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Temporal Logic with Cyclic Counting and the 
Degree of Aperiodicity of Finite Automata* 

Z. Esik* and M. Ito* 

Abstract 

We define the degree of aperiodicity of finite automata and show that for 
every set M of positive integers, the class Q A M of finite automata whose 
degree of aperiodicity belongs to the division ideal generated by M is closed 
with respect to direct products, disjoint unions, subautomata, homomorphic 
images and renamings. These closure conditions define q-varieties of finite au-
tomata. We show that q-varieties are in a one-to-one correspondence with lit-
eral varieties of regular languages. We also characterize Q A M as the cascade 
product of a variety of counters with the variety of aperiodic (or counter-free) 
automata. We then use the notion of degree of aperiodicity to characterize the 
expressive power of first-order logic and temporal logic with cyclic counting 
with respect to any given set M of moduli. It follows that when M is finite, 
then it is decidable whether a regular language is definable in first-order or 
temporal logic with cyclic counting with respect to moduli in M. 

1 Introduction 
The richness of the theory of regular languages is due to the many different char-
acterizations of (subclasses of) regular languages. By the theorem of Biichi and 
Elgot, a language is regular iff it is definable in monadic second-order logic over 
words [3, 6] involving the predicate < and a predicate corresponding to each let-
ter of the alphabet. Moreover, by classic results of Schiitzenberger [14] and Mc 
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Naughton and Papert [11], a language is star-free iff it is definable in first-order 
logic iff it is accepted by an aperiodic (or counter-free) finite automaton. Thus, it is 
decidable for a regular language whether or not it is definable in first-order logic, or 
has a star-free expression. Moreover, by a classic result of Kamp [10] and Gabbay 
et al. [8], the logic LTL of Linear (Propositional) Temporal Logic over words has 
the same expressive power as first-order logic. 

The above results have been extended in several directions involving, in addition 
to words, also w-words, trees and other structures, see [18, 19] for overviews. In 
order to increase the expressive power of first-order logic on words, two kinds of 
cyclic counting have been studied: the extension of first-order logic with numerical 
predicates Cfn(x) that holds for a position a: in a word iff x is congruent to r modulo 
m, see [1, 16], and the extension with modular quantifiers, cf. [17, 16]. In this paper 
our concern is the first type of counting. In [1], Barrington, Compton, Straubing 
and Therien gave a decidable characterization of the languages definable in first-
order logic with counting with respect to the predicates Cfn(x), where the modulus 
m ranges over all positive integers and r is any nonnegative integer < m. However, 
this characterization does not answer the question that, given a finite set M of 
moduli, what languages are definable by using only predicates involving moduli in 
M. Our aim in this paper is to provide an analysis of the above mentioned result 
of Barrington, Compton, Straubing and Therien that will provide an answer to the 
previous question. Moreover, we also study an extension of temporal logic yielding 
the same expressive power. 

We define the degree of aperiodicity of finite automata and show that for every 
set M of positive integers, the class Q A M of automata whose degree of aperiodicity 
belongs to the division ideal generated by M is closed with respect to direct prod-
ucts, disjoint unions, subautomata, homomorphic images and renamings. These 
closure conditions define q-varieties. We show that q-varieties are in a one-to-one 
correspondence with literal varieties of regular languages. We also characterize 
QA M as the cascade product of a variety of counters with the variety of aperi-
odic (or counter-free) automata. We then use the notion of degree of aperiodicity 
to characterize the expressive power of first-order logic and temporal logic with 
cyclic counting with respect to any given set M of moduli. When M is finite, this 
characterization is effective. 

The paper is organized as follows. In Section 2 we define literal varieties of 
regular languages, q-varieties of finite automata, and establish an Eilenberg-type 
correspondence between them. In Section 3, we recall the notion of cascade product 
of finite automata together with a few basic facts regarding regular languages ac-
cepted by cascade products. We also define cascade products V * W of q-varieties. 
Then, in Section 4, we study q-varieties of finite automata of the form Cm * V , 
where M is a given subset of the positive integers and CM is the q-variety generated 
by all counters whose length belongs to M. Then, in Section 5, we define the degree 
of aperiodicity of finite automata and show that for every set M as above, the finite 
automata whose degree of aperiodicity belongs to the division ideal generated by 
M form a q-variety QA M which is the cascade product of CM with the q-variety 
of aperiodic (counter-free) automata. Moreover, we show that the degree of ape-
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riodicity of a finite automaton is computable. We also show that a language can 
be recognized by an automaton in QA M iff it can be constructed from the finite 
languages and the languages consisting of all words over the underlying alphabet 
whose length is a multiple of some integer in M by the boolean operations and 
concatenation. Then, in Section 6 we prove that the very same condition charac-
terizes the languages definable in first-order logic with cyclic counting with respect 
to moduli in M. When M is empty or M is the set of all positive integers, these 
results correspond to those of Schiitzenberger [14], Mc Naughton and Papert [11], 
and Barrington et al. [1] mentioned above. In Section 7, we provide several exten-
sions of propositional temporal logic with cyclic counting and show that all these 
are equivalent. Moreover, we show that temporal logic with cyclic counting with 
respect to any given set M of moduli has the same expressive power as first-order 
logic with counting with respect to moduli in M. When M is empty, this fact 
corresponds to the result of Kamp [10] and Gabbay et al. [8]. Section 8 contains a 
summary of the results obtained and outlines some future results. 

We have tried to make the paper accessible for a wider audience. 

2 An Eilenberg correspondence 
A finite alphabet, or just alphabet, for short, is any finite nonempty set whose 
elements are called letters. When £ is an alphabet, we let £* denote the free 
monoid of words over £ including the empty word e equipped with the operation of 
concatenation as product. For any word u = aq ... a n _i , where the a,i are letters, 
we call the integer n the length of u and denote it by |u|. We let £™ denote the set of 
all words in £* of length n. The prefix order < on words is defined by u < v iff there 
is a word 2 with uz = v, i.e., when u is a prefix of v. Suppose that h is a (monoid) 
homomorphism £* A*, where E, A are finite alphabets. We call h nonerasing if 
ah ^ e holds for all a G E. Moreover, we call h a literal homomorphism. if ah 6 A 
holds for all a G E. 

A language (over E) is any subset of £*. Languages over E are equipped with 
several operations including the boolean operations U, fl and 0 (complement), prod-
uct (or concatenation), Kleene star (*), left and right quotients, homomorphisms, 
inverse homomorphisms, etc. These are defined in the standard way. When L C E* 
and u G £*, we let u~1L and Lu~l denote the left and right quotients of L with 
respect to u, respectively: 

u_1L = {v G £* : uv G L] 
L u = {v G E* : vu G L} 

We will sometimes identify a word w with the singleton set {w} and write w* for 
the Kleene star {w}* of the language {w}. 

Recall that a language L C E* is called regular if it can be constructed from the 
finite subsets of £* by the regular operations of union, product and Kleene star. It 
is well-known that the class of regular languages is closed with respect to all of the 
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operations mentioned above. Moreover, by Kleene's classic theorem, the regular 
languages are exactly those languages that can be recognized by finite automata. 

In this paper, by a finite automaton, or just automaton, we mean a system 
Q = (Q, E, •) consisting of a finite nonempty set Q of states, a finite input alphabet 
E and a right action of E on Q, i.e., a function •: Q x E -¥ Q, which is extended to 
an action of E* on Q in the usual way. Below we will usually write just qu for q • u, 
for all q £ Q and u £ E*. The function q 1-4 qu is called the function induced by u, 
denoted u®. When we want to emphasize that the input alphabet of an automaton 
is some alphabet E, we call it a E-automaton. Suppose that L C E* and that 
Q = (Q, E, •) is a E-automaton. We say that L is recognizable in Q, or that L can 
be recognized by Q, if there are a state qo £ Q, the initial state, and a set F C Q 
of final states such that L = {u € E* : q0u £ F}. Moreover, a language is called 
recognizable if it can be recognized by some finite automaton. The aforementioned 
theorem of Kleene equates the recognizable languages with the regular languages. 

Recall [5, 12] that a stream (or class) V of regular languages is a nonempty 
collection E*V of regular languages over E, for each finite alphabet E. Streams of 
regular languages are ordered by set inclusion: we write V C V if £*V C E*V, for 
all finite alphabets E. 

Definition 2.1. A literal variety (of languages), or l-variety, for short, is a stream 
V of regular languages closed with respect to the boolean operations, left and right 
quotients and inverse literal homomorphisms. Thus, if Li,L,2 £ £*V and a £ E, 
then Li U L2, L\ fl L2, a~lL\ and L^a-1 are all in E*V. Moreover, if h is a 
literal homomorphism A* -» E*, so that Ah C £, then L i / i - 1 £ A*V. 

A *-variety (-(--variety, respectively) of languages is a literal variety which is 
closed with respect to all (nonerasing, respectively) inverse homomorphisms. 

Example 2.2. It is clear that 1-varieties form a complete lattice, in fact, an alge-
braic lattice. The largest l-variety contains, for each E, all the regular languages 
in £*, and the smallest only the empty language and the language E*. When 
{Vi : i £ 1} is a directed set of 1-varieties, the least upper bound V = Vie/ ^ is 
just the union | J i e J Vi, so that E*V = | J i e / E * V i , for each E. 

Example 2.3. Of course, every *-variety or +-variety is a literal variety. For each 
E, let £*£ consist of all regular languages L in E* such that for all words u,v £ E*, 
if u € L and |u| = |i>|, then v £ L. Then £ is a literal variety which is not a +-variety 
or a *-variety. 

The 1-varieties contained in C correspond to those boolean algebras of regular 
languages over the one-letter alphabet closed with respect to quotients. We give 
some examples of such varieties. 

Suppose that d > 1 is an integer. The l-variety Cd is that generated by the 
one-letter regular language (ad)*, considered as a subset of a*. It is not hard to 
see that each language in T,*Cd is a finite union of languages of the form (Ed)*E i , 
where i is an integer in [d\ = {0 ,1 , . . . , d — 1}. 

Suppose that M is a subset of the set Nat of positive integers. Then let CM 
denote the smallest l-variety containing all of the Cm with m £ M. It is clear that 
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CM is the union of those CD where d is contained in the division ideal (M] generated 
by M. (Of course, (M] consists of all divisors of least common multiples of finite 
families of elements of M.) Thus, CM Ç CW iff [M] Ç (M']. We write C for C№T. 

Further examples of literal varieties that are not ^-varieties or +-varieties will 
be given later. 

Remark 2.4. The *-varieties defined above are the same as the *-varieties of 
Eilenberg [5], see also [12]. However, Eilenberg's +-varieties [5] are streams of 
regular languages containing only nonempty words closed with respect to the boolean 
operations, left and right quotients, and nonerasing inverse homomorphisms. If V 
is a + -variety as defined in Definition 2.1, and i / £ + W = { L f l £ + : L £ £*V}; for 
each £, where £+ denotes the free semigroup of all nonempty words over £, then 
W is an Eilenberg +-variety. This mapping V > VV is surjective but not injective. 

Suppose that W is an Eilenberg +-variety. For each alphabet £, define 

£*V = {L,LUe:L<=Z+W}. 

Then V is a +-variety, as defined in Definition 2.1, which is mapped to W. If for 
some £, there is a finite nonempty set in £+W, then this is in fact the unique 
+-variety mapped to W. However, ¿/£*V = {0,£*} and £*V = {0,e, £+,£*}, for 
each alphabet £, then the same Eilenberg +-variety W corresponds to both V and 

V: 

£+W = {0,£+}, 

for each £. 
A stream (or class) V of finite automata is a nonempty collection £ V of finite 

£-automata, for each finite alphabet £. Streams of finite automata are ordered by 
set inclusion in the same way as streams of regular languages. 

The notions of subautomaton and quotient (or homomorphic image) of an au-
tomaton are defined as usual. When Q = (Q, £, •) and Q' = (Q', S, •) are automata 
with the same set of input letters, the direct product Q x Q' = (Q x Q',Y,,-) is 
equipped with the pointwise action, so that (q, q') • a = (qa,q'a), for all q € Q, 
q' G Q' and a £ £. The disjoint sum (or disjoint union) of Q and Q' is also defined 
in the standard way: Q © Q' = (Q x {0} U Q x {1}, £, •), where (q, 0)a = (qa, 0) 
and (q\ l)a = (q'a, 1), for all q £ Q and q' £ Q'. Suppose now that Q = (Q, £, •) 
and Q' = (Q',A, •), where £ and A are any alphabets. We say that Q can be 
constructed from Q' by renaming, or that Q is a renaming of Q', if Q = Q' and 
there is a function h : £ -» A such that qa = q{ah), for all q £ Q and a £ £. 

Definition 2.5. A q-variety of finite automata is any stream of finite automata 
closed with respect to the operations of taking subautomata, quotients, direct prod-
ucts, disjoint sums and renamings. 

We use the prefix to distinguish q-varieties from varieties (or pseudo-varieties) 
that are nonempty classes of automata with thé same input alphabet closed with 
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respect to the operations of taking subautomata, quotients, and direct products, 
and to express that q-varieties are also closed with respect to the quasi-direct product 
[9]. 

Since a q-variety V is nonempty and closed with respect to subautomata, quo-
tients, direct product and renaming, closure under disjoint sum is clearly equivalent 
to the requirement that the two-element discrete automaton with a single input let-
ter belongs to V. (A E-automaton is called discrete if it is a disjoint sum of trivial, 
i.e., one-state E-automata.) 

A *-variety (+-variety) of finite automata is a q-variety that is also closed with 
respect to the operation Q >-> Q* (Q Q+). Here, the operation Q 1-4 Q* is 
defined as follows. Let Q = (Q, E, •), say, and let M(Q) denote the monoid of 
Q. Thus, the elements of M(Q) are the functions u® : Q Q induced by the 
words u G £*, and the product operation in M(Q) is function composition written 
left-to-right. Now Q* is (Q, M(Q), •), where for each q E Q and u £ £*, q • uQ is 
just qu = q-u, the image of q under i f i . The automaton Q+ is defined in the same 
way except that its alphabet is S(Q) = {u® : u £ E + }, the semigroup of Q. 

Remark 2.6. It is clear that *-varieties of finite automata correspond in a bijective 
manner to varieties of finite monoids as defined in [5, 12]. Given a *-variety V of 
finite automata, the corresponding variety of finite monoids consists of all monoids 
that are isomorphic to the monoid of some automaton in V. However, a similar 
function mapping +-varieties of finite automata to varieties of finite monoids is 
only surjective, but not injective. See also Remark 2.4-

Example 2.7. The set of all q-varieties equipped with set inclusion is an algebraic 
lattice. The largest q-variety contains, for each E, all E-automata, and the smallest 
one only the discrete E-automata. When {Vi : i £ 1} is a directed set of q-varieties, 
the least upper bound \ / i e I Vj is just the union Uie/ 

Example 2.8. For each E, the q-variety L consists of all autonomous E-automata, 
i.e., all the automata Q = (Q, E, •) such that qa — qb, for all q £ Q and a,b € E. 

Given an integer d > 1, the q-variety C^ has, as its members in EC,*, all the 
E-automata that are disjoint sums of E-counters of length a divisor of d. A £-
counter is an automaton (Q, E, •) such that each letter in E induces the same cyclic 
permutation Q —» Q. The length of the counter is \Q\, the number of states in Q. 
Note that Cd is contained in L. 

When M is a set of positive integers, then we define CM = VmeM ^m, so 
that Cm is the least q-variety containing all of the C m with m £ M. Note that 
Cm is just the union of the Cd with d any integer in (M]. Thus, Cm C Cm ' iff 
(M] C (M'\. We denote CNat by C. 

Suppose that V is a q-variety. The corresponding stream V of regular languages 
contains those languages in E*V that can be recognized by an automaton in EV 
(by a suitable initial state and a set of final states). Thus, a language L C E* 
belongs to £*V if and only if there is an automaton Q = (Q, E, •) in V, a state 
qo £ Q and a set F C Q such that the language recognized by Q with initial state 
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qo and final states F is L. Alternatively, a (regular) language L C £* belongs to 
£*V if and only if the minimal automaton recognizing L is in SV. 

The following variant of Eilenberg's variety theorem [5, 12] follows by standard 
arguments. 

Theorem 2.9. The correspondence V i V is an order isomorphism from the 
lattice of q-varieties of finite automata onto the lattice of l-varieties of regular lan-
guages. The same correspondence establishes an order isomorphism between *-
varieties (+-varieties) of finite automata and *-varieties (+-varieties) of regular 
languages. 

Proof. We briefly sketch the proof of the first statement. If L is in £* V, then L is 
accepted by an automaton in V by a suitable initial state and a set of final states. 
By taking the same initial state and the complement of the set of final states, the 
same automaton accepts Lc. It is also known that any quotient of L can be accepted 
by the same automaton with suitable initial and final states. Closure with respect 
to set union follows from the fact that the union of languages accepted by Q\ and 
Q2 can be accepted by the direct product of Q1 and Q2. It is clear that Vj C V2 
implies Vi C V2. Suppose now that Vi C V2. Assume that Q = (Q,E,-) £ Vi 
is generated by a single state qo, so that each state q £ Q is of the form qo'u, for 
some u £ £*. For each state q £ Q, let Lq denote the language accepted by Q with 
initial state qo and single final state q. Since Lq £ Vi and Vi C V2, there exists an 
automaton Qq £ V2 accepting Lq with some initial state iq and some set of final 
states Fq. Now the direct product of the Qq contains a subautomaton that can be 
mapped homomorphically onto Q : take those tuples of the direct product accessible 
by a word from that tuple whose components are the respective initial states i,r It 
follows that each state s = (sq)q^Q has a unique component sq with sq £ Fq, and 
that the map taking s to this component sq is a homomorphism onto Q. Since V2 
is closed with respect to direct product, subautomata and homomorphic images, 
it follows that Q is in V2. If Q £ Vi is not generated by a single state, then Q is 
a quotient of the disjoint sum of its (maximal) one-generated subautomata. Since 
q-varieties are closed with respect to disjoint sum, it follows by the above argument 
that Q £ V2. Finally, the fact that the assignment V V is surjective can be 
seen as follows. Given an 1-variety V, consider the stream V of automata that only 
accept languages in V, so that Q = (Q, £, •) £ V iff for each qo £ Q and F C Q it 
holds that the language accepted by Q with initial state qo and set of final states 
F is in V. Then V is a q-variety mapped to V. Indeed, the closure properties 
of V guarantee that V is a q-variety. Moreover, every language L £ £*V can be 
accepted by an automaton in V, namely the minimal automaton QL corresponding 
to L, since any language accepted by this automaton is a boolean combination of 
quotients of L. • 

Example 2.10. The 1-variety corresponding to L is the variety £ defined in Ex-
ample 2.3. For each M, the 1-variety corresponding to Cm is CM-
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Example 2.11. We call a finite automaton Q = (Q, E, •) nil-potent if there is an 
integer n such that qu = qv holds for all words u, v £ E* of length > n. (Note that 
the usual definition of nilpotent automata [9] requires that qu = q'v holds for all 
states q,q' and words u,v £ £* of length at least n.) Nilpotent automata form a 
-(--variety denoted N. The corresponding +-variety M of languages consists of all 
finite and cofinite languages in £*, for each alphabet E. 

Example 2.12. A finite automaton Q = (<3,E, ) is called definite if there exits 
some n > 0 such that for all q £ Q and u, v £ £*, if the suffixes of u and v of length 
at most n agree, then qu = qv. (Again, the usual definition of definite automata [9] 
requires more.) For example, any shift register (£", E, •) with u • a being the length 
n suffix of ua, for each u £ E n and a £ A, is definite. 

Definite automata form a +-variety D with corresponding +-variety of lan-
guages denoted V. We call T> the +-variety of definite languages. For each E and 
L C £*, we have L £ E* iff there is an integer n > 0 such that for all words 
u,v £ E* such that u and v have the same suffixes of length at most n, it holds 
that u £ L iff v £ L. (See [5].) 

Example 2.13. A finite automaton Q is called aperiodic, or counter-free [5], if 
M(Q) (or S(Q)) contains only trivial subgroups. Aperiodic automata form a *-
variety A with corresponding language variety A. We have that N C D C A and 
M CD C A. 

3 Cascade product 
We call a function r : E* -> A* sequential if r preserves prefixes, i.e., for all words 
u and v in £*, if u < v in the prefix order then T(U) < T(V). It then follows that 
for each word u £ E* there is a (unique) function, in fact a sequential function 
TU : £* A* with R(uv) = T(U)TU(V). If in addition r preserves the length of the 
words, then we call r a literal sequential function. 

Sequential functions are known to be the functions inducible by sequential trans-
ducers, and literal sequential functions by Mealy automata [9], which are a re-
stricted type of transducers. The (literal) sequential functions r : E* —> A* that 
can be induced by finite transducers obey the condition that the functions ru , 
u £ E* form a finite set. Such (literal) sequential functions are said to be of finite 
state. Note that any (literal) homomorphism is a finite state (literal) sequential 
function. 

Suppose that Q = (Q, E, •) is a finite automaton. A Mealy automaton [9] over Q 
is the extension of Q by an output alphabet A and an output function ¡JL : Q x E —> 
A. We let Q(A,n) denote this extension. Clearly, each state q £ Q may be used to 
induce a finite state literal sequential function ¡j,q : E* —• A* defined by /ig(e) = e 
and fxq(ua) = ¡j,q(u)fi(qu, a). We use Mealy automata extensions to define cascade 
products. 

Suppose that Q = (Q, E, •) and R = (R, A, •) are finite automata and suppose 
that we are given a Mealy automaton extension Q(A,n) of Q. Then the cascade 
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product of Q with R determined by /x is defined to be the automaton Q xM R = 
(iQ x R, E, •), where (q,r)-a = (qa,rfi(q,a)) = (qa,rnq(a)), for all q £ Q and r € R. 
Note that it follows by induction that (q,r) •u = (qu,rnq(u)), for all u £ E*. 

The semigroup theoretic concepts corresponding to the cascade product are the 
semidirect product and the wreath product, cf. [5, 12]. The following fundamen-
tal fact is a variant of Straubing's "wreath product principle" [4] to the cascade 
product. 

Proposition 3.1. A language is recognized by a cascade product Q x^R with initial 
state (qo,fo) iff it is a finite union of languages of the form K fl /x"1 (L), where K 
is a language recognized by Q with initial state qo and L is a language recognized 
by R with initial state ro • 

The cascade product may be extended to q-varieties. 

Definition 3.2. Suppose that V and W are q-varieties. The q-variety V * W ¿5 
that generated by all cascade products Q xM R with Q an automaton in EV, R an 
automaton in AW, and Q(A,n) a Mealy automaton extension of Q. 

It is immediate to prove that when both V and W are -I—varieties (*-varieties, 
respectively), then so is V * W. 

The 1-variety corresponding to V*W has the following description. The result is 
an adaptation of a similar characterization of languages recognizable by semigroups 
in the wreath product of two semigroup varieties, see [12]. 

Theorem 3.3. Suppose thatV and W are q-varieties with corresponding l-varieties 
V and W. Then for each E, the l-variety V * W corresponding to V * W contains 
exactly those languages in E* that are finite unions of languages of the form K fl 
/u-1(I<), where K £ E*V, L £ A*W and where n : £* —> A* is a sequential function 
induced by some state of a Mealy automaton extension of an automaton in V. 

We may as well require that the same finite state literal sequential function \i 
appears in all terms of the finite union. Theorem 3.3 relies on Proposition 3.1 and 
the following fact. 

Theorem 3.4. For any q-varieties V and W and any E, an automaton Q is in 
£ ( V * W ) iff Q is a quotient of a subautomaton of a cascade product Rx^S, where 
R £ EV and S £ AW such that i?(A,/x) is a Mealy automaton extension of R. 

Proof. Let K denote the stream determined by those automata Q that can be 
constructed as quotients of subautomata of cascade products of automata R £ V 
and 5 € W. It is clear that K C V * W . Also, K is easily shown to be closed with 
respect to subautomata, quotients, direct products and renaming. Moreover, K 
clearly contains all discrete automata. Hence, K is closed with respect to disjoint 
sum. It follows that V * W C K. • 

We say that a q-variety V is closed with respect to the cascade product if for any 
cascade product Q x^R with Q,R £ V, it holds that Q xM R £ V. For example, 
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N ,D , A are all closed with respect to the cascade product, cf. [5]. Moreover, for 
any set M of positive integers, Cm is closed with respect to the cascade product, 
as is any q-variety of autonomous automata. 

We omit the straightforward proofs of the following facts. 

Proposition 3.5. Any q-variety contained in L is closed with respect to the cascade 
product. If V and W are q-varieties such that V is contained in L and W is closed 
with respect to the cascade product, then V * W is also closed with respect to the 
cascade product. 

Proposition 3.6. Suppose that {Vj : i £ 1} is a directed set of q-varieties and 
V = Uie / V t - Then for any q-variety W, we have V-kW — \Ji€lVi*:W. Suppose 
that Vi denotes the l-variety corresponding to Vj, for each i £ I, and suppose that 
V denotes the l-variety corresponding to V. Then for any l-variety W, it holds that 
V*W = U i6/(Vi*W). 

Thus, the * operation is continuous in its first argument. In a similar way, it is 
continuous in its second argument. 

As an immediate application of Proposition 3.6 we have that 

Cm * V = (J C d * V 
d€(M] 

and 

CM * V = ( J Cd*V, 
de(M] 

for all q-varieties V and 1-varieties V, and for all M C Nat. 

4 Varieties CM * V 
In this section, we study q-varieties of the form Cd * V and Cm * V, and the 
corresponding 1-varieties CD*V and CM * V. 

Definition 4.1. For any automaton Q = (<3,£,-) and integer d > 0, let Q^ 
denote the automaton (Q,Y,(d\ •), where T,^ consists of all letters (u), where u is 
any word of length d in £*, i.e., any element o}Hd, and where 

q-(u) = qu, 

for all q £ Q and u £ £d. 

Thus, Q^ arises from Q by letting the words in £* of length d be the input 
letters. For each u £ £ d , the function induced by (u) in Q^ is the same as the 
function induced by u in the automaton Q. Besides we will also use the 
automaton Q[d\ which is the extension of Q^ by a letter ao inducing the identity 
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function Q-+Q. Thus, Q(d) = (Q, £ ( d ) U {a0}, •), where q • a0 = q, for all q £ Q, 
and where for all q £ Q and u £ q • (u) is defined as above. Note that the 
monoids M(QW) and M{Q[d)) are both isomorphic to the submonoid Md{Q) of 
the monoid M(Q) of automaton Q consisting of all functions Q Q induced by 
those words in S* whose length is a multiple of d. 

Proposition 4.2. Each, automaton Q is a homomorphic image of a cascade product 
of an automaton which is a direct product of a counter of length d with a shift 
register, and the automaton Q^. 

Proof. Suppose that Q = (Q, £ , •), so that Q[d) is (Q, £<d> U {<z0}, •) defined above. 
Let Cd denote the counter of length d whose input alphabet is £ and whose 

states are the integers in [d\, so that i • a = i + 1 mod d, for all i £ [d\ and a £ E. 
Let Dd-i denote the shift register of length d - 1 over £. Thus the states of Dd-i 
are the words in E d _ 1 , and the transition is defined so that for each u € E d _ 1 and 
a £ £, state u • a is the suffix of ua of length d— 1. Define 

/»:([(flx £ d _ 1 ) x E £ (d) U {a0} 

by 

(U u) a) = I a° i ^ d ~ 1 
" ' '' ' {ua) otherwise. 

We thus obtain the cascade product Q' = {Cd x Dd-1) xM Q[d\ We claim that 
there is a surjective homomorphism h : Q' —» Q. Indeed, for each state (( i ,u),q) of 
Q', define 

((i,u),q)h = qv, 

where v denotes the suffix of u of length i. In particular, ((0, u)yq)h = q, for all 
u £ E d _ 1 and q £ Q, so that h is surjective. We show that h is a homomorphism. 
Assume that ((¿, u),q) is a state of Q' and a £ E . li i ^ d — 1 then 

((i,u),q)ah = ((i + 1, u'a), q)h 
= qva 

= (((i,u),q)h)a, 

where v denotes the suffix of u of length i and u' the suffix of u of length d — 1. 
When i = d — 1, we have 

((d — l,u),q)ah = ((0 ,u'a),qua)h 
= qua 

= (((d-l,u),q)h)a, 

where u' is the same as above. • 



12 Z. Esik and M. Ito 

Remark 4.3. The same argument proves the following stronger version of Propo-
sition 4-2. Suppose that R is a subautomaton ofQsuch that for each q £ Q there 
exists a state r £ R and a word u 6 E* with |«| < d such that ru = q holds in Q. 
Then automaton Q is a homomorphic image of a cascade product of an automaton 
which is the direct product of a counter of length d with a shift register, and the 
automaton R. Indeed, if we replace Qwith R in the above proof, the same ar-
gument works. The assumption that each q £ Q be of the form ru with r £ R and 
|it| < d is needed to show that h is surjective. 

Recall that D denotes the -t—variety of definite automata, and that V denotes 
the corresponding -(--variety of definite languages. Note that for any *-variety V 
of automata and for any automaton Q and d > 1, we have Q^ € V iff Q^f1 £ V. 
Corollary 4.4. Suppose that V is a q-variety such that D * V C V. Then for any 
integer d> 1 and automaton Q, if Q^ £ V then Q £ Cd * V. 

We now want to prove a certain converse of the above result. 

Proposition 4.5. Suppose that V is a *-variety of automata and d > 1. If Q £ 
Cd * V, then Q(d\ and thus Q[d\ is inV. 

Proof. First assume that Q is 1-generated, i.e., there exists a state qo in Q such 
that each state is accessible from go by an input word. If Q £ Cd * V then, by 
Theorem 3.4, Q is a quotient of a subautomaton R' of a cascade product of an 
automaton C in Cd and an automaton R in V. Since Q is 1-generated, without 
loss of generality we may assume that so is R'. But in that case C may be chosen 
to be 1-generated as well, so that C is a counter in Cd and is thus a quotient of a 
counter of length d. We conclude that Q is a homomorphic image, with respect to a 
homomorphism h, of a subautomaton R' = (R', E, •) of a cascade product Cd xM i?, 
where Cd = ([d], E, •) is the counter of length d with ia = i + 1 mod d, for all i 6 [d\ 
and a 6 E, and R = (R, A, •) is an automaton in V. For each i € [d\, let Rz denote 
the set of all states r £ R such that G R'. It is clear that Ri / 0. Moreover, 
let hi : Ri ^ Q be defined by r K> h((i,r)), for all r € Ri. We turn each Ri into an 
automaton Ri = (Rn, •) with input letters in the set £(d). For each r € Ri and 
u £ Ed , let r • (u) = rm(u), the image of r with respect to the word which is the 
image of u with respect to the sequential function induced by state i of the Mealy 
extension Cd(A, ¡i). Since V is a *-variety and R £ V, it follows that each Ri is in 
V. Indeed, Ri can be constructed from R* by renaming and taking subautomata. 
Also, each hi is a homomorphism Ri —> and since h is surjective, each state 
in Q appears as the image of some state in Uigjd] Thus, the disjoint sum of the 
Ri can be mapped homomorphically onto proving that Q^ is in V (since V 
is closed with respect to disjoint sum). 

In the general case, Q is a quotient of the disjoint sum of its 1-generated sub-
automata Qi,...,Qn- If Q 6 Cd * V then each Qi belongs to Cd * V. Thus, by 
the above argument, we have Q^ £ V, for each i. Since V is closed with respect 
to disjoint sum, it follows that the disjoint sum of the Q ^ is also in V. But 
is a quotient of this disjoint sum, so that QW £ V. • 
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Call a q-variety V decidable if there is an algorithm to decide for any given 
automaton Q whether or not Q belongs to V. Similarly, call an 1-variety V de-
cidable if there is an algorithm to decide whether or not a regular language (given 
by an automaton or a regular expression) belongs to V. From Corollary 4.4 and 
Proposition 4.5 we have: 

Theorem 4.6. For any *-variety V of automata with D * V C V, and for any 
d > 1 and automaton Q, we have that Q E Cd * V iff Q^ E V. Thus, if V is 
decidable, then so is C¡¿*V. 

A first characterization of the languages in the variety Cd * V, where V is any 
1-variety of languages, may be obtained from the wreath product principle. Let 
E denote an alphabet and consider the E-counter Cd — ([d],E, •) with i • a = 
i + 1 mod d, for all i £ [d\ and a 6 E. Consider the alphabet [d\ x E and the 
identity function iTd • [ci] x E —¥ [d\ x E. Let Cd denote the literal sequential 
function induced by the Mealy extension Cd([d] x E, Hd) in state 0. Then any 
literal sequential function a : E* —> A* induced by a state of a Mealy extension 
of an automaton in Cd can be factorized as the composition of od with a literal 
homomorphism r : ([ci] x £)* —> A*. Thus, by the wreath product principle we get: 

Proposition 4.7. A language L C E* belongs to Cd*V iff L can be written as 

L = U t E ^ n or-i^), 
i€[d] 

for some languages Ki € ([d\ x £)*V, i 6 [d\-

When V corresponds to a *-variety V with D * V C V, we can use Theorem 4.6 
to derive an alternative characterization of the languages in Cd * V. 

Suppose that L C £* and d > 1. We define 

L{d) = {(uo) • • • (uk-i) : Uo • • • Mfc-i £ L, m € £d, i E [A;]}, 

so that LW c (£(d))*. Moreover, for each u E £* with \u\ < d, we define L ^ = 
(Lu- l )W. Thus, L ^ and each L ^ is a language in (E^)* , moreover, L ^ = 

Theorem 4.8. Suppose that V is a *-variety of automata with D * V C V, and 
suppose that V denotes the language variety corresponding to V. Then for any 
integer d> 1 and language L C £*, if L £ Cd*V then € V, for all w e E* 
with M < d. Moreover, if L^^ E V, for all u 6 E* with |u| < d, and ifV is closed 
with respect to right (or left) concatenation with letters, then L £Cd*V. 

Proof. Suppose first that L is in E*(Cd * V). Then L can be recognized by an 
automaton Q in Cd * V. By Theorem 4.6 we have that Q^ E V. But each of the 
languages L^d'u\ where u E £* with |u| < d can be recognized by For if L 
is recognized by Q ~ (Q, E, •) with initial state q0 and final states F, then Z,(d>") 
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is recognized by Q^ with initial state qo and final states Fu = {q 6 Q : qu € F}. 
Thus, each L(d-u) belongs to V. 

Suppose now that each belongs to V, for any u 6 E* with |u| < d, so 
that each L(d'u) can be recognized by some automaton Qu in E ^ V . For each u, 
let Ru = Qu x (U;fc6[d]Efc). We turn Ru into a E-automaton (Ru, E, •) by defining, 
for each (q,v) € Ru and a £ E, 

(q,v) a — | otherwise. 

Let Q'u = (q,e), q £ Qu- Then Q'u determines a subautomaton of R^ which 
is isomorphic to Qu• Moreover, (q, v) = (q,e)v, for each (q,v) € Ru- Thus, by 
Remark 4.3 and the assumption D * V C V, it follows that Ru belongs to Cd * V. 
Now for every u, the language Lu = (Lu"n (£d)* can be recognized by Ru, so 
that Lu G Cd*V. Since L = Uues-, |u|<d ^ follows now that L is in C¿*V. • 

Corollary 4.9. Under the assumption of Theorem 4-8, ifV is deeidable, then so 
is Cd * V. 

Proof. This follows either from Theorem 4.8 or from Theorem 4.6. • 

Corollary 4.10. Suppose that M C Nat and V is a q-variety with corresponding 
l-variety V. Suppose that D * V C V and that V is closed with respect to right 
concatenation by letters. An automaton Q is in CM * V i J there is some d £ (M] 
with QW € V. 

Moreover, a language L C S * is in CM * V iff there is some d G (M] 
such that L(d<u) £ V for each u E £* with |u| < d. 
Remark 4.11. Suppose that V is a q-variety with corresponding language variety 
V. / / V * D C V, then V is closed with respect to right concatenation by letters. To 
see this, suppose that Q = (Q, E, •) is an automaton in V that accepts the language 
L with initial state qo and set of final states F. Moreover, suppose that ao is a letter 
in E. We turn the set R = {e} U (Q x E) into a (Q x E)-automaton by defining 

x{q,a) = (q,a), 

for all x £ R and (q, a) G Q x E. It is clear that R is a definite automaton, in fact 
a reset automaton. Then let Q' be the T.-automaton 

Q xm R, 

where n is the identity function Q x E —> Q x E. It is an easy matter to show that 
the language accepted by Q' with initial state (qo, e) and final states Q x (F x {ao}) 
is Lao-

In particular, if V contains D and is closed with respect to the cascade prod-
uct, then the language variety corresponding to V is closed with respect to right 
concatenation by letters. 
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5 Degree of aperiodicity 
Following [1, 16], we call an automaton Q = (Q, S, •) quasi-aperiodic if there is no 
n such that M(Q) (or S(Q)) contains a nontrivial group all of whose members can 
be induced by length n words. (In the terminology of [7], Q is quasi-aperiodic if no 
nontrivial group divides M(Q) in "equal lengths". ) 

It is clear that any aperiodic automaton is quasi-aperiodic. On the other hand, 
a counter of length > 1 is quasi-aperiodic, but not aperiodic. Let QA denote the 
stream of quasi-aperiodic automata. The following theorem is a rephrasing of a 
result due to Barrington, Compton, Straubing and Therien. In its original formu-
lation, the theorem involved the wreath product instead of the cascade product. 

Theorem 5.1. (Barrington et al. [1]) QA = C * A . Thus QA is a q-variety. 

It is a well-known consequence of the Krohn-Rhodes theorem [5,16] that A*A C 
A, in fact equality holds. Thus, by Proposition 3.5, QA is also closed with respect 
to the cascade product. Moreover, since D C A, we have that D * A C A. Thus, 
by Theorem 4.6 we have: 

Corollary 5.2. For any d> 1 and automaton Q, we have Q £ iff Q^ £ A. 

Corollary 5.3. An automaton Q is quasi-aperiodic iff there is some integer d > 1 
such that Q(d) is aperiodic. 

Proof. If Q is quasi-aperiodic, then by Theorem 5.1, Q is in C * A. But since C is 
the union of the Cn where n is any positive integer, it follows that Q is in C^ * A, 
for some d > 1. Thus, by Corollary 5.2, Q^ is in A, so that Q^ is aperiodic. 

Assume now that Q^ is aperiodic, for some d > 1. Then, by Corollary 5.2 and 
Theorem 5.1, Q is in CD * A C QA. • 

Remark 5.4. Of course, it is possible to prove Corollary 5.3 without using Theo-
rem 5.1 and Corollary 5.2. Assume that Q^ is aperiodic for some d > 1. Then 
it cannot be the case that for some n, the set of all functions in M(Q) that can be 
induced by the length n words contains a nontrivial group G, since otherwise each 
element of G would be induced by a word of length dn, so that QW would not be 
aperiodic. The other direction can be verified by following the argument given in 
the proof of Theorem 5.10. 

Proposition 5.5. Suppose that Q is an automaton such that both Q^ and 
are aperiodic, where m,n > 1. If m and n are relative primes, then also Q is 
aperiodic. 

Proof. If Q is not aperiodic, then M{Q) contains a cyclic subgroup G = 
{go, • • • j 9p—i} °f prime order p > 1, where g0 = e denotes the unit. Unless g™ = e, 
it follows that each element of G can be induced by a word whose length is a mul-
tiple of m. (Indeed, if g™ = gt, where i ^ 0, then gi can be induced by a word 
whose length is a multiple of m. Since gi is a generator element of G, the same 
holds for any other group element.) But since Q(m) is aperiodic, this is impossible. 



16 Z. Esik and M. Ito 

We conclude that gj71 = e. In the same way, g" = e. But then p divides both m 
and n, a contradiction. • 

Corollary 5.6. Suppose that Q is an automaton such that both Q^ and Q^ are 
aperiodic. If d denotes the g.c.d. of m and n, then QW is also aperiodic. 

Corollary 5.7. An automaton Q is quasi-aperiodic iff there is a least integer d > 1 
such that Q^ is aperiodic. Moreover, for an integer n > I we have that Q^ is 
aperiodic iff this integer d is a divisor of n. 

Definition 5.8. The degree of aperiodicity, or aperiodicity degree of an automa-
ton Q is the least integer d such that Q^ is aperiodic, if such an integer exists. 
Otherwise the degree of aperiodicity of Q is oo. 

Thus, by Corollary 5.7, the aperiodicity degree of Q is finite iff Q is quasi-
aperiodic. 

For any set M of positive integers, we let Q A M denote the stream of automata 
whose aperiodicity degree is finite and belongs to (M]. In particular, A = Q A ^ j = 
QA 0 and QA = QAN a t . We also denote QA d = for each d > 1. 

Theorem 5.9. Suppose that M is a set of positive integers. Then Q A M = C m *A. 
Thus, Q A M is a q-variety closed with respect to the cascade product. 

Proof. Suppose that the aperiodicity degree d of Q is finite and is contained in (M]. 
Then Q^ is aperiodic, so that Q £ Cd *A, by Corollary 5.2. But Cd C CM, thus 
Q £ CM* A. 

Suppose now that Q £ CM* A.. Then since Cm is the union of all varieties CD, 
where d belongs to (M], it follows by Proposition 3.6 that Q £ Cd* A, for some 
such d. Thus, by Corollary 5.2, Q^ is aperiodic. But then the aperiodicity degree 
of Q divides d, so that it also belongs to (M). • 

Theorem 5.10. There exists an algorithm to compute the aperiodicity degree of 
an automaton. 

Proof. Barrington, Compton, Straubing and Therien showed in [1] how to decide for 
an automaton whether or not it belongs to QA. (See also [7].) Our result follows by 
a slight modification of their argument. Given Q = (Q, •), let M=m(Q) denote 
the set of all functions Q —» Q induced by the words in £ m , for each m > 0. 
Then, compute the sets M=1(Q), M=2(Q),... until a repetition occurs, i.e., until 
M=m(Q) = M=n(Q), for some m < n. Then also M=m+T(Q) = M=n+r(Q), for 
all r > 1. In particular, we have M=d{Q) = M=d+n-m(Q) for some m < d < n 
such that n — 77i divides d. Thus, M=d(Q) = M=2d(Q)> showing that M=d(Q) is a 
subsemigroup of M(Q). In fact, M=d{Q) is the semigroup of all functions inducible 
by words whose length is a positive multiple of d. If Q is quasi-aperiodic, then, 
by definition, this semigroup contains no nontrivial group. It follows that Q ^ is 
aperiodic. Thus, to compute the aperiodicity degree of Q it suffices to find the least 
divisor d' of d such that ' is aperiodic. On the other hand, if M=d does contain 
a nontrivial group, then Q is not quasi-aperiodic and thus its aperiodicity degree 
is oo. • 
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Corollary 5.11. Suppose that (M] is a recursive set. Then QA M is decidable. 

Remark 5.12. The opposite direction is immediate: if QAM is decidable then 
(M} is recursive. 

Since QA M is a q-variety, there is a corresponding 1-variety that we denote 
by QAM• We also denote QA{D) by QAd- In particular, QAS^} = QA\ = A 
and Q^Nat = QA, the 1-variety corresponding to QA. Since QA M is the union 
of the varieties QAd, where d is any element of the division ideal (M] generated 
by M, also QAM is the union of the QAd, where d is any member (M]. The 
languages belonging to A have been characterized by Schiitzenberger as the star-
free languages. 

Theorem 5.13. (Schiitzenberger [14]) A language L C E* belongs to A iff L can be 
constructed from the finite subsets ofY,* by the operations of set union, complement 
and concatenation. 

A similar characterization of QA was obtained in [1]. 

Theorem 5.14. (Barrington, Compton, Straubing and Therien [1]) A language 
L C E* belongs to QA iff L can be constructed from the finite languages in E* and 
the languages (Ed)*, d > 1, by the operations of union, complement and concate-
nation. 

In the rest of this section we prove a refinement of these results. 

Theorem 5.15. Let M denote any subset of the set of positive integers. A language 
L C £* belongs to QAM iff L can be constructed from the finite languages in E* 
and the languages (Em)*, where m € M, by the operations of union, complement 
and concatenation. 

In our argument, we will make use of the following characterization of QAd, 
which is an immediate consequence of Theorem 4.8 and the fact that A is closed 
with respect to right concatenation by letters (in fact, by Schiitzenberger's theorem, 
A is closed with respect to concatenation). 

Corollary 5.16. For any integer d> 1 and language L C £*, if L G QAd then 
L{d,u) € for a l l u e £» w i t h |w | < d Moreover, if L ^ € A, for all u e E* 
with |u| < d, then L G QAd-

Proof of Theorem 5.15. First note that the language (Ed)*, where d is any member 
of the division ideal generated by M can be constructed from the finite languages 
and the languages (Em)*, rri 6 M by the operations of union, complement, and 
concatenation. This follows from the following two facts. If mi and m,2 are positive 
integers andm denotes their least common multiple (l.c.m.), then (Em)* = (Em i)*fl 
(Em2)*. Moreover, if d is a divisor of m, then for some finite F, (Ed)* = (E m )*F. 
Thus, since QAM — UDE(M] QAD, in the rest of the argument we may assume that 
M is itself a division ideal. 
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Suppose first that L £ QAM• Since QAM is the union of the QAM with 
M £ M, there exists an integer d £ M with L £ QAD. Thus, by Corollary 5.16, 
all the languages L^D'U\ u £ £*, |u| < d are in A. By Schiitzenberger's theorem, 
Theorem 5.13, it follows that each with u £ E*, |u| < d can be constructed 
from the finite languages in ( E ^ ) * by using the operations of union, complement 
and concatenation. Hence, each language Ku = Lu~l D (Ed)*, where u £ E* with 
|u| < d can be constructed from the finite languages in £* and the language (£d)* 
by the operations of union, complement and concatenation. (Take complement 
relatively to (£d)*.) Since L - Uue£*, |u|<d^«u> s a m e holds for L. 

Suppose now that L can be constructed from the finite subsets of E* and the 
languages (Em)*, where M £ M by the operations of union, complement and 
concatenation. Let d denote the l.c.m. of those integers m for which (£m)* is 
used in the construction of L. If we can show that belongs to A, for each 
v £ E* with |u| < d, then it follows by Corollary 5.16 that L £ QAd, and thus that 
L £ QAM• We will show that for each u,v £ E* with |u|, |u| < d, the language in 

L{d,u,v) = {(X o) . . . (X f c_1) : k > 0 , ux0...xk-!V £ L} 

is in A. Now this follows by a straightforward induction argument using Schiitzen-
berger's theorem, Theorem 5.13, and the following facts. Let u,v £ E* with 
| u | , |u| < d, a n d let L,LI,L2 C E*. 

1. If L is finite, then so is L^u'v\ 

2. (Li U L2)^'u'v) - L[d'u'v) U 4 d ' u , u ) . 
3. (Lc)(d'u'v) = 
4. If the length of each word in Li is at least |m| and the length of each word in 

i 2 is at least M, then (L1L2)(d'u'") = U|wz |=d L{d'u'w){wz)L[d'z'v). 

5. If the length of each word in L\ is less than |w| and the length of each word 
in L2 is at least |v | , then ( L ^ ) ^ = {Jwz=u< w€Li L{d>z'v). 

6. If the length of each word in Li is at least |u| and the length of each word in 
L2 is less than \v\, then ( ^ L , ) ^ = U2lu=„, w e L 2 L^u'z). 

7. If the length of each word in Li is less than |u| and the length of each word 
in L2 is less than then (L\L2)l<d'u'v^ is finite. 

• 
Corollary 5.17. Suppose that (M] is a recursive set. Then there exists an algo-
rithm to decide for a regular language L C £* whether or not L can be constructed 
from the finite languages and the languages (Em)* with m £ M by the operations 
of union, complement and concatenation. 

Remark 5.18. The converse of the above corollary is immediate. If there exists 
an algorithm to decide for a regular language L C E* whether or not L can be 
constructed from the finite languages and the languages (£m)* with m £ M by the 
operations of union, complement and concatenation, then (M] is a recursive set. 
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Remark 5.19. By the first part of the proof of Theorem 5.15, it follows that a 
language L C E " is in QAM iff L is a finite union 

L = ( J Lun(Em)*u, 

where each Lu is in A and m G (M]. 

6 First-order logic 
The expressive power of first-order logic on words with a unary predicate corre-
sponding to each letter of the alphabet and < as the only numerical predicate was 
characterized by McNaughton and Papert [11]. We let FO[<] denote this logic. 
Thus, for any fixed alphabet E, the atomic formulas of FO[<] are the propositions 
Pa{x) and x < y, where a is any letter of E and x and y are variables. Formulas can 
be constructed from the atomic formulas by the boolean connectives V and ->, de-
noting disjunction and negation, and existential quantification. The other boolean 
connectives and universal quantification can be introduced as abbreviations. Free 
and bound variables are defined as usual. We may assume that no variable is bound 
two or more times in a formula, or in a finite set of formulas, and that any free vari-
able is different from any bound variable. Below we will denote syntactic equality 
by =. 

Suppose that (p is a formula with free variables in X, and suppose that w G E* 
and A : X -t [|tu|], i.e., A maps variables in X to "positions" in w. We say that 
(w, A) satisfies <p, denoted (w, A) |= <p, if 

• <p = Pa(x) and the letter in w at position xX is a, or 
• tp = x < y and xX < yA, or 
• <p = tpi V tp2 and (w, A) |= ipi or (w, A) f= y>2, or 
• <p = -iip and (w, A) ip, or 
• <p = (3a:)ip and there exists a function A' : X U {x} -> [|w|] which agrees with 

A on X such that (w, A') J= ip. (Here, by our conventions, we may assume 
without loss of generality that x £ X.) 

When X is empty, so that tp is a sentence, i.e., ip has no free variables, we write 
w \= tp and call the set {w G E* : w |= ip} the language defined by <p. Moreover, 
we say that a language L C E* is definable in FO[<] if there is a sentence <p which 
defines L. 

As before, we let A denote the ^-variety of aperiodic automata, and let A denote 
the corresponding *-variety of languages. 

Theorem 6.1. (McNaughton and Papert [11]) A language L C E* is definable in 
FO[<] iff L G E M . 

We refer the reader to [11]; and in particular to [16], for detailed proofs of 
Theorem 6.1. 
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Subsequently, Barrington, Compton, Straubing and Therien [1] considered the 
extension of first-order logic by atomic propositions of the form Cr

d{x), d > 1, r 6 [d\ 
meaning that position x in the word satisfies x = r mod d. Thus, using the above 
notations, (w, A) |= Cd(x) if and only if xX is congruent to r mod d. Since this logic 
is equivalent to the extension of FO[<] by all regular numerical predicates, see [15], 
we denote it by FO[R]. As before, let QA denote the 1-variety corresponding to 
the q-variety QA of quasi-aperiodic automata. 

Theorem 6.2. (Barrington et al. [1]) A language L C £* is definable in FO[R] 
iffLEZ*QA. 

For an integer d > 1, let FO[d] denote the fragment of FO[R] where only atomic 
propositions associated to the letters of the alphabet and propositions of the form 
x < y and Cd(x) are allowed. (It would be sufficient to allow only x < y and 
C°(x).) Moreover, for a set M of the positive integers, let FO[M] denote the union 
of the FO[d\ with d € M. Thus, FO[R] = FO[Nat] and FO[<] = FO[0]. 

Below we will write x < y as an abbreviation for ->(y < x), x = y + 1 for 
x < y A -i(3z)(a; < z A z <y), Last(x) for (Vj/)(j/ < x), True for ip V -up, where ip is 
a fixed sentence, and False for -iTrue. 

Proposition 6.3. A language L C £* is definable in FO[M] iff L is definable in 
FO[(M]]. 

Proof. This follows by the following two observations. 
1. If d is a divisor of m, say dk = m, then C%(x) can be expressed as V 

Ci(x) V . . . d M ( x ) . Moreover, for every r <E [d - 1], C^+l(x) can be 
expressed by (3y)(a; = y + 1 A C^{y)). 

2. If mi ,m2 > 1 and m denotes the l.c.m. of mi and mj , then can be 
expressed as C^x) A C^2(x). 

• 
By our previous results we can prove the following common extension of Theo-

rems 6.1 and 6.2. 

Theorem 6.4. Suppose that M is any set of the positive integers. Then a language 
LCI,* is definable in FO[M] iff L G E *QAM-

The proof of Theorem 6.4 will be completed at the end of the section. 

Proposition 6.5. Suppose that L C £* and d> 1. If L^ is definable in FO[<], 
then L n (£d)* is definable in FO[d], 

Proof. First we prove that for all <p G FO[<] with free variables in X there exists 
some ip' G FO[d] with free variables in X such that for all w G (E'd))* and A : X —i 
[Hi 

(w,X )\=ip iff (wh,K)\=(p', 
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where h denotes the homomorphism ( E ^ ) * —> E* defined by (u) u, for all 
u £ £ d , and where XK = d(xA), the product of the integers d and x\, for all x £ X. 
We prove this claim by induction on the structure of ip. 

• <p = P(U^(X), where u = ao • • • a<i-i- Then, writing XQ for x, we define 

<p' = (3xi)... (3xd-i) 
d—2 d—1 
A = x i + 1 A A P a i 
j=0 3=0 

<p = x < y. Then (p1 = x < y. 
<p = ipi V f2 • Then <p' = <p[ V <¿>2 • 
ip = . Then ip' = -lyi-
V = (3x)(^i. Then <£>' ee {3x){C°d{x) /K^). 

We now complete the proof of Proposition 6.5. Suppose that L ^ is defined by 
sentence tp in FO[<], Then L D (Ed)* is defined by tp' A (Vi)(Last(x) C^^x)). 

• 
Corollary 6.6. Suppose that L Ç E* and d > 1. If L ^ is definable in FO[<], 
for all u e S * with |u| < d, then L is definable in FO[d]. 

Proof. For each u € E* with |it| < d we have that L^-") = ( L u - 1 ) ^ ' . By Propo-
sition 6.5, it follows that if L ^ is definable in FO[<], then Ku = Lu'1 n (Ed)* 
is definable in FO[d], for each u £ E*, |«| < d. But then, using the formula 
^ = U«££*, |u\<dKuu> follows easily that L is definable in FO[d]. Indeed, if Ku 
is defined by ipu, where u = a0 ... a n _i £ E* with |tt| = n < d, then Kuu is defined 
by the formula ipu 

(3a;0)...(3a;n_i) 
n—2 n-1 
A Xi+i = Xi + 1 A A Pai(xi) A Last(xn_i) A </>„[< x0] 

Lt=0 ¿=o 

where y u [< xQ] is the relativization of (pu defined in the usual manner, cf. [16]. (If 
n = 0, so that there is no XQ, by this formula we mean ipu.) Finally, L is defined 
b y V „ 6 E M • 

Proposition 6.7. I f L Ç E* is definable in FO[dj, then L<-dî is definable in FO[<]. 

Proof. We prove the following claim. For all ip in FO[ri] with free variables in X 
and for all functions p \ X [d\ there exists a formula ip'p £ FO[<] with free 
variables in X such that for all words w £ (£(d))* and functions A : X -»• [|tu|], 

(w,\)\=tp' iff (wh,Kp)\= 

where h denotes the homomorphism (£(d))* E* given by (u) u, for all u £ Ed , 
and where XKp = (x\)d + xp, for all x £ X. We prove this claim by induction on 
the structure of ip. 
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• ip = Pa(x). Then ip'p is the disjunction of all of the P{u)(x) such that the 
letter of u on the (xp)th position is a. 

• ip = x < y. Then 

x < y if xp > yp 
x < y if xp < y p. 

J True if xp = r 
\ False if xp ^ r. 

• tp = ipi V tp2. Then (p'p = {tp[)p V (ip'2)p.. 
• tp = -iip. Then tp'p = -np'p. 
• tp = (3x)ip. Here we may assume that x is not in the set X. For each i £ [d\, 

let p[x i-)- i] denote that function X U {x} —> [d] which agrees with p on X 
and such that xp = i. Then we define 

^ = (3x) V iP'p[x^. 
ie{d] 

We now complete the proof of Proposition 6.7. Suppose that L C E* is defined 
by the sentence (p in FO[c£]. Let <p' be the corresponding sentence of FO[<] defined 
above. Then for all w £ ( E ^ ) * , 

w \= <p' iff wh |= tp. 

(Note that p is the empty function.) Thus, tp1 defines • 

Corollary 6.8. If L C E* is definable in FO[d], then for each u £ £* with |u| < d, 
L i s definable in FO[<]. 

Proof. Use the fact that L ^ = (Lu~l)W and that if L is definable in FO[eI], 
then so is Lu~l. • 

We are now in the position to complete the proof of Theorem 6.4. 

Proof of Theorem 6.4- By Corollaries 6.6 and 6.8, a language L C £* is definable 
in FOfdj iff L i s definable in FO[<], for each u £ £* with |u| < d. Thus, by 
the theorem of McNaughton and Papert, Theorem 6.1, and by Corollary 5.16, L 
is definable in FO[<i] iff L £ QAd- Since a language is definable in FO[M] iff it 
is definable in FO[cf), for some d in the division ideal generated by M, and since 
QAM is the union of the QAD where d is any integer in the division ideal generated 
by M, the result follows. • 

Corollary 6.9. Suppose that (M] is a recursive set. Then it is decidable for a 
regular language L whether or not L can be defined in FO[M]. 

Again, the converse direction holds obviously. 

tp = Cr
d{x). Then 

<PO = 
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7 Temporal logic 
The language LTL of Linear (Propositional) Temporal Logic [13] over an alphabet 
E has, as atomic formulas (or atomic propositions), the propositional constants pa 
associated with the letters a £ E. Formulas can be constructed from the atomic 
formulas by the boolean connectives V and ->, and the modalities X (next) and 
U (until). Other boolean connectives may be introduced as usual. Suppose that 
u £ £* and that tp is a formula. We say that u satisfies tp, denoted u \= tp, if 

1. tp = pa and u = av, for some a £ E and v £ £*, or 
2. tp = tpi V tp2, for some tpi and tp2, and u |= tpl or u |= tp2, or 
3. tp = ->V> f° r some formula ip, and it is not the case that u \=ip, or 
4. tp = Xip, for some ip, and u is of the form av with a £ E and v £ E* such 

that v |= ip, or 
5• tp = tp1Utp2, for some tp1 and tp2, and there exist v, w £ E* such that u = vw, 

w tp2, moreover, z j= tpi for all suffixes z of u properly including w. 
In this section we study the extension of LTL by a sort of modular counting 

which is different from the one considered in [2]. 
Suppose that M C Nat. For an alphabet E, the atomic formulas of LTL[M] 

are those of LTL together with an additional propositional constant \gd r, for each 
d £ M and r £ [d\. Formulas are constructed from the atomic formulas as above, 
so that if tp and ip are formulas, then so are tpVtp, -up, Xtp and tpUip. For all 
d £ M and r £ [d\, we define u (= lgd r iff the length of u is congruent to r modulo 
d. The semantics of the other constructs of LTL[M] are defined as above. When 
M = {d}, for some positive integer d, we write just LTL[d] for LTL[M]. Note that 
LTL[0] is just LTL. 

We say that a language L C E* is definable in LTL[M] if there is a formula tp 
of LTL[M] (with propositional constants corresponding to the letters of E) such 
that L = Lv = {u £ E* : u |= tp}. 

Example 7.1. For any m, n > 0 and u £ £*, we have that u |= lg„, 0 and u |= lgn 0 
iff u |= lgfe 0, where k denotes the least common multiple of m and n. Moreover, 
u \= lgmr, for r £ [m], iff u |= Xr\gm0, where XT is X... X with X appearing r 
times. Also, if n divides m, then u f= lgn 0 iff u |= Vi6[ro/„] 'gm,in-

By the above example, we have that LTL[M] is exactly as expressive as 
LTL[(M]], i.e., a language is definable in LTL[M] iff it is definable in LTL[(M]]. 
Moreover, when M is not empty, then a language is definable in LTL[M] iff it is 
definable in LTL[d\, for some d £ (M). 

The logic LTL[M] allows for several counting versions of the until modality. 
For any formulas tp and ip, and for any d £ M and r £ [d\, define tpU^d'°^ip to be 
the formula 

¿e[d] 



24 Z. Esik and M. Ito 

and define tpU^'^ip, r > 0 as 

ip A Xtp A . . . A Xr~ V A Xr{<pU{d'0)ip). 

Then we have u |= ipU^d'r^ip iff u has a decomposition u = vw such that w f= ip, 
is congruent to r modulo d, moreover, for all x, z with xz = u such that w is a 

proper suffix of z, it holds that z ¡= tp. 
A second counting version of the until modality can now be defined as follows. 

For all <p, ip and d, r as before, let tpU[d'°^ip be the formula 

V t ' g < M A H gd ,iV^)c/(d '°V]. 

(d r) Moreover, when r > 0, let ipU\ ' ip be the formula 

XT(vU[dfi)TP). 

We now have u 
\= <pu[d'r)4>, for u a word in £*, iff u has a decomposition u — vw 

such that w \= ip, is congruent to r modulo d, moreover, for all x,z with xz — u 
such that w is a proper suffix of z and |a;| is congruent to r modulo d, it holds that 
z\=<p. 

A last version of until involves several formulas. Suppose, as before, that 
d £ M, and suppose that ipo, - . . ,<Pd-i, ip are formulas of LTL[M], We define 
(<po,..., v?d_i)f/2d'°' ip as the formula 

V s A 

i€[d] 
A H g d j - v w O 

j,k€[d], j—k=i mod d 

U^ip) 

Thus, for all words u £ £*, we have u [= (t/?0, • • • ,<Pd-lW^'^ip iff u has a decom-
position u = vw such that w \= ip, |i>| is congruent to r modulo 0, moreover, for all 
x, z and i £[d\ with xz — u such that w is a proper suffix of z and is congruent 
to i modulo d, it holds that z \= tpi. The modalities U^'^ with r £ [d\, r ^ 0, 
which have a similar semantics, can be introduced in the obvious way. Of course, 
the propositional constants lgd can in turn be defined using either version of until. 

Remark 7.2. The last version of the until modality shows that the extension of 
LTL by counting is a particular case of Wolper's extension of temporal logic by 
grammar (or finite automaton) operators, cf. [22, 21]. 

We introduce several abbreviations. First, let True = pa V ->pa, where a is any 
letter in £, and let False = ->True. Moreover, let End denote the formula / \ a g E ->pa, 
so that for all u £ £*, we have u End iff u = e. Finally, for any formula tp, let 
0 ( d ' r V stand for Truei/(d ' rV and D ^ V for The modalities 0 and • 
are defined as usual. 
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Example 7.3. Let E = {a, b}. If tp is the formula ()(2'0)End, then Lv, the language 
defined by <p is (E2)*. Moreover, if ift = paU^'°\a(pb V End)), then L^ is the 
language (a2)*b*. 

In his thesis [10], Kamp proved that temporal logic with past and future modali-
ties is expressively complete in the sense that it can express every first-order property 
of words. Subsequently, it has been shown in [8] that future (or past) modalities 
alone suffice. An algebraic proof of this result, based on the Krohn-Rhodes de-
composition theorem for finite semigroups and automata [5, 16], was later given by 
Cohen, Perrin and Pin in [4]. See also Th. Wilke, [20]. 

Theorem 7.4. (Kamp [10], Gabbay et al. [8]) A language L C S * is definable in 
LTL iff L is definable in FO[<], 

Hence, L is definable in LTL iff L is in A. Our aim is to prove the following 
counting extension of Kamp's theorem. 

Theorem 7.5. For any set M of positive integers, a language L C S* is definable 
in LTL [M] iff L is definable in FO[M], 

In our proof of Theorem 7.5, we will use: 

Proposition 7.6. Suppose that L C E*; d > 1 and v G E* with |i;| < d. If £(<*'") 
is definable in LTL, then L n (Ed)* v is definable in LTL[cf). 

Proof. First we show that for every formula tp of LTL there is a formula tp' of 
LTL[d] such that for all words w G ( E ^ ) * it holds that w (= tp iff (wh)v \= tp', 
where h denotes the homomorphism ( E ^ ) * E* defined by (w) i-> w, all w £ Ed . 
We construct tp' by induction. 

• tp = p(u), where u = a0 •. • ad-1. Then 

tp' = ^ M ^ A . - . A ^ V i -

where Xntp is X... Xtp with X appearing n times. 
• tp = ^ v tp2. Then tp' = tp[ V tp'2. 
• tp = -«ft. Then tp' = -iift'. 
• tp = Xift. Then tp' = Xdip'. 
• tp = VlUtp2. Then tp' = tp^U^tp'z. 

Suppose now that is defined by tp. Then the formula 

<p' A 0(d,O) (Pao A Xpai A . . . A X ' - i p ^ A X'End) 

defines L n (Ed)*v, where v = a0 ... ai-i and tp' denotes the formula constructed 
above. • 

Corollary 7.7. Suppose that L C E* andd> 1. If L ^ is definable in LTL, for 
each u G £* with u G E*, |u| < d, then L is definable in LTL[d\. 
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We are now ready to prove Theorem 7.5. 

Proof of Theorem 7.5. It is well-known that temporal logic can be embedded in 
first order logic. Thus, any language definable in LTL is definable in FO[<]. The 
proof goes by formula induction, essentially by formalizing the definition of the 
semantics of LTL in first-order logic. It is easy to show in the same way that any 
language definable in LTL[M] is definable in FO[M], 

Suppose now that L is definable in FO[M]. Then L is definable in FO[d], for 
some d 6 (M]. Thus, by Corollary 6.8, is definable in FO[<], for each u € £* 
with |u| < d. Thus, by Theorem 7.4 and Corollary 7.7, L is definable in LTL[<i], 
hence in LTL[(M]] and in LTL[M]. • 

8 Summary and future results 
Our main results can be summarized in a single statement that establishes the 
equivalence between four descriptions of the same class of languages. 

Corollary 8.1. Suppose that M is a set of the positive integers. The following 
conditions are equivalent for a language L C £*: 

1. L can be constructed from the finite subsets of E* and the languages (£m)*, 
where m € M, by the Boolean operations and concatenation. 

2. L can be defined by a formula o/LTL[M]. 
3. L can be defined by a formula o/FO[M]. 

4- L can be accepted by a finite automaton whose degree of aperiodicity belongs 
to (M] (or equivalently, the minimal automaton accepting L is finite with 
aperiodicity degree contained in (M]). 

As mentioned above, this result is a common extension of those obtained in 
[1, 8, 10, 11, 14]. In fact, we have shown that Corollary 8.1 is easily derivable from 
the classical results of Schiitzenberger [14], McNaughton and Papert [11], Kamp [10] 
and Gabbay et al. [8], using Corollary 4.10, which is in turn based on Theorem 4.8 
and Theorem 4.6. (Of course, it is possible to prove Corollary 4.10 without using 
Theorem 4.6.) 

Some of the implications of Corollary 8.1 are quite obvious. It is clear that 
the second condition implies the third as does the first. The fact that the second 
condition implies the first can be proved by generalizing an argument from [4] 
which concerns the case when M is empty. That the third condition implies the 
fourth can also be shown directly using Ehrenfeucht-Fraisse games, following the 
usual argument establishing the fact that any language definable in FO has an 
aperiodic syntactic monoid. In the classical case, i.e., when M = 0, there are also 
known direct arguments establishing that the last condition implies the second. One 
argument is based on (a weak form of) the Krohn-Rhodes decomposition theorem, 
and can be found in [4]. A more elementary argument is given in [20]. Both 
arguments can be generalized to any given set M of moduli. 
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Theorem 4.8 and Theorem 4.6 are also very useful in the characterization of 
the expressive power of other variants of first-order and temporal logic. Various 
fragments of LTL have been studied in [4] and [20]. In a forthcoming paper, we 
will characterize the expressive power of the extension of most of these fragments 
by counting. In [16, 17], the expressive power of first-order logic with modular 
quantifiers with respect to any given set of moduli has been characterized, as well as 
the expressive power of first-order logic with modular quantifiers and the predicates 
C^(x), where m is any positive integer and r 6 [m]. Using Theorem 4.8 and 
Theorem 4.6, we can give a characterization of the expressive power of the extension 
of first-order logic with any collection of modular quantifiers and any collection of 
predicates C^(x). A further natural research topic is to extend these results to 
w-languages. 
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On DOL systems with finite axiom sets 

Juha Honkala* 

Abstract 

We give a new solution for the language equivalence problem of DOL sys-
tems with finite axiom sets by using the decidability of the equivalence prob-
lem of finite valued transducers on HDTOL languages proved by Culik II and 
Karhumaki. 

1 Introduction 
The language equivalence problem for DOL systems with finite axiom sets was solved 
in [4]. The problem turns out to be much more difficult for DFOL systems than for 
DOL systems. The main idea in [4] is to decompose a given DFOL language in a 
canonical way into finitely many parts such that no part contains two words with 
equal Parikh vectors. This makes it possible to use ideas from [8]. The resulting 
algorithm gives a lot of information concerning the structures of the languages 
generated by two equivalent DFOL systems. Also the equivalence problem for DFOL 
power series over a computable field is solved in [4]. 

The purpose of this paper is to give a new solution of the DFOL language 
equivalence problem. The new proof for the decidability of the problem avoids many 
difficulties in [4] but fails to give precise information about language equivalent 
DFOL systems. In that respect it resembles the solutions of the DOL equivalence 
problem based on Hilbert's basis theorem which also are short but do not, for 
example, give any bounds for the problem (see [3]). 

Our new solution again uses methods from [8] which in turn use ideas from 
[1]. In addition, we use the decidability of the equivalence problem of finite val-
ued transducers proved by Culik II and Karhumaki [2]. In this way we obtain a 
solution of the DFOL language equivalence problem which is essentially based on 
commutative methods (see [5]). 

For further background and motivation we refer to [6, 7, 8, 9, 10, 4]. It is 
assumed that the reader is familiar with the basics concerning DOL systems and 
their generalizations such as HDTOL systems, see [6, 7]. 
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2 Definitions and earlier results 
Let X — {xi,... ,Xk) be an alphabet with k > 1 letters. The Parikh mapping 
ip :X* —• N* is defined by 

1p{w) = {#Xl{™), •••,#xk(v>)), 

for w G X*. Here # I ; (ui ) is the number of occurrences of the letter Xi in the word 
w. The length of a word w is denoted by |iu|. The length of the empty word e 
equals zero. 

A DOL system is a triple G = {X, h,w) where X is a finite alphabet, h : X* —> 
X* is a morphism and w G X* is a word. A DFOL system is obtained from a DOL 
system by replacing the word w by a finite set F. Hence, a DFOL system is a triple 
G = (X,h,F) where X is a finite alphabet, h : X* —> X* is a morphism and 
F C X* is a finite set. 

The sequence S(G) and the language L(G) of the DOL system G = (X, h, w) are 
given by 

S(G) = (hn(w))n> o 

and 
L(G) = {hn(w) | n > 0}. 

The language L{G) of the DFOL system G = (X, h, F) is defined by 

L{G) = {hn(w) | w G F, n > 0}. 

Below we will discuss also DTOL and HDTOL systems. By definition, a 
DTOL system is a construct (X,hi,... ,hn,u>) such that n > 1 is an integer and 
(X,hi,w) is a DOL system for 1 < i < n. An HDTOL system is a construct 
G = (X, Y, hi,..., hn, hy w) such that (X, hi,..., hn, w) is a DTOL system (called 
the underlying DTOL system of G), Y is a finite alphabet and h : X* —> Y* is a 
morphism. 

Let G = (X, Y, hi,..., hn, h, w) be an HDTOL system and let Zn = {zi,..., 
znj be an alphabet with n letters. Then the sequence of G is the mapping S(G) : 
Z*n —> Y* defined by 

S (G) {zh ... zim) = hhim ...hh{ w) 

for m > 0, 1 < ¿ i , . . . ,im < n. The sequence of a DTOL system ( X , hi,..., hn, w) 
equals the sequence of the HDTOL system (X , X, hi,..., hn, g, w) where the mor-
phism g : X* —» X* is defined by g(x) = x for all x € X. 

A finite transducer is a construct r = (Q, A, s0,F, E) where Q is the finite 
set of states, £ and A are the input and output alphabets, respectively, so G Q is 
the initial state, F C Q is the set of final states and E CQ xT,* xA* x Q i s the 
finite set consisting of the transitions of r . If U G £* and v G A* we write v G T(U) 
if there is an accepting computation of r having input u and output v. Let k be 
a nonnegative integer. A transducer r is called k-valued if for all u G the set 
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T(U) contains at most k words. Finally, a transducer r is called finite valued if it is 
k- valued for some k. 

The following important result is due to Culik II and Karhumaki, [2]. Here two 
transducers T\ and r2 are called equivalent on a language L if n (u) = T2 (U) for all 
u E L. 

Theorem 1. It is decidable whether two finite valued finite transducers are equiv-
alent on a given HDTOL language. 

3 The HDTOL covering problem 
In this section we discuss the HDTOL covering problem which is a useful tool in 
the study of the DFOL language equivalence problem. It would suffice to consider 
the DOL covering problem but this would not simplify the discussion. 

Let Hi = (Xi , Yi, hn,..., hin, hi, w,), 1 < i < k + 1, be HDTOL systems. Then 
we say that the first k sequences S(Hi) cover the last sequence S(Hk+i) if 

S(Hk+1)(u) E {S(ffi)(u) | 1 <i<k} 

for all u E Z*. If k = 1, then S(Hi) covers S(H2) if and only if H\ and H2 are 
sequence equivalent. If k > 1, the covering relation generalizes sequence equivalence 
by allowing finitely many alternatives for each term of S(Hk+1). 

Let Hi, 1 < i < k + 1, be as above. By the HDTOL covering problem we under-
stand the problem of deciding whether or not S(Hi), 1 < i < k, cover S(Hk+i). To 
reduce the covering problem to the equivalence problem of finite valued transducers 
one lemma is required. 

Lemma 2. Let Hi = {Xt, Yi, hn,..., hin, hiy Wi), 1 < i < k, be HDTOL systems. 
Then there is a DTOL system H = (X, fi, ...,/„, w) and finite valued finite trans-
ducers TI for I C {1, . . . , k} such that 

r /(5(ff)(u)) = {S(Hi)(u) | i e / } (1) 

for all u£Z*n. 

Proof. We may assume that the alphabets Xi, 1 < i < k, are pairwise disjoint. 
Denote X = X1 U . . . U Xk, Y = Yi U . . . U Yk and let f j : X* —• X* be the 
morphism such that 

f j ( x ) = hij(x) 

whenever x E Xi, 1 < i < k, 1 < j < n. Denote w = wi ... wk and consider the 
DTOL system H = (X, fu ..., fn,w). 

Let Hi = (Xi, hn,..., hin, Wi) be the underlying DTOL system of Hi, 1 < i < k. 
Then we have 

S(H)(u) = S(Hi)(u)... S(Hk)(u) (2) 

for u E Z*n. 
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Let now I C {1. . . . , /c} be a nonempty set and let 77 be a transducer defined 
as follows. The input alphabet of 77 is X and the output alphabet of 77 is Y. The 
state set of 77 is {90} U {qi \ i £ 1} where qo is the initial state and {<7; | i £ I} is 
the final state set. The set E of transitions is defined by 

E = {(qo,£,e,qi) \i € / } U 
{(qi,x,hi(x),qi) | i £ / and x £ Xi} U 
{(qi,x,£,qi) | i el and x g Xi}. 

Then TJ is finite valued and (2) implies (1) for all u € Z*. • 

Theorem 3. The HDTOL covering problem is decidable. 

Proof. Let Hi = (Xi,Yi,hn,... ,hin,hi,Wi), 1 < i < k + 1, be HDTOL systems. 
Denote I = {1, . . . , fe} and J = {1, . . . , k + 1}. By Lemma 2 there exist a DTOL 
system H = (X, / 1 , . . . , /„, W) and finite valued finite transducers 77 and TJ such 
that 

rj(S(H)(u)) = {S(Hi)(u) ¡ i G l ) 

and 
TJ(S(H)(U)) = {S(HJ)(U) I J E J } 

for all u £ Z*n. Now 

T!(S(H)(u)) = TJ(S(H)(U)) fo r al l u £ Z*n (3) 

if and only if 

S{Hk+1)(u) £ {S{Hi)(u) | 1 < i < k} for all u £ Z*n. 

The claim follows because by Theorem 1 we can decide the validity of (3). (Here 
we use Theorem 1 for DTOL languages.) • 

4 The DFOL language equivalence problem 
Let X be an alphabet with k > 1 letters and let %}) : X* —> Nk be the Parikh 
mapping. If K C N a we denote 

1>-l(K) = {w£X* | iP(w) £ K). 

Lemma 4. Let G = (X,h,F) be a DFOL system and let u £ F. Assume that 
{hl(u) | i > 0} is an infinite set. Then there exist an integer s > 0, integers 
ni,...,ns and words ... ,us £ F such that 

f ' t ^ W j n L f G ) = {hn+^(Ul),...,hn+n>(Us)} 

for almost all n > 0. 
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Proof. We will show that if v G F then either 

(%phn(u)) fl {h{(v) | i > 0} = 0 (4) 

for almost all n > 0 or, otherwise, there exists an integer m such that 

i>~l(i!>hn{u)) n |» > 0} = {hn+m(v)} (5) 

for almost all n > 0. (Here and in the sequel we say that a property holds for 
almost all n if there is an integer no such that the property holds for all n > no.) 

First, if {hl(v) | i > 0} is a finite set then (4) holds for almost all n > 0. Suppose 
{h*(v) I i > 0} is infinite. Then 

iphi(v)?il>hi(v) if i ^ j . 

Now, if there exist integers mi and m2 such that 

iphmi{u) =iphm2(v) (6) 

then (5) holds for almost all n > 0 if we set m = rn2 — mi. Finally, if (6) holds for 
no values of mi and m 2 then (4) holds for all n > 0. • 

Let G = (X, h, F) be a DF0L system. A word sequence (wn)n>o is called a 
subsequence of G if there exist w e L(G) and a positive integer a such that 

wn = han{w) 

for all n > 0. In Section 3 we have explained what it means that a given DOL 
sequence is covered by finitely many given DOL sequences. We now define this 
notion for DF0L systems. 

Let Gi = (X,hi,Fi), i = 1,2, be DF0L systems. Then G2 is said to cover G\ if 
for all u € Fi there exist a nonnegative integer r and a positive integer k such that 
for all integers j, 0 < j < k, the sequence (h'ln+j+r(u))n>0 is covered by finitely 
many subsequences of G2 . 

L e m m a 5. Let Gi = (X, hi, Fi), i = 1,2, be DF0L systems. Assume that L(Gi) = 
L(G2) and that alph(w) = X for all w G L(Gi). Then Gi and G2 cover each other. 

Proof. Let Gi = (X,h i ,F i ) , i = 1,2, be DF0L systems such that L(GX) = L{G2) 
and alph(w) = X for all w G L(Gi). If L(Gi) is finite the claim holds. Assume 
that L(Gi) is infinite. Without restriction assume also that card(f \ ) = card(F2). 
(If necessary, we replace Fi by the set {h{(u) | u G F i ,0 < j < card(F2)} and F2 

by the set {hJ
2{v) \ v G F2,0 < j < card(Fi)}.) Denote t = card(Fi), 

Fi = {wo, • • • , « t - i } 

and 
F2 = {iJ0,... ,i;t_i}. 
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Further, denote k = card(X) and let P(xi,... ,xk) be a polynomial with nonnega-
tive integer coefficients such that the mapping P : Nk —> N is injective (see [8]). 
Define the mappings / : N —> N and g : N —> N by 

f(ti+j) = P№h\(Uj)) 

and 
g(ti + j) = P^hUvj)) 

for i > 0 and 0 < j <t. Then / and g are DOL growth functions (see [8]) and 

{/(n) I n G N} = {g(n) I n G N}. 

Hence there exist integers a > 1, r > 0, xk > 1 and yk > 0 for 0 < k < a such that 

f{an + k + r) = g(xkn + yk) 

for n > 0, 0 < k < a (see [1]). Without restriction we assume that t divides a and 
that't divides xk for all 0 < k < a. Denote a = bt. Fix uG.Fi. It follows that there 
is an integer /3 > 0 such that for all integers a, 0 < a < b, there exist Vja G F2 and 
integers qa > 1, pa > 0 such that 

iPhb
1
n+a+0(u)=i>hl°n+p°(vja) 

for n > 0. Because L{G\) = L(G2) we have 

h\n+a+?{u) G f ' ^ ^ K D n l t f t ) 

for n > 0. 
Next, fix a, 0 < a < b. Because alph(u,Q) = X, the set {h\(vja) | i > 0} is 

infinite. By Lemma 4 there exist an integer s > 0, integers n\,... ,ns and words 
w i , . . . , ws G F2 such that 

for almost all n > 0. Hence 

h»n+a+/j(u) G { ^ . ^ ( m ) ^ ^ ( n , , ) } 

for almost all n > 0. In other words, G2 covers G\. It is seen similarly that G\ 
covers G2 • • 

Theorem 6. It is decidable whether or not two given DF0L systems are language 
equivalent. 

Proof. It suffices to consider DF0L systems G = (X, h, F) such that alph(w) = X 
for all w G L{G) (see [8]). The claim follows because there exists a semialgorithm for 
equivalence and there exists a semialgorithm for nonequivalence. The existence of 
a semialgorithm for equivalence follows by Theorem 3 and Lemma 5. (Here we use 
Theorem 3 for DOL systems.) The existence of a semialgorithm for nonequivalence 
is clear. • 
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On directable nondeterministic trapped automata* 

B. ImrehJ Cs. Imrehj and M. Ito* 

Abstract 
A finite automaton is said to be directable if it has an input word, a 

directing word, which takes it from every state into the same state. For 
nondeterministic (n.d.) automata, directability can be generalized in several 
ways. In [8], three such notions, D1-, D2-, and D3-directability, axe intro-
duced. In this paper, we introduce the trapped n.d. automata, and for each 
i = 1,2,3, present lower and upper bounds for the lengths of the shortest 
Di-directing words of n-state Di-directable trapped n.d. automata. It turns 
out that for this special class of n.d. automata, better bounds can be found 
than for the general case, and some of the obtained bounds are sharp. 

1 Introduction 
An input word w is called a directing (or synchronizing) word of an automaton 
A if it takes A from every state to the same state. Directable automata have 
been studied exstensively, we mention only some of the related works (see e.g. 
[3],[4],[5],[7],[10],[12]). Directable n.d. automata have received less attention. Di-
rectability of n.d. automata can be defined in several meaningful ways. The fol-
lowing three nonequivalent definitions are introduced and studied in [8]. An input 
word w of an n.d. automaton A is said to be 

(1) Dl-directing if it takes A from every state to the same singleton set, 
(2) D2- directing if it takes A from every state to the same fixed set A', where 

0 C A! C A, and 
(3) D3-directing if there is a state c such that c 6 aw, for every.o € A. 

The Dl-directability of complete n.d. automata was investigated by Burkhard 
[1]. He gave a sharp exponential bound for the lengths of minimum-length Dl-
directing words of complete n.d. automata. In [6] on games of composing relations 
over a finite set Goralcik it et al., in effect, studied Dl- and D3-directability and they 
proved that neither for Dl- nor for D3-directing words, the bound can be polynomial 
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and the Japan Society for the Promotion of Science, and the Hungarian National Foundation for 
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for n.d. automata. Carpi [2] considered a particular class of n.d. automata, the class 
of unambigous n.d. automata, and presented 0(n3) bounds for the lengths of their 
shortest Dl-directing words. 

Here we study trapped n.d. automata that have a trap state, i.e., a state which 
is stable for any input symbol, and present lower and upper bounds for the lengths 
of their shortest directing words of the three different types. 

2 Preliminaries 
Throughout this paper X always denotes a finite nonempty alphabet. The set of all 
finite words over X is denoted by X* and A denotes the empty word. The length 
of a word w £ X* is denoted by |u>|. For any p, q £ X*, the word p is called a prefix 
of q if there exists a word s £ X* such that ps = q. For the sake of simplicity, we 
use the notation [n] for the set {1, . . . ,n}. 

By a nondeterministic (n.d.) automaton we mean a system A = ( A , X ) , where 
A is a nonempty finite set of states, X is the input alphabet, and each input symbol 
x £ X is realized as a binary relation xA(C Ax. A). For any a € A and x £ X, let 

axA = {b:b £ A and (a, b) £ xA}. 

Moreover, for every B C A, we denote by BxA the set [j{axA : a £ B}. Now, for 
any word w £ X* and B C A, BwA can be defined inductively as follows: 

(1) B\A = B, 
(2) BwA = (BpA)xA for w — px, where p £ X* and x £ X. 

If w = x\.. .xm and a £ A, then let awA = {a jw 4 . This yields that wA = 
xA ... xA. If there is no danger of confusion, then we write simply aw and Bw for 
awA and BwA, respectively. 

An n.d. automaton A = {A, X) is complete if ax ^ 0 holds, for all a £ A and x £ 
X. Complete n.d. automata are called c.n.d. automata for short. A state of an n.d. 
automaton A is called a trap if it is stable for any input symbol, i.e., ax = {a}, for 
every input symbol x of A. An n.d. automaton is called trapped if it has a trap. Let 
us denote the class of trapped n.d. automata by T. Regarding some recent results 
on trapped deterministic automata, we refer to the works [9],[11],[12]. Following 
[8] we define the directability of n.d. automata as follows. Let A = {A, X) be an 
n.d. automaton. For any word w £ X*, let us consider the following conditions: 

(Dl) (3c e A)(Va S A)(aw = {c}), 
(D2) (Va,6 G A)(aw = bw), 
(D3) (3c £ A)(Va £ A)(c£ aw). 

For any i = 1,2,3, if w satisfies Di, then w is called a Di-directing word of A 
and in this case A is said to be Di-directable. Let us denote by the set of 
Di-directing words of A, moreover, let Dir(i) and CDir(ii) denote the classes of 
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Di-directable n.d. automata and c.n.d. automata, respectively. Now, we can define 
the following functions. For any i — 1,2,3 and A = (A, X) eDir(i), let 

di(A) = min{H : w G D,(,4)}, 

dj(n) = max{di(.4) : A G Dir(i) & \A\ = n}, 

cdi(n) = max{dj(^4) : A 6 CDir(i) & \A\ = n}. 
The functions dj(n), cdj(n), i = 1,2,3, are studied in [8], where lower and upper 
bounds depending on n are presented for them. Similar functions can be defined 
for any class of n.d. automata. For a class K of n.d. automata, let 

Obviously, cdf(n) < d f (n), for i = 1,2,3. 
In what follows, we study the case when the considered class is T, the class 

of trapped n.d. automata. It is worth noting that if a trapped n.d. automaton is 
Di-directable, then it has only one trap. 

3 Directable trapped n.d. automata 
First we deal with the D3-directability. We consider D3-directable trapped c.n.d. 
automata, and using certain deterministic automata, introduced by Rystsov [12], 
we present an exact bound for this class. Then we study D3-directable trapped 
n.d. automata and present lower and upper bounds for the lengths of their shortest 
D3-directing words. For trapped c.n.d. automata the following statement is valid. 

Theorem 1. For any n > I, cdj(n) = (n — l)n/2. 

Proof. First we prove that (n - l)n/2 < cdj(n). This inequality follows from The-
orem 6.1 in [12]. Since the proof is short, we recall it for the sake of completeness. 

For every n > 1, let us define the c.n.d. automaton Bn = ({0,1, . . . , n — 
1}, {xi,... ,z n_i}) as follows. Let Oxi = l i i = {0}, and jxi = {j},j = 2 , . . . , n - 1 . 
Moreover, for all 2 < k < n - 1 and j G {0,1, . . . , n - 1}, let 

Obviously, Bn is a D3-directable trapped c.n.d. automaton with the trap 0. Let us 
observe that for any j G {0,1,. . . ,n - 1}, jp is a singleton set whenever p G X*, 
moreover, jw = {0} for any D3-directing word of Bn, because 0 is a trap state. 
Therefore, {0 ,1 , . . . ,n - l}w = {0}, for any w G D3(£„). Now, let us assign to 
every nonempty subset J of states a weight, denoted by g(J), which is the sum of 
the numbers contained in J , i.e., 

d^(n) = max{di(yl) : A G Dir(i) n K &\A\ = n}, 

cdf(n) = max{di(X) : A £ CDir(i) n K & \A\ = n). 

- 1 } if j = k, 
jxk = f 1} if j = k - 1 

otherwise. 



40 B. Irnreh, Cs. Imreh, and M. Ito 

Then <?({0, l , . . . , n — 1}) = (n — l)n/2 and for any nonempty subset J of 
{0,1, . . . ,n - 1} and input sign xk, k E [n - 1], 

\g(J) - g(Jxk)\ < 1. 

From these facts it follows that the length of any D3-directing word of Bn is not 
less than (n — l)n/2, because this word brings the state set of weight (n — l )n /2 
into the set {0} with weight 0. Hence, (n — l)n/2 < d3(Bn). On the other hand, it 
is easy to check that the word 

W = X1X2X1X3X2X1 . . . Xn-\Xn-2 • • • X2X1 

is a D3-directing word of Bn and |w| = (n - l)n/2. Consequently, 

d3(£„) = ( n - l ) n / 2 . 

Since Bn is a D3-directable trapped c.n.d. automaton of n states, the equality 
above implies (n - l )n /2 < cdj(n) . 

In order to prove that this bound is sharp, we prove that for any D3-directable 
trapped c.n.d. automaton A = (A, X) of,n(> 1) states, there exists a D3-directing 
word whose length is not greater than (n — l)n/2. To simplify the notation, we 
assume that A = {0,1 , . . . , n -1} and 0 is the trap of A. Since A is a D3-directable 
c.n.d. automaton and Ox = {0}, for all x E X, there exists for any state j E A 
a word x\.. :xm of minimum-length such that 0 E jx\... xm. Moreover, there 
are states j 1 , . . . , jm-1 € A such that jt E jx 1 . . . x t and 0 E jt%t+i . . . i m , for all 
t = 1 , . . . , m—1. Since x\ ... xm is a minimum-length word satisfying 0 E jx 1 . . . xm, 
the states j,ji, • • • ,jm-1,0 must be pairwise different. Therefore, by |A| = n, we 
obtain m < n — 1. Observe that for any 2 < t < 7TI, Xi . . . Xjji 

is a minimum-length 
word satisfying 0 E jt-i^t • • • Based on these observations, by renaming the 
states, we may suppose that for any state j E A, there exists a word pj such that 
0 E jpj and \pj\ < j. By using the pairs j, pj, j = 0,... ,n — 1, we present a 
procedure for finding a D3-directing word with length, not greater than (n — l)n/2. 

Initialization. Let t = 0, Bo = {0}, Pi0 = A, and Ro = {1,2,.. .n — 1}. 
Iteration. 

• Step 1. Terminate if A = Bt. Otherwise proceed to Step 2. 

• Step 2. For each j E Rt, let kf denote the smallest number in the set 
jpit. Select the least element in {k^ : j E Rt} and denote it by it+1. 
Let 

Bt+i = {j : j € A k 0 € jpio.. .p i (+1}. 
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and 

Rt+i ={kf] :j e A\Bt+1}. 

Increase the value of t by 1 and proceed to the next iteration. 

To verify the correctness of the above procedure, we note the following facts. 

(i) For any it+1, there exists a j G A \ Bt such that it+1 is an element of the set 
jpio ...pit. Then Bt U {j} C Bt+1, and hence, Bt C Bt+i. 

(ii) If j € A \ Bt, then 0 ^ jpi0 • • - Pit yielding k^p > 0. Therefore, Rt is a set of 
positive integers. 

(iii) If A ^ Bt, then there is a j € A \ Bt with jpi0 •. .pit 0 since A is a c.n.d. 
automaton, and thus, Rt ^ 0. Consequently, A Bt implies Rt / 0. 

From these facts it follows that there exists a positive integer s < n — 1 such that 
A = Bs. Now, by the definition of Bs, we obtain that 

w=pio...Pi, 

is a D3-directing word of A. Let rt = |i?t|, t = 0 , . . . , s — 1. From the definition of 
Rt it follows that 

n — 1 > r0 > n > . . . > r s_ i > 0. 

On the other hand, since |i?t| = r t , the least number it+1 of { k ^ : j € Rt} is 
not greater than n — rt. This yields that \pit+1 \<n — rt,t — 0,...,s — 1. Since 
|Pi01 — 0) w e obtain that 

s - l 

M < 
t=o 

Let us observe that the numbers n — rt, t = 0,... ,s — 1 are pairwise different and 
each of them is contained in the set [n — 1]. Therefore, the upper bound of |w| 
is the sum of some distinct elements of [n — 1]. But this sum is not greater than 
the sum (n — l)n/2 of all the elements of [n — 1]. Consequently, |io| < (n — l)n/2. 
If n = 1, then the statement is obviously also valid. This completes the proof of 
Theorem 1. • 

For D3-directable trapped n.d. automata, we have the following bounds. 

Theorem 2. For any n> 2, max{[n3 - lj!, (n - 2)2 + 1} < d j ( n ) < 2 n _ 1 - 1. 

Proof. The first member in the lower bound comes from the general case (c/. [8]), 
where the automata, providing this bound, are trapped automata. The second 
member in the lower bound can be derived from Cerny's well-known examples (cf. 
[3]) as follows. One can equip Cerny's automaton of n — 1 states with a trap state 
and a new input symbol, denoted by o and z, respectively. Let oz = {o}, Oz = {o}, 
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and jz = 0, for all j = 1 , . . . , n — 1. Now, redefine the remaining transitions as 
follows. If ax = b, then let ax = {6} be the new transition. Then we obtain an n.d. 
automaton of n states whose shortest D3-directing words are of length (n — 2)2 + 1. 

To obtain the upper bound, let us consider an arbitrary D3-directable trapped 
n.d. automaton A = (A, X) of n(> 1) states. Let A = { a i , . . . , a n } and an be the 
trap of A. Let w — X\... xm be a minimum-length D3-directing word of A. Then 
anw = {an} and by the D3-directability of A, an € ajXi.... xm, j = 1 , . . . , n. For all 
j € [n — 1] and k £ [m], let us select an element ajk from ajxi . . . xk such that an € 
ajkXk+i • • • xm- Such elements exist, because for every j £ \n — 1], an £ ajXi ... xm. 
Now, let Sk = {a„} U{aifc,... , a n - i t k] , for all k £ [m], and So = {ai, • • • ,an}. Let 
us observe that ajx\.. .Xk Sk i1 0, for every k £ [m], and if at € Sk for some 
t £ [n] and k £ [to], then an £ atXk+1 •.. xm. By using these observations, it is easy 
to see that if Sj = Si for some 0 < j < I < m, then x\ ... XjXi+i ... xm is a D3-
directing word of A which is a contradiction. Consequently, the sets So, Si,..., Sm 
must be pairwise different. Since an £ Sk, k = 0 , . . . ,m, the number of these sets 
can not exceed 2 n _ 1 . Therefore, |iu| < 2 n _ 1 - 1. This ends the proof of Theorem 
2. • 

R e m a r k 1. It is worth noting that the proof above with a small changing can 
be applied for the general case, and one obtains the upper bound 2" — 1 for d¡(n) 
which is a significant improvement of the upper bound, given in [8]. 

Now, we study Dl-directable trapped c.n.d. automata. By a slight modification 
of the automata, introduced by Burkhard [1], we prove the following sharp bound. 

Theorem 3. For any n> 1, cd f{n) = 2 n _ 1 - 1. 

Proof. First we prove that 2 n _ 1 - 1 is a lower bound for cd^. To do so, for every 
integer n > 1, we present a Dl-directable trapped c.n.d. automaton, having a 
minimum-length Dl-directing word w with |ui| = 2 n _ 1 — 1. 

Let us define the c.n.d. automaton An = ([n], X ^ ) as follows. For every integer 
2<k< n — 2, let us consider all of the fi-element subsets of the set A' = {2 , . . . , n } . 
Let us order these sets in a chain such that the first set is {n — k,...,n— 1} and the 
last one is {n - k + 1 , . . . , n}. We denote this sequence by A , . . . , - ^ n - i j • Now, 

let X , = {x!fc) : r = 1 , . . . , ( V ) - 1}. V = {vi,...,vn-ih V = {yi, • • • ,yn-2}, 
and 

X(n) = y u Y u ( | J{x f c : 2 <k<n- 2}). 
The transitions of An are defined as follows. For any x £ X^n\ let lx = {1}. 

(k) Moreover, for any xT £ Xk, vt £ V, ys £ Y, and state j £ A', let 

,„ t = / { i - i } i f t = i - l , 
| A! otherwise, 

jx(k) = Ui% if je4k\ 
r 1 A' otherwise, 
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if 2<s<n — 2&n — s<j< n}, 
3Vs=\{n} i f s = l k j e { n - l , n } , 

A! otherwise. 
Obviously, AN is a trapped c.n.d. automaton, its trap is the state 1. Let us consider 
the word to G l ' " ' " , given by 

(n-2) (n—2) (2) (2) w = yn-2x\ •••x^_^_iyn-3...y2x\Jt...x^n'_lyiyivn-i ...Vi. 

It is easy to check that to is a Dl-directing word of An, namely [n]w = {1}. 
Moreover, w is the unique minimum-length Dl-directing word of An- This fact is 
based on the following observation. 

If px is a prefix of w, then for any x' € different from x, there exists a 
prefix q of p such that [n]px' = [n]q. 
Since w is a minimum-length Dl-directing word of An and its length is equal to 
2n_:1 - 1, we obtain 2 n _ 1 - 1 < c d ^ n ) . 

Regarding the upper bound, let us observe that if w = x\... xm is a minimum-
length Dl-directing word of a trapped c.n.d. automaton A = (A, X) of n(> 
1) states with a trap an € A, then Aw = {an}. Moreover, the sequence 

xm consists of pairwise different nonempty subsets of A and 
each of them contains an. The number of these subsets is at most 2 n _ 1 , and so, the 
length of w is not greater than 2 n _ 1 - 1. Hence, we obtain that cd^(n) < 2 " - 1 - 1. 
The statement is obviously also valid for n = 1. This ends the proof of Theorem 
3. • 

In what follows, we shall use the following observation. 

Lemma. For every n > 1, cd J(n) — cd^(n) and d J ( n ) = d|"(n). 

Proof. Let us observe that for any trapped n.d. automaton A = (A, X) of n states, 
Di(A) = D2(-4). Indeed, Di(^4) C D2(-4) follows from the definition. Now, let w e 
D2{A). Then aw = bw for every pair of states. This yields that {an} — anw = aw 
is valid for any state a € A, where an denotes the trap state of A. This means 
that w e Di(^) , implying D2(-4) C Di(^4). Therefore, Di (^) = D2(^4). From this 
equality it follows that cd^(n) = cd j (n) and dj r(n) = d j (n ) . • 

Now, we can conclude the following statement from Theorem 3 by our Lemma. 

Theorem 4. For any n > 1, cd^(n) - 2 n _ 1 - 1. 

For Dl- and D2-directable trapped n.d. automata, we have the following bounds. 

Theorem 5. For any n > 1, 2n~1 - 1 < d^(n) = d J ( n ) < 2(2n~1 - 1). 
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Proof, d j (n) = d j ( n ) is provided by our Lemma. By Theorem 3, -we have that 
2"- i _ l < cd7(n). On the other hand, c d ^ n ) < d f { n ) , and therefore, 2 n _ 1 - 1 < 
d?(n). 

Regarding the upper bound, let us consider an arbitrary Dl-directable trapped 
n.d. automaton A = ({ai, • • • with n > 2. Without loss of generality, we 
may suppose that o„ is the trap of A. First, let us observe that A is a D3-directable 
n.d. automaton, as well. Let w\ be a minimum-length D3-directing word of A. By 
Theorem 2, |uii | < 2 n _ 1 — 1. Since A is a trapped n.d. automaton, a„ £ ajW\, for all 
j e [n]. Then for every j £ [n] and p £ X*, ajWip ± 0. Now, let w2 — xi... xm be 
a minimum-length word such that Aw2 = {an}. Such a word there exists since A is 
Dl-directable. Let us consider the sequence A, Ax\,..., Ax¡ ... xm. We show that 
these sets are pairwise different. If it is not so, then there are integers 0 < r < s < m 
such that Axi... xr = Axi... xs. Then Ax\... xTxs+\ ... xm = {o„} which is a 
contradiction. Since an 6 Ap for every prefix p of w2, we obtain that m < 2n~1 — 1. 
Now, we prove that W\W2 is a Dl-directing word of A. Let j £ [n] be arbitrary. 
Then an S ajWi and ajwi C A. Moreover, ajw\w2 0 and ajw\w2 C Aw2 = {an}> 
and hence, a,jw\w2 = {a„}. On the other hand, |wiiU2| - 2 " - 1 - 1 + 2 n _ 1 — 1 = 
2(2"-! - 1). Consequently, d f (n) < 2(2n~1 - 1) if n > 2. On the other hand, 
di'(n) < 0 is obvious. This completes the proof of Theorem 5. • 

Remark 2. Since cdj(n) < cd2(n) < d2 (n), we obtain that 2 n _ 1 — 1 is a lower 
bound for both cd2(n) and d2(n). On the other hand, the known lower bound, given 
for cd2(n) and d2(ra) in [8], is — l j ! which is less than 2 n _ 1 - 1. Therefore, 
2 n _ 1 — 1 is an improvement of the lower bounds of both cd2(n) and d2(n). 

R e m a r k 3. The upper bound, presented in Theorem 5, is worse than the up-
per bound 2n - n - 1, given for di(n) in [8]. The verification of the inequal-
ity di (n) < 2" — n — 1 is based on the observation that if w = xi... xm is 
a minimum-length Dl-directing word of an n.d. automaton A = (A, X), then 
the sets A, A.X\ j . . . j Á.X\... XJJI must be pairwise different. The following example 
shows that this observation is not valid, moreover, 2n — n — 1 is not necessarily 
upper bound for di(n) in general. Let A = ({0,1)}, {z,y}), where Ox = {0,1}, 
lx = {1}, 0y = 0, and 1 y = 1. Then xy is a minimum-length Dl-directing word of 
A, but {0, l}x'= {0,1}. Moreover, 2 = \xy\ £ 22 - 2 - 1. 
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On variable sized vector packing 

Leah Epstein* 

Abstract 
One of the open problems in on-line packing is the gap between the lower 

bound fl(l) and the upper bound 0(d) for vector packing of d-dimensional 
items into d-dimensional bins. We address a more general packing problem 
with variable sized bins. In this problem, the set of allowed bins contains 
the traditional "all-1" vector, but also a finite number of other d-dimensional 
vectors. The study of this problem can be seen as a first step towards solving 
the classical problem. It is not hard to see that a simple greedy algorithm 
achieves competitive ratio 0(d) for every set of bins. We show that for all 
small e > 0 there exists a set of bins for which the competitive ratio is 1 + e. 
On the other hand we show that there exists a set of bins for which every 
deterministic or randomized algorithm has competitive ratio il(d). We also 
study one special case for d = 2. 

1 Introduction 
The problem. We consider the following problem. We are given a finite set B 
of ¿¿-dimensional vectors in [0, l]d. This is the set of bin sizes. The "all-1" vector 
(1 ,1 , . . . , 1) belongs to B. Items of sizes also in [0, \]d arrive on-line, to be assigned 
to bins of sizes in B. The packing needs to be valid, i.e. the vector sum of all items 
assigned to one bin cannot exceed the capacity of the bin (in any component). The 
"all-1" bin needs to be in B so that every item can fit into some bin. Each item, 
has to be assigned to a bin upon arrival, and cannot be moved after that. It can 
be assigned either to an open bin, or to a new bin of some size in B. The cost of 
a bin b is the sum of its components and the weight of an item is the sum of its 
components. The goal is to minimize the total cost of the bins that the algorithm 
uses. 

Applications. The problem can be seen as a scheduling problem with limited 
resources. There are a few types of machines (the bins) with known and limited 
capacities of several resources as memory, running time, access to other computers 
etc. The items is this case are jobs that need to be run, each job requires a certain 
amount of each resource. Another application arises from viewing the problem as 

"School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. Email: 
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a storage allocation problem. Each bin has several qualities as volume, weight etc. 
Each item requires a certain amount of each quality. 

In both applications it is likely for the items to arrive one by one, forcing the 
algorithm to make decisions without any knowledge of the future. 

The quality measure. The competitive ratio of an on-line algorithm for this 
minimization problem is the worst case ratio, over all possible input sequences, of 
the cost of bins used by the on-line algorithm to the cost of bins used by an optimal 
off-line algorithm (which is familiar with the complete sequence in advance). Often 
an additive constant is allowed, yielding the following definition of the competitive 
ratio. 

Definition 1.1. For an on-line algorithm and a sequence I of items, let CONL(I) 
be the cost of the bins used by the on-line algorithm and let COPT(I) be the cost 
of the bins used by an optimal off-line algorithm. (CONL{I) can be abbreviated by 
CONL and COPT ( I ) can be abbreviated by COPT-) Let R> 1. 

An on-line algorithm is Д-competitive if there exists a constant b such that 
CONL(I) < R • COPT ( I ) + b, for any sequence I of items. 

The competitive ratio of an on-line algorithm is 
r = in{{R | the on-line algorithm is R-competitive}. 

If the additive constant b is zero or negative, the algorithm is called strictly 
R-competitive. The negative results given in this paper are valid for the strict 
competitive ratio as well as for the competitive ratio in general. The positive 
results are valid for the general competitive ratio, as it is common for bin packing 
type problems. 

For randomized algorithms, the competitive ratio is defined similarly, but 
CONL(I) is r ep l aced by E(CONL{I))-

A simple algorithm. The following algorithm achieves competitive ratio at most 
2d for every set B. Hence the best competitive ratio for any set is Q(d). The 
algorithm uses only "all-1" bins, and packs the items in a "next-fit" fashion. It 
keeps one open active bin where all arriving items are packed, whenever an arriving 
item does not fit, this bin is closed and a new active bin is opened. To show the 
competitive ratio, partition all bins used by the algorithm into pairs, according to 
the order they were opened. (If the number of bins is odd, the last one is ignored). 
Now combine the contents of each pair. The items in the two bins could not fit 
into one bin, since the second is opened when an item does not fit into the first. 
Hence, at least one component of the combined contents is at least 1. Let W be the 
total weight of items. Let X be the number of bins used by the algorithm. Then 
W > (X -1)/2. The optimal off-line also need to pack the items hence COPT > W. 
Since CONL = XD, we conclude that the algorithm is 2d-competitive. 

Previous work. To the best of our knowledge, no results exist on variable-sized 
vector packing. We mention the results for the classical on-line vector packing 
problem, where В consists of a single, all-1 bin. There is only a small number of 
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results on on-line vector packing, and the problem seems to be difficult. Kou and 
Markowsky [10] considered a class of algorithms for which there never exists a pair 
of bins whose contents can be combined legally into a single bin. They showed that 
any algorithm in this class is d + 1 competitive. Later [7] improved the analysis for 
a d-dimensional version of first-fit to d+ 0.7. The lower bounds [6,1] are all below 
2, tending to 2 as d goes to infinity. The best lower bound for d = 2 is 1.6712 given 
by Blitz, Van Vliet, Woeginger in [1]. This large gap between the negative and 
positive results (for large d as well as for d — 2) encouraged the current study of 
the model with variable sized bins. The main questions were as follows: Are there 
any examples for B where the competitive ratio is linear? Are there any examples 
where the competitive ratio is constant? 

The results. We answer both questions positively. Specifically, we show a set 
B for which we design a constant competitive algorithm, moreover, for any small 
e > 0, we give an algorithm of competitive ratio 1 + e (section 2). We further 
design a set for which we show a lower bound of il(tf) on the competitive ratio of 
deterministic and randomized algorithms (section 3). In section 4, we design an 
algorithm for a special case d = 2 and |£?| = 3. This algorithm demonstrates the 
simplicity in which it is possible to reduce the competitive ratio just by adding a 
small number of bins to B. 

Other related work. A survey on on-line bin packing problems is given in [3]. 
The one dimensional variable-sized bin packing problem was studied in several 
papers [5, 9, 13, 2, 11, 4]. Those papers present and analyze various algorithms. 
Csirik [2] showed that there exists a choice of a set of bins (containing two bins 
of sizes 1 and 0.7) so that the competitive ratio (1.4) is much lower than the best 
known lower bound (1.5401 [12]) for the basic bin packing problem (a single type of 
bin which has size 1). In [4] improved upper bounds and new lower bounds for sets 
of two bins are given. The overall upper bound on the competitive ratio presented 
in that paper is 373/228 ss 1.63596. 

2 A set with 1 + e approximation 
In this section we introduce a bin set B for which an asymptotic competitive ratio, 
arbitrarily close to 1 is achieved by deterministic algorithms. Even though the 
algorithm is on-line, the methods are somewhat similar to those used in design of 
polynomial approximation schemes for off-line scheduling problems (see e.g. [8]). 

Let 0 < e < 1/3 be a small positive constant. Let A = Let (5 = 1/A. 
We define the set Be of allowed bins, as the set of the vectors (a\S2,a262,..., ad52) 
such that all a, are integer, and 0 < a; < A2 for 1 < i < d. The number of different 
bins is at most (A2 + l)d = 0((^)2 d) . Note that taking a{ = A2 for all 1 < i < d 
gives the "all-1" bin. 

We define an algorithm which has asymptotic competitive ratio 1 + £ for the 
set Be of bins. An item is called senior, if it has at least one component of size at 
least S, and junior otherwise. Senior items and junior items are packed by different 
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methods. In both cases there is very little room left in the bins (apart from a 
constant number of bins) and the competitive ratio is proved by area considerations. 

Senior items: Each senior item is packed into a separate bin. Given an item 
x — (x\,..., xd), x is packed into a bin b such that if b = (&i , . . . , bd) then bi > Xi 
but bi - 52 < Xi. In other words, bi = rfi]<52-

Junior items: Those items are packed only into a subset of Be. Let Be(i) be 
the subset of BE containing all vectors whose component i equals 1. Throughout 
the algorithm, for each 1 < i < d there is one open bin of each size in Be(i), which 
is used for junior items whose largest component has index i. Given a junior item 
x = (xi,..., xd), let m = maxi<i<d Xi, let j be the minimum index of a component 
which achieves the maximum (i.e. xj = m and xk < m for k < j). Let y = x/m. 
The item is assigned into an open bin of size V = (6^,. . . , b'd) in Be(j) such that 
b[ = [|j](52. Note that component j of b' is 1. If the item does not fit into the 
open bin, this bin is closed, a new bin of size b' associated with Be ( j ) is opened 
and the item is assigned there. We are going to show that for every bin used by 
our algorithm (apart from the last bin of every size in Be(i) for every 1 < i < d, 
that is used for junior items), the cost of a bin is at most 1 + e times the weight of 
items assigned to this bin. This would give 

CoNL < (l + £)W + d\Be\ (1) 

where W is the total weight of items in the sequence. Since COPT > W and \BE\ 
is constant (which depends on d and e), this gives an asymptotic competitive ratio 
1 + e for a constant e. We analyze senior and junior items separately. 

Bins with a senior item: According to the definition of the algorithm, each 
bin contains a single item x. Let wb the weight of the bin b where x is assigned and 
wx be the weight of x. By the algorithm wb < wx + d62. Since x is a senior item, 
wx > 6, hence wb < wx(l + d6) < ^ ( 1 + e). 

Bins with junior items: Consider a bin /3 = ( f t , . . . , f3d) that was used 
for junior items with maximal component of index k, and was closed during the 
algorithm. Let y' — (y[,..., y'd) be the sum vector of items assigned to this bin.. 

We prove the following two claims. 

Claim 2.1. For all 1 < i < d, f ; < y'k, and y'k>l-5. 

Claim 2.2. For all 1 <i < d, y[> y'kPi - S2. 

Before we prove the claims, we show this is sufficient to achieve the required 
competitive ratio. We need to compare uip which is the cost of the bin /?, to the 
weight of y', wyi, which is the weight of the items in the bin. By Claim 2.2. 

d d 
« v = Y,Y'I^Y'K I > - d 5 2 • 

i=i t=i 

Using this and the second part of Claim 2.1, we get wy> > — 5 — dS2) (since 
wp > 1). It is left to show that 1/(1 — S — d62) < 1 + e. Since J < e/d it is enough 
to show (e + l)2 < d which is true for e < y/2 - 1 (since d > 2). 
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To complete the proof, we need to prove the claims. We start by proving 
Claim 2.1. Consider an item a = ( a i , . . . , ad) assigned to a bin p. Then let k be 
the maximal component of a which has the minimum index among the maximal 
components. Then a was assigned according to component k. Recall that P is 
calculated in the following way: 

Pi = [ ^ 1 < 5 2 

and hence pi > ai/ak. Since at/Pi < ak is true for all items in the bin, then also 
y'ilPi < y'k- Now let 7 be the item that caused this bin to be closed. 7 did not fit 
into the bin, but since it was inserted to a bin of the same size also for 1 < i < d, 
l i / l k < Pi- Since 7 did not fit, for some component j, y'3 + jj > Pj. Hence 
y'k + Ik > y'j/Pj + I j / P j > 1- Since 7 k <6 (junior item) we get y'k > 1 - 7* > 1 - S. 
This proves Claim 2.1. 

To prove Claim 2.2 recall that Pi < ai/ak + S2. Hence ai > akPi — akS2. Let 
I be the set of all items assigned to p. 

yi = "i > a k & ~ afc<52 = 

a£/ ag/ ag/ 
( f t - ^ ^ a * = y'k(Pi-62) = 

a€l 
y'kPi-y'k¿2 > y'kPi-52. 

The last inequality holds since y'k < 1. This completes the proof of Claim 2.2. 

Theorem 2.1. The above algorithm has asymptotic competitive ratio of at most 
1+e. 

Proof. Follows from (1). • 

3 A set with only approximations 
In the introduction we showed that for every set, there exists an algorithm with 
competitive ratio 0(d). However, in the previous section we showed a set where it 
is possible to get an 1 + e approximation. In this section we show a set for which 
we give a lower bound of Cl(d) on the competitive ratio. 

We give a deterministic lower bound, and later show how to extend it to a 
randomized lower bound. 

We start by a description of B. The set B contains apart from the vector 
(1 , . . . , 1) also 2d/2 vectors which are called small bins. (We assume that d is even, 
for odd values of d it is possible to use the construction for the even dimension 
d— 1, setting the last component to zero in all items, and in all the bins apart from 
the "all-1" bin.) 
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For k = 1 , . . . ,d/2, the (2k - l) t / l and the (2k) l h components of the bins are 
either ^ and d d - i or and ^ (respectively). Since every pair has two 
options, there are 

2 d/2 
such possible bins. Throughout the sequence, the optimal 

off-line cost is going to be Q(n/d). There are d/2 phases of items, with n items 
in each. (We pick n to be a large constant so that the lower bound is valid also 
for general competitive ratio and not only strict competitive ratio.) All items have 
weight 0(1 /d?). Note that all bin costs are 0(1 /d) (apart from the "all-1" bin 
whose cost is d). 

We now define the items of phase i. In phase i, for all items and for all j > 2i, 
the jth component is zero. The components 2i — 1 and 2i are both ¿57. For all 
j < i, the components 2 j - 1 and 2 j are either 0 and -¿¡j or and 0 (respectively). 
Note that there can fit only at most one item of each phase in a small bin. The 
choice of the (2j — l ) t h and the (2j) t h coordinates is done according to the behavior 
of the algorithm until the completion of phase j. 

We say that the algorithm "may use" a bin in phase j if the bin is opened in 
phase j or if it was opened during phases 1,..., j — 1 and can still accommodate an 
item of phase j. 

For 1 < j < | , let Nj be the number of small bins, where the (2j)th component 
is ¿jj-, that the algorithm may use for items in phase j. (Not including bins opened 
after the arrival of the items of phase j + 1.) If j > 1, in the beginning of phase 
j, some old bins cannot accommodate any more items due to a wrong structure of 
the (2j — 3)th and the (2j — 2)th components, those bins will never be used again. 
For 1 < j < | , let Mj be the number of other small bins that may be used in phase 
j , that have the opposite structure of components 2j and 2j — 1 than bins counted 
in Nj. Note that the numbers Mj and Nj include new small bins opened during 
phase j, and previously opened bins that can still be used (the latter is true only for 
j > 1). If Nj < Mj then all future items have a zero in the (2 j ) t h component and 

in the (2j — l ) t h component. Otherwise, the structure is opposite. Hence all 
the MJ bins will never be used in the first case, and all NJ bins will never be used 
again in the second case. We use the following notations for 0 < j < d/2 — 1. For 
0 < j < | — 1, let Lj be the number of small bins opened in phase j + 1 arid let Sj 
be the number of items assigned to an "all-1" bin in phase j +1. For 0 < j < f — 1, 
let Kj be the total number of small bins that the algorithm may use in phase j +1. 
According to the above definitions, for 0 < j < Kj~i = Mj + Nj and 

Kj = Lj + m i n ( N j , M j ) < Lj + Kj-i/2 . (2) 

Since all items have either JT in both the first and the second components, or in 
one of the first two components, the algorithm can pack only at most d1 items in one 
large bin. Hence CONL > (52J=0 SJ)/D + 1/DYFJ^1 LJ. We need to get a bound 
on those two sums. Note that in order to pack all items, for j > 0, Kj + Sj > n. 
Using (2) we get that Lj + Sj > n — Kj~i/2. Lj + Sj represents the number of 
items that need to be either assigned to "all-1" bins, or have new bins opened for 
them. 

On the other hand (2) gives the relations between the number of valid bins in 
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phase j + 1 to valid bins in phase j (0 < j < d/2 - 1). Summing up the two 

equations for all 1 < j < § - 1, and setting L = o LJ, K = o and 

5 = E f c 1 Sj, we get: 

L-L0 + S-S0>(^-l)n~l/2(K-Ki_1). 

and 
K - K0 < L - L0 + 1 / 2 { K - K I ^ ) . 

Hence L+S+\K > L0+S0+in-n+l/2KI_1, and L-K/2 > -K0+L0+l/2KI_1. 
Since Lo + So > n (need to assign all items of phase 1), and all variables are non-
negative, L + S + K/2 > f n . Since K0 = L0 then L-K/2 > 0. Hence 2L + S > f N . 
We are interested in (5 + L)/d. Easy substitution gives CONL > (S + L)/d > 
(L + S/2)/d > n / 4 . 

On the other hand, the optimal off-line algorithm picks n small bins according 
to into which bin, an item of the last phase fits. Since f (^7) = d2j-i, it is possible 
to place one item from each phase in a bin, the bin cost is 0 (1 /d) and hence 
COPT = ®(n/d). The competitive ratio follows. 

To extend the proof for randomized algorithms, each one of the variables should 
be replaced by the expectation of this variable. By linearity of expectation, we get 
the same lower bound. 

This proves the following Theorem. 

Theorem 3.1. There exists a finite set of bins, for which every deterministic or 
randomized algorithm for bin packing has competitive ratio fl(d). 

4 A special case for d = 2 
In this section we demonstrate by example, that letting the algorithm choose the set 
B, even if its size is very limited, allows the algorithm to improve the competitive 
ratio it achieves. In particular we consider d = 2 and |£?| = 3. In section 1 it 
was shown that if \B\ is large enough (but finite), it is possible to achieve a very 
small competitive ratio. Here we focus on an example where |B| is small, but a 
simple algorithm already improves on the best known algorithm for the classical 
case B1 = {(1,1)} given in [7] (whose competitive ratio is 2.7). 

Let B = {(1,1), (1, /Li), (fi, 1)}. The constant 0 < p, < 1/2 is fixed later. We 
partition items into two classes: 

• Items (/?, 7) where /3 < 7. 
• All other items (i.e. items (/?', 7') where /3' > 7'). 

Each one of the two classes is packed separately, independently from the other 
class. We explain how to pack the first class, the algorithm for the second class is 
symmetric (i.e. bins of size (1, ¡1) are used instead of bins of size (/1,1) and so on). 
The class is partitioned into six sub-classes. The algorithm also packs each one of 
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the six sub-classes separately, independently from the other sub-classes. Let a be 
a constant 0 < a < 1/3, whose exact value is fixed later. The sub-class of an item 
(/3, 7) is determined as follows: 

• Sub-Class 1: 7 > 1/2 and P > p.. 
• Sub-Class 2: 7 > 1/2 and / ?< / / . 
• Sub-Class 3: a < 7 < 1/2 and /3 > p/2. 
• Sub-Class 4: a < 7 < 1/2 and /3 < /¿/2. 
• Sub-Class 5: 7 < a and /3 > ¿¿7. 
• Sub-Class 6: 7 < a and /3 < /¿7. 

Each item of sub-classes 1 and 2, is packed as an only item in a bin. For sub-class 
1 the bin is of size (1,1) and for sub-class 2 the bin is of size (p, 1). Items of sub-
classes 3 and 4 are packed in pairs (from the same sub-class). Pairs of sub-class 3 
use bins of size (1,1) whereas pairs of sub-class 4 use bins of size (p, 1). By the 
definition of this class, (i.e. the conditions on 7 and /3), any two items of each of 
those sub-classes can fit into a bin together. The algorithm always has at most 
one bin for sub-class 3 with a single item. The same is true for sub-class 4 as well. 
The items of sub-class 5 are packed by a next-fit manner into bins of size (1,1). 
The items of sub-class 6 are similarly packed into bins of size (p,l). In each of 
those two sub-classes, there is always one active bin. When an item does not fit, 
the bin is closed, and a new active bin is opened for the sub-class. Consider the 
sub-class 6. Given a set of items A, let a = (ai, <22) be their sum vector. Then if 
02 < 1, ai < pa2 < p. Hence < 1 is a satisfactory condition for all items in A 
to fit into one bin of size (p, 1). For sub-classes 3 and 5, it is easy to see that the 
second component determines whether an item fits into a non-empty bin. This is 
true since for all items /3 < 7, but all the bins are of size (1,1). 

Next, we calculate the amount of occupied space in all closed bins. Those are 
all bins for sub-classes 1 and 2, and all bins but the very last ones opened for 
sub-classes 3, 4, 5 and 6. Those four last bins add an additive constant which is 
calculated later. 
Sub-Class 1: The minimum weight of an item is 1/2 -f p and the cost of a bin is 
2. 
Sub-Class 2: The minimum item weight is 1/2 and the cost of a bin is 1 + p. 
Sub-Class 3: The weight of a pair of items is at least 2(a + p/2) = 2a + p. The 
cost of the bin is 2. 
Siib-Class 4• The weight of a pair of items is at least 2a, the cost of a bin is 1 + /1. 

Before we proceed to the other two sub-classes, we discuss the way next-fit runs 
in those two cases. Consider a case where a new bin is opened, when an items 
does not fit into the previous active bin. By the above arguments, it means that 
the second component of an item can determine whether it fits. Since the second 
component is bounded by a, all closed bins are occupied by at least 1 — a in that 
component. Bins of sub-phase 5 are also occupied by at least (1 — a)p in the first 
component. 
Sub-Class 5: The weight of items in a closed bin is at least (1 — a)( l + p), and 
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the cost of a bin is 2. 
Sub-Class 6: The weight of items in a closed bin is at least 1 — a, and the cost of 
a bin is 1 + fx. 

Let c be the maximum ratio of cost to weight in sub-classes 3, 4, 5 and 6. 
Specifically 

2 1 + p 2 1 + n 
c - m a H 2 a + f x , 2 a , ( 1 _ a ) ( 1 + / i ) > l _ a > • 

Since a < 1/3, we do not need to consider the fourth possibility. Hence 

, 2 1 + fi 2 
C _ m a X 4 a + iz' 2a ' (1 — a)( l + /i) ' 

Taking a to be a solution of 8a;3 — 8a;2 + 5a; — 1 = 0 and p, = (1 — 3a)/a, all other 
values are the same (this gives a « 0.302, p « 0.315, c « 2.177). Consider now 
also bins used for the symmetric case, i.e. the class of items (P',j') where ¡3' > 7'. 
There are at most 4 bins of cost I + p and 4 bins of size 2 that might be open but 
not occupied by enough weight, and are ignored in previous calculations. We add 
those into the calculations to get the value of the additive constant. 

Let NL be the number of bins used for sub-class 1 (in both classes) and NG the 
number of bins used for sub-class 2 (in both classes). Let W be the total weight of 
all items. Clearly, COPT > W. Also COPT > NL + NS- The last inequality is true 
since those items can be packed either alone (possibly together with items of other 
sub-classes) or in pairs, in bins of size (1,1). Hence the cost of the optimal off-line 
algorithm for each such item is at least 1 (if all items of sub-classes 3, 4, 5 and 6 
are ignored). 

The weight of items packed into closed bins of sub-classes 3, 4, 5 and 6 is at 
most W - 1/2NS - (1/2 + p)NL. 

Hence 

CONL < c(W - 1/2NS - ( 1 / 2 + H)Nl) + (1 + p)Ns + 2NL + 12 + Ap 

< CCOPT + NS( 1 + p - c / 2 ) + NL(2 - c / 2 - cp) + 12 + Ap 

For the above choices of a and p, 

1 + n - c/2 = 2 - c/2 - en « 0.226 . 

Hence CONL < 2.403COpt + 13.26. 
This proves the following Theorem: 

Theorem 4.1. The competitive ratio of the above algorithm is 2-403. 

5 Conclusions 
We have seen that there is a large difference between possible competitive ratios for 
different sets, and that the competitive ratio can actually vary between 1 and Q(d). 
The classical case (B = {(1 ,1 . . . , 1)}) seems to be easier than the most difficult 
cases, but harder than the easiest cases. We conjecture that the competitive ratio 
for that problem should be non constant, but sub-linear. 
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On-Line Maximizing the Number of Items 
Packed in Variable-Sized Bins 

Leah Epstein* and Lene M. Favrholdt* 

Abstract 

We study an on-line bin packing problem. A fixed number n of bins, 
possibly of different sizes, are given. The items arrive on-line, and the goal 
is to pack as many items as possible. It is known that there exists a legal 
packing of the whole sequence in the n bins. We consider fair algorithms that 
reject an item, only if it does not fit in the empty space of any bin. We show 
that the competitive ratio of any fair, deterministic algorithm lies between | 
and and that a class of algorithms including Best-Fit has a competitive 
ratio of exactly 2 n-i • 

Keywords: On-Line, Bin Packing. 

1 Introduction 
The Problem. We consider the following bin packing problem. The input con-
sists of n bins, possibly of different sizes, and a sequence of positively sized items. 
The bins as well as the sizes of the bins are denoted by B i , B 2 , . . . ,Bn- The items 
arrive on-line, i.e., each item must be packed before the next item is seen, and 
packed items cannot be moved between bins. The goal is to pack as many items 
as possible into the TI bins. A bin is legally packed if the total size of the items 
assigned to it is at most the size of the bin. This problem of maximizing the number 
of items packed in a fixed number of bins is sometimes called dual bin packing, to 
distinguish it from the classical bin packing problem which is to pack all items in 
as few bins as possible. In [8] the problem is reported to have been named dual 
bin packing in [18]. Note that this name is also sometimes used for bin covering 
[2, 14, 15]. For a survey on classical bin packing in identical bins, see [16, 11]. 
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Throughout the paper, we restrict the input sequences to be accommodating 
[6, 7], i.e., sequences that an optimal off-line algorithm, which knows all items in 
advance, can pack completely. The reason for this restriction is that, for general 
sequences, no on-line algorithm can pack a constant fraction of the number of items 
that can be packed by an optimal off-line algorithm. 

The problem can also be seen as a scheduling problem with n uniformly related 
machines. In the basic scheduling problem, each job is to be assigned to one of 
the machines so as to minimize the makespan. This problem was first studied for 
the case of identical machines by Graham [17], and for uniformly related machines 
by [1, 10, 4]. For a survey on on-line scheduling problems, see [20]. Consider a 
scheduling problem with a deadline and assume that the aim is to schedule as many 
jobs as possible before this deadline. If an optimal off-line algorithm can schedule 
all jobs of any input sequence before the deadline, this problem is equivalent to our 
problem. Our problem can also be seen as a special case of the multiple knapsack 
problem (see [19, 9]), where all items have unit profit. (This problem was mainly 
studied in the off-line environment.) 

The Algorithms. In this paper we study fair algorithms [3]. A fair algorithm 
rejects an item, only if the item does not fit in the empty space of any bin. 

Some of the algorithms that are classical for the classical bin packing problem 
(where the whole sequence of items is to be packed in as few bins as possible) can 
be adapted to our problem. Such an adaptation for identical bins was already done 
in [7]: the n bins are all considered open from the beginning, and no new bin can 
be opened. We also use this adaptation. Since there is no unique way to define 
First-Fit for variable sized bins, we discuss this in Section 3. 

The Quality Measure. The competitive ratio of an on-line algorithm A for the 
dual bin packing problem is the worst case ratio, over all possible input sequences, 
of the number of items packed by A to the number of items packed by an optimal 
off-line algorithm. Often an additive constant is allowed, yielding the following 
definition of the competitive ratio. 

Definition 1.1. For any algorithm A and any sequence I of items, let A (I) be the 
number of items packed by A and let OPT(I) be the number of items packed by an 
optimal off-line algorithm. Furthermore, let 0 < c < 1. An on-line algorithm A is 
c-competitive if there exists a constant b such that 

k(I) > c • OPT(I) — b, for any sequence I of items. 
The competitive ratio of A is 

Ca = sup{c | A is c-competitive]. 

Note that since dual bin packing is a maximization problem, the competitive 
ratio lies between 0 and 1. 

If the additive constant b is zero or negative, the algorithm is called strictly 
c-competitive. The bounds given in this paper are valid for the strict competitive 
ratio as well as for the competitive ratio in general. 

For randomized algorithms, the competitive ratio is defined similarly, but A(7) 
is replaced by the expected value of A(7), E(A(I)). 
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The Results. We show the following results for fair algorithms on accommodat-
ing sequences. 

• Any fair algorithm has a competitive ratio of at least and the competitive 
ratio of Worst-Fit is exactly \ . 

• A class of algorithms that give preference to smaller bins has a competitive 
ratio of exactly 2n"_1. This class contains Best-Fit as well as the variant of 
First-Fit that sorts the bins in order of non-decreasing sizes. 

• Any fair, deterministic algorithm has a competitive ratio of at most | , and 
any fair, randomized algorithm has a competitive ratio of at most 

Previous Work. Dual bin packing in identical bins has been studied both in 
the off-line version [13, 12] and in the on-line version for accommodating sequences 
[6, 7, 3]. Even for identical bins, a restriction on the input sequences is needed in 
order to be able to achieve a constant competitive ratio [7]. In [7], fair algorithms 
are considered and it is shown that First-Fit has a competitive ratio of at least | on 
accommodating sequences. An upper bound of | for any fair or unfair randomized 
algorithm is also given. In [3], a ( | — 4n

2
+1 )-competitive unfair algorithm is given, 

the negative result for fair deterministic algorithms is improved to 0.809, and the 
bound of | for First-Fit is shown to be asymptotically tight (the upper bound 
approaches | as n approaches infinity). 

2 General Results on Fair Algorithms 
In this section we show that, on accommodating sequences, the competitive ratio 
of any fair, deterministic algorithm lies between | and | , and the competitive ratio 
of any randomized algorithm is at most 

2.1 Positive Results 
The main result of this section is that any fair algorithm is ¿-competitive on ac-
commodating sequences. We need the following lemma which is adapted from a 
similar lemma for identical bins in [7]. 

Lemma 2.1. For any fair algorithm, the number of rejected items is no larger than 
the number of accepted items, if the input sequence is accommodating. 

Proof. Given an instance of the dual bin packing problem with an accommodating 
sequence I, we define a sequence I' as follows. Each accepted item of size x is 
replaced by |_fj items of size s, where s is the minimum size of any rejected item. 
Each rejected item is decreased to have size s. Clearly, a packing of all items of 
I defines a legal packing of all items of I ' , hence I ' is also an accommodating 
sequence. 

Let P be the on-line packing of I and let P' be the packing of / ' induced by P. 
Note that all items of I ' have the same size. Thus, to calculate an upper bound on 
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the number of items rejected we just need to find an upper bound on the number 
of items of size s that fit in the bins after doing the packing P'. 

For each bin Bt, let fcj denote the number of items in bin Bi in the packing P. 
The empty space in Bi in the packing P' consists of the empty space in Bi in the 
packing P and the space freed by the rounding down of the items packed in Bi. 
The empty space in Bi in P is less than s, since the algorithm is fair, and the total 
size of each original item was decreased by less than s. Thus, the empty space in 
Bi in P' is strictly less than s(ki + 1). We conclude that the number of rejected 
items is at most k» which is the number of accepted items. • 

Corollary 2.1. Any fair algorithm has a competitive ratio on accommodating se-
quences of at least |. 

We close this section with an easy lemma that will be needed in Section 2.2 and 
Section 3. Let C be the set of non-empty bins in the optimal off-line packing. Let 
N = \C\. 

Lemma 2.2. Given an accommodating input sequence, any fair algorithm rejects 
at most N — 1 items. 

Proof. If the on-line algorithm does not reject any items, its packing is optimal. 
Assume now, that at least one item is rejected. Let s be the minimum size of any 
rejected item. Since the algorithm is fair, the empty space in each bin is less than 
s. Another trivial upper bound on the empty space in any bin B is the size B of 
the bin. Thus, the total empty space in the on-line packing is strictly less than 
Ns + ^he total empty space of OPT is at least Hence, since 
OPT accepts all items, the total size of all rejected items is strictly less than Ns. 
Since all rejected items are of size at least s, there are at most N — 1 rejected 
items. • 

2.2 Negative Results 
In this section we show an upper bound of | for deterministic, fair algorithms and 
an upper bound of | for randomized, fair algorithms. 

We first prove the upper bound of § for the strict competitive ratio. This is 
relatively easy for any n > 2. Consider for example the following instance with 
n - 2 bins of size e, 0 < e < 1, one bin of size 2, and one bin of size 3. The input 
sequence consists of two or three items that are all too large for the bins of size e. 
The first item has size 1. If this first item is assigned to the bin of size 3, an item of 
size 3 arrives next. Otherwise, two items of size 2 will arrive. In the first case, only 
the first item is packed, since the second does not fit, and in the second case only 
two items are accepted, the third does not fit. It is easy to see that both sequences 
are accommodating. This gives an upper bound of | on the strict competitive 
ratio, for n > 2. Applying Yao's inequality [21] as described in [5] on these two 
sequences gives an upper bound of | on the strict competitive ratio for randomized 
algorithms. This can be seen in the following way. Consider the sequence where 
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the first item of size 1 is followed by one item of size 3 with probability pi = | 
and by two items of size 2 with probability p2 = | . An algorithm that packs the 
first item in the bin of size 3 will have an expected performance ratio of at most 
px • | + p2 • 1 = | . Similarly, an algorithm that packs the first item in the bin of 
size 2 will have an expected performance ratio of at most pi • 1 + p2 • § = Thus, 
no deterministic algorithm can have an expected performance ratio larger than | 
on this sequence. 

However, we are interested in negative results that hold for the competitive ratio 
in general, and not only for the strict competitive ratio. By Lemma 2.2, the number 
of rejected items is at most n — 1. As long as there is only a constant number of bins, 
we can view the number of rejected items as just an additive constant, and hence 
any fair algorithm has competitive ratio 1. Thus, to prove the following theorem, 
we need to find arbitrarily long accommodating sequences with the property that 
only | of the items are accepted. 

Theorem 2.1. Any fair, deterministic on-line algorithm for the dual bin packing 
problem has a competitive ratio of at most | on accommodating sequences. 

Proof. For I = 1 , . . . , [f J, we give the pair of bins 

B2t_i =2£ + 4ee and B2i = 2t + 2- \le, 

where e < p- is a positive constant. Thus, \ l e < 1, 1 < I < [ f j - If n is odd, 
the last bin is of size | (so that no items are packed in that bin for the sequence 
we define). The sequence contains 3 • items and is constructed so that exactly 
2 • Lf J °f them are accepted. 

The sequence is defined inductively in steps |_|-J, |_f J — 1, • • •, 1- In step k, two 
large items are given and one small item is defined. The small items are given 
after all large items and are defined such that they will be rejected by the on-line 
algorithm. The sizes of the two large items are defined such that 

• the on-line algorithm will pack them in B2k and B2k-i, one in each bin, and 
• after packing the two items, the empty space in the two bins have the same 

size denoted Ek. 
For convenience we define ¿¡^f J + i = 0. As will be seen later, Ek+1 < Ek, 1 < k < 
LfJ. Furthermore, we will prove that Ex < I. 

The first large item given in step k has size 2k — Ek+1. Thus, the very first item 
has size 2 • [^J, and the size of the first large item of each of the later steps depends 
on the empty space created in the previous step. Since 2k — Ek+1 > 2k — 1 and all 
previous bins Bn,... ,B2k+i have less than one unit of empty space, this item fits 
only in B2k and B2k-i • What happens next depends on which of these two bins 
the algorithm chooses. 

Case 1: The first large item is packed in B2k_i. In this case, the next large 
item has size 2k — Ek+1 + Ake. This item will be packed in B2k. Now, the empty 
space in each of the bins B2k and B2k-1 is Ek = Ek+\ + ik£. The small item 
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defined in this step has size Sk = Ek + 4fce. Note that this item does not fit in B2k 
or B2k-1, but the off-line algorithm can pack the first large item in B2k together 
with the small item and put the second large item in B2k-\-

Case 2: The first large item is packed in B2k. In this case, the next large 
item has size 2k — Ek+1 - 4ke. For k > 2, this item does not fit in B2k-2, since 
2k - Ek+1 - 4fce > 2k - 1 - 4*e > 2k - 2 + 3 • 4fce, for n > 2, and B2k-2 = 
2k — 2 + 2 • 4fc_2e. Hence, this item must be packed in B2k-\. Now, the empty 
space in each of the bins B2k and B2k-i is Ek = Ek+1 + 2 • 4ke. The small item 
defined in this step has size Sk = Ek+ 4ke. This item does not fit in B2k o r B 2 n , 
but the off-line algorithm can pack the first large item in B2k~i and put the second 
large item in B2k-i together with the small item. 

Note that Ek+1 + 4fce < Ek < Ek+1 + 2 • 4ke, 1 < k < Lf J. The first inequality 
tells us that, to prove that none of the small items will be accepted, it suffices to 
prove that Sk > Ei, 2 < k < This is easily done using the second inequality. 
For 2 < k < LfJ, 

k-1 
Ei < Ek + 2 • < Ek + 4ke = Sk. 

i-1 
Finally, 

LfJ 
Ei < J + i + 2 • < 4 ^ J + 1 e < 4 ^ 1 + ! " " < l. 

¿=i 
• 

We move on to randomized algorithms. Since the previous sequence was built 
step by step, we need to give a simpler sequence in order to prove the following 
theorem. 

Theorem 2.2. Any fair randomized algorithm has a competitive ratio on accom-
modating sequences of at most |. 

Proof. We use [f J bins of size 1 + e and |_f J bins of size 2 — e, where 0 < e < 
If n is odd, the last bin is of size e. The sequence starts with |_f J items of size 1. 
We describe a proof for deterministic algorithms first. Since the algorithm is fair, 
all LfJ items are accepted. Let x be the number of bins of size 1 4- e that received 
an item (no bin can receive more than one item). Then, exactly x bins of size 2 — e 
are empty. What happens next depends on the size of x. 

Case x < | • LfJ- In this case, the sequence continues with LfJ items of size 
2 — e, and the on-line algorithm accepts LfJ + x items in total out of the 2LfJ. 
This gives a fraction of 

i f i ± ^ < i ± i = 4 
2 L f J - 2 5' 
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Case x > | • [f J • In this case, the sequence continues with [^J items of size 1 +e 
followed by |_fj items of size 1 — e. After the arrival of items of size 1, there are 
LfJ empty bins. Thus, all items of size 1 + e are accepted and now each bin has 
exactly one item. Items of size 1 — e can only be assigned to bins of size 2 — e that 
contain an item of size 1, hence |_f J — x of them are accepted. Thus, the fraction 

3LfJ - x 3 - 1 4 
3Lf J 3 5 

of the items is accepted. 
To get a randomized result, let x be the expectation of the number of bins of 

size 1 + e that got an item. The bound follows by linearity of expectation. • 

3 Results on Specific Fair Algorithms 
We now analyze specific algorithms. Some natural fair algorithms are First-Fit, 
Best-Fit, and Worst-Fit. The algorithm First-Fit is not a single algorithm, but a 
class of algorithms that give an order to the bins, and use the algorithm according 
to this order, i.e., assign an item to the first bin (in the ordered set of bins) that 
the item fits in. Among the various versions of First-Fit, two are most natural; 
Smallest-Fit assigns an item to the smallest bin it fits into, and Largest-Fit assigns 
an item to the largest bin it fits into. The other algorithms are used in their 
classical version, i.e., Best-Fit packs each item in a bin where it will leave the 
smallest possible empty space, and Worst-Fit packs it in the bin where it leaves the 
largest empty space. We refer to these four algorithms as SF, LF, BF, and WF. 

We start the analysis by showing that | is indeed the exact competitive ratio 
of WF and LF. 

Theorem 3.1. The competitive ratio of Worst-Fit and Largest-Fit on accommo-
dating sequences is 

Proof. Let e > 0 be a constant such that £ < K Consider the following set of bins. 
One large bin of size n and n - 1 small bins of size 1. The sequence consists of 
n — 1 items of size 1 followed by n — 1 items of size 1 + e. Both algorithms LF 
and WF assign all items of size 1 to the large bin. As a result, all bins have a free 
space of size 1, hence none of the items of size 1 + e can be accepted. The optimal 
algorithm assigns each small item to a small bin, and all other items to the large 
bin; they all fit since 

\ / ,, ^ (n + 1 )(n - 1) 
(1 + £)(n - 1) < - ^ '- < n . 

n 
This example in combination with Corollary 2.1 proves the theorem. • 

We further analyze a class of fair algorithms called Smallest-Bins-First to which 
SF and BF belong. This is the class of fair algorithms that whenever an item is 
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assigned to an empty bin, this is the smallest bin in which the item fits. There are 
no additional rules, and the algorithm may use an empty bin even if the item fits 
in a non-empty bin, as long as it uses the smallest empty bin for that. SF belongs 
to this class according to its definition. BF belongs to this class since, among the 
empty bins that an item fits into, it fits better into the smaller bins than the larger 
bins. We give a tight analysis of this class as a function of n. Specifically we prove 
the following. 

Theorem 3.2. The competitive ratio of any Smallest-Bins-First algorithm on ac-
commodating sequences is 2n"_1. 

Proof. If, after running the algorithm, all bins of the on-line algorithm are non-
empty, then there are at least n accepted items and at most n — 1 rejected items 
(by Lemma 2.2). Thus, in this case, the competitive ratio is at least 2n-i • 

Otherwise, consider the largest (last) bin b that remained empty after running 
the on-line algorithm. We consider items of size smaller than or equal to b, and 
items larger than b separately. Since a bin of size b is empty and no bin larger 
than b is empty, according to the definition of the class of algorithms, each bin of 
size more than b contains at least one item larger than b, namely the first item 
packed in the bin. Moreover, all items of size at most b are accepted. Let xs be the 
number of items in bins of size at most b and let nt be the number of bins larger 
than b. Let Ns be the number of non-empty bins of OPT of size at most b and Nt 
its number of non-empty bins larger than b. Clearly, xs > Ns (all those bins are of 
size at most b and contain at least one item). We get that the number of accepted 
items is at least xs + nt > Ns + Nt = N. Thus, by Lemma 2.2, the competitive 
ratio is at least 2n~ i ^ 2^-i• 

. To show that the result is tight for this class of algorithms, let e < ^ be a 
positive constant. Consider the set of bins Bi = 1 + ei, i = 1 , . . . , n. The sequence 
consists of n items, one of size 1 + e(i — 1) for each i = 1 , . . . , n, followed by n — 1 
items of size ^ j . All algorithms in the class assign the item of size 1 + e(i — 1) to 
Bi. All other items are rejected. The optimal off-line algorithm assigns each large 
item except the first one to a bin of its size. The first item and the n — 1 small 
items are assigned to Bn. • 

Note that when n = 2, the lower bound of 2n"_t matches the general upper 
bound of | . 

4 Conclusion 
We have proven an upper bound of | for all fair algorithms. We have also shown 
that any fair algorithm accepts at least half of the items, and that some algorithms 
do significantly better for very small n. It is left as an open problem to design a fair 
algorithm with a competitive ratio significantly larger than | for any n, or prove 
that this is not possible. It is also unknown how much unfair algorithms can be 
better; the best negative result for those is which holds even for identical bins [7]. 
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SW-type puzzles and their graphs 

Benedek Nagy* 

Abstract 
In this paper, we present the SW-type of truth-tellers and liars puzzles. 

We examine the SW-type puzzles where each person can utter a sentence 
about the person's type and in which he uses only the "and" connective. We 
make the graphs of these puzzles. The graph of a puzzle has all information 
about the puzzle if we have no other information to solve the puzzle than 
the statements given (clear puzzles). We analyze the graphs of the possible 
puzzles. We give some transformations of graphs based on local information, 
for instance arrow-adding steps. These local steps are very helpful to solve 
these puzzles. We show an example that we can solve using these local steps. 
After this, we examine into the global properties of the graphs. We show a 
special example when the local steps do not help, but the puzzle is solvable 
by using global information. Finally we show a graph-algorithm which is a 
combination of local and global information, and show that it can solve the 
SW-type puzzles. 

Keywords: puzzles, truth-tellers and liars, graphs, graph-algorithm 

1 Introduction 
Games are as old as humanity. Nowadays most people connect them to computers. 
Game playing is also good time-spending activities. The problems needing more 
or less time to solve represent useful ways of spending one's spare time. A part 
of games are puzzles. Logical puzzles can be solved by a rational way of thinking. 
From children to very wise people everybody can find puzzles which develop their 
skills. It can be a good hobby as well. Therefore, logical puzzles are very useful 
to explore the ability of logical thought. There are many kind of puzzles. In 
this article, we consider a simple type called "truth-tellers and liars". In these 
puzzles, there are some people each of the following two types: either truth-teller, 
who can say only true statements; or liar, who can say only false statements. All 
participants have full information about the type of the others. Some of them claim 
about the type of the others. The puzzle is to figure out the types of each person. 
These problems are very popular. Smullyan examined such puzzles in scientifical 
and logical way ([7], [8], [9], [10]), where the participants was distinguished as 
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knights and knaves. In [6], satellites send messages informing mechanics whether 
the neighbouring satellites work properly, or not. In [1], [2] and in [3], Aszalos 
solves many puzzles by using tableaux method and Prolog language, as well. 

In this paper, we investigate a special type of truth-teller-liar puzzles. We show 
a characteristic example. 
Example 1.1. Consider the following problem. There are four people: Alice, Bob, 
Charlie and David. Each of them is either a truth-teller or a liar. They say: 

Alice says that Bob is a truth-teller and David is a liar. Bob says that Charlie 
is a liar. Charlie says that Alice is a truth-teller and David is a liar. 

Using Smullyan's method [7] we write the example in the next logical form: 

A = B A B = iC, C = AA^D 

One can check easily that valuation A = C = false, B — D = true gives valid 
formulae. Therefore a solution of the example that Alice and Charlie are truth-
tellers; Bob and David are liars. Moreover it is easy to check that the variables 
A,B,C,D have not other values such that all given formulae are true. So our 
solution is unique. 

In the next section we describe more precisely the SW-type truth-teller and liar 
puzzles. In [4] we presented a program in language C which can generate special 
SW-type puzzles. Now we will associate graphs to the puzzles, which are very 
useful to examine the structure of the puzzles, and we can solve a puzzle by using 
the associated graph. 

In section 3 we analyse the SW-type puzzles and we show some useful steps to 
solve them by using local information, in this section we will solve Example 1.1. 

In thé next sections, we show an example such that the local information is not 
enough to solve it. We show how we can use the global information of the graph 
to get the solution. We present a general algorithm mixed the local and global 
information. 

2 SW-type puzzles 
We need a few concepts to the mathematical discussion and so; we give some basic 
definitions and notations. 

The sentences which are not dividable to smaller sentences are called atomic (or 
simple) statements. In this paper, we use atomic statements only about a person's 
type as we seen in Example 1.1. 

In Example 1.1 there are 5 atomic sentences. Alice and Charlie tell two-two 
atomic statements and Bob tells one. 

In this puzzles, if a person is a truth-teller then the conjunction of his atomic 
statements must be true. If a person is a liar then the conjunction of his atomic 
statements is false. In [5] we used these definitions to define S(trong) Truth-tellers 
and W(eak) Liars. 
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Figure 1: The graph of Example 1.1 

If a person remains silent then he may be Truth-teller or he may be Liar. We 
may know it only from the atomic sentences about his type. 

We call our puzzles SW-type because each person is an S truth-teller, or a W 
liar. 

In [4] we investigated clear and non-clear puzzles. A puzzle is clear, if we have 
no other information to solve the puzzle than the statements given. 

An example of a non-clear puzzle is someone's type or the number of truth-
tellers being known independently of the statements. In this paper, we examine 
only clear puzzles. Our example is a clear SW-puzzle. 

We use the value 1 to represent the truth-tellers, and the value 0 for the liars. 

Definition 2.1. The solution of a puzzle is a function which assigns either a 1 
or a 0 to each person, who is in the puzzle depending upon the truth-values of the 
statements he or she makes. Two solutions are different, if there is a person, whose 
type is not the same in these two functions. 

We say that a puzzle is good if it has a unique solution. 

In this paper we use three type of participants in dynamic way. The initial type 
is the unknown. The other two types are the known 1 and known 0. We will sign 
the known values at the participants who have it. Usually we will use the sets T 
and L as sets of truth-tellers and sets of liars, respectively. 

This paper will investigate clear puzzles only with solutions and the most of our 
results are about good puzzles. 

Definition 2.2. Puzzles are represented by directed graphs with a node of the graph 
for person in the puzzle. There are two types of arrows: if A said that B is a truth-
teller then we use a solid arrow from A to B; if A said that B is a liar then we use 
a dashed arrow from A to B. We will use N as the set of nodes and t, I as the sets 
of solid and dashed edges, respectively. 

We will use the names of persons as names of nodes, and sometimes as logical 
statements which can have either 0 or 1 values. We use the following notation: 
P(N,t,l) (where the nodes are Bi £ N, the solid and dashed edges tj £ t and £ 1 
respectively, and they are sorted pairs of nodes) as the associated graph of a puzzle. 

In Fig. 1 we show the graph of Example 1.1. 
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We say that the puzzles P and Q are equivalent if the solution(s) of P are the 
same as the solution(s) of Q. 

Now we continue the describing the SW-type puzzles, which are widely used. 
One can find them in almost every book on puzzles. 

According to our concepts, in these puzzles we have only S truth-tellers, and W 
liars, hence we can use conjunction in logical form of the sentences. In an SW-type 
puzzle, every person can make at most one complex assertion which has a truth-
value corresponding to the type of the person. The possible atomic sentences are: 
the man names a person, and he states that this person is a truth-teller (or he 
states, that this person is a liar). 

So in an SW-type puzzle with n persons, each person can claim at most one 
sentence, and it must be the following type: he names m persons (0 < m < n), and 
he states that all of them are truth-tellers, and he names k persons (0 < k < n), 
and he states that all of them are liars. So, there are two - maybe one of them or 
both empty, and not necessarily disjoint - sets of the persons for each member in 
the puzzle, about whom that member claims something. 

Definition 2.3. (Formal definition of SW-puzzles) Suppose that there are n people 
BuB2,...Bn. 
From, [7] and [4] we write the following logical form from the statements: if 
3j(BiBj G t or BiBj € t) then 

(*) Bi = { f \ Bj) A ( f \ -nBfc). 
BiBj^t BiBkei 

If all the conditions of a puzzle can be written by this way then it is a clear 
SW-puzzle. 

Now we consider that P is a graph of an SW-type puzzle. Let us examine the 
meaning of the arrows. 

If A states the atomic statement, that B is a truth-teller then A D B is valid 
(this is what the solid arrow means), or if A states, that B is a liar then the formula 
A D ~>B is true (it is a dashed arrow). In (*) we have equivalence, so we need one 
more concept: the relevant edges. 

Definition 2.4. In the graph P, we call an edge relevant edge if it is possible for 
it to stand for a liar's actual, false atomic statement. 

We will use this concept in dynamic way. First we assume, that all arrows are 
relevant. (We do not know yet if it was not possible for an edge to stand for a liar's 
false statement.) And while it turns out that an edge might not be relevant we 
assume that it is possible for it to stand for a liar's actual, false atomic statement. 
It is evident that there is at least 1 relevant arrow from the nodes which are type 
0, assuming that person said something. 
Notation 2.5. In the graph we cross the non-relevant edges. An edge is annotated 
with the sign '!' if there is only this relevant edge starting from that node.We will 
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use these notations in figures. In form P(N,t,l) we will use for a non-relevant edge 
AB (A,B € N) the sign AB (overlying). And for the unique relevant edge CD 
(where C, D £ N) we use the CD (underlying) form in text instead of the sign '!'. 
From here AB £ t means that one of the AB, AB and AB is in the set t, and 
similarly for the set 1. 

The following assertion shows how we can use the relevant edges to make the 
(*) form from the implications. 

If there is only one relevant edge from a node B, then we use equivalence in the 
formula instead of implication: BC £ t means that B = C; BC £ 1 means that 
B = -.C. 

Hence we can see that the graph of a puzzle represents really the sets of logical 
formulas of the puzzle. The nodes (Bi) like atomic statements ("Bi is a truth-
teller"), the arrows like logical connectives between them, and hence we can use 
them as logical statements also. 

3 Local steps in the graph 
Solving the puzzles requires some techniques which modify the graph of the puzzle. 
However our new graph is equivalent to the original. These local techniques are 
the following (we will give detailed description of them in this section): 

Definition 3.1. 
a) An arrow-adding step is the following: add a new (non-relevant) arrow to the 

graph such that all solutions remain such that our new graph is equivalent to 
the original. 

b) A node-union is when it turns out that two nodes must be same types, and 
we need use only one of them as common node. 

c) A subgraph is a basic scheme if the type of one of the nodes of this part can 
be only one of {0,1} according to the arrows in this part. 

d) An arrow is a valuable arrow, if we know the type of starting or the ending 
node, and we can infer the type of the other node (using only the information 
about the type of the first node, and the type of connection.) 

e) In arrow deletion and arrow change to irrelevant steps we will delete the 
arrows, which are non useful (we cannot use them to get new information, 
for example we know the type of both end-nodes), or we cross the edges, which 
we cannot use as relevant edges, but we may will use as valuable arrows. 

The basic schemes and the valuable arrows change the types of the nodes to 
known value. The node-union step decrease the number of nodes and use the new 
node as endpoint of the edges, which had endpoint one of the joined nodes. In an 
arrow-adding step we increase the number of edges, while in an arrow deletion we 
decrease it. 



72 Benedek Nagy 

Now we have some lemmas about these local steps: when and how we can use 
them. 

First we show the arrow-adding steps. We add a new non-relevant edge to the 
graph in the following cases. (The new edge is non-relevant, because it is not a real 
statement in the original puzzle.) 

Lemma 3.2. The following steps are arrow-adding steps. The graphs before and 
after a step are equivalent. 

edge(s) in the graph before the step the new irrelevant edge(s) 
a) AC 6 I AC el 
b) AB,BC e t AC e t 
c) AB 6 t and (BC e I or CB e t)* AC,CAe 
d) AB e I and (BC or CB e l)* AC e t. 

If the new type of arrow with this direction has directly connected the nodes A 
and C, then we do not need the new edge (we already have edge which means this 
type of connection). 

Proof. It is from the logical meanings of the edges. The case a) is from A D ->B 
is equivalent to B D ~>A, which is the meaning of the dashed arrow for opposite 
direction, case b) is from: A D B, B D C are the original arrows, and their logical 
consequence is A D C, the new arrow. In case c) £ means that we can use this 
step independently the direction of the dashed edge between B and C, because of 
point a), and 0 signs that we can add arrows with both directions because we have 
A D B, B D ~'C, therefore A 3 ->C is valid, and than using point a) C D ~>A also 
valid. In case d) the sign ty notes that the dashed edge between B and C must be 
only one relevant at least from one direction and we have no restriction about the 
relevance of other edges in these steps. Then A D ->B, B = ->C, which is implies 
that C = -iB, hence AD C. • 

The meanings of these new edges are about "that person could say these things 
also". In [3] Aszalós examines this modal operator in puzzles. 

According to the point a) of the previous lemma, if the relevance is not impor-
tant then we can use only dashed line instead arrows. (But sometime we need the 
directions of these arrows for using relevance.) 

Let us see how we modify the graph of the example using these steps. 
We note by sign ! the edge from B because it is unique. We can use arrow-

adding steps b) and c) among A, B and C (Fig. 2). 
Now, we can use arrow-adding step c) for CB e t, BC € 1 or for CA e t, AC € 1. 
Now we go back to the theory. We have a basic scheme: 

Lemma 3.3. If the graph of a puzzle P(N,t,I) contains dashed loop-edge AA e I, 
then the node A is type 0. 

Proof If there is a dashed loop edge at node A, then A D -iA, and it means that 
A must be a liar. • 
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Figure 2: The graph of the Example 1.1 after some arrow-adding steps 

Let us see our example. We get basic scheme at C (Fig. 3). Using the scheme 
first we write the sign 0 to the node (it is a known type), and after this we examine 
the arrows, which remain relevant. It is very important part of this local method. 
In the next part we examine the valuable arrows, and the arrows, which become 
irrelevant. So if we know the type of the node of an end of an edge, what do we 
know about the other end? 

Lemma 3.4. Let A,C £ N such a way that A is known type (let T and L be the 
known nodes with type 1 and type 0, respectively) as in the first column of the table 
and the noted edge between them is in P. The noted edge is a valuable arrow in the 
SW-puzzle if it is one of the following: 

the case of valuable arrow after valuation we have these information 
a) A ET, AC E t C is type 1 also 
b) AET, (AC or CAE I) C is type 0 
c) A E L.AC Et C is type 0 
d) A ET, CAE t C is type 1 
e) A E L, CA E t C is type 0 
f ) A E L, (AC or CA E I)* C is type 1 

this arrow must be unique relevant at least from one direction to use this step 

Proof. It is evident from logical meaning of the arrows. • 

At this point we detail the arrow-deletions and arrows changing to irrelevant 
steps. First of all, we note that the point d) and some special case of point c) in 
the previous lemma are this kind of steps also, as we will show in the next lemma. 
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Lemma 3.5. 
a) Let A, B and C be three nodes. If AB E I and BC or CB E I and the edge 

AC E t is already in the graph such that both arrows from A (the dashed edge 
to B and the solid one to C) are relevant then we cross out one of them. 

b) Our graph will be equivalent to the previous one in the following case also: let 
A, B and C be nodes such a way that AB £ t, (BC or CB £ I) and AC £ I 
where both arrows from A are relevant. In this case we cross out one of them 
from A. 

Proof. The connection between B and C means that B and C are different types. 
Hence if an arrow above is relevant in the solution then the other is relevant also. • 

Now we will show the other cases when we cross out or delete an arrow. 

Lemma 3.6. Each arrow which starts from a type 1 node will be irrelevant. 

Proof. Trivially, it is from the definition of relevant edge. • 

The following two lemmas are about that when we delete edges. We delete 
only edges, which have a known type end. If we cannot use an edge to get more 
information then we delete it. 

Lemma 3.7. Let T and L be the set of known type nodes (T is the nodes type 1, 
and L is the nodes type 0). Let A be a node, whose type is unknown at this time. 
If not only one relevant arrow started from the node A, but there is an arrow which 
goes to a known type node C, like 

a) AC £t,C £ T, and/or 
b) AC £ I, C £ L, 

then this arrow will be deleted. 

Proof. Prom the logical meaning of the arrows from A, we can use the (*) formula. 
We have a conjunction in left hand side, these edges means values 1 in this con-
junction. We can delete these values if it is not alone in this side. But there is 
other relevant edge from A, therefore we delete these arrows. • 

Lemma 3.8. If we know about the node A that it is type 0 (A £ L), and there is 
a relevant arrow from A to a node C, like 

a) AC £ t, A, C £ L, or 
b) AC El, A£ L andC £T 

then we delete all other arrows starting from A. 

Proof. We can use (*). This formula must be valid independently the values of the 
other atomic sentences in the left hand side. • 
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A • B 
1 

- - • •D 

Figure 4: The graph after deleting edges 

A 
0 

\ i 

• B 

0 1 

Figure 5: The solution of Example 1.1 on the graph 

After using basic schemes we can use the point b) of lemma 3.7. We delete and 
cross the edges, which were relevant until this step. 

Now we continue the solution of our example. 
We can evaluate the value of B by step f) of lemma 3.4, hence B is type 1. We 

delete the edges AB, CB, BC, AC and CC (lemma 3.7). And we can sign the 
arrow AD by ! (Fig. 4). 

We can use the step lemma 3.5. to cross out an edge from C. But after this we . 
can ! sign the other arrow from C hence we can use valuable-arrow steps and get 
the value 0 for A and 1 for D. Therefore the result is: Alice and Charlie are liars, 
Bob and David are truth-tellers (Fig. 5). 

In general case it is possible that we need the node-union step. We can use node 
union step in the following situation: 

Lemma 3.9. If there are two nodes A and B, such that AB £ t (the unique relevant 
arrow from A goes to B, and it is solid), then we unite these nodes. The united 
node has label "A,B" and we have all edges at this node which were into/from A 
and B but the AB € t edge. And if there was relevant BA also, then after the 
node-union we have a relevant loop arrow at this node. The new graph is equivalent 
to the original one in the following sense. In the solution of the previous graph the 
nodes A and B have the same value as in the solution of the new graph the united 
node with label "A, B"; and all other nodes have the same value, respectively. 

Proof. From the logical meaning of the edge AB £ t we know, that A = B. So all 
edge, which had endpoint A or B must be valid in the new graph. There were not 
more relevant edges from A, and we have all relevant edges from B. • 
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Sometimes we have information that two nodes are the same type but we cannot 
use node-union. Therefore we need the concept of parity of nodes, what we can use 
usually after the arrow-adding steps. 

Definition 3.10. Two nodes are in parity, if they are connected by solid arrows 
by both directions. We will use the notation A В to show that there are solid 
arrows between them, in both way. 

(And we may use, that each node in parity with itself, because we can add solid 
loop arrow for each node, А э A must be valid.) 

Lemma 3.11. The nodes in parity have same value. 

Proof. Assume, that A and В are in parity. Then from logical meanings of the 
solid arrows: Ad В, В D A: A = B. • 

Lemma 3.12. If from a node there are more same-type (solid or dashed) relevant 
edges going to the nodes which are in parity, then we can keep only one of them 
relevant, and we cross the others. 

Proof. The nodes in parity are same type, so all these relevant edges mean true 
atomic statements, or all of them mean false atomic statements. So it is equivalent 
to only one independent statement. Easy to show, that the new graph is equivalent 
to the previous one. • 

Remark 3.13. If from a node A there are more than 1 same-type edge going to 
the node B, then we leave only one of them. If there was relevant one among them, 
then we keep a relevant one, and delete the others. 

Remark 3.14. If an edge is relevant in the solution, then it must be relevant also 
in the original graph of the puzzle. 

4 The global properties of the possible puzzle-
graphs 

Now, before we examine how we can use the global information of a puzzle-graph, 
we make some statements about the possible graphs. 

Lemma 4.1. There is no good and clear SW-type puzzle only with solid arrows. 

Proof. It has at least two different solutions: everybody is truth-teller; or each 
person is a liar. • 

Lemma 4.2. There is no good and clear SW-type puzzle, whose solution is that 
each person is a truth-teller. 

Proof. In the graph of this puzzle there are only solid arrows. So according to the 
previous lemma, our statement is true. • 



SW-type puzzles and their graphs 77 

Lemma 4.3. If the graph of a clear and good puzzle has two or more components, 
then this puzzle falls apart: we have two or more less clear and good puzzle. 

Proof. In a clear puzzle in a component there is no information about the nodes in 
other components. • 

According to the previous lemma, we assume that our graph has only one com-
ponent, or we can solve the less one-component's puzzles. 

The following lemma plays important rule when we use global information of a 
graph. 

Lemma 4.4. There is no dashed edge between two type 1 nodes in the solution. 

Proof. If a node is type 1, then all dashed arrows from it must go to type 0 nodes. 
• 

Lemma 4.5. We know from Lemma 4-1 that there is a dashed edge in the puzzle, 
but from the previous lemma we know that this edge cannot be between type 1 nodes. 
So there must be a type 0 node in an end of each dashed edge. 

Lemma 4.6. Let T be the set of the truth-tellers in the solution. Then there is no 
solid arrow from this set which goes outside T. 

Proof. If a solid arrow starting from a type 1 node goes to a node A, then A must 
be type 1 also. • 

Lemma 4.7. If there is a directed circle built by solid arrows, then all nodes in 
this circle are in parity. 

Proof. Easy by using arrow adding steps b). • 

Lemma 4.8. Parity is an equivalence relation among nodes. 

Proof. Each node is in parity with itself, according to the note after the Definition 
3.10. The symmetry come from the definition. It is transitive (if A B, B O- C 
then A <s> C) because we can use step b) of Lemma 3.2. • 

Lemma 4.9. Let P be the graph of a good, clear SW-puzzle, and T be the set of 
type 1 nodes in the solution. If it is a node B, who is liar in the solution of P and 
he remained silent, then we can use arrow-adding steps for a new dashed edge from 
B to a truth-teller, or we can use node-union step to join B to an another liar. 

Proof. We assume that the graph is connected. If there is dashed edge from T to 
B, then we can use arrow-adding step a), and we get a new dashed edge from B 
to a truth-teller. If there is no edges between T and B originally, then must be an 
arrow from a liar to B. Let L is the set of nodes, which are not in T and differ from 
B. In this case originally there is not edge between T and B. (From B does not 
start any, and from T to B there is no solid arrow (Lemma 4.6.), and we assumed 
that there is nor dashed edge.) But the P was connected, so there must be edges 
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from L to B. If there was a solid arrow from L to B, which is uniquely relevant 
from where it starts then we must use node-union step. And in final case there is 
no uniquely relevant arrow to B. which means that all non-silent liars have other 
arrows meaning his lie. But in this case it is also a solution, when T\J{B} is the sets 
of truth-tellers, and L is the set of liars. So in this case we get contradiction. • 

Lemma 4.10. Let P be the graph of a good, clear SW-puzzle, and T be the set of 
type 1 nodes in the solution. After all usual arrow-adding and node-union steps for 
P there is not possible only one node, which is not in T, and not connected with 
an element of T by dashed edge. 

Proof. We can assume, that P is connected, and we have no usual arrow-adding or 
node-union steps. From Lemma 4.2. we know, that there must be a node outside 
of T. Now we have two possibilities: B said something, or he remained silent. 
If he said something, and in the solution he is a liar, then must start a relevant 
arrow from B. If he said about a truth-teller C, that C is a liar, then this edge is 
dashed between B and T. If he said about a liar C that, C is truth-teller, then -
because of all liar, but B are connected \yith T by dashed edge - the arrow-adding 
step c) (Lemma 3.2) is useful, and we get a dashed edge between B and T. In the 
case when B was silent, we can use the previous Lemma 4.9 for using node-union 
step. • 

Lemma 4.11. If in the good and clear puzzle's solution everybody is a liar, and 
the graph of the puzzle is connected, then after the possible arrow-adding and node-
union steps we get a puzzle with only one node with two kind of loop edges. 

Proof. Easy to show, that for one node it is the unique puzzle. We will show that 
if we have more nodes then we can use node-union steps (and we get smaller and 
smaller puzzle with same solution). 

If there was a node without starting relevant edges, then we can use node-union 
step by using Lemma 4.9. Now, we assume that we already used all possible arrow-
adding steps. It is evident, that all relevant edges in the solution are solid, because 
each person is a liar. If from a node there is only one relevant arrow, then we must 
use node-union step. In other case from each node must start at least two relevant 
arrows. Let A be a node. Let TA be the set of nodes, which we can reach from A 
by directed solid arrows. (By using arrow-adding steps it is evident, that we have 
a direct arrow from A to each element of TA.) The set TA is finite, let Yi, Y2,... Yk 
the subsets of TA, such that all nodes in a Yi are in parity. Then we can use Lemma 
3.12, so in each Yj there at most only one relevant edge from each node is inside of 
Y\. If there is a node, for which only one relevant edge remains, then we can use 
node-union. If such a node does not exist, then an other relevant arrow starting 
from all node in Y\ to outside of Y|. So there is at least one set Yj, which differs 
from YJ, and there is relevant arrow from Yj to Yj. But there is the same situation 
with Yj. So if we cannot use a node-union step inside of Yj then a relevant edge 
must go to another Yk. But we have only finite number of set Yn. So we must have 
a circle by using directed solid arrows among the sets Y inside in TA- But it means, 
that two or more sets are in parity. It is a contradiction. 
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So it is not possible that we cannot use node-union step, if we have at least two 
nodes. • 

The following theorem is a summary of the previous lemmas. It shows the global 
information of the graph, what we can use in the next section. 

Theorem 4.12. Let P be the graph of a good, clear SW-puzzle, and T be the set 
of type 1 nodes in the solution. After all usual arrow-adding and node-union steps 
put L be the set of the nodes which are connected to T by a dashed edge. If P is 
connected then there is no node in P which is not in T U L. 

Proof. Let S be the set of the nodes, which are nor in T, neither in L. We will 
show that 5 will be empty set. From Lemma 4.10. we know, that it is impossible 
that S has only one element. Let us see how the set S connected to the other sets. 
According to Lemma 4.6. and the definition of set S from T there is no arrow to S. 
And there is no relevant edge from S to T (the solid arrows are not relevant, and 
there is no dashed edge between S and T). So from the nodes in S all relevant edges 
go to liars. If there is a relevant arrow from S to L, it must be solid, therefore we 
can use arrow adding step c), and we have a dashed edge between T and S, which 
contradicts the definition of S. So all relevant edges from S are in inside of S. But 
if there is a node A in set S from which there are not at least two relevant edges, 
then we can use node-union step (which is contradict to our assumption, that we 
already used these steps). So we are in the same situation as the proof of Lemma 
4.11. As we state there, because these sets are finite, we have contradiction. So S 
must be the empty set. • 

5 The general solving method 
We know everything which we need to solve puzzles with the graph method. 

Now we describe our method: 

Algorithm 5.1. 

0. Let Bi be the nodes of the graph. Draw the initial graph of the puzzle using 
only relevant edges. 

Part I. (Graph-changing, by using local information) We try to use the following 
steps. 

1. Use all possible node-union steps. (Lemma 3.9.) 
2. Use all possible arrow-adding steps. (Lemma 3.2.) 
3. Cross as many arrow possible. (Lemmas 3.5, 3.12, and 3.13) 

If these steps cannot be repeated any more, then we continue by Part II. 
Part II. (Choosing the set of truth-tellers, T, by using global information) 

4. Make the matrix of the subgraph of dashed edges. (Use only the edges of I.) 
5. Choose a maximal set of nodes T, which are not connected with dashed edges. 
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A Ar '' B # 

D E F 

Figure 6: Graph of the Example 5.5 

6. Check the following property: if there is a relevant arrow from each node 
which is not in T and is not silent originally, like dashed arrow to inside T, 
or solid arrow to outside T, then we have the solution. 

If the property in step 6 is not true, then we choose another set T in step 5. 
The solution is: all persons in T are truth-teller, and the others are liars. 

Theorem 5.1. (Completeness and soundness of the algorithm) Let P be the graph 
of a connected, good and clear SW-type puzzle. We can solve P by using Algorithm 
5.1. 

Proof. It is clear, that the Part I. of the algorithm stops, because P is finite. It 
is evident, that we have only finite possibility to choose the set T. Let us assume, 
that we finished Part I. Let T' be the set of truth-tellers in the solution. T" is 
maximal because of Theorem 4.12, so we can choose T' as set T. We show that 
the property in point 6 must be true for this unique solution. Indirectly, assume 
that there is an - originally not silent - node B not in T for which we have nor 
solid relevant arrow to outside T neither dashed relevant edge to inside T. Then B 
did not lie originally, but he said something, hence he must be a truth-teller. But 
we have a dashed edge between the truth-tellers and B. It contradicts to Lemma 
4.4. • 

Remark 5.2. In the case when each person is a liar our T set is empty. In this 
case according to Lemma 4-11 we have a puzzle with only one node after the steps 
of Part I. 

Remark 5.3. Our algorithm detect if a puzzle has not any solution. 

And now we show an interesting example. In Lemma 4.1 we can see, that 
there is no good and clear SW-type puzzle only with solid arrows, now we show 
an example of a good and clear SW-type puzzle with only dashed edges. It is very 
nice symmetric example. 
Example 5.4. A: B and D are liars. B: C and E are liars. C: A and F are liars. 

D: B and C are liars. E: A and C are liars. F: A and B are liars. 
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A B C D E F 
A X X X X X 

B X X X X X 

C X X X X X 

D X X X 

E X X X 

F X X X 

Table 1: The matrix of the graph 

We can see that we have no local graph-step to use, so we cannot solve this 
puzzle without global information. There are two arrows starting from each nodes. 

Now we solve this puzzle: As we can see, that we cannot use any steps of Part 
I of our algorithm. So we use Part II. 

Let us make the matrix of the graph, which shows if two nodes are directly 
connected by a dashed edge. We use step 4. 

The matrix of the graph in the table. 
Our maximal T sets are the following: {^4}, {B}, {C}, {D, E, F} . Easy to show 

in the original graph, that the condition of point 6 is not true for the first 3 sets. 
Our solution is D, E and F are truth-tellers, A, B and C are liars. 

6 Summary 

In this paper we defined and examined the SW-type of truth-tellers and liars puz-
zles. We represented these puzzles with graphs, which are very useful to examine 
and solve these puzzles. We examine what the edges of the graphs mean logically. 
The graph of a puzzle has all information about the puzzle in case of clear puzzle. 
We took some interesting statement about the possible structure of the puzzles. 
We used some local information steps in a graph as valuable arrows, arrow-adding, 
node-union steps and basic schemes. We showed that there is no clear and good 
SW-type puzzle with only solid arrows. Later on we presented a special example, 
when we have only dashed arrows. Finally we showed a graph-algorithm, which 
based on both local and global information of the graph, and it can solve the clear 
and good SW-type puzzles. The advantage of this method is to avoid case sepa-
rations, which occurs for instance in tableaux method and requires great care for 
programmers. Using our method we need memory only size of n2 for a puzzle with 
n persons to store our graph. 

Using this approach from graph theory we can solve the puzzles in a new think-
ing way. Our theory connects the special type of satisfiability problems to graph 
theoretical problems. 
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Infinite limits 
and R-recursive functions 

Jerzy Mycka* 

Abstract 
In this paper we use infinite limits to define R-recursive functions. We 

prove that the class of R-recursive functions is closed under this operation. 

Keywords: Theory of computation, Real recursive function. 

1 Introduction 
The theory of recursion had been originally formulated for enumerable domains 
[3, 9]. Later the extensions on the continuous domains were proposed (for example 
see [4]). During a few past years many authors have studied problems of recursion 
theory for reals [1, 2]. 

The new approach was given by Moore in [5]. He used not only continuous 
functions, but also continuous operators on real recursive functions. The set of R-
recursive functions defined by Moore is the subclass of real functions constructed 
as the smallest set containing 0,1 and closed under operations of composition, 
differential recursion and /^-recursion. 

Infinite limits are the natural operation on real functions, and can be viewed 
as a method to define new functions. It is mentioned in [5] that limits can be 
expressed in terms of /¿-operation, but without giving the way of this 'translation'. 
In this paper we give a proper way to define limits by /¿-recursion. 

This result can be useful for a few reasons. First, infinite limits are natural 
operations in calculus in contrast to the //-operation. Furthermore with infinite 
limits we can define a limit hierarchy and relate it to the /i-hierarchy. This would 
be a continuous analog of Shoenfield's theorem [8]. Infinite limits can also be 
useful to compare the /¿-hierarchy with the levels of Rubel's [7] Extended Analog 
Computer. 

2 Preliminaries 
This section summarizes some notions and results taken from [5], which are useful 
in this paper. Let us start with the precise definition of an R-recursive function. 

• "Institute of Mathematics, M. Curie-Sklodowska University, pi. M. Curie-Sklodowskiej 1,20-031 
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Definition 2.1. A function h : Rm —> Rn is R-recursive if it can be generated from 
the constants 0 and 1 with the following operators: 

1. composition: h(x) = f{g(x)); 
2. differential recursion: h(x, 0) = f(x), dyh(x,y) = g(x,y,h(x,y)) 

(an equivalent formulation can be given by integrals: 
h{x, y) = f{x) + f0

y g(x, y', h(x, y'))dy'); 
3. [¿-recursion h(x) = p,yf(x,y) = inf{y : f{x,y) = 0}, where infimum chooses 

the number y with the smallest absolute value and for two y with the same 
absolute value the negative one. 

Several comments are needed to the above definition. A solution of a differential 
equation need not to be unique or can diverge. Hence, we assume that if h is defined 
by differential recursion then h is defined only where a finite and unique solution 
exists. This is why the set of i?-recursive functions includes also partial functions. 
For coherence with Moore's paper[5] we use the name of -R-recursive functions in 
the article, however we should remember that in reality we have partiality here 
(partial .R-recursive functions). 

The second problem arises with the operation of infimum. Let us observe that 
if an infinite number of zeros accumulate just above some positive y or just below 
some negative y then the infimum operation returns that y even if y itself is not a 
zero. 

The above defintion creates the class of R-recursive functions with some inter-
esting features. Let us cite a few results from [5]. 

Lemma 2.2. The functions —x,x -I- y,xy,x/y,ex,\nx, xy ,sinx, cosx and the pro-
jection functions In(xi, • • • ,xn) = Xi are R-recursive. 

The power of the system of R-recursive functions can be viewed from the fol-
lowing lemma, which is sufficient to solve the classical halting problem. 

f 1 x € S Lemma 2.3. The function xs such that Xs(^) = j q x g S ™ ^'recurs^ve for 

any partial N-recursive set S (S is partial N-recursive if S = f s (N) for f s '• N —t 
N, f s is some N-recursive function). 

It is possible to define for every R-recursive function / : Rn x R R the 
characteristic function r)yf for the set of x on which nyf is well-defined. Precisely 
this fact is stated by the below theorem: 

Theorem 2.4. If f(x, y) is R-recursive, then J]yf(x, y) is also R-recursive, where 

»/ ( . ,„ ) -{J **<*.»>-" 0 Vji/(x,s) jto 
The operator p, is a key operator in generating the R-recursive functions. This 

fact suggests creating a /¿-hierarchy, which is built with respect to the number of 
uses of fi in the definition of a given / . 
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Definition 2.5. For a given R-recursive expression s(x), let MXi(s) (the p-number 
with respect to Xi ) be defined as follows: 

MZ(0) = MI(1) = MX(-1) = 0, 

Mx(f(gi,g2, •••)) = max(MXj(/) + Mx(gj)), 
3 

Mx(h = f+ [V g(x,y',h)dy') = max(Mx(f),Mx(g),Mh(g)), 
Jo 

fy 

My(h — / + / g(x,y',h)dy') = max.(My,(g), Mh(g)), 
Jo 

Mx{nyf(x,y)) = max(Mx(f),My(f)) + 1, 

where x can by any x\,..., xn for x = (x\,..., xn). 
For an R-recursive function / , let M ( f ) = max, MXi (s) minimized over all 

expressions s that define / . Now we are ready to define //-hierarchy. 

Definition 2.6. The p-hierarchy is a family of Mj = {/ : M ( f ) < j}. 

Let us add that if / is in M j then rjyf is in Mj+2-

As it was mentioned we focus our interest on functions defined by the infinite 
limits. 

Definition 2.7. Let g : Rn x R —>• R, then we can say the function f : Rn R is 
defined by an infinite limit from g if: 

f(£\ _ f lim2/->oo g(x,y) limy^oo g{x, y) exists, 
\ undefined otherwise. 

3 Auxiliary results 
In this section we give a few results which will be useful in the proof of the main 
theorem. We start with a slight modification of the definition of R-recursive func-
tions. 

Lemma 3.1. Let us consider the set of functions generated from 0 ,1 , -1 by the 
operations 1,2 from the Definition 2.1 and by absolute fi-recursion Pyf{x,y) = 
în/{|y| : f(x,y) = 0}. Then this set of functions is equal to the set of all R-recursive 
functions. 

Proof. Because —1 can be simply defined in the set of R-recursive functions, it is 
sufficient to prove that in definitions operation /t can be replaced by and vice 
versa. 

As the first case we consider the method of replacing ¡iA by /¿. Let h(x) = 
Vyi{x ,y) . Let us set f'(x,y) = f(x,y)f(x,-y). Clearly h(x) = -fiyf'{x,y). 
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Because —x and multiplication are R-recursive, so h defined as above is R-recursive 
too. 

Now we must show that function h(x) = P.yf(x,y) can be defined by ¡J.A. 
Let us point out the fact that |z| = fiA (x — y). Then we will use f+{x,y) = 
Hx,\y\)J-{x,y) = f(x,-\y\) to define 

h+(x) = n*f+(x,y), h~{x) = ii*f-(x,y). 

It is simple to observe that h+ gives as the result the smallest nonnegative zero of 
/ and h~ the absolute value of the greatest nonpositive (the smallest with respect 
to absolute value) zero of / . 

We will choose as h(x) the proper value from h+(x),—h~(x). We can define 
K=(w,y) = S(w - y), where ¿(x) = 1 - fj,A (x2 + y2)(y - 1). Prom definition 
K-{w,y) is equal to 1 if w = y, 0 if w ^ y. Then the function Q(w) = 1 for x > 0, 
0 otherwise, can be defined as K=(w, |to|).-

We can conclude the proof by the following observation 

h(*\ - I Z n{X> - { h+(x) h+(x) < h-(x). 

Hence h(x) = -h~{x)e(h+(x) - h~{x)) + h+(x)( 1 r- Q(h+(x) - h~(x))) and since 
+ is defined without /x and all remaining functions in the last equation are defined 
only by fiA, so h(x) can be defined by instead of p. • 

It is interesting to define the //^-hierarchy of R-recursive functions as the analog 
to /¿-hierarchy. 

Defini t ion 3.2. For a given R-recursive expression s(x), let MA(s) (the 
number with respect to ) be defined as follows: 

MA( 0) = MA{ 1) = MA(-1) = o, • 

MA(f{gU92, •••)) = max(M*(f) + MA{9])), 
3 

M*(h = f+ g(x,y',h)dy') = m a x ( M A ( f ) , MA(g), MA(g)), 
Jo 

My(h = f + f 9(x,y',h)dy') = m a x ( M A ( g ) , MA(g)), 
Jo 

MA(nAf(x,y)) = m a x ( M A ( f ) , M A ( f ) ) + 1, 

where x can by any x\,..., xn for x = (xi,... ,xn). 

For an R-recursive function / , let M A ( f ) = max; MA (s) minimized over all 
expressions s that define / and MA = {/ : M A { f ) < j}. 

. Now we can add a corollary from the previous lemma. 



Infinite limits and R-recursive functions 87 

Corollary 3.3. In the above lemma we use only one fi instead of \iA, when we 
change the definition of function with \iA by the definition with p. Hence if some 
function f is from MA then f € Mk • 

The reverse relation is more complicated. In the definition of h given by h(x) = 
-h~(x)Q(h+ (x) - h~(x)) + / i + ( i ) ( l - Q(h+(x) — h~(x))) the operation fiA is used 
3 times. So each function from Mj belongs to MAj. 

Lemma 3.4. Let g : Rn+1 —> R be an R-recursive function. Then there are R-
recursive functions G : /?n+1 R, S : R —>• R such that 

inf g(x,y) = S(pAG(x,w)). y 

Proof. We can distinguish three cases in the proof: 

1. (Vi, y)g(x, y) > 0. Then we can write 

y 

where 

inf g(x, y) = inf { H : G'(x, w) = 0}, 

0 {3y)g(x,y)-w = 0, 
G (x,w) | j otherwise 

The condition (3y)g(x, y) — w = 0 is equivalent to the fact that py(g(x, y) — w) 
is defined. But the last statement can easily be checked by the function rj. 
Finally we have 

G'(x,y) = 1-T)y(g(x,y) - w) and inf g{x,y) = pAG'(x,w), 
y 

so in this case S = I\,G = G'. 
2. (Vx,y)g(x ,y ) < 0. In this case we can observe that i n f y g ( x , y ) is a negative 

number and the infimum 'searches' in the direction of the smallest negative 
numbers, whereas gives us a positive result and its 'search' is oriented to 
zero. That is why we must use some transformation in a construction of the 
proper result. The simplest way to change 'the orientation' of the infimum is 
the expression • Let our expression be equal to 

otherwise. 

then G"(x, w) is zero iff ^ is a value of g(x, y) for some y. Hence an infimum 
on g is equal to: 

- 1 
in f № {H : G"(x,w) = 0} 

and (like in the previous step) we eliminate the quantifier: 
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We can write now that 

inf g(x,y) = S(V£G(X,W)), S(Z) = -L/z,G = G". y 

3. Now we are prepared to consider the general case, where g : Rn+1 R is 
an arbitrary function. Let us observe, that if there is one point y s u c h that 
9{x>Vo) < 0 then i n f y g ( x , y ) must be negative and if such point y¿" does not 
exist then the first case of our proof solves the problem. 
To check an existance of the point it is sufficient to use the condition 
riyK<(g(x,y),0) = 1 where K<(z,y) = 0 z <y. Then we can find y 
We will use the following method (we must remember that HA gives us the 
absolute value of the proper solution) 

«- = / ^yK<(9(x,y),0) g(x,f,AK<(g(x,y),0))<0, 
y° \ —fiyK<(g(x,y),0) otherwise. 

Then we can define the function: 

Q~(x v) = ( y K \ g(x,y0) otherwise. 

This function for a given x has the same infimum as g, but its values are 
always negative. 
As a summary of the previous considerations we give the conditional definition 
of q(x), where q(x) denotes the expression in f y g{x ,y ) : 

q(x) = < 

i n f ^ M : I - 7]y[g{x,y) - w) = 0} if (^y)g{x,y) > G, 
if (Vy)g(x,y) < 0, - l 

¡nMMil-Tfcf j^- i i^O} 
. , f. i, t -^ t i—rr otherwise. 

Let us add that the condition (Vy)g(x, y) > 0 is equivalent to the statement 
does not exist, but this last phrase can be expressed by r]yK<(g(x, y), 0) — 0. 
The similar translation of (Vy)g(x,y) < 0 is: J?yif<(0,g(i,2/)) = 0. 

It is obvious that such q(x) is R-recursive (inf№{|w| : . . .} can be replaced by HA)-
The final forms of functions S and G can be obtained from the above definition of 
q. • 

Remark 3.5. Let us observe that in the general case (the third point of the above 
proof) we used for the construction of the definition ofq the function TJ, infimum and 
y^ , which gives the number of used ¡iA operations equal to 5. This is the maximal 
number of p,A operations for all cases. Hence for-'g £ Mj we have q 6 Mj+5. 

We also need a similiar result, but with restricted infimum. 
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L e m m a 3.6. Let g : i ? n + 1 —» R be an R-recursive function. Then there are R-
recursive functions G : Rn+2 —> R, S : R—> R such that for all z £ R 

inf g{x,y) = S(n*G(x,w,z)). 

y€{z, oo) 

Proof. Let us consider the set S9
Z'X such that 

S«'* = {u; : (3y > z)g(x,y) = tu}. 
We will use the characteristic function of this set: xz'x(.w) = 0 ^^ w € 5f 
X9

z
,s(w) = 1 w £ S%'x. From the Lemma 3.4 we have Sg,Gg for a given g 

and the problem of unrestricted infimum. It is clear that 

inf g(x,y) = Sg(ni(\Gg(x,w)\ + | x * » | ) ) . 
3 / 6 ( 2 , O O ) 

Now we should prove only that xl'x(w) is a n R-recursive function. But Xz'x(w) 
can be written in the form 

Xl's(w) = 0 (3y)[(g(x,y) =w)A(y> z)}, 

Xa
z''M = 1 «=> mM*,v)*w)V(y<z)]. 

These last equations define X3
z'x(w) as 1 — i?y(|5(S,2/)| -1- K>(y, z)), which ends this 

proof. • 

R e m a r k 3.7. Because Xg
z
x{w) defined by means of rj and K>, so it uses 3 fiA 

operations but unrestricted infimum uses HA five times. Hence if g € Mj then the 
infy 6 ( 2 i 0 0 ) g{x,y) belongs to Mj+5. 

4 Main theorem 
In this section we prove that the class of R-recursive functions is closed under the 
operation of defininig functions by infinite limits. 

T h e o r e m 4.1. Let F : Rn+1 R be an R-recursive function. Let us define 
f : Rn —• R in the following way f(x) = lim^oo F(x,y). Then there exist such 
R-recursive functions G : i?n+1 R, S : R -> R that 

f(x) = S(^G(x,w)). 

Proof. Let us consider the function f(x) defined as above. The function f(x) is 
defined in the point x if there exist limits 

liminf F(x,y), l imsupF(x,i/) 

and they are equal to each other in this point. 
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Let us recall the definitions: 

liminf F(x,y) = sup inf F(x,y), limsup-F(i,7/) = inf sup F(x,y). 
2 V>z y->oo z y>z 

To check that the function / is defined in x first we must check the conditions: 
supz inf y > z F(x,y), inf2 supy > z F(x,y) are defined for x. So it will be helpful if we 
prove that there exist functions K%,KS such that 

Kit£\ = [ 1 SUPz infy>* F(x,y) exists, 
\ 0 otherwise. 

and Ks is analogously defined for inf2 supy > z F(x,y). 
It is easy to see that we can replace the expression ' supF ' by the expression 

'— inf(—F)' in the above equations. So we can apply Lemmas 3.4 and 3.6, which 
means, that there are R-recursive functions Ss ,GS ,S\G% such that 

sup inf F(x,y) = S'ipiG'ix^)), z V>z 

inf sup F(x,y) = Ss(fiiGs(x,w)). 2 y>z 

The left sides in the last two lines are defined iff there exist such wi,ws, that 
Gl(x,Wi) = Gs(x,ws) = 0. This condition can be checked by the R-recursive 
functions T]wGl(x,w),r]wGs(x,w). The above considerations imply that K%,KS 

exist and they are R-recursive. 
Now to end the proof it is sufficient to define: 

f(x) = 

\ undefined otherwise. 

This definition of / by R-recursive functions is in the obvious way equivalent to the 
definition by the operation of infinite limit. • 

Let us point out that in the above proof we use two operations of infimum for 
lim inf: the outer (unrestricted) infimum, which is obtained from the transformed 
supremum and the second - inner (restricted) infimum. We have the analogous 
construction for lim sup. Hence and from remarks below the Lemmas 3.4, 3.6 we 
can give the following result: 

Theorem 4.2. If F is a function from Mj then f defined as in the Theorem 4-1 
is in Mj+io-
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Derivation of Incremental Equations for PNF 
Nested Relations 

Jixue Liu* and Millist Vincent* 

Abstract 
Incremental view maintenance techniques axe required for many new types 

of data models that are being increasingly used in industry. One of these 
models is the nested relational model that is used in the modelling complex 
objects in databases. In this paper we derive a group of expressions for 
incrementally evaluating query expressions in the nested relational model. We 
also present an algorithm to propagate base relation updates to a materialized 
view when the view is defined as a complex query. 

Keywords: view maintenance, data warehousing, nested databases, partitioned 
normal form, incremental computation. 

1 Introduction 
Materialized views are stored data collections that are derived from source data. 
Materialized views have attracted a significant amount of attention in recent years 
because of their importance in data warehousing [5, 7, 20]. In using materialized 
views, an issue of fundamental significance is developing efficient methods for up-
dating the materialized views in response to changes in the source data; a procedure 
referred to as view maintenance. To maintain a materialized view, one has in gen-
eral a choice between recomputing the view from scratch or maintaining the views 
incrementally. The incremental method is generally considered to be less expensive 
[13, 4, 6] since the size of an update to the source data is generally small in relation 
to the size of the source data. To maintain a view incrementally, one computes 
the new view using the updates to the source data, the old view and possibly some 
source data. For example, let the view V be defined in the flat relational model 
(using set semantics) as V = tx] R2. For an insertion SRi to Ri, the incremental 
technique calculates the change to V as SV = SRi cxi R2 and computes the new 
view, V n e w , by V n e w = Vold U SV (where Vold equals Rx tx R2) [13, 6]. This ex-
pression is called an incremental propagation expression (or incremental expression 
(IE) for short) for the Join operator. 

"School of Computer and Information Science, University of South Australia, Mawson Lakes, 
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Incremental expressions for updating materialized views depend on the data 
model and query operators. Up to now, incremental equations have been derived 
for the models of flat relations [13], bags [4], and temporal data models [21]. Incre-
mental equations for the nested relational model, on the other hand, have not been 
studied. The nested relational model is important because of its usage in mod-
elling complex objects, a feature that has been incorporated in several commercial 
database systems such as Oracle8 and Illustra [18]. The nested model has also been 
used in data warehouses to model complex semantics [3], where incremental view 
maintenance has critical impact on system performances [20]. Further, the nested 
relational model is an important subclass of the object- relational model; a model 
that has been predicted to become the industry standard within the next few years 
[18]. Motivated by these observations, in this paper we derive IEs and develop a 
view maintenance algorithm for the nested relational model. 

Several variations of the nested relational model have been proposed in the 
literature, depending on whether null values are permitted [10], whether empty sets 
are permitted [2], whether atomic attributes form a key and what data manipulation 
operators are required [16, 15]. The model we use in this paper is the one proposed 
by [2] and called the Verso model which is based on partitioned normal form (PNF) 
relations [14]. The reason for adopting this model is because of its flexibility in 
supporting empty sets, the assumption that relations are in partitioned normal 
form (which has clearer semantics than general nested relations), and its ability to 
allow partial updates. Also, some commercial object-relational database systems 
such as Informix support the use of PNF relations. 

The main contributions of this paper are as follows. Firstly, we derive in-
cremental expressions for the data manipulation operators in the Verso model. 
Interestingly, these expressions differ significantly from those derived for the flat 
relational model [13]. Secondly, we propose an algorithm to propagate base relation 
updates to a materialized view when the view is defined as a complex nested rela-
tional algebra expression. Lastly, we implement our view maintenance algorithm 
and perform experiments to determine what we call the maintenance limit of our 
algorithm, which is defined to be the limit on the size of the update beyond which 
incremental maintenance is no longer cheaper than full view recomputation. This 
is an important issue and one that up to now has not been adequately investigated 
in the literature. 

The rest of this paper is organized as follows. In Section 2, we introduce the 
Verso model and its operators. In section 3, we define containment and disjointed-
ness properties for the PNF nested relations. These two properties will be used in 
Section 4 for deriving IEs. Section 4 contains IEs derived for PNF nested operators 
and the derivation proofs. In Section 5, we propose a view maintaining algorithm 
that maintains a view using IEs when the view is defined with multiple operators. 
Section 6 covers the implementation details of the IEs and performance analysis. 
In the last section of the paper, we give the conclusion. 
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2 Data Model and Operators 
In this section, we review the Verso data model and algebra defined in [2]. 

2.1 Trees 
A tree T is a finite, acyclic, directed graph in which there is a unique node, called 
the root and denoted by root(T), with in-degree (the number of edges coming into 
the node) 0 and every other node has in-degree 1. 

A node n' is a child of a node n (or equivalently, n is the parent of n') if there 
is a directed edge from n to n'. 

A node is a leaf if it has no children. 
The level of a node n in a tree T is the number of nodes on a path from the 

root of T to n. Thus, the level of the root node is 1 and the root node is said on 
the top level. 

The height of a tree is the maximum level of any node in the tree. 
A tree T' is a subtree of a tree T if the nodes of X" are a subset of those of T 

and for every pair of nodes n' and n, n' is a child of n in T if and only if n ' is a 
child of n in T'. 

A subtree T" is a child subtree of T if the root node of T' is a child of T and 
the set of all nodes of T' and the set of all nodes of the child of T are equivalent. 

2.2 Schema Trees and Nested Relation Schemas 
Let U be a fixed countable finite set of atomic attribute names. Each attribute name 
A £ U is associated with a countably infinite set of values denoted by dom(A). 

A schema tree T is a tree having at least one node; each node of the tree is 
labeled by a set of names from U. The names on the labeled nodes form a partition 
of U. 

A nested relation schema is the set of attribute names mapped from a schema 
tree T, denoted by sch(T), and defined recursively by: 

(i) If T contains only one node (the root), then sch(T) = {Ai,..., Am} where 
Ai, ..,Am are attributes labeled on the root of T; 

(ii) If Ti,...,Tn are child subtrees of T and A^,... Am are attributes labeled on 
the root of T, then sch(T) = {Au ...,Am, sch^),..., sch{Tn)}. 

In the schema definition, Ai,...,Am are called the atomic attributes while 
sch(Ti),...,sch(Tn) are called the structured attributes. We denote each struc-
tured attribute sch(Ti) (i = 1,..., k) by R% and simplify sch(T) by R. As a result, 
sch(T) = R = {Au ..., Am, Rl : sch(7\), .., R* : sch(Ti), ..., R*n : sch{Tn)}. 
Note that Rl is used only for referencing the schema of the child tree. If necessary, 
R* can be labeled at the edge from root(T) to root(Ti). 

Let R' = sch(T') and R = sch(T). R' is a subschema of R, denoted by R'<£R, 
if T' is a subtree of T. The level of an attribute in R is defined to be the level of 
the node in the tree where the attribute is labeled. When the leyel I of an attribute 
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is specially concerned, I is attached to the attribute name as a superscript: A\ or 
R*jl. The levels of the schema R is defined to be the height of T. If a schema has / 
levels, the schema is called a l-level nested schema. 

Because nested relation schemas are sets, set operations of union (U), difference 
(—), and intersection (fl) can be applied to the top levels of schemas. Subset (C) 
can also be defined on the top levels of two schemas. 

We define some short-hand notations for schemas. The set of atomic attributes 
on the top level of R is denoted by a(R) which is {Ai,...,Am}. The set of all 
structured attributes on the top level of R is denoted by P(R) which is R — a(R). 
The function au{R) is defined to return all atomic attribute names labeled on all 
nodes of the schema tree of R. 

The following is an example of a nested relation schema. 

Example 2.1. We introduce a nested relation schema for a student database. 
A student with the name of Name has studied some subjects Subjs*. The 
student has achieved a set of marks (denoted by Marks*) for each sub-
ject; each mark is for a different test type of the subject. The stu-
dent also has a set of telephone numbers stored in the database for the 
convenience of communication. The schema tree describing the student 
data is given in Figure 1. The schema of the schema tree is Stud = 
{A^ame, Subjs*:{sjName, Year, Marks*-.{testName, Mark}}, Tel*:{Tel}}. 

The schema is a three-level nested relation schema. On the first level, there 
is one atomic attribute Name and two structured attributes (structured at-
tributes) subjs* and Tels*. That is, a (Stud) = {Name} and fi(Stud) = 
{subjs*,Tels*}. The set of all atomic attributes of the schema is au(Stud) — 
{Name, sjName, Year, Tel, testName, Mark}. 

A subschema of Stud is sjTest = {sjName, tests* : {testName}} or studTel = 
{Name,Tels* : {Tel}}. 

Stud 

|Name| 

sjName, Year| | Tel | 

Marks* 

testName, Mark 

Figure 1: Schema tree Stud 

Now we define the notion of prime subschema. 
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Definition 2.1 (Prime Subschema). Let R = a{R){R^,..., R*n} and S = 
a(S){S*,..., 5*s}. S is a prime subschema of R, denoted by S%PR, if 

(1) a(R) = a{S) and 0(R) = /3(E) = <t>; 
(2) a(R) = a(S) and for each (k 6 [1, ...,ns]), there exists aRj ( j e [1, ...,nr]) 

such that SI is the prime subschema of Rj. 

Note that if S is a prime subschema of R, then a(S) = a(R) and the definition 
is recursive, which means that on each level of the two schemas, two corresponding 
structured attributes share the same atomic attribute set. The next example shows 
a prime subschema. 

Example 2.2. Let StudTel = {Name,Tels* : {Tel}}. Then StudTel is a prime 
subschema of Stud defined in Example 2.1 because the two schemas have the same 
set of atomic attributes {Name} on the top level and because Tels* in StudTel is 
the same as Tels* in Stud. 

2.3 Nested Relations 
We now recursively define the domain of a schema R, denoted by dom(R), by: 

(i) If R is of one level, dom(R) = dom(Ai) x ... x dom(Am)-, 
(ii) If R is of more than one level, then dom(R) = dom(Ai) x ... x dom(Am) x 

P(dom(R\)) x . . . x P(dorri(R*n)) where P(D) denotes the set of all nonempty, 
finite subsets of a set D. 

A nested relation over a nested relation schema R — {Ai,...,Am,Rl,...,R^}, 
denoted by r(R), or often simply by r when R is understood, is defined to be a 
finite set of elements from dom(R). An element i in a relation is called a tuple 
and has the form of t =< ai, ...,am,ri, . . . ,rn > where ai € dom(Ai) and rj, called 
a subrelation, is a relation over the definition of structured attribute R j . Each 
item, ai or r j , is called a value or a component. Two tuples are equivalent if their 
corresponding components are equivalent. 

The restriction of tuple t to attributes Ai and to Rj , denoted by t[Ai\ 
and t[Rj] respectively, is defined to be t[At] = m and t[R*] = rj. If Y = 

myR*y-Rny} is a subset of R, the restriction of t to the subset Y, 
denoted by i[Y], is defined to be a tuple < t[Aly], ...t[Amy], t[Rly], ...¿[ii 'J >. The 
restriction of relation r to Y, denoted by r\Y], is defined to be the nested relation 
{t[Y]\te r}. 

We now give an example of a nested relation. 

Example 2.3. Let Stud be the nested relation schema defined in Example 2.1. A 
nested relation r over the schema Stud is given in Table 1. There are three tuples 
in the relation: two tuples are for student Jack and one for John. Subrelations are 
labeled by pairs of curly brackets. 

A nested relation is in Partitioned Normal Form(PNF) if all atomic attributes on 
the top level of the relation comprise the key and all subrelations are in partitioned 
normal form [14]. The nested relation in Table 1 is a PNF nested relation. 
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Table 1: A nested relation stud on schema Stud 

Name Snbjs' Tels' Name 
sjName Year Marks' Tel 

Name 
sjName Year 

testName \ Mark 
Tel 

Jack < 

( test 1 8 1 1 1 
DB 1998 I test2 90 I ( 04143 ] 

[ exam 80 J I J 1435 > 
, „ „ , f assl 60 I i 2302 J Java 1997 < . . > v ' 1 exam 80 1 

John { DB 1998 { f e f 2 J ] } } { 2354 } 

2.4 Verso Operators 
In this section we review the definitions of the Verso operators proposed in [2] and 
reviewed in [8]. 

Definition 2.2 (Expansion Operator). Let S be a prime subschema of R. Let 
s be a relation defined over S. The expansion of s to schema R is a relation over 
R, denoted by r)R(s), is defined recursively by: 

•>1R(S) = {x\3v £ s A x[a(i?)] = w[a(i?)] A V i e [ l , . . . , n ] 
(if i s ; A s;en;(x[RR] = T,Ri(v[S]])) 
else x[R*{ ] = <f> ) } 

The expansion operator recursively packs each tuple in s. with empty sets to 
make it match the schema of R. The next example shows the use of the operator. 

Example 2.4. Let s = {< Tony, {51234,51535} >} be a relation on schema 
S = {Name,Tels* : {Tel}}. Let Stud be the schema described in Example 2.3. 
Then, rjstudis) = {< Tony, <j>, {51234,51535} >} where the empty set <f> is the value 
packed for structured attribute Subjs*. 

Definition 2.3 (Projection Operator). Let S be a prime subschema of schema 
R. Let r be a relation defined over R. The projection of r onto S is a relation over 
S, denoted by ns(r), defined recursively by: 

(i) #s(r) = {x\x € r}, if R is flat; 
(ii) Tts(r) = {x\Mu e r ( x[a(i?)] = u[a(i?)] A V i e [ l , . . . ,ns] 

(X[S*] = KS:(U{R*}) where S ' ^ R * ) } 

The projection operator preserves key values of r on every level and recursively 
projects subrelations of r. Following is an example showing.the use of the projection 
operator. 

Example 2.5. Let pstud be the relation defined as in Table 1. Let StudTel = 
{Name, Tel* : {Tel}}. The projection of pstud to StudTel, i.e. ftstudTei{pstud!) is 
given in Table 2. 
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Table 2: Projection of pstud to StudTel 

Name Tels* Name 
Tel 

( 04143 ^ 
Jack ^ 1435 I 

1 2302 j 
John { 2354 ) 

We now define the selection condition for the Verso selection operator. 

Definition 2.4 (Atomic condition). An atomic condition ca over a schema 
R = {Au..., •n-m j •Ri>•••>#«} is defined, by ca = AiOai where Ai € {Ai,...,Am}, 
a» £ dom(Ai), and 6 € {<, <, >, >, =, 

An atomic condition is set to an atomic attribute on the top level of a schema. 

Definition 2.5 (Basic condition). A basic condition C& over a schema R = 
{A\, ...,Am,R[, ...,ii*} is defined by connecting a set of atomic conditions with V 
(or), A (and), -i (not), and brackets. 

Definition 2.6 (Selection condition). A selection condition c over a schema 
R = {Ai, ...,Am,R*, ...,i?*} is defined recursively by 

(i) c— (ci,) if R is flat; 
(ii) c=(cb A c ri : R\.C\6'r\ A ... A C™ : R*n.cn0'rn). 

In the condition c, crj ( j — l,...,n) is a reference name to the expression 
Rj.CjO'rj and ':' means 'defined by'. In R*.Cj6'rj, R*.Cj denotes the returned 
set selected from the subrelation over Rj by recursively applying selection 
condition Cj. The returned set then participates in the evaluation of 6'rj 
where rj is either the empty set <j> or the any set w 1 over Rj. When rj is cj>, 
6' is one of {=, while when rj is to, 6' is —. 
We call crj the existence condition on subrelation of R*. 

We now give an example of a selection condition. 

Example 2.6. For schema Stud = {Name, Subjs*:{sjName,Year, Marks*: 
{testName, Mark}}, Tel*: 
{Tel}} defined in Example 2.1, a select condition over the schema is c = (Name =' 
Jack' A Subjs* : (Marks* : (Mark > 90) ± <f>) £ 4> ). This selection condition 
selects a student named 'Jack' who has obtained at least a good mark (> 90) for 
some subjects. 

We use c&(a;[a:(.R)]) = true to denote the case where the key value of a tuple x 
makes an existence condition true. Accordingly, we use crj (x[#}]) = true to mean 
the case where a subrelation on R* makes an existence condition is true. 

1 'Any set' means that the number of elements in the set does not matter. 
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Definition 2.7 (Selection Operator). Let R = a(R){Rl,..., R„} be a schema 
and r be a relation over R. Let c be a selection condition defined with Definition 
2.6. The selection of r based one is a relation over R, denoted by crc(r), recursively 
defined by: 

(i) oc(r) = {x | i 6 r and c&(z[a:(i?)]) = true}, if R is flat; 
(ii) oc(r) = {x|3u £ r A c6(i[a(iZ)]) = true A x[a(i?)] = u[a(i?)] A 

V j € (1, ...^UcrMR*} = *CJ №,*]) ) = true ) } 

Example 2.7. We apply the selection to relation stud in Table 1 with the selection 
condition c defined in Example 2.6. The returned relation from the selection is given 
in Table 3. We take the second tuple, denoted by t2 in stud as an example to explain 
the operation. t2[Name] is 'Jack', which makes the basic condition Name — Jack' 
true. In the recursive part and on the inner-most level, the evaluation of (Mark > 
90) against Marks* is <j> since the mark in tuple of Marks* is less than 90. Therefore 
Marks*.(Mark > 90) ^ 4> is evaluated 'False'. Since t2[Subj*] has only one tuple 
and its subrelation is evaluated to 'False', so no tuple in t2[Subj*] can be selected. 
This makes Subjs*.(Marks*.(Mark > 90) <p) <f> 'False'. As a result, the 
evaluation of the selection condition against this tuple is 'False' and not in Table 
3. 

Table 3: &c (stud) 

Name Subjs* Tels* 
sjName Year Marks* Tel 

testName | Mark 

Jack { DB 1998 test2 90 } } J 04143 \ 
\ 1435 / 

Definition 2.8 (Union Operator). Let r and s be two relations over R. The 
union of r and s is a relation over R, denoted by r ® s, and recursively defined by: 

(i) r © s = {x\x £ r or x £ s}, if R is flat; 
(ii) r®s- { x | 3 u £ r A 3 » 6 s A a;[a(i?)] = w[a(J?)] = w[a(i?)] A 

Vi e [l,...,n]( x[R*i) = u[R*i] © v [ R f ] ) or 
3u£r A x[a(-R)] = •"[«(#)] ^ s[a(-R)j A x = u ) or 
3u € s A x[a(i?)] = w[a(i?)] £ r[a(i?)] A x = v )} 

The union operator recursively combines two tuples, one from each operand 
relation, if their key values match on each level. The operation guarantees that 
the output of the union is in PNF, i.e., there are no duplicate values for atomic 
attributes on each level of the relation. The next example introduces the use of the 
union operator. 
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Example 2.8. Table 5 shows the union of relation pstud in Table 1 and relation 
Spstud in Table 4. pstud and Spstud each has a tuple with key value of Jack. As a 
result, the subrelations of the two Jack tuples are combined. This rule is applied 
recursively until two assl tuples on the most internal level of java 1997 merges 
into one tuple in the union and ass2 of java 1997 is added to the union. The same 
combination applies to Tels*. 

Tuple John in pstud and tuple Andrew in Spstud do not match any tuples in 
the other relation, they appear the same as they were before the union. 

Table 4: Spstud 

Name Subjs' Tels-
sjName Year Marks* Tel 

testName Mark 

Jack ^ Java 1997 J ass 1 
1 ass2 { 54111 } 

Andrew { DB 1999 { testl 6 0 } } * 

Table 5: Union of pstud and Spstud 

Name Subjs' Tels' Name 
sjName Year Marks' Tel 

Name 
sjName Year 

testName | Mark 
Tel 

Jack 

DB 1998 

Java 1997 

54111 
04143 
1435 
2302 

John I DB 1999 f test 1 
| test2 »2U { 2354 } 

Andrew { DB 1999 { test l 6 0 } } 4> 

Definition 2.9 (Difference Operator). Let r and s be two relations over R. 
The difference of r and s is a relation over R, denoted by r © s, and recursively 
defined by: 

(i) r 9 s = {x\x G r and x g s}, if R is flat; 
(ii) rQs = { i | 3 u £ r A 3v € s A x[a(i?)] = u[a(H)] = u[a(i i)] A 

Vi e [1,.• •, ntj( x[R;] = © t/[JZJ] ¿<t> ) or 
3u£r A x[a(R)] = u[a(i?)] g s[a(i?)] A x = u } 

The difference operator is like the union operator in that it recursively differ-
ences subrelations if the key values of two tuples, one from each operand relation, 
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match. The output of the difference operator is a relation in PNF. The following 
example shows the use of the difference operator. 

Example 2.9. Table 6 gives the difference of pstud in Table 1 and the relation 
Spstud in Table 4. The difference is applied to the two tuples having the name of 
Jack in the two relations. This procedure recursively applies until it reaches the 
most inner level. As a result, in the most inner level the tuple assl of Java 1997 
does not appear in the result. The tuple John in relation pstud does not match 
any tuples in the relation Spstud and it appears the same in output. In contrast, 
the tuple Andrew in relation Spstud does not affect any tuple in pstud because of 
no match of key values and is excluded in the result. 

Table 6: pstud © Spstud 

Name Subjs" Tels* Name 
sjName Year Marks* Tel 

Name 
sjName Year 

testName \ Mark 
Tel 

Jack < 

( testl 81 4 ' 
DB 1998 ^ test2 90 i 

I. exam 80 . J 
„ Java 1997 { exam 80 } 

( 04143 Ï 
> ^ 1435 I 

{ 2302 J 

John { DB 1999 { ЩИ ¡ J } } ' ( 2354 } 

Definition 2.10 (Intersection Operator). Letr and s be two relations over R. 
The intersection of r and s is a relation over R, denoted by r Q s, and recursively 
defined by: 

(i) r © s = {x\x £ r and x £ s}, if R is flat; 
(ii) r © s = {z |3и £ r A 3v £ s ( x[a(R)} = u[a(i?)] = и[а(Д)] A 

Vi G (1, ...,n) ( x[R*] = «[Я?] © v[RT] ) } 

The use of the intersection operator is shown in the next example. 

Example 2.10. Table 8 shows the intersection of pstudi in Table 7 and pstud in 
Table 1. 

Table 7: A nested relation pstudi 

Name Subjs' Tels' 
sjName Year Marks' Tel 

testName \ Mark 
Jack { DB 1998 { exam 80 } } 83304143 
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Table 8: pstud © pstudi 

Name Subjs* Tels* 
sjName Year Marks* Tel 

testName | Mark 
Jack { DB 1998 { exam 80 } } <t> 

Definition 2.11 (Joinable schémas). Let S and R be two schémas satisfying 
a(R) — a(S). Then R and S are joinable schémas if there exists a schema T such 
that (1) au(T) = au(R) Uau(S); (2) both R and S are prime subschemas ofT. 
We call T the joined schema. 

Example 2.11. Let Stud be a schema defined in Example 2.3. Let S = 
{Name,Addrs* : {Addr}} be another schema which describes the student ad-
dresses. Stud and S are joinable because a(Stud) = a(S) and there exists a schema 
T = {Name, Subjs* : {Subj, Y ear, Marks* : {TestName, Mark}},Tels* : 
{Tel}, Addr s* : {Addr}} such that (1) av(T) = av(Stud) U a y (5); (2) Stud 
and S are prime subschemas of T. So T is the joined schema. 

Definition 2.12 (Join). Let S and R be joinable schémas and T be the joined 
schema. Let r and s be relations on R and S respectively. The join of r and s is a 
relation over T, denoted by rc<Js, defined recursively by: 

(i) rtxjs = {x\x £ r A x £ s}, if R — S = T are flat; 
(ii) r & s = {x\3u £ r A 3 d ê s A x[a( i î ) ] = ti[a(.R)] = u[a(-R)] A V i e [ l , . . . , n 

(if 3R*ÇPT* A 3 S * K ^ T * (X[T;\ = u [ i # * w [ S j E ] ; o r 
if 3 R*<G?T* A FI S*K&T* ( x[T*} = u[R*]) or 
if 3 S*K^T* A FL R*&>T* ( x[T*} = v[Sj;]) ) } 

The join operator joins two relations based on the equivalence of the values of 
the atomic attributes starting from the top level. The next example shows the use 
of the join operator. 

Example 2.12. Let pstud be defined in Table 1. Let studAddr be a relation 
defined in Table 9. The results of join of pstud and studAddr is shown in Table 10. 

Table 9: studAddr 
Name Addrs* Name 

Addr 
John (12 Newton st, 5 Darling av } 

The Verso operators presented in this section have the property of preserving key 
attributes on all levels. In other words, all operators do not shrink or expand keys of 
relations. For example, the projection operation only projects structured attributes 
but not atomic attributes. This property guarantees the results of operations are 
in partitioned normal form. 
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Table 10: The join of pstud and stAddr 

Name Subjs" Tels' Addrs* , 
sjName Year Marks' Tel • Addr 

testName Mark 

John | DB 1999 1 testl 
test2 S}} { 2354 } j 12 Newton st \ 

} 5 Darling av j 

3 Containment and Disjointedness in Nested Re-
lations 

In this section, we review the definitions and results from [11] concerning the prop-
erties of containment and disjointedness in PNF relations. These results will be 
used in deriving IEs in the next section. At the same time, we compare the proper-
ties of containment and disjointedness for nested relations with the corresponding 
properties in flat relations. 

In flat relations [13, 4], disjointedness means that when an insertion is made to 
a relation, the tuples to be inserted should not be included in the relation; whereas 
containment means that when tuples are deleted from a relation, the deleted tuples 
should be contained in the relation. It is also desirable in many applications, such 
as those involving triggers or real-time databases, that the changes to the view 
computed using IEs also satisfy the containment and disjointedness properties. 

The issue of how to extend the definitions of containment and disjointedness 
from flat relations to PNF relations is not as straightforward as might first appear. 
This is discussed in more detail in [11] but we briefly summarise our approach here 
for the sake of completeness. In [11] we adopted the approach of [10, 15]. In this 
approach we require that the definitions for containment for and disjointedness 
must be faithful and precise. By faithful, we mean that the definitions for con-
tainment and disjointedness for PNF relations should coincide with the definitions 
for containment and disjointedness for flat relations when the PNF relations are 
in fact flat. By preciseness we mean that the properties should coincide with the 
corresponding properties for flat relations when applied to the total unnnests of the 
PNF relations. 

For containment, we proposed the following definition in [11] and showed it to 
be faithful and precise. 

Definition 3.1 (Containment). Let r and Sr be two instances over schema R. 
Then 6r is defined to be contained in r, denoted by Sr © r, if: 

(i) when R is flat, Vu 6 Sr A v 6 r; 
(ii) when R is not flat, Vu e Sr A 3u £ r A t;[a(i?)] = u[a(i?)] A Vi 6 

[1, ...,nr](v[Ri]<a u\R*\). 

For example in Table 11, Jrffir . However, we note that in this table that Sr is 
not a subset of r. 
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Table 11: Relations showing the containment 

A B' A 
B 

a l {61} 

A B* A 
B 

dl {i>l,f>2} 
6r 

Also, in [11] we show that nested containment has the following properties. 
These properties will be used in the next section. 

Theorem 3.1. Let r and ôr be two instances over schema R. Then the following 
are equivalent: 

(i) Sr<ar; 
(ii) r © 5r = 5r; 

(iii) r © ôr = r. 

As for disjointedness, the following definition was proposed in [11] and shown 
to be faithful and precise. 

Definition 3.2 (Disjointedness). Let Sr (f> and r be two relations over schema 
R. Sr is defined to be disjoint from r, denoted by Sr r, if 

(i) r is <j>; 
(ii) when R is flat, Vîi £ Sr A v 0 r; 

(iii) when R is not flat, Vug Sr, 
(a) v[a(R)} <£ r[a(R)} or 
(b)3u£ r, u[a(.R)] = u[a(i?)] and 

3 i(v[R*]^4> A t,[iÇ] 

For example, the two relations shown in Table 12 are disjoint. 

Table 12: Two cases of disjointedness 

A B* C" A 
B C 

a {61} { c i } 

A B* C* A 
B C 

a {62} {c2> 
Sr r 

We now introduce another type of disjointedness which, when it holds, we will 
show in the next section to considerably simplify incremental equations. 

Definition 3.3. Let r\ and r2 be two nested relations defined over schema R and let 
AC R. Then a tuple x £ r\ is .4-disjoint from r2 if x[A] is not in r2[A\ (otherwise 
x is said A-overlapping with r2). The two relations ri and r2 are defined to be A-
disjoint if every x £ ri is A-disjoint from r2 (note that the definition is symmetric). 

We now illustrate the definition by Example 3.1. 
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Example 3.1. There are three relations r0 , rlt and r2 defined over a schema 
R = {A,B,C* : {C},D* : {D}} in Table 13. Let Y = {B,C*}. Then r0 and n 
are R-Y disjoint, but r0 and r2 are not. This is because R — Y = {A, D*} while 
roKA.D ' J JnnKA.D*}] = 4> and r 0 [ { A f l ' } ] n r 2 p , O * } ] = {< au{dud2) > 

The first tuple in ro is a R — Y overlapping tuple with r2 while the second tuple 
in r0 is a R - Y disjoint tuple with r2. 

Table 13: An example for R - Y disjointedness 

A B c* D* 
c D 

ai bi {ci,c2} {dud2} 
a.2 bi {ci,c2} {di,d2} 

r 0 

A B C' D* A B 
c D 

oi b2 {ci,c2} {di} 
r 1 

A B C' D" A B 
c D 

a i 62 {ci,C2} {di, (¿2} 
ri 

4 Incremental Equations for Nested Operators 
In this section, we derive incremental expressions for the nested operators defined 
in Section 2. We assume that the update to a relation is a full tuple update, i.e., the 
updating tuples and the relation have the same schema. Otherwise, if the schema 
of the update is a prime subschema of the updated relation, we assume that the 
expansion operator has been applied to expand the updating tuples into full tuples. 

We firstly give a general overview of what we are aiming to derive in this sec-
tion of the paper. We are aiming to derive equations of the form opu(r@Sr) — 
f(opu(r),r,6r) in the case of a unary query operator opu, and opt(r@5r,s) = 
f(opb(r, s),r,s,Sr) in the case of a binary operator opb- In this notation @ means 
either the PNF union operator © or the PNF difference operator ©; r and s are 
called base relations; Sr is called the update to the base relation and / is a func-
tion. We call opu(r) and opi,(r,s) the old views, opu(r@5r) and opi,(r@5r, s) the 
recomputation, f(opu(r),r,Sr) and f(opb(r@s),r,s,Sr) the incremental com-
putation. For each equation, we use the abbreviation of LHS for left hand side 
and RHS for right hand side. 

It is particularly desirable if the RHS of the IE for an operator take the sim-
ple form of opu(r)@opu(5r) (opb(r, s)@opb(Sr, s)). We call this form of IE the 
standard form. The advantage of this form is that is does not involve extra 
operators. When the size of the increment is small, in general it is much more 
efficient to compute the new view incrementally than by recomputation. Standard 
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IEs may not exist for some operators, but we can in some cases still derive IEs in 
the limited standard form which means a standard form attached with some 
conditions. The advantage of the limited standard form of an IE is that it reveals 
the reason why the IE can not be standard. However, the test of conditions in the 
limited standard form can be costly because recursive traversal down to subrela-
tions is needed and there is no index possible for the internal subrelations. To avoid 
testing the expensive conditions, we define the implementation form for IEs. In 
the implementation form, the concept of the attribute disjointedness defined in the 
last section is used and testing the expensive conditions is replaced by top level 
selection. 

We note that we use induction to prove the IEs in the section because all the 
operators involved in IEs of the section are recursive. In the proofs of induction, we 
will firstly prove that an equation is correct for a flat relation and then prove the 
equation is correct for a n-level nested relation if it holds for (n — l)-level nested 
subrelations. 

4.1 Incremental Equations for the Expansion Operator 
Theorem 4.1. Let S be a prime subschema of a schema R and let r and Sr be two 
instances over S. Then the following two expressions for the expansion operator 
are true. 

r)R{r © Sr) = T)R(r) © r]R(Sr) (1) 
tir(r © Sr) = TjR(r) © t]R(Sr) (2) 

Proof. 
Proof of Equation 1: 

(1) Base Case: when R = S are flat, the equation holds. The proof is obvious. 
In this case, by the definition of expansion, on LHS: r}R(r) = r, i]R(Sr) = Sr, 
r)R{r) © riR(Sr) = r ®Sr. on RHS: r)R(r © Sr) = r © Sr. Base case is proved. 

(2) Induction: suppose i]R- («[£*]© u[S*]) = r]R- {u[S*}) ® ijR. (v[S*]) where u £r 
and v £ Sr. We prove the equation is correct over r and Sr. 
(a) rfR(r © Sr) C T]R(r) © T]R{Sr) 

For a tuple x £ rjR(r © <5r), by the definition of union, x is expanded 
from a tuple u of r, a tuple v of Sr, or a tuple unioned from u and v. 
(i) x is expanded from u (i.e. u[a(ii)] £ <5r[a(i?)]): 

x = u[a(R)](riaiu[Si])...(i,It:nu[S^]) . 
m+l...nr 

On RHS : since u £ r, the expansion of u, which is the same as x, is 
contained in r}R(r). Because expansion does not change key values 
of tuples, u[a(ii)] £ <5r[a(fl)] u[a(/2)] ft ^(s)[<*(#)]. Further, 
the union in RHS does not change values of the tuple expanded from 
u. Hence, x £ (r}R(r) ffir?/i(<5r)). 

(ii) x is expanded from v: this case is symmetric to the last case. 
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(iii) x is expanded from the union of u and v ( u[a(.R)] = w[a(ii)]): 
The union of u and v is u[a(JQ](u[Sr] © w[5;])...(u[5^] © «[5^]). 
Then x is expanded from this union, 

m + l . . . n r 
the induction assumption that the equation holds on level (n — 1), 
we have union and expansion are exchangeable on second level. 
Then 

m + l . . . n r 
By rewriting, 
X = u[a(R)}(miu[Sl] © m'MSt])>-(VR'mu[S^] © 
mmv[SZl})(<j>®<t>)...(<jXB<t>) s v ' 

from m+1 to nr 

By definition of union and expansion, x is the union of the expan-
sion of u and the expansion of v. So the tuple x is contained in 
RHS. 

Item (a) is proved. 
(b) T]R(r)(Br}ii(8r) C T}R(r®6r) The proof is similar to Item (a) and omitted. 

The equation is proved. 
Intuitively, the expansion operator packs the structured attributes in R but not 

in 5 with <f>. It changes neither values for the structured attributes nor the key 
values of r and Sr. As a result, expansion does not affect the union property of 
r and Sr, and the equation is correct. In other words, the expansion operator is 
faithful [10] with respect to the union operator. 

Proof of Equation 2: 

(1) Base case: when R = S are flat, the equation holds. In this case, bythe 
definition of expansion, on LHS, t]R(r) — r, TjR(Sr) = Sr, rm(r) QrjR(Sr) = 
r © Sr. On RHS, r)n(r QSr) = r © Sr. Base case is proved. 

(2) Induction: suppose tjh? (u[5*] 0 u[S*]) = rjR- (u[S*]) © r)R- (v[S*]) where u € r 
and v € Sr. We prove the equation is correct over r and Sr. 
(a) rm(u[S]ev[S\) C J?ij(u[5]) © 77fl(u[S]) 

For a tuple x 6 (?jii(u[S] © u[5])), there must exit a tuple x' € (r © Sr) 
such that x is expanded from x'. By the definition of difference, x' must 
be produced from r and Sr in two disjoint cases, 
(i) x' is from r: 3 u € r, u[a(iZ)] 0 ¿r[a(i?)], x' = u. 

In this case, x is expanded from u as x = 
u[a(R)]nRMSi])---V^[SL]) On RHS : u £ r => 

m + l . . . n r 
the expansion of u, which is the same as x, is contained in 
VR' (u[S*]). Because expansion does not change key value of tuples, 
u[q(/?)] k ¿r[a(i?)] u[a(-R)]. ^ r/fl((5r)[a(ii)]. By the definition 
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of difference, the expansion of u is not changed by difference. So 
x € RHS. 

(ii) x' is the difference of tuples from r and Sr: 3 u G r, 3v 6 5r, 
u[a(JQ] = v[a(fl)] 
x' = u[a(R)](U[Si] © v[S;])...(u[S^) © v[S^]) and Ei 6 
[ i , . . . , m ] M s : ] e v [ s ; ] ) t 4 > 
x is expanded from x': 
X = u[a(R)](nRMSfiev[S;]))...(riRm(u[Sttev[Sti)) and 

m + l . . . n 
3 i 6 [1,..., TO], (u[S*] © u[St*]) ± 4>. 
Note that expansion adds empty sets to the structured attributes. 
It does not change the values of existing attributes. Therefore, 
(u[S*}ev[S*)) (mAS^emASi]) ? <f>. By rewriting x, 
we have 
X = u[a(R)]{riRlu[Si] e m A S i ] ) - ^ ^ ] © 
r)Rmv[S*m])(<f>e4>)...(<fiQ<l>) and 3 i € [1,...,rn], ( w A S i ] © v V ' 

from m+1 to n 

mAS*}) i <f>-
This just equals to the difference of the expansion of u and the 
expansion of v in RHS . So we proved that x € RHS. 

Item (a) is proved. 
(b) tfa (u[Si]) © № (v[Si]) C r)Ri (u[Si] © v[Si]) 

This item is proved in a similar way as in Item (a). 
Equation 2 is proved. • 

4.2 Incremental Equations for the Projection Operator 

Lemma 4.1. Let S be a prime subschema of R. Let r and Sr be instances over R. 
Then, the following two equations hold. 

ns(r © Sr) = 7fs(r) © ns(Sr) (3) 
fts(f © Sr) = fts(r) © fts(Sr) © fts(r Q Sr) (4) 

Proof. 
Proof of Equation 3: 

(1) Base case: when R = S are flat, the projection does nothing to tuples in r 
and s. So the equation holds. 

(2) Induction: suppose that for u G r and v e s, fts, ("[/?!•] © w[/?*]) = 
© № > ] ) ) , we prove fts(r © s) = (fts{r) © fts(s)). 

(a) fts(r © s) C ( f t s ( r ) © fts(s)) 
For a tuple x € fts(r ® s), there must exist a tuple x' £ (r © Sr) such 
that x is the projection of x'. x' is generated by the union in 3 cases: 
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(i) 3 u £ r A u[a(i?)] g <$r[a:(i?)] and x' is produced by it: 
In this case, x is the expansion of u. On RHS, u £ r => x ££ fts(r); 
the projection does not change the key value of a tuple. Therefore 
no tuple in ns(Sr) will affect x £ ns(r) when the union is conducted. 
x £ ( n s ( r ) © T T S ( S ) ) . 

(ii) 3 v £ Sr A u[a(/i)] £ r[a(i?)] and x' is produced by v: Symmetric 
to case (i). 

(iii) 3 u £r A 3u £ 6r A u[a(ii)] = i;[a(ii)] and x' is the union u and 
v: x' = u[a(E)](u[i?r] © v[i?i])...(U[J£r] © v[R^r])f 
x is the projection of x': 
x = u[a(R)]{*s>MRl] evm-insMRns} ©«J) 
By the induction assumption, 
x = u[a{R)]{*S'MRi\) 9 *S'1(v[Rl}))...(*SnMKs}) © 

On RHS: let the projection of u be denoted by xu and the projection 
of v be denoted by xv. Then xu £ #s(r) and xv £ ns{Sr): 
xu = u[a(R)](isMR^)--^sM(Ks)})) 
x" =v[a(R)}(fiS;(v[Rl})).-.(*s-M(Rns)])) 
The union of xu and xv produces: u[a(i?)](#s* © 
*5? («[i2i])).:.(#5„(ti[K.]) e *sMK.])) => * 
Consequently, x £ {ns(r) © ns{s)). 

Item (a) is proved. 
(b) (7rs(r)©7rs(s)) C 7rs(r ffis): This proof is similar to Item (a) is omitted. 

The equation is proved. 

Proof of Equation 4: We only need to prove that ^s(r) © ns(Sr) Q © Sr) 
because of Theorem 3.1. 

(1) Base case: when R = S are flat, the projection does nothing to tuples in r 
and s. 7rs(r) © ns(Sr) = ns(r Q Sr). 

(2) Induction: suppose that for u £ r and v £ s, (^.(ufi?^]) © 
№;])) ® (u[R*} © we prove (tfs(r) © ns(s)) ® ns(r © s). 

For a tuple x £ (^s(r) © ns(s)), x is produced in two cases: 
(i) x is the difference of xu and xv where xu £ 7Ts(r) and xv £ ns(Sr): 

Suppose xu is the projection of u € r and xv is the projection of v £ r. 
By the definition of projection, we have 
x" - u[a(R)}(nsl(u[Rt}))...(^M(Rnsm 
x" - v[a(RWsl(v[Rl])).Ms'nM(R*ns)})) 
By the definition of difference, 
X = U F A M ^ H I ? ; ] ) © ts-MRl)))-(*snAu[Ks}) © *sMK.])) 
and 3i £ [1, ...,ns](#Si(u[R;]) © *s>[i?*]) # <t>)-
From {TtSi{u[R*}) © TtSi(v[R*i}) i <f>) we have zt[i?*] © ^ 0 because 
projection makes a tuple have less attributes. 
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On RHS: the difference of u and v produce a tuple y E (r 0 <5r): 
y = u[a(i2)](u[J2i] e G v[R£r]) since 3 i E 

The projection of y produces y' in RHS: 
y' = u[a( i i ) ] (#si (u№] e v[Rl})-(*s„MKs] ev[R*ns]) and 3i E 
[1 na](«[J2?] ©«[ii?] 0). 
By induction assumption, all subrelations of x are contained in the ac-
cording subrelations of y'. Therefore, a; is tuple-contained in y'. 

(ii) x is in 7rs(r) and x[a(i?)] 0 Sr[alpha(R)]: This prove is the similar to 
Item (i) in the proof of Equation 3 and omitted. 

The containment is proved. 
• • 

Equation 4 reveals that ns(rQs) may not be contained in (ns(r) © tts(s)). The 
following lemma gives the reason. 

L e m m a 4.2. 
•¿rsirQSr) = •Ks(r)Qfts(Sr) iff recursively 3uE.rA3vE.6rA = t;[a(j4)] A 

3 j E [l-mMiRj)} © vKRj)} jL <f © *s>v[R*}) ± <t>). 

The proof of the Lemma is the reverse of the proof of Equation 4. Generally, 
(u[i?i]©v[.R*] <j>) i=> (is, J- <t>) because the projection makes 
a tuple shorter. The shortened parts might be the difference of u[R*) and v[R*\. 
Once this difference is shortened, i s , (u[i?*]) and become the same. So, 

(u[-R*]) © ftSi(v[R*]) 4>) may not be true. When the condition in the lemma 
is true, the equation becomes true. 

The next example shows the importance of the condition in the lemma. 

Example 4.1. Let R = {A,B* : {B},C* : {C}} and 5 = {A,B* : {5}}. Let 
r and Sr be two instances over R shown in Table 14. We see that © Sr) ^ 
7fs(r) © nT(Sr). This is caused by the first tuple of r and in the first tuple of Sr. 
The order of difference and projection on the two tuples affect the result. 

When the two tuples are differenced first, the result is < a\,(j>, {ci} >, The 
projection of the tuple is < ai, <f> > which is in the recomputation of r © Sr). 

However, when the two tuples are projected, we obtain < a\, {61} > and < 
ai, {bi} > respectively. The difference of these two tuples results none in the 
result. 

Based on the two lemmas given above, we propose the following implementation 
form of IEs for the projection operator. 

T h e o r e m 4.2. Let S be a prime subschema of R. Let r and Sr be instances over 
R. Then, the following two equations hold. 

rts(r © Sr) = 71 s(r) © ns(Sr) 
7Ts(r © Sr) = <7a(fl)0Sr[a(fl)](#s(r)) © ^s(<?a(fl)€ir[a(fl)] W © Sr) (5) 
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Table 14: Relations for Example 4.1 

A B* C' A 
B c 

a i {öl} {a} 
Û2 {bi,b2} {ci,C2} 
0.3 {b2,b3} {ci,C3} 

A B* C' A 
B c 

ai {M {C2} 
a. 2 {bub2} {ci,C2} 
Û3 {¿>3} {C3} 

A B" 
B 

a i M 
03 (M 

Sr •#s(r 6 Sr) 

A B-A 
B 

Q3 {f>2} 
fis(r) G fis(Sr) 

The first equation has been proved in Lemma 4.1. We now prove the second 
equation. From Lemma 4.2, the none equivalence of ns(r & Sr) and ^s(r) © ns(Sr) 
is caused by a(.R)-overlapping tuples in r and Sr. . Based on this observation, in 
Equation 5, we delete from the old view © Sr) the tuples that are produced 
by key value overlapping tuples in r. We then recompute the a (R)-overlapping 
tuples in r and Sr by ^s(^a(fl)e<5r[a(fi)](r) © 8r). At last, the recomputed tuples 
are inserted to the view. 

4.3 Incremental Equations for the Selection Operator 
Incremental equations for the selection operator can not be in the standard form 
because of the following lemma. 

Lemma 4.3. Let r and Sr be two relations over schema R. Let c be a selection 
condition defined with Definition 2.6. Then ac{r) is not always contained in âc(r © 
Sr) and âc(r Q Sr). 

This lemma is supported by the next example. 

Example 4.2. Let r and Sr be two relations given in Table 15 and c = {B* 
(j), C* = 4>} be a selection condition. The selections of r, r © Sr, and r QSr are also 
given Table 15. Obviously, oc(r) is not contained in ac(r © Sr) and âc(r © Sr). 

Since it is not possible to have the standard form of IEs for the selection op-
erator, we derive IEs in the limited standard form for the selection operator if we 
impose restrictions on r and Sr. 

Lemma 4.4. Let r and Sr be two relations over schema R. Let c be a selection 
condition defined with Definition 2.6. Then the following equations are true. 

(i) âc(r © Sr) = âc(r) Q âc{Sr) i f f 3 (u G r A v G Sr A u[a(A)] = u[a(A)]) , 
then recursively Vie [l,...,n] ( cr2(trCi (u[-Rt*]) © <rCi (f[/î*])) = true A 
Cri(àCi(u[R1])) = true A cri(âCi №*])) = true A 3 i(u[Rl] © ^ 
4> A â C i ( u [ R i ] ) e * c M R ; ] ) ï < t > ) 

(ii) ac(r@8r) = âc(r) © âc(Sr) i f f 3 (u G r A v G Sr A u[a(A)] = w[a(A)]), then 
recursively V î G [l,...,n] (cri(<TCi(u[iîi])) = true A Cri(oCi(v[Ri])) = true) 

We now choose to prove the first equation. The proof of the second equation is 
similar to that of the first one. 
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Table 15: Relations for Example 4.2 

A B' c* 
B c 

ai {Öl} 4> 
as {65} 4> 

A B' C' 
B C 

i i {{>2} {C2> 
as {bs,b6} 4> 

r 
A B* C* 

B C 
ai {biM) {c2} 
as {¿>5, M <t> 

r © Sr 

Sr 

A B* C* A 
B c 

as {61} <t> 
r Qôr 

A B* C* 
B c 

ai ( M <fi 
as {65} <t> 

»c(r) 

A B* c* A 
B c 

as {bs,b6} {<t>} 
dc(r © Sr) 

A B' c* A 
B c 

a 1 {61} {4>} 
Sc(rQ Sr) 

Proof. 
Proof of Equation (i) in Lemma 4.4: 

(1) Base case: when /9(i?) = <t>, r and Sr are flat. The equation becomes oCb(r — 
Sr) = oCb(r) - aCb(Sr). The correctness of this equation is proved in [13]. 

(2) Induction: when r is not flat and <rCi ( " № ] © « № ] ) = oCi MR-])GaC i ("[#*]) 
where u € r and v € Sr, we prove the equation is correct below. 

(a) ac(r-©<5r) C 3c(r) Q &c(Sr) 
For x 6 &c(r © Sr), there exist a tuple x' in (r © Sr) such that c(x') is 
true, x' is computed by tuple u 6 r and tuple v £ Sr in one of two ways. 
(1) u[a(i?)] i 5r[a(fl)] and x' = u. Thus, 

x = u[a(/?)](<7Cl(u[/?J])...(<rc„ (u[ii*]) where Ci,(u[a(i?)]) = true and 
Vi,cri((7c,.(u[i?*])) = true. 
In RHS, the selection of u produces tuple y (= x) in ac(r): 
y = u[o:(i?)](iTc1 (u[i?j,])...(<rCn(u[ii*]) where c6(u[a(i?)]) = true 
and Vi(cri(<7Ci(u[i?*])) = true). 
Since selection does not change the key value of a tuple, we have 
u[a(iZ)] £ ¿r[a(i?)] = > y[a(R)] £ <Tc(Jr)[a(JR)]. By definition of 
difference, no tuple in ac(Sr) affects y when difference is conducted 
in RHS. After difference, y is still the same as x. So, x is in RHS. 

(2) u[a(ii)] = u[a(i?)] and x' is the difference of u and v. That is, 
x' = u[a(R)](u{Rl] 0 t>[fli])...(u[J£] e u[J?;]) where 3i(u[iif] G 
u[i?*] (f>). In this case, the selection of x' gives 
x = u [a ( f l ) ] (* e i (u[Rl\ © ̂ [i?I]))...(ac„ ( « № ] 9 v[R^])) 
where ct(u[a(ii)]) = true and Vi(cri(<TCi(u[.R*] © w[J?t*])) = true) 
and 3i(u[R*]ev[R*] ± <j>). 
By induction assumption, 
x = U[a(E)](aCl(W[i?i,]) © *CI («))•••№>[/£]) © acJv[R*n})) 



114 Jixue Liu and Millist Vincent 

where ct(u[a(.R)]) = true and Vi(cri(iCi(u[iZi] 9v[iÇ])) = true) 
and 3 © £ 4>). 
In RHS , the selection of u and v results tuple yu £ àc(r) and tuple 
yv G âc(s): 

y« = u[a(iî)](«îCl(«[iîî]))...(<iCn(u[iî;])) where <*(«[«(£)]) = true 
and Vi{cri{cCi («[/?,•])) = true). 
yv = w[a(iî)](5cx(w[^Î]))-(<ic.(«[«;])) where C(,(u[a(.R)]) = true 
and ViicviifTciM-R?])) = true). 
Let y be the difference of yu and yv (because of u[a(iï)] = u[a(i?)]): 
y = u K i ^ K ^ M i î ï ] ) © * C l № î , ] ) ) » - ( * e > [ i £ ] ) © 
where C(,(u[a(iî)]) = true, c&(t>[a(.R)]) = true, Vi(cri(^Ci(u[iîJ'])) = 
true and cri(âCi(î;[iî?])) = true), and 3 i ( d " c . © èCi{v[R*}) ± 
4>). 

The conditions attached to x and to y are the conditions attached 
tot he equation. When these conditions are true, x equals to y. 
Hence x is in RHS. 

(b) àc(r)eâc{s) ç âc(res) 
This proof is the reverse of the proof of Case (a). 

The equation is proved. 
• 

We use the next example to show the importance of the conditions attached to 
the equations in Lemma 4.4. 

Example 4.3. Let R — {A, B* : {B}, C* : {C}} and let r and Sr be two instances 
over R and given in Table 16. Let the selection condition be c = (̂ 4 = ' a[,C = 
<f>). LHS=<rc(r © Sr) = <j>] while RHS= âc(r) © àc{Sr) (p. The reason is that 
the condition of subrelations over C* being empty is violated by r and Sr: the 
subrelation {ci} in r is not <f>. 

Since the equations in Lemma 4.4 can not be applied to this example. The new 
view has to be recomputed. 

Table 16: Relations for Example 4.3 

The above lemma indicates that the reason for not being able to derive a stan-
dard IE for the selection operator is that r and Sr having a(ii)-overlapping tuples. 

The conditions attached to the equations in Lemma 4.4 are recursive. In other 
words, the conditions have to be tested against subrelations on all levels. This 
can be very time consuming because of traversing down to deep levels and because 
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there is no index possible for subrelations in a relation. Furthermore, after the 
test,' the conditions may be violated, in this case, we have to recompute to view. 
Those tuples that have been traversed for testing the conditions will be traversed 
again for the recomputation. Double traversal causes the test plus recomputation 
to be more expensive than just recomputation without the pre-test. To overcome 
the disadvantage of the performance, in the next theorem we avoid the test of the 
conditions by proposing IEs in the implementation form. 

Theorem 4.3. 

<Jc(r Q Sr) = ia(fl)№[a(fl)](ic(r)) © &c(&a(R)e6r[a(R)](r) Q Sr) (6) 
<7c(r © Sr) = ^a(R)iSr[a(R)}(^c(r)) © Vc(Pa(R)€6r[a(R)](r) © Sr) (7) 

In the theorem, a(R)-overlapping tuples are recomputed while other tuples are 
computed incrementally. The IEs in the theorem can applied without limitation. 

4.4 Incremental Equations for the Intersection Operator 
The next Lemma indicates that the IE for the intersection operator with union is 
in the standard form. However, the IE for the intersection operator with difference 
can not be in the standard form since (r © s) © (Sr © s) is contained in (r © Sr) © s, 
but not the other way around. 

Lemma 4.5. Let R be a schema and r, Sr, and s be instances over R. Then 

(r eSr) © s = (r © s) e (Sr Qs)®(reSr)Qs (8) 
(r ®Sr) © s = (r © s) © (Sr © s) (9) 

We choose to prove Equation 8. The proof of the other equation can be achieved 
in a similar way. 

Proof. 
Proof of Equation 8: To prove the equation, we only need to prove (r © s) © 
(Sr © s) <5 (r © Sr) © s because of Theorem 3.1. 

(1) Base case: when R is flat, the equation is true since in flat case, (rQSr)Qs = 
(r © s) O (Sr © s) is proved in [13]. 

(2) Induction: we suppose that for u E r A v G Sr A w G s, (u[i?*] © to[i?*]) © 
№*] © ® («[#*] © u[i?*]) © w[R*}. We prove (r © s) © (Sr © s) ® 
(r © Sr) © s. 
For x G ((r®s)Q(SrQs)), there exist tuple xu E (rQs) and tuple xv G (SrQs) 
such that x is the difference of xu and xv. By the definition of the difference, 
x is computed in the following ways from xu and xv. 
(a) xu[a(R)] = xv[a(R)} then x is the difference of xu and xv. 

Because xu is the intersection of u E r and w G s while xv is the 
intersection of v G Sr and w E s, i.e., 
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x" = ulaiEmulRnOwlR^-iulR^OwlR*,.]) and 
= «[a(*)](t;[/îî] © tu[JÎÎ])...(t>[J£r] O w[R*nr]). 

So x is the difference of xu and xv : 
x = O «i[fl|]) © № * ] 0 u;[flï]))...((u[Jî;r] © Mi?*r]) 9 
( « r ] © t « r ] ) ) 
where (u[(i2J)] 9 (*>[/£] © w[Rf]) ± <j>. 
By induction assumption, 
x = u[a(R))((u[Rl) 9 v[Rl}) © ])...((«,.] © v[R*nr]) 0 w[R^r]) 
where (u[JÇ] 0 [/?*]) © (v[Rfl © M № ) ] ) ^ 4> 
In RHS, since u[a(-R)] = ti(a(iî)], the difference of u and v (u ^ v, 
otherwise x does not exist) in (r 9 s), denoted y', is 
y' = u[a(R)]{u[Rl] 9 v [ R { ] ) . 9 v[R^r)) 
where (u[R^] © v[R*]) + cj> 
By intersecting y' and w (u[a(i?)] = z;[a(iî)] = w[a(.R)]), we have a 
tuple y in RHS as 
y = «[a(H)]((u[J^] © v[Rl]) Q W[iîî]))...((u[iî;r] © v[RZr]) O w[R^r])) 
where (4R?]©î;[(i?;)])^<A 
Because (u[R^] © w[R*}) © (w[jR*] © ^ 4> => (№,*] © v[R*}) © 
ui[iîi]) t̂  (f> =>• (u[(i?*)] © ^ <f> (not vice versa), x equals to y or 
tuple-contained in y. Therefore x is in RHS. 

(b) xu[a(-R)] 0 (Sr © s)[a(R)]: then x = xu. 
xu is computed by intersecting i i E r and w € s. That is, 
x = xu= u[a(i?)](u[i?i] © t«[i î î ] )-(«[^ir] © « № ] ) • 
In RHS, u[a(i?)j ^ ¿r[a(.R)]: This can be proved by the inverse method. 
Suppose there is tuple v € Sr such that w[a(i?)] = u[a(iî)], the inter-
section of v and w (u[a(.R)] = w[a(iî)]) result in a tuple xv e (Sr © s) 
such that xv[a(R)] = u[a(.R)] = xu[a(iî)]. This is a contradiction to the 
condition of xu[a(.R)] 0 (Sr © s)[a(iî)]. Thus, u[a(.R)] 0 <Jr[a(.R)]. 
Prom this point, we conclude that there is not tuple in Sr affecting u 
during the difference of (r © s). So the intersection of u and w is the 
same as x. Consequently, x is in RHS. 

This proof of ((r © s) © (<5r © s)) <5 ((r © s) © t) is done. 
The equation is proved. • 

If restrictions are placed on relations r and Sr, it is possible to derive IEs in 
the limited standard form for the intersection operator as shown in the following 
result. 

L e m m a 4.6. (r © Sr) © s = (r © s) 9 (Sr O s), if recursively 
3 u ' e r A 3 u € <5r A 3 i d é s A u[a(-R)] = u[a(-R)] = w[a(.R)] A 
3 i ^ K R ^ e v ^ R i ) } ^ ^ A ( n [ № ) ] 0 w p , ) ] ) e M № ) ] 0 w [ № ) ] ) ^ ) . 

The condition attached to the lemma is extracted from the proof of Equation 
8. We now use Example 4.4 to show that a standard IE is not valid unless the 
relations satisfy the condition of Lemma 4.6. 
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Example 4.4. Let r, Sr and s be relations given in Table 17. After recomputation 
and incremental computation, (r © Sr) © s (r © s) © (Sr © s). This is because the 
first tuple in r, i r and s violates the condition. 

Table 17: Relations for Example 4.4 

A B* A 
B 

a 1 {bub2} 
a2 { 6 2 , 6 3 } 

13 {64} 
Ü4 {M 

A B* A 
B 

a\ {bi,b3} 
Ü 2 {bi,b2} 
0 3 { 6 3 , 6 4 } 

Sr 

A B* A 
B 

a i { 6 1 } 

0.2 { 6 2 , 6 3 } 

<13 { 6 4 } 

a 4 { 6 5 } 

A B* A 
B 

a i <fi 

a 2 { 6 3 } 

Û 4 { 6 5 } 

(r QSr)Qs 

A B* 
B 

a2 { 6 3 } 
Ü4 { 6 5 } 

( r 0 s ) e (Sr 0 s) 

A closer inspection of this example and the previous results indicates that the 
reason for not being able to derive a standard IE for the intersection operator is 
caused by a(i?)-overlapping tuples in r and Sr. If we treat these tuples separately 
then we can derive IEs in the implementation form that is more efficient than 
recomputation. 

Theorem 4.4. Let R be a schema and r, Sr, and s be instances over R. Then 

(rQSr)Qs = âa(R)2Srla(R)] (rQs) © ((<Ta(«)e5r[a(fl)] (r)) eSr)Qs (10) 

(r © Sr) © t = (r © s) © (Sr © s) (11) 

The next example shows the usage of Equation 10. The example also shows 
that Equation 10 is more efficient than recomputation. 

Example 4.5. Let r, Sr and s be relations given in Table 17. The incremental 
computation using Equation 10 is given in Table 18. We see that ©z2 is the same 
as recomputation (r © <Sr) © £ in Table 17. We note that we did not recompute the 
intersection of tuple < a4, {65} > in r and s. This is where Equation 10 is cheaper 
than recomputation. 

Table 18: Use of Equation 10 

A B* A 
B 

ai { 6 1 } 

a2 {b2,b3} 
a 3 { 6 4 } 

<X4 { M 

ai 
a2 
03 
6r[A] 

A B* A 
B 

a 4 { 6 5 } 

z 1 
r O s 

Zl = Va(.R)tST[a(R)]('T O S) 

A B* 

B 
ai <t> 
02 

Z 2 

A B* A 
B 

a\ 4> 
Û2 ( M 
Ü4 {h} 
Z1 © 22 

Z2 = ((¿a(H)€ir[a(K)](r)) G Sr) O S 
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4.5 Incremental Equations for Join Operator 
Theorem 4.5. Let R and S be joinable schemas. Let r and Sr be instances over 
R and s be an instance over S. The following two equations hold. 

(r 9 (5r)txis = (r&s) © (Jrt&s) © (r © ¿r)cSas (12) 
(r © ¿r)cSas = (rcxjs) ffi (Srt&s) (13) 

We choose to prove the first equation. The proof of the second equation is 
similar to that of the first one. 

Proof. 
Proof of Equat ion 12: To prove the equation, we only need to prove (rt&is) © 
(Sr&s) Q (r 9 ¿r)c£js because of Theorem 3.1. 

Let R = a{R){Rl,...,R*nr} and S = a(R){Sl,..., S*s}. Let r and 6r be relations 
on R and s be a relation on S. Let T = a{R){Tf, ...,T*t} be joined schema of R 
and S. 

(1) Base case: when R = S = T = a(R), i.e. all schemas are flat and the same, 
(rtks) 9 (¿rc*a,.s) = (r 9 <5r)t<is. This is because when relations are flat, 
join operation is equivalent to set intersection operation. The equivalence is 
proved in [13]. 

(2) Induction: we assume that for u E r A v E 6r A w E s, (u[i?j]tfiaii;[(5fc)]) 9 
(« [¿^^[ (Sfc ) ] ) § (u[R*j] 9u[i^])t£m[(S i :)]. We prove (r&s) 9 (Sr&s) ® 
(r 9 ¿r)t&s . 
For x E ((n&is) 9 (¿rt&s)) inLHS, there exist xu E (rc&s) and xv E (¿rt*as) 
such that x is the difference of xu and xv. By the definition difference, we 
have 

(rcSsi) 9 (s&i) 
= {a;|a;[a(i?)] = xu[a(i?)] = ^[«(i?)] A Vi(xp7] = xu[T?} 9 xv[T*]) A 

3i{x[T*)j:4>) or 
x[a( i i ) ] = xu[a{R)) / V i » [ a ( f l ) j A x = xu } 

where by the definition of join, 
xu E {xu\3u E r A 3w E s A x"[a( f i ) ] = u[a(f i ) ] = iu[a(.R)] A Vi 

(zu[7;*] = u[/2;]tfiji«[5JE], if RjCPTi A S^Ti or. 
xu[T*] = u[i?*], if RjCPTi A pSk<QTi or 
xu[T*j = w[Sl], if /9 Rj^Ti A Sk^Ti ) } and 

xv E e Sr A 3w E s A xv[a(i?)] = v[oc(R)] = w[a(i?)] A Vi 
{xv[T*} = w[ii;]£m[S£], if Rj^Ti A Sk^Ti or 
xv[I?] = v[R*l if Rj <£pTi A $Sk(c Ti or 
xv[T*] = w[S*k], if £ Rj^Ti A Sk€PTi ) } 

We replace xu and xv with their definition in the difference. Because the 
schema of xu and xv are the same, each case in xu matches that in xv, and 
does not match any of the other two cases. For this reason, we first consider 
the first case of xu and the first case of xv in the first case of the difference. 
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We then consider the second and third cases of xu and xv respectively in the 
first case of the difference. After that, we consider each case of xu and xv in 
the second case of the difference. From this procedure, we get the following 
expression. In the expression, for the simplicity, we do not write the schema 
conditions explicitly below. 

(rc5as) © (¿rt&s) 
= { x | ( 3 u € r A 3v€(Sr A 3 w £ s A 

x[a(R)] = u[a(i?)] = i;[a(i?)] = io[a(J?)] A 
Vi(x[T*] = (u[R*]&w[S*k}) © (v[R3]*w[St]) or 

x[T*} = u[R*] © v[R*] or 
x[T*]=w{S*k]ew{S*k}) A 

3i(x[T*]?<l>) or 
(3 u Er A V u 6 Sr A 3w € s A 

z[a(.R)] = u[a(R)] = w[a(R)] ± v[a(iZ)] A 
VHx[Tt] = (u[R*]tkw[S*k]) or 

x[Tt) = u[R*} or 
x[T*]=w[S*k}) } 

Now we consider (r © 5r-)c<]s in RHS. Let y £ (r © ¿r)cSjs and yu € (r © Sr). 
By the definition of join, we have 

(r © Sr) cki s 
={y|y[a(fl)] = < /> (# ) ] = Ma(i?)] A " 

Vi(j/[I?] = if R j & T i A S k ^ T i or 
y[Tt] = y»[R*], if Rj^Ti A £ Sk^Ti or 
y[Tf] = w[S*k}, if ¡B RjSTi A Sk^Ti ) } 

where by the definition of difference, 
yu 6 {yu\3u£ r A 3v £Sr A = u[a(i?)] = u[a(.R)] A 

Vj(yu[R*} = u[R*] © «[/?*]) A 3 j(u[R*] © * <t>) or 
3 u € r A VveSr A yu[a(R)} = u[a(ii)] ± v[a{R)] A yu = u } 

Replace yu with its definition in the RHS, 

(r©(5r)t<]s 
= {i/|3 u£r A3v£ Sr A 3w £ s A 

y[a(R)] = w[a(i?)] = = w[a(R)] A 
vi(y[T?] = (u[R*} et/[fl;])tMsfc*] or 

y{Tl]=u[R*]ev[R*} or 
y[T*}=w{S*k]) 

3j{u[R*]ev[R']^<j>) or 
3u £ r A Vii 6 Sr A 3w £ sA 

y[a(R)] = u[a(J2)] = u>[a(Jl)] # v[a{R)} A 
Vi(y[T?] = u[R]]*w[St] or 

y[T*]=u[R*} or 
y[T*] = w[s;]) } 

Now we compare x and y. The second case of x equals to the second case 
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of y with conditions. With the induction assumption, the first case of x 
equals to the first case of y with the condition that 3 i(x[T*] ± <j>) 
3j(u{R;]ev[R*}?<j>). 
We now prove that 3 i(x[Tf] ^ <f>) =» 3 j («[/?*] Qv[R*] ± </>) but not vice 
versa. In the first case of x, x[T*] is computed in two ways (note that 0 
w[Sl] always results 0 while we are discussing not being tf>). 

• x[T?) = u[R*j] © v[R*j] ± 4). This is equivalent to 3 (u[R}] © ^ <f> 
of y side. 

• x[T?] = ± <j>. By the induction assump-
tion, we have x[T*] = (u[R]] © v[.R}])i£iiu[S£] ^ <f> By the definition of 
join, © ^ D & ^ s , * ] ¿ 4 > = > © «[/?.;]) ? 4>-
However, from (u[/?*] © w[i?*]) / </> we can not get (u[/?*] © 

<f) because the join of two non-empty sets can be an 
empty set. Consequently, (u[_R}] © v[R^]) ± (j> (u[i?;]i£iio[SjJ]) © 
(v[R*)&w[S*k}) ± <j>. 

Because the condition of x can lead to the condition of y to be true, any x 
in LHS is contained or tuple-contained in RHS. However, the condition of y 
can not always lead to the condition of x to be true, y is not always included 
in RHS. 
In summary, we proved that (rcxis) © (¿rt&is) © (r © <5r)c*as. 

• 

Equation 12 can be simplified if restrictions are placed on the update Sr. 

Lemma 4.7. Let R and S be two joinable schemas. Let r and Sr be instances over 
R and s be an instance over S. The following equation holds. 

(r © ¿r)i&is = (rixis) © (¿rcias) iff r and Sr are a(R)-disjoint. 

The proof of the lemma is similar to the proof of Equation 12. We now give an 
example to show the importance of the condition in the lemma. 

Example 4.6. Let r, Sr, and s be three relations given in Table 19. The recom-
putation (r ©<5r)t*as and the incremental computation (rtxi s) © (¿rcfias) of the join 
operator are also included in the table. Because r and Sr have a(i?)-overlapping 
tuples, the recomputation contains more tuple than incremental computation does. 

Consider the performance and implementation, as we analyzed in Subsection 
4.3, we give the following IEs in implementatation form. In the theorem, a(R)-
overlapping tuples in r and Sr are recomputed while other tuples in Sr are incre-
mentally computed. 

Theorem 4.6. Let R and S be two joinable schemas. Let r and Sr be instances 
over R and s be an instance over S. The following two equations hold. 

( r e 5 r ) & S = ¿a(R)g6r[a(R)](r&s) © ((<?a(fl)edr[a(fi)](r) ©¿O&s) (14) 
(r © ¿r)cxis = (rcxis) © (<5rt&s) (15) 
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Table 19: Relations for Example 4.6 

A B* c' A 
B c 

ai {M id] 
a 2 {foil { C 2 , C 3 } 

<13 {biM { c i } 

A B* c* A 
B c 

ai {61} { a } 
0,2 {M { C 3 } 

a 3 {62,63} W 

A C' D* A 
C C 

0,1 {*} {<M 
a 2 {ci} {¿2} 
a3 {M {<M 

A B* c* D' 
B c D 

a2 <t> 4> m 
«3 {61} 4> 

(r © 5r)cSjs 

5r 

A B* C' D* A 
B c D 

a 3 {61} 4> 4> 
(rtxis) © (Srt&s) 

4.6 Discussion 
In this subsection, we highlight some of the important features of the IEs derived 
in the last section and discuss the differences between incremental expressions for 
flat relations and for nested relations. 

Firstly, we note that some (but not all) of the incremental expressions are in 
the standard form since the expressions do not involve recomputing the new view. 
The performance gain of this type of IEs is obvious. This is the case where the 
update is an insertion and the operators are expansion, intersection, projection, or 
join. However, the IEs for some operators, e.g. Equation 8, involve recomputation. 
These types of IEs do not avoid view recomputation unless restrictions are placed 
upon the update. A similar situation occurs with the flat relational projection 
operator where the incremental expression involves view recomputation [13]. This 
highlights the fact that some views are impossible to maintain efficiently if the only 
information available is the view itself. This has lead to the development of other 
techniques which use counts [6] or auxiliary relations [19] to improve efficiency by 
avoiding view recomputation. Similarly, one expects that views involving nested 
operators can be more efficiently maintained if more information than just the view 
is stored. 

In comparing the equations derived in the last section and those in [13] for 
the flat relational model, one notes that not only are the equations in this paper 
generally more complex but also the symmetry shown in the equations of [13] is 
absent in the expressions of the nested operators. For example, in flat relations the 
incremental expressions for selections and joins are similar for both insertions and 
deletions and are computed as <rc(r±s) = ac(r)±ac(s) and (r±s)&it = r&t±s&it 
respectively. This symmetry is absent in the equations derived in Section 4. 

Apart from the difference of patterns of IEs, the containment and disjointedness 
properties used in deriving IEs for flat relations and those used for nested relations 
are different. The containment and disjointedness for flat relations are defined on 
set semantics. A tuple contained in a set means that the tuple is a member of the 
set. In nested relations, however, a tuple is contained in a nested relation does not 
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mean that the tuple exists in the relation. The tuple may be contained in a tuple 
of the relation. Tuple containment becomes a core concept in the containment for 
nested relations. Similarly, the disjointedness for nested relations is built on the 
basis that two tuples are disjoint if one tuple has a subrelation that is disjoint from 
the corresponding subrelation of the other tuple. 

Compared with the equations for flat relations, our equations in the imple-
mentation form incrementally compute the view update to the maximum extent 
and avoid full view recomputation by recomputing only key attribute overlapping 
tuples. The performance gain from the implementation form is obvious. This is 
because in the implementation form, we make full use of indexes on the top level 
to select key attribute overlapping tuples. We avoid to test the complex conditions 
of IEs in the limited standard form and avoid full view recomputation. 

5 Incremental Maintenance of Views with Com-
plex Queries 

In this section, we present a technique for the incremental maintenance of PNF 
views expressed as complex queries using the incremental equations derived pre-
viously. Our technique can handle both insertions and deletions. However, for 
simplicity of exposition we assume that the update is a single insertion to a base 
relation. 

Our technique is firstly to represent the query expression for the view as an 
expression or operator tree. In this representation, the leaves of the tree are the 
base relations, the interior nodes are the query operators and the root of the tree 
represents the final view. Our technique then computes the change to the view in 
a 'bottom' up fashion starting with the changes to the leaf nodes and then propa-
gating the changes upwards in the expression tree using the incremental equations 
derived previously. To be more precise, we can express the technique in the fol-
lowing algorithm (iri represents the intermediate relation corresponding to node i 
in the tree, ir? and i r ^ are the intermediate relations corresponding to the child 
nodes of node i). 

Algor i thm 5.1. (Maintaining views wi th complex queries) 
Inpu t : the operator t r e e and the i n s e r t i o n s 6r t o r 
Ou tpu t : update to the view 
Do: For each node i do 

if Siri' or Sir^' i s non-empty, then 
compute Siri according to IEs derived in previous sec t ions , 

end i f ; 
endfor ; 

The use of the algorithm is illustrated by the next example. 

Example 5.1. Let relation pstud be defined in Table 1. Let relation subjLect be 
defined in Table 20. We define a query to list 
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• the name of a student; 
• the subject taken by the student in 1998 if the student gets all marks over 69 

for every test; 
• the lectures for the taken subject. 

This query can be expressed as 
View = Tt{Name,Subj':{sjName,Year,Lecf-.{Lect}}}{ 

(0Subj':(Year=98 A M A R K S ^ M A R K Y ^ ^ ^ I P S T U C ^ ^ S U B J L E C T ) ) 

Table 21 shows the instance of the view. 

Table 20: Relation subjLect 

Name Sub s* 
s j Name Year Lects* 

Lect 

Jack 

John 

( DB 
\ DB 
j DB 
{ DB 

98 
96 
98 
96 

{Ben,Tom) 1 
{Kaven} J 

{Ben, Tom} 1 
{Kaven} J 

Table 21: The materialized view View before update 

Name Subjs' 
sjName Year Lects* 

Lect 
Jack { DB 98 {Ben, Tom}} 

We now update relation pstud. The update to pstud is an insertion Apstud 
given in Table 22. The update is propagated through the following steps. 

• AV3 
={< Sean, {< DB, 98, {< exam, 90 >} >}, <t> >} 

• AV2 = AV3tk subjLect 
={< Sean,{< DB, 98, {< exam, 90 >},{< Ben >,< Tom >} > 

• AVj — ^{Name,Subj' :{sjName,Year,Lect': {Lecf}}} (AV2) 
={< Sean, {< DB, 98, {< Ben >, < Tom >} >} >} 

• View = View © AVi is given in Table 23. 
In the above procedure, we only computed the view update having the tuple of 

'Sean'. We did not compute the tuple 'Jack' that had been in the old view. When 
tuples in the old view are numerous, our way of maintaining the view can have 
better performance than recomputation. 
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Table 22: An update Ar to r 

Name Subjs' Tels' 
sjName Year Marks * Tel 

testName | Mark 
Sean {DB 98 {exam 90} } <t> 

Table 23: The materialized view View after update 

Name Subjs* 
sjName Year Lects* 

Led 
Jack { DB 98 {Ben, Tom}} 
Sean { DB 98 {Ben,Tom}} 

6 Implementation and Performance Analysis of 
IEs 

In this section, we present the results of our performance analysis of the IEs we 
derived. A detailed description of implementation can be found in [12]. 

6.1 The database 
We employed a university database for the implementation. It contains five rela-
tions. The schema of each relation is described in Figure 24. The schema Stud 
has been described in Example 1. The schema Teach describes the lecturer names 
(IcName) for each subject in a year. Led is a schema modeling the information 
of lecturers. Test is the schema to describe the test details for a subject in a year. 
The last schema, Hobby, describes hobbies of a student. 

Table 24: Schemas of the university database 

Name Subjs* Addrs' Name 
sjName Year Marks' Addr 

Name 
sjName Year 

TestName | Mark 
Addr 

schema Stud of relation pstud 
sjName Year IcNames' 

IcName IcName Salary Speciality 

schema Teach of relation teach schema Led of relation le 

sjName Year TestNames' 
TestName | Description 

Name Hobbies' 
Hobby 

schema Test of relation test schema Hobby of relation hobby 

The implementation was performed on a Pentium 166 PC computer with two 
hard disks, 96 MB of memory, and Microsoft Windows NT 4.0 operation system. 
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The database management system used was the Informix Database Server with 
Universal Data Operation (IDS/UDO) version 9.14. Clients interface and pro-
grams are connected to the server by TCP/IP loop-back connection [9], which is 
the only option for Windows NT platform. The query language we use for the 
implementation is the OR-SQL proposed in [17]. 

6.2 The Cost Model 
The cost model for the performance analysis involves the costs of view creation, 
incremental maintenance, and recomputation. Each cost is the time for computing 
an item in an IE. We use the IE for the join operator with a deletion update as 
an example to show the relationship between the costs in the cost model and the 
items of the equations following. 

(r © <5r)&s = ®» (<Ta(H)eír[Q(ñ)](r) G> 6 r ) & s (16) 
v ' > S v 

Crec Cdct
 Cin> C „ „ , C " " B ° ' " C 

We now detail each cost. 
• ccre is the time for creating the materialized view rtfts. 
• crec, on the left hand side, is the time for recomputing the view when an 

update happens to a deriving relation of the view. 

. • cmtn on the right hand side, is the time for incrementally maintaining the 
view using right hand side of incremental equations when an update hap-
pens to a deriving relation of the view. This time consists of the following 
components. 

- Cdei is the time for deleting from the old view the tuples derived from 
а(Д)-overlapping tuples in r. 

- Cins is the time for inserting the tuples of the view update into the view. 
Since the tuples in the view update are а(Д)-disjoint with the view 
because of the select operation against r, this insertion in fact is the set 
operation. 

- Cqvi IS the time for selecting a(i?)-overlapping tuples from r, the relation 
that is being updated. 

- ссть labels the time to conduct PNF union or difference between a(R)-
overlapping tuples of r and Sr. 

- Cinc denotes the time for computing the view update using the operator 
that defines the view (e.g., сйз). 

After defining all the costs, the total maintenance time is given by: 

CMTN CDEL CINS COV\ + Ccm& + Cjnc 

where costs of Cdei, Cins, covi, and ссть are not operator specific. 
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With this cost model, a typical performance analysis diagram is like the one 
shown in Figure 2. The horizontal axis indicates the different update sizes while the 
vertical axis indicates the relative time to view creation. There are three lines in the 
diagram. One is labeled by 'rec' and shows the relative time of view recomputation: 
Crec/Ccre- It goes downward from top-left corner when updates are deletions. When 
the update size reaches 50% of the original size, it should come down to 50% along 
the vertical atxes. 

The second line is labeled by 'inc' and shows the relative time of cjn c /c c r e . It 
goes up from the lower-left corner. This line is drawn by using updates that do 
not have A-overlapping tuples with r. Because there are no A-overlapping tuples 
in the update, no recomputation and no deletion from the old view are needed 
for the incremental maintenance. Therefore, It is an ideal line for incremental 
maintenance. When the size of the update reaches 50%, this line will cross with 
'rec' at 50% of the vertical axis. This line and the location of the cross serve to 
check the correct of the implementation programs. 

The third line labeled by 'mtn' is the relative time for general incremental 
maintenance: c m t n / c c r e . It goes up from the lower-left corner. The intersection of 
the two lines 'rec' and 'mtn' being located at over 50% of the vertical axis and less 
than 50% of the horizontal axis. The horizontal coordinate of the the intersection 
point is called the maintenance limit. It is the size of an update with which the 
time of incremental maintenance is equivalent to the time of view recomputation. 

The 'mtn' line in the figure is the worst case where all tuples in Sr are a(R)-
overlapping with r and produce tuples in the view update to be inserted into the 
old view. Lines 'mtn' and 'inc' are the minimum and maximum boundaries for the 
incremental maintenance. The actual maintenance limit, depending on the update 
type and a(i?)-overlapping property, falls within the boundaries. 

Selection with del. upd. to 'sd' (Ivl 3) 

0 80 • 
E 
~ 60 • g 
1 40 

20 
0 • 

0 80 • 
E 
~ 60 • g 
1 40 

20 
0 • 

Jk—Î 

0 80 • 
E 
~ 60 • g 
1 40 

20 
0 • 

A" ; • mtn 
• rec. 

inc 

0 80 • 
E 
~ 60 • g 
1 40 

20 
0 • 

4k 
• mtn 
• rec. 

inc 
upd-siz e 1% 10% 20% 30% A W% 50% 

Figure 2: The performance analysis for selection on 3rd level 

6.3 Maintenance Limit 
In this section, we analyze the maintenance limit for the selection operator and the 
join operator. 
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6.3.1 Selection Operator 

To study the maintenance limit for the selection operator, we simulate a query of 
listing all tuples of table stud if a student has at least one good mark (> 90) for at 
least one subject. The query is 

Qs: S E L E C T * FROM stud s WHERE EXISTS 
( S E L E C T * FROM table(s.Subjs*) j WHERE EX ISTS 

( S E L E C T * FROM tablefl.Marks*) WHERE Mark> 90) ); 
The selection condition Mark > 90 in the query is set up on third level of 

relation stud with the selectivity being 10%. 
The view defined with this query is maintained using the right hand side of 

Equation 6. 
The performance analysis diagram has been given Figure 2. From the diagram, 

we see that the maintenance limit is about 32%. 
We also analyzed the maintenance limits for the cases where selection conditions 

are on the first level and the second level respectively. The maintenance limits for 
selection condition on all levels are listed in Table 25. 

Table 25: Maintenance limits for selection 

condition level 1st 2nd 3rd 
limits(%) 18 40.5 32 

6.3.2 Join Operator 

The query we study the maintenance limit of join operator is Qjn. 
Qjn: S E L E C T * FROM stud s WHERE EXISTS 

( S E L E C T * FROM table(s.Subjs*) j, test t 
WHERE j.sjName=t.sjName AND j.Year=t.Year 
AND EX ISTS ( S E L E C T * FROM tableQ.Marks*) a, table(t.TestNames*) b 

WHERE a.TestName=b.TestName) ); 
In this query, test joins Stud on the second level and the third level of Stud. 
We also simulated join operations on the first level and the second. The tree 

presentation of the join in the three levels is given in Figure 3. The maintenance 
limits for the three case is given in Table 26. 

Table 26: Maintenance limits for join 

condition level 1st 2nd 2nd & 3rd 
limits(%) 21 44 36 

The data in the table is quite similar to that of Table 25. So, we omit the 
explanation. 
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sd_dctail sd 

(a) (b) 

(c) 

Figure 3: Joins on different levels 

The above data is obtained by applying updates to table stud, which we call 
the left operand of the join. We now consider the cases where updates are applied 
to the right operand of the join. 

Line 'inc-lv3' in Figure 6.3.2 is the case where the right operand joins stud on 
the third level. The figure shows that the incremental maintenance cost does not 
vary with the change of the size of updates to the right operand. This maintenance 
cost is almost the same as the view creation time. This is because the navigation of 
stud down to the third level consumes most of the time of the join operation. Line 
'inc-lv2' and Line 'inc-lvl' of the figure indicate that as the level on which the right 
operand joins stud becomes shallower, the cost of the incremental maintenance 
changes toward the trend of updates to stud. 

7 Conclusion 
In this paper, we derived IEs for the operators of PNF nested relations. We derived 
IEs in three forms: the standard form, the limited standard form, and the imple-
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Effect of different join levels 
120 
1 0 0 -0) 

I 80 -

i 60 - inc-lv1 
5 40-n 

inc-lv2 
2 0 -

0 -I 
upd-size 1% 40% 100% 

inc-lv3 

Figure 4: The performances when other joining tables are updated 

mentation form. The standard form is the ideal form that we first aimed to achieve. 
If an IE can not be in the standard form, we proposed the limited standard form. 
This form aims to reveal the reason why the IE can not be standard. After the 
limited standard form, by considering performance of testing complex conditions, 
we have derived IEs in the implementation form to avoid testing such conditions. 

In this paper, we also implemented IEs for the nested relations in the Informix 
Universal Database Server. A database with multi-level nested relations was cre-
ated in the database server. We implemented the PNF operators using ESQL/C 
functions. With the operators and the relations in the database, views were cre-
ated and the incremental equations are implemented. Afterward, the performance 
of each incremental equation was analyzed. 

The performance analysis show that the PNF union and difference operations 
are the main reasons causing performance decrease of the incremental computation. 
Generally, the maintenance limits of the incremental equations are between 17-44%. 
As the number of nested levels increase, the maintenance limit decreases. 

Nested relations are closely related to the new emerged semi-structured data 
protocol XML (extensible Markup Language) [1]. Because of this, the IE ex-
pressions derived in this paper have the potential to be adapted for the use in 
maintaining XML views. However, the adaption will not be direct because XML 
allows missing elements and flexible structures. This leads to null sub relations 
which challenge the adaption. We leave this as future research work. 
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Velocity and Distance of Neighbourhood Sequences 

András Hajdu* and Lajos Hajdu* 

Abstract 

Das et al. [2] defined the notion of periodic neighbourhood sequences. 
They also introduced a natural ordering relation for such sequences. 
Fazekas et al. [4] generalized the concept of neighbourhood sequences, by 
dropping periodicity. They also extended the ordering to these generalized 
neighbourhood sequences. The relation 3* has some unpleasant properties 
(e.g., it is not a complete ordering). In certain applications it can be useful to 
compare any two neighbourhood sequences. For this purpose, in the present 
paper we introduce a norm-like concept, called velocity, for neighbourhood 
sequences. This concept is in very close connection with the natural ordering 
relation. We also define a metric for neighbourhood sequences, and investi-
gate its properties. 

Keywords: Digital Geometry, Neighbourhood Sequences, Distance, Metric 
PACS 68U10 

1 Introduction 
Distance functions are used in many parts of digital geometry. They are usually 
defined by digital motions, when we can move in the digital space from one point to 
another, if they are neighbours in some sense. Rosenfeld and Pfaltz [9] introduced 
two types of motions in Z2, the cityblock and chessboard motions. The cityblock 
motion allows only horizontal and vertical steps, while the chessboard motion di-
agonal movements as well. By these motions Rosenfeld and Pfaltz defined the 
distances d j and d%, respectively, as the number of steps needed to get from one 
point to another. To obtain a better approximation of the Euclidean distance they 
recommended the alternate use of the cityblock and chessboard motions. 
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By allowing arbitrary periodic mixture of the cityblock and chessboard motions, 
Das et al. [2] introduced the concept of periodic neighbourhood sequences, and 
generalized it to arbitrary dimension. A distance function can be attached to any 
neighbourhood sequence A by defining the distance of two points as the number of 
A-steps needed to get from one of them to the other. In [2] the authors provided a 
criterion to decide when the distance function corresponding to A is a metric. They 
also introduced a natural ordering relation on the set of periodic neighbourhood 
sequences in the following way. Given two such sequences A and B, A is "faster" 
than B, if for every two points the A-distance is less than or equal to the ¿^-distance 
of these points. The name of this relation expresses that in this case A spreads 
faster in the digital space than B. Das [1] studied the structure of the set of periodic 
neighbourhood sequences with respect to this natural ordering. 

By dropping the condition of periodicity, Fazekas et al. [4] generalized the 
concept of neighbourhood sequences. They extended the "faster" relation to these 
generalized neighbourhood sequences, and investigated its properties. It turned 
out that this natural ordering has some unpleasant properties. It fails to be a 
complete ordering on the set of neighbourhood sequences, moreover, the structure 
obtained is not even a lattice in higher dimension. However, in certain applications 
it can be useful to compare any two neighbourhood sequences, i.e. to decide which 
one spreads "faster". For this purpose, in this article we introduce a norm-like 
concept, called velocity, on the set of neighbourhood sequences, and investigate its 
properties. This concept has to be introduced in a way to fit the relation "faster", 
so we need some preliminaries before defining velocity. Further, we define a metric 
for neighbourhood sequences. In practical applications it is usually sufficient to 
consider.a finite part of a neighbourhood sequence. In our definition of velocity 
this can be easily reached by assigning zero weight to the elements of the sequence 
from some point on. On the other hand, the use of general (infinite) neighbourhood 
sequences provides a more flexible and exact tool in building up the theoretical 
background. Obviously, the restriction of the concepts to periodic neighbourhood 
sequences, yields a notion of velocity and metric defined for them. We note that 
our results are new already in the periodic case. 

In this paper we deal with neighbourhood sequences defined on Zn . However, 
there can be applications, where the grid points form another kind of structure 
(e.g., triangular or hexagonal). For a survey on planar grids, see [8]. The concept 
of neighbourhood sequences can be easily generalized to these grids, see [7] for the 
cases of triangular and hexagonal grids. The investigations and concepts of the 
present paper can be extended to these structures, too. 

The aim of this article is to introduce velocity and metric on the set of neigh-
bourhood sequences. We do this in a way to fit the algebraic structure of such 
sequences. We also work out a possible application scheme for broadcasting infor-
mation. The structure of this paper is as follows. In the second section we give 
our notation, and provide some properties of the concepts introduced. In the third 
section we clarify which conditions should be met by the notion of velocity. In 
Section 4 the concept of velocity is introduced, and some important properties of 
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this notion are proved. In Section 5 we give some theoretical examples to illustrate 
the behaviour of velocity, and in the sixth section we show how the theory can be 
applied for broadcasting information in a general network model. In Section 7 we 
define a metric on the set of neighbourhood sequences, and study its properties. 

2 Notation and basic concepts 

In this section, we recall some definitions and notation from [2] and [4] concerning 
neighbourhood sequences. In what follows, n denotes a positive integer. 

Definition 2.1. Let p be a point in lLn. The i-th coordinate of p is indicated by 
Prj(p) (1 <i<n). Let k be an integer with 0 < k < n. The points p, q G Z™ are 
called k-neighbours, if the following two conditions hold: 

• | Pr<(p) - Pr<(g)| < 1 ( l < » < n ) , 

• ¿ | P r i ( p ) - P r i ( g ) | < f c . t=i 

The sequence A — , where 1 < a(i) < n for all i G N, is called an n-
dimensional (shortly nD) neighbourhood sequence. A is periodic, if for some I G N, 
a(i + I) = a(i) (i G N). For every i G N and j = 1,... ,n put 

i 
aj(i) = min(a(i),j) and f f ( i ) = ^ajik). 

k=1 

The set of the nD-neighbourhood sequences will be denoted by Sn. 
Let p, q G Zn , and A E Sn. The point sequence p = PO,PI, • • • ,pm — Q, where 

Pi-i and pi are a(i)-neighbours in Z n (1 < i < m), is called an A-path from p to 
q of length m. The A-distance d(p, q\ A) of p and q is defined as the length of the 
shortest A-path between them. 

A natural partial ordering relation on Sn can be introduced in the following 
way (see [2] and [4]). For A,BeSn we define the relation • * by 

A3* B & d(p, q; A) < d(p, q\ B) for all p, q G Z". 

In case of A •* B we say that A is faster than B. There is a strong connection 
between this relation and the values fj(i), shown by the following result from [4]. 

Theorem 2.2. Let A,B e Sn. Then 

AD* B & f f ( i ) > f f ( i ) for every i G N and j = 1 , . . . , n. 
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3 Preliminaries to introduce velocity 
By defining velocity, we assign a positive real number to every neighbourhood 
sequence. In this section we give some natural conditions, which should be met by 
this concept. 

(I) Velocity must be sensitive to the behavior of the sequences in different di-
mensions. 
It can happen that a sequence spreads "faster" than another one in higher 
dimensions, but they have the same "speed" in lower dimensional subspaces. 
For example, in 3D the sequences (3,3,3,3,...) and (2,2,2,2,...) have the same 
velocity on the planes {x,y}, {x, z], {y,z} defined by the coordinate axes; or 
the Sequences (1,3,1,3,...) and (2,2,2,2,...) behave differently in the subspaces 
of Z3. These features should be reflected in the definition of velocity. 

(II) The elements of the sequences must be weighted with a suitable weight func-
tion. 
There are two reasons to establish this condition. First, it is natural to 
consider the initial elements of the sequences more important than the ele-
ments which occur later. The second reason comes from theoretical necessity. 
Namely, if we want to take into consideration all elements of the sequences, 
then we have to guarantee the convergence of certain sums or series of the 
(weighted) elements of the sequences. 

(Ill) Velocity must be defined such that it fits the natural ordering. 
This condition is very evident: velocity should preserve the ordering •* . If 
a neighbourhood sequence is faster than another one, its velocity should be 
larger as well. As • * is only a partial ordering, the opposite statement cannot 
be true. However, our velocity concept, introduced in the next section, will 
have the nice property that in a certain sense this opposite statement also 
holds (cf. Theorem 4.11). 

4 Assigning velocity to neighbourhood sequences 
According to (II), we first give the concept of a weight system, which will be 
appropriate in our further investigations. 

Definition 4.1. Let n 6 N. The set of functions Sj : N —> K (1 < j < n) is called 
a weight system, if the following three conditions hold: 

• 5j(i) > 0 (1 < j < n, i e N), 
00 

• E ¿jW < 0 ° (! <j< n ) , 
i=1 

• Sj is monotone decreasing (1 < j <n). 

In order to meet (I), we introduce the concept of velocity in two steps. First, we 
assign an n-tuple to every neighbourhood sequence. The elements of this n-tuple 
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reflect the "velocity" of the given neighbourhood sequence in the subspaces of Z n 

of dimensions from 1 to n. Then, we define one descriptive velocity value. 

Definition 4.2. Let A 6 Sn, and ôj (1 < j < n) be a weight system. The 
j-dimensional velocity of A is defined as 

oo 
vf = 53oj(t)ii(0-

»=1 

Remark 4.3. Let T be the linear space of the bounded real sequences over K, and 
let ôj (1 < j < n) be a weight system. It is well-known (see e.g., [5]J that for every 
j, if 6j(i) > 0 for all i € N then with the norm 

oo 

i=1 

T becomes a Banach space. Thus, for any A = (a(z))^1, vf could be defined as 

Remark 4.4. For every A. E Sn WG have oo oo 

i=l i=l 

We define the velocity of A by the help of the j-dimensional velocities. 

Definition 4.5. Let A G Sn. The velocity of A is given by 

n 

v A = l - Y j v f . n ^ 3 
J=1 

Remark 4.6. By the definition ofvf ( j = 1 , . . . ,n) andvA, we have that for every 
e > 0 there exists some ko S N such that for any k > ko 

k 
< e , ( j = l,...,n), 

i= 1 

and also 

^ n k 

j=1 i=1 
This shows that regardless of the system ôj, the j-dimensional velocities and 

the velocity of A is "determined" by the first "few" terms of A. In particular, if 
we take Sj(i) — 0 for 1 < j < n with some i € N, then only the first i — 1 terms 
of A contribute to vA. This consideration can be important in certain practical 
applications. 
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In the next section we analyze the behavior of the velocity with respect to 
various weight systems. Now, we show how conditions (I), (II) and (III) are met 
by this velocity concept. 

The velocity vector (vA,vA, ... ,vA), thus also vA is obviously sensitive to the 
behavior of the sequence A in subspaces of Z" of dimensions from 1 to n. Thus, 
(I) is satisfied. As we use a weight system to define (vA,vA, • • • ,vA) and vA, the 
requirements of (II) are also met. The following theorem verifies that our velocity 
concept satisfies condition (III), too. 

Theorem 4.7. Let A,B £ Sn with A •* B, and let Sj ( j = 1,... ,n) be a weight 
system. Then, vA > vf for every j = 1 , . . . ,n. 

Proof. Put A = (o(i))gx and B = (&(*) )£and fix some j with 1 < j < n. Let 
k € N be arbitrary. Since 5j is monotone decreasing, we can write 

8j(k - 1) = Sj(k)+£j(k - 1), 

8j(k - 2 ) = 6j{k) + £j(k - 1) + £j(k - 2 ) , 

¿,(1) = Sj(k) + £j(k - 1) + £j(k - 2) -I b £j(l), 

with £j{m) > 0 (m = 1 , . . . , k - 1). Put £j(k) = Sj(k). Using these relations, by a 
simple calculation we get 

k k k / m m \ 

]T a,j {i)dj bj (i)5j w = E ei - hi ) • (*) 
i=1 i= 1 m=1 \/i=l /1=1 J 

m m 
Observe that as £ a0{h) = f f ( m ) and ^ hAh) = ff(m)-< by Theorem 2.2 A •* 

h=1 /i=l 
B implies 

771 771 

X > ( / i ) > 5 > ( / i ) 
/1=1 /1=1 

for every m with 1 < m < k. As £j(m) > 0 (m = 1 , . . . , k), (*) yields 

k k 
^^ aj(i)5j(i) > Y,bj{i)Sj(i). 
i=l i= 1 

By letting k oo, we obtain vf > v f . • 

Remark 4.8. By the definition of the velocity, the above theorem implies that if 
A B, then vA >vB. 

In the following two remarks we explain why some alternative ways of introduc-
ing velocity would not be appropriate. 
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Remark 4.9. The monotonity of Sj is necessary to have Theorem 4-7. Indeed, let 
A,B £ Si be defined by 

A = (2, 1, 1, 1, 1 , . . . ) and B = ( 1 , 2 , 1 , 1 , 1 , . . . ) . 

Moreover, let <5i be arbitrary, and put 

s = J b *f i = l< 

\ 2^r> otherwise. 

Clearly, A3* B holds, but vA = § and v2 = Thus, v2 > v2, and also vB > vA 

in this case. 

Remark 4.10. It would be possible to define vf in a more general way. Namely, 
for any ragl with m > 0, we could put 

\i= 1 / 

However, on one hand the case m < 1 does not seem to be interesting. On the other 
hand, in case of m > 1 it is easy to find sequences A,B 6 Sn and a weight system 
Sj (j = 1,... ,n) such that Theorem 4-7, hence condition (III) fails for them. 

As one can easily see, it can happen that with some weight system Sj, vA > vf 
for every j = 1 , . . . ,n, but A •* B does not hold. However, in some sense we can 
reverse Theorem 4.7, even in case of positive weight systems, i.e. when Sj(i) > 0 
for all i 6 N, j = 1 , . . . , n. More precisely, we have 

Theorem 4.11. Let A,B £ Sn. If for any positive weight system Sj (1 < j < n), 
vf > vf holds for all j = 1,..., n, then A •* B. 

Proof. Let A; £ N be arbitrary, and for every j with 1 < j < n set 

if i < k, 
rr—, otherwise. 

Clearly, the system ¿j ( j = 1 , . . . , n) is a weight system. Thus, by our assumptions ?(*0 in: ojoucin i 
we have 

oo oo 
£ aj(i)Sf(i) = vf >vf = Y , bj(i)Sf(i). 
i = l i = l 

Hence, for every j = 1 , . . . ,n 

! > < « + £ E 
i=1 ft=fc+l i= 1 h=k+l 
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k k 
holds. Replacing £ a j ( k ) and £ bj(k) by f f ( k ) and f j (fc)> respectively, we get 

1=1 1=1 

//<*)-/№> t £ 
K=k+1 h=k+1 

Since }f(k) - f f ( k ) is an integer, we may infer that 

//(*)-//(*)><>. ' 

By Theorem 2.2 the proof is complete. • 

Remark 4.12. It can be easily verified that the condition vf > vf for all j = 
1 , . . . , n cannot be replaced by vA >vB. 

5 Examples of weight systems 
In this section we give examples of weight systems, and analyze the behavior of the 
velocity concept. We investigate exponentially decreasing systems, and calculate 
the velocity of some concrete sequences with respect to different weight systems. 

Let c > 1, and put 

Sj (i) = "¿TT f° r every j = 1 , . . . , n and i £ N. 

Obviously, 5j is a weight system with 

= 0' = l , . . . , n ) . <>j W = 7 C 

¿=i 

Consider the nD-neighbourhood sequences 

A = (h, 1 , 1 , 1 , 1 , . . . ) and B = (1, n, n, n, n, . . . ) , where 2 < h <n. 

Then 

V
A = vf = —— + h and vB = vf = + 1 ( j = 1 , . . . ,n). J c — 1 c — 1 

Clearly, the sequences A and B cannot be compared by the ordering •* . We 
show how the relation between the velocity values oi A and B change according to 
the choice of the parameter c. 

First, suppose that c>n. Then, we have 

vA — vf = ——— + /i > ———• + 2 = ——— + 1 > ——— + 1 = vf = vB. 3 c - 1 _ c - l c — 1 c— 1 J 
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In general, using this weight system we obtain a very strong condition, namely that 
vA > vB if and only if A precedes B lexicographically. 

Now, let c = 2. In this case we have 

vA=vf = l + h<l + n = vf=vB, 

with equality only for h = n. 
Finally, set c < 2. Now, by a simple calculation, we get vB —vB > vA =vA. 
Summarizing, using such a weight system, we can get rid of the (sometimes 

excessive) importance of the first "few" elements of a neighbourhood sequence. 
Especially, for every k £ N, by choosing a suitable c, we can have vB > vA for the 
nD-sequences 

A = (n , n ,... , n , 1, 1, 1, . . . ) and B = (1 ,1 ,... , 1 , n, n, n, ...). 
* v ' V ' 

k k 

On the other hand, by the appropriate choice of c we can give large significance 
to the first "few" elements of the neighbourhood sequences, ignoring their later 
elements. 

By choosing other (e.g., polinomially decreasing) types of weight systems we 
can have different properties. The weight system should be chosen appropriately 
for the actual application, as we can see from a practical example given in the 
following section. 

6 An application for broadcasting information 
In this section we give an application scheme of neighbourhood sequences and 
velocity in a network model, where the members of the network are the points of 
Z2. As we mentioned in the introduction, neighbourhood sequences and velocity 
can be introduced also for other types of grids. Hence, this application scheme 
could be used in such cases, too. 

Our network model can be considered as a variant of the Manhattan Street 
Network (MSN) introduced by Maxemchuk in [6]. In our scheme, the clients are 
connected with horizontal/vertical and diagonal edges (see Figure 1). There is 
an information source at the center (origin) which broadcasts information to the 
other members of the network. The system is based on priority, that is if a client 
is "closer" to the origin than another one, it has greater priority,. and receives 
the information earlier. We can think of subscription systems for instance, where 
clients pay different fees according to their positions with respect to the information 
source. 

It is worth indexing the clients by their "reachability" from the origin. For this 
purpose, if a client sits on the point (x,y) € Z2, then its index will be given by the 
first few (significant) elements of the slowest neighbourhood sequence A, for which 
d((x,y), (0,0); A) is minimal. The clients with the same index have equal priority, 
so they should pay the same fee (especially, clients indexed by "1" have the greatest 
priority). 
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Figure 1: 2D priority-based model for broadcasting information 

In this model, we use 2D-neighbourhood sequences to deliver the information 
to the clients. Suppose that the cost of broadcasting information decreases with 
the number of 2-s in the chosen neighbourhood sequence. The most expensive 
sequence is (2 ,2, . . . ) , while the cheapest one is (1 ,1 , . . . ) . Knowing the importance 
of the information, we have to choose one of the cheapest sequences, which is still 
"fast" enough. That is, we take a neighbourhood sequence, whose velocity fits the 
importance of the information to be sent. According to the size of the network, it 
is sufficient to consider the first "few" terms of the sequences (i.e. to work with a 
weight system in which 6j(N) = 0 for j — 1 , . . . , n with an appropriate TV e N). 

By choosing different weight systems, we can increase or decrease the initial 
priority of the clients in the network. If we do not take much care of the clients 
residing far from the source, we need to choose a weight system, which decreases 
rapidly. In the opposite case we can take a very slowly decreasing weight system. 

This network model can be easily extended to higher dimensions. In this case, 
we can take more advantage of the behavior of neighbourhood sequences in lower 
dimensional subspaces. For example, in Z3, if we know in advance that a special 
type of information is important only for a group of clients, we can place them onto 
or close to the (x,y), (y,z) and (x,z) planes. Thus, for the distribution of this 
special kind of information we can choose quite a cheap neighbourhood sequence, 
which consists of mainly 1 and 2 values. To have a similar possibility in 2D, we 
have to put such clients near the coordinate axes, and use sequences containing 
mostly 1-s. For a known higher dimensional generalization of MSN, see [3]. 
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Finally, we note that our application scheme may be used at any other areas 
which are based on regular network topologies. Such areas are e.g., chip architecture 
design, or parallel processing. 

7 Metric space of the neighbourhood sequences 
We introduce a metric on the set of neighbourhood sequences in a similar fashion as 
we did it for velocity. From this point on, we assume that for every weight system 
A = {¿j | j = 1 , . . . , n} we have Sn(i) > 0 (i £ N), unless we state the contrary. 

Definition 7.1. Let A = {5j \ j = 1 , . . . , n} be a weight system and A,B £ Sn. 
The distance QA of these sequences is defined by 

- n oo 
£ > A ( ^ , = M O - M O I 

j=i ¿=1 

Remark 7.2. One can easily verify that in case of any weight system A, the 
function QA is a metric on Sn. At this point we make use of our assumption that 
Sn(i) > 0 for every i £ N. 

Remark 7.3. The metric space (Sn, g&) is bounded. Its diameter is 
J n oo 

diam{Sn,eA) = PA ( (1, 1, -..), (n, n, ...)) = XIX^'W-
71 j=i ¿=1 

Remark 7.4. In practical applications usually only "finite" sequences are need-
ed. Thus, it may be useful to consider those sequences identical which agree in 
their first "few" elements. This can be done in the following way. Let N £ N, 
and A = {¿j | j = 1 , . . . ,n} be a weight system such that Sj(N + 1) = 0 for all j 
(including j — n), butSn(N) > 0. Consider two neighbourhood sequences equivalent 
if and only if their first N elements coincide. Then Definition 7.1 provides a metric 
on the classes of Sn induced by this equivalence relation. 

In what follows, we establish some useful and interesting properties of the metric 
spaces ( S n , QA)-

Theorem 7.5. For any weight system A, (5„,£>A) is a complete metric space. 

Proof. Let A be any weight system. We prove the theorem by showing that every 
Cauchy sequence in Sn has a limit. We actually construct this limit sequence in 
the proof. Let be a Cauchy sequence in (S n , gA ) , and let m £ N. By 
the Cauchy-property of there exists some £ N such that for every 

> ko, < Sn(m). Hence the first m elements of the neighbour-
hood sequences Aki and Ak2 are identical. Define the sequence A in the following 
way. For every m £ N choose a ko £ N, such that the m-th elements of Akl and 
Ak2 with k\, k2 > ko are equal. Let a(m) be this element, and put A = (a(m))m=i-
Clearly, A is well defined. By the construction of A we immediately get that 
lim Ak = A. • k—* oo 
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A sequence is monotone increasing (resp. decreasing), if Al+l •* Ai 
(resp. Ai • * Ai+1) holds for every i e N . 

Theorem 7.6. Every monotone increasing or decreasing sequence (Ak)'j°=l, with 
Ak 6 Sn (k £ N) is convergent. 

Proof. As in the previous proof, we construct the limit of We may assume 
that is monotone increasing, the proof in the other case is similar. 

Put Ak = ( a ^ ( i ) ) ^ . As (Ak)f=l is increasing, so is ( « ^ ( 1 ) ) ^ . As n > 
a(fc)(l) (k € N), there exists some ko 6 N such that for any ki ,k2 > fco we have 
a( fci)(l) = aC=2)(l). Put a( 1) = a(*°)(l). Suppose that a{i) is already given for 
i < m, and define a(m + 1) in the following way. Choose t0 £ N such that for 
¿i,¿2 > t0 and 1 < i < m, = a^t2\i) holds. Since is increasing, so 
is the sequence (a^ (m + l))£L to. As n > a^k\m + 1) for every k £ N, there exists 
some so € N such that for any s i , s 2 > so we have a(Sl)(m + 1) = a^ S 2 \m + 1). Put 
a(m + 1) = + 1). 

From the construction of A = (a (m))^ = 1 it is clear that for every m 6 N there 
exists some fco £ N, such that if k > ko, the first m elements of Ak and A coincide. 
Thus, lim Ak = A, and the theorem follows. • 

k—¥ oo 

The next result shows that the Bolzano-Weierstrass theorem is true in the con-
structed metric spaces. 

Proposit ion 7.7. For any weight system A, every subset of (Sn,f?A) of infinite 
cardinality has an accumulation point. 

Proof. Let H be an infinite subset of Sn. We construct an accumulation point of 
H. Let a( l ) be a number which is the first element of infinitely many sequences in 
H. Suppose that a(i) with i < m is already defined. Let a(m + 1) be a number 
which is the (m + l)-th element of infinitely many such sequences in H, whose 
first m elements are a(l) ,a(2), . . . ,a(m). Put A = ( a (m))^ = 1 . Clearly, A is an 
accumulation point of H. • 

Periodic neighbourhood sequences can play important role in certain applica-
tions. Our last result shows that they form a dense subset of (S n , As the set 
of periodic neighbourhood sequences is countable, this also yields that (Sn, is 
a separable metric space. 

Theorem 7.8. For any weight system A, the set of periodic neighbourhood se-
quences is dense in (Sn,eA)-

Proof. Let A £ S n and E > 0. By the definition of QA there exists some k0 £ N, such 
that if the first ko elements of B 6 Sn is the same as those of A, then g&(A, B) < e 
holds. So put b{i) = a(i mod k0) {i € N), and B = (b(i))<?l 1. Clearly. B is periodic 
and QA(A, B) < e, thus the proof is complete. • 
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8 Conclusion 
In this paper, we introduce velocity and metric for the set of neighbourhood se-
quences. We show that these notions fit well the structure of such sequences. By 
their help we can compare neighbourhood sequences more precisely, than using 
only the natural partial ordering relation. We also work out a possible application 
scheme for broadcasting information. 
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Modelling a Sender-Receiver System 

Cristian Vidra§cu * 

Abstract 
In this paper we present a sender-receiver system with an unlimited buffer 

modelled by a jumping Petri net, and then we prove some properties of the 
system. 

Keywords: parallel/distributed systems, Petri nets, jumping Petri nets, 
modelling, verification. 

1 Introduction and Preliminaries 
A Petri net is a mathematical model used for the specification and the analysis of 
parallel/distributed systems. An introduction about Petri nets can be found in [4]. 

One formal analysis method for Petri nets is that of place and transition invari-
ants, which were first introduced in [3]. Place and transition invariants are useful 
to prove dynamic properties, like reachability, boundedness, home state, liveness 
and fairness properties. 

It is well-known that the behaviour of some distributed systems cannot be ad-
equately modelled by classical Petri nets. Many extensions which increase the 
computational and expressive power of Petri nets have been thus introduced. One 
direction has led to various modifications of the firing rule of nets. One of these 
extensions is that of jumping Petri net, introduced in [5]. 

Let us briefly recall the basic notions and notations concerning Petri nets and 
jumping Petri nets in order to give the reader the necessary prerequisites for the 
understanding of this paper (for details the reader is referred to [1], [4], [2]). Mainly, 
we will follow [2], [5]. 

A Place/Transition net, shortly Petri net, (finite, with infinite capacities), is a 
4-tuple E = ( S , T , F , W ) , where S and T are two finite non-empty sets (of places 
and transitions, resp.), with S n T = 0, F C (5 x T) U [T x S) is the flow relation 
and W : (5 x T) U (T x S) N is the weight function of E verifying W(x,y) = 0 
iff {x,y)iF. 

A marking of a Petri net E is a function M : S -» N ; it will be sometimes 
identified with a |5|-dimensional vector. The operations and relations on vectors 
are componentwise defined. N5 denotes the set of all markings of E. 

'Faculty of Computer Science, "Al. I. Cuza" University of Ia^i, Romania. E-mail: 
vidrascuOinfoiasi.ro 
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A marked Petri net is a pair 7 = (E, Mo), where E is a Petri net and Mo, called 
the initial marking of 7, is a marking of E. 

Let S be a Petri net, t £ T and w € T*. The functions : 5 N and 
Ai,Aw : S -> Z are defined by: i"(s) = W(s,i) , i+ (s) = Ai(s) = 
t+(s) — r ( s ) , and 

A , \ i 0, if w = A . „ „ n Aw s = ^ n * , / \ -r . . for all s £ S. 
I Z,,=1 l f w - tit2-.-tn ( n > l ) 

The sequential behaviour of a Petri net E is given by the so-called firing rule, 
which consists of 

• the enabling rule: a transition t is enabled at a marking M in E (or t is fireable 
from M), abbreviated M[£)s , iff t~ < M ; 

• the computing rule: if M\t)z, then t may occur yielding a new marking M', 
abbreviated M[t) s M', defined by M' = M + At. 

In fact, any transition t of E establishes a binary relation on N5, denoted by 
[i)s and given by: M[ f ) s M' iff t~ < M and M' = M + At. 

If £1, £2, . . . , tn (n > 1) are transitions of E, [iii2 • • • will denote the classical 
product of the relations [ii)s, • • •, [in)s- Moreover, the relation [A)s is considered, 
by defining [A)s = {(M, M)|M e N s j . 

Let 7 = (E,M0) be a marked Petri net, and ME N s . The word W £ T* is 
called a transition sequence from M in E if there exists a marking M' of E such 
that M[W)Y.M'. Moreover, the marking M' is called reachable from M in £. The 
set of all reachable markings from Mo is called the reachability set of 7, and it is 
denoted by [M0)7. 

A place s £ S is bounded if there exists k £ N such that M(s) < k, for all 
M € [M0)7. The net 7 is bounded if all its places are bounded. 

A transition t £ T is live if for any reachable marking M £ [Mo)7, there exists 
a marking M' reachable from M such that t is fireable from M'. The net 7 is live 
if all its transitions are live. 

In order to be able to define the notion of the incidence matrix for a Petri net 
E = (S,T,F,W), it is necessary to have a total ordering of the sets 5 and T. 
Without loss of generality, it will be assumed that, if these sets are of the form 

S = {s i , . . . ,sm}, and T = { i i , . . . ,£„}, 

then they are totally ordered by the natural order on the indexes of the elements: 

S : S\ < ... < sm, and T : t\ < ... < tn. 

The incidence matrix of a Petri net E is the m x n-dimensional matrix IT. defined 
by 

Ix(i,j) = Atj(si), V 1 <i<m, V l < j < n . 

The notion of incidence matrix is extended ailso to marked Petri nets (E, M0) 
through the unmarked underlying net E. 
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An S-invariant (or place invariant) of E is any m-dimensional vector J of integer 
numbers which satisfies the equation J • = 0. 

The characterization theorem of S-invariants says that, if J is an S-invariant of 
a marked Petri net 7 = (E, Mo), then the relation 

J-M = J-M0 

holds for any M € [Mo)7. In other words, this theorem says that any S-invariant of 
7 gives the weights for the places of a subnet of 7 in which the tokens are preserved 
(through these weights). 

Jumping Petri nets ([5]) are an extension of Petri nets, which allows them to do 
"spontaneous jumps" from one marking to another one (this is similar to A-moves 
in automata theory). 

A jumping Petri net is a pair 7 = (£,/?), where E is a Petri net and R is a 
binary relation on the set of markings of E (i.e. R C N5 x N s) , called the set of 
(spontaneous) jumps of 7. 

Let 7 = (E ,R ) be a jumping Petri net. The pairs (M, M') £ R are referred to 
as jumps of 7. S is called the underlying Petri net of 7. A marking of 7 is any 
marking of its underlying Petri net. If 7 has finitely many jumps (i.e. R is finite), 
then 7 is called a finite jumping Petri net. 

For any jump r = (M, M') £ R, the function Ar : S —• Z is defined by 
Ar(s) = M'(s) - M(s), for all s £ S. If the set of jumps R has finitely many 
variations (i.e. the set A R = {Ar | r £ R} is finite), then 7 is called a A-finite 
jumping Petri net. 

A marked jumping Petri net is defined similarly as a marked Petri net, by 
changing "E" into "E . iT . 

Pictorially, a jumping Petri net will be represented as a classical net and, more-
over, the relation R will be separately listed. 

The behaviour of a jumping Petri net 7 is given by the j-firing rule, which 
consists of 

• the j-enabling rule: a transition t is j-enabled at a marking M (in 7), abbrevi-
ated M[t)1j, iff there exists a marking M\ such that MR*Mi[t)x ( R* being 
the reflexive and transitive closure of R)\ 

• the j-computing rule: if M[i)7J-, then the marking M' is j-produced by oc-
curring t at M, abbreviated M[ i ) 7 J M' , iff there exists two markings M\,M2 

such that MR*M1[t)sM2R*Ml. 

The notions of transition j-sequence and j-reachable marking are defined simi-
larly as for Petri nets (the relation [A)7jJ- is defined by [A)

7J
- = R*). The set of all 

j-reachable markings of a marked jumping Petri net 7 is denoted by [Mo)-fj (Mo 
being the initial marking of 7). 

All other notions from Petri nets (i.e. boundedness, liveness, etc.) are defined 
for jumping Petri nets similarly as for Petri nets, by considering the notion of 
j-reachability instead of reachability from Petri nets. 
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Some jumps of a marked jumping Petri net may be never used. Thus a marked 
jumping Petri net 7 = (E, R, M0) is called R-reduced iff, for any jump (M, M') 6 R, 
M ji M' and M € [M 0 ) 7 j . 

The notion of place invariants for A-finite jumping Petri nets, and results re-
garding them, can be found in [6]. We will briefly present this notion. 

As in the case of Petri nets, in order to be able to define the notion of the inci-
dence matrix for a A-finite jumping Petri net 7 = (E ,R) , where E = ( S , T , F , W ) 
is the underlying Petri net of 7, it is necessary to have a total ordering of the sets 
S, T and AR. Without loss of generality, it will be assumed that, if these sets are 
of the form 

S = { s i , . . . , s m } , T = { i i , . . . , i „} , and AR = { A n , . . . , Arp}, 

then they are totally ordered by the natural order on the indexes of the elements: 

S : sx < ... <sm, T : h < ... < tn, and A R: A n < . . . < A rv. 

The incidence matrix of a A-finite jumping Petri net 7 = (E, R) is the m x (n + 
p)-dimensional matrix I y defined by 

where Is is the incidence matrix of the underlying Petri net of 7 and I a is the 
p x n-dimensional matrix given by 

The notion of incidence matrix is extended also to marked A-finite jumping 
Petri nets (E,i?, Mo) through the unmarked underlying net (E,R). 

An S-invariant (or place invariant) of 7 is any m- dimensional vector J of integer 
numbers which satisfies the equation J • I1 = 0 . The S-invariant J > 0 is called 
minimal if there exists no S-invariant J ' such that 0 < J' < J. 

The characterization theorem of S-invariants ([6]) says that, if J is an S-invariant 
of a marked A-finite jumping Petri net 7 = (E, R, Mo), then the relation 

holds for any M 6 [Mo)7,j. As in the case of Petri nets, the meaning of this theorem 
is that any S-invariant of 7 gives the weights for the places of a subnet of 7 in which 
the tokens are preserved (through these weights). 

The paper is organized as follows. Section 2 presents an example of a sender-
receiver system modelled by a jumping Petri net, and section 3 presents the verifica-
tion of the system properties using the place invariant method. Section 4 concludes 
this paper. 

,V 1 <j<n 
n + l<j <n + p V 1 <i<m, 

IR{i,j) = A r j ( S i ) , V l < z < m , V I < j < p . 

J-M = J-M0 
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2 Sender-receiver with unlimited buffer 
This section presents an example of using jumping Petri nets to model and analyse 
real systems. 

Let us consider a system consisting of a sender (producer) and a receiver (con-
sumer). The sender produces and sends messages to the receiver, one by one, 
through an asynchoronous channel (a buffer with unlimited capacity for storing 
messages). The receiver receives and consumes, one by one, the messages from 
channel. Moreover, the sender can take a break at any moment, but we impose the 
restriction that the receiver can enter his inactive state only if the sender is inactive 
and there is no message pending in the channel. 

The same system, but with a limited buffer, was modelled by a Petri net in [4]. 
Unfortunately, this system with an unlimited buffer cannot be modelled by a Petri 
net because zero tests of a location with infinite capacity cannot be simulated by 
Petri nets (a proof of this fact can be found in [2], where a similar system with an 
unlimited buffer is modelled by a Petri net with inhibitor arcs). 

A modelling of this system by a finite jumping Petri net 7 = (T,,R, Mo) is 
presented in Figure 1, with the following interpretation of places: 

ready to send ready to consume 

R={((0,0,1,0.1,0,0), (0,0,1,0,0,0,1))} 

Figure 1: Sender-receiver system with unlimited buffer 
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- s\ marked = the sender is ready to produce a message or to take a break; 
- s2 marked = the sender is ready to send the last produced message; 
- S3 marked = the sender is inactive (in a break); 
- S4 = the unlimited buffer for storing messages; 
- S5 marked = the receiver is ready to receive a message or to take a break; 
- s6 marked = the receiver is ready to consume the last received message; 

- S7 marked = the receiver is inactive (in a break). 

The interpretations of transition firings are the following: 
- t\ = the sender produces a message; 
- t2 = the sender sends a message; 
- tz = the sender becomes inactive (takes a break); 
- ti = the sender resumes his activity; 
- ts = the receiver receives a message; 
- tg = the receiver consumes a message; 
- ty = the receiver resumes his activity. 
The entering of the receiver in his inactive state, possible only when the sender 

is inactive and there are no messages in the buffer, is modelled by the jump of 
this net, which occurs from the marking M' = (0,0,1,0,1,0,0) to the marking 
M"= (0,0,1,0,0,0,1). 

We say that the sender-receiver system with an unlimited buffer is modelled 
correctly, if it has the following properties: 
(Pi) At any moment, the sender is in one of the states "ready to produce", "ready 

to send" or "inactive"; 
(P2) At any moment, the receiver is in one of the states "ready to receive", "ready 

to consume" or "inactive"; 
(P3) The buffer can contain any number of messages; 
(P4) The receiver can enter his inactive state only if the sender is in his inactive 

state and there are no messages in the buffer; 
(P5) The system is live, i.e. it will never reach a deadlock state. 

In the next section we will show how the verification of these properties can be 
done. 

3 Verification of system properties 
Using S-invariants, we prove in this section the correctness of our modelling. 

Theorem 3.1. The jumping Petri net from Figure 1 models correctly the sender-
receiver system with unlimited buffer. 
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Proof. Let 7 = (£, R, Mo) be the finite jumping Petri net from Figure 1. It is easy 
to verify that the vectors 

Ji 

( 1 \ 
1 
1 
0 
0 
0 

V 0 y 

Jo = 

( 0 \ 
0 
0 
0 
1 
1 

V i 1 
are S-invariants. Moreover, these are the only minimal S-invariants of 7. 

Let M £ [Mo)7J be an arbitrary j-reachable marking of 7. Using the S-invariant 
Ji and the characterization theorem of S-invariants, we find that 

(*) M(si) + M(s2) + M(s3) = 1, 

which proves (Pi). Similarly, using J2 we obtain that 

(**) M(s5) + M(s6) + M(s7) = 1, 

which proves (P2)-

In order to prove (P3), let us notice the following fact. Given any k £ N, 
by firing the transition sequence w = ( i i^)^ at the marking Mo, a new marking 
M £ [Mo)~fj will be produced, with M(s4) = k and M(s) = M0(s) for all other 
places of the net. This means that the buffer can contain any number of messages. 

In order to prove (P4), let us notice that, if M is an arbitrary j-reachable 
marking in which the receiver is inactive (i.e. M(s7) = 1), then M can be reached 
only by the occurence of the jump of the net 7 (because M £ [M0)s, i.e. the 
marking M is not reachable in the underlying Petri net of 7). It is obviously that 
the jump of 7 can occur only if the sender is inactive and the message channel is 
empty. 

For proving the net 7 is live, i.e. it never reaches a deadlock state, we will show 
that at any j-reachable marking M £ [M0)yj there exists at least one transition 
of 7 which is fireable at M. Indeed, from the equality (*) follows that either the 
transitions £1 and t3 are fireable at M, if M(s\) = 1, or the transition i2 is fireable 
at M, if M(s2) = 1, or the transition t4 is fireable at M, if M(s3) = 1. Therefore, 
the net from Figure 1 is live, which proves (P5). 

This concludes the proof of the system properties. • 

Let us remark that from the last argument from above follows also that the 
sender is live (i.e. the net 7 w.r.t. the set of transitions {¿i, ¿2, ¿3, ¿4} is live). 

Moreover, the receiver (i.e. the net 7 w.r.t. the set {h,t6,tr}) is not live, but 
"almost live", i.e. it never deadlocks excepting the case when the sender is active 
and the message channel is empty. Indeed, from the equality (**) follows that the 
only possible cases are the following ones: 
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i) the transition t7 is fireable at M, if M(sj) = 1; 
ii) the transition t6 is fireable at M, if M(se) = 1; 

iii) the transition t5 is fireable at M, if M(s5) = 1 and M(s4) > 0; 
iv) the transition is j-fireable at M (after occuring first the jump of the net at 

M), if M(s5) = 1, M(s4) = 0 and M(s3) = 1; 
v) the case M(s5) = 1, M(s4) = 0 and M(s3) = 0, i.e. the case in which the 

sender is active ("ready to produce" or "ready to send") and the message 
channel is empty, is the only case when the receiver has no directly possible 
action, but only after an action of the sender (either the producing of a 
message, or the sending of a message, or the entering of the sender in his 
inactive state). 

4 Conclusion 
In this paper we have modelled a sender-receiver system with an unlimited buffer 
by a finite jumping Petri net, and we have proved the correctness of our modelling 
by using S-invariants. 
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Discovering Associations in Very Large Databases 
by Approximating* 

Shichao Zhang* and Chengqi Zhang* 

Abs t rac t 
Mining association rules has posed great challenge to the research com-

munity. Despite efforts in designing fast and efficient mining algorithms, it 
remains a time consuming process for very large databases. In this paper, we 
adopt a slightly different approach to this problem, which can mine approxi-
mate association rules quickly. By considering the database as a set of records 
that are randomly appended, we can apply the central limit theorem to esti-
mate the size of a random subset of the database, and discover both positive 
and negative association rules by generating all possible useful itemsets from 
the random subset. However, because of approximation errors, it is possible 
for some valid rules to be missed, while other invalid rules may be generated. 
To deal with this problem, we adopt a two phase approach. First, we dis-
cover all promising approximate rules from a random sample of the database. 
Second, these approximate results are used as heuristic information in an ef-
ficient algorithm that requires only one-pass of the database to validate rules 
that have support and confidence close to the desired support and confidence 
values. We evaluated the proposed technique, and our experimental results 
demonstrate that the approach is efficient and promising. 

K e y w o r d s : Da ta mining, data processing, approximating rule, assisting 
knowledge discovery, da ta analysis. 

1 Introduction 
One of the main challenges in data mining is to identify association rules for very 
large databases tha t comprise millions of transactions and items. Some recent 
efforts have focused on designing efficient algorithms [2, 4, 7, 15], employing parti-
tioning techniques [6, 9, 14], supporting incremental updat ing and exploiting par-
allelism [10, 13, 16]. The main "limitation" of these approaches, however, is t ha t 
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they require multiple passes over the database. For very large databases that are 
typically disk resident, this requires reading the database completely for each pass 
resulting in a large number of disk I/Os. 

An alternative approach is to take a sample of the database, and determine 
association rules that are valid on the sample database. In other words, the problem 
of mining the association rules becomes a 3-step procedure: 

(1) Generate a random subset of a given large database; 
(2) Generate all large itemsets in the random subset; 
(3) Generate all the rules with both support and confidence greater than or equal 

to minimum support and minimum confidence respectively. 

As the sample size is typically very much smaller than the original database size, 
the association rules on the sample can be obtained at a much faster time. We 
shall refer to these association rules (obtained from the sample) as approximate 
association rules. The key issue in this approach is to pick a right sample that is 
representative of the database, so that the approximate association rules are indeed 
the association rules that hold on the database. 

In this paper, we reexamine mechanisms for the 3 steps discussed above. To 
obtain a random sample of the database, we apply the central limit theorem. As 
we shall see shortly, the use of the central limit theorem allows us to cut down the 
sample size by about half compared to known techniques [11, 12]. For the second 
subtask, a new algorithm for generating all possible useful itemsets for mining rules 
with -both positive and negative itemsets is proposed. Finally, the last subtask is 
solved by generating all positive and negative association rules. 

Unfortunately, because of approximation errors, it is possible for some valid rules 
to be missed, while other invalid rules may be generated. To deal with this problem, 
we adopt a two phase approach. First, we discover all promising approximate rules 
from a random sample of the database. Second, these approximate results are used 
as heuristic information in an efficient algorithm that requires only one-pass of the 
database to validate rules that have support and confidence close to the desired 
support and confidence values.. We evaluated the proposed technique, and our 
experimental results demonstrate that the approach is efficient and promising. 

The rest of this paper is organized as follows. In the next section, we briefly 
review some concepts and definitions. In Section 3, we apply the central limit the-
orem to mine approximate association rules. In order to discover both of positive 
and negative association rules, an algorithm to generate all possible useful itemsets 
is also proposed. In Section 4, we evaluate the effectiveness of the proposed ap-
proach experimentally. In Section 5, we propose a method to (1) assist knowledge 
discovery and (2) determine the validation of the rules with support or confidence 
close to the user-specified thresholds. Finally, we summarize our contributions in 
section 6. 
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2 Basic Concepts 
One of the most widely used data mining model for association rules is the support-
confidence framework established by Agrawal, Imielinski, and Swami [1]. We shall 
review some of the concepts here. 

Let I = {¿i, ¿2, • • • , IN} be a set of N distinct literals called items. D is a set of 
variable length transactions over I . A transaction is a set of items, i.e., a subset of 
I. A transaction has an associated unique identifier called TID. 

In general, a set of items (such as the antecedent or the consequent of a rule) is 
referred to as an itemset. For simplicity, an itemset ¿2,¿3} is sometimes written 
as ¿ii2i3. 

For an itemset A C I and a transaction T € D, A is purchased (occurred) in 
T (or T contains A) if Va 6 A(3i((l < i < n) A (T(z) = a))), where 'T(z)' is ith 

element of T. 
The number of items in an itemset is the length (or the size) of an itemset. 

Itemsets of some length k are referred to as a fc-itemsets. 
An itemset has an associated measure of statistical significance called support, 

denoted as supp. For an itemset AC I, supp(A) = s, if the fraction of transactions 
in D containing A equals s. An itemset A is a large itemset if supp(A) > minsupp, 
where lminsupp' is a user specified minimum support. 

While A indicates the occurrence of an itemset A, the negation of A means 
the nonoccurrence of A, stood for A The support of A is as supp(A) — 1 — 
supp(A). Generally, for itemsets A = {ii,--- ,im} and B = {j i , --- ,jn}, the 
support of A U S is supp(A\J B) = supp(B) — supp(AU B) = supp({ji, • • • ,jn}) — 
supp({ii,-- - ,im,ji,--- ,jn})• 

An association rule is an implication of the form A B (or written as A —> B), 
where A, B C I, and A n B = 0. A is called the antecedent of the rule, and B is 
called the consequent of the rule. 

An association rule A —> B has a measure of its strength called confidence 
(denoted as conf) defined as the ratio supp(A U B)/supp(A), where A U B means 
that both A and B are present in transactions. 

The work in this paper extends traditional associations to include association 
rules of forms A —> B, A —> B, and A —> B, which indicate negative associations 
between itemsets. We call rules of the form A —> B positive association rules, and 
rules of the other forms negative association rules. Negative rules indicate that 
the presence of some itemsets will imply the absence of other itemsets in the same 
transactions. Negative rules are also very useful in association analysis, although 
they are hidden and different from positive association rules. 

The problem of mining association rules is to generate all rules A —» B that have 
both support and confidence greater than or equal to some user specified minimum 
support (min s u p p ) and minimum confidence ( m i n c o n f ) thresholds respectively, i.e. 

1 An itemset A is often taken as an event in computations meaning that A is true in a transaction 
if item i presents in the transaction for Vi £ A. A is taken as an event in computations meaning 
that A is true in a transaction if item i does not present in the transaction for 3i £ A. That is, 
A is different from I — A. 
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for regular associations: 

r, a supp(AuB) 
supp(A U B) > minsupp, conf (A B) - — s u p p ^ — - m m c o n f -

It can be decomposed into the following two subproblems. 

(1) All itemsets that have support greater than or equal to the user specified 
minimum support are generated. That is, generating all large itemsets. 

(2) Generate all the rules that have minimum confidence in the following naive 
way: For every large itemset X and any B C X, let A — X — B. If the rule 
A B has the minimum confidence (or supp(X)/supp(A) > minconj), then 
it is a valid rule. 

Example 1. Let Ti = {¿1,12,14}, T2 = T3 - {¿2,13,¿4}, T4 = 
{¿2,13,14}, and T5 = {¿i,i2} be the only transactions in a database. Let the mini-
mum support and minimum confidence be 0.6 and 0.85 respectively. Then the large 
itemsets are the following: {¿1}, {¿2}) {H}> {¿1^2} and {¿2,14}. The valid rules 
are ¿1 —> ¿2 and ¿4 —»i2. 

3 Mining Approximate Rules 
In probability theory, if a situation is such that only two outcomes, often called 
success and failure, are possible, it is usually called a trial. The variable element in 
a trial is described by a probability distribution on a sample space of two elements, 
0 representing failure and 1 success; this distribution assigning the probability 1—6 
to 0 and 0 to 1, where 0 < 0 < 1. Suppose we consider n independent repetitions of 
a given trial. The variable element in these is described by a probability distribution 
on a sample space of 2n points, the typical point being x = (xi, x2, • • • , xn), where 
each Xi is 0 or 1, and xl represents the result of the \ th trial. The appropriate 
probability distribution is defined by 

Pe{x) = (1 - 0)n~m^, 

where m(x) = Xi is the number of Is in the results of the n trials, this being 
so since the trials are independent. 

Given an x in this situation it seems reasonable to estimate 0 by m(x)/n, the 
proportion of successes obtained. This seems in some sense to be a 'good' estimate 
of 0. 

In data mining, a database D can be taken as a trial. For any itemset A, it is 
1 if the itemset A occurs in a transaction T (written as T(A)), else it is 0 (written 
as ->T(A)). Let P be the set of all transactions that the itemset A occurs in, and 
Q be the set of all transactions that the itemset A doesn't occur in. Then P and 
Q are partitions of D as follows. 

P = {T\T(A)}, 
Q - {ThT(A)}. 
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Given a database, its n transactions can be viewed as n independent data stored in 
the database. Certainly, each transaction has two possible outcomes for an itemset 
A, which are 1 and 0. Suppose the probability of A occurring in the database is p 
and the probability of A not occurring is q = 1 — p. Since the database is static, we 
can say that probability p of A occurring in each transaction is the same for each 
transaction. Hence, this given database can be taken as a Bernoulli trial. 

3.1 The Application of Central Limit Theorem 
The central limit theorem is one of the most remarkable results in probability 
theory. Loosely put, it states that the sum of a large number of independent 
random variables has a distribution that is approximately normal. Hence it not 
only provides a simple method for computing approximating probabilities for sums 
of independent random variables, but it also helps explain the remarkable fact that 
the empirical frequencies of so many natural populations exhibit bell-shaped (that 
is, normal) curves. In its simplest form the central limit theorem is as follows. 

Let X\, X2, • • • , Xn be a sequence of independent and identically distributed 
random variables, each having finite mean E(Xi) = p and Var(Xi) = o2. Then 
the distribution of 

Xi + • • • + Xn - np 
a-y/n 

tends to the standard normal as n —» 00. That is, 

n[X1 + --- + Xn-np ^ 1 fa _x2/2 P{ -rz < a} —= / e x ''dx as n 00. (1) 
Oy/n V ^ i - o o 

Readers are referred to [5] for other concepts and theorems. 
We now set up a new mining model in this subsection, which applies central 

limit theorem to mine approximate association rules from large databases. 

Theo rem 1. Let I be the set of items in database D, A C I an itemset, rj > 0 
the degree of asymptotic to association rules and £ > 0 the upper probability of 
P[\Ave{Xn) - p\ < rj\, where Ave(Xn) is the average of A occurring in n transac-
tions in D and p is the probability of A in D. Suppose records in D are matched 
Bernoulli trials. If n random records of D is enough for determining the approxi-
mate association rules in D according to central limit theorem, n must be as follows: 

„ . M M (2) 

where z(x) = —= I-oq e~y !2dy is a standard normal distribution function, which 
can find out it from the Appendix in [5]. 

Proof. From the given conditions in this theorem, we take 

P(\Ave(Xn)-p\<r,)=t 
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Clearly, 
P(\Ave(Xn) - p| < ij) = P(-v < (Ave(Xn) - p) < V) 

= P( < Ave(Xn) - p Tj 

4 / ( 2 ^ ) ~ l /(2Vn) - 1/(2Jn)> 

» N(2R]Y/N) - N(-2R)Y/N) 

= 2N(2R)Y/N) - 1 

where N() is the distribution function of the standard normal distribution. And 
for this probability to equal £ we need 

N{2LS/N) = \{ 1 + 0 

which is satisfied by 

2 ; = z((l + 0/2) 

the required value for n then is 

z2(( 1 + 0/2) 
V 

• 

Example 2. Suppose a new process is available for doping silicon chips, used in 
electronic devices, p (unknown) is the probability that each chip produced in this 
way is defective. We assume that the defective chips are independent of each other. 
How many chips, n, must we produce and test so that the proportion of defective 
chips found (Ave(Xn)) does not differ from p by more than 0.01, with probability 
at least 0.99? That is, we want n such that 

P(\Ave(Xn) -p\< 0.01) > 0.99, 

r) = 0.01, £ = 0.99,z(0.995) = 2.57, we have 

2 572 

n = 4 7 o o F = 1 6 5 1 3 ' 
considerably smaller than the value n = 27000 that is needed by using the model in 
Chernoff bounds [11, 12]. 

Based on Theorem 1, the random target database can be obtained in two steps: 
(1) generating a set X of pseudo-random numbers, where = n and (2) generat-
ing the random database RD (instance set) from D using pseudo-random number 
set X. That is, for any Xi e X, get (Xi + l ) t h record of D and append it into RD. 

Note that generating random database RD of the given database D doesn't 
mean to establish a new database RD. It only needs to build a view RD over D. 
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3.2 Mining Approximate Association Rules 
In this subsection, we construct a new model for discovering both of positive and 
negative association rules. For this goal, an algorithm of generating all positive and 
negative large itemsets is also proposed. 

Positive and Negative Large Itemsets 

For mining general approximate association rules, all positive and negative large 
itemsets in a random database would be generated. For example, if one of A —> B, 
A -» B and A —>• B can be discovered, then one of supp(A U B) > minsupp, 
supp(A U B) > minsupp and supp(A U B) > minsupp must hold. This means that 
supp(A U B) < minsupp. However, itemsets such as A U B, are not generated as 
large itemsets into the set of all large itemsets. In order to mine negative rules, we 
present a procedure to generate all positive and negative large itemsets in a random 
database as follows. 

Procedure 1. PNLargeltemsets 
Input: D: database; minsupp: minimum support; 
Output: PL: large itemsets; NL: negative large itemsets; 
Begin 

(1) generate sample RD of a given database D; 
let PL <- 0; NL <- 0; 

(2) let Li i- {large 1-itemsets}; PL <- PLU Li; 
(3) for (k = 2; (Lk_i ± <D); k + + ; do 

begin //Generate all possible positive and negative k-itemsets of interest in 
RD. 
(3.1) let Lk 4- {{¡ci,... xk-\,xk}\ {x\,..., G A 

{xi,...xk-2,xk} E L/fc-i}; 
(3.2) for each transaction t in RD do 

begin 
//Check which k-itemsets are included in transaction t. 

let txem the k-itemsets in t that are also contained in Lk; 
for each itemset A in trem do 

let A.count A.count + 1; 
end 

(3.3) //Selecting all positive k-itemsets in Lk 
let Temk <- {C\C e Lk A (supp{C) = (C.count/\RD\) >= minsupp)}; 
let PL <- PL U Temk; 
//Selecting all negative k-itemsets in Lk 

let NL <- NL U (Lk - Temk); 
end 

(4) output PL and NL; 
End. 
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The procedure PNLargeltemsets generates all positive and negative itemsets 
in the sample RD. The initialization and generating sample RD of a given database 
D are done in Step (1). Step (2) counts the frequencies of itemsets in RD. Step 
(3) generates all positive and negative itemsets of interest. 

Rules of Interest 

In [8], Piatetsky-Shapiro argued that a rule X -» Y is not interesting if 

supp(X —¥ Y) « supp{X)supp{Y) 

According to probability interpretation [3]: supp(XuY) = P(XUY) and conf(X 
Y) = P(Y\X) = P(X U Y)/P(X) Then Piatetsky-Shapiro's argument can be 
denoted as 

P(X\JY)^P(X)P(Y). 

This means that X Y cannot be extracted as a rule if P(X U Y) « P(X)P(Y). 
Actually, P(XUY) « P(X)P(Y) denotes X is approximately independent to Y in 
probability theory. A statistical definition [3] of dependence of the sets X and Y is 

Interest(X, Y) - U 

P(X)P(Y)' 

with the obvious extension to more than two sets. This formula is referred to as the 
interest of Y given X is one of the main measurements of uncertainty of association 
rules. Certainly, the further the value is from 1, the more the dependence. Or for 
1 > A > 0, if | p(x)P(y) ~ - ^ e n X Y ' s a r u le °f interest. 

By Piatetsky-Shapiro's argument, we can divide Interest(X, V) into 3 cases as 
follows: 

(1) if P{XUY)/{P{X)P(Y)) = 1, then P{Xl)Y) = P{X)P(Y) or Y and X are 
independent; 

(2) if P{XUY)/{P(X)P{Y)) > 1, or P(XLiy) > P{X)P(Y), then Y is positively 
dependent to X; 

(3) if P(XL>Y)/{P(X)P(Y)) < 1, or P(XUY) < P(X)P(Y), then Y is negatively 
dependent to X, or Y is positively dependent to X. 

In this way, we can define another form of interpretation of rules of interest as 
follows. For 1 > A > 0, (a) if ¡^xyp^Y) ~ — t ' i e n A' -> Y is a rule of interest; 

and (b) if — {p(xyp(Y) ~ 1) — ^ e n X —> Y is a rule of interest. 
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Theorem 2. Let I be the set of items in database D, X,Y C I be itemsets, 
X n Y = 0, P(X) ± 0 and P(Y) ± 0. minsuvv,minConf and A > 0 are given by 
users or experts. If 

(1) supp(X U Y) > minsupp, conf(X Y) > minconf, and P(X UK) -
P(X)P(Y) > A, then X -» Y can be extracted as a rule of interest. 

(2) supp(X U Y) > minSUVp, suppiY) > TntTlgupp} conf(X ->• Y) > minconf, and 
-(P(X U Y) - P(X)P{Y)) > A, then X ^ Y can be extracted as a rule of 
interest. 

Proof. From assumption of the above theorem, we have 

\(P(X U Y) — P(X)P(Y))\ > A 
P(X)P(Y) ~ P(X)P(Y)' 

or 
P(XUY) A 
P(X)P(Y) 1 - P{X)P{Y)' 

Because 0 < P(X)P(Y) < 1, so A / ( P ( X ) P ( Y ) ) > A. Hence, 

]P(X)P(Y) ' 

That is, X —> Y can be extracted as a rule of interest. • 

Mining Positive And Negative Rules 

By our definition on interest, if P(X U Y) « P(X)P(Y), X is approximately 
independent to Y in probability theory; if the greater the value of P(X U Y) — 
P(X)P(Y) > 0 is, the more the positive dependence; and if the smaller the value 
of P{X U Y) - P(X)P{Y) < 0 is, the more the negative dependence. However, 
-P(X)P(Y) < P(XU Y) — P(X)P{Y) < P(X)(1-P(Y)). In order to reflect this 
relationship between P(X U Y) and P(X)P(Y), we propose the probability ratio 
(PR) model here. Under the PR model, we define the measure PR to determine 
the degree in which the valid rule X Y is interesting. 

r P ^ - P ^ n , i f P ( X U Y) > P(X)P(Y), 
PR(Y\X) = < P(X)(l-P(Y)) ¿0. 

{ P{XU?№(TY)> V P(XVY) < P(X)P(Y),P(X)P(Y) ¿0. 

Certainly, PR has some properties as follows. 

Property 1. PR satisfies the following: 

PR{Y\X) + PR(Y\X) = 0. 
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Proof. We shall only prove the property holds when P{X U Y ) > P{X)P(Y). The 
others can be derived in a similar manner. Since 

P(X U Y)/P(X) = P(Y\X), P(X U Y)/P(X) = P(Y\X), P(Y\X) + P(Y\X) = 1, 

and _ 
P{Y\X) = 1 - P(Y\X) < 1 - P(Y) = P(Y). 

Therefore, 

P(X U Y) - P(X)P(Y) _ P{Y\X) - P{Y) 
PR(Y\X) = 

PR(Y\X) = 

P(X)(1-P(Y)) 1 -P(Y) 

P{X U F) - P{X)P(Y) _ P(Y\X) - P(Y) 
P(X)P(Y) ~ P(Y) 

Hence, 

PR(Y\X) 4- PR(Y\X) - P(XUY)-P(X)P(Y) P(X UY) - P(X)P(Y) PR(Y\X) + PR(Y\X) - p { x ) { 1 _ p { Y ) ) + P{X)P(Y) 

_ P(Y\X)-P(Y) P(Y\X) - P(Y) 
1 -P{Y) + p(Y) 

P(Y\X) - P(Y) (1 - P(Y\X)) - (1 - P(Y)) 
1 - P(Y) 1 - P(Y) 

So, we have PR{Y\X) + PR{Y\X) = 0. • 

We now apply the PR model to measure the uncertainties of association rules. 

(1) For an association rule A -»• B, its supp(A U B) is P(A U B) and, PR(B\A) 
is taken as the confidence of the rule. The task of mining this association 
rule is defined as follows. For itemset A U B, if supp(A U B) > minsupp and 
PR(B\A) > minconf, then A B can be extracted as a valid rule. 

(2) For an association rule A B, PR(B\A) = -PR(B\A) according to 
Property 1. Therefore, if supp(A U B) > minsupv, supp(B) > minsupp, 
PR(B\A) < 0 and PR{B\A) > minconj, then A -t B can extracted as a 
valid rule. 

(3) For A B, PR(B\A) is taken as the confidence of the rule. The task 
of mining this association rule is defined as follows. For itemset A u B , if 
supp{A) > minsupp, supp(A U B) > TTlZTlgupp and PR(B\A) > minconf, then 
A B can be extracted as a valid rule. 

(4) For an association rule A B, PR(B\A) = -PR(B\A) according to 
Property 1. Therefore, if supp(A U B) > minsupp, supp(A) > minsupp, 
supp(B) > minsupp, PR(B\A) < 0 and PR(BjA) > minconj, then A -)• B 
can extracted as a valid rule. 
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Note that the requirements that supp(B) > minsupp and supp(A) > minsupp ensure 
the probability significance of rules with negative itemsets. 

We now demonstrate how to apply this model to discover association rules with 
the data in Example 1. Let minsupp = 0.2 and minconf = 0.4. 

Example 3. For itemset AllC, P{A) = 0.6, P(C) = 0.4 and P(A U C) = 0, we 
have P(A U C) < P(A)P(C). This means that the disbelief increases, or A C 
may be extracted as a rule of interest. Furthermore, 

P(AUC)-P(A)P(0 0 - 0 - 6 . 0 . 4 
PR{ClA) = P(A)P(C) = 0 .6 .0 .4 = - 1 ' 

According to our model, A —> C can be extracted as a valid rule due to PR(C\A) = 
-PR(C\A) = 1 > minconf, supp(A U C) = 0.6 ^ TTllTlsxipp, and supp(C) = 0.4 > 
TTltTlgupp. 

As we have seen, our PR model is both reasonable and comprehensive. And 
general association rules can be easily discovered. Furthermore, we can obtain the 
following theorem that facilitates the extraction of interesting rules. 

T h e o r e m 3. Let I be the set of items in database D, X, Y C I be itemsets, 
X n Y = 0, P{X) 0 and P(Y) ^ 0. minsupp,minconf and A > 0 are given by 
users or experts. Then 

(1) if supp{X U Y) > minsupp and PR(Y\X) > Max{minconf, A}, then X Y 
can be extracted as a rule of interest; 

(2) if supp(X U Y) > minsuppj_ supp(Y) > minsupp and PR(Y\X) > 
Max{minCOnf, A}, then X —> Y can be extracted as a rule of interest; 

(3) if supp(X U Y) 777.2.72. suppj supp(X) > minsupp and P.R(F|X) > 
Max{minconf, A}, then X —> Y can be extracted as a rule of interest; 

(4) if supp(Xl>Y) > minsupp, supp(Y) mins_upv, supp(X) > minsupp and 
Pi? (y |X) > Max{minconf, A}, then X Y can be extracted as a rule of 
interest. 

Proof. As before, we only prove (1) of the above theorem since the rest can 
be obtained similarly. We first prove that (1) holds. Since PR(Y\X) > 
Max{minconf, A}, according to the assumption in (1), we have PR(Y\X) > 
minconf and PR(Y\X) > A. 

On the othe^hand, because PR(Y\JQ > 0, and using the Property 1, 
P i i ( y | X ) + PR(Y\X) = 0, we have -PR(Y\X) > A. 

According to previous interpretation of rules of interest, X Y can be ex-
tracted as a rule of interest. That is 

X Y 

can be extracted as a rule of interest. • 
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Algorithm 

Let D be a database, |D| the total number of transactions in D, I the set of all 
items in D, and for X C I, the number of transactions in D that contain 
itemset X, minsupp, minconf, A and 7 given by users. The algorithm of discovering 
association rules in our probability ratio model is constructed as follows. 

Algorithm 1. PRModel 
Input: D: database, minsupp,minconf, X and 7: threshold values; 
Output: approximate rules; 

(1) Determine the sample size, n, based on the central limit theorem; 
Generate the sample database with n transactions; 
call routine PNLargeRemsets; 

(2) for any large itemset A in PL begin 
for any itemset X C A begin 

let Y = A - X; 
if |Pi?(Y|X)| > Max{minconf, A} then 

output the rule X —> Y 
with confidence PR(Y\X) and support P(A); 

end 
for any itemset A in NL begin 

for any itemset X C A begin 
let Y = A- X; 
if (supp(X UF) > minsupp and supp(Y) > minsupp 

and |Pi?(F|X)| > Max{minconf, A}) then 
output the rule X —> Y 

with confidence PR(Y\X) and support P{A); 
end 
if (supp(X U 7 ) > THZTlsupp and supp(X) > minsupp 

and |Pi?(F|X)j_> Max{minconf, X}) then 
output the rule X —> Y 

with confidence PR(Y\X) and support P{A); 
end 
if (supp(X U Y) > minsupp and supp(X) > minsupp 

and supp(Y) > minsupp and |P/?(y|X)| > Max{minconf, A},) 
then 
output the rule X -> Y 

with confidence PR(Y\X) and support P{A); 
end 

end 
end 
endall. 

Algorithm PRModel generates all positive association rules in PL and negative 
association rules in NL. Step (1) calls procedure PNLargeltemsets to generate 
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the sets PL and NL with positive and negative large itemsets in the database 
D. Step (2) firstly generates positive association rules of interest of the form: 
X Y, in PL. If PR(Y\X) > minconf, X Y is extracted as a valid rule. 
If PR(X\Y) > minconf, y => X is extracted as a valid rule. ̂ Secondly, the step 
generates negative association rules of interest of the forms X —> Y, Y X, 
X - + F , a n d F ^ X, in NL. 

4 An Experimental Study 
To study the effectiveness of our model, we have performed several experiments. 
Our server is Oracle 8.0.3, and the algorithm is implemented on Sun SparcServer 
using Java, and JDBC API is used as the interface between the program and Oracle. 
The database used in our experiments has the following conceptual scheme 

Report(sno, test, grade, area) 

where sno is the primary key about student numbers, test is an attribute about 
examinations of subjects, grade is an attribute about students' grades with 
{A, B, C, D, E) as its domain, area is an attribute about students' nationality with 
a domain (China, Singapore, • • •). In order to illustrate the efficiency of our ap-
proximate rule model, we list partially the experimental results, which are the large 
itemsets and their supports. For more details, please refer to Appendix A. 

Let minsupp = 0.2 and minconf = 0.6. Some results are listed in Table 1. 

We evaluated three methods: the traditional approach where the entire database 
is used (denoted D), the sampling approach based on Chernoff bounds [11, 12] (de-
noted LRD), and the proposed approach using the central limit theorem (denoted 
CRD). As shown in Table 1, the supports for the various useful itemsets are very 
close among the three methods. For example, the supports of item "China" are 
37%, 36.78% and 36.48% for D, LRD and CRD respectively. This shows that rel-
evant itemsets can be determined based on a small sample of the database. In our 
case, LRD requires only 15000 records which is only 15% of the original database 
size, while CRD makes use of no more than 7% of the original database size. We 
also note that the running time of mining the original database is 815 seconds. The 
time for LRD is 436 seconds (consisting of 207 seconds for LRD and 229 seconds 
for approximate rules), while that of CRD is only 241 seconds (consisting 101 sec-
onds for LRD and 140 seconds for approximate rules). The significant reduction 
is clearly due to the smaller size of the samples. We also note that CRD is more 
efficient than LRD, making CRD a promising approach for mining association 
rules. 

Referring to the Table, some of the rules of interest are China —> B, China —• 
C, China Singapore, Singapore —• C, B —> C. However, from the example, we 
also note the following problems, which we shall investigate shortly. 

(i) Some rules such as China Singapore and B —> C are also extracted as 
rules of interest. 
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(ii) Due to the probability significance and the constraint condition of minsupp, 
some rules such as China —> D, Singapore —• D, China —» E and 
Singapore —> E, can't be extracted as negative rules of interest in our model. 
In some context, these rules are useful for applications. But mining rules such 
as China —» Tom has no significance, where "Tom" is name of some student. 

Table 1: Some itemsets in the original database. 

DB useful Itemset Support size of sample running time 
China 37% 

Singapore 50% 
B 33.2% 
C 42.05% 

D China, B 27.75% 100000 815 
Singapore, C 35% 

China, Singapore 0% 
China, C 3.1% 

B, C 0% 
China 36.78% 

Singapore 50.43% 
B 33.43% 
C 42.17% 

LRD China, B 27,83% 15000 436 
Singapore, C 34.97% 

China, Singapore 0% 
China, C 2.87% 

B, C 0% 
China 36.48% 

Singapore 50.82% 
B 33,45% 
c 42.3% 

CRD China,B 27.71% 6724 241 
Singapore, C 35.07% 

China, Singapore 0% 
China, C 3.01% 

B, C 0% 

As we have seen, if all data are randomly appended in to a given large database, 
the association rules can be approximated by our model using central limit theorem. 
The experiments also show the effectiveness of the proposed approach. Before 
closing this section, we shall make the following claim. 

/ 
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Claim 1. Consider the given database D, we have 

(1) If all data are randomly appended into a given large database, association 
rules can be approximated by our model using limit theorems. 

(2) If A B can extracted as a rule in our model, it must be a rule of interest. 
(3) The model in central limit theorem is more efficient than the model in Chernoff 

bounds. 

We now explain these arguments. (1) can directly be proven by the above 
algorithm and Theorem 1; (2) can be obtained from Theorem 3 and Algorithm 1. 

For Theorem 1 and model based on Chernoff bounds [11, 12], we can compare 
the efficiency between Chernoff bounds and central limit theorem as follows. 

where "||" is a comparison symbol, or 

In-
z2 

I (1+0/2 
1 - S ' 

where (1 + £)/2 > 0.5. According to the list of standard normal distribution 
function, the following inequality holds for 1 > £ > 0 

In— > Z 2 { 1 + i ) / 2 . 
- 2 

Hence, 

J-ln — > 
2r]2 1 — £ 4t f ' 

Thus, the model in central limit theorem is more efficient than the model in 
large number law, i.e., (3) in Claim holds. 

• 

5 Assisting Knowledge Discovery 
As has been shown, our model is efficient to discover approximate association rules 
in large databases. However, if the support of an itemset A is in the neighbour 
of minsupp, then A can be sometimes be treated as a large itemset and sometimes 
not as a large itemset due to approximation errors. In other words, some such 
itemsets are large itemsets in D but not in RD, and some such itemsets are not 
large itemsets in D but they are large itemsets in RD. This is a weakness of our 
model. For example, consider a random subset RD of a given large database D. Let 
minsupp = 0.2 and the probability of error to be tolerated be 0.05. Let two itemsets 
A and B in D with probabilities (supports) 0.18 and 0.23 respectively. Assume also 
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that A and B are generated with probabilities 0.21 and 0.194 respectively, in the 
random database RD. This means that A is a large itemset in RD and B is not a 
large itemset in RD due to approximating error 0.05. They are unexpected results. 

On the other hand, if we cannot compromise the validity of mined rules, or 
when certain support and confidence are necessary for some applications, 77 > 0 
can be expected to be much smaller. This implies that we have to end up with a 
very large sample of the database, which diminishes the gains of sampling. 

However, because of the randomness of data in a given database, we can roughly 
generate a possible large itemset set at first. Then this set is used as heuristic 
information to obtain large itemsets with only one pass through the given database. 
In this way, we can use such heuristic information to (1) assist knowledge discovery 
where accuracy is important or certain support and confidence is desirable, and 
(2) determine if an itemset in the neighbour of minsupp in the random subset of a 
given database is a large itemset. 

Definition 1. If an itemset A in RD is greater than or equal to minsupp — rj, then 
it is reasonable in probability to conjecture that A is a large itemset in the database 
D. And itemset such as A is called hopeful large itemset in D. Reversedly, if an 
itemset A in RD is less than minsupp — rj, then it is reasonable and comprehensive 
in probability to believe that A is impossible as a large itemset in the database D. 

Apparently, assessing hopeful large itemset are not only useful to the itemsets 
in the neighbour of minsupp, but also efficient to assist non-approximate knowledge 
discovery in databases. We now present the algorithm of accomplishing such two 
tasks as follows. 

Procedure 2. TLargeltemset 
Input: r): accuracy of results, probability of requirements, minsupp: minimum 

support, 
D: original database, HLIsSet: set of hopeful large itemsets; 

Output: LI: large itemsets D; 
Begin 
let LI 0; 
for each transaction r of D do 

for each itemset a of HLIsSet do 
if a 6 r then 

let Counta Counta + 1; 
for each itemset a of HLIsSet do 

if supp(a) > minsupp then 
let LI <- LIU {a}; 

output the set LI of all large itemsets in D; 
end; 

Again, if the confidence of a rule A —> B is in the neighbour of minconf, then 
A —> B can be sometimes extracted as a valid rule and sometimes not as a valid 
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rule due to the approximate error. The problem of the neighbour of minconf can 
be addressed using a similar method as that for the neighbour of minsupp. 

Now, we can describe the model of applying our method to assist non-
approximate knowledge discovery in databases as follows. For a given large 
database D, with the users specified minsupp and minconf, the following steps 
are performed. 

(1) Generate a random subset RD of D according to our model in this paper; 
(2) Generate the set HLIsSet of all hopeful large itemsets in RD with support 

greater than or equal to max{0,minsupp — approximate error}; 
(3) Generate all large itemsets in D with support greater than or equal to minsupp 

according to the set of hopeful large itemsets and Procedure 2; 
(4) Generate all the rules with both support and confidence greater than or equal 

to minimum support and minimum confidence respectively, according to the 
large itemsets in the given database. 

Certainly, applying approximate results to assist knowledge discovery needs only 
rough estimation, such as TJ = 0.01 and £ = 0.9 are enough to generate all hopeful 
large itemsets. On the other hand, Algorithm 1 is linear. It can be guaranteed by 
the following theorem. 

Theorem 4. For given large database D, let n = \D\, m be the time of generating 
the set HLIsSet of all hopeful large itemsets in random subset RD of D. Then the 
time of generating all large itemset in D is at least 0(m + n2). 

Proof. According to the above definition, Algorithm 1 and Procedure 2, it needs 
only one pass to read the given database D. And each reading takes t + t' to read 
a transaction from D and count itemsets in HLIsSet, where t the time to read 
a transaction from D, and t' the time to count all itemsets in HLIsSet. So, n 
reading incurs time of n(t +1 ' ) . Hence, the time to generate all large itemsets in D 
is m + n(t + t'). Let t" be the time to count an itemset. Then t' = t"\HLIsSet\ for 
general databases. Because \HLIsSet\ is at least 0(n), and t and t" are two small 
constants, so m + n(t + t') =m + n(t + t"\HLIsSet\) is at least 0(m + n2). • 

In order to handle the problem caused by both the neighbour of minsupp and 
the neighbour of minconf, we can use two methods as follows. One of them is 
to take max{0,minsupp — t]} and max{0, minconf — r]} as the minimum support 
and minimum confidence respectively, for applications that need only approximate 
results. If an application requires more accurate results or certain support and 
confidence, the following method can be performed. 

For a given large database D, minsupp and minconf are given by users. 

(1) Generate a random subset RD of D\ 
(2) Generate all hopeful large itemsets in RD with support greater than or equal 

to max{0,minsupp — approximate error}; 
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(3) Generate the set RSET of all the rules with both support and confidence 
greater than or equal to minimum support (max{0 ,min s u p p — 77}) and mini-
mum confidence (max{0 , TflUl^QJlf — 77}) respectively, according to the hopeful 
large itemsets in RD\ 

(4) For the subset PS of RSET with both support and confidence in the neigh-
bour of minsupp and the neighbour of Tninconf respectively, generate the set 
VRS of all rules in PS that is valid in £>; 

(5) Output ( R S E T - PS) U VRS. 
Theorem 5. For given large database D, minsupp and minconf are given by users. 
A —• B can be extracted as an approximate rule in the above model if and only if 
A —» B is a valid rule in D. 
Proof. We first prove (—>). According to the above assumption, if 

(1) supp(A U B) > max{0,minsupp — 77}; and 
(2) conf(A —• B) > max{0,minconf — 77}; 

hold in random subset RD of D. By (4) and (5) in the above definition, we can 
obtain 

(i) supp(A US) > minsupp; and 
(ii) conf(A -» B) > minCOnf; 

This means, A B is still a valid rule in D. 

The proof of (<=) can be directly obtained from Theorem 1, Theorem 3, and 
the above definition. 

So, A —> B can be extracted as an approximate rule in the above model if and 
only if A —> B is a valid rule in D. • 

6 Conclusions 
Mining association rules is an expensive process. Mining approximate association 
rules on a sample of a large database can reduce the computation cost significantly. 
Srikant and Agrawal [11] suggested a method to select the sample of a given large 
database for estimating the support of candidates using Chernoff bounds. Also, 
Toivonen [12] applied the Chernoff bounds to discover association rules in large 
databases. However, previous approximate models based on Chernoff bounds may 
require a large sample size compared to the central limit theorem for discovering 
association rules in large databases. In this paper, we have addressed the issue of 
mining association rules, and have made the following contributions: 

(1) Presented a method of applying the theorems to estimate the size of random 
database that enables us to mine approximate association rules. 

(2) Proposed the algorithm to discover approximate association rules with neg-
ative itemsets. In particular, an algorithm of generating all possible useful 
(positive and negative large) itemsets is also presented. 
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(3) Demonstrated the effectiveness of our approach experimentally. Our results 
show that the approximating model is more efficient than models based on 
Chernoff bounds [11, 12]. 

(4) Proposed a method to (a) assist knowledge discovery and (b) determine the 
validation of a rule in the neighbour of minsupp or the neighbour of mincon¡ 
in the given database. 
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Appendix A 
The size of the given database is 100000 and minsupp = 0.2. In order to illustrate 
the efficiency of our approximate rule model, we partly list the experimental re-
sults, which are the large itemsets and their supports. The variables a, b, and XQ 
are the initialized values used in the random number generator. In order to test 
the approximation, we list three different supports of each itemset from different 
samples with the same size as follows. 

Some itemsets of PL and NL in original database 

/* 1-items */ 

Item = China, count = 37000, support = 37'/, 

Item = Singapore, count = 50000, support = 50'/, 

Item = B, count = 33200, support = 33.2'/. 

Item = C, count = 42050, support = 42.05'/, 

/* 2-items .*/ 

Itemset = {China, B}, count = 27750, support = 27.75'/, 

Itemset = {Singapore, C}, count = 35000, support = 35'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/. 

Itemset = {China, C}, count = 3100, support = 3.1'/, 

Itemset = {B, C}, count = 0, support = 0'/, 
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Some itemsets of PL and NL in models based on Chernoff bounds 

/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 15000 

a = 53 

b = 113 

x0= 17 

/* 1-item */ 

Item = China, count = 5517, support = 36.78'/, 

Item = Singapore, count = 7565, support = 50.43"/, 

Item = B , count = 5015, support = 33.43'/, 

Item = C, count = 6326, support = 42.17'/, 

/* 2-items */ 

Itemset = {China, B>, count = 4175, support = 27.83"/, 

Itemset = {Singapore, C}, count = 5246, support = 34.97'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 431, support = 2.87'/, 

Itemset = {B, C}, count = 0, support = 0'/, 

/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 15000 

a = 53 

b = 113 

x0= 43 

/* 1-item */ 

Item = China, count = 5543, support = 36.95'/, 

Item = Singapore, count = 7449, support = 49.66'/. 

Item = B, count = 4946, support = 32.97% 

Item = C, count = 6300, support = 42'/. 

/* 2-items */ 

Itemset = {China, B>, count = 4109, support = 27.39'/. 

Itemset = {Singapore, C>, count = 5249, support = 34.99'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 411, support = 2.74'/, 

Itemset = {B, C}, count = 0, support = 0'/, 
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/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 15000 

a = 53 

b = 113 

x0= 97 

/* 1-item */ 

Item = China, count = 5513, support = 36.75'/, 

Item = Singapore, count = 7568, support = 50.45'/, 

Item = B, count = 5012, support = 33.41% 

Item = C, count = 6332, support = 42.21'/, 

/* 2-items */ 

Itemset = {China, B}, count = 4172, support = 27.81'/, 

Itemset = {Singapore, C}, count = 5252, support = 35.01'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 473, support = 3.15'/, 

Itemset = {B, C}, count = 0, support = 0'/. 

Some itemsets of PL and NL in central limit theorem 

/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 6724 

a = 53 

b = 113 

x0= 17 

/* 1-item */ 

Item =. China, count = 2453, support = 36.48'/, 

Item = Singapore, count = 3417, support = 50.82'/, 

Item = B, count = 2249, support = 33.45'/, 

Item = C, count = 2844, support = 42.3'/, 

/* 2-items */ 

Itemset = {China, B}, count = 1863, support = 27.71'/, 

Itemset = {Singapore, C}, count = 2358, support = 35.07'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 202, support = 3.01'/ 

Itemset = {B, C}, count = 0, support = 0'/, 
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/* parameter value */ } 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 6724 

a = 53 

b = 113 

x0= 43 

/* 1-item */ 

Item = China, count = 2468, support = 36.7'/, 
Item = Singapore, count = 3350, support = 49.82'/, 

Item = B, count = 2216, support = 32.96% 

Item = C, count = 2829, support = 42.077, 

/* 2-items */ 

Itemset = {China, B>, count = 1830, support = 27.22'/, 

Itemset = {Singapore, C}, count = 2359, support = 35.08°/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 196, support = 2.91'/, 

Itemset = {B, C}, count = 0, support = 0'/, 

/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 6724 

a = 53 

b = 113 

x0= 97 

/* 1-item */ 

Item = China, count = 2456, support = 36.53'/, 

Item = Singapore, count = 3412, support = 50.74'/, 

Item = B , count = 2255, support = 33.54'/, 

Item = C, count = 2837, support = 42.19'/, 

/* 2-items */ 

Itemset = {China, B}, count = 1867, support = 27.77'/, 

Itemset = {Singapore, C}, count = 2350, support = 34.95'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 204, support = 3.04'/. 

Itemset = {B, C}, count = 0, support = 0% 
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Mining Dynamic databases by Weighting* 

Shichao Zhang1' and Li Liu* 

Abstract 
A dynamic database is a set of transactions, in which the content and the 

size can change over time. There is an essential difference between dynamic 
database mining and traditional database mining. This is because recently 
added transactions can be more 'interesting' than those inserted long ago 
in a dynamic database. This paper presents a method for mining dynamic 
databases. This approach uses weighting techniques to increase efficiency, 
enabling us to reuse frequent itemsets mined previously. This model also 
considers the novelty of itemsets when assigning weights. In particular, this 
method can find a kind of new patterns from dynamic databases, referred to 
trend patterns. To evaluate the effectiveness and efficiency of the proposed 
method, we implemented our approach and compare it with existing methods. 

1 Introduction 
In real-world applications, a business database is dynamic, in which (1) its content 
updates over time and (2) transactions are continuously being added. For example, 
the content and size of the transaction database of a supermarket change time by 
time, and different branches of Wal-Mart receive 20 million transactions a day. This 
generates an urgent need for efficiently mining dynamic databases. 

While traditional data mining is developed for knowledge discovery in static 
databases, some algorithms have recently been developed for mining dynamic 
databases [4, 5, 6, 13]. However, there is an essential difference between dynamic 
database mining and traditional database mining. This is because recently added 
transactions can be more 'interesting' than those inserted long ago in a dynamic 
database. Actually, some items such as suits, toys, and some foods are with smart in 
market basket data. For example, "jean" and "white shirt" were often purchased 
in a duration from a department store, and "black trousers" and "blue T-shirt" 
were often purchased in another duration. The department store made different 
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decisions on buying behavior according to such different purchased models. This 
means, some goods are very often purchased in a duration in market basket data, 
and they are solely purchased in another duration. These items are called smart 
goods. Apparently, most of smart items may not be frequent itemsets in a market 
basket data set. But they are useful to making decisions on latest buying behavior, 
referred to trend pattern. 

Consequently, mining trend patterns is an important issue in mining market 
basket data. Indeed, since new data may represent the changing trend of customer 
buying patterns, we should intuitively have more confidence on the new data than 
on the old data, therefore, the novelty of data should be highlighted in mining 
models. However, mining customer buying behavior based on support-confidence 
framework (see [1]) can only reflect the frequency of itemsets but the trend of data. 
In this paper, a new method is proposed for mining association rules in dynamic 
databases. The proposed approach is based on the idea of weighted methods and 
aims at incorporating both the size of a database and the novelty of the data in 
the database. 

The rest of this paper is organized as follows. In the next section, we first show 
our motivation, and then briefly recall some related work, concepts and definitions. 
In Section 3, a weight model of mining association rules for incremental databases is 
proposed. A competition is set up for tackling the problem of infrequent itemsets 
in Section 4. In Section 5, we show the efficiency of the proposed approach by 
experiments, and finally, we summarize our contributions in the last section. 

2 Preliminaries 

This section recall some previous work and concepts needed. 

2.1 Related Work 
Data mining can be used to discover useful information from data like 'when a 
customer buys milk, he/she also buys Bread' and 'customers like to buy Sunshine 
products'. 

Strictly speaking, data mining is a process of discovering valuable information 
from large amounts of data stored in databases, data warehouses, or other informa-
tion repositories. This valuable information can be such as patterns, associations, 
changes, anomalies and significant structures [19]. That is, data mining attempts 
to extract potentially useful knowledge from data. 

Recently, mining association rules from large databases has received much at-
tention [1, 7, 12, 15, 17]. However, most of them [1, 10, 12] presuppose that the 
goal pattern to be learned is stable over time. In real world, a database is often 
updated. Accordingly, some algorithms have recently been developed for mining 
dynamic databases [4, 5, 6, 13]. 
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One possible approach to the update problem of association rules is to re-run 
the association rule mining algorithms [1] on the whole updated database. This 
approach, though simple, has some obvious disadvantages. All the computation 
done initially at finding the frequent itemsets prior to the update are wasted and 
all frequent itemsets have to be computed again from scratch. An incremental 
approach for learning from databases is due to [6], which uses the maintaining 
ideas in machine learning [13]. 

The most prevailing dynamic database mining model should be the FUP model 
proposed by Cheung et al [4] (The model will be detailed in Subsection 2.3). The 
FUP model reuses information from the old frequent itemsets. That is, old frequent 
itemsets and promising itemsets are required to be kept. This can significantly re-
duce the size of the candidate set to be searched against the original large database. 
Like the Aporiori algorithm [1], the FUP model employs the frequencies of item-
sets to mine association rules. However, the FUP approach only need to scan the 
new data set for generating all the candidates. To deal with more dynamics, the 
authors also proposed an extended FUP algorithm, called FUP2 [5], for general 
updating operations, such as insertion, deletion and modification on databases. 

However, previous models (such as the FUP model) use retrace technique to 
handle the problem that smaller itemsets become frequent itemsets during main-
tenance. The retrace technique is to re-mine the whole data set. Unfortunately, 
because the change is unpredicatable in applications, the technique may be repeat-
edly applied leading to poor performance. 

In particular, previous models don't work well for the novelty of data. This 
paper will present techniques to address the above problems. Before figuring out our 
approach, we now present some well-known concepts for data mining and knowledge 
discovery used throughout this paper. 

2.2 Basic Concepts 

Let I = {¿i, ¿2, • • • , ij\r} be a set of N distinct literal called items. D is a set 
of variable length transactions over I . Each transaction contains a set of items 
ii, ¿2, • • • , ik € A transaction has an associated unique identifier called TID. An 
association rule is an implication of the form A=> B (or written as A —y B), where 
A, B C I, and A D B = 0. A is called the antecedent of the rule, and B is called 
the consequent of the rule. 

In general, a set of items (such as the antecedent or the consequent of a rule) 
is called an itemset. The number of items in an itemset is the length (or the size) 
of an itemset. Itemsets of some length k are referred to as a /c-itemsets. For an 
itemset A • B, if B is an m-itemset then B is called an m-extension of A. 

Each itemset has an associated measure of statistical significance called support, 
denoted as supp. For an itemset A C I, supp(A) = s, if the fraction of transactions 
in D containing A equals s. A rule A —»• B has a measure of its strength called 
confidence (denoted as conf) defined as the ratio supp(A U B)/supp(A). 
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Definition 1. (support-confidence model): If an association rule A -t B has 
both support and confidence greater than or equal to some user specified minimum 
support (minsupp) and minimum confidence (minconf) thresholds respectively, i. e. 
for regular associations: 

supp(A U B) > minsupp 

supp(AuB) 
canfiA B) = , > minconf v ' supp(A) ~ 

then A B can be extracted as a valid rule. 

Mining association rules can be decomposed into the following two issues. 

(1) All itemsets that have support greater than or equal to the user specified 
minimum support are generated. That is, generating all frequent itemsets. 

(2) Generate all the rules that have minimum confidence in the following naive 
way: For every frequent itemset X and any B C X, let A = X - B. If the 
rule A —• B has the minimum confidence (or supp(X)/supp(A) > minconf), 
then it is a valid rule. 

Example 1. Let 7\ = {A,B,D}, T2 = {A,B,D}, T3 = {B,C,D}, T4 = 
{B,C, D}, and T5 = {A, B} be the only transactions in a database. Let the min-
imum support and minimum confidence be 0.6 and 0.85 respectively. Then the 
frequent itemsets are the following: {B}, {D}, {A, B} and {B,D}. The valid 
rules are A —• B and D —>• B. 

2.3 The FUP Model 
For comparison, we now present the FUP model [4]. Let D be a given database, 
D+ the incremental data set to D, A be an itemset that occurs in D, A+ stands 
for A occurring in D+, Then A is a frequent itemset in D U D+ only if the support 
of A is great than or equal to minsupp. We now define the FUP model as follows. 

Definition 2. ( F U P model): An association rule A —> B can be extracted as a 
valid rule in DuD+ only if it has both support and confidence greater than or equal 
to minsupp and minconf respectively. Or 

, . „, t(A U B)+ t{A+ U B+) ^ " . 
suppyA U B) = > minsupp 

c[JJ) + c[D+) 

.. . supp{Al)B) . 
conftA B) = . > minconf. 

supp(A) 

where c(D) and c(D+) are the cardinalities of D and D+, respectively; t(A) and 
t(A+) denote the number of tuples that contain itemset A in D and the number of 
tuples that contain itemset A in D+, respectively. 
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According to the FUP model, the update problem of association rules can be 
reduced to finding the new set of frequent itemsets [4]. It can be divided into the 
following subproblems: 

(1) Which old frequent itemsets will be become small in the updated database. 
(2) Which old small itemsets will be become frequent in the updated database. 
(3) Tackle these itemsets: delete the association rules A B that AuB became 

small in the updated database; apply the mining algorithms into the itemsets 
that became frequent in the updated database. 

(4) How long would a database system be processed so as to update the factors 
of all itemsets. 

The FUP algorithm works iteratively and its framework is Apriori-like (For 
details of the Apriori algorithm, please see [1]). At the /cth iteration it performs 
three operations as follows: 

1. Scan D+ for any fc-itemsets, A. If the support of A in D+ is greater than, 
or equal to, minsupp, A is put into L'k that is the set of frequent itemsets in 
D+. 

2. For any fc-itemsets A in L'k, if A is not in that is the set of frequent 
itemsets in D, the support of A in D U D+ is computed. If the support of A 
in D U D+ is smaller than minsupp, A is removed from the candidate set of 
D+. 

3. A scan is conducted on D to update the support of A for each itemset in the 
candidate set of D+. 

3 Mining Strategies for Dynamic Databases 
As we argued previously, the dynamic of databases is represented in two cases: (1) 
the content updates over time and (2) the size changes incrementally. When some 
transactions of a database are deleted or modified, it says that the content of the 
database has been updated. And this database is referred to an updated database. 
When some new transactions are inserted or appended into a database, it says 
that the size of the database has been changed. And this database is referred to 
incremental database. This section designs efficient strategies for mining updated 
databases and incremental databases. 

3.1 Pattern Maintenance for Updated Databases 
The update operation includes deletion and modification on databases. Consider 
transaction database 

TD = {{A, B); {A, C}-, {A, B, C}; { B , C); {A, B, D}} 

where the database has several transactions, separated by a semicolon, and each 
transaction contains several items, separated by a comma. 



184 ShichcLO Zhang and Li Liu 

The update operation on TD can basically be 

Case-1 Deleting transactions from the database TD. For example, after deleting 
transaction {A,C) from TD, the updated database is TD\ as 

TD1 = {{A,B}-,{A,B,C}-,{B,Cy,{A,B,D}} 

Case-2 Deleting attributes from a transaction. For example, after deleting B from 
transaction {A,B, C} in D, the updated database is TD2 as 

TD2 = {{A, B}-, {A, C}-, {A, Cy {B, C}; {A, B, D}} 

Case-3 Modifying existing attributes of a transaction in the database TD. For 
example, after modifying the attribute C to D for the transaction {A, C} in 
TD, the updated database is TD3 as 

TD3 = {{A, B}-, {A, B}-, {A, B, C}; {B, C}; {A, B, D}} 

Case-4 Modifying a transaction in the database TD. For example, after modifying 
the transaction {A, C} to {A, C, D} for TD, the updated database is TD, as 

TD, = {{A, B}-, {A, C, D}-, {A, B, C}; {B, C}; {A, B, D}} 

Mining updated databases generates a significant challenge: the maintenance of 
their patterns. To capture the changes of data, for each time of updating a database, 
we may re-mine the updated database. This is a time-consuming procedure. In 
particular, when a database mined is very large and the changed content of each 
updating transaction is relatively small, re-mining the database is not an intelligent 
strategy, where an updating transaction is a set of update operations. Our strategy 
for updated databases is to scan the changed contents when the information amount 
of the changed contents is relatively small;, otherwise, the updated database is re-
mined. The information amount is defined as follows. 

Let D be a database with n transactions and the average number of attributes 
per transaction be m. Then the information amount of D is 

Amount(D) = mn 

Let UO be an updating transaction, consisting of the k update operations, Ni, 
N2, • • •, Nk, on the database D. As we have seen, each update operation, Ni, can 
generates two sets: Additems(Ni) and deleteitems(Ni). Additems(Ni) is the set 
of records, in which items are added to the database D. And deleteitems(Ni) is 
the set of records, in which items are deleted from the database D. For example, 

• Additems(UO\) = {} and deleteitems(UO\) = {{A,C}} for the example in 
Case-1; 

• Additems(U02) = {} and deleteitems(U02) = {{5}} for the example in 
Case-2; 
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• Additems(U03) = {{-D}} and deleteitems(UOs) = {{C}} for the example 
in Case-3; and 

• AdditemsiJJOi) = {{£)}} and deleteitems{UOi) = {} for the example in 
Case-4. 

For Ni (1 < i < k) in UO, the information amount of N{ is the sum of 
Amount(Additems(Ni)) and Amount(deleteitems(Ni)). Then the information 
amount of UO is 

k 

Amount(UO) = Amount(Additems(Nj)) + Amount(deleteitems(Ni))) 
i=1 

For the above example, we have 
(1) Amount(UOi) = 2 for Case-1, where UOi is the update operation in the 

corresponding example; 
(2) Amount(U02) = 1 for Case-2, where UO2 is the update operation in the 

corresponding example; 
(3) Amount{UOz) = 2 for Case-3, where UO3 is the update operation in the 

corresponding example; and 
(4) Amount(UOi) — 1 for Case-4, where UOi is the update operation in the 

corresponding example. 
For an updating transaction UO on a database D, if 

Amount(UO)/Amount(D) > 7, the updated database D must be mined, 
where 7 is a minimal relative information amount threshold. Otherwise, we only 
need to mine the changed contents in the updated database. 

Let 

Additems(UO) = Additems(Ni) U Additems{N2) U • • • U Additems(Nk) 
deleteitems(UO) = deleteitems(N\) U deleteitems(N2) U • • • U deleteitems(Nk) 

When mining the changed contents over the database D, we need to mine both 
Additems(UO) and deleteitems(UO). Let XAdditems be the number of itemsets X 
occurring in Additems(UO) and Xdeieteitems be the number of itemsets X occurring 
in deleteitems(UO). The the number, f ( X ) , of itemsets X is 

/(-^0 — X-A dditems Xdeieteitems 

There may be some hopeful itemsets in Additems(UO). Let A be an itemsets in 
the changed contents and |D| be the number of records in D. The relative support 
of A, rsupp(A), is defined as 

rsupp(A) = -y^p 

When rsupp{A) is large enough, the itemset A may be a frequent itemset in the 
updated database. This means that we may scan the database D for checking 
whether or not a hopeful itemset is frequent. 
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On the other hand, if the total information amount of the updating transaction 
UO and M updating transactions (ALLCC — {UOI, UO2, •••, UOM}) is greater 
than 7, the database D must also be re-mined, where UO\ < 7, UO2 <7, • • •, 
UOM < 7 and the M updating transactions have done before the updating trans-
action UO. 

Including the above idea, the updating transaction UO leads to that the 
database D must be re-mined if 

Mut(UO, allCC) = Amount(UO)/Amount (D) > j\J 
M 

Amount(UO) + Amount(UOi) 

— > 7 (1) 

Amount(D) y ' 

Below we design the algorithm for updated database mining. 

Algorithm 1. UpdatedDBMining; 
Input D: original database; UO: set of update operations; FS: set of frequent 

itemsets in D; 7: minimal relative information amount; a: relative minimal 
support for itemsets in the changed contents; 

Output newFS: set of frequent itemsets in the updated database; 

1. compute Amount(D); 
2. let CC <- the changed contents; 
3. let allCC 0 
4. compute Amount(UO)\ 
5. if Mut(UO, allCC) then begin 
6. mine the updated database and put frequent itemsets into newFS; 
7. allCC «- 0; 
8. endif 
9. else begin 

10. hopeset 0; 
11. allCC 4- the updating transaction ¡70; 
12. mine the changed contents CC; 
13. Cset the set of items in CC; 
14. for any A in Cset do 
15. if f(A) > a then 
16. hopeset <— hopeset U {A}; 
17. Candidate the set of itemsets in FS, in which each itemset contains at 

least an item in Csei; 
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18. scan the updated database for hopeset and Candidate-, 
19. generate new F S by FS, hopeset and Candidate; 
20. end else; 
21. output newFS; 
22. end procedure; 

The algorithm UpdatedDBMining generates frequent itemsets in updated 
databases. The initialization is carried out in steps 1-4. Step 5 checks whether 
Mut(UO,allCC) is true or not. When Mut(UO,allCC) is true, the updated 
database must be mined in step 6 and the set allCC is emptied in step 7. Oth-
erwise, we only need mine the changed contents in steps 9-20. The set hopeset is 
used to save all hopeful itemsets in the changed contents. Step 11 puts the updat-
ing transaction UO into allCC. Step 12 mines the changed contents. Steps 14-16 
generate the set of hopeful itemsets. Step 17 generates the set of itemsets in FS, 
in which their supports have been changed. Step 18 takes one scan on the updated 
database for tackling both hopeset and Candidate, so as to generate all frequent 
itemsets in the updated database in step 19. Step 21 outputs all frequent itemsets 
in the updated database. 

We now illustrate the use of this procedure by an' example as follows. 
Consider the above database TD. Let minsupp = 0.4. Then Amount(TD) = 12 

and the frequent itemsets in TD are 

A, 0.8; B, 0.8; C, 0.6; AB, 0.6; AC, 0.4; BC, 0.4 

where there are 6 frequent itemsets, separated by a semicolon, and each frequent 
itemset contains 2 items, its name and frequency, separated by a comma. 

Let 7 = 0.2, a = 0.25 and the first updating transaction is UOi, in which the 
transaction {A, C} is deleted from TD. Then the updated database is UD\ as 

UD! = {{A, B}; {A, B, C}; {B, C}; {A, B, £>}} 

And 

Additems(UO\) = 0 
deleteitems(UOi) = {{A,C}} 

Because UOi is the first updating transaction, allCC = 0. For UO\, 
Amount(UOi) = 2, 

Amount(UOi)/Amount(TD) = 2/12 

and Mut(UOi, allCC) is not true. Consequently, we only need to mine the changed 
contents {A, C} and the itemsets are A, C and AC. By the definition of the relative 
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support of itemsets, 

Therefore, 

rsupp(A) = = ^ = 0.2 < a 

rsupp(C) = ¡Щ = 1 = 0 2 < а 

f(AC) 1 
rsupp(AC) = -Щ\= 5=0-2<" 

hopeset = 0 
allCC = {i/Oi} 

For the set of frequent itemsets in D, we have 

Candidate = {A, C,AB, AC, ВС} 

By scanning the updated database for Candidate, we have 

newFS = {A, 0.6; B, 0.8; C, 0.4; AB, 0.6; ВС, 0.4} 

Note that the size of the updated database can approximately be equal to the 
size of D when D is relatively large. Accordingly, the above example takes 5 as 
the size of the updated database, aiming at showing how to deal with the frequent 
itemsets using the changed contents. 

Now, let the second updating transaction is UO2, in which the transaction 
{B,C} in UDi is modified as {A,B ,C} . Then the updated database is UD2 as 

UDi = {{А, В}; {А, В, С}; {А, В, С}; {A, B, D}} 

And 

Additems(U02) = {{A}} 
deleteitems(U02) = 0 

For UO2, Amount{U02) = 1 and 

Amaunt(U02)/Amount{TD) = 1/12 

Because allCC = {f/Oi}, Mut(U02,allCC) is true. Consequently, we need to 
mine the updated database UD2 and the itemsets are as follows 

newFS = {A, 1;B, 1;C, 0.4; AB, 0.75; ВС, 0.5; AC, 0.5; ABC, 0.5} 

The above examples have shown our strategy for effectively maintaining frequent 
itemsets in updated databases. We will focus on identifying trend patterns from 
incremental databases in the following sections. 
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3.2 Pattern Maintenance for Incremental Databases 
The incremental operation includes insertion and appending on databases. Con-
sider transaction database 

D = {{F, H, I, J}; {E, H, J}; {E, F, H}-{E, I}} 

where the database has several transactions, separated by a semicolon, and each 
transaction contains several items, separated by a comma. 

The incremental operation on a database TD can be 

(1) inserting transactions into the database TD. For example, after inserting two 
transactions {A, C} and {A, B, C} into TD before the transaction {E, H, J}, 
the incremental database is TDi as 

TD\ = {{P, H, I, J}; {A, C}-, {A, B, C}; {E, H, J}; {E, F, H}\ {E, I}} 

(2) Appending transactions into the database TD. For example, after appending 
transactions {B, C} and { A , B , D } to TD, the incremental database is TD2 
as 

TD2 = {{F, H, I, J}-, {E, H, J}-{E, F, H}-, {E, /}; {B, C}-, {A, B, D}} 

¿From the above observations, both the inserting and appending operations 
do not change the original contents in the database TD. Therefore, we can take 
an incremental operation transaction as the union of the database TD and the 
incremental dataset D+, where the dataset D+ is a set of transactions that are 
added to TD by the incremental operation transaction. 

Example 2. Let TD be a set of a transaction database with 10 transactions in 
Table 1 which is obtained from a grocery store, where A = bread, B = coffee, 
C = tea, D — sugar, E = beer, F = butter and h = biscuit. Assume that D+ is 
a set of transactions in Table 2, which are new sales records in the grocery store, 
where G = choclate. 

The databases TD and D+ are sets of data that represents the customer behav-
iors during two terms. And D+ illustrates the latest customer behavior, whereas 
TD presents the old customer behavior. A frequent itemsets in D+ is referred to 
trend pattern. Trend patterns are very important in marketing because they are 
useful in the decision-making of merchandize buying. For example, H is a trend 
pattern, which is frequently purchased in the new duration. 

However, by using the support-confidence framework, H is not a frequent item-
set in TD U D+ when minsupp = 0.4. Therefore, trend pattern discovery has 
become a key issue in incremental database mining. On the other hand, to cap-
ture the novelty of data, for each incremental operation transaction, we may also 
re-mine the incremental database. In particular, when an original database mined 
is very large and the dataset generated by an incremental operation transaction is 
relatively small, re-mining the incremental database is time-consuming. Like the 
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Table 1: Transaction databases in TD 

Transaction ID Items 
2i A, B, D, H 
T2 A, B, C, D 
T3 B, D, H 
T4 B, C, D 
?5 A, C, E 
T6 B, D, F 
T7 A, F 
TS C , F 
T9 B, C, F 
Tic A, B, C, D, F 

Table 2: Transaction databases in D+ 

Transaction ID Items 
A, B, H 

N2 B, C, G, H 
N3 B, H 

updated database mining, our strategy for mining incremental databases is to scan 
the incremental dataset when the information amount of the incremental dataset 
is relatively small; otherwise, the incremental database is re-mined. 

For an incremental dataset D+ added to a database D, if 
Amount(D+)/Amount(D) > /?, the incremental database D U D+ must be 
mined, where /? is a minimal relative information amount threshold. Otherwise, 
we only need to mine the incremental dataset and synthesize the patterns in D+ 

and D by weighting (see Sections 4 and 5). 
If the total information amount of the incremental dataset D+ and M incre-

mental datasets (allaet = {D*, D2, • • •, D i s greater than /3, the database D 
must also be re-mined, where Df < /3, D2 < /3, • • •, D^ < (3 and the M datasets 
are added to D before the incremental dataset D+ is. 

Intuitively, the constraint Amount(D+)/Amount(D) > /3 indicates that the 
incremental dataset D+ contains a information amount large enough to drives the 
mining of the incremental database. However, D+ may only contain few records 
with much information. For example, let D+ only contain a records with 200 
distinct items in Example 2 and these items are also different from items in.D. 
Certainly, the constraint Amount(D+)/Amount(D) > ¡3 holds. This leads to the 
mining of the incremental database. By using the support-confidence framework, 
there are no frequent itemsets in D+ because the frequency of each item in D+ 

is 1. Accordingly, we must take into account the size, | i?+ | , of D+ in our mining 
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strategy. In this paper, the constraint is constructed as 

constraint^, D) = L ^ h i ^ ^ i g l 

Including the above idea, the incremental dataset D+ leads to that the database 
D must be re-mined if 

Mid{D+, allset) = constraint(D+, D) > ¡3\j 
M 

constraint(D+,D)+ ^2constraint(Di',D) >/3 (2) 
i= 1 

Below we design the algorithm for incremental database mining. 

Algorithm 2. IncrementalDBMining; 

Input D: original database; D+: incremental dataset; FS: set of frequent itemsets 
in D; ¡3: minimal relative information amount; minsupp: minimal support; 

Output weightedFS: set of frequent itemsets by weighting; 

1. compute Amount(D); 
2. let allset0 
3. compute Amount(D+)\ 
4. if Mid(D+, allset) then begin 
5. mine the database D U D+ and put frequent itemsets into weightedFS; 
6. allset <- 0; 
7. endif 
8. else begin 
9. allset <— the incremental dataset D+; 

10. mine the incremental dataset D+; 
11. Pset the set of frequent itemsets in D+\ 
12. weight the support and confidence of A in D and D+ 

13. if supp(A) > minsupp then 
14. weightedFS <- A; 
15. end else; 
16. output weightedFS', 
17. end procedure; 

The algorithm IncrementalDBMining generates frequent itemsets in incre-
mental databases. The initialization is carried out in steps 1-3. Step 4 checks 
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whether Mid(D+, all set) is true or not. When Mid(D+, all set) is true, the incre-
mental database must be mined in step 5 and the set allset is emptied in step 6. 
Otherwise, we only need mine the incremental dataset D+ in steps 9-15. Step 9 puts 
the incremental dataset D+ into allset when Mid(D+, allset) is not true. Step 10 
mines the incremental dataset D+. Steps 11-14 generate the set of frequent itemsets 
by weighting. Step 16 outputs all frequent itemsets in the incremental database. 

The algorithm IncrementalDBMining includes a weighting procedure which 
is used to identify trend patterns. We will present the weighting technique in the 
following Sections. 

4 Weight Method 
Let D be a given database, D+ the incremental dataset to D, A be an itemset that 
occurs in D, A+ stands for A occurring in D+. The support of A in the incremental 
database Dt = D U D+ is as follows 

S U P P { A ) = c ( D ) + V ) + c{D){fc{D+) ( 3 ) 

Where c(D) and c(D+) are the cardinalities of D and D+, respectively; and t(A) 
and t(A+) denote the number of tuples that contain itemset A in D and the number 
of tuples that contain itemset A in D+, respectively. 

Let suppi(A) = t(A)/c(D) and supp2(A) = t(A+)/c(D+) stand for the supports 
of A in D and D+, respectively. Then the equation (3) can be represented as 

C ( D ) c(Z?+) 
supp(A) = c { D ) + c{D+)supPL(A) + c [ D ) + c { d + ) S U P P 2 ( A ) (4) 

Let 

C(D) 
h = 

k2 = 

c(D) + c{D+) 

c(D+) 
c{D) + c{D+) 

where ki and k2 are the ratios of D and D+ in the incremental database D\, 
respectively. And the equation (4) can be represented as 

supp(A) = k\ * suppi(A) + k2* supp2(A) (5) 

For the equation (5), we can take k\ and k2 as the weights of D and D+ in 
the incremental database D\. This means, if a dataset has a larger number of 
transactions, the weight of the dataset is higher. And if a dataset has few trans-
actions, the dataset is assigned a lower weight. Therefore, traditional data mining 
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techniques, such as the support-confidence framework, can really be regarded as 
trivial weighting methods. 

Consider the database D and the incremental dataset D+ in Example 2. When 
minsupp = 0.4, the frequent itemsets in D and D+ are listed in Tables 3 and 4, 
respectively. 

Table 3: Frequent itemsets in D 

Item Number of Support Item Number of Support 
Transactions P(X) Transactions P(X) 

A 5 0.5 B 7 0.7 
C 6 0.6 D 6 0.6 
F 5 0.5 BC 4 0.4 

BD 5 0.5 

Table 4: Frequent itemsets in D+ 

Item Number of Support 
Transactions P(X) 

B 3 1 
H 3 1 

BH 3 1 

After the transactions in D+ are added to D to form the incremental database 
Di = DU D+, the frequent itemsets in D\ are listed in Table 5. 

Table 5: Frequent itemsets in Dx 

Item Number of Support 
Transactions P(X) 

A 6 0.4615 
B 10 0.769 
C 7 0.5385 
D 6 0.4615 

From Tables 3, 4 and 5, the desirable patterns H and B H are not frequent 
itemsets in the incremental database D\. To identify trend patterns such as H and 
BH, the novelty of data must be emphasized. In this paper, we propose to assign 
the incremental dataset D+ a higher weight for stressing the novelty of data. For 
example, for the database D and the incremental dataset D+, we have 
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c(D) 10 _ 
= c(D) + c(D+) = 13 — ® ® 

c(D+) 3 
fc2 = c(D) + c(D+)=i3=0"231 

Taking into account the above idea, we assign £> a weight wi = 0.66 and D+ a 
weight W2 = 0.34. And the support of an itemset X in D\ is as follows 

SUpp(X) =Wi* SUppi(X) + W2* supp2{X) (6) 

Hence, for the itemsets B, H and BH, we have 

supp(B) = 0.66 * suppi(B) + 0.34 * supp2(B) 
= 0.66*0.7 + 0.34*1 =0.802 

supp(H) — 0.66 * suppi ( H ) + 0.34 * supp2 (H) 
= 0.66 * 0.2 + 0.34 * 1 = 0.472 

supp(BH) = 0.66 * suppi (BH) + 0.34 * supp2(BH) 
= 0.66*0.2 + 0.34* 1 = 0.472 

This means that both H and BH are frequent itemsets in D\ according to the 
equation (6). And all frequent itemsets in D\ are listed in Table 6. 

Table 6: Frequent itemsets in D\ 

Item Number of Weighted Support 
Transactions supp(X) 

A 6 0.445 
B 10 0.802 
C 7 0.51 
H 5 0.472 

BH 5 0.472 

Comparison with Table 6, the supports of itemsets A, C and D are decreased 
in Table 7 because they are not frequent itemsets in the incremental dataset D+. 
In particular, itemset D is not a frequent itemset in Di because 

supp(D) = 0.66 * suppi(B) + 0.34 * supp2{B) 
= 0.66 * 0.6 + 0.34 * 0 = 0.396 

On the other hand, the supports of itemsets B, B and BH are increased in 
Table 7 because they are strongly supported in the incremental dataset D+. 
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The above results have shown the following fact. In the weighting model, some 
infrequent itemsets (for example H and BH) can be interested, whereas some 
frequent itemsets (for example D) can be uninterested. 

We now define the weighting model for maintaining association rules in incre-
mental databases. 

Definition 3. (Weighting model): An association rule X Y can be extracted 
as a valid rule in D U D+ only if it has both support and confidence greater than or 
equal to minsupp and minconf respectively. Or 

suppw(X U Y ) = wi * suppi(X U Y) + w2 * supp2(X U Y) > minsupp (7) 

The confidence of the rule X —¥ Y can be directly weighted as follows 

confw(X Y) = w\ * confi(X Y) + w2 * conf2(X ->Y)> minconf (9) 

Generally, for D, Di, •••, Dn with weights wi, w2,-- • we define the 
weighted support, suppw(X), of itemset X as follows. 

suppw(X) = wi* supp(X) + w2* suppi(XY) -\ 1- wn+i * suppn(X) (10) 

where, supp(X), suppi(X), • • •, suppn(X) are the the supports of the itemset X 
in D, Di, • • •, Dn respectively. 

Let X —• Y be an association rule in D, we define the weighted support 
suppw(X U Y) and confidence confw(X —> Y) for X —> Y as follows 

suppw (X U Y) = wi * supp(X U Y) + w2 * suppi (XllF)H (11) 

1- wn+i * suppn(X U Y) 
confw(X ->Y) = Wi * conf{X -+Y)+W2* confi(X Y) + • • • (12) 

h wn+i * confn(X Y) 

where, supp(X U Y), suppi(X U Y), • • •, suppn(X U Y) are the the supports of 
the rule X Y in D, Di, • • •, Dn respectively; conf(X -» Y), confi(X Y), 
• • •, confn(X —> Y) are the confidences of the rule X —> Y in D, Di, - • •, Dn 
respectively. 

We now present the algorithm for weighting the support and confidence of as-
sociation rules. 

Let D be the given database, D+ the incremental data set, supp and conf 
the support and confidence functions of rules in D, supp+ and conf+ the support 
and confidence functions of rules in D+, minsupp, minconf, mincruc: threshold 
values given by user, where mincruc (< Min{minsupp, minconf}) is the crucial 
value that an infrequent itemset can become frequent itemset in a system. 

confw(X ->• Y) = 
suPPw(X U Y) 

suppw(X) > minconf (8) 
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Procedure 1. Weighting 

Input: D+: database; minsupp, minconf, mincruc: threshold values; R: rule 
set; CS, CS': sets of itemsets; 

Output: X —> Y: rule; CS, CS': sets of items ets; 

(1) input wi 4- the weight of D\ 
input W2 the weight of D+; 
let RR <- R\ R 0; temp 0; 
let Itemset <- all itemsets in D+ \ 
let CSD+ all frequent itemsets in D+\ 
let i i + 1; 

(2) for any X —» y € RR do 
begin 

let supp(X U Y) <- wi * supp(X UYJ+iuj* supp(X+ UY+ ) ; 
let conf(X Y) <r- wi * conf{X -*Y) + w2* conf+(X Y)-, 
if supp > minsupp and conf > minconf then 

begin 
let R rule X Y\ 
output X Y as a valid rule of ith mining; 

end; 
else let temp temp U {X, X \J Y} \ 

end; 
(3) for any B 6 CS do 

begin 
let supp(B) w\ * supp(B) + ui2 * supp{B+)\ 
if supp(B) > minsupp then 

for any A C B do 

begin 
let supp(A) w\ * supp(A) + w2* supp(A+)\ 
let conf (A (B - A)) <r- supp(B) / supp(A)-, 
if conf (A (B — A)) > minconf then 

begin 
let R <= rule A (B - A)] 
output A (B — A) as a valid rule of ith mining; 

end; 
else let temp 4- temp U {B, A}-, 

end 
end; 

(4) call competing; 
(5) return; 

The procedure Weighting generates association rules that are weighted. Here 
the initialization is done in Step (1). Step (2) performs the weighting operations on 
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rules in RR, where RR is the set of valid rules in the last maintenance. In this Step, 
all valid rules are appended into R and, the itemsets of all invalid rules weighted is 
temporarily stored in temp. Step (3) extracts all rules from competitive set CS and 
all invalid itemsets weighted in CS is temporarily stored in temp. (Note that any 
itemset in CS' can generally become as a hopeful itemset and may be appended into 
CS by competition. However, it cannot become a frequent itemset. In other words, 
CS' can be ignored when rules are mined.) Step (4) calls procedure competing to 
tackle the competing itemsets for CS and CS1, which will be described in next 
section. 

5 Competitive Set Method 
As has been shown, the proposed weighted model is efficient to mine trend patterns 
in incremental databases. To capture the novelty, some infrequent itemsets or new 
itemsets may be changed into frequent itemsets. We refer to this as the problem of 
infrequent itemsets. 

To deal with this problem, we use a competitive model to deal with this problem 
so as to avoid retracing the whole data set. A competitive set CS is used to store 
all hopeful itemsets, which each itemset in CS can become frequent itemset by 
competition. We now define some operations on CS. 

Let D be given database, D+ the incremental data set to D, A be an itemset, 
supp(A) the support of A in D, supp(A+) the relative support of A in D+. Firstly, 
all hopeful itemsets in D is appended into CS, which are defined in Theorem 2. 

Secondly, an itemset may become invalid after each mining is done. Such an 
itemset is appended into CS if its weighted support > mincruc. 

Thirdly, some frequent itemsets in D+ are appended into CS after each mining 
if their weighted supports > mincruc. These itemsets are neither in the set of 
frequent itemsets, nor in CS. But their supports are pretty high in D+. This 
means that their supports in D are unknown. For unknown itemsets, a compromise 
proposal is reasonable. So we can regard their supports in D as mincruc/2. For 
any such itemset X, suppw(X) = w\ * mincruc/2 + w2 * supp(X+) according to 
Weight model. And if suppw{X) > mincruc, itemset X is appended into CS. In 
other words, if 

> mincrucj2-Wl) 
' - 2W2 

in D+, itemset X is appended into CS\ else itemset X is appended into CS' if its 
weighted support mincruc/2, which CS' is an extra competitive set. CS' is used 
to record another kind of hopeful itemsets. The operations on CS' are similar to 
those on CS. The main use of CS' is to generate a kind of itemsets with middle 
supports in D+. For example, let mincruc = 0.3 and minsupp = 0.6. Assume the 
support of an itemset A be less than 0.3 in a given database D, and the supports 
of A in incremental data sets: Di, D2, • • • Dg be all 0.64. Because the support 
of A is less than 0.3 in D, A is not kept in system. Let wi = 0.75 be the weight 
of the old database and w2 = 0.25 the weight of the new incremental data set. 
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According to the operations on CS, suppw(A) = wi *mincruc/2 + W2*supp(A+) = 
0.75 * 0.15 + 0.25 * 0.64 = 0.2725. This means that itemset A cannot be appended 
into CS. But the support is greater than mincruc/2 = 0.15. From the novelty of 
data, it can be generated as a frequent itemsets if there are enough incremental 
data sets. Accordingly, we use CS' to capture this feature of new data. This kind 
of itemsets such as A can become frequent as follows. 

supp(A) < 0.3 -4 0.15 * 0.75 + 0.64 * 0.25 = 0.2725 
A with supp(A) = 0.2725 => CS' 
0.2725 * 0.75 + 0.64 * 0.25 = 0.364375 
A with supp(A) = 0.2725 => CS 
0.364375 * 0.75 + 0.64 * 0.25 = 0.43328 
0.43328 * 0.75 + 0.64 * 0.25 = 0.48496 
0.48496 * 0.75 + 0.64 * 0.25 = 0.52372 
0.52372 * 0.75 + 0.64 * 0.25 = 0.55279 

-4 0.55279 * 0.75 + 0.64 * 0.25 = 0.57459 
-> 0.57459 * 0.75 + 0.64 * 0.25 = 0.590945 

0.590945 * 0.75 + 0.64 * 0.25 = 0.60321 

Fourthly, some itemsets in CS' are appended into CS after each mining if their 
weighted supports > mincruc 

Finally, some itemsets are deleted from CS after each mining of association 
rules is done. By the weighted model, for any A G CS, suppw(A) = w\ *supp(A) + 
W2 * supp(A+). If suppw(A) < mincruc, A is deleted from CS; else A is kept in 
CS with new support suppw(A). 

We now design the algorithm for pattern competition. 

Procedure 2. Competing 

Input: mincruc: threshold values; temp, Itemset, CSD+, CS': sets of itemsets; 
w\, u>2: weights; 

Output: CS, CS': competitive sets; 

(1) let tempi 0; temp2 0; 
(2) for A £ temp do 

if suupp(A) > mincruc then 
let tempi <— A; 

else if suupp(A) > mincruc/2 then 
let temp2 <— A\ 

(3) for A G CS' do 
begin 

let supp(A) w\ * supp(A) +w2* supp(A+)\ 
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if suupp(A) > mincruc then 
let tempi A; 

else if suupp(A) > mincruc/2 then 
let temp2 A; 

end 
(4) for A e CSD+ do 

begin 
let supp(A) wi * mincruc/2 + w2* supp(A+); 
if suupp(A) > mincruc then 

let tempi A; 
else if suupp(A) > mincruc/2 then 

let temp2 A; 
end 

(5) let CS <- tempi; let CS' temp2; 
(6) return; 

The procedure Competing generates a competitive set for infrequent itemsets. Here 
the initialization is done in Step (1). Step (2) handles all itemsets in temp. And 
all itemsets with supports in interval [mincruc, minsupp) is appended into CS and 
the itemsets with supports in interval [mincruc/2, mincruc) is appended into CS'. 
Step (3) and (4) are as similar as Step (2) to deal in the itemsets in CS' and CSD+ , 
respectively. 

6 Experiments 
To evaluate the proposed approach, we have done some experiments using synthetic 
databases in the Internet. Our experiments shown, this model is efficient and 
promising. For simplicity, we choose the UCI database BreastCancer to illustrate 
the effectiveness and efficiency, which contains 699 records. For maintenance, the 
set of the first 499 records is taken as the initial data set. And the set of each next 
50 records is viewed as an incremental new data set. There are four incremental 
new data sets. And they will be appended into the database one by one. It needs to 
maintain the association rules once a new data set is appended into. The parameters 
of experiment databases is summarized as follows. 

Table 7: The Experiment Databases 

Record number Attribute number 
Old Database 499 10 

New Database 1 50 10 
New Database 2 50 10 
New Database 3 50 10 
New Database 4 50 10 
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Comparing Running Time of Algorithms 

We compare the large item set mining time with the Apriori and FUP. Undoubt-
edly the Apriori will spent the most time cost because it need scan for the candidate 
items in the old plus new database. The FUP model gets a good improvement. It 
scan the candidate items in the new database, it need scan in the old database only 
when the item in old large item set but not in new item set, or in new item set but 
not in old item set. But our algorithm only need to scan in the new database, so it 
spent the least time cost. Same conclusion shown in our experiment as in Figure 1. 

4000 i- time 
"'Weight* — i — 

* "FUP2" — x — 
"Apriori" ---*•--

3500 -

3000 -

2500 - - * 

2000 -

500 • 

g , i , i maintenance times | 

1 1.5 2 2.5 3 3.5 4 

Figure 1: The large item set mining time cost comparison 

Our algorithm gets a significant improvement by only scanning the new 
database. But there are some different rules in our rule set to the rule set made by 
Apriori which scan all old and new data. But on earth what is the difference, how 
about its influence? Because Cheung's FUP algorithm also scans the old database, 
which saves some cost by reducing the candidate number in old database, so it 
generate the same large itemsets as Apriori. Then they will generate same rules 
according certain confidence. So we only need to compare the result rule set with 
one of them after generate Large itemset. But our algorithm don't scan the old data 
but only the new database, then generates the Competitive Rule Set by weighting 
and choose the winners as result (There is some similarity like genetic algorithm), 
so it can consist with the new data better than their algorithms. According the 
result rule sets from large itemset 1 to 4, we compared the difference between our 
algorithm and Cheung's FUP model. 
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Comparison with FUP 

Let minsupp = 0.2, minconf = 0.7, the confidence threshold mincruc = 0.25, the 
weight of old and new rule confidence is 0.7 and 0.3 respectively, results shown as 
follows. 

Table 8: The rules in the maintenance 

After 1st After 2nd After 3rd After 4th 
maintenance maintenance maintenance maintenance 

FUP2 1062 1096 1130 1189 
Weight algorithm 1095 1185 1204 1397 

Both in AKW 1044 1089 1114 1160 
Only in Apriori 18 7 16 29 

Only in our 51 96 90 237 
Weight algorithm 

All the rules have two supports and two confidences generated relatively by the 
two algorithms, which Fconficience and Fsupport are for FUP algorithm, Wconfidence 
and Wsupport are for weight algorithm. If the rule not generated by an algorithm, we 
let its confidence and support equal zero. We define error = \ Wsupport — Fsupport\ 
to measure the difference between two confidence. For those results generated by 
both FUP and weight algorithm, the comparison shown as follows. 

Table 9: The comparison with generated results 

After 1st After 2nd After 3rd After 4 th 
maintenance maintenance maintenance maintenance 

Average error 0.015 0.031 0.032 0.02 
Max error in a rule 0.296 0.2 0.085 0.252 
Rule number with 1 1 0 28 

error over 0.1 

We can see that they are almost equal at the first 3 maintenance, at most one 
rule with error over 0.1. But at the 4th maintenance, there are 28 rules with error 
over 0.1, because some rules from new database with significant different confidence 
begin influence the old rule set by the Competitive Set. 

Now we analysis those different rules: (1) To those rules generated by our algo-
rithm but not FUP, they are the new rules can not be found by FUP. They keep 
more consistency with new database. For example, this is a rule with confidence 
only 0.4 before maintenance, but in the new database it is a significance rule, al-
ways with confidence over 0.9. In FUP, because the new databases are relatively 
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small than the old database, so the significant association in new data still can 
not be shown in the all data. During maintenance, it got a confidence serials: 0.4, 
0.44, 0.46,0.49, 0.55. But according our algorithm, the confidence change in the 
maintenance should be: 

0.4 0.4 * 0.7 + 0.9 * 0.3 = 0.45 
-4 0.45*0.7 + 0.9*0.3 = 0.585 

0.585 * 0.7 + 0.9 * 0.3 = 0.66 
-> 0.66*0.9 + 0.3 = 0.732 

Figure 2: The competitive procedure of a rule 

(2) To those rules generated by FUP algorithm but not our algorithm, they 
are the "lost" rules from FUP. It needs to know why they lost, how about the 
influence when lost those rules? 

So we analysis all those "lost" rules, and found that, for every rule, at least one 
of it's Fsupport and Fconfidence near the relative thresholds. We define the neighbor 
of minsupp and the neighbor of minconf as Sintervai and CinteTvai respectively. 
There are four classes of lost rules as follows. 

Classl: Rules with Fconfidence in Cinterval Fsupport ^ Sinterval> 

Class2: Rules with Fconfidence 
i n Cinterval a n d Fsupport n o t i n Sintervai 5 

Class3: Rules with Fconfidence not in Cinterval and Fsupport in Sintervai! 

Class4: Rules with Fconfidence not in Cintervai and Fsupp0rt not in 
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The following figure shown the rule distribution: 

Table 10: The rule distribution 

The 1st After 2nd The 3rd The 4th 
maintenance maintenance maintenance maintenance 

Classl 5.5% . 0 0 0 
Class2 66.5% 0 19% 3% 
Class3 27.8% 100% 81% 97% 
Class4 0 0 0 0 

As we know, those rules with support in Sintervai or confidence in Cintervais 
usually mean the uncertain and debated knowledge. We often discard those rules 
in practical decision, so we can say that those "lost" rule only generate some ne-
glectable influence. In order to capture the novelty, this error is certainly reasonable 
and necessary. 

We have seen, our algorithm can save much time cost in association rule main-
tenance. It keeps more association with the new data than old data, especially in a 
time serial of continually maintenance. It can generate many new rules to describe 
the new association in new data. At same time, it discards some old rules unfitting 
the new data. Their confidence or support near the threshold, so deleting them will 
only generate a slight influence to the final decision. At a word, our algorithm is 
efficient in association maintenance, especially suit the practice company decisions 
which pay more attention to the new market trend, need to a time serial support 
analysis. 

7 Conclusions 

Database mining generally presupposes that the goal pattern to be learned is sta-
ble over time. This means that its pattern description does not change while 
learning proceeds. In real-world applications, however, pattern drift is a natural 
phenomenon which must be accounted for by the mining model. To capture more 
properties of new data, we advocated a new model of mining association rules in 
incremental databases in this paper. Our concept of mining association rules in this 
paper is different from previously proposed ones. It is based entirely on the idea 
of weighted methods; the main feature of our model is that it reflects the novelty 
of dynamic data and the size of the given database. Actually, previous frequency-
based models are the special cases of our method working without respect to the 
novelty. Our experiments shown, the proposed model is efficient and promising. 
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