriori to discover these rules, but at the cost of discovering many more

rules because of combinatorial explosion.

In Table 6.4, it can be observed that when rules were below one or both thresholds, a
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proportion of those rules were improved so they are greater than or equal to the threshold. This

is observed for all model-dataset experiments. For example, for the approximate model and the

EPA dataset (Table 6.4), 43.07% were discarded by FuzzyApriori and 3.35% were discovered with

the GITFARM framework. Note that both 43.07% and 3.35% are both percentages of 200 rules.

Table 6.4 does not show rules that were below one threshold and greater than or equal to another

threshold because rules must be greater than or equal to both thresholds.

Results have been presented and analysed to ascertain how the GITFARM framework

discovers new rules. Some of the new rules are considered to have been lost by FuzzyApriori. A

single rule from each model-dataset experiment is presented below for a new rule. All values for

membership function parameters and lateral displacement are rounded to two significant figures.

Note that each rule is now greater than or equal to both minimum thresholds. Each rule was taken

from the results of the first run of 30 runs.

Endpoints: 30th August 1995 14:00:00 EDT – 30th August 1995 15:00:00 EDT

Rule: IF page view time of /docs/Welcome is approximately 15.89 seconds

Rule: (membership function parameters: 6.16, 15.89, 243.20)

Rule: THEN page view time of /Rules.html is approximately 6.05 seconds

Rule: (membership function parameters: -209.10, 6.05, 292.97)

Temporal Fuzzy Support: 0.0017

Confidence: 1.0

Approximate model and IBM dataset:

Endpoints: 7700–7800

Rule: IF quantity of Item467 is approximately 1.40

Rule: (membership function parameters: -7.81, 1.40, 10.89)

Rule: THEN quantity of Item540 is approximately 16.32

Rule: (membership function parameters: 7.52, 16.32, 20.65)

Temporal Fuzzy Support: 0.019

Confidence: 1.0

Descriptive model and EPA dataset:

Endpoints: 30th August 1995 14:00:00 EDT – 30th August 1995 15:00:00 EDT

Rule: IF page view time of /EPA-AIR/ is (medium, -0.49)

Rule: AND page view time of /docs/EPA-AIR is (medium, -0.49)

Rule: THEN page view time of /Rules.html is (low, 0.30)

Temporal Fuzzy Support: 0.0018

Confidence: 1.0

Descriptive model and IBM dataset:

Endpoints: 5200–5300

Rule: IF quantity of Item64 is (medium, 0.28)

Rule: THEN quantity of Item368 is (high, -0.50)
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Temporal Fuzzy Support: 0.017

Confidence: 0.97

It has been demonstrated how the GITFARM framework can discover rules that a traditional

approach (FuzzyApriori) cannot. Different models of the GITFARM framework have been applied

on two different datasets.

6.3 Varying the Number of Membership Functions

Creating more membership functions can provide a finer level of granularity for covering the

universe of discourse. If rules are lost because the patterns occur at the intersection of membership

functions then it could be perceived as logical to create more membership functions to cover

those intersections. Creating more membership functions is a possible solution to the problem

that this thesis tackles. However, increasing the number of linguistic labels used to describe the

membership functions can decrease the interpretability of rules (Ishibuchi and Nojima, 2009).

Experiments were conducted to assess how the number of membership functions affects the

number of temporal fuzzy associations rules that have previously been shown to be lost in this

thesis. The comparative analysis framework is utilised again.

Experiments were conducted on the same datasets used in Section 6.2, there are four model-

dataset experiments that combine approximate/descriptive models and the IBM/EPA dataset. The

approximate models of the GITFARM framework use fuzzy numbers without linguistic terms.

Increasing the number of membership functions is not applicable to the approximate model of the

GITFARM framework. The number of membership functions is relevant to FuzzyApriori because

linguistic terms are used.

The FuzzyApriori approach was run with different numbers of membership functions. The

number of rules discovered is presented in Table 6.5. The configuration for the number of

rules with different rule lengths was determined from the results of FuzzyApriori and set to the

percentage values in Table 6.6. The width of membership functions (distance between parameters

a and c in a triangular membership function) in an approximate model is important for a fair

comparison with FuzzyApriori, which has been discussed in Section 5.2.6. The width parameter

in the approximate model is configured to be the same as the width of the uniform membership

functions in FuzzyApriori. To illustrate this, Table 6.7 presents the width parameters used for an

approximate model of the GITFARM framework with both the EPA and an IBM dataset.

Figure 6.3 presents the results of comparing the rules from both approaches. Each bar

represents a percentage of rules discovered with the GITFARM set to 200 iterations of IRL. The

terms describing the keys are the same as those used previously in Section 6.2 on page 95.

It can be observed in Figure 6.3 that the GITFARM framework discovers more rules, and

FuzzyApriori discovers fewer rules, as the number of membership functions increases for all

model-dataset experiments. As the number of membership functions increases with the IBM

datasets, the number of rules only discovered with the GITFARM framework increases.

Figure 6.4 shows the percentage of rules now greater than or equal to the temporal fuzzy
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Table 6.5. Number of rules found in FuzzyApriori when using different numbers of membership functions

(a) The EPA dataset

Number of membership functions Number of rules

3 3366
5 2591
7 2248
9 1964

(b) The IBM dataset

Number of membership functions Number of rules

3 10234
5 7605
7 7102
9 6780

Table 6.6. Percentage of rules with assigned rule lengths for IRL with different numbers of membership functions

(a) The EPA dataset

Number of membership functions

Rule length 3 5 7 9

2 23.0 24.0 23.5 24.0
3 32.5 31.0 30.0 28.0
4 24.0 22.5 22.0 21.0
5 13.0 13.5 14.0 15.0
6 5.5 6.5 7.5 8.5
7 1.5 2.0 2.5 3.0
8 0.5 0.5 0.5 0.5

(b) The IBM dataset

Number of membership functions

Rule length 3 5 7 9

2 78.5 72.5 71.0 69.5
3 16.5 21.0 22.5 23.0
4 4.0 5.0 5.5 6.0
5 0.5 1.0 0.5 1.0
6 0.5 0.5 0.5 0.5
7 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0

support threshold. The results in Figure 6.4 are a subset of the rules only discovered with the

GITFARM framework. The total number of rules now greater than or equal to the minimum

thresholds increases with the number of membership functions in the approximate model and
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Table 6.7. Number of rules found in FuzzyApriori when using different numbers of membership functions

(a) The EPA dataset

Number of membership functions Width parameter

3 575.00
5 287.50
7 191.67
9 143.75

(b) The IBM dataset

Number of membership functions Width parameter

3 19.00
5 9.50
7 6.33
9 4.75

EPA dataset. This observation suggests that increasing the number of membership functions

does not prevent fewer rules from being lost. A possible reason for this is more membership

functions produce more intersections where some patterns may exist. Increasing the number of

membership functions could be exasperating the problem. This observation is only applicable

to the approximate model with the EPA dataset. The same dataset with the descriptive model

followed the same behaviour for 3, 5 and 7 membership functions, but the total number then

decreased for 9 membership functions.

In Figure 6.4, the opposite trend is observed in the experiments with the IBM datasets. The

total number of rules now greater than or equal to the threshold decreases as the number of

membership functions increases with the IBM datasets. This observation suggests that increasing

the number of membership functions creates greater coverage across the universe of discourse to

prevent fewer rules from being lost with the IBM datasets, but not all. These observations are the

opposite of each other when the only variable changed in the experiments is the dataset. It can

be observed that changing the number of membership functions on different datasets can either

increase or decrease the number of new rules discovered with the GITFARM framework.

The execution time of all model-dataset experiments was analysed in Table 6.5. There was

little variation in the execution time when the number of membership functions was varied for

the approximate model with the IBM dataset and both models with the EPA dataset. There was

a comparably larger difference in execution time when 3 and 5 membership functions were used

with the approximate model with the EPA dataset.
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(a) Approximate model with EPA dataset
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(b) Approximate model with IBM dataset
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(c) Descriptive model with EPA dataset
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(d) Descriptive model with IBM dataset

Fig. 6.3. Percentage of rules found with only the GITFARM framework and both approaches with different numbers
of membership functions

103



3 5 7 9
0

5

10

15

20

Number of membership functions

R
ul

es
fr

om
G

IT
FA

R
M

(%
)

Below min. temporal fuzzy support
Below min. confidence
Below both (greater/equal to both)
Total
Note, some points overlap

(a) Approximate model with EPA dataset

3 5 7 9
0

5

10

15

20

Number of membership functions
R

ul
es

fr
om

G
IT

FA
R

M
(%

)

Below min. temporal fuzzy support
Below min. confidence
Below both (greater/equal to both)
Total
Note, some points overlap

(b) Approximate model with IBM dataset
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(c) Descriptive model with EPA dataset
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(d) Descriptive model with IBM dataset

Fig. 6.4. Rules not discovered with FuzzyApriori and have a final temporal fuzzy support greater than or equal to the
minimum threshold with datasets with different numbers of membership functions
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(a) Approximate model with EPA dataset
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(b) Approximate model with IBM dataset
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(c) Descriptive model with EPA dataset
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(d) Descriptive model with IBM dataset

Fig. 6.5. Arithmetic mean of execution times of IRL with different numbers of membership functions
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6.4 Analysis of Number of Transactions

To assess the scalability of the GITFARM framework, the number of transactions in the synthetic

datasets was varied. Previous experiments were limited to 2687 transactions in the EPA dataset

and 10000 transactions with the synthetic dataset. In these experiments, generation of the synthetic

dataset was varied to produce datasets with 10000, 30000, 50000, 70000 and 90000 transactions.

The traditional approach, FuzzyApriori, was run on the five synthetic datasets that have

different numbers of transactions. Table 6.8 shows the number of rules in IRL assigned to

different rule lengths for each dataset. Table 6.9 shows the number of rules discovered with

the FuzzyApriori approach. Two sets of experiments were conducted: different sized synthetic

datasets with the approximate model of GITFARM framework and different sized synthetic

datasets with the descriptive model of GITFARM framework.

Table 6.8. Percentage of rules with assigned rule lengths for IRL on datasets with varying numbers of transactions

Number of transactions

Rule length 10000 30000 50000 70000 90000

2 78.5 80.0 79.5 79.5 80.0
3 16.5 16.0 16.0 16.0 15.5
4 4.0 3.0 3.5 3.5 3.5
5 0.5 0.5 0.5 0.5 0.5
6 0.5 0.5 0.5 0.5 0.5

Table 6.9. Number of rules discovered in FuzzyApriori

Number of transactions in dataset Number of rules

10000 10234
30000 30492
50000 50875
70000 71182
90000 91135

It can be observed from Figure 6.6 that the number of rules only discovered with the

GITFARM framework increases with the number of transactions for the descriptive model. The

same observation cannot be made for the approximate model; there is no increase in the number of

rules that correlates with the number of transactions. This means that the GITFARM framework

is capable of discovering a larger proportion of rules with a descriptive model when the number of

transactions increase, but the same proportion of rules for the approximate model.

New rules from the GITFARM framework, which are now greater than or equal to the

minimum thresholds, are presented in Figure 6.7. It can be observed that both the approximate and

descriptive models have similar behaviour when increasing the number of transactions. The total

number of rules discovered that are now greater than or equal to the minimum thresholds does

not change when the number of transactions increase. This is the same observation made for the

proportion of rules only discovered with the GITFARM framework for the approximate model,
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(a) Approximate model and IBM datasets
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(b) Descriptive model and IBM datasets

Fig. 6.6. Arithmetic mean of percentage of rules discovered with the GITFARM framework and FuzzyApriori, and
GITFARM framework for datasets with different numbers of transactions

i.e., Figure 6.6(a). However, a trend was observed in the proportion of rules only discovered

with the GITFARM framework for the descriptive model, i.e., Figure 6.6(b). Despite there

being an apparent relationship between the number of transactions and the percentage of rules

only discovered with the GITFARM framework in Figure 6.6(b), there does not appear to be a

relationship for rules that are now greater than or equal to the minimum temporal fuzzy support

threshold in Figure 6.7(b).
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(a) Approximate model and IBM datasets
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(b) Descriptive model and IBM datasets

Fig. 6.7. Arithmetic mean of rules not discovered in FuzzyApriori and now have measures greater than or equal to one
or both minimum thresholds for datasets with different numbers of transactions

Figure 6.8 illustrates that the execution time appears to scale linearly with the number of
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transactions in a dataset for both approximate and descriptive models.
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(a) Approximate model and IBM datasets
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(b) Descriptive model and IBM datasets

Fig. 6.8. Arithmetic mean of execution times of IRL on datasets with different numbers of transactions

6.5 Analysis of Number of Items

To assess the scalability of the GITFARM framework, the number of transactions was previously

varied in the IBM datasets. The number of items in the IBM datasets was then varied, whilst the

number of transactions remained the same. Previous experiments were limited to 5146 items in

the EPA dataset and 1000 items with the IBM dataset. In these experiments, generation of the

IBM dataset was varied to produce datasets with 1000, 2000, 3000, 4000 and 5000 items.

The methodology for these experiments is identical to that of varying the number of

transactions, in Section 6.4, with the exception that only the number of items are varied. The

traditional approach, using FuzzyApriori, was run on the five IBM datasets that have different

numbers of items. Table 6.10 shows the number of rules in IRL assigned to different rule lengths

for each dataset. Table 6.11 shows the number of rules discovered with the FuzzyApriori approach.

Table 6.10. Percentage of rules with assigned rule lengths for IRL with varying number of items in datasets

Number of items

Rule length 1000 2000 3000 4000 5000

2 78.5 74.0 72.5 75.0 72.0
3 16.5 21.0 22.5 21.5 23.0
4 4.0 4.5 4.0 3.0 4.5
5 0.5 0.5 0.5 0.5 0.5
6 0.5 0.0 0.5 0.0 0.0

It can be observed from Figure 6.9 that the number of rules only discovered with GITFARM

framework increases with the number of items in the dataset for both models. This observation

appears to have a similar relationship to varying the number of transactions in the dataset for a

descriptive model (i.e., Figure 6.6(b)). The approximate model in Figure 6.9 produces proportions

108



Table 6.11. Number of rules found in FuzzyApriori with varying number of items in datasets

Number of items Number of rules

1000 10234
2000 7342
3000 6849
4000 6261
5000 6387

of rules only discovered by the GITFARM framework that are smaller than the descriptive model.

This observation suggests that the approximate model performs better in these experiments.
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(a) Approximate model and IBM datasets
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Fig. 6.9. Percentage of rules found with only the GITFARM framework and both approaches with different numbers
of items

New rules from the GITFARM framework, which are now greater than or equal to the

minimum thresholds, are presented in Figure 6.10. It can be observed that the total number of

rules discovered that are now greater than or equal to the minimum thresholds increases for the

approximate model as the number of items increases. For the descriptive model, a decrease is

observed, with the exception of the dataset with 2000 items.

From observing the arithmetic mean of execution times in Figure 6.11 there is a relationship

between execution time and the number of items in a dataset for the approximate model. For

the descriptive model, there is not such a clear relationship. However, the arithmetic mean of

execution times for datasets with 4000 and 5000 items are higher than those for the other datasets

with 1000, 2000 and 3000 items.
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(a) Approximate model and IBM datasets
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(b) Descriptive model and IBM datasets

Fig. 6.10. Rules not discovered in FuzzyApriori and have a final temporal fuzzy support greater than or equal to the
minimum threshold for datasets with varying numbers of items
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(a) Approximate model and IBM datasets
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(b) Descriptive model and IBM datasets

Fig. 6.11. Arithmetic mean of execution times of IRL with different numbers of items in datasets

6.6 Discussion

The GITFARM framework was created to mine intra-transaction temporal fuzzy association rules.

Results have been presented to support the research hypothesis defined in Section 1.2. The

research hypothesis seeks to find a GA-based approach for discovering intra-transaction temporal

fuzzy association rules that a traditional approach cannot.

Throughout all experiments, two datasets were used to demonstrate the ability of the

GITFARM framework to generalise to different real-world and IBM datasets, as well as different

domains, specifically market basket analysis and Web log mining. Experiments were also

conducted with the approximate and descriptive models of the GITFARM framework. All

experiments were conducted on combinations of datasets and models, except those varying the

number of transactions or items. This meant that there were four model-dataset combinations.
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Initially, results were presented to demonstrate the GITFARM framework discovering rules.

The results show how the GITFARM framework can evolve multiple rules of different rule lengths

in one run of IRL. This demonstrates that CHC and IRL are suitable methods for searching for

rules.

Both the GITFARM framework and the traditional approach (FuzzyApriori) were run

to demonstrate how both approaches operate. These experiments extended the preliminary

experiments of the GITFARM framework by configuring the framework to discover more rules.

The GITFARM framework produced fewer rules than FuzzyApriori, because the GITFARM

framework was configured to do so, but these rules were of higher quality (temporal fuzzy support

in all experiments and confidence in half of the experiments).

After both approaches were demonstrated, and it was understood that the GITFARM

framework is capable of producing rules, the comparative analysis was then applied. The

comparative analysis framework is a methodology for verifying the research hypothesis. The

experiments were repeated 30 times on each model-dataset experiment and the rules were

analysed. The GITFARM framework discovered rules that FuzzyApriori did not for all model-

dataset experiments. In half of those experiments, over 50% of rules discovered with the

GITFARM framework were not discovered with FuzzyApriori. The reason that these rules

were not discovered is important for understanding their significance. Analysis of the rules

only discovered with the GITFARM framework identified which minimum threshold, or both,

contributed towards the rule being discarded with FuzzyApriori. Further analysis revealed that

some of the rules were now greater than or equal to the minimum thresholds. This is significant

because it demonstrates how the GITFARM framework is capable of discovering rules that

FuzzyApriori did not.

The number of fuzzy sets was varied to explore the affect on the discovery of lost rules. The

decision to vary the number of fuzzy sets was considered because some temporal patterns occur

near to the intersection of membership function boundaries. In all model-dataset experiments, it

was discovered that the GITFARM framework produced larger proportions of rules that were

not discovered by FuzzyApriori when the number of membership functions increases. For

the approximate model, the proportion of lost rules discovered with the GITFARM framework

increased when the number of membership functions increased. However, the opposite effect was

observed for the descriptive model.

The scalability of the the GITFARM framework was explored by varying the number of

transactions and items in the IBM datasets. The proportion of lost rules discovered with the

GITFARM framework remained the same when varying the number of transactions, increased

when increasing the number of items with an approximate model and decreased when increasing

the number of items in the descriptive model.
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Chapter 7

Conclusions

The conclusions draw an end to this thesis. A brief summary of the main points is presented

in Section 7.1. Conclusions and research contributions for the entire thesis are examined in

Section 7.2. Considerations for further work are discussed in Section 7.3.

7.1 Summary

Each chapter has been concluded with a discussion of the chapter’s contents. A brief summary of

the entire thesis is now presented to clarify the research that was undertaken before conclusions

are reached.

Initially, a literature review identified two key areas of association rule mining: temporal

association rule mining and fuzzy association rule mining. It was hypothesised that combining

these two variants of association rule mining can create a problem, which was previously

unrecognised. The research hypothesis states that some rules can be lost with a traditional

approach. A GA-based approach that uses flexible fuzzy sets can discover these lost rules.

Before presenting the GA-based solution to this problem, the datasets were introduced. Two

types of dataset were used, primarily because of their prevalence in literature. The EPA dataset is

a real-world dataset that is a record of the requests to a Web server, i.e., Web pages requested by

users browsing the EPA Web site. The IBM Quest synthetic dataset generator simulates customer

purchases in a retail environment. Two datasets from different domains demonstrate the ability of

the GITFARM framework to generalise. Furthermore, an IBM dataset with parameters to control

the dimensions of datasets allow the scalability to be analysed.

The GITFARM framework was created to overcome the hypothesised problem of losing rules.

The framework consists of three components. The first component transforms the dataset into a

graph data structure to ensure only valid rules are generated in the GA. The second component

is the choice of either an approximate or descriptive model for representing the quantities of

items in a fuzzy association rule. This model component allows a trade-off between accuracy and

interpretability. The third component is the CHC model of a GA. CHC simultaneously searches

for the items in a rule, the membership functions (and linguistic terms for a descriptive model), and

the temporal endpoints of when the rule occurs. One run of CHC produced one rule, so CHC is

repeated multiple times with the use of IRL. The GITFARM framework was proposed to discover
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intra-transaction temporal fuzzy association rules.

To verify the research hypothesis, an experimental methodology was created called the

comparative analysis framework. The essence of the comparative framework was to run the

GITFARM framework and the traditional approach (FuzzyApriori), and then compare the rules

found in both approaches to identify any lost rules. The first stage of defining the membership

functions ensured both approaches used the same inputs. There are variables in the GITFARM

framework and the comparative analysis framework that can affect the verification of the research

hypothesis. A discussion of these variables identified their importance and how they should be

managed to ensure a fair comparison.

Having identified a previously unrecognised problem, created a hypothesis, identified suitable

datasets, created a solution and created a methodology to verify the solution, multiple experiments

were conducted. Preliminary results show how the GITFARM framework searches for rules and

how this differs to FuzzyApriori. Applying the comparative analysis then focused on verifying

the research hypothesis. It was demonstrated how the GITFARM framework discovered rules

that FuzzyApriori did not. Detailed analysis confirmed that these rules were lost because they

fell below the minimum thresholds in FuzzyApriori so they were discarded. These experiments

and analysis verified the research hypothesis with the GITFARM framework. Further experiments

showed how increasing the number of membership functions increased the number of lost rules.

The scalability of the GITFARM framework was also demonstrated.

7.2 Conclusions

An interesting discovery of the research conducted is the identification of a previously

unrecognised problem. Association rule mining is a descriptive data mining task where the results

feed into the knowledge that supports making better informed decisions in many domains. The

significance of this problem is that missing knowledge has the potential to cause lost opportunities.

The claim that the problem was previously unrecognised is supported by an extensive literature

review of academic works and activity in industry.

The GITFARM framework is a novel solution for discovering intra-transaction temporal fuzzy

association rules that a traditional approach cannot. The choice of model allows a user to

determine how the knowledge will be presented (i.e., fuzzy numbers or linguistic terms), and

therefore how it will be used in practice. There is a trade-off between an approximate model

and a descriptive model in terms of usage. From a research perspective, the components of the

GITFARM framework are swappable, allowing further research in multiple directions, which

will be discussed in Section 7.3. The data transformation and search with CHC facilitates the

discovery of new knowledge. The literature review shows that a GA is a non-traditional method

of searching for association rules. A GA is typically used for tuning/learning the membership

functions of fuzzy association rules, and not mining the items in a rule. Homaifar and McCormick

(1995) suggested that the simultaneous evolution of items and membership functions is suitable

for fuzzy FRBS controllers. Kaya (2006) suggested a MOEA to simultaneously evolve the items

and membership functions when mining fuzzy association rules, but the justification is unclear.
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This thesis extends that knowledge with the contribution: adapting fuzzy sets with a GA can

discover contextual changes in meanings that are produced from dynamic data sources. Therefore,

a GA is a viable search method for this type of problem pertaining to a large and complex search

space. The GITFARM framework’s support for the research hypothesis is substantiated by the

results in Chapter 6 that demonstrate the loss of rules, how they are lost and why there are lost.

The GITFARM framework is recommended as a complimentary method to traditional methods,

because the GITFARM framework can discover additional rules that traditional methods cannot.

Expanding on a previous remark that the GITFARM framework allows further research in

multiple directions. This thesis has explored the 2-tuple linguistic representation, created by

Herrera and Martı́nez (2000), for adapting the contextual meanings of linguistic terms in a

temporal context. Shenghan et al. (2011) had previously used the type-2 linguistic representation

in a temporal context for modelling the concepts of past, present and future using lateral

displacement. This thesis extends the temporal context by allowing the temporal information to be

specified outside of the 2-tuple notation and also allowing the temporal context to be specified as

a temporal period. The results for the descriptive model in Section 6 support the use of the 2-tuple

linguistic representation in a temporal context.

The comparative analysis framework was created to support the verification of the research

hypothesis. The unique problem that was discovered in this thesis required a novel methodology

for verifying the research hypothesis that includes experimentation. The comparative analysis

framework is a novel methodology that is suitable for further research because the framework’s

components are swappable, i.e., the search approaches/algorithms.

7.3 Further Work

A new problem has been identified and this research has developed the understanding of the

problem. The discoveries made in this thesis have also supported the development of scope for

further work. The key areas of further work developing contributions to knowledge are listed and

discussed here.

Interpretability
The descriptive model of the GITFARM framework was implemented with the 2-tuple

linguistic representation. When the magnitude of the lateral displacement is high, i.e., near

to 0.49̇ or −0.5, then the displaced membership function is located in the middle of two

membership functions on the universe of discourse. The significance is that the meaning

of the displaced membership is now somewhere between the linguistic terms. For example,

the 2-tuples (low, 0.49̇) and (medium,−0.5) are very close to each other on the universe

of discourse, so the meaning is a concept somewhere between low and medium. This is an

interesting aspect for consideration with the accuracy-interpretability problem in GFSs.

Adaptation
Flexibility is crucial for discovering intra-transaction temporal fuzzy association rules and

this has been achieved with an approximate model and the 2-tuple linguistic representation.
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Exploring existing methods of adapting fuzzy sets, or creating new methods of adaptation

may be useful for the problem defined in this thesis, and the computational intelligence and

data mining communities.

Search
The metaheuristic search method used in the GITFARM framework is not a traditional

method for association rule mining, but is required because of the large and complex search

space. The focus of the research hypothesis has been to find a solution to the problem,

however, it is possible that more suitable search methods may be available, such as other

metaheuristics, which are yet to be explored.

Other solutions
The GITFARM framework is the first solution for this new problem. Other solutions may

be discovered with novel approaches to applying metaheuristics and fuzzy sets in a GFS, or

completely different approaches.

Dynamism
As previously discussed in Section 2.4, the word temporal is ambiguous. Other types of

temporal pattern that are intra-transaction and inter-transaction can be explored because

they can potentially suffer from the same problem. This problem can also extend beyond

the temporal context, for example, there may be spatiotemporal applications that may suffer

from the same problem. Potentially any aspect that has an element of dynamism can be

affected by this problem.

Datasets
This thesis has demonstrated the problem on a synthetic dataset and a real-world dataset.

Further research could explore more real-world datasets from different domains. Features of

potential datasets must contain TIDs (or timestamps), quantities of each item, and non-fixed

transaction sizes. This is required to make use of the data transformation in the GITFARM

framework.
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Appendix A

List of publications by Stephen G. Matthews
directly related to PhD

In preparation

• Matthews, S. G., Gongora, M. A., Hopgood, A. A. and Ahmadi, S. (—) Web Usage Mining

with Temporal Fuzzy Association Rules. Knowledge-Based Systems (Invited to a Special

Issue on Evolutionary Fuzzy Systems from the Proceedings of the 2012 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2012), Guest Eds.: Rafael Alcalá, Yusuke

Nojima, Hisao Ishibuchi and Francisco Herrera).

Under review at time of submission

• Matthews, S. G., Gongora, M. A. and Hopgood, A. A. (—) Evolutionary Algorithms and

Fuzzy Sets for Discovering Temporal Rules. International Journal of Applied Mathematics

and Computer Science (Invited to a Special Section for the Proceedings of HAIS 2011).

Submitted on 13/02/12.

Published

• Matthews, S. G., Gongora, M. A., Hopgood, A. A. and Ahmadi, S. (2012) Temporal Fuzzy

Association Rule Mining with 2-tuple Linguistic Representation. In: Proceedings of the

2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2012), Brisbane, June

2012. Piscataway, NJ: IEEE, pp.1–8. (doi: 10.1109/FUZZ-IEEE.2012.6251173)

• Matthews, S. G., Gongora, M. A. and Hopgood, A. A. (2011) Evolving Temporal Fuzzy

Itemsets from Quantitative Data with a Multi-Objective Evolutionary Algorithm. In:

Proceedings of the IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy

Systems (GEFS 2011), Paris, April 2011. Piscataway, NJ: IEEE, pp. 9–16. (doi:

10.1109/GEFS.2011.5949497)

• Matthews, S. G., Gongora, M. A. and Hopgood, A. A. (2011) Evolving Temporal Fuzzy

Association Rules from Quantitative Data with a Multi-Objective Evolutionary Algorithm.

In: Proceedings of the 6th International Conference on Hybrid Artificial Intelligence
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Systems (HAIS 2011), Wroclaw, May 2011. Berlin / Heidelberg: Springer, pp. 198–205.

(doi: 10.1007/978-3-642-21219-2 26)

• Matthews, S. G., Gongora, M. A. and Hopgood, A. A. (2010) Evolving Temporal

Association Rules with Genetic Algorithms. In: Proceedings of the Thirtieth Annual

International Conference of the British Computer Society’s Specialist Group on Artificial

Intelligence (AI-2010), Cambridge, December 2010. London: Springer, Part 3, pp.

107–120. (doi: 10.1007/978-0-85729-130-1 8)
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González, A. and Herrera, F. (1997) Multi-stage genetic fuzzy systems based on the iterative rule

learning approach. Mathware & Soft Computing, 4 (3), pp. 233–249.
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Tuğ, E., S. akiroğlu, M. and Arslan, A. (2006) Automatic discovery of the sequential accesses from

web log data files via a genetic algorithm. Knowledge-Based Systems, 19 (3), pp. 180–186.

136

http://sourceforge.net/projects/ibmquestdatagen/
http://sourceforge.net/projects/ibmquestdatagen/


Valenzuela-Rendón, M. (1991) The fuzzy classier system: a classier system for continuously

varying variables. In: Proceedings of 4th international conference on genetic algorithms

(ICGA91), San Diego, CA, USA. San Fransisco: Morgan Kaufmann, pp. 346–353.

Venturini, G. (1993) SIA: A supervised inductive algorithm with genetic search for learning

attributes based concepts. In: Proceedings of the European Conference on Machine Learning

(ECML–93), vol. 667. Springer Berlin / Heidelberg, pp. 280–296.

Verlinde, H., De Cock, M. and Boute, R. (2005) Fuzzy versus quantitative association rules: a

fair data-driven comparison. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 36 (3), pp. 679–684.

Verma, K., Vyas, O. and Vyas, R. (2005) Temporal Approach to Association Rule Mining Using T-

Tree and P-Tree. In: Proccedings of the 4th International Conference on Machine Learning and

Data Mining in Pattern Recognition (MLDM), Leipzig, Germany. Berlin, Heidelberg: Springer-

Verlag, pp. 651–659.

Wang, C.H., Lee, W.H. and Pang, C.T. (2010) Applying Fuzzy FP-Growth to Mine Fuzzy

Association Rules. World Academy of Science, Engingeering and Technology, 4, pp. 956–962.

Wang, W., Yang, J. and Muntz, R.R. (2001) TAR: Temporal Association Rules on Evolving

Numerical Attributes. In: Proceedings of the 17th International Conference on Data

Engineering (ICDE), Heidelberg, Germany. Washington: IEEE Computer Society, pp.

283–292.

Weng, C.H. (2011) Mining fuzzy specific rare itemsets for education data. Knowledge-Based

Systems, 24 (5), pp. 697–708.

Wong, C.K.P., Shiu, S.C.K. and Pal, S.K. (2001) Mining Fuzzy Association Rules for Web Access

Case Adaptation. In: Workshop Proceedings of Soft Computing in Case-Based Reasoning

Workshop, in conjunction with the 4th International Conference in Case-Based Reasoning,

Vancouver, Canada. London: Springer-Verlag, pp. 213–220.

World Wide Web Consortium (1999) Web Characterization Terminology & Definitions Sheet.

WWW, URL http://www.w3.org/1999/05/WCA-terms/, [Accessed 19/10/12].

Wrobel, S. (1997) An Algorithm for Multi-relational Discovery of Subgroups. In: Proceedings

of the First European Symposium on Principles of Data Mining and Knowledge Discovery,

Trondheim, Norway. London, UK: Springer-Verlag, pp. 78–87.

Xie, D. (2005) Fuzzy Association Rules Discovered on Effective Reduced Database Algorithm.

In: The 14th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2005). Piscataway:

IEEE, pp. 779–784.

Yager, R.R. (1982) A new approach to the summarization of data. Information Sciences, 28 (1),

pp. 69–86.

137

http://www.w3.org/1999/05/WCA-terms/


Yan, X., Zhang, S. and Zhang, C. (2007) On Data Structures For Association Rule Discovery.

Applied Artificial Intelligence, 21 (2), pp. 57–79.

Yan, X., Zhanga, C. and Zhanga, S. (2005) ARMGA: Identifying interesting association rules with

genetic algorithms. Applied Artificial Intelligence, 19 (7), pp. 677–689.

Yang, Y., Webb, G.I. and Wu, X. (2010) Discretization Methods. In: O. Maimon and L. Rokach

(Eds.) Data Mining and Knowledge Discovery Handbook, New York City, NY, USA: Springer,

pp. 101–116.

Yao, H., Hamilton, H.J., and Butz, C.J. (2004) A Foundational Approach to Mining Itemset

Utilities from Databases. In: Proceedings of the 4th SIAM International Conference on Data

Mining. Florida, USA, pp. 482–486.

Yao, X., Liu, Y. and Darwen, P. (1996) Complex Systems – From Local Interactions to Global

Phenomena, chap. How to make best use of evolutionary learning. Amsterdam: IOS Press, pp.

229–242.

Yen, S.J. and Chen, A. (1996) An efficient approach to discovering knowledge from large

databases. In: Proceedings of the Fourth International Conference on Parallel and Distributed

Information Systems, Miami Beach, FL, USA. Washington: IEEE Computer Society, pp. 8–18.

Yoo, J.S. and Shekhar, S. (2009) Similarity-Profiled Temporal Association Mining. IEEE

Transactions on Knowledge and Data Engineering, 21 (8), pp. 1147–1161.

Yun, H., Ha, D., Hwang, B. and Ryu, K.H. (2003) Mining association rules on significant rare data

using relative support. Journal of Systems and Software, 67 (3), pp. 181–191.

Yun, U. and Ryu, K.H. (2011) Approximate weighted frequent pattern mining with/without noisy

environments. Knowledge-Based Systems, 24 (1), pp. 73–82.

Zadeh, L.A. (1965) Fuzzy Sets. Information Control, 8, pp. 338–353.

Zadeh, L.A. (1973) Outline of a New Approach to the Analysis of Complex Systems and Decision

Processes. IEEE Transactions on Systems, Man and Cybernetics, SMC-3 (1), pp. 28–44.

Zadeh, L.A. (1975) The concept of a linguistic variable and its application to approximate

reasoning. Parts I, II, III. Information Sciences, 8–9, pp. 199–249, 301–357, 43–80.

Zaki, M. (2000) Scalable algorithms for association mining. IEEE Transactions on Knowledge

and Data Engineering, 12 (3), pp. 372–390.

Zheng, Z., Kohavi, R. and Mason, L. (2001) Real world performance of association rule

algorithms. In: Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, San Francisco, CA, USA. New York: ACM, pp.

401–406.

138



Zhou, E. and Khotanzad, A. (2007) Fuzzy classifier design using genetic algorithms. Pattern

Recognition, 40 (12), pp. 3401–3414.

Zhou, S.M. and Gan, J.Q. (2008) Low-level interpretability and high-level interpretability: a

unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets and Systems,

159 (23), pp. 3091–3131.

Zimbrao, G., de Souza, J.M., de Almeida, V.T. and da Silva, W.A. (2002) An Algorithm to

Discover Calendar-based Temporal Association Rules with Item’s Lifespan Restriction. In: The

Second Workshop on Temporal Data Mining in the Proceedings of The Eighth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta,

Canada. New York: ACM.

Zwick, R., Carlstein, E. and Budescu, D.V. (1987) Measures of similarity among fuzzy concepts:

A comparative analysis. International Journal of Approximate Reasoning, 1 (2), pp. 221–242.

139


	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	The Problem
	Research Hypothesis
	Thesis Structure

	Literature Review
	Computational Intelligence
	Fuzzy Logic
	Evolutionary Computation
	Discussion

	Genetic Fuzzy System
	Fuzzy Rule-Based System
	Accuracy Versus Interpretability
	Taxonomy
	Discussion

	Association Rule Mining
	Data Mining
	Association Rule Mining
	Algorithms
	Data Representations
	Types of Association Rule Mining
	Metaheuristic Approaches
	Discussion

	Temporal Association Rule Mining
	Inter-Transaction
	Intra-Transaction
	Discussion

	Fuzzy Association Rule Mining
	Quantitative Association Rule Mining
	Utility Association Rule Mining
	Fuzzy Association Rule Mining
	Discussion

	Temporal Fuzzy Association Rule Mining
	Academia
	Industry
	Discussion

	Web Mining
	Data Cleaning and Preprocessing
	Computational Intelligence in Web Usage Mining
	Discussion


	Datasets
	Synthetic
	Real-World
	Data Cleaning
	User and Transaction Identification
	Preprocessing

	Discussion

	GITFARM Framework
	Data Transformation
	Model of Mamdani Fuzzy Rule-Based System
	Approximate
	Descriptive

	Genetic Algorithm
	Chromosome
	Fitness Evaluation
	Initialisation
	Restart
	Crossover: Difference Check
	Crossover: HybridCrossover
	Iterative Rule Learning

	Discussion

	Experimental Methodology
	Comparative Analysis Framework
	Define Model and Parameters
	Algorithm Execution
	Rule Analysis

	Variables
	GITFARM Parameters
	FuzzyApriori Parameters
	Linguistic Labels and Membership Function Parameters
	Size of Temporal Partitions
	Similarity Measures
	Width
	Rule Lengths in IRL

	Discussion

	Learning Lost Temporal Fuzzy Association Rules
	Preliminary Results
	Evolving Rules
	Evolving Multiple Rules

	Comparative Analysis
	Varying the Number of Membership Functions
	Analysis of Number of Transactions
	Analysis of Number of Items
	Discussion

	Conclusions
	Summary
	Conclusions
	Further Work

	List of publications by Stephen G. Matthews directly related to PhD

