
Volume 16 Number 1

ACTA
CYBERNETICA

Editor-in-Chief:]. Csirik (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Assistant to the Managing Editor: B. Tóth (Hungary)

Editors: L. Aceto (Denmark), M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender
(The Netherlands), W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland),
B. Courcelle (France), J. Demetrovics (Hungary), B. Dömölki (Hungary),
J. Engelfriet (The Netherlands), Z . Esik (Hungary), F. Gécseg (Hungary), J. Gruska
(Slovakia), B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. Páun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 2003

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TgX.

After acceptance, the authors will be asked to send the manuscript's source l£X
file, if any, on a diskette to the Managing Editor. Having the T^X file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the University of Szeged, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
2003 Numbers 1-2 of Volume 16 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests
for subscription information to: Department of Informatics, University of Szeged,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-420-184, Fax::(36)-(62)-420-
292.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/local/acta.

EDITORIAL BOARD

Editor-in-Chief: J. Csirik
University of Szeged
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Managing Editor: Z. Fülöp
University of Szeged
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Assistant to the Managing Editor:

B. Tóth
University of Szeged
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Editors:

L. Aceto
Distributed Systems and Semantics Unit
Department of Computer Science
Aalborg University
Fr. Bajersvej 7E
9220 Aalborg East, Denmark

M. Aratö
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Intitute of Technology
Department of Pure and Applied
Mathematics
Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

F. Gécseg
University of Szeged
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
University of Szeged
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Jiirgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

W. Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

A. Kelemenova
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51.
CH-3012 Bern, Switzerland

B. Cour celle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex
France

J. Demetrovics
MTA SZTAKI
Budapest, Lágymányosi u. 11.
H - l l l l Hungary

B. Dömölki
IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet
Leiden University
LIACS
P.O. Box 9512, 2300 RA Leiden
The Netherlands :

Z. Esik
University of Szeged
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

L. Lovász
Eötvös Loránd University
Department of Computer Science
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

G. Päun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, R0-70700
Bucuresti, Romania

A. Prékopa
Eötvös Loránd University
Department of Operations Research
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Department of General Computer Science
Budapest, Pázmány Péter sétány 1/c.
H-1117 Hungary

H. Vogler
Dresden University of Technology
Department of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

G. Wöginger
Department of Matematics
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

Acta Cybernetica 16 (2003) 1-28.

Temporal Logic with Cyclic Counting and the
Degree of Aperiodicity of Finite Automata*

Z. Esik* and M. Ito*

Abstract

We define the degree of aperiodicity of finite automata and show that for
every set M of positive integers, the class Q A M of finite automata whose
degree of aperiodicity belongs to the division ideal generated by M is closed
with respect to direct products, disjoint unions, subautomata, homomorphic
images and renamings. These closure conditions define q-varieties of finite au-
tomata. We show that q-varieties are in a one-to-one correspondence with lit-
eral varieties of regular languages. We also characterize Q A M as the cascade
product of a variety of counters with the variety of aperiodic (or counter-free)
automata. We then use the notion of degree of aperiodicity to characterize the
expressive power of first-order logic and temporal logic with cyclic counting
with respect to any given set M of moduli. It follows that when M is finite,
then it is decidable whether a regular language is definable in first-order or
temporal logic with cyclic counting with respect to moduli in M.

1 Introduction
The richness of the theory of regular languages is due to the many different char-
acterizations of (subclasses of) regular languages. By the theorem of Biichi and
Elgot, a language is regular iff it is definable in monadic second-order logic over
words [3, 6] involving the predicate < and a predicate corresponding to each let-
ter of the alphabet. Moreover, by classic results of Schiitzenberger [14] and Mc

'This paper is a revised version of the author's technical report RS-01-53, BRICS, December,
2001.

tDept. of Computer Science, University of Szeged, Szeged, Hungary.
Email: e s ik f l in f .u - szeged .hu
The results of this paper were obtained during the first author's visit at the Faculty of Science
at the Kyoto Sangyo University and at the Department of Computer Science at the University of
Aalborg.
The first author was partially supported by Grant-in-Aid 10044098, Japan Society for the Pro-
motion of Science, by BRICS (Basic Research in Computer Science), and by grant no. T30511
from the National Foundation of Hungary for Scientific Research.

tDept. of Mathematics, Kyoto Sangyo University, Kyoto, Japan.
Email: i tof lksuvxO.kyoto-su.ac . jp
Partially supported by Grant-in-Aid 10044098, Japan Society for the Promotion of Science.

1

2 Z. Esik and M. Ito

Naughton and Papert [11], a language is star-free iff it is definable in first-order
logic iff it is accepted by an aperiodic (or counter-free) finite automaton. Thus, it is
decidable for a regular language whether or not it is definable in first-order logic, or
has a star-free expression. Moreover, by a classic result of Kamp [10] and Gabbay
et al. [8], the logic LTL of Linear (Propositional) Temporal Logic over words has
the same expressive power as first-order logic.

The above results have been extended in several directions involving, in addition
to words, also w-words, trees and other structures, see [18, 19] for overviews. In
order to increase the expressive power of first-order logic on words, two kinds of
cyclic counting have been studied: the extension of first-order logic with numerical
predicates Cfn(x) that holds for a position a: in a word iff x is congruent to r modulo
m, see [1, 16], and the extension with modular quantifiers, cf. [17, 16]. In this paper
our concern is the first type of counting. In [1], Barrington, Compton, Straubing
and Therien gave a decidable characterization of the languages definable in first-
order logic with counting with respect to the predicates Cfn(x), where the modulus
m ranges over all positive integers and r is any nonnegative integer < m. However,
this characterization does not answer the question that, given a finite set M of
moduli, what languages are definable by using only predicates involving moduli in
M. Our aim in this paper is to provide an analysis of the above mentioned result
of Barrington, Compton, Straubing and Therien that will provide an answer to the
previous question. Moreover, we also study an extension of temporal logic yielding
the same expressive power.

We define the degree of aperiodicity of finite automata and show that for every
set M of positive integers, the class Q A M of automata whose degree of aperiodicity
belongs to the division ideal generated by M is closed with respect to direct prod-
ucts, disjoint unions, subautomata, homomorphic images and renamings. These
closure conditions define q-varieties. We show that q-varieties are in a one-to-one
correspondence with literal varieties of regular languages. We also characterize
QA M as the cascade product of a variety of counters with the variety of aperi-
odic (or counter-free) automata. We then use the notion of degree of aperiodicity
to characterize the expressive power of first-order logic and temporal logic with
cyclic counting with respect to any given set M of moduli. When M is finite, this
characterization is effective.

The paper is organized as follows. In Section 2 we define literal varieties of
regular languages, q-varieties of finite automata, and establish an Eilenberg-type
correspondence between them. In Section 3, we recall the notion of cascade product
of finite automata together with a few basic facts regarding regular languages ac-
cepted by cascade products. We also define cascade products V * W of q-varieties.
Then, in Section 4, we study q-varieties of finite automata of the form Cm * V ,
where M is a given subset of the positive integers and CM is the q-variety generated
by all counters whose length belongs to M. Then, in Section 5, we define the degree
of aperiodicity of finite automata and show that for every set M as above, the finite
automata whose degree of aperiodicity belongs to the division ideal generated by
M form a q-variety QA M which is the cascade product of CM with the q-variety
of aperiodic (counter-free) automata. Moreover, we show that the degree of ape-

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of... 3

riodicity of a finite automaton is computable. We also show that a language can
be recognized by an automaton in QA M iff it can be constructed from the finite
languages and the languages consisting of all words over the underlying alphabet
whose length is a multiple of some integer in M by the boolean operations and
concatenation. Then, in Section 6 we prove that the very same condition charac-
terizes the languages definable in first-order logic with cyclic counting with respect
to moduli in M. When M is empty or M is the set of all positive integers, these
results correspond to those of Schiitzenberger [14], Mc Naughton and Papert [11],
and Barrington et al. [1] mentioned above. In Section 7, we provide several exten-
sions of propositional temporal logic with cyclic counting and show that all these
are equivalent. Moreover, we show that temporal logic with cyclic counting with
respect to any given set M of moduli has the same expressive power as first-order
logic with counting with respect to moduli in M. When M is empty, this fact
corresponds to the result of Kamp [10] and Gabbay et al. [8]. Section 8 contains a
summary of the results obtained and outlines some future results.

We have tried to make the paper accessible for a wider audience.

2 An Eilenberg correspondence
A finite alphabet, or just alphabet, for short, is any finite nonempty set whose
elements are called letters. When £ is an alphabet, we let £* denote the free
monoid of words over £ including the empty word e equipped with the operation of
concatenation as product. For any word u = aq ... a n _i , where the a,i are letters,
we call the integer n the length of u and denote it by |u|. We let £™ denote the set of
all words in £* of length n. The prefix order < on words is defined by u < v iff there
is a word 2 with uz = v, i.e., when u is a prefix of v. Suppose that h is a (monoid)
homomorphism £* A*, where E, A are finite alphabets. We call h nonerasing if
ah ^ e holds for all a G E. Moreover, we call h a literal homomorphism. if ah 6 A
holds for all a G E.

A language (over E) is any subset of £*. Languages over E are equipped with
several operations including the boolean operations U, fl and 0 (complement), prod-
uct (or concatenation), Kleene star (*), left and right quotients, homomorphisms,
inverse homomorphisms, etc. These are defined in the standard way. When L C E*
and u G £*, we let u~1L and Lu~l denote the left and right quotients of L with
respect to u, respectively:

u_1L = {v G £* : uv G L]
L u = {v G E* : vu G L}

We will sometimes identify a word w with the singleton set {w} and write w* for
the Kleene star {w}* of the language {w}.

Recall that a language L C E* is called regular if it can be constructed from the
finite subsets of £* by the regular operations of union, product and Kleene star. It
is well-known that the class of regular languages is closed with respect to all of the

4 Z. Esik and M. Ito

operations mentioned above. Moreover, by Kleene's classic theorem, the regular
languages are exactly those languages that can be recognized by finite automata.

In this paper, by a finite automaton, or just automaton, we mean a system
Q = (Q, E, •) consisting of a finite nonempty set Q of states, a finite input alphabet
E and a right action of E on Q, i.e., a function •: Q x E -¥ Q, which is extended to
an action of E* on Q in the usual way. Below we will usually write just qu for q • u,
for all q £ Q and u £ E*. The function q 1-4 qu is called the function induced by u,
denoted u®. When we want to emphasize that the input alphabet of an automaton
is some alphabet E, we call it a E-automaton. Suppose that L C E* and that
Q = (Q, E, •) is a E-automaton. We say that L is recognizable in Q, or that L can
be recognized by Q, if there are a state qo £ Q, the initial state, and a set F C Q
of final states such that L = {u € E* : q0u £ F}. Moreover, a language is called
recognizable if it can be recognized by some finite automaton. The aforementioned
theorem of Kleene equates the recognizable languages with the regular languages.

Recall [5, 12] that a stream (or class) V of regular languages is a nonempty
collection E*V of regular languages over E, for each finite alphabet E. Streams of
regular languages are ordered by set inclusion: we write V C V if £*V C E*V, for
all finite alphabets E.

Definition 2.1. A literal variety (of languages), or l-variety, for short, is a stream
V of regular languages closed with respect to the boolean operations, left and right
quotients and inverse literal homomorphisms. Thus, if Li,L,2 £ £*V and a £ E,
then Li U L2, L\ fl L2, a~lL\ and L^a-1 are all in E*V. Moreover, if h is a
literal homomorphism A* -» E*, so that Ah C £, then L i / i - 1 £ A*V.

A *-variety (-(--variety, respectively) of languages is a literal variety which is
closed with respect to all (nonerasing, respectively) inverse homomorphisms.

Example 2.2. It is clear that 1-varieties form a complete lattice, in fact, an alge-
braic lattice. The largest l-variety contains, for each E, all the regular languages
in £*, and the smallest only the empty language and the language E*. When
{Vi : i £ 1} is a directed set of 1-varieties, the least upper bound V = Vie/ ^ is
just the union | J i e J Vi, so that E*V = | J i e / E * V i , for each E.

Example 2.3. Of course, every *-variety or +-variety is a literal variety. For each
E, let £*£ consist of all regular languages L in E* such that for all words u,v £ E*,
if u € L and |u| = |i>|, then v £ L. Then £ is a literal variety which is not a +-variety
or a *-variety.

The 1-varieties contained in C correspond to those boolean algebras of regular
languages over the one-letter alphabet closed with respect to quotients. We give
some examples of such varieties.

Suppose that d > 1 is an integer. The l-variety Cd is that generated by the
one-letter regular language (ad)*, considered as a subset of a*. It is not hard to
see that each language in T,*Cd is a finite union of languages of the form (Ed)*E i ,
where i is an integer in [d\ = {0 ,1 , . . . , d — 1}.

Suppose that M is a subset of the set Nat of positive integers. Then let CM
denote the smallest l-variety containing all of the Cm with m £ M. It is clear that

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of... 5

CM is the union of those CD where d is contained in the division ideal (M] generated
by M. (Of course, (M] consists of all divisors of least common multiples of finite
families of elements of M.) Thus, CM Ç CW iff [M] Ç (M']. We write C for C№T.

Further examples of literal varieties that are not ^-varieties or +-varieties will
be given later.

Remark 2.4. The *-varieties defined above are the same as the *-varieties of
Eilenberg [5], see also [12]. However, Eilenberg's +-varieties [5] are streams of
regular languages containing only nonempty words closed with respect to the boolean
operations, left and right quotients, and nonerasing inverse homomorphisms. If V
is a + -variety as defined in Definition 2.1, and i / £ + W = { L f l £ + : L £ £*V}; for
each £, where £+ denotes the free semigroup of all nonempty words over £, then
W is an Eilenberg +-variety. This mapping V > VV is surjective but not injective.

Suppose that W is an Eilenberg +-variety. For each alphabet £, define

£*V = {L,LUe:L<=Z+W}.

Then V is a +-variety, as defined in Definition 2.1, which is mapped to W. If for
some £, there is a finite nonempty set in £+W, then this is in fact the unique
+-variety mapped to W. However, ¿/£*V = {0,£*} and £*V = {0,e, £+,£*}, for
each alphabet £, then the same Eilenberg +-variety W corresponds to both V and

V:

£+W = {0,£+},

for each £.
A stream (or class) V of finite automata is a nonempty collection £ V of finite

£-automata, for each finite alphabet £. Streams of finite automata are ordered by
set inclusion in the same way as streams of regular languages.

The notions of subautomaton and quotient (or homomorphic image) of an au-
tomaton are defined as usual. When Q = (Q, £, •) and Q' = (Q', S, •) are automata
with the same set of input letters, the direct product Q x Q' = (Q x Q',Y,,-) is
equipped with the pointwise action, so that (q, q') • a = (qa,q'a), for all q € Q,
q' G Q' and a £ £. The disjoint sum (or disjoint union) of Q and Q' is also defined
in the standard way: Q © Q' = (Q x {0} U Q x {1}, £, •), where (q, 0)a = (qa, 0)
and (q\ l)a = (q'a, 1), for all q £ Q and q' £ Q'. Suppose now that Q = (Q, £, •)
and Q' = (Q',A, •), where £ and A are any alphabets. We say that Q can be
constructed from Q' by renaming, or that Q is a renaming of Q', if Q = Q' and
there is a function h : £ -» A such that qa = q{ah), for all q £ Q and a £ £.

Definition 2.5. A q-variety of finite automata is any stream of finite automata
closed with respect to the operations of taking subautomata, quotients, direct prod-
ucts, disjoint sums and renamings.

We use the prefix to distinguish q-varieties from varieties (or pseudo-varieties)
that are nonempty classes of automata with thé same input alphabet closed with

6 Z. Esik and M. Ito

respect to the operations of taking subautomata, quotients, and direct products,
and to express that q-varieties are also closed with respect to the quasi-direct product
[9].

Since a q-variety V is nonempty and closed with respect to subautomata, quo-
tients, direct product and renaming, closure under disjoint sum is clearly equivalent
to the requirement that the two-element discrete automaton with a single input let-
ter belongs to V. (A E-automaton is called discrete if it is a disjoint sum of trivial,
i.e., one-state E-automata.)

A *-variety (+-variety) of finite automata is a q-variety that is also closed with
respect to the operation Q >-> Q* (Q Q+). Here, the operation Q 1-4 Q* is
defined as follows. Let Q = (Q, E, •), say, and let M(Q) denote the monoid of
Q. Thus, the elements of M(Q) are the functions u® : Q Q induced by the
words u G £*, and the product operation in M(Q) is function composition written
left-to-right. Now Q* is (Q, M(Q), •), where for each q E Q and u £ £*, q • uQ is
just qu = q-u, the image of q under i f i . The automaton Q+ is defined in the same
way except that its alphabet is S(Q) = {u® : u £ E + }, the semigroup of Q.

Remark 2.6. It is clear that *-varieties of finite automata correspond in a bijective
manner to varieties of finite monoids as defined in [5, 12]. Given a *-variety V of
finite automata, the corresponding variety of finite monoids consists of all monoids
that are isomorphic to the monoid of some automaton in V. However, a similar
function mapping +-varieties of finite automata to varieties of finite monoids is
only surjective, but not injective. See also Remark 2.4-

Example 2.7. The set of all q-varieties equipped with set inclusion is an algebraic
lattice. The largest q-variety contains, for each E, all E-automata, and the smallest
one only the discrete E-automata. When {Vi : i £ 1} is a directed set of q-varieties,
the least upper bound \ / i e I Vj is just the union Uie/

Example 2.8. For each E, the q-variety L consists of all autonomous E-automata,
i.e., all the automata Q = (Q, E, •) such that qa — qb, for all q £ Q and a,b € E.

Given an integer d > 1, the q-variety C^ has, as its members in EC,*, all the
E-automata that are disjoint sums of E-counters of length a divisor of d. A £-
counter is an automaton (Q, E, •) such that each letter in E induces the same cyclic
permutation Q —» Q. The length of the counter is \Q\, the number of states in Q.
Note that Cd is contained in L.

When M is a set of positive integers, then we define CM = VmeM ^m, so
that Cm is the least q-variety containing all of the C m with m £ M. Note that
Cm is just the union of the Cd with d any integer in (M]. Thus, Cm C Cm ' iff
(M] C (M'\. We denote CNat by C.

Suppose that V is a q-variety. The corresponding stream V of regular languages
contains those languages in E*V that can be recognized by an automaton in EV
(by a suitable initial state and a set of final states). Thus, a language L C E*
belongs to £*V if and only if there is an automaton Q = (Q, E, •) in V, a state
qo £ Q and a set F C Q such that the language recognized by Q with initial state

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity o f . . . 7

qo and final states F is L. Alternatively, a (regular) language L C £* belongs to
£*V if and only if the minimal automaton recognizing L is in SV.

The following variant of Eilenberg's variety theorem [5, 12] follows by standard
arguments.

Theorem 2.9. The correspondence V i V is an order isomorphism from the
lattice of q-varieties of finite automata onto the lattice of l-varieties of regular lan-
guages. The same correspondence establishes an order isomorphism between *-
varieties (+-varieties) of finite automata and *-varieties (+-varieties) of regular
languages.

Proof. We briefly sketch the proof of the first statement. If L is in £* V, then L is
accepted by an automaton in V by a suitable initial state and a set of final states.
By taking the same initial state and the complement of the set of final states, the
same automaton accepts Lc. It is also known that any quotient of L can be accepted
by the same automaton with suitable initial and final states. Closure with respect
to set union follows from the fact that the union of languages accepted by Q\ and
Q2 can be accepted by the direct product of Q1 and Q2. It is clear that Vj C V2
implies Vi C V2. Suppose now that Vi C V2. Assume that Q = (Q,E,-) £ Vi
is generated by a single state qo, so that each state q £ Q is of the form qo'u, for
some u £ £*. For each state q £ Q, let Lq denote the language accepted by Q with
initial state qo and single final state q. Since Lq £ Vi and Vi C V2, there exists an
automaton Qq £ V2 accepting Lq with some initial state iq and some set of final
states Fq. Now the direct product of the Qq contains a subautomaton that can be
mapped homomorphically onto Q : take those tuples of the direct product accessible
by a word from that tuple whose components are the respective initial states i,r It
follows that each state s = (sq)q^Q has a unique component sq with sq £ Fq, and
that the map taking s to this component sq is a homomorphism onto Q. Since V2
is closed with respect to direct product, subautomata and homomorphic images,
it follows that Q is in V2. If Q £ Vi is not generated by a single state, then Q is
a quotient of the disjoint sum of its (maximal) one-generated subautomata. Since
q-varieties are closed with respect to disjoint sum, it follows by the above argument
that Q £ V2. Finally, the fact that the assignment V V is surjective can be
seen as follows. Given an 1-variety V, consider the stream V of automata that only
accept languages in V, so that Q = (Q, £, •) £ V iff for each qo £ Q and F C Q it
holds that the language accepted by Q with initial state qo and set of final states
F is in V. Then V is a q-variety mapped to V. Indeed, the closure properties
of V guarantee that V is a q-variety. Moreover, every language L £ £*V can be
accepted by an automaton in V, namely the minimal automaton QL corresponding
to L, since any language accepted by this automaton is a boolean combination of
quotients of L. •

Example 2.10. The 1-variety corresponding to L is the variety £ defined in Ex-
ample 2.3. For each M, the 1-variety corresponding to Cm is CM-

8 Z. Esik and M. Ito

Example 2.11. We call a finite automaton Q = (Q, E, •) nil-potent if there is an
integer n such that qu = qv holds for all words u, v £ E* of length > n. (Note that
the usual definition of nilpotent automata [9] requires that qu = q'v holds for all
states q,q' and words u,v £ £* of length at least n.) Nilpotent automata form a
-(--variety denoted N. The corresponding +-variety M of languages consists of all
finite and cofinite languages in £*, for each alphabet E.

Example 2.12. A finite automaton Q = (<3,E,) is called definite if there exits
some n > 0 such that for all q £ Q and u, v £ £*, if the suffixes of u and v of length
at most n agree, then qu = qv. (Again, the usual definition of definite automata [9]
requires more.) For example, any shift register (£", E, •) with u • a being the length
n suffix of ua, for each u £ E n and a £ A, is definite.

Definite automata form a +-variety D with corresponding +-variety of lan-
guages denoted V. We call T> the +-variety of definite languages. For each E and
L C £*, we have L £ E* iff there is an integer n > 0 such that for all words
u,v £ E* such that u and v have the same suffixes of length at most n, it holds
that u £ L iff v £ L. (See [5].)

Example 2.13. A finite automaton Q is called aperiodic, or counter-free [5], if
M(Q) (or S(Q)) contains only trivial subgroups. Aperiodic automata form a *-
variety A with corresponding language variety A. We have that N C D C A and
M CD C A.

3 Cascade product
We call a function r : E* -> A* sequential if r preserves prefixes, i.e., for all words
u and v in £*, if u < v in the prefix order then T(U) < T(V). It then follows that
for each word u £ E* there is a (unique) function, in fact a sequential function
TU : £* A* with R(uv) = T(U)TU(V). If in addition r preserves the length of the
words, then we call r a literal sequential function.

Sequential functions are known to be the functions inducible by sequential trans-
ducers, and literal sequential functions by Mealy automata [9], which are a re-
stricted type of transducers. The (literal) sequential functions r : E* —> A* that
can be induced by finite transducers obey the condition that the functions ru ,
u £ E* form a finite set. Such (literal) sequential functions are said to be of finite
state. Note that any (literal) homomorphism is a finite state (literal) sequential
function.

Suppose that Q = (Q, E, •) is a finite automaton. A Mealy automaton [9] over Q
is the extension of Q by an output alphabet A and an output function ¡JL : Q x E —>
A. We let Q(A,n) denote this extension. Clearly, each state q £ Q may be used to
induce a finite state literal sequential function ¡j,q : E* —• A* defined by /ig(e) = e
and fxq(ua) = ¡j,q(u)fi(qu, a). We use Mealy automata extensions to define cascade
products.

Suppose that Q = (Q, E, •) and R = (R, A, •) are finite automata and suppose
that we are given a Mealy automaton extension Q(A,n) of Q. Then the cascade

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity o f . . . 9

product of Q with R determined by /x is defined to be the automaton Q xM R =
(iQ x R, E, •), where (q,r)-a = (qa,rfi(q,a)) = (qa,rnq(a)), for all q £ Q and r € R.
Note that it follows by induction that (q,r) •u = (qu,rnq(u)), for all u £ E*.

The semigroup theoretic concepts corresponding to the cascade product are the
semidirect product and the wreath product, cf. [5, 12]. The following fundamen-
tal fact is a variant of Straubing's "wreath product principle" [4] to the cascade
product.

Proposition 3.1. A language is recognized by a cascade product Q x^R with initial
state (qo,fo) iff it is a finite union of languages of the form K fl /x"1 (L), where K
is a language recognized by Q with initial state qo and L is a language recognized
by R with initial state ro •

The cascade product may be extended to q-varieties.

Definition 3.2. Suppose that V and W are q-varieties. The q-variety V * W ¿5
that generated by all cascade products Q xM R with Q an automaton in EV, R an
automaton in AW, and Q(A,n) a Mealy automaton extension of Q.

It is immediate to prove that when both V and W are -I—varieties (*-varieties,
respectively), then so is V * W.

The 1-variety corresponding to V*W has the following description. The result is
an adaptation of a similar characterization of languages recognizable by semigroups
in the wreath product of two semigroup varieties, see [12].

Theorem 3.3. Suppose thatV and W are q-varieties with corresponding l-varieties
V and W. Then for each E, the l-variety V * W corresponding to V * W contains
exactly those languages in E* that are finite unions of languages of the form K fl
/u-1(I<), where K £ E*V, L £ A*W and where n : £* —> A* is a sequential function
induced by some state of a Mealy automaton extension of an automaton in V.

We may as well require that the same finite state literal sequential function \i
appears in all terms of the finite union. Theorem 3.3 relies on Proposition 3.1 and
the following fact.

Theorem 3.4. For any q-varieties V and W and any E, an automaton Q is in
£ (V * W) iff Q is a quotient of a subautomaton of a cascade product Rx^S, where
R £ EV and S £ AW such that i?(A,/x) is a Mealy automaton extension of R.

Proof. Let K denote the stream determined by those automata Q that can be
constructed as quotients of subautomata of cascade products of automata R £ V
and 5 € W. It is clear that K C V * W . Also, K is easily shown to be closed with
respect to subautomata, quotients, direct products and renaming. Moreover, K
clearly contains all discrete automata. Hence, K is closed with respect to disjoint
sum. It follows that V * W C K. •

We say that a q-variety V is closed with respect to the cascade product if for any
cascade product Q x^R with Q,R £ V, it holds that Q xM R £ V. For example,

10 Z. Esik and M. Ito

N ,D , A are all closed with respect to the cascade product, cf. [5]. Moreover, for
any set M of positive integers, Cm is closed with respect to the cascade product,
as is any q-variety of autonomous automata.

We omit the straightforward proofs of the following facts.

Proposition 3.5. Any q-variety contained in L is closed with respect to the cascade
product. If V and W are q-varieties such that V is contained in L and W is closed
with respect to the cascade product, then V * W is also closed with respect to the
cascade product.

Proposition 3.6. Suppose that {Vj : i £ 1} is a directed set of q-varieties and
V = Uie / V t - Then for any q-variety W, we have V-kW — \Ji€lVi*:W. Suppose
that Vi denotes the l-variety corresponding to Vj, for each i £ I, and suppose that
V denotes the l-variety corresponding to V. Then for any l-variety W, it holds that
V*W = U i6/(Vi*W).

Thus, the * operation is continuous in its first argument. In a similar way, it is
continuous in its second argument.

As an immediate application of Proposition 3.6 we have that

Cm * V = (J C d * V
d€(M]

and

CM * V = (J Cd*V,
de(M]

for all q-varieties V and 1-varieties V, and for all M C Nat.

4 Varieties CM * V
In this section, we study q-varieties of the form Cd * V and Cm * V, and the
corresponding 1-varieties CD*V and CM * V.

Definition 4.1. For any automaton Q = (<3,£,-) and integer d > 0, let Q^
denote the automaton (Q,Y,(d\ •), where T,^ consists of all letters (u), where u is
any word of length d in £*, i.e., any element o}Hd, and where

q-(u) = qu,

for all q £ Q and u £ £d.

Thus, Q^ arises from Q by letting the words in £* of length d be the input
letters. For each u £ £ d , the function induced by (u) in Q^ is the same as the
function induced by u in the automaton Q. Besides we will also use the
automaton Q[d\ which is the extension of Q^ by a letter ao inducing the identity

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of... 11

function Q-+Q. Thus, Q(d) = (Q, £ (d) U {a0}, •), where q • a0 = q, for all q £ Q,
and where for all q £ Q and u £ q • (u) is defined as above. Note that the
monoids M(QW) and M{Q[d)) are both isomorphic to the submonoid Md{Q) of
the monoid M(Q) of automaton Q consisting of all functions Q Q induced by
those words in S* whose length is a multiple of d.

Proposition 4.2. Each, automaton Q is a homomorphic image of a cascade product
of an automaton which is a direct product of a counter of length d with a shift
register, and the automaton Q^.

Proof. Suppose that Q = (Q, £ , •), so that Q[d) is (Q, £<d> U {<z0}, •) defined above.
Let Cd denote the counter of length d whose input alphabet is £ and whose

states are the integers in [d\, so that i • a = i + 1 mod d, for all i £ [d\ and a £ E.
Let Dd-i denote the shift register of length d - 1 over £. Thus the states of Dd-i
are the words in E d _ 1 , and the transition is defined so that for each u € E d _ 1 and
a £ £, state u • a is the suffix of ua of length d— 1. Define

/»:([(flx £ d _ 1) x E £ (d) U {a0}

by

(U u) a) = I a° i ^ d ~ 1
" ' '' ' {ua) otherwise.

We thus obtain the cascade product Q' = {Cd x Dd-1) xM Q[d\ We claim that
there is a surjective homomorphism h : Q' —» Q. Indeed, for each state ((i ,u),q) of
Q', define

((i,u),q)h = qv,

where v denotes the suffix of u of length i. In particular, ((0, u)yq)h = q, for all
u £ E d _ 1 and q £ Q, so that h is surjective. We show that h is a homomorphism.
Assume that ((¿, u),q) is a state of Q' and a £ E . li i ^ d — 1 then

((i,u),q)ah = ((i + 1, u'a), q)h
= qva

= (((i,u),q)h)a,

where v denotes the suffix of u of length i and u' the suffix of u of length d — 1.
When i = d — 1, we have

((d — l,u),q)ah = ((0 ,u'a),qua)h
= qua

= (((d-l,u),q)h)a,

where u' is the same as above. •

12 Z. Esik and M. Ito

Remark 4.3. The same argument proves the following stronger version of Propo-
sition 4-2. Suppose that R is a subautomaton ofQsuch that for each q £ Q there
exists a state r £ R and a word u 6 E* with |«| < d such that ru = q holds in Q.
Then automaton Q is a homomorphic image of a cascade product of an automaton
which is the direct product of a counter of length d with a shift register, and the
automaton R. Indeed, if we replace Qwith R in the above proof, the same ar-
gument works. The assumption that each q £ Q be of the form ru with r £ R and
|it| < d is needed to show that h is surjective.

Recall that D denotes the -t—variety of definite automata, and that V denotes
the corresponding -(--variety of definite languages. Note that for any *-variety V
of automata and for any automaton Q and d > 1, we have Q^ € V iff Q^f1 £ V.
Corollary 4.4. Suppose that V is a q-variety such that D * V C V. Then for any
integer d> 1 and automaton Q, if Q^ £ V then Q £ Cd * V.

We now want to prove a certain converse of the above result.

Proposition 4.5. Suppose that V is a *-variety of automata and d > 1. If Q £
Cd * V, then Q(d\ and thus Q[d\ is inV.

Proof. First assume that Q is 1-generated, i.e., there exists a state qo in Q such
that each state is accessible from go by an input word. If Q £ Cd * V then, by
Theorem 3.4, Q is a quotient of a subautomaton R' of a cascade product of an
automaton C in Cd and an automaton R in V. Since Q is 1-generated, without
loss of generality we may assume that so is R'. But in that case C may be chosen
to be 1-generated as well, so that C is a counter in Cd and is thus a quotient of a
counter of length d. We conclude that Q is a homomorphic image, with respect to a
homomorphism h, of a subautomaton R' = (R', E, •) of a cascade product Cd xM i?,
where Cd = ([d], E, •) is the counter of length d with ia = i + 1 mod d, for all i 6 [d\
and a 6 E, and R = (R, A, •) is an automaton in V. For each i € [d\, let Rz denote
the set of all states r £ R such that G R'. It is clear that Ri / 0. Moreover,
let hi : Ri ^ Q be defined by r K> h((i,r)), for all r € Ri. We turn each Ri into an
automaton Ri = (Rn, •) with input letters in the set £(d). For each r € Ri and
u £ Ed , let r • (u) = rm(u), the image of r with respect to the word which is the
image of u with respect to the sequential function induced by state i of the Mealy
extension Cd(A, ¡i). Since V is a *-variety and R £ V, it follows that each Ri is in
V. Indeed, Ri can be constructed from R* by renaming and taking subautomata.
Also, each hi is a homomorphism Ri —> and since h is surjective, each state
in Q appears as the image of some state in Uigjd] Thus, the disjoint sum of the
Ri can be mapped homomorphically onto proving that Q^ is in V (since V
is closed with respect to disjoint sum).

In the general case, Q is a quotient of the disjoint sum of its 1-generated sub-
automata Qi,...,Qn- If Q 6 Cd * V then each Qi belongs to Cd * V. Thus, by
the above argument, we have Q^ £ V, for each i. Since V is closed with respect
to disjoint sum, it follows that the disjoint sum of the Q ^ is also in V. But
is a quotient of this disjoint sum, so that QW £ V. •

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of... 13

Call a q-variety V decidable if there is an algorithm to decide for any given
automaton Q whether or not Q belongs to V. Similarly, call an 1-variety V de-
cidable if there is an algorithm to decide whether or not a regular language (given
by an automaton or a regular expression) belongs to V. From Corollary 4.4 and
Proposition 4.5 we have:

Theorem 4.6. For any *-variety V of automata with D * V C V, and for any
d > 1 and automaton Q, we have that Q E Cd * V iff Q^ E V. Thus, if V is
decidable, then so is C¡¿*V.

A first characterization of the languages in the variety Cd * V, where V is any
1-variety of languages, may be obtained from the wreath product principle. Let
E denote an alphabet and consider the E-counter Cd — ([d],E, •) with i • a =
i + 1 mod d, for all i £ [d\ and a 6 E. Consider the alphabet [d\ x E and the
identity function iTd • [ci] x E —¥ [d\ x E. Let Cd denote the literal sequential
function induced by the Mealy extension Cd([d] x E, Hd) in state 0. Then any
literal sequential function a : E* —> A* induced by a state of a Mealy extension
of an automaton in Cd can be factorized as the composition of od with a literal
homomorphism r : ([ci] x £)* —> A*. Thus, by the wreath product principle we get:

Proposition 4.7. A language L C E* belongs to Cd*V iff L can be written as

L = U t E ^ n or-i^),
i€[d]

for some languages Ki € ([d\ x £)*V, i 6 [d\-

When V corresponds to a *-variety V with D * V C V, we can use Theorem 4.6
to derive an alternative characterization of the languages in Cd * V.

Suppose that L C £* and d > 1. We define

L{d) = {(uo) • • • (uk-i) : Uo • • • Mfc-i £ L, m € £d, i E [A;]},

so that LW c (£(d))*. Moreover, for each u E £* with \u\ < d, we define L ^ =
(Lu- l)W. Thus, L ^ and each L ^ is a language in (E^)* , moreover, L ^ =

Theorem 4.8. Suppose that V is a *-variety of automata with D * V C V, and
suppose that V denotes the language variety corresponding to V. Then for any
integer d> 1 and language L C £*, if L £ Cd*V then € V, for all w e E*
with M < d. Moreover, if L^^ E V, for all u 6 E* with |u| < d, and ifV is closed
with respect to right (or left) concatenation with letters, then L £Cd*V.

Proof. Suppose first that L is in E*(Cd * V). Then L can be recognized by an
automaton Q in Cd * V. By Theorem 4.6 we have that Q^ E V. But each of the
languages L^d'u\ where u E £* with |u| < d can be recognized by For if L
is recognized by Q ~ (Q, E, •) with initial state q0 and final states F, then Z,(d>")

14 Z. Esik and M. Ito

is recognized by Q^ with initial state qo and final states Fu = {q 6 Q : qu € F}.
Thus, each L(d-u) belongs to V.

Suppose now that each belongs to V, for any u 6 E* with |u| < d, so
that each L(d'u) can be recognized by some automaton Qu in E ^ V . For each u,
let Ru = Qu x (U;fc6[d]Efc). We turn Ru into a E-automaton (Ru, E, •) by defining,
for each (q,v) € Ru and a £ E,

(q,v) a — | otherwise.

Let Q'u = (q,e), q £ Qu- Then Q'u determines a subautomaton of R^ which
is isomorphic to Qu• Moreover, (q, v) = (q,e)v, for each (q,v) € Ru- Thus, by
Remark 4.3 and the assumption D * V C V, it follows that Ru belongs to Cd * V.
Now for every u, the language Lu = (Lu"n (£d)* can be recognized by Ru, so
that Lu G Cd*V. Since L = Uues-, |u|<d ^ follows now that L is in C¿*V. •

Corollary 4.9. Under the assumption of Theorem 4-8, ifV is deeidable, then so
is Cd * V.

Proof. This follows either from Theorem 4.8 or from Theorem 4.6. •

Corollary 4.10. Suppose that M C Nat and V is a q-variety with corresponding
l-variety V. Suppose that D * V C V and that V is closed with respect to right
concatenation by letters. An automaton Q is in CM * V i J there is some d £ (M]
with QW € V.

Moreover, a language L C S * is in CM * V iff there is some d G (M]
such that L(d<u) £ V for each u E £* with |u| < d.
Remark 4.11. Suppose that V is a q-variety with corresponding language variety
V. / / V * D C V, then V is closed with respect to right concatenation by letters. To
see this, suppose that Q = (Q, E, •) is an automaton in V that accepts the language
L with initial state qo and set of final states F. Moreover, suppose that ao is a letter
in E. We turn the set R = {e} U (Q x E) into a (Q x E)-automaton by defining

x{q,a) = (q,a),

for all x £ R and (q, a) G Q x E. It is clear that R is a definite automaton, in fact
a reset automaton. Then let Q' be the T.-automaton

Q xm R,

where n is the identity function Q x E —> Q x E. It is an easy matter to show that
the language accepted by Q' with initial state (qo, e) and final states Q x (F x {ao})
is Lao-

In particular, if V contains D and is closed with respect to the cascade prod-
uct, then the language variety corresponding to V is closed with respect to right
concatenation by letters.

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity o f . . . 15

5 Degree of aperiodicity
Following [1, 16], we call an automaton Q = (Q, S, •) quasi-aperiodic if there is no
n such that M(Q) (or S(Q)) contains a nontrivial group all of whose members can
be induced by length n words. (In the terminology of [7], Q is quasi-aperiodic if no
nontrivial group divides M(Q) in "equal lengths".)

It is clear that any aperiodic automaton is quasi-aperiodic. On the other hand,
a counter of length > 1 is quasi-aperiodic, but not aperiodic. Let QA denote the
stream of quasi-aperiodic automata. The following theorem is a rephrasing of a
result due to Barrington, Compton, Straubing and Therien. In its original formu-
lation, the theorem involved the wreath product instead of the cascade product.

Theorem 5.1. (Barrington et al. [1]) QA = C * A . Thus QA is a q-variety.

It is a well-known consequence of the Krohn-Rhodes theorem [5,16] that A*A C
A, in fact equality holds. Thus, by Proposition 3.5, QA is also closed with respect
to the cascade product. Moreover, since D C A, we have that D * A C A. Thus,
by Theorem 4.6 we have:

Corollary 5.2. For any d> 1 and automaton Q, we have Q £ iff Q^ £ A.

Corollary 5.3. An automaton Q is quasi-aperiodic iff there is some integer d > 1
such that Q(d) is aperiodic.

Proof. If Q is quasi-aperiodic, then by Theorem 5.1, Q is in C * A. But since C is
the union of the Cn where n is any positive integer, it follows that Q is in C^ * A,
for some d > 1. Thus, by Corollary 5.2, Q^ is in A, so that Q^ is aperiodic.

Assume now that Q^ is aperiodic, for some d > 1. Then, by Corollary 5.2 and
Theorem 5.1, Q is in CD * A C QA. •

Remark 5.4. Of course, it is possible to prove Corollary 5.3 without using Theo-
rem 5.1 and Corollary 5.2. Assume that Q^ is aperiodic for some d > 1. Then
it cannot be the case that for some n, the set of all functions in M(Q) that can be
induced by the length n words contains a nontrivial group G, since otherwise each
element of G would be induced by a word of length dn, so that QW would not be
aperiodic. The other direction can be verified by following the argument given in
the proof of Theorem 5.10.

Proposition 5.5. Suppose that Q is an automaton such that both Q^ and
are aperiodic, where m,n > 1. If m and n are relative primes, then also Q is
aperiodic.

Proof. If Q is not aperiodic, then M{Q) contains a cyclic subgroup G =
{go, • • • j 9p—i} °f prime order p > 1, where g0 = e denotes the unit. Unless g™ = e,
it follows that each element of G can be induced by a word whose length is a mul-
tiple of m. (Indeed, if g™ = gt, where i ^ 0, then gi can be induced by a word
whose length is a multiple of m. Since gi is a generator element of G, the same
holds for any other group element.) But since Q(m) is aperiodic, this is impossible.

16 Z. Esik and M. Ito

We conclude that gj71 = e. In the same way, g" = e. But then p divides both m
and n, a contradiction. •

Corollary 5.6. Suppose that Q is an automaton such that both Q^ and Q^ are
aperiodic. If d denotes the g.c.d. of m and n, then QW is also aperiodic.

Corollary 5.7. An automaton Q is quasi-aperiodic iff there is a least integer d > 1
such that Q^ is aperiodic. Moreover, for an integer n > I we have that Q^ is
aperiodic iff this integer d is a divisor of n.

Definition 5.8. The degree of aperiodicity, or aperiodicity degree of an automa-
ton Q is the least integer d such that Q^ is aperiodic, if such an integer exists.
Otherwise the degree of aperiodicity of Q is oo.

Thus, by Corollary 5.7, the aperiodicity degree of Q is finite iff Q is quasi-
aperiodic.

For any set M of positive integers, we let Q A M denote the stream of automata
whose aperiodicity degree is finite and belongs to (M]. In particular, A = Q A ^ j =
QA 0 and QA = QAN a t . We also denote QA d = for each d > 1.

Theorem 5.9. Suppose that M is a set of positive integers. Then Q A M = C m *A.
Thus, Q A M is a q-variety closed with respect to the cascade product.

Proof. Suppose that the aperiodicity degree d of Q is finite and is contained in (M].
Then Q^ is aperiodic, so that Q £ Cd *A, by Corollary 5.2. But Cd C CM, thus
Q £ CM* A.

Suppose now that Q £ CM* A.. Then since Cm is the union of all varieties CD,
where d belongs to (M], it follows by Proposition 3.6 that Q £ Cd* A, for some
such d. Thus, by Corollary 5.2, Q^ is aperiodic. But then the aperiodicity degree
of Q divides d, so that it also belongs to (M). •

Theorem 5.10. There exists an algorithm to compute the aperiodicity degree of
an automaton.

Proof. Barrington, Compton, Straubing and Therien showed in [1] how to decide for
an automaton whether or not it belongs to QA. (See also [7].) Our result follows by
a slight modification of their argument. Given Q = (Q, •), let M=m(Q) denote
the set of all functions Q —» Q induced by the words in £ m , for each m > 0.
Then, compute the sets M=1(Q), M=2(Q),... until a repetition occurs, i.e., until
M=m(Q) = M=n(Q), for some m < n. Then also M=m+T(Q) = M=n+r(Q), for
all r > 1. In particular, we have M=d{Q) = M=d+n-m(Q) for some m < d < n
such that n — 77i divides d. Thus, M=d(Q) = M=2d(Q)> showing that M=d(Q) is a
subsemigroup of M(Q). In fact, M=d{Q) is the semigroup of all functions inducible
by words whose length is a positive multiple of d. If Q is quasi-aperiodic, then,
by definition, this semigroup contains no nontrivial group. It follows that Q ^ is
aperiodic. Thus, to compute the aperiodicity degree of Q it suffices to find the least
divisor d' of d such that ' is aperiodic. On the other hand, if M=d does contain
a nontrivial group, then Q is not quasi-aperiodic and thus its aperiodicity degree
is oo. •

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of... 17

Corollary 5.11. Suppose that (M] is a recursive set. Then QA M is decidable.

Remark 5.12. The opposite direction is immediate: if QAM is decidable then
(M} is recursive.

Since QA M is a q-variety, there is a corresponding 1-variety that we denote
by QAM• We also denote QA{D) by QAd- In particular, QAS^} = QA\ = A
and Q^Nat = QA, the 1-variety corresponding to QA. Since QA M is the union
of the varieties QAd, where d is any element of the division ideal (M] generated
by M, also QAM is the union of the QAd, where d is any member (M]. The
languages belonging to A have been characterized by Schiitzenberger as the star-
free languages.

Theorem 5.13. (Schiitzenberger [14]) A language L C E* belongs to A iff L can be
constructed from the finite subsets ofY,* by the operations of set union, complement
and concatenation.

A similar characterization of QA was obtained in [1].

Theorem 5.14. (Barrington, Compton, Straubing and Therien [1]) A language
L C E* belongs to QA iff L can be constructed from the finite languages in E* and
the languages (Ed)*, d > 1, by the operations of union, complement and concate-
nation.

In the rest of this section we prove a refinement of these results.

Theorem 5.15. Let M denote any subset of the set of positive integers. A language
L C £* belongs to QAM iff L can be constructed from the finite languages in E*
and the languages (Em)*, where m € M, by the operations of union, complement
and concatenation.

In our argument, we will make use of the following characterization of QAd,
which is an immediate consequence of Theorem 4.8 and the fact that A is closed
with respect to right concatenation by letters (in fact, by Schiitzenberger's theorem,
A is closed with respect to concatenation).

Corollary 5.16. For any integer d> 1 and language L C £*, if L G QAd then
L{d,u) € for a l l u e £» w i t h |w | < d Moreover, if L ^ € A, for all u e E*
with |u| < d, then L G QAd-

Proof of Theorem 5.15. First note that the language (Ed)*, where d is any member
of the division ideal generated by M can be constructed from the finite languages
and the languages (Em)*, rri 6 M by the operations of union, complement, and
concatenation. This follows from the following two facts. If mi and m,2 are positive
integers andm denotes their least common multiple (l.c.m.), then (Em)* = (Em i)*fl
(Em2)*. Moreover, if d is a divisor of m, then for some finite F, (Ed)* = (E m)*F.
Thus, since QAM — UDE(M] QAD, in the rest of the argument we may assume that
M is itself a division ideal.

18 Z. Esik and M. Ito

Suppose first that L £ QAM• Since QAM is the union of the QAM with
M £ M, there exists an integer d £ M with L £ QAD. Thus, by Corollary 5.16,
all the languages L^D'U\ u £ £*, |u| < d are in A. By Schiitzenberger's theorem,
Theorem 5.13, it follows that each with u £ E*, |u| < d can be constructed
from the finite languages in (E ^) * by using the operations of union, complement
and concatenation. Hence, each language Ku = Lu~l D (Ed)*, where u £ E* with
|u| < d can be constructed from the finite languages in £* and the language (£d)*
by the operations of union, complement and concatenation. (Take complement
relatively to (£d)*.) Since L - Uue£*, |u|<d^«u> s a m e holds for L.

Suppose now that L can be constructed from the finite subsets of E* and the
languages (Em)*, where M £ M by the operations of union, complement and
concatenation. Let d denote the l.c.m. of those integers m for which (£m)* is
used in the construction of L. If we can show that belongs to A, for each
v £ E* with |u| < d, then it follows by Corollary 5.16 that L £ QAd, and thus that
L £ QAM• We will show that for each u,v £ E* with |u|, |u| < d, the language in

L{d,u,v) = {(X o) . . . (X f c_1) : k > 0 , ux0...xk-!V £ L}

is in A. Now this follows by a straightforward induction argument using Schiitzen-
berger's theorem, Theorem 5.13, and the following facts. Let u,v £ E* with
| u | , |u| < d, a n d let L,LI,L2 C E*.

1. If L is finite, then so is L^u'v\

2. (Li U L2)^'u'v) - L[d'u'v) U 4 d ' u , u) .
3. (Lc)(d'u'v) =
4. If the length of each word in Li is at least |m| and the length of each word in

i 2 is at least M, then (L1L2)(d'u'") = U|wz |=d L{d'u'w){wz)L[d'z'v).

5. If the length of each word in L\ is less than |w| and the length of each word
in L2 is at least |v | , then (L ^) ^ = {Jwz=u< w€Li L{d>z'v).

6. If the length of each word in Li is at least |u| and the length of each word in
L2 is less than \v\, then (^ L ,) ^ = U2lu=„, w e L 2 L^u'z).

7. If the length of each word in Li is less than |u| and the length of each word
in L2 is less than then (L\L2)l<d'u'v^ is finite.

•
Corollary 5.17. Suppose that (M] is a recursive set. Then there exists an algo-
rithm to decide for a regular language L C £* whether or not L can be constructed
from the finite languages and the languages (Em)* with m £ M by the operations
of union, complement and concatenation.

Remark 5.18. The converse of the above corollary is immediate. If there exists
an algorithm to decide for a regular language L C E* whether or not L can be
constructed from the finite languages and the languages (£m)* with m £ M by the
operations of union, complement and concatenation, then (M] is a recursive set.

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity o f . . . 19

Remark 5.19. By the first part of the proof of Theorem 5.15, it follows that a
language L C E " is in QAM iff L is a finite union

L = (J Lun(Em)*u,

where each Lu is in A and m G (M].

6 First-order logic
The expressive power of first-order logic on words with a unary predicate corre-
sponding to each letter of the alphabet and < as the only numerical predicate was
characterized by McNaughton and Papert [11]. We let FO[<] denote this logic.
Thus, for any fixed alphabet E, the atomic formulas of FO[<] are the propositions
Pa{x) and x < y, where a is any letter of E and x and y are variables. Formulas can
be constructed from the atomic formulas by the boolean connectives V and ->, de-
noting disjunction and negation, and existential quantification. The other boolean
connectives and universal quantification can be introduced as abbreviations. Free
and bound variables are defined as usual. We may assume that no variable is bound
two or more times in a formula, or in a finite set of formulas, and that any free vari-
able is different from any bound variable. Below we will denote syntactic equality
by =.

Suppose that (p is a formula with free variables in X, and suppose that w G E*
and A : X -t [|tu|], i.e., A maps variables in X to "positions" in w. We say that
(w, A) satisfies <p, denoted (w, A) |= <p, if

• <p = Pa(x) and the letter in w at position xX is a, or
• tp = x < y and xX < yA, or
• <p = tpi V tp2 and (w, A) |= ipi or (w, A) f= y>2, or
• <p = -iip and (w, A) ip, or
• <p = (3a:)ip and there exists a function A' : X U {x} -> [|w|] which agrees with

A on X such that (w, A') J= ip. (Here, by our conventions, we may assume
without loss of generality that x £ X.)

When X is empty, so that tp is a sentence, i.e., ip has no free variables, we write
w \= tp and call the set {w G E* : w |= ip} the language defined by <p. Moreover,
we say that a language L C E* is definable in FO[<] if there is a sentence <p which
defines L.

As before, we let A denote the ^-variety of aperiodic automata, and let A denote
the corresponding *-variety of languages.

Theorem 6.1. (McNaughton and Papert [11]) A language L C E* is definable in
FO[<] iff L G E M .

We refer the reader to [11]; and in particular to [16], for detailed proofs of
Theorem 6.1.

20 Z. Esik and M. Ito

Subsequently, Barrington, Compton, Straubing and Therien [1] considered the
extension of first-order logic by atomic propositions of the form Cr

d{x), d > 1, r 6 [d\
meaning that position x in the word satisfies x = r mod d. Thus, using the above
notations, (w, A) |= Cd(x) if and only if xX is congruent to r mod d. Since this logic
is equivalent to the extension of FO[<] by all regular numerical predicates, see [15],
we denote it by FO[R]. As before, let QA denote the 1-variety corresponding to
the q-variety QA of quasi-aperiodic automata.

Theorem 6.2. (Barrington et al. [1]) A language L C £* is definable in FO[R]
iffLEZ*QA.

For an integer d > 1, let FO[d] denote the fragment of FO[R] where only atomic
propositions associated to the letters of the alphabet and propositions of the form
x < y and Cd(x) are allowed. (It would be sufficient to allow only x < y and
C°(x).) Moreover, for a set M of the positive integers, let FO[M] denote the union
of the FO[d\ with d € M. Thus, FO[R] = FO[Nat] and FO[<] = FO[0].

Below we will write x < y as an abbreviation for ->(y < x), x = y + 1 for
x < y A -i(3z)(a; < z A z <y), Last(x) for (Vj/)(j/ < x), True for ip V -up, where ip is
a fixed sentence, and False for -iTrue.

Proposition 6.3. A language L C £* is definable in FO[M] iff L is definable in
FO[(M]].

Proof. This follows by the following two observations.
1. If d is a divisor of m, say dk = m, then C%(x) can be expressed as V

Ci(x) V . . . d M (x) . Moreover, for every r <E [d - 1], C^+l(x) can be
expressed by (3y)(a; = y + 1 A C^{y)).

2. If mi ,m2 > 1 and m denotes the l.c.m. of mi and mj , then can be
expressed as C^x) A C^2(x).

•
By our previous results we can prove the following common extension of Theo-

rems 6.1 and 6.2.

Theorem 6.4. Suppose that M is any set of the positive integers. Then a language
LCI,* is definable in FO[M] iff L G E *QAM-

The proof of Theorem 6.4 will be completed at the end of the section.

Proposition 6.5. Suppose that L C £* and d> 1. If L^ is definable in FO[<],
then L n (£d)* is definable in FO[d],

Proof. First we prove that for all <p G FO[<] with free variables in X there exists
some ip' G FO[d] with free variables in X such that for all w G (E'd))* and A : X —i
[Hi

(w,X)\=ip iff (wh,K)\=(p',

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity o f . . . 21

where h denotes the homomorphism (E ^) * —> E* defined by (u) u, for all
u £ £ d , and where XK = d(xA), the product of the integers d and x\, for all x £ X.
We prove this claim by induction on the structure of ip.

• <p = P(U^(X), where u = ao • • • a<i-i- Then, writing XQ for x, we define

<p' = (3xi)... (3xd-i)
d—2 d—1
A = x i + 1 A A P a i
j=0 3=0

<p = x < y. Then (p1 = x < y.
<p = ipi V f2 • Then <p' = <p[V <¿>2 •
ip = . Then ip' = -lyi-
V = (3x)(^i. Then <£>' ee {3x){C°d{x) /K^).

We now complete the proof of Proposition 6.5. Suppose that L ^ is defined by
sentence tp in FO[<], Then L D (Ed)* is defined by tp' A (Vi)(Last(x) C^^x)).

•
Corollary 6.6. Suppose that L Ç E* and d > 1. If L ^ is definable in FO[<],
for all u e S * with |u| < d, then L is definable in FO[d].

Proof. For each u € E* with |it| < d we have that L^-") = (L u - 1) ^ ' . By Propo-
sition 6.5, it follows that if L ^ is definable in FO[<], then Ku = Lu'1 n (Ed)*
is definable in FO[d], for each u £ E*, |«| < d. But then, using the formula
^ = U«££*, |u\<dKuu> follows easily that L is definable in FO[d]. Indeed, if Ku
is defined by ipu, where u = a0 ... a n _i £ E* with |tt| = n < d, then Kuu is defined
by the formula ipu

(3a;0)...(3a;n_i)
n—2 n-1
A Xi+i = Xi + 1 A A Pai(xi) A Last(xn_i) A </>„[< x0]

Lt=0 ¿=o

where y u [< xQ] is the relativization of (pu defined in the usual manner, cf. [16]. (If
n = 0, so that there is no XQ, by this formula we mean ipu.) Finally, L is defined
b y V „ 6 E M •

Proposition 6.7. I f L Ç E* is definable in FO[dj, then L<-dî is definable in FO[<].

Proof. We prove the following claim. For all ip in FO[ri] with free variables in X
and for all functions p \ X [d\ there exists a formula ip'p £ FO[<] with free
variables in X such that for all words w £ (£(d))* and functions A : X -»• [|tu|],

(w,\)\=tp' iff (wh,Kp)\=

where h denotes the homomorphism (£(d))* E* given by (u) u, for all u £ Ed ,
and where XKp = (x\)d + xp, for all x £ X. We prove this claim by induction on
the structure of ip.

22 Z. Esik and M. Ito

• ip = Pa(x). Then ip'p is the disjunction of all of the P{u)(x) such that the
letter of u on the (xp)th position is a.

• ip = x < y. Then

x < y if xp > yp
x < y if xp < y p.

J True if xp = r
\ False if xp ^ r.

• tp = ipi V tp2. Then (p'p = {tp[)p V (ip'2)p..
• tp = -iip. Then tp'p = -np'p.
• tp = (3x)ip. Here we may assume that x is not in the set X. For each i £ [d\,

let p[x i-)- i] denote that function X U {x} —> [d] which agrees with p on X
and such that xp = i. Then we define

^ = (3x) V iP'p[x^.
ie{d]

We now complete the proof of Proposition 6.7. Suppose that L C E* is defined
by the sentence (p in FO[c£]. Let <p' be the corresponding sentence of FO[<] defined
above. Then for all w £ (E ^) * ,

w \= <p' iff wh |= tp.

(Note that p is the empty function.) Thus, tp1 defines •

Corollary 6.8. If L C E* is definable in FO[d], then for each u £ £* with |u| < d,
L i s definable in FO[<].

Proof. Use the fact that L ^ = (Lu~l)W and that if L is definable in FO[eI],
then so is Lu~l. •

We are now in the position to complete the proof of Theorem 6.4.

Proof of Theorem 6.4- By Corollaries 6.6 and 6.8, a language L C £* is definable
in FOfdj iff L i s definable in FO[<], for each u £ £* with |u| < d. Thus, by
the theorem of McNaughton and Papert, Theorem 6.1, and by Corollary 5.16, L
is definable in FO[<i] iff L £ QAd- Since a language is definable in FO[M] iff it
is definable in FO[cf), for some d in the division ideal generated by M, and since
QAM is the union of the QAD where d is any integer in the division ideal generated
by M, the result follows. •

Corollary 6.9. Suppose that (M] is a recursive set. Then it is decidable for a
regular language L whether or not L can be defined in FO[M].

Again, the converse direction holds obviously.

tp = Cr
d{x). Then

<PO =

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of... 23

7 Temporal logic
The language LTL of Linear (Propositional) Temporal Logic [13] over an alphabet
E has, as atomic formulas (or atomic propositions), the propositional constants pa
associated with the letters a £ E. Formulas can be constructed from the atomic
formulas by the boolean connectives V and ->, and the modalities X (next) and
U (until). Other boolean connectives may be introduced as usual. Suppose that
u £ £* and that tp is a formula. We say that u satisfies tp, denoted u \= tp, if

1. tp = pa and u = av, for some a £ E and v £ £*, or
2. tp = tpi V tp2, for some tpi and tp2, and u |= tpl or u |= tp2, or
3. tp = ->V> f° r some formula ip, and it is not the case that u \=ip, or
4. tp = Xip, for some ip, and u is of the form av with a £ E and v £ E* such

that v |= ip, or
5• tp = tp1Utp2, for some tp1 and tp2, and there exist v, w £ E* such that u = vw,

w tp2, moreover, z j= tpi for all suffixes z of u properly including w.
In this section we study the extension of LTL by a sort of modular counting

which is different from the one considered in [2].
Suppose that M C Nat. For an alphabet E, the atomic formulas of LTL[M]

are those of LTL together with an additional propositional constant \gd r, for each
d £ M and r £ [d\. Formulas are constructed from the atomic formulas as above,
so that if tp and ip are formulas, then so are tpVtp, -up, Xtp and tpUip. For all
d £ M and r £ [d\, we define u (= lgd r iff the length of u is congruent to r modulo
d. The semantics of the other constructs of LTL[M] are defined as above. When
M = {d}, for some positive integer d, we write just LTL[d] for LTL[M]. Note that
LTL[0] is just LTL.

We say that a language L C E* is definable in LTL[M] if there is a formula tp
of LTL[M] (with propositional constants corresponding to the letters of E) such
that L = Lv = {u £ E* : u |= tp}.

Example 7.1. For any m, n > 0 and u £ £*, we have that u |= lg„, 0 and u |= lgn 0
iff u |= lgfe 0, where k denotes the least common multiple of m and n. Moreover,
u \= lgmr, for r £ [m], iff u |= Xr\gm0, where XT is X... X with X appearing r
times. Also, if n divides m, then u f= lgn 0 iff u |= Vi6[ro/„] 'gm,in-

By the above example, we have that LTL[M] is exactly as expressive as
LTL[(M]], i.e., a language is definable in LTL[M] iff it is definable in LTL[(M]].
Moreover, when M is not empty, then a language is definable in LTL[M] iff it is
definable in LTL[d\, for some d £ (M).

The logic LTL[M] allows for several counting versions of the until modality.
For any formulas tp and ip, and for any d £ M and r £ [d\, define tpU^d'°^ip to be
the formula

¿e[d]

24 Z. Esik and M. Ito

and define tpU^'^ip, r > 0 as

ip A Xtp A . . . A Xr~ V A Xr{<pU{d'0)ip).

Then we have u |= ipU^d'r^ip iff u has a decomposition u = vw such that w f= ip,
is congruent to r modulo d, moreover, for all x, z with xz = u such that w is a

proper suffix of z, it holds that z ¡= tp.
A second counting version of the until modality can now be defined as follows.

For all <p, ip and d, r as before, let tpU[d'°^ip be the formula

V t ' g < M A H gd ,iV^)c/(d '°V].

(d r) Moreover, when r > 0, let ipU\ ' ip be the formula

XT(vU[dfi)TP).

We now have u
\= <pu[d'r)4>, for u a word in £*, iff u has a decomposition u — vw

such that w \= ip, is congruent to r modulo d, moreover, for all x,z with xz — u
such that w is a proper suffix of z and |a;| is congruent to r modulo d, it holds that
z\=<p.

A last version of until involves several formulas. Suppose, as before, that
d £ M, and suppose that ipo, - . . ,<Pd-i, ip are formulas of LTL[M], We define
(<po,..., v?d_i)f/2d'°' ip as the formula

V s A

i€[d]
A H g d j - v w O

j,k€[d], j—k=i mod d

U^ip)

Thus, for all words u £ £*, we have u [= (t/?0, • • • ,<Pd-lW^'^ip iff u has a decom-
position u = vw such that w \= ip, |i>| is congruent to r modulo 0, moreover, for all
x, z and i £[d\ with xz — u such that w is a proper suffix of z and is congruent
to i modulo d, it holds that z \= tpi. The modalities U^'^ with r £ [d\, r ^ 0,
which have a similar semantics, can be introduced in the obvious way. Of course,
the propositional constants lgd can in turn be defined using either version of until.

Remark 7.2. The last version of the until modality shows that the extension of
LTL by counting is a particular case of Wolper's extension of temporal logic by
grammar (or finite automaton) operators, cf. [22, 21].

We introduce several abbreviations. First, let True = pa V ->pa, where a is any
letter in £, and let False = ->True. Moreover, let End denote the formula / \ a g E ->pa,
so that for all u £ £*, we have u End iff u = e. Finally, for any formula tp, let
0 (d ' r V stand for Truei/(d ' rV and D ^ V for The modalities 0 and •
are defined as usual.

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity o f . . . 25

Example 7.3. Let E = {a, b}. If tp is the formula ()(2'0)End, then Lv, the language
defined by <p is (E2)*. Moreover, if ift = paU^'°\a(pb V End)), then L^ is the
language (a2)*b*.

In his thesis [10], Kamp proved that temporal logic with past and future modali-
ties is expressively complete in the sense that it can express every first-order property
of words. Subsequently, it has been shown in [8] that future (or past) modalities
alone suffice. An algebraic proof of this result, based on the Krohn-Rhodes de-
composition theorem for finite semigroups and automata [5, 16], was later given by
Cohen, Perrin and Pin in [4]. See also Th. Wilke, [20].

Theorem 7.4. (Kamp [10], Gabbay et al. [8]) A language L C S * is definable in
LTL iff L is definable in FO[<],

Hence, L is definable in LTL iff L is in A. Our aim is to prove the following
counting extension of Kamp's theorem.

Theorem 7.5. For any set M of positive integers, a language L C S* is definable
in LTL [M] iff L is definable in FO[M],

In our proof of Theorem 7.5, we will use:

Proposition 7.6. Suppose that L C E*; d > 1 and v G E* with |i;| < d. If £(<*'")
is definable in LTL, then L n (Ed)* v is definable in LTL[cf).

Proof. First we show that for every formula tp of LTL there is a formula tp' of
LTL[d] such that for all words w G (E ^) * it holds that w (= tp iff (wh)v \= tp',
where h denotes the homomorphism (E ^) * E* defined by (w) i-> w, all w £ Ed .
We construct tp' by induction.

• tp = p(u), where u = a0 •. • ad-1. Then

tp' = ^ M ^ A . - . A ^ V i -

where Xntp is X... Xtp with X appearing n times.
• tp = ^ v tp2. Then tp' = tp[V tp'2.
• tp = -«ft. Then tp' = -iift'.
• tp = Xift. Then tp' = Xdip'.
• tp = VlUtp2. Then tp' = tp^U^tp'z.

Suppose now that is defined by tp. Then the formula

<p' A 0(d,O) (Pao A Xpai A . . . A X ' - i p ^ A X'End)

defines L n (Ed)*v, where v = a0 ... ai-i and tp' denotes the formula constructed
above. •

Corollary 7.7. Suppose that L C E* andd> 1. If L ^ is definable in LTL, for
each u G £* with u G E*, |u| < d, then L is definable in LTL[d\.

26 Z. Esik and M. Ito

We are now ready to prove Theorem 7.5.

Proof of Theorem 7.5. It is well-known that temporal logic can be embedded in
first order logic. Thus, any language definable in LTL is definable in FO[<]. The
proof goes by formula induction, essentially by formalizing the definition of the
semantics of LTL in first-order logic. It is easy to show in the same way that any
language definable in LTL[M] is definable in FO[M],

Suppose now that L is definable in FO[M]. Then L is definable in FO[d], for
some d 6 (M]. Thus, by Corollary 6.8, is definable in FO[<], for each u € £*
with |u| < d. Thus, by Theorem 7.4 and Corollary 7.7, L is definable in LTL[<i],
hence in LTL[(M]] and in LTL[M]. •

8 Summary and future results
Our main results can be summarized in a single statement that establishes the
equivalence between four descriptions of the same class of languages.

Corollary 8.1. Suppose that M is a set of the positive integers. The following
conditions are equivalent for a language L C £*:

1. L can be constructed from the finite subsets of E* and the languages (£m)*,
where m € M, by the Boolean operations and concatenation.

2. L can be defined by a formula o/LTL[M].
3. L can be defined by a formula o/FO[M].

4- L can be accepted by a finite automaton whose degree of aperiodicity belongs
to (M] (or equivalently, the minimal automaton accepting L is finite with
aperiodicity degree contained in (M]).

As mentioned above, this result is a common extension of those obtained in
[1, 8, 10, 11, 14]. In fact, we have shown that Corollary 8.1 is easily derivable from
the classical results of Schiitzenberger [14], McNaughton and Papert [11], Kamp [10]
and Gabbay et al. [8], using Corollary 4.10, which is in turn based on Theorem 4.8
and Theorem 4.6. (Of course, it is possible to prove Corollary 4.10 without using
Theorem 4.6.)

Some of the implications of Corollary 8.1 are quite obvious. It is clear that
the second condition implies the third as does the first. The fact that the second
condition implies the first can be proved by generalizing an argument from [4]
which concerns the case when M is empty. That the third condition implies the
fourth can also be shown directly using Ehrenfeucht-Fraisse games, following the
usual argument establishing the fact that any language definable in FO has an
aperiodic syntactic monoid. In the classical case, i.e., when M = 0, there are also
known direct arguments establishing that the last condition implies the second. One
argument is based on (a weak form of) the Krohn-Rhodes decomposition theorem,
and can be found in [4]. A more elementary argument is given in [20]. Both
arguments can be generalized to any given set M of moduli.

Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of... 27

Theorem 4.8 and Theorem 4.6 are also very useful in the characterization of
the expressive power of other variants of first-order and temporal logic. Various
fragments of LTL have been studied in [4] and [20]. In a forthcoming paper, we
will characterize the expressive power of the extension of most of these fragments
by counting. In [16, 17], the expressive power of first-order logic with modular
quantifiers with respect to any given set of moduli has been characterized, as well as
the expressive power of first-order logic with modular quantifiers and the predicates
C^(x), where m is any positive integer and r 6 [m]. Using Theorem 4.8 and
Theorem 4.6, we can give a characterization of the expressive power of the extension
of first-order logic with any collection of modular quantifiers and any collection of
predicates C^(x). A further natural research topic is to extend these results to
w-languages.

9 Acknowledgments
The first author would like to thank the members of the Department of Mathematics
of Kyoto Sangyo University and the members of the DSS group of the Department
of Computer Science of Aalborg University for their hospitality.

References
[1] D. A. M. Barrington, K. Compton, H. Straubing and D. Therien, Regular

languages in NC1, J. Comput. Sys. Sci., 44(1992), 478-499.

[2] A. Bazirambawo, P. McKenzie and D. Therien, Modular temporal logic, Proc.
1999 IEEE Con}. LICS, Trento, Italy, IEEE Press, 1999, 344-351.

[3] R. Biichi, Weak second-order arithmetic and finite automata, Z. Math. Logik
Grundlag. Math., 6(1960), 66-92.

[4] J. Cohen, D. Perrin and J.-E. Pin, On the expressive power of temporal logic,
J. Comp. Sys. Sci., 46(1993), 271-294.

[5] S. Eilenberg, Automata, Languages and Machines, v. A and B., Academic
Pr*ess, 1974 and 1976.

[6] C. C. Elgot, Decision problems of finite automata design and related arith-
metics. Trans. Amer. Math. Soc., 98(1961), 21-51.

[7] Z. Esik, Results on homomorphic representation of automata by ao-products,
Theoret. Comp. Sci., 87(1991), 229-249.

[8] D. M. Gabbay, A. Pnueli, S. Shelah and J. Stavi, On the temporal analysis
of fairness, in: proc. 12th ACM Symp. Principles of Programming Languages,
Las Vegas, 1980, 163-173.

28 Z. Esik and M. Ito

[9] F. Gécseg and I. Peák, Algebraic Theory of Automata, Akadémiai Kiadó, Bu-
dapest, 1972.

[10] J. A. Kamp, Tense Logic and the Theory of Linear Order, Ph. D. Thesis,
UCLA, 1968.

[11] R. McNaughton and S. Papert, Counter-Free Automata, MIT Press, 1971.

[12] J.-E. Pin, Varieties of Formal Languages, North Oxford Academic, 1986.

[13] A. Pnueli, The temporal logic of programs, in: proc. 18th IEEE Symp. Foun-
dations of Computer Science, Providence, RI, 1977, 46-57.

[14] M. P. Schiitzenberger, On finite monoids having only trivial subgroups, Inform.
Comp., 8(1965), 190-194.

[15] H. Straubing, Constant-depth periodic circuits, Int. J. Algebra and Computa-
tion, 1(1991), 45-88.

[16] H. Straubing, Finite Automata, Formal Logic and Circuit Complexity, Birk-
hauser', 1994.

[17] H. Straubing, D. Therien and W. Thomas, Regular languages defined with
generalized quantifiers, Information and computation, 118(1995), 289-301.

[18] W. Thomas, Automata on infinite objects, in: Handbook of Theoretical Com-
puter Science, Vol. B, Elsevier, Amsterdam, 1990, 133-191.

[19] W. Thomas, Languages, automata, and logic, in: Handbook of Formal Lan-
guage Theory, Vol. Ill, (G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag,
New York, 1997, 389-455.

[20] Th. Wilke, Classifying discrete temporal properties, in: proc. STACS 99, Trier,
1999, LNCS 1563, Springer, 1999, 32-46.

[21] M. Y. Vardi and P. Wolper, Reasoning about infinite computation, Information
and Computation, 115(1994), 1-37.

[22] P. Wolper, Temporal logic can be more expressive, Information and Control,
56(1983), 72-99.

Received August, 2002

Acta Cybernetica 16 (2003) 29-35.

On DOL systems with finite axiom sets

Juha Honkala*

Abstract

We give a new solution for the language equivalence problem of DOL sys-
tems with finite axiom sets by using the decidability of the equivalence prob-
lem of finite valued transducers on HDTOL languages proved by Culik II and
Karhumaki.

1 Introduction
The language equivalence problem for DOL systems with finite axiom sets was solved
in [4]. The problem turns out to be much more difficult for DFOL systems than for
DOL systems. The main idea in [4] is to decompose a given DFOL language in a
canonical way into finitely many parts such that no part contains two words with
equal Parikh vectors. This makes it possible to use ideas from [8]. The resulting
algorithm gives a lot of information concerning the structures of the languages
generated by two equivalent DFOL systems. Also the equivalence problem for DFOL
power series over a computable field is solved in [4].

The purpose of this paper is to give a new solution of the DFOL language
equivalence problem. The new proof for the decidability of the problem avoids many
difficulties in [4] but fails to give precise information about language equivalent
DFOL systems. In that respect it resembles the solutions of the DOL equivalence
problem based on Hilbert's basis theorem which also are short but do not, for
example, give any bounds for the problem (see [3]).

Our new solution again uses methods from [8] which in turn use ideas from
[1]. In addition, we use the decidability of the equivalence problem of finite val-
ued transducers proved by Culik II and Karhumaki [2]. In this way we obtain a
solution of the DFOL language equivalence problem which is essentially based on
commutative methods (see [5]).

For further background and motivation we refer to [6, 7, 8, 9, 10, 4]. It is
assumed that the reader is familiar with the basics concerning DOL systems and
their generalizations such as HDTOL systems, see [6, 7].

'Department of Mathematics, University of Turku, FIN-20014 Turku, Finland. Email:
j uha.honkala®utu.f i
Research supported by the Academy of Finland.

29

30 Juh a Honkala

2 Definitions and earlier results
Let X — {xi,... ,Xk) be an alphabet with k > 1 letters. The Parikh mapping
ip :X* —• N* is defined by

1p{w) = {#Xl{™), •••,#xk(v>)),

for w G X*. Here # I ; (ui) is the number of occurrences of the letter Xi in the word
w. The length of a word w is denoted by |iu|. The length of the empty word e
equals zero.

A DOL system is a triple G = {X, h,w) where X is a finite alphabet, h : X* —>
X* is a morphism and w G X* is a word. A DFOL system is obtained from a DOL
system by replacing the word w by a finite set F. Hence, a DFOL system is a triple
G = (X,h,F) where X is a finite alphabet, h : X* —> X* is a morphism and
F C X* is a finite set.

The sequence S(G) and the language L(G) of the DOL system G = (X, h, w) are
given by

S(G) = (hn(w))n> o

and
L(G) = {hn(w) | n > 0}.

The language L{G) of the DFOL system G = (X, h, F) is defined by

L{G) = {hn(w) | w G F, n > 0}.

Below we will discuss also DTOL and HDTOL systems. By definition, a
DTOL system is a construct (X,hi,... ,hn,u>) such that n > 1 is an integer and
(X,hi,w) is a DOL system for 1 < i < n. An HDTOL system is a construct
G = (X, Y, hi,..., hn, hy w) such that (X, hi,..., hn, w) is a DTOL system (called
the underlying DTOL system of G), Y is a finite alphabet and h : X* —> Y* is a
morphism.

Let G = (X, Y, hi,..., hn, h, w) be an HDTOL system and let Zn = {zi,...,
znj be an alphabet with n letters. Then the sequence of G is the mapping S(G) :
Z*n —> Y* defined by

S (G) {zh ... zim) = hhim ...hh{ w)

for m > 0, 1 < ¿ i , . . . ,im < n. The sequence of a DTOL system (X , hi,..., hn, w)
equals the sequence of the HDTOL system (X , X, hi,..., hn, g, w) where the mor-
phism g : X* —» X* is defined by g(x) = x for all x € X.

A finite transducer is a construct r = (Q, A, s0,F, E) where Q is the finite
set of states, £ and A are the input and output alphabets, respectively, so G Q is
the initial state, F C Q is the set of final states and E CQ xT,* xA* x Q i s the
finite set consisting of the transitions of r . If U G £* and v G A* we write v G T(U)
if there is an accepting computation of r having input u and output v. Let k be
a nonnegative integer. A transducer r is called k-valued if for all u G the set

On DOL systems with finite axiom sets 31

T(U) contains at most k words. Finally, a transducer r is called finite valued if it is
k- valued for some k.

The following important result is due to Culik II and Karhumaki, [2]. Here two
transducers T\ and r2 are called equivalent on a language L if n (u) = T2 (U) for all
u E L.

Theorem 1. It is decidable whether two finite valued finite transducers are equiv-
alent on a given HDTOL language.

3 The HDTOL covering problem
In this section we discuss the HDTOL covering problem which is a useful tool in
the study of the DFOL language equivalence problem. It would suffice to consider
the DOL covering problem but this would not simplify the discussion.

Let Hi = (Xi , Yi, hn,..., hin, hi, w,), 1 < i < k + 1, be HDTOL systems. Then
we say that the first k sequences S(Hi) cover the last sequence S(Hk+i) if

S(Hk+1)(u) E {S(ffi)(u) | 1 <i<k}

for all u E Z*. If k = 1, then S(Hi) covers S(H2) if and only if H\ and H2 are
sequence equivalent. If k > 1, the covering relation generalizes sequence equivalence
by allowing finitely many alternatives for each term of S(Hk+1).

Let Hi, 1 < i < k + 1, be as above. By the HDTOL covering problem we under-
stand the problem of deciding whether or not S(Hi), 1 < i < k, cover S(Hk+i). To
reduce the covering problem to the equivalence problem of finite valued transducers
one lemma is required.

Lemma 2. Let Hi = {Xt, Yi, hn,..., hin, hiy Wi), 1 < i < k, be HDTOL systems.
Then there is a DTOL system H = (X, fi, ...,/„, w) and finite valued finite trans-
ducers TI for I C {1, . . . , k} such that

r /(5(ff)(u)) = {S(Hi)(u) | i e / } (1)

for all u£Z*n.

Proof. We may assume that the alphabets Xi, 1 < i < k, are pairwise disjoint.
Denote X = X1 U . . . U Xk, Y = Yi U . . . U Yk and let f j : X* —• X* be the
morphism such that

f j (x) = hij(x)

whenever x E Xi, 1 < i < k, 1 < j < n. Denote w = wi ... wk and consider the
DTOL system H = (X, fu ..., fn,w).

Let Hi = (Xi, hn,..., hin, Wi) be the underlying DTOL system of Hi, 1 < i < k.
Then we have

S(H)(u) = S(Hi)(u)... S(Hk)(u) (2)

for u E Z*n.

32 Juh a Honkala

Let now I C {1. . . . , /c} be a nonempty set and let 77 be a transducer defined
as follows. The input alphabet of 77 is X and the output alphabet of 77 is Y. The
state set of 77 is {90} U {qi \ i £ 1} where qo is the initial state and {<7; | i £ I} is
the final state set. The set E of transitions is defined by

E = {(qo,£,e,qi) \i € / } U
{(qi,x,hi(x),qi) | i £ / and x £ Xi} U
{(qi,x,£,qi) | i el and x g Xi}.

Then TJ is finite valued and (2) implies (1) for all u € Z*. •

Theorem 3. The HDTOL covering problem is decidable.

Proof. Let Hi = (Xi,Yi,hn,... ,hin,hi,Wi), 1 < i < k + 1, be HDTOL systems.
Denote I = {1, . . . , fe} and J = {1, . . . , k + 1}. By Lemma 2 there exist a DTOL
system H = (X, / 1 , . . . , /„, W) and finite valued finite transducers 77 and TJ such
that

rj(S(H)(u)) = {S(Hi)(u) ¡ i G l)

and
TJ(S(H)(U)) = {S(HJ)(U) I J E J }

for all u £ Z*n. Now

T!(S(H)(u)) = TJ(S(H)(U)) fo r al l u £ Z*n (3)

if and only if

S{Hk+1)(u) £ {S{Hi)(u) | 1 < i < k} for all u £ Z*n.

The claim follows because by Theorem 1 we can decide the validity of (3). (Here
we use Theorem 1 for DTOL languages.) •

4 The DFOL language equivalence problem
Let X be an alphabet with k > 1 letters and let %}) : X* —> Nk be the Parikh
mapping. If K C N a we denote

1>-l(K) = {w£X* | iP(w) £ K).

Lemma 4. Let G = (X,h,F) be a DFOL system and let u £ F. Assume that
{hl(u) | i > 0} is an infinite set. Then there exist an integer s > 0, integers
ni,...,ns and words ... ,us £ F such that

f ' t ^ W j n L f G) = {hn+^(Ul),...,hn+n>(Us)}

for almost all n > 0.

On DOL systems with finite axiom sets 33

Proof. We will show that if v G F then either

(%phn(u)) fl {h{(v) | i > 0} = 0 (4)

for almost all n > 0 or, otherwise, there exists an integer m such that

i>~l(i!>hn{u)) n |» > 0} = {hn+m(v)} (5)

for almost all n > 0. (Here and in the sequel we say that a property holds for
almost all n if there is an integer no such that the property holds for all n > no.)

First, if {hl(v) | i > 0} is a finite set then (4) holds for almost all n > 0. Suppose
{h*(v) I i > 0} is infinite. Then

iphi(v)?il>hi(v) if i ^ j .

Now, if there exist integers mi and m2 such that

iphmi{u) =iphm2(v) (6)

then (5) holds for almost all n > 0 if we set m = rn2 — mi. Finally, if (6) holds for
no values of mi and m 2 then (4) holds for all n > 0. •

Let G = (X, h, F) be a DF0L system. A word sequence (wn)n>o is called a
subsequence of G if there exist w e L(G) and a positive integer a such that

wn = han{w)

for all n > 0. In Section 3 we have explained what it means that a given DOL
sequence is covered by finitely many given DOL sequences. We now define this
notion for DF0L systems.

Let Gi = (X,hi,Fi), i = 1,2, be DF0L systems. Then G2 is said to cover G\ if
for all u € Fi there exist a nonnegative integer r and a positive integer k such that
for all integers j, 0 < j < k, the sequence (h'ln+j+r(u))n>0 is covered by finitely
many subsequences of G2 .

L e m m a 5. Let Gi = (X, hi, Fi), i = 1,2, be DF0L systems. Assume that L(Gi) =
L(G2) and that alph(w) = X for all w G L(Gi). Then Gi and G2 cover each other.

Proof. Let Gi = (X,h i ,F i) , i = 1,2, be DF0L systems such that L(GX) = L{G2)
and alph(w) = X for all w G L(Gi). If L(Gi) is finite the claim holds. Assume
that L(Gi) is infinite. Without restriction assume also that card(f \) = card(F2).
(If necessary, we replace Fi by the set {h{(u) | u G F i ,0 < j < card(F2)} and F2

by the set {hJ
2{v) \ v G F2,0 < j < card(Fi)}.) Denote t = card(Fi),

Fi = {wo, • • • , « t - i }

and
F2 = {iJ0,... ,i;t_i}.

34 Juh a Honkala

Further, denote k = card(X) and let P(xi,... ,xk) be a polynomial with nonnega-
tive integer coefficients such that the mapping P : Nk —> N is injective (see [8]).
Define the mappings / : N —> N and g : N —> N by

f(ti+j) = P№h\(Uj))

and
g(ti + j) = P^hUvj))

for i > 0 and 0 < j <t. Then / and g are DOL growth functions (see [8]) and

{/(n) I n G N} = {g(n) I n G N}.

Hence there exist integers a > 1, r > 0, xk > 1 and yk > 0 for 0 < k < a such that

f{an + k + r) = g(xkn + yk)

for n > 0, 0 < k < a (see [1]). Without restriction we assume that t divides a and
that't divides xk for all 0 < k < a. Denote a = bt. Fix uG.Fi. It follows that there
is an integer /3 > 0 such that for all integers a, 0 < a < b, there exist Vja G F2 and
integers qa > 1, pa > 0 such that

iPhb
1
n+a+0(u)=i>hl°n+p°(vja)

for n > 0. Because L{G\) = L(G2) we have

h\n+a+?{u) G f ' ^ ^ K D n l t f t)

for n > 0.
Next, fix a, 0 < a < b. Because alph(u,Q) = X, the set {h\(vja) | i > 0} is

infinite. By Lemma 4 there exist an integer s > 0, integers n\,... ,ns and words
w i , . . . , ws G F2 such that

for almost all n > 0. Hence

h»n+a+/j(u) G { ^ . ^ (m) ^ ^ (n , ,) }

for almost all n > 0. In other words, G2 covers G\. It is seen similarly that G\
covers G2 • •

Theorem 6. It is decidable whether or not two given DF0L systems are language
equivalent.

Proof. It suffices to consider DF0L systems G = (X, h, F) such that alph(w) = X
for all w G L{G) (see [8]). The claim follows because there exists a semialgorithm for
equivalence and there exists a semialgorithm for nonequivalence. The existence of
a semialgorithm for equivalence follows by Theorem 3 and Lemma 5. (Here we use
Theorem 3 for DOL systems.) The existence of a semialgorithm for nonequivalence
is clear. •

On DOL systems with finite axiom sets 35

References
[1] J. Berstel and M. Nielsen, The growth range equivalence problem for DOL

systems is decidable, in A. Lindenmayer and G. Rozenberg (eds.): Automata,
Languages, Development (North-Holland, Amsterdam, 1976) 161-178.

[2] K. Culik II and J. Karhumaki, The equivalence of finite valued transducers
(on HDTOL languages) is decidable, Theoret. Comput. Sci. 47 (1986) 71-84.

[3] J. Honkala, A short solution for the HDTOL sequence equivalence problem,
Theoret. Comput. Sci. 244 (2000) 267-270.

[4] J. Honkala, The equivalence problem for DFOL languages and power series,
J. Comput. System Sci. 65 (2002) 377-392.

[5] J. Honkala, A note on systems of alternative word equations, Bull. EATCS
78 (2002) 237-240.

[6] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems (Aca-
demic Press, New York, 1980).

[7] G. Rozenberg and A. Salomaa (eds.): Handbook of Formal Languages, Vol.
1-3 (Springer, Berlin, 1997).

[8] K. Ruohonen, The decidability of the F0L-D0L equivalence problem, Inform.
Process. Letters 8 (1979) 257-260.

[9] K. Ruohonen, On a variant of a method of Berstel's and Nielsen's, Fund.
Inform. 4 (1981) 369-400.

[10] K. Ruohonen, Equivalence problems for regular sets of word morphisms, in
G. Rozenberg and A. Salomaa (eds.), The Book of L (Springer, Berlin, 1986)
393-401.

Received August, 2002

Acta Cybernetica 16 (2003) 37-45.

On directable nondeterministic trapped automata*

B. ImrehJ Cs. Imrehj and M. Ito*

Abstract
A finite automaton is said to be directable if it has an input word, a

directing word, which takes it from every state into the same state. For
nondeterministic (n.d.) automata, directability can be generalized in several
ways. In [8], three such notions, D1-, D2-, and D3-directability, axe intro-
duced. In this paper, we introduce the trapped n.d. automata, and for each
i = 1,2,3, present lower and upper bounds for the lengths of the shortest
Di-directing words of n-state Di-directable trapped n.d. automata. It turns
out that for this special class of n.d. automata, better bounds can be found
than for the general case, and some of the obtained bounds are sharp.

1 Introduction
An input word w is called a directing (or synchronizing) word of an automaton
A if it takes A from every state to the same state. Directable automata have
been studied exstensively, we mention only some of the related works (see e.g.
[3],[4],[5],[7],[10],[12]). Directable n.d. automata have received less attention. Di-
rectability of n.d. automata can be defined in several meaningful ways. The fol-
lowing three nonequivalent definitions are introduced and studied in [8]. An input
word w of an n.d. automaton A is said to be

(1) Dl-directing if it takes A from every state to the same singleton set,
(2) D2- directing if it takes A from every state to the same fixed set A', where

0 C A! C A, and
(3) D3-directing if there is a state c such that c 6 aw, for every.o € A.

The Dl-directability of complete n.d. automata was investigated by Burkhard
[1]. He gave a sharp exponential bound for the lengths of minimum-length Dl-
directing words of complete n.d. automata. In [6] on games of composing relations
over a finite set Goralcik it et al., in effect, studied Dl- and D3-directability and they
proved that neither for Dl- nor for D3-directing words, the bound can be polynomial

"This work has been supported by a collaboration between the Hungarian Academy of Science
and the Japan Society for the Promotion of Science, and the Hungarian National Foundation for
Science Research, Grant T037258.

^Department of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary
ÍDept. of Mathematics, Faculty of Science, Kyoto Sangyo University, Kyoto 603, Japan

37

38 B. Irnreh, Cs. Imreh, and M. Ito

for n.d. automata. Carpi [2] considered a particular class of n.d. automata, the class
of unambigous n.d. automata, and presented 0(n3) bounds for the lengths of their
shortest Dl-directing words.

Here we study trapped n.d. automata that have a trap state, i.e., a state which
is stable for any input symbol, and present lower and upper bounds for the lengths
of their shortest directing words of the three different types.

2 Preliminaries
Throughout this paper X always denotes a finite nonempty alphabet. The set of all
finite words over X is denoted by X* and A denotes the empty word. The length
of a word w £ X* is denoted by |u>|. For any p, q £ X*, the word p is called a prefix
of q if there exists a word s £ X* such that ps = q. For the sake of simplicity, we
use the notation [n] for the set {1, . . . ,n}.

By a nondeterministic (n.d.) automaton we mean a system A = (A , X) , where
A is a nonempty finite set of states, X is the input alphabet, and each input symbol
x £ X is realized as a binary relation xA(C Ax. A). For any a € A and x £ X, let

axA = {b:b £ A and (a, b) £ xA}.

Moreover, for every B C A, we denote by BxA the set [j{axA : a £ B}. Now, for
any word w £ X* and B C A, BwA can be defined inductively as follows:

(1) B\A = B,
(2) BwA = (BpA)xA for w — px, where p £ X* and x £ X.

If w = x\.. .xm and a £ A, then let awA = {a jw 4 . This yields that wA =
xA ... xA. If there is no danger of confusion, then we write simply aw and Bw for
awA and BwA, respectively.

An n.d. automaton A = {A, X) is complete if ax ^ 0 holds, for all a £ A and x £
X. Complete n.d. automata are called c.n.d. automata for short. A state of an n.d.
automaton A is called a trap if it is stable for any input symbol, i.e., ax = {a}, for
every input symbol x of A. An n.d. automaton is called trapped if it has a trap. Let
us denote the class of trapped n.d. automata by T. Regarding some recent results
on trapped deterministic automata, we refer to the works [9],[11],[12]. Following
[8] we define the directability of n.d. automata as follows. Let A = {A, X) be an
n.d. automaton. For any word w £ X*, let us consider the following conditions:

(Dl) (3c e A)(Va S A)(aw = {c}),
(D2) (Va,6 G A)(aw = bw),
(D3) (3c £ A)(Va £ A)(c£ aw).

For any i = 1,2,3, if w satisfies Di, then w is called a Di-directing word of A
and in this case A is said to be Di-directable. Let us denote by the set of
Di-directing words of A, moreover, let Dir(i) and CDir(ii) denote the classes of

On directable nondeterministic trapped automata 39

Di-directable n.d. automata and c.n.d. automata, respectively. Now, we can define
the following functions. For any i — 1,2,3 and A = (A, X) eDir(i), let

di(A) = min{H : w G D,(,4)},

dj(n) = max{di(.4) : A G Dir(i) & \A\ = n},

cdi(n) = max{dj(^4) : A 6 CDir(i) & \A\ = n}.
The functions dj(n), cdj(n), i = 1,2,3, are studied in [8], where lower and upper
bounds depending on n are presented for them. Similar functions can be defined
for any class of n.d. automata. For a class K of n.d. automata, let

Obviously, cdf(n) < d f (n), for i = 1,2,3.
In what follows, we study the case when the considered class is T, the class

of trapped n.d. automata. It is worth noting that if a trapped n.d. automaton is
Di-directable, then it has only one trap.

3 Directable trapped n.d. automata
First we deal with the D3-directability. We consider D3-directable trapped c.n.d.
automata, and using certain deterministic automata, introduced by Rystsov [12],
we present an exact bound for this class. Then we study D3-directable trapped
n.d. automata and present lower and upper bounds for the lengths of their shortest
D3-directing words. For trapped c.n.d. automata the following statement is valid.

Theorem 1. For any n > I, cdj(n) = (n — l)n/2.

Proof. First we prove that (n - l)n/2 < cdj(n). This inequality follows from The-
orem 6.1 in [12]. Since the proof is short, we recall it for the sake of completeness.

For every n > 1, let us define the c.n.d. automaton Bn = ({0,1, . . . , n —
1}, {xi,... ,z n_i}) as follows. Let Oxi = l i i = {0}, and jxi = {j},j = 2 , . . . , n - 1 .
Moreover, for all 2 < k < n - 1 and j G {0,1, . . . , n - 1}, let

Obviously, Bn is a D3-directable trapped c.n.d. automaton with the trap 0. Let us
observe that for any j G {0,1,. . . ,n - 1}, jp is a singleton set whenever p G X*,
moreover, jw = {0} for any D3-directing word of Bn, because 0 is a trap state.
Therefore, {0 ,1 , . . . ,n - l}w = {0}, for any w G D3(£„). Now, let us assign to
every nonempty subset J of states a weight, denoted by g(J), which is the sum of
the numbers contained in J , i.e.,

d^(n) = max{di(yl) : A G Dir(i) n K &\A\ = n},

cdf(n) = max{di(X) : A £ CDir(i) n K & \A\ = n).

- 1 } if j = k,
jxk = f 1} if j = k - 1

otherwise.

40 B. Irnreh, Cs. Imreh, and M. Ito

Then <?({0, l , . . . , n — 1}) = (n — l)n/2 and for any nonempty subset J of
{0,1, . . . ,n - 1} and input sign xk, k E [n - 1],

\g(J) - g(Jxk)\ < 1.

From these facts it follows that the length of any D3-directing word of Bn is not
less than (n — l)n/2, because this word brings the state set of weight (n — l)n /2
into the set {0} with weight 0. Hence, (n — l)n/2 < d3(Bn). On the other hand, it
is easy to check that the word

W = X1X2X1X3X2X1 . . . Xn-\Xn-2 • • • X2X1

is a D3-directing word of Bn and |w| = (n - l)n/2. Consequently,

d3(£„) = (n - l) n / 2 .

Since Bn is a D3-directable trapped c.n.d. automaton of n states, the equality
above implies (n - l)n /2 < cdj(n) .

In order to prove that this bound is sharp, we prove that for any D3-directable
trapped c.n.d. automaton A = (A, X) of,n(> 1) states, there exists a D3-directing
word whose length is not greater than (n — l)n/2. To simplify the notation, we
assume that A = {0,1 , . . . , n -1} and 0 is the trap of A. Since A is a D3-directable
c.n.d. automaton and Ox = {0}, for all x E X, there exists for any state j E A
a word x\.. :xm of minimum-length such that 0 E jx\... xm. Moreover, there
are states j 1 , . . . , jm-1 € A such that jt E jx 1 . . . x t and 0 E jt%t+i . . . i m , for all
t = 1 , . . . , m—1. Since x\ ... xm is a minimum-length word satisfying 0 E jx 1 . . . xm,
the states j,ji, • • • ,jm-1,0 must be pairwise different. Therefore, by |A| = n, we
obtain m < n — 1. Observe that for any 2 < t < 7TI, Xi . . . Xjji

is a minimum-length
word satisfying 0 E jt-i^t • • • Based on these observations, by renaming the
states, we may suppose that for any state j E A, there exists a word pj such that
0 E jpj and \pj\ < j. By using the pairs j, pj, j = 0,... ,n — 1, we present a
procedure for finding a D3-directing word with length, not greater than (n — l)n/2.

Initialization. Let t = 0, Bo = {0}, Pi0 = A, and Ro = {1,2,.. .n — 1}.
Iteration.

• Step 1. Terminate if A = Bt. Otherwise proceed to Step 2.

• Step 2. For each j E Rt, let kf denote the smallest number in the set
jpit. Select the least element in {k^ : j E Rt} and denote it by it+1.
Let

Bt+i = {j : j € A k 0 € jpio.. .p i (+1}.

On directable nondeterministic trapped automata 41

and

Rt+i ={kf] :j e A\Bt+1}.

Increase the value of t by 1 and proceed to the next iteration.

To verify the correctness of the above procedure, we note the following facts.

(i) For any it+1, there exists a j G A \ Bt such that it+1 is an element of the set
jpio ...pit. Then Bt U {j} C Bt+1, and hence, Bt C Bt+i.

(ii) If j € A \ Bt, then 0 ^ jpi0 • • - Pit yielding k^p > 0. Therefore, Rt is a set of
positive integers.

(iii) If A ^ Bt, then there is a j € A \ Bt with jpi0 •. .pit 0 since A is a c.n.d.
automaton, and thus, Rt ^ 0. Consequently, A Bt implies Rt / 0.

From these facts it follows that there exists a positive integer s < n — 1 such that
A = Bs. Now, by the definition of Bs, we obtain that

w=pio...Pi,

is a D3-directing word of A. Let rt = |i?t|, t = 0 , . . . , s — 1. From the definition of
Rt it follows that

n — 1 > r0 > n > . . . > r s_ i > 0.

On the other hand, since |i?t| = r t , the least number it+1 of { k ^ : j € Rt} is
not greater than n — rt. This yields that \pit+1 \<n — rt,t — 0,...,s — 1. Since
|Pi01 — 0) w e obtain that

s - l

M <
t=o

Let us observe that the numbers n — rt, t = 0,... ,s — 1 are pairwise different and
each of them is contained in the set [n — 1]. Therefore, the upper bound of |w|
is the sum of some distinct elements of [n — 1]. But this sum is not greater than
the sum (n — l)n/2 of all the elements of [n — 1]. Consequently, |io| < (n — l)n/2.
If n = 1, then the statement is obviously also valid. This completes the proof of
Theorem 1. •

For D3-directable trapped n.d. automata, we have the following bounds.

Theorem 2. For any n> 2, max{[n3 - lj!, (n - 2)2 + 1} < d j (n) < 2 n _ 1 - 1.

Proof. The first member in the lower bound comes from the general case (c/. [8]),
where the automata, providing this bound, are trapped automata. The second
member in the lower bound can be derived from Cerny's well-known examples (cf.
[3]) as follows. One can equip Cerny's automaton of n — 1 states with a trap state
and a new input symbol, denoted by o and z, respectively. Let oz = {o}, Oz = {o},

42 B. Irnreh, Cs. Imreh, and M. Ito

and jz = 0, for all j = 1 , . . . , n — 1. Now, redefine the remaining transitions as
follows. If ax = b, then let ax = {6} be the new transition. Then we obtain an n.d.
automaton of n states whose shortest D3-directing words are of length (n — 2)2 + 1.

To obtain the upper bound, let us consider an arbitrary D3-directable trapped
n.d. automaton A = (A, X) of n(> 1) states. Let A = { a i , . . . , a n } and an be the
trap of A. Let w — X\... xm be a minimum-length D3-directing word of A. Then
anw = {an} and by the D3-directability of A, an € ajXi.... xm, j = 1 , . . . , n. For all
j € [n — 1] and k £ [m], let us select an element ajk from ajxi . . . xk such that an €
ajkXk+i • • • xm- Such elements exist, because for every j £ \n — 1], an £ ajXi ... xm.
Now, let Sk = {a„} U{aifc,... , a n - i t k] , for all k £ [m], and So = {ai, • • • ,an}. Let
us observe that ajx\.. .Xk Sk i1 0, for every k £ [m], and if at € Sk for some
t £ [n] and k £ [to], then an £ atXk+1 •.. xm. By using these observations, it is easy
to see that if Sj = Si for some 0 < j < I < m, then x\ ... XjXi+i ... xm is a D3-
directing word of A which is a contradiction. Consequently, the sets So, Si,..., Sm
must be pairwise different. Since an £ Sk, k = 0 , . . . ,m, the number of these sets
can not exceed 2 n _ 1 . Therefore, |iu| < 2 n _ 1 - 1. This ends the proof of Theorem
2. •

R e m a r k 1. It is worth noting that the proof above with a small changing can
be applied for the general case, and one obtains the upper bound 2" — 1 for d¡(n)
which is a significant improvement of the upper bound, given in [8].

Now, we study Dl-directable trapped c.n.d. automata. By a slight modification
of the automata, introduced by Burkhard [1], we prove the following sharp bound.

Theorem 3. For any n> 1, cd f{n) = 2 n _ 1 - 1.

Proof. First we prove that 2 n _ 1 - 1 is a lower bound for cd^. To do so, for every
integer n > 1, we present a Dl-directable trapped c.n.d. automaton, having a
minimum-length Dl-directing word w with |ui| = 2 n _ 1 — 1.

Let us define the c.n.d. automaton An = ([n], X ^) as follows. For every integer
2<k< n — 2, let us consider all of the fi-element subsets of the set A' = {2 , . . . , n } .
Let us order these sets in a chain such that the first set is {n — k,...,n— 1} and the
last one is {n - k + 1 , . . . , n}. We denote this sequence by A , . . . , - ^ n - i j • Now,

let X , = {x!fc) : r = 1 , . . . , (V) - 1}. V = {vi,...,vn-ih V = {yi, • • • ,yn-2},
and

X(n) = y u Y u (| J{x f c : 2 <k<n- 2}).
The transitions of An are defined as follows. For any x £ X^n\ let lx = {1}.

(k) Moreover, for any xT £ Xk, vt £ V, ys £ Y, and state j £ A', let

,„ t = / { i - i } i f t = i - l ,
| A! otherwise,

jx(k) = Ui% if je4k\
r 1 A' otherwise,

On directable nondeterministic trapped automata 43

if 2<s<n — 2&n — s<j< n},
3Vs=\{n} i f s = l k j e { n - l , n } ,

A! otherwise.
Obviously, AN is a trapped c.n.d. automaton, its trap is the state 1. Let us consider
the word to G l ' " ' " , given by

(n-2) (n—2) (2) (2) w = yn-2x\ •••x^_^_iyn-3...y2x\Jt...x^n'_lyiyivn-i ...Vi.

It is easy to check that to is a Dl-directing word of An, namely [n]w = {1}.
Moreover, w is the unique minimum-length Dl-directing word of An- This fact is
based on the following observation.

If px is a prefix of w, then for any x' € different from x, there exists a
prefix q of p such that [n]px' = [n]q.
Since w is a minimum-length Dl-directing word of An and its length is equal to
2n_:1 - 1, we obtain 2 n _ 1 - 1 < c d ^ n) .

Regarding the upper bound, let us observe that if w = x\... xm is a minimum-
length Dl-directing word of a trapped c.n.d. automaton A = (A, X) of n(>
1) states with a trap an € A, then Aw = {an}. Moreover, the sequence

xm consists of pairwise different nonempty subsets of A and
each of them contains an. The number of these subsets is at most 2 n _ 1 , and so, the
length of w is not greater than 2 n _ 1 - 1. Hence, we obtain that cd^(n) < 2 " - 1 - 1.
The statement is obviously also valid for n = 1. This ends the proof of Theorem
3. •

In what follows, we shall use the following observation.

Lemma. For every n > 1, cd J(n) — cd^(n) and d J (n) = d|"(n).

Proof. Let us observe that for any trapped n.d. automaton A = (A, X) of n states,
Di(A) = D2(-4). Indeed, Di(^4) C D2(-4) follows from the definition. Now, let w e
D2{A). Then aw = bw for every pair of states. This yields that {an} — anw = aw
is valid for any state a € A, where an denotes the trap state of A. This means
that w e Di(^) , implying D2(-4) C Di(^4). Therefore, Di (^) = D2(^4). From this
equality it follows that cd^(n) = cd j (n) and dj r(n) = d j (n) . •

Now, we can conclude the following statement from Theorem 3 by our Lemma.

Theorem 4. For any n > 1, cd^(n) - 2 n _ 1 - 1.

For Dl- and D2-directable trapped n.d. automata, we have the following bounds.

Theorem 5. For any n > 1, 2n~1 - 1 < d^(n) = d J (n) < 2(2n~1 - 1).

44 B. Irnreh, Cs. Imreh, and M. Ito

Proof, d j (n) = d j (n) is provided by our Lemma. By Theorem 3, -we have that
2"- i _ l < cd7(n). On the other hand, c d ^ n) < d f { n) , and therefore, 2 n _ 1 - 1 <
d?(n).

Regarding the upper bound, let us consider an arbitrary Dl-directable trapped
n.d. automaton A = ({ai, • • • with n > 2. Without loss of generality, we
may suppose that o„ is the trap of A. First, let us observe that A is a D3-directable
n.d. automaton, as well. Let w\ be a minimum-length D3-directing word of A. By
Theorem 2, |uii | < 2 n _ 1 — 1. Since A is a trapped n.d. automaton, a„ £ ajW\, for all
j e [n]. Then for every j £ [n] and p £ X*, ajWip ± 0. Now, let w2 — xi... xm be
a minimum-length word such that Aw2 = {an}. Such a word there exists since A is
Dl-directable. Let us consider the sequence A, Ax\,..., Ax¡ ... xm. We show that
these sets are pairwise different. If it is not so, then there are integers 0 < r < s < m
such that Axi... xr = Axi... xs. Then Ax\... xTxs+\ ... xm = {o„} which is a
contradiction. Since an 6 Ap for every prefix p of w2, we obtain that m < 2n~1 — 1.
Now, we prove that W\W2 is a Dl-directing word of A. Let j £ [n] be arbitrary.
Then an S ajWi and ajwi C A. Moreover, ajw\w2 0 and ajw\w2 C Aw2 = {an}>
and hence, a,jw\w2 = {a„}. On the other hand, |wiiU2| - 2 " - 1 - 1 + 2 n _ 1 — 1 =
2(2"-! - 1). Consequently, d f (n) < 2(2n~1 - 1) if n > 2. On the other hand,
di'(n) < 0 is obvious. This completes the proof of Theorem 5. •

Remark 2. Since cdj(n) < cd2(n) < d2 (n), we obtain that 2 n _ 1 — 1 is a lower
bound for both cd2(n) and d2(n). On the other hand, the known lower bound, given
for cd2(n) and d2(ra) in [8], is — l j ! which is less than 2 n _ 1 - 1. Therefore,
2 n _ 1 — 1 is an improvement of the lower bounds of both cd2(n) and d2(n).

R e m a r k 3. The upper bound, presented in Theorem 5, is worse than the up-
per bound 2n - n - 1, given for di(n) in [8]. The verification of the inequal-
ity di (n) < 2" — n — 1 is based on the observation that if w = xi... xm is
a minimum-length Dl-directing word of an n.d. automaton A = (A, X), then
the sets A, A.X\ j . . . j Á.X\... XJJI must be pairwise different. The following example
shows that this observation is not valid, moreover, 2n — n — 1 is not necessarily
upper bound for di(n) in general. Let A = ({0,1)}, {z,y}), where Ox = {0,1},
lx = {1}, 0y = 0, and 1 y = 1. Then xy is a minimum-length Dl-directing word of
A, but {0, l}x'= {0,1}. Moreover, 2 = \xy\ £ 22 - 2 - 1.

References
[1] H. D. Burkhard, Zum Lángenproblem homogener Experimente an determinierten

und nicht-deterministischen Automaten, Elektronische Informationsverarbeiterung
und Kybernetik, EIK 12 (1976), 301-306.

[2] A. Carpi, On synchronizing unambigous automata, Theoretical Computer Science 60
(1988), 285-296.

[3] J. Cerny, Poznámka k homogénnym experimentom s konecnymi automatmi,
Matematicko-fysikalny Casopis SAVIA (1964), 208-215.

On directable nondeterministic trapped automata 45

[4] J. Cerny, A. Piricka, B. Rosenauerova, On directable automata, Kybernetika (Praha),
7 (1971), 289-297.

[5] D. Eppstein, Reset sequences for monotonie automata, SI AM Journal of Computing
19 (1990), 500-510.

[6] P. Goralcik, Z. Hedrlin, V. Koubek, J. Ryslinkovâ, A game of composing binary
relations, R.A.I.O. Informatique théorique/Theoretical Informatics 16 (1982), 365-
369.

[7] B. Imreh, M. Steinby, Some remarks on directable automata, Acta Cybernetica 12
(1995), 23-35.

[8] B. Imreh, M. Steinby, Directable nondeterministic automata, Acta Cybernetica 14
(1999), 105-115.

[9] T. Petkovic, M. Ciric, S. Bogdanovic, Decompositions of automata and transition
semigroups, Acta Cybernetica 13 (1998), 385-403.

[10] J.-E. Pin, Sur un cas particulier de la conjecture de Cerny, Automata, languages
and programming, ICALP'79 (Proc. Coll., Udine 1979), LNCS 62, Springer-Verlag,
Berlin, 1979, 345-352.

[11] Z. Popovic, S. Bogdanovic, T. Petkovic, M. Ciric, Trapped automata, Publicationes
Mathematicae, 60 (2002), 661-677.

[12] I. Rystsov, Reset words for commutative and solvable automata, Theoretical Com-
puter Science 172 (1997), 273-279.

Received November, 2002

Acta Cybernetica 16 (2003) 47-56.

On variable sized vector packing

Leah Epstein*

Abstract
One of the open problems in on-line packing is the gap between the lower

bound fl(l) and the upper bound 0(d) for vector packing of d-dimensional
items into d-dimensional bins. We address a more general packing problem
with variable sized bins. In this problem, the set of allowed bins contains
the traditional "all-1" vector, but also a finite number of other d-dimensional
vectors. The study of this problem can be seen as a first step towards solving
the classical problem. It is not hard to see that a simple greedy algorithm
achieves competitive ratio 0(d) for every set of bins. We show that for all
small e > 0 there exists a set of bins for which the competitive ratio is 1 + e.
On the other hand we show that there exists a set of bins for which every
deterministic or randomized algorithm has competitive ratio il(d). We also
study one special case for d = 2.

1 Introduction
The problem. We consider the following problem. We are given a finite set B
of ¿¿-dimensional vectors in [0, l]d. This is the set of bin sizes. The "all-1" vector
(1 ,1 , . . . , 1) belongs to B. Items of sizes also in [0, \]d arrive on-line, to be assigned
to bins of sizes in B. The packing needs to be valid, i.e. the vector sum of all items
assigned to one bin cannot exceed the capacity of the bin (in any component). The
"all-1" bin needs to be in B so that every item can fit into some bin. Each item,
has to be assigned to a bin upon arrival, and cannot be moved after that. It can
be assigned either to an open bin, or to a new bin of some size in B. The cost of
a bin b is the sum of its components and the weight of an item is the sum of its
components. The goal is to minimize the total cost of the bins that the algorithm
uses.

Applications. The problem can be seen as a scheduling problem with limited
resources. There are a few types of machines (the bins) with known and limited
capacities of several resources as memory, running time, access to other computers
etc. The items is this case are jobs that need to be run, each job requires a certain
amount of each resource. Another application arises from viewing the problem as

"School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. Email:
l e a S i d c . a c . i l
Research supported in part by the Israel Science Foundation, (grant No. 250/01-1).

47

48 Leah Epstein

a storage allocation problem. Each bin has several qualities as volume, weight etc.
Each item requires a certain amount of each quality.

In both applications it is likely for the items to arrive one by one, forcing the
algorithm to make decisions without any knowledge of the future.

The quality measure. The competitive ratio of an on-line algorithm for this
minimization problem is the worst case ratio, over all possible input sequences, of
the cost of bins used by the on-line algorithm to the cost of bins used by an optimal
off-line algorithm (which is familiar with the complete sequence in advance). Often
an additive constant is allowed, yielding the following definition of the competitive
ratio.

Definition 1.1. For an on-line algorithm and a sequence I of items, let CONL(I)
be the cost of the bins used by the on-line algorithm and let COPT(I) be the cost
of the bins used by an optimal off-line algorithm. (CONL{I) can be abbreviated by
CONL and COPT (I) can be abbreviated by COPT-) Let R> 1.

An on-line algorithm is Д-competitive if there exists a constant b such that
CONL(I) < R • COPT (I) + b, for any sequence I of items.

The competitive ratio of an on-line algorithm is
r = in{{R | the on-line algorithm is R-competitive}.

If the additive constant b is zero or negative, the algorithm is called strictly
R-competitive. The negative results given in this paper are valid for the strict
competitive ratio as well as for the competitive ratio in general. The positive
results are valid for the general competitive ratio, as it is common for bin packing
type problems.

For randomized algorithms, the competitive ratio is defined similarly, but
CONL(I) is r ep l aced by E(CONL{I))-

A simple algorithm. The following algorithm achieves competitive ratio at most
2d for every set B. Hence the best competitive ratio for any set is Q(d). The
algorithm uses only "all-1" bins, and packs the items in a "next-fit" fashion. It
keeps one open active bin where all arriving items are packed, whenever an arriving
item does not fit, this bin is closed and a new active bin is opened. To show the
competitive ratio, partition all bins used by the algorithm into pairs, according to
the order they were opened. (If the number of bins is odd, the last one is ignored).
Now combine the contents of each pair. The items in the two bins could not fit
into one bin, since the second is opened when an item does not fit into the first.
Hence, at least one component of the combined contents is at least 1. Let W be the
total weight of items. Let X be the number of bins used by the algorithm. Then
W > (X -1)/2. The optimal off-line also need to pack the items hence COPT > W.
Since CONL = XD, we conclude that the algorithm is 2d-competitive.

Previous work. To the best of our knowledge, no results exist on variable-sized
vector packing. We mention the results for the classical on-line vector packing
problem, where В consists of a single, all-1 bin. There is only a small number of

On variable sized vector packing 49

results on on-line vector packing, and the problem seems to be difficult. Kou and
Markowsky [10] considered a class of algorithms for which there never exists a pair
of bins whose contents can be combined legally into a single bin. They showed that
any algorithm in this class is d + 1 competitive. Later [7] improved the analysis for
a d-dimensional version of first-fit to d+ 0.7. The lower bounds [6,1] are all below
2, tending to 2 as d goes to infinity. The best lower bound for d = 2 is 1.6712 given
by Blitz, Van Vliet, Woeginger in [1]. This large gap between the negative and
positive results (for large d as well as for d — 2) encouraged the current study of
the model with variable sized bins. The main questions were as follows: Are there
any examples for B where the competitive ratio is linear? Are there any examples
where the competitive ratio is constant?

The results. We answer both questions positively. Specifically, we show a set
B for which we design a constant competitive algorithm, moreover, for any small
e > 0, we give an algorithm of competitive ratio 1 + e (section 2). We further
design a set for which we show a lower bound of il(tf) on the competitive ratio of
deterministic and randomized algorithms (section 3). In section 4, we design an
algorithm for a special case d = 2 and |£?| = 3. This algorithm demonstrates the
simplicity in which it is possible to reduce the competitive ratio just by adding a
small number of bins to B.

Other related work. A survey on on-line bin packing problems is given in [3].
The one dimensional variable-sized bin packing problem was studied in several
papers [5, 9, 13, 2, 11, 4]. Those papers present and analyze various algorithms.
Csirik [2] showed that there exists a choice of a set of bins (containing two bins
of sizes 1 and 0.7) so that the competitive ratio (1.4) is much lower than the best
known lower bound (1.5401 [12]) for the basic bin packing problem (a single type of
bin which has size 1). In [4] improved upper bounds and new lower bounds for sets
of two bins are given. The overall upper bound on the competitive ratio presented
in that paper is 373/228 ss 1.63596.

2 A set with 1 + e approximation
In this section we introduce a bin set B for which an asymptotic competitive ratio,
arbitrarily close to 1 is achieved by deterministic algorithms. Even though the
algorithm is on-line, the methods are somewhat similar to those used in design of
polynomial approximation schemes for off-line scheduling problems (see e.g. [8]).

Let 0 < e < 1/3 be a small positive constant. Let A = Let (5 = 1/A.
We define the set Be of allowed bins, as the set of the vectors (a\S2,a262,..., ad52)
such that all a, are integer, and 0 < a; < A2 for 1 < i < d. The number of different
bins is at most (A2 + l)d = 0((^)2 d) . Note that taking a{ = A2 for all 1 < i < d
gives the "all-1" bin.

We define an algorithm which has asymptotic competitive ratio 1 + £ for the
set Be of bins. An item is called senior, if it has at least one component of size at
least S, and junior otherwise. Senior items and junior items are packed by different

50 Leah Epstein

methods. In both cases there is very little room left in the bins (apart from a
constant number of bins) and the competitive ratio is proved by area considerations.

Senior items: Each senior item is packed into a separate bin. Given an item
x — (x\,..., xd), x is packed into a bin b such that if b = (&i , . . . , bd) then bi > Xi
but bi - 52 < Xi. In other words, bi = rfi]<52-

Junior items: Those items are packed only into a subset of Be. Let Be(i) be
the subset of BE containing all vectors whose component i equals 1. Throughout
the algorithm, for each 1 < i < d there is one open bin of each size in Be(i), which
is used for junior items whose largest component has index i. Given a junior item
x = (xi,..., xd), let m = maxi<i<d Xi, let j be the minimum index of a component
which achieves the maximum (i.e. xj = m and xk < m for k < j). Let y = x/m.
The item is assigned into an open bin of size V = (6^,. . . , b'd) in Be(j) such that
b[= [|j](52. Note that component j of b' is 1. If the item does not fit into the
open bin, this bin is closed, a new bin of size b' associated with Be (j) is opened
and the item is assigned there. We are going to show that for every bin used by
our algorithm (apart from the last bin of every size in Be(i) for every 1 < i < d,
that is used for junior items), the cost of a bin is at most 1 + e times the weight of
items assigned to this bin. This would give

CoNL < (l + £)W + d\Be\ (1)

where W is the total weight of items in the sequence. Since COPT > W and \BE\
is constant (which depends on d and e), this gives an asymptotic competitive ratio
1 + e for a constant e. We analyze senior and junior items separately.

Bins with a senior item: According to the definition of the algorithm, each
bin contains a single item x. Let wb the weight of the bin b where x is assigned and
wx be the weight of x. By the algorithm wb < wx + d62. Since x is a senior item,
wx > 6, hence wb < wx(l + d6) < ^ (1 + e).

Bins with junior items: Consider a bin /3 = (f t , . . . , f3d) that was used
for junior items with maximal component of index k, and was closed during the
algorithm. Let y' — (y[,..., y'd) be the sum vector of items assigned to this bin..

We prove the following two claims.

Claim 2.1. For all 1 < i < d, f ; < y'k, and y'k>l-5.

Claim 2.2. For all 1 <i < d, y[> y'kPi - S2.

Before we prove the claims, we show this is sufficient to achieve the required
competitive ratio. We need to compare uip which is the cost of the bin /?, to the
weight of y', wyi, which is the weight of the items in the bin. By Claim 2.2.

d d
« v = Y,Y'I^Y'K I > - d 5 2 •

i=i t=i

Using this and the second part of Claim 2.1, we get wy> > — 5 — dS2) (since
wp > 1). It is left to show that 1/(1 — S — d62) < 1 + e. Since J < e/d it is enough
to show (e + l)2 < d which is true for e < y/2 - 1 (since d > 2).

On variable sized vector packing 51

To complete the proof, we need to prove the claims. We start by proving
Claim 2.1. Consider an item a = (a i , . . . , ad) assigned to a bin p. Then let k be
the maximal component of a which has the minimum index among the maximal
components. Then a was assigned according to component k. Recall that P is
calculated in the following way:

Pi = [^ 1 < 5 2

and hence pi > ai/ak. Since at/Pi < ak is true for all items in the bin, then also
y'ilPi < y'k- Now let 7 be the item that caused this bin to be closed. 7 did not fit
into the bin, but since it was inserted to a bin of the same size also for 1 < i < d,
l i / l k < Pi- Since 7 did not fit, for some component j, y'3 + jj > Pj. Hence
y'k + Ik > y'j/Pj + I j / P j > 1- Since 7 k <6 (junior item) we get y'k > 1 - 7* > 1 - S.
This proves Claim 2.1.

To prove Claim 2.2 recall that Pi < ai/ak + S2. Hence ai > akPi — akS2. Let
I be the set of all items assigned to p.

yi = "i > a k & ~ afc<52 =

a£/ ag/ ag/
(f t - ^ ^ a * = y'k(Pi-62) =

a€l
y'kPi-y'k¿2 > y'kPi-52.

The last inequality holds since y'k < 1. This completes the proof of Claim 2.2.

Theorem 2.1. The above algorithm has asymptotic competitive ratio of at most
1+e.

Proof. Follows from (1). •

3 A set with only approximations
In the introduction we showed that for every set, there exists an algorithm with
competitive ratio 0(d). However, in the previous section we showed a set where it
is possible to get an 1 + e approximation. In this section we show a set for which
we give a lower bound of Cl(d) on the competitive ratio.

We give a deterministic lower bound, and later show how to extend it to a
randomized lower bound.

We start by a description of B. The set B contains apart from the vector
(1 , . . . , 1) also 2d/2 vectors which are called small bins. (We assume that d is even,
for odd values of d it is possible to use the construction for the even dimension
d— 1, setting the last component to zero in all items, and in all the bins apart from
the "all-1" bin.)

52 Leah Epstein

For k = 1 , . . . ,d/2, the (2k - l) t / l and the (2k) l h components of the bins are
either ^ and d d - i or and ^ (respectively). Since every pair has two
options, there are

2 d/2
such possible bins. Throughout the sequence, the optimal

off-line cost is going to be Q(n/d). There are d/2 phases of items, with n items
in each. (We pick n to be a large constant so that the lower bound is valid also
for general competitive ratio and not only strict competitive ratio.) All items have
weight 0(1 /d?). Note that all bin costs are 0(1 /d) (apart from the "all-1" bin
whose cost is d).

We now define the items of phase i. In phase i, for all items and for all j > 2i,
the jth component is zero. The components 2i — 1 and 2i are both ¿57. For all
j < i, the components 2 j - 1 and 2 j are either 0 and -¿¡j or and 0 (respectively).
Note that there can fit only at most one item of each phase in a small bin. The
choice of the (2j — l) t h and the (2j) t h coordinates is done according to the behavior
of the algorithm until the completion of phase j.

We say that the algorithm "may use" a bin in phase j if the bin is opened in
phase j or if it was opened during phases 1,..., j — 1 and can still accommodate an
item of phase j.

For 1 < j < | , let Nj be the number of small bins, where the (2j)th component
is ¿jj-, that the algorithm may use for items in phase j. (Not including bins opened
after the arrival of the items of phase j + 1.) If j > 1, in the beginning of phase
j, some old bins cannot accommodate any more items due to a wrong structure of
the (2j — 3)th and the (2j — 2)th components, those bins will never be used again.
For 1 < j < | , let Mj be the number of other small bins that may be used in phase
j , that have the opposite structure of components 2j and 2j — 1 than bins counted
in Nj. Note that the numbers Mj and Nj include new small bins opened during
phase j, and previously opened bins that can still be used (the latter is true only for
j > 1). If Nj < Mj then all future items have a zero in the (2 j) t h component and

in the (2j — l) t h component. Otherwise, the structure is opposite. Hence all
the MJ bins will never be used in the first case, and all NJ bins will never be used
again in the second case. We use the following notations for 0 < j < d/2 — 1. For
0 < j < | — 1, let Lj be the number of small bins opened in phase j + 1 arid let Sj
be the number of items assigned to an "all-1" bin in phase j +1. For 0 < j < f — 1,
let Kj be the total number of small bins that the algorithm may use in phase j +1.
According to the above definitions, for 0 < j < Kj~i = Mj + Nj and

Kj = Lj + m i n (N j , M j) < Lj + Kj-i/2 . (2)

Since all items have either JT in both the first and the second components, or in
one of the first two components, the algorithm can pack only at most d1 items in one
large bin. Hence CONL > (52J=0 SJ)/D + 1/DYFJ^1 LJ. We need to get a bound
on those two sums. Note that in order to pack all items, for j > 0, Kj + Sj > n.
Using (2) we get that Lj + Sj > n — Kj~i/2. Lj + Sj represents the number of
items that need to be either assigned to "all-1" bins, or have new bins opened for
them.

On the other hand (2) gives the relations between the number of valid bins in

On variable sized vector packing 53

phase j + 1 to valid bins in phase j (0 < j < d/2 - 1). Summing up the two

equations for all 1 < j < § - 1, and setting L = o LJ, K = o and

5 = E f c 1 Sj, we get:

L-L0 + S-S0>(^-l)n~l/2(K-Ki_1).

and
K - K0 < L - L0 + 1 / 2 { K - K I ^) .

Hence L+S+\K > L0+S0+in-n+l/2KI_1, and L-K/2 > -K0+L0+l/2KI_1.
Since Lo + So > n (need to assign all items of phase 1), and all variables are non-
negative, L + S + K/2 > f n . Since K0 = L0 then L-K/2 > 0. Hence 2L + S > f N .
We are interested in (5 + L)/d. Easy substitution gives CONL > (S + L)/d >
(L + S/2)/d > n / 4 .

On the other hand, the optimal off-line algorithm picks n small bins according
to into which bin, an item of the last phase fits. Since f (^7) = d2j-i, it is possible
to place one item from each phase in a bin, the bin cost is 0 (1 /d) and hence
COPT = ®(n/d). The competitive ratio follows.

To extend the proof for randomized algorithms, each one of the variables should
be replaced by the expectation of this variable. By linearity of expectation, we get
the same lower bound.

This proves the following Theorem.

Theorem 3.1. There exists a finite set of bins, for which every deterministic or
randomized algorithm for bin packing has competitive ratio fl(d).

4 A special case for d = 2
In this section we demonstrate by example, that letting the algorithm choose the set
B, even if its size is very limited, allows the algorithm to improve the competitive
ratio it achieves. In particular we consider d = 2 and |£?| = 3. In section 1 it
was shown that if \B\ is large enough (but finite), it is possible to achieve a very
small competitive ratio. Here we focus on an example where |B| is small, but a
simple algorithm already improves on the best known algorithm for the classical
case B1 = {(1,1)} given in [7] (whose competitive ratio is 2.7).

Let B = {(1,1), (1, /Li), (fi, 1)}. The constant 0 < p, < 1/2 is fixed later. We
partition items into two classes:

• Items (/?, 7) where /3 < 7.
• All other items (i.e. items (/?', 7') where /3' > 7').

Each one of the two classes is packed separately, independently from the other
class. We explain how to pack the first class, the algorithm for the second class is
symmetric (i.e. bins of size (1, ¡1) are used instead of bins of size (/1,1) and so on).
The class is partitioned into six sub-classes. The algorithm also packs each one of

54 Leah Epstein

the six sub-classes separately, independently from the other sub-classes. Let a be
a constant 0 < a < 1/3, whose exact value is fixed later. The sub-class of an item
(/3, 7) is determined as follows:

• Sub-Class 1: 7 > 1/2 and P > p..
• Sub-Class 2: 7 > 1/2 and / ?< / / .
• Sub-Class 3: a < 7 < 1/2 and /3 > p/2.
• Sub-Class 4: a < 7 < 1/2 and /3 < /¿/2.
• Sub-Class 5: 7 < a and /3 > ¿¿7.
• Sub-Class 6: 7 < a and /3 < /¿7.

Each item of sub-classes 1 and 2, is packed as an only item in a bin. For sub-class
1 the bin is of size (1,1) and for sub-class 2 the bin is of size (p, 1). Items of sub-
classes 3 and 4 are packed in pairs (from the same sub-class). Pairs of sub-class 3
use bins of size (1,1) whereas pairs of sub-class 4 use bins of size (p, 1). By the
definition of this class, (i.e. the conditions on 7 and /3), any two items of each of
those sub-classes can fit into a bin together. The algorithm always has at most
one bin for sub-class 3 with a single item. The same is true for sub-class 4 as well.
The items of sub-class 5 are packed by a next-fit manner into bins of size (1,1).
The items of sub-class 6 are similarly packed into bins of size (p,l). In each of
those two sub-classes, there is always one active bin. When an item does not fit,
the bin is closed, and a new active bin is opened for the sub-class. Consider the
sub-class 6. Given a set of items A, let a = (ai, <22) be their sum vector. Then if
02 < 1, ai < pa2 < p. Hence < 1 is a satisfactory condition for all items in A
to fit into one bin of size (p, 1). For sub-classes 3 and 5, it is easy to see that the
second component determines whether an item fits into a non-empty bin. This is
true since for all items /3 < 7, but all the bins are of size (1,1).

Next, we calculate the amount of occupied space in all closed bins. Those are
all bins for sub-classes 1 and 2, and all bins but the very last ones opened for
sub-classes 3, 4, 5 and 6. Those four last bins add an additive constant which is
calculated later.
Sub-Class 1: The minimum weight of an item is 1/2 -f p and the cost of a bin is
2.
Sub-Class 2: The minimum item weight is 1/2 and the cost of a bin is 1 + p.
Sub-Class 3: The weight of a pair of items is at least 2(a + p/2) = 2a + p. The
cost of the bin is 2.
Siib-Class 4• The weight of a pair of items is at least 2a, the cost of a bin is 1 + /1.

Before we proceed to the other two sub-classes, we discuss the way next-fit runs
in those two cases. Consider a case where a new bin is opened, when an items
does not fit into the previous active bin. By the above arguments, it means that
the second component of an item can determine whether it fits. Since the second
component is bounded by a, all closed bins are occupied by at least 1 — a in that
component. Bins of sub-phase 5 are also occupied by at least (1 — a)p in the first
component.
Sub-Class 5: The weight of items in a closed bin is at least (1 — a)(l + p), and

On variable sized vector packing 55

the cost of a bin is 2.
Sub-Class 6: The weight of items in a closed bin is at least 1 — a, and the cost of
a bin is 1 + fx.

Let c be the maximum ratio of cost to weight in sub-classes 3, 4, 5 and 6.
Specifically

2 1 + p 2 1 + n
c - m a H 2 a + f x , 2 a , (1 _ a) (1 + / i) > l _ a > •

Since a < 1/3, we do not need to consider the fourth possibility. Hence

, 2 1 + fi 2
C _ m a X 4 a + iz' 2a ' (1 — a)(l + /i) '

Taking a to be a solution of 8a;3 — 8a;2 + 5a; — 1 = 0 and p, = (1 — 3a)/a, all other
values are the same (this gives a « 0.302, p « 0.315, c « 2.177). Consider now
also bins used for the symmetric case, i.e. the class of items (P',j') where ¡3' > 7'.
There are at most 4 bins of cost I + p and 4 bins of size 2 that might be open but
not occupied by enough weight, and are ignored in previous calculations. We add
those into the calculations to get the value of the additive constant.

Let NL be the number of bins used for sub-class 1 (in both classes) and NG the
number of bins used for sub-class 2 (in both classes). Let W be the total weight of
all items. Clearly, COPT > W. Also COPT > NL + NS- The last inequality is true
since those items can be packed either alone (possibly together with items of other
sub-classes) or in pairs, in bins of size (1,1). Hence the cost of the optimal off-line
algorithm for each such item is at least 1 (if all items of sub-classes 3, 4, 5 and 6
are ignored).

The weight of items packed into closed bins of sub-classes 3, 4, 5 and 6 is at
most W - 1/2NS - (1/2 + p)NL.

Hence

CONL < c(W - 1/2NS - (1 / 2 + H)Nl) + (1 + p)Ns + 2NL + 12 + Ap

< CCOPT + NS(1 + p - c / 2) + NL(2 - c / 2 - cp) + 12 + Ap

For the above choices of a and p,

1 + n - c/2 = 2 - c/2 - en « 0.226 .

Hence CONL < 2.403COpt + 13.26.
This proves the following Theorem:

Theorem 4.1. The competitive ratio of the above algorithm is 2-403.

5 Conclusions
We have seen that there is a large difference between possible competitive ratios for
different sets, and that the competitive ratio can actually vary between 1 and Q(d).
The classical case (B = {(1 ,1 . . . , 1)}) seems to be easier than the most difficult
cases, but harder than the easiest cases. We conjecture that the competitive ratio
for that problem should be non constant, but sub-linear.

56 Leah Epstein

References
D. Blitz, A. Van Vliet, and G. J. Woeginger. Lower bounds on the asymptotic
worst-case ratio of online bin packing algorithms. Unpublished manuscript,
1996.

J. Csirik. An online algorithm for variable-sized bin packing. Acta Informática,
26:697-709, 1989.

J. Csirik and G. Woeginger. On-Line Packing and Covering Problems. In Amos
Fiat and Gerhard J. Woeginger, editors, Online Algorithms, volume 1442 of
LNCS, chapter 7, pages 147-177. Springer-Verlag, 1998.

L. Epstein, S. S. Seiden, and R. van Stee. New bounds for variable-sized and
resource augmented online bin packing, submitted, 2001.

D. K. Friesen and M. A. Langston. A storage-size selection problem. Inform.
Process. Lett., 18:295-296, 1984.

G. Galambos, H. Kellerer, and G. J. Woeginger. A lower bound for online
vector packing algorithms. Acta Cybernetica, 11:23-34, 1994.

M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource
constrained scheduling as generalized bin packing. J. Comb. Th. Ser. A.,
21:257-298, 1976.

D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms
for scheduling problems: Theoretical and practical results. J. of the ACM,
34(1):144-162, 1987.

N. G. Kinnersley and M. A. Langston. Online variable-sized bin packing.
Discr. Appl. Math., 22:143-148, 1988.

L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM
J. Research and Development, 21:443-448,1977.

S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin
packing. In Proceedings of the 27th International Colloquium on Automata,
Languages and Programming, pages 283-295, 2000.

A. Van Vliet. An improved lower bound for online bin packing algorithms.
Inform. Process. Lett., 43:277-284, 1992.

G. Zhang. Worst-case analysis of the FFH algorithm for online variable-sized
bin packing. Computing, 56:165-172, 1996.

Received February, 2002

Acta Cybernetica 16 (2003) 57-66.

On-Line Maximizing the Number of Items
Packed in Variable-Sized Bins

Leah Epstein* and Lene M. Favrholdt*

Abstract

We study an on-line bin packing problem. A fixed number n of bins,
possibly of different sizes, are given. The items arrive on-line, and the goal
is to pack as many items as possible. It is known that there exists a legal
packing of the whole sequence in the n bins. We consider fair algorithms that
reject an item, only if it does not fit in the empty space of any bin. We show
that the competitive ratio of any fair, deterministic algorithm lies between |
and and that a class of algorithms including Best-Fit has a competitive
ratio of exactly 2 n-i •

Keywords: On-Line, Bin Packing.

1 Introduction
The Problem. We consider the following bin packing problem. The input con-
sists of n bins, possibly of different sizes, and a sequence of positively sized items.
The bins as well as the sizes of the bins are denoted by B i , B 2 , . . . ,Bn- The items
arrive on-line, i.e., each item must be packed before the next item is seen, and
packed items cannot be moved between bins. The goal is to pack as many items
as possible into the TI bins. A bin is legally packed if the total size of the items
assigned to it is at most the size of the bin. This problem of maximizing the number
of items packed in a fixed number of bins is sometimes called dual bin packing, to
distinguish it from the classical bin packing problem which is to pack all items in
as few bins as possible. In [8] the problem is reported to have been named dual
bin packing in [18]. Note that this name is also sometimes used for bin covering
[2, 14, 15]. For a survey on classical bin packing in identical bins, see [16, 11].

"School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.
Email: l e a f l i d c . a c . i l .
Research supported in part by the Israel Science Foundation, (grant No. 250/01-1)

t Department of Mathematics and Computer Science, University of Southern Denmark. Email:
lenemflimada.sdu.dk.
Supported in part by the Danish Natural Science Research Council (SNF) and in part by the
Future and Emerging Technologies program of the EU under contract number 1ST-1999-14186
(ALCOM-FT).

57

58 Leah Epstein and Lene M. Favrholdt

Throughout the paper, we restrict the input sequences to be accommodating
[6, 7], i.e., sequences that an optimal off-line algorithm, which knows all items in
advance, can pack completely. The reason for this restriction is that, for general
sequences, no on-line algorithm can pack a constant fraction of the number of items
that can be packed by an optimal off-line algorithm.

The problem can also be seen as a scheduling problem with n uniformly related
machines. In the basic scheduling problem, each job is to be assigned to one of
the machines so as to minimize the makespan. This problem was first studied for
the case of identical machines by Graham [17], and for uniformly related machines
by [1, 10, 4]. For a survey on on-line scheduling problems, see [20]. Consider a
scheduling problem with a deadline and assume that the aim is to schedule as many
jobs as possible before this deadline. If an optimal off-line algorithm can schedule
all jobs of any input sequence before the deadline, this problem is equivalent to our
problem. Our problem can also be seen as a special case of the multiple knapsack
problem (see [19, 9]), where all items have unit profit. (This problem was mainly
studied in the off-line environment.)

The Algorithms. In this paper we study fair algorithms [3]. A fair algorithm
rejects an item, only if the item does not fit in the empty space of any bin.

Some of the algorithms that are classical for the classical bin packing problem
(where the whole sequence of items is to be packed in as few bins as possible) can
be adapted to our problem. Such an adaptation for identical bins was already done
in [7]: the n bins are all considered open from the beginning, and no new bin can
be opened. We also use this adaptation. Since there is no unique way to define
First-Fit for variable sized bins, we discuss this in Section 3.

The Quality Measure. The competitive ratio of an on-line algorithm A for the
dual bin packing problem is the worst case ratio, over all possible input sequences,
of the number of items packed by A to the number of items packed by an optimal
off-line algorithm. Often an additive constant is allowed, yielding the following
definition of the competitive ratio.

Definition 1.1. For any algorithm A and any sequence I of items, let A (I) be the
number of items packed by A and let OPT(I) be the number of items packed by an
optimal off-line algorithm. Furthermore, let 0 < c < 1. An on-line algorithm A is
c-competitive if there exists a constant b such that

k(I) > c • OPT(I) — b, for any sequence I of items.
The competitive ratio of A is

Ca = sup{c | A is c-competitive].

Note that since dual bin packing is a maximization problem, the competitive
ratio lies between 0 and 1.

If the additive constant b is zero or negative, the algorithm is called strictly
c-competitive. The bounds given in this paper are valid for the strict competitive
ratio as well as for the competitive ratio in general.

For randomized algorithms, the competitive ratio is defined similarly, but A(7)
is replaced by the expected value of A(7), E(A(I)).

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 59

The Results. We show the following results for fair algorithms on accommodat-
ing sequences.

• Any fair algorithm has a competitive ratio of at least and the competitive
ratio of Worst-Fit is exactly \ .

• A class of algorithms that give preference to smaller bins has a competitive
ratio of exactly 2n"_1. This class contains Best-Fit as well as the variant of
First-Fit that sorts the bins in order of non-decreasing sizes.

• Any fair, deterministic algorithm has a competitive ratio of at most | , and
any fair, randomized algorithm has a competitive ratio of at most

Previous Work. Dual bin packing in identical bins has been studied both in
the off-line version [13, 12] and in the on-line version for accommodating sequences
[6, 7, 3]. Even for identical bins, a restriction on the input sequences is needed in
order to be able to achieve a constant competitive ratio [7]. In [7], fair algorithms
are considered and it is shown that First-Fit has a competitive ratio of at least | on
accommodating sequences. An upper bound of | for any fair or unfair randomized
algorithm is also given. In [3], a (| — 4n

2
+1)-competitive unfair algorithm is given,

the negative result for fair deterministic algorithms is improved to 0.809, and the
bound of | for First-Fit is shown to be asymptotically tight (the upper bound
approaches | as n approaches infinity).

2 General Results on Fair Algorithms
In this section we show that, on accommodating sequences, the competitive ratio
of any fair, deterministic algorithm lies between | and | , and the competitive ratio
of any randomized algorithm is at most

2.1 Positive Results
The main result of this section is that any fair algorithm is ¿-competitive on ac-
commodating sequences. We need the following lemma which is adapted from a
similar lemma for identical bins in [7].

Lemma 2.1. For any fair algorithm, the number of rejected items is no larger than
the number of accepted items, if the input sequence is accommodating.

Proof. Given an instance of the dual bin packing problem with an accommodating
sequence I, we define a sequence I' as follows. Each accepted item of size x is
replaced by |_fj items of size s, where s is the minimum size of any rejected item.
Each rejected item is decreased to have size s. Clearly, a packing of all items of
I defines a legal packing of all items of I ' , hence I ' is also an accommodating
sequence.

Let P be the on-line packing of I and let P' be the packing of / ' induced by P.
Note that all items of I ' have the same size. Thus, to calculate an upper bound on

60 Leah Epstein and Lene M. Favrholdt

the number of items rejected we just need to find an upper bound on the number
of items of size s that fit in the bins after doing the packing P'.

For each bin Bt, let fcj denote the number of items in bin Bi in the packing P.
The empty space in Bi in the packing P' consists of the empty space in Bi in the
packing P and the space freed by the rounding down of the items packed in Bi.
The empty space in Bi in P is less than s, since the algorithm is fair, and the total
size of each original item was decreased by less than s. Thus, the empty space in
Bi in P' is strictly less than s(ki + 1). We conclude that the number of rejected
items is at most k» which is the number of accepted items. •

Corollary 2.1. Any fair algorithm has a competitive ratio on accommodating se-
quences of at least |.

We close this section with an easy lemma that will be needed in Section 2.2 and
Section 3. Let C be the set of non-empty bins in the optimal off-line packing. Let
N = \C\.

Lemma 2.2. Given an accommodating input sequence, any fair algorithm rejects
at most N — 1 items.

Proof. If the on-line algorithm does not reject any items, its packing is optimal.
Assume now, that at least one item is rejected. Let s be the minimum size of any
rejected item. Since the algorithm is fair, the empty space in each bin is less than
s. Another trivial upper bound on the empty space in any bin B is the size B of
the bin. Thus, the total empty space in the on-line packing is strictly less than
Ns + ^he total empty space of OPT is at least Hence, since
OPT accepts all items, the total size of all rejected items is strictly less than Ns.
Since all rejected items are of size at least s, there are at most N — 1 rejected
items. •

2.2 Negative Results
In this section we show an upper bound of | for deterministic, fair algorithms and
an upper bound of | for randomized, fair algorithms.

We first prove the upper bound of § for the strict competitive ratio. This is
relatively easy for any n > 2. Consider for example the following instance with
n - 2 bins of size e, 0 < e < 1, one bin of size 2, and one bin of size 3. The input
sequence consists of two or three items that are all too large for the bins of size e.
The first item has size 1. If this first item is assigned to the bin of size 3, an item of
size 3 arrives next. Otherwise, two items of size 2 will arrive. In the first case, only
the first item is packed, since the second does not fit, and in the second case only
two items are accepted, the third does not fit. It is easy to see that both sequences
are accommodating. This gives an upper bound of | on the strict competitive
ratio, for n > 2. Applying Yao's inequality [21] as described in [5] on these two
sequences gives an upper bound of | on the strict competitive ratio for randomized
algorithms. This can be seen in the following way. Consider the sequence where

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 61

the first item of size 1 is followed by one item of size 3 with probability pi = |
and by two items of size 2 with probability p2 = | . An algorithm that packs the
first item in the bin of size 3 will have an expected performance ratio of at most
px • | + p2 • 1 = | . Similarly, an algorithm that packs the first item in the bin of
size 2 will have an expected performance ratio of at most pi • 1 + p2 • § = Thus,
no deterministic algorithm can have an expected performance ratio larger than |
on this sequence.

However, we are interested in negative results that hold for the competitive ratio
in general, and not only for the strict competitive ratio. By Lemma 2.2, the number
of rejected items is at most n — 1. As long as there is only a constant number of bins,
we can view the number of rejected items as just an additive constant, and hence
any fair algorithm has competitive ratio 1. Thus, to prove the following theorem,
we need to find arbitrarily long accommodating sequences with the property that
only | of the items are accepted.

Theorem 2.1. Any fair, deterministic on-line algorithm for the dual bin packing
problem has a competitive ratio of at most | on accommodating sequences.

Proof. For I = 1 , . . . , [f J, we give the pair of bins

B2t_i =2£ + 4ee and B2i = 2t + 2- \le,

where e < p- is a positive constant. Thus, \ l e < 1, 1 < I < [f j - If n is odd,
the last bin is of size | (so that no items are packed in that bin for the sequence
we define). The sequence contains 3 • items and is constructed so that exactly
2 • Lf J °f them are accepted.

The sequence is defined inductively in steps |_|-J, |_f J — 1, • • •, 1- In step k, two
large items are given and one small item is defined. The small items are given
after all large items and are defined such that they will be rejected by the on-line
algorithm. The sizes of the two large items are defined such that

• the on-line algorithm will pack them in B2k and B2k-i, one in each bin, and
• after packing the two items, the empty space in the two bins have the same

size denoted Ek.
For convenience we define ¿¡^f J + i = 0. As will be seen later, Ek+1 < Ek, 1 < k <
LfJ. Furthermore, we will prove that Ex < I.

The first large item given in step k has size 2k — Ek+1. Thus, the very first item
has size 2 • [^J, and the size of the first large item of each of the later steps depends
on the empty space created in the previous step. Since 2k — Ek+1 > 2k — 1 and all
previous bins Bn,... ,B2k+i have less than one unit of empty space, this item fits
only in B2k and B2k-i • What happens next depends on which of these two bins
the algorithm chooses.

Case 1: The first large item is packed in B2k_i. In this case, the next large
item has size 2k — Ek+1 + Ake. This item will be packed in B2k. Now, the empty
space in each of the bins B2k and B2k-1 is Ek = Ek+\ + ik£. The small item

62 Leah Epstein and Lene M. Favrholdt

defined in this step has size Sk = Ek + 4fce. Note that this item does not fit in B2k
or B2k-1, but the off-line algorithm can pack the first large item in B2k together
with the small item and put the second large item in B2k-\-

Case 2: The first large item is packed in B2k. In this case, the next large
item has size 2k — Ek+1 - 4ke. For k > 2, this item does not fit in B2k-2, since
2k - Ek+1 - 4fce > 2k - 1 - 4*e > 2k - 2 + 3 • 4fce, for n > 2, and B2k-2 =
2k — 2 + 2 • 4fc_2e. Hence, this item must be packed in B2k-\. Now, the empty
space in each of the bins B2k and B2k-i is Ek = Ek+1 + 2 • 4ke. The small item
defined in this step has size Sk = Ek+ 4ke. This item does not fit in B2k o r B 2 n ,
but the off-line algorithm can pack the first large item in B2k~i and put the second
large item in B2k-i together with the small item.

Note that Ek+1 + 4fce < Ek < Ek+1 + 2 • 4ke, 1 < k < Lf J. The first inequality
tells us that, to prove that none of the small items will be accepted, it suffices to
prove that Sk > Ei, 2 < k < This is easily done using the second inequality.
For 2 < k < LfJ,

k-1
Ei < Ek + 2 • < Ek + 4ke = Sk.

i-1
Finally,

LfJ
Ei < J + i + 2 • < 4 ^ J + 1 e < 4 ^ 1 + ! " " < l.

¿=i
•

We move on to randomized algorithms. Since the previous sequence was built
step by step, we need to give a simpler sequence in order to prove the following
theorem.

Theorem 2.2. Any fair randomized algorithm has a competitive ratio on accom-
modating sequences of at most |.

Proof. We use [f J bins of size 1 + e and |_f J bins of size 2 — e, where 0 < e <
If n is odd, the last bin is of size e. The sequence starts with |_f J items of size 1.
We describe a proof for deterministic algorithms first. Since the algorithm is fair,
all LfJ items are accepted. Let x be the number of bins of size 1 4- e that received
an item (no bin can receive more than one item). Then, exactly x bins of size 2 — e
are empty. What happens next depends on the size of x.

Case x < | • LfJ- In this case, the sequence continues with LfJ items of size
2 — e, and the on-line algorithm accepts LfJ + x items in total out of the 2LfJ.
This gives a fraction of

i f i ± ^ < i ± i = 4
2 L f J - 2 5'

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 63

Case x > | • [f J • In this case, the sequence continues with [^J items of size 1 +e
followed by |_fj items of size 1 — e. After the arrival of items of size 1, there are
LfJ empty bins. Thus, all items of size 1 + e are accepted and now each bin has
exactly one item. Items of size 1 — e can only be assigned to bins of size 2 — e that
contain an item of size 1, hence |_f J — x of them are accepted. Thus, the fraction

3LfJ - x 3 - 1 4
3Lf J 3 5

of the items is accepted.
To get a randomized result, let x be the expectation of the number of bins of

size 1 + e that got an item. The bound follows by linearity of expectation. •

3 Results on Specific Fair Algorithms
We now analyze specific algorithms. Some natural fair algorithms are First-Fit,
Best-Fit, and Worst-Fit. The algorithm First-Fit is not a single algorithm, but a
class of algorithms that give an order to the bins, and use the algorithm according
to this order, i.e., assign an item to the first bin (in the ordered set of bins) that
the item fits in. Among the various versions of First-Fit, two are most natural;
Smallest-Fit assigns an item to the smallest bin it fits into, and Largest-Fit assigns
an item to the largest bin it fits into. The other algorithms are used in their
classical version, i.e., Best-Fit packs each item in a bin where it will leave the
smallest possible empty space, and Worst-Fit packs it in the bin where it leaves the
largest empty space. We refer to these four algorithms as SF, LF, BF, and WF.

We start the analysis by showing that | is indeed the exact competitive ratio
of WF and LF.

Theorem 3.1. The competitive ratio of Worst-Fit and Largest-Fit on accommo-
dating sequences is

Proof. Let e > 0 be a constant such that £ < K Consider the following set of bins.
One large bin of size n and n - 1 small bins of size 1. The sequence consists of
n — 1 items of size 1 followed by n — 1 items of size 1 + e. Both algorithms LF
and WF assign all items of size 1 to the large bin. As a result, all bins have a free
space of size 1, hence none of the items of size 1 + e can be accepted. The optimal
algorithm assigns each small item to a small bin, and all other items to the large
bin; they all fit since

\ / ,, ^ (n + 1)(n - 1)
(1 + £)(n - 1) < - ^ '- < n .

n
This example in combination with Corollary 2.1 proves the theorem. •

We further analyze a class of fair algorithms called Smallest-Bins-First to which
SF and BF belong. This is the class of fair algorithms that whenever an item is

64 Leah Epstein and Lene M. Favrholdt

assigned to an empty bin, this is the smallest bin in which the item fits. There are
no additional rules, and the algorithm may use an empty bin even if the item fits
in a non-empty bin, as long as it uses the smallest empty bin for that. SF belongs
to this class according to its definition. BF belongs to this class since, among the
empty bins that an item fits into, it fits better into the smaller bins than the larger
bins. We give a tight analysis of this class as a function of n. Specifically we prove
the following.

Theorem 3.2. The competitive ratio of any Smallest-Bins-First algorithm on ac-
commodating sequences is 2n"_1.

Proof. If, after running the algorithm, all bins of the on-line algorithm are non-
empty, then there are at least n accepted items and at most n — 1 rejected items
(by Lemma 2.2). Thus, in this case, the competitive ratio is at least 2n-i •

Otherwise, consider the largest (last) bin b that remained empty after running
the on-line algorithm. We consider items of size smaller than or equal to b, and
items larger than b separately. Since a bin of size b is empty and no bin larger
than b is empty, according to the definition of the class of algorithms, each bin of
size more than b contains at least one item larger than b, namely the first item
packed in the bin. Moreover, all items of size at most b are accepted. Let xs be the
number of items in bins of size at most b and let nt be the number of bins larger
than b. Let Ns be the number of non-empty bins of OPT of size at most b and Nt
its number of non-empty bins larger than b. Clearly, xs > Ns (all those bins are of
size at most b and contain at least one item). We get that the number of accepted
items is at least xs + nt > Ns + Nt = N. Thus, by Lemma 2.2, the competitive
ratio is at least 2n~ i ^ 2^-i•

. To show that the result is tight for this class of algorithms, let e < ^ be a
positive constant. Consider the set of bins Bi = 1 + ei, i = 1 , . . . , n. The sequence
consists of n items, one of size 1 + e(i — 1) for each i = 1 , . . . , n, followed by n — 1
items of size ^ j . All algorithms in the class assign the item of size 1 + e(i — 1) to
Bi. All other items are rejected. The optimal off-line algorithm assigns each large
item except the first one to a bin of its size. The first item and the n — 1 small
items are assigned to Bn. •

Note that when n = 2, the lower bound of 2n"_t matches the general upper
bound of | .

4 Conclusion
We have proven an upper bound of | for all fair algorithms. We have also shown
that any fair algorithm accepts at least half of the items, and that some algorithms
do significantly better for very small n. It is left as an open problem to design a fair
algorithm with a competitive ratio significantly larger than | for any n, or prove
that this is not possible. It is also unknown how much unfair algorithms can be
better; the best negative result for those is which holds even for identical bins [7].

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 65

Acknowledgment: We would like to thank Joan Boyar for reading and comment-
ing on the paper. We also thank the editor Gerhard Woeginger for suggesting the
title.

References
[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and 0 . Waarts. On-Line Routing of

Virtual Circuits with Applications to Load Balancing and Machine Scheduling.
Journal of the ACM, 44(3):486-504, 1997. Also in Proc. 25th ACM STOC,
1993, pp. 623-631.

[2] S. F. Assmann, D. S. Johnson, D. J. Kleitman, and J. Y. Leung. On a Dual
Version of the One-Dimensional Bin Packing Problem. Journal of Algorithms,
5:502-525, 1984.

[3] Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N.
Nielsen. Fair versus Unrestricted Bin Packing. Algorithmica, 34(2): 181-196,
2002. Preliminary version at SWAT 2000, volume 1851 of LNCS: 200-213,
Springer-Verlag, 2000.

[4] P. Berman, M. Charikar, and M. Karpinski. On-Line Load Balancing for
Related Machines. Journal of Algorithms, 35:108-121, 2000.

[5] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[6] J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmica,
25:403-417, 1999.

[7] J. Boyar, K. S. Larsen, and M. N. Nielsen. The Accommodating Function:
A Generalization of the Competitive Ratio. SIAM Journal on Computing,
31(1) :233—258, 2001.

[8] J. L. Bruno and P. J. Downey. Probabilistic Bounds for Dual Bin-Packing.
Acta Informatica, 22:333-345, 1985.

[9] C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem.
In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
213-222, 2000.

[10] Y. Cho and S. Sahni. Bounds for List Schedules on Uniform Processors. SIAM
Journal on Computing, 9:91-103, 1988.

[11] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation Al-
gorithms for Bin Packing: A Survey. In Dorit S. Hochbaum, editor, Ap-
proximation Algorithms for NP-Hard Problems, chapter 2, pages 46-93. PWS
Publishing Company, 1997.

66 Leah Epstein and Lene M. Favrholdt

12]. E. G. Coffman Jr. and J. Y. Leung. Combinatorial Analysis of an Efficient
Algorithm for Processor and Storage Allocation. SI AM Journal on Computing,
8(2):202—217, 1979.

13] E. G. Coffman Jr. J. Y. Leung, and D. W. Ting. Bin Packing: Maximizing
the Number of Pieces Packed. Acta Informática, 9:263-271, 1978.

14] J. Csirik and J. B. G. Frenk. A Dual Version of Bin Packing. Algorithms
Review, 1:87-95, 1990.

15] J. Csirik and V. Totik. On-Line Algorithms for a Dual Version of Bin Packing.
Discr. Appl. Math., 21:163-167, 1988.

16] J. Csirik and G. Woeginger. On-Line Packing and Covering Problems. In Amos
Fiat and Gerhard J. Woeginger, editors, Online Algorithms, volume 1442 of
LNCS, chapter 7, pages 147-177. Springer-Verlag, 1998.

17] R. L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell Systems
Technical Journal, 45:1563-1581, 1966.

18] J. Y. Leung. Fast Algorithms for Packing Problems. PhD thesis, Pennsylvania
State University, 1977.

19] S. Martello and P. Toth. Knapsack Problerris. John Wiley and Sons, Chichester,
1990.

20] J. Sgall. On-Line Scheduling. In A. Fiat and G. J. Woeginger, editors, Online
Algorithms: The State of the Art, volume 1442 of LNCS, pages 196-231.
Springer-Verlag, 1998.

21] A. C. Yao. Towards a Unified Measure of Complexity. Proc. 12th ACM
Symposium on Theory of Computing, pages 222-227, 1980.

Received February, 2003

Acta Cybernetica 16 (2003) 93-131.

SW-type puzzles and their graphs

Benedek Nagy*

Abstract
In this paper, we present the SW-type of truth-tellers and liars puzzles.

We examine the SW-type puzzles where each person can utter a sentence
about the person's type and in which he uses only the "and" connective. We
make the graphs of these puzzles. The graph of a puzzle has all information
about the puzzle if we have no other information to solve the puzzle than
the statements given (clear puzzles). We analyze the graphs of the possible
puzzles. We give some transformations of graphs based on local information,
for instance arrow-adding steps. These local steps are very helpful to solve
these puzzles. We show an example that we can solve using these local steps.
After this, we examine into the global properties of the graphs. We show a
special example when the local steps do not help, but the puzzle is solvable
by using global information. Finally we show a graph-algorithm which is a
combination of local and global information, and show that it can solve the
SW-type puzzles.

Keywords: puzzles, truth-tellers and liars, graphs, graph-algorithm

1 Introduction
Games are as old as humanity. Nowadays most people connect them to computers.
Game playing is also good time-spending activities. The problems needing more
or less time to solve represent useful ways of spending one's spare time. A part
of games are puzzles. Logical puzzles can be solved by a rational way of thinking.
From children to very wise people everybody can find puzzles which develop their
skills. It can be a good hobby as well. Therefore, logical puzzles are very useful
to explore the ability of logical thought. There are many kind of puzzles. In
this article, we consider a simple type called "truth-tellers and liars". In these
puzzles, there are some people each of the following two types: either truth-teller,
who can say only true statements; or liar, who can say only false statements. All
participants have full information about the type of the others. Some of them claim
about the type of the others. The puzzle is to figure out the types of each person.
These problems are very popular. Smullyan examined such puzzles in scientifical
and logical way ([7], [8], [9], [10]), where the participants was distinguished as

"Institute of Mathematics and Informatics, University of Debrecen, H-4010 Debrecen, Pf. 12,
Hungary. Email: nbenedek8math.klte.hu

67

68 Benedek Nagy

knights and knaves. In [6], satellites send messages informing mechanics whether
the neighbouring satellites work properly, or not. In [1], [2] and in [3], Aszalos
solves many puzzles by using tableaux method and Prolog language, as well.

In this paper, we investigate a special type of truth-teller-liar puzzles. We show
a characteristic example.
Example 1.1. Consider the following problem. There are four people: Alice, Bob,
Charlie and David. Each of them is either a truth-teller or a liar. They say:

Alice says that Bob is a truth-teller and David is a liar. Bob says that Charlie
is a liar. Charlie says that Alice is a truth-teller and David is a liar.

Using Smullyan's method [7] we write the example in the next logical form:

A = B A B = iC, C = AA^D

One can check easily that valuation A = C = false, B — D = true gives valid
formulae. Therefore a solution of the example that Alice and Charlie are truth-
tellers; Bob and David are liars. Moreover it is easy to check that the variables
A,B,C,D have not other values such that all given formulae are true. So our
solution is unique.

In the next section we describe more precisely the SW-type truth-teller and liar
puzzles. In [4] we presented a program in language C which can generate special
SW-type puzzles. Now we will associate graphs to the puzzles, which are very
useful to examine the structure of the puzzles, and we can solve a puzzle by using
the associated graph.

In section 3 we analyse the SW-type puzzles and we show some useful steps to
solve them by using local information, in this section we will solve Example 1.1.

In thé next sections, we show an example such that the local information is not
enough to solve it. We show how we can use the global information of the graph
to get the solution. We present a general algorithm mixed the local and global
information.

2 SW-type puzzles
We need a few concepts to the mathematical discussion and so; we give some basic
definitions and notations.

The sentences which are not dividable to smaller sentences are called atomic (or
simple) statements. In this paper, we use atomic statements only about a person's
type as we seen in Example 1.1.

In Example 1.1 there are 5 atomic sentences. Alice and Charlie tell two-two
atomic statements and Bob tells one.

In this puzzles, if a person is a truth-teller then the conjunction of his atomic
statements must be true. If a person is a liar then the conjunction of his atomic
statements is false. In [5] we used these definitions to define S(trong) Truth-tellers
and W(eak) Liars.

SW-type puzzles and their graphs 69

A

C • -
•4

- - • • D

Figure 1: The graph of Example 1.1

If a person remains silent then he may be Truth-teller or he may be Liar. We
may know it only from the atomic sentences about his type.

We call our puzzles SW-type because each person is an S truth-teller, or a W
liar.

In [4] we investigated clear and non-clear puzzles. A puzzle is clear, if we have
no other information to solve the puzzle than the statements given.

An example of a non-clear puzzle is someone's type or the number of truth-
tellers being known independently of the statements. In this paper, we examine
only clear puzzles. Our example is a clear SW-puzzle.

We use the value 1 to represent the truth-tellers, and the value 0 for the liars.

Definition 2.1. The solution of a puzzle is a function which assigns either a 1
or a 0 to each person, who is in the puzzle depending upon the truth-values of the
statements he or she makes. Two solutions are different, if there is a person, whose
type is not the same in these two functions.

We say that a puzzle is good if it has a unique solution.

In this paper we use three type of participants in dynamic way. The initial type
is the unknown. The other two types are the known 1 and known 0. We will sign
the known values at the participants who have it. Usually we will use the sets T
and L as sets of truth-tellers and sets of liars, respectively.

This paper will investigate clear puzzles only with solutions and the most of our
results are about good puzzles.

Definition 2.2. Puzzles are represented by directed graphs with a node of the graph
for person in the puzzle. There are two types of arrows: if A said that B is a truth-
teller then we use a solid arrow from A to B; if A said that B is a liar then we use
a dashed arrow from A to B. We will use N as the set of nodes and t, I as the sets
of solid and dashed edges, respectively.

We will use the names of persons as names of nodes, and sometimes as logical
statements which can have either 0 or 1 values. We use the following notation:
P(N,t,l) (where the nodes are Bi £ N, the solid and dashed edges tj £ t and £ 1
respectively, and they are sorted pairs of nodes) as the associated graph of a puzzle.

In Fig. 1 we show the graph of Example 1.1.

70 Benedek Nagy

We say that the puzzles P and Q are equivalent if the solution(s) of P are the
same as the solution(s) of Q.

Now we continue the describing the SW-type puzzles, which are widely used.
One can find them in almost every book on puzzles.

According to our concepts, in these puzzles we have only S truth-tellers, and W
liars, hence we can use conjunction in logical form of the sentences. In an SW-type
puzzle, every person can make at most one complex assertion which has a truth-
value corresponding to the type of the person. The possible atomic sentences are:
the man names a person, and he states that this person is a truth-teller (or he
states, that this person is a liar).

So in an SW-type puzzle with n persons, each person can claim at most one
sentence, and it must be the following type: he names m persons (0 < m < n), and
he states that all of them are truth-tellers, and he names k persons (0 < k < n),
and he states that all of them are liars. So, there are two - maybe one of them or
both empty, and not necessarily disjoint - sets of the persons for each member in
the puzzle, about whom that member claims something.

Definition 2.3. (Formal definition of SW-puzzles) Suppose that there are n people
BuB2,...Bn.
From, [7] and [4] we write the following logical form from the statements: if
3j(BiBj G t or BiBj € t) then

(*) Bi = { f \ Bj) A (f \ -nBfc).
BiBj^t BiBkei

If all the conditions of a puzzle can be written by this way then it is a clear
SW-puzzle.

Now we consider that P is a graph of an SW-type puzzle. Let us examine the
meaning of the arrows.

If A states the atomic statement, that B is a truth-teller then A D B is valid
(this is what the solid arrow means), or if A states, that B is a liar then the formula
A D ~>B is true (it is a dashed arrow). In (*) we have equivalence, so we need one
more concept: the relevant edges.

Definition 2.4. In the graph P, we call an edge relevant edge if it is possible for
it to stand for a liar's actual, false atomic statement.

We will use this concept in dynamic way. First we assume, that all arrows are
relevant. (We do not know yet if it was not possible for an edge to stand for a liar's
false statement.) And while it turns out that an edge might not be relevant we
assume that it is possible for it to stand for a liar's actual, false atomic statement.
It is evident that there is at least 1 relevant arrow from the nodes which are type
0, assuming that person said something.
Notation 2.5. In the graph we cross the non-relevant edges. An edge is annotated
with the sign '!' if there is only this relevant edge starting from that node.We will

SW-type puzzles and their graphs 71

use these notations in figures. In form P(N,t,l) we will use for a non-relevant edge
AB (A,B € N) the sign AB (overlying). And for the unique relevant edge CD
(where C, D £ N) we use the CD (underlying) form in text instead of the sign '!'.
From here AB £ t means that one of the AB, AB and AB is in the set t, and
similarly for the set 1.

The following assertion shows how we can use the relevant edges to make the
(*) form from the implications.

If there is only one relevant edge from a node B, then we use equivalence in the
formula instead of implication: BC £ t means that B = C; BC £ 1 means that
B = -.C.

Hence we can see that the graph of a puzzle represents really the sets of logical
formulas of the puzzle. The nodes (Bi) like atomic statements ("Bi is a truth-
teller"), the arrows like logical connectives between them, and hence we can use
them as logical statements also.

3 Local steps in the graph
Solving the puzzles requires some techniques which modify the graph of the puzzle.
However our new graph is equivalent to the original. These local techniques are
the following (we will give detailed description of them in this section):

Definition 3.1.
a) An arrow-adding step is the following: add a new (non-relevant) arrow to the

graph such that all solutions remain such that our new graph is equivalent to
the original.

b) A node-union is when it turns out that two nodes must be same types, and
we need use only one of them as common node.

c) A subgraph is a basic scheme if the type of one of the nodes of this part can
be only one of {0,1} according to the arrows in this part.

d) An arrow is a valuable arrow, if we know the type of starting or the ending
node, and we can infer the type of the other node (using only the information
about the type of the first node, and the type of connection.)

e) In arrow deletion and arrow change to irrelevant steps we will delete the
arrows, which are non useful (we cannot use them to get new information,
for example we know the type of both end-nodes), or we cross the edges, which
we cannot use as relevant edges, but we may will use as valuable arrows.

The basic schemes and the valuable arrows change the types of the nodes to
known value. The node-union step decrease the number of nodes and use the new
node as endpoint of the edges, which had endpoint one of the joined nodes. In an
arrow-adding step we increase the number of edges, while in an arrow deletion we
decrease it.

72 Benedek Nagy

Now we have some lemmas about these local steps: when and how we can use
them.

First we show the arrow-adding steps. We add a new non-relevant edge to the
graph in the following cases. (The new edge is non-relevant, because it is not a real
statement in the original puzzle.)

Lemma 3.2. The following steps are arrow-adding steps. The graphs before and
after a step are equivalent.

edge(s) in the graph before the step the new irrelevant edge(s)
a) AC 6 I AC el
b) AB,BC e t AC e t
c) AB 6 t and (BC e I or CB e t)* AC,CAe
d) AB e I and (BC or CB e l)* AC e t.

If the new type of arrow with this direction has directly connected the nodes A
and C, then we do not need the new edge (we already have edge which means this
type of connection).

Proof. It is from the logical meanings of the edges. The case a) is from A D ->B
is equivalent to B D ~>A, which is the meaning of the dashed arrow for opposite
direction, case b) is from: A D B, B D C are the original arrows, and their logical
consequence is A D C, the new arrow. In case c) £ means that we can use this
step independently the direction of the dashed edge between B and C, because of
point a), and 0 signs that we can add arrows with both directions because we have
A D B, B D ~'C, therefore A 3 ->C is valid, and than using point a) C D ~>A also
valid. In case d) the sign ty notes that the dashed edge between B and C must be
only one relevant at least from one direction and we have no restriction about the
relevance of other edges in these steps. Then A D ->B, B = ->C, which is implies
that C = -iB, hence AD C. •

The meanings of these new edges are about "that person could say these things
also". In [3] Aszalós examines this modal operator in puzzles.

According to the point a) of the previous lemma, if the relevance is not impor-
tant then we can use only dashed line instead arrows. (But sometime we need the
directions of these arrows for using relevance.)

Let us see how we modify the graph of the example using these steps.
We note by sign ! the edge from B because it is unique. We can use arrow-

adding steps b) and c) among A, B and C (Fig. 2).
Now, we can use arrow-adding step c) for CB e t, BC € 1 or for CA e t, AC € 1.
Now we go back to the theory. We have a basic scheme:

Lemma 3.3. If the graph of a puzzle P(N,t,I) contains dashed loop-edge AA e I,
then the node A is type 0.

Proof If there is a dashed loop edge at node A, then A D -iA, and it means that
A must be a liar. •

SW-type puzzles and their graphs 73

Figure 2: The graph of the Example 1.1 after some arrow-adding steps

Let us see our example. We get basic scheme at C (Fig. 3). Using the scheme
first we write the sign 0 to the node (it is a known type), and after this we examine
the arrows, which remain relevant. It is very important part of this local method.
In the next part we examine the valuable arrows, and the arrows, which become
irrelevant. So if we know the type of the node of an end of an edge, what do we
know about the other end?

Lemma 3.4. Let A,C £ N such a way that A is known type (let T and L be the
known nodes with type 1 and type 0, respectively) as in the first column of the table
and the noted edge between them is in P. The noted edge is a valuable arrow in the
SW-puzzle if it is one of the following:

the case of valuable arrow after valuation we have these information
a) A ET, AC E t C is type 1 also
b) AET, (AC or CAE I) C is type 0
c) A E L.AC Et C is type 0
d) A ET, CAE t C is type 1
e) A E L, CA E t C is type 0
f) A E L, (AC or CA E I)* C is type 1

this arrow must be unique relevant at least from one direction to use this step

Proof. It is evident from logical meaning of the arrows. •

At this point we detail the arrow-deletions and arrows changing to irrelevant
steps. First of all, we note that the point d) and some special case of point c) in
the previous lemma are this kind of steps also, as we will show in the next lemma.

74 Benedek Nagy

Lemma 3.5.
a) Let A, B and C be three nodes. If AB E I and BC or CB E I and the edge

AC E t is already in the graph such that both arrows from A (the dashed edge
to B and the solid one to C) are relevant then we cross out one of them.

b) Our graph will be equivalent to the previous one in the following case also: let
A, B and C be nodes such a way that AB £ t, (BC or CB £ I) and AC £ I
where both arrows from A are relevant. In this case we cross out one of them
from A.

Proof. The connection between B and C means that B and C are different types.
Hence if an arrow above is relevant in the solution then the other is relevant also. •

Now we will show the other cases when we cross out or delete an arrow.

Lemma 3.6. Each arrow which starts from a type 1 node will be irrelevant.

Proof. Trivially, it is from the definition of relevant edge. •

The following two lemmas are about that when we delete edges. We delete
only edges, which have a known type end. If we cannot use an edge to get more
information then we delete it.

Lemma 3.7. Let T and L be the set of known type nodes (T is the nodes type 1,
and L is the nodes type 0). Let A be a node, whose type is unknown at this time.
If not only one relevant arrow started from the node A, but there is an arrow which
goes to a known type node C, like

a) AC £t,C £ T, and/or
b) AC £ I, C £ L,

then this arrow will be deleted.

Proof. Prom the logical meaning of the arrows from A, we can use the (*) formula.
We have a conjunction in left hand side, these edges means values 1 in this con-
junction. We can delete these values if it is not alone in this side. But there is
other relevant edge from A, therefore we delete these arrows. •

Lemma 3.8. If we know about the node A that it is type 0 (A £ L), and there is
a relevant arrow from A to a node C, like

a) AC £ t, A, C £ L, or
b) AC El, A£ L andC £T

then we delete all other arrows starting from A.

Proof. We can use (*). This formula must be valid independently the values of the
other atomic sentences in the left hand side. •

SW-type puzzles and their graphs 75

A • B
1

- - • •D

Figure 4: The graph after deleting edges

A
0

\ i

• B

0 1

Figure 5: The solution of Example 1.1 on the graph

After using basic schemes we can use the point b) of lemma 3.7. We delete and
cross the edges, which were relevant until this step.

Now we continue the solution of our example.
We can evaluate the value of B by step f) of lemma 3.4, hence B is type 1. We

delete the edges AB, CB, BC, AC and CC (lemma 3.7). And we can sign the
arrow AD by ! (Fig. 4).

We can use the step lemma 3.5. to cross out an edge from C. But after this we .
can ! sign the other arrow from C hence we can use valuable-arrow steps and get
the value 0 for A and 1 for D. Therefore the result is: Alice and Charlie are liars,
Bob and David are truth-tellers (Fig. 5).

In general case it is possible that we need the node-union step. We can use node
union step in the following situation:

Lemma 3.9. If there are two nodes A and B, such that AB £ t (the unique relevant
arrow from A goes to B, and it is solid), then we unite these nodes. The united
node has label "A,B" and we have all edges at this node which were into/from A
and B but the AB € t edge. And if there was relevant BA also, then after the
node-union we have a relevant loop arrow at this node. The new graph is equivalent
to the original one in the following sense. In the solution of the previous graph the
nodes A and B have the same value as in the solution of the new graph the united
node with label "A, B"; and all other nodes have the same value, respectively.

Proof. From the logical meaning of the edge AB £ t we know, that A = B. So all
edge, which had endpoint A or B must be valid in the new graph. There were not
more relevant edges from A, and we have all relevant edges from B. •

76 Benedek Nagy

Sometimes we have information that two nodes are the same type but we cannot
use node-union. Therefore we need the concept of parity of nodes, what we can use
usually after the arrow-adding steps.

Definition 3.10. Two nodes are in parity, if they are connected by solid arrows
by both directions. We will use the notation A В to show that there are solid
arrows between them, in both way.

(And we may use, that each node in parity with itself, because we can add solid
loop arrow for each node, А э A must be valid.)

Lemma 3.11. The nodes in parity have same value.

Proof. Assume, that A and В are in parity. Then from logical meanings of the
solid arrows: Ad В, В D A: A = B. •

Lemma 3.12. If from a node there are more same-type (solid or dashed) relevant
edges going to the nodes which are in parity, then we can keep only one of them
relevant, and we cross the others.

Proof. The nodes in parity are same type, so all these relevant edges mean true
atomic statements, or all of them mean false atomic statements. So it is equivalent
to only one independent statement. Easy to show, that the new graph is equivalent
to the previous one. •

Remark 3.13. If from a node A there are more than 1 same-type edge going to
the node B, then we leave only one of them. If there was relevant one among them,
then we keep a relevant one, and delete the others.

Remark 3.14. If an edge is relevant in the solution, then it must be relevant also
in the original graph of the puzzle.

4 The global properties of the possible puzzle-
graphs

Now, before we examine how we can use the global information of a puzzle-graph,
we make some statements about the possible graphs.

Lemma 4.1. There is no good and clear SW-type puzzle only with solid arrows.

Proof. It has at least two different solutions: everybody is truth-teller; or each
person is a liar. •

Lemma 4.2. There is no good and clear SW-type puzzle, whose solution is that
each person is a truth-teller.

Proof. In the graph of this puzzle there are only solid arrows. So according to the
previous lemma, our statement is true. •

SW-type puzzles and their graphs 77

Lemma 4.3. If the graph of a clear and good puzzle has two or more components,
then this puzzle falls apart: we have two or more less clear and good puzzle.

Proof. In a clear puzzle in a component there is no information about the nodes in
other components. •

According to the previous lemma, we assume that our graph has only one com-
ponent, or we can solve the less one-component's puzzles.

The following lemma plays important rule when we use global information of a
graph.

Lemma 4.4. There is no dashed edge between two type 1 nodes in the solution.

Proof. If a node is type 1, then all dashed arrows from it must go to type 0 nodes.
•

Lemma 4.5. We know from Lemma 4-1 that there is a dashed edge in the puzzle,
but from the previous lemma we know that this edge cannot be between type 1 nodes.
So there must be a type 0 node in an end of each dashed edge.

Lemma 4.6. Let T be the set of the truth-tellers in the solution. Then there is no
solid arrow from this set which goes outside T.

Proof. If a solid arrow starting from a type 1 node goes to a node A, then A must
be type 1 also. •

Lemma 4.7. If there is a directed circle built by solid arrows, then all nodes in
this circle are in parity.

Proof. Easy by using arrow adding steps b). •

Lemma 4.8. Parity is an equivalence relation among nodes.

Proof. Each node is in parity with itself, according to the note after the Definition
3.10. The symmetry come from the definition. It is transitive (if A B, B O- C
then A <s> C) because we can use step b) of Lemma 3.2. •

Lemma 4.9. Let P be the graph of a good, clear SW-puzzle, and T be the set of
type 1 nodes in the solution. If it is a node B, who is liar in the solution of P and
he remained silent, then we can use arrow-adding steps for a new dashed edge from
B to a truth-teller, or we can use node-union step to join B to an another liar.

Proof. We assume that the graph is connected. If there is dashed edge from T to
B, then we can use arrow-adding step a), and we get a new dashed edge from B
to a truth-teller. If there is no edges between T and B originally, then must be an
arrow from a liar to B. Let L is the set of nodes, which are not in T and differ from
B. In this case originally there is not edge between T and B. (From B does not
start any, and from T to B there is no solid arrow (Lemma 4.6.), and we assumed
that there is nor dashed edge.) But the P was connected, so there must be edges

78 Benedek Nagy

from L to B. If there was a solid arrow from L to B, which is uniquely relevant
from where it starts then we must use node-union step. And in final case there is
no uniquely relevant arrow to B. which means that all non-silent liars have other
arrows meaning his lie. But in this case it is also a solution, when T\J{B} is the sets
of truth-tellers, and L is the set of liars. So in this case we get contradiction. •

Lemma 4.10. Let P be the graph of a good, clear SW-puzzle, and T be the set of
type 1 nodes in the solution. After all usual arrow-adding and node-union steps for
P there is not possible only one node, which is not in T, and not connected with
an element of T by dashed edge.

Proof. We can assume, that P is connected, and we have no usual arrow-adding or
node-union steps. From Lemma 4.2. we know, that there must be a node outside
of T. Now we have two possibilities: B said something, or he remained silent.
If he said something, and in the solution he is a liar, then must start a relevant
arrow from B. If he said about a truth-teller C, that C is a liar, then this edge is
dashed between B and T. If he said about a liar C that, C is truth-teller, then -
because of all liar, but B are connected \yith T by dashed edge - the arrow-adding
step c) (Lemma 3.2) is useful, and we get a dashed edge between B and T. In the
case when B was silent, we can use the previous Lemma 4.9 for using node-union
step. •

Lemma 4.11. If in the good and clear puzzle's solution everybody is a liar, and
the graph of the puzzle is connected, then after the possible arrow-adding and node-
union steps we get a puzzle with only one node with two kind of loop edges.

Proof. Easy to show, that for one node it is the unique puzzle. We will show that
if we have more nodes then we can use node-union steps (and we get smaller and
smaller puzzle with same solution).

If there was a node without starting relevant edges, then we can use node-union
step by using Lemma 4.9. Now, we assume that we already used all possible arrow-
adding steps. It is evident, that all relevant edges in the solution are solid, because
each person is a liar. If from a node there is only one relevant arrow, then we must
use node-union step. In other case from each node must start at least two relevant
arrows. Let A be a node. Let TA be the set of nodes, which we can reach from A
by directed solid arrows. (By using arrow-adding steps it is evident, that we have
a direct arrow from A to each element of TA.) The set TA is finite, let Yi, Y2,... Yk
the subsets of TA, such that all nodes in a Yi are in parity. Then we can use Lemma
3.12, so in each Yj there at most only one relevant edge from each node is inside of
Y\. If there is a node, for which only one relevant edge remains, then we can use
node-union. If such a node does not exist, then an other relevant arrow starting
from all node in Y\ to outside of Y|. So there is at least one set Yj, which differs
from YJ, and there is relevant arrow from Yj to Yj. But there is the same situation
with Yj. So if we cannot use a node-union step inside of Yj then a relevant edge
must go to another Yk. But we have only finite number of set Yn. So we must have
a circle by using directed solid arrows among the sets Y inside in TA- But it means,
that two or more sets are in parity. It is a contradiction.

SW-type puzzles and their graphs 79

So it is not possible that we cannot use node-union step, if we have at least two
nodes. •

The following theorem is a summary of the previous lemmas. It shows the global
information of the graph, what we can use in the next section.

Theorem 4.12. Let P be the graph of a good, clear SW-puzzle, and T be the set
of type 1 nodes in the solution. After all usual arrow-adding and node-union steps
put L be the set of the nodes which are connected to T by a dashed edge. If P is
connected then there is no node in P which is not in T U L.

Proof. Let S be the set of the nodes, which are nor in T, neither in L. We will
show that 5 will be empty set. From Lemma 4.10. we know, that it is impossible
that S has only one element. Let us see how the set S connected to the other sets.
According to Lemma 4.6. and the definition of set S from T there is no arrow to S.
And there is no relevant edge from S to T (the solid arrows are not relevant, and
there is no dashed edge between S and T). So from the nodes in S all relevant edges
go to liars. If there is a relevant arrow from S to L, it must be solid, therefore we
can use arrow adding step c), and we have a dashed edge between T and S, which
contradicts the definition of S. So all relevant edges from S are in inside of S. But
if there is a node A in set S from which there are not at least two relevant edges,
then we can use node-union step (which is contradict to our assumption, that we
already used these steps). So we are in the same situation as the proof of Lemma
4.11. As we state there, because these sets are finite, we have contradiction. So S
must be the empty set. •

5 The general solving method
We know everything which we need to solve puzzles with the graph method.

Now we describe our method:

Algorithm 5.1.

0. Let Bi be the nodes of the graph. Draw the initial graph of the puzzle using
only relevant edges.

Part I. (Graph-changing, by using local information) We try to use the following
steps.

1. Use all possible node-union steps. (Lemma 3.9.)
2. Use all possible arrow-adding steps. (Lemma 3.2.)
3. Cross as many arrow possible. (Lemmas 3.5, 3.12, and 3.13)

If these steps cannot be repeated any more, then we continue by Part II.
Part II. (Choosing the set of truth-tellers, T, by using global information)

4. Make the matrix of the subgraph of dashed edges. (Use only the edges of I.)
5. Choose a maximal set of nodes T, which are not connected with dashed edges.

80 Benedek Nagy

A Ar '' B #

D E F

Figure 6: Graph of the Example 5.5

6. Check the following property: if there is a relevant arrow from each node
which is not in T and is not silent originally, like dashed arrow to inside T,
or solid arrow to outside T, then we have the solution.

If the property in step 6 is not true, then we choose another set T in step 5.
The solution is: all persons in T are truth-teller, and the others are liars.

Theorem 5.1. (Completeness and soundness of the algorithm) Let P be the graph
of a connected, good and clear SW-type puzzle. We can solve P by using Algorithm
5.1.

Proof. It is clear, that the Part I. of the algorithm stops, because P is finite. It
is evident, that we have only finite possibility to choose the set T. Let us assume,
that we finished Part I. Let T' be the set of truth-tellers in the solution. T" is
maximal because of Theorem 4.12, so we can choose T' as set T. We show that
the property in point 6 must be true for this unique solution. Indirectly, assume
that there is an - originally not silent - node B not in T for which we have nor
solid relevant arrow to outside T neither dashed relevant edge to inside T. Then B
did not lie originally, but he said something, hence he must be a truth-teller. But
we have a dashed edge between the truth-tellers and B. It contradicts to Lemma
4.4. •

Remark 5.2. In the case when each person is a liar our T set is empty. In this
case according to Lemma 4-11 we have a puzzle with only one node after the steps
of Part I.

Remark 5.3. Our algorithm detect if a puzzle has not any solution.

And now we show an interesting example. In Lemma 4.1 we can see, that
there is no good and clear SW-type puzzle only with solid arrows, now we show
an example of a good and clear SW-type puzzle with only dashed edges. It is very
nice symmetric example.
Example 5.4. A: B and D are liars. B: C and E are liars. C: A and F are liars.

D: B and C are liars. E: A and C are liars. F: A and B are liars.

SW-type puzzles and their graphs 81

A B C D E F
A X X X X X

B X X X X X

C X X X X X

D X X X

E X X X

F X X X

Table 1: The matrix of the graph

We can see that we have no local graph-step to use, so we cannot solve this
puzzle without global information. There are two arrows starting from each nodes.

Now we solve this puzzle: As we can see, that we cannot use any steps of Part
I of our algorithm. So we use Part II.

Let us make the matrix of the graph, which shows if two nodes are directly
connected by a dashed edge. We use step 4.

The matrix of the graph in the table.
Our maximal T sets are the following: {^4}, {B}, {C}, {D, E, F} . Easy to show

in the original graph, that the condition of point 6 is not true for the first 3 sets.
Our solution is D, E and F are truth-tellers, A, B and C are liars.

6 Summary

In this paper we defined and examined the SW-type of truth-tellers and liars puz-
zles. We represented these puzzles with graphs, which are very useful to examine
and solve these puzzles. We examine what the edges of the graphs mean logically.
The graph of a puzzle has all information about the puzzle in case of clear puzzle.
We took some interesting statement about the possible structure of the puzzles.
We used some local information steps in a graph as valuable arrows, arrow-adding,
node-union steps and basic schemes. We showed that there is no clear and good
SW-type puzzle with only solid arrows. Later on we presented a special example,
when we have only dashed arrows. Finally we showed a graph-algorithm, which
based on both local and global information of the graph, and it can solve the clear
and good SW-type puzzles. The advantage of this method is to avoid case sepa-
rations, which occurs for instance in tableaux method and requires great care for
programmers. Using our method we need memory only size of n2 for a puzzle with
n persons to store our graph.

Using this approach from graph theory we can solve the puzzles in a new think-
ing way. Our theory connects the special type of satisfiability problems to graph
theoretical problems.

82 Benedek Nagy

References
[1] László Aszalós: Smullyan's logical puzzles and their automatic solution (in

Hungarian: Smullyan logikai rejtvényei és automatikus megoldásuk), Technical
Reports No. 2000/14, University of Debrecen, Institute of Mathematics and
Informatics, 2000.

László Aszalós: The logic of Knights, Knaves, Normals and Mutes, Acta Cy-
bernetica, 14, 533-540, 2000.

László Aszalós: Examining the modal operator "can say" with mathematical
logical techniques (in Hungarian), PhD thesis, University of Debrecen, Institute
of Mathematics and Informatics, 2001.

Benedek Nagy, Márk Kósa: Logical puzzles (Truth-tellers and liars), ICAI'01,
5 th International Conference on Applied Informatics, Eger, 105-112, 2001.

Benedek Nagy: Truth-teller and liar puzzles and their graphs (in Hungar-
ian: Igazmondó-hazug fejtörők és gráfjaik), Technical Reports No. 2001/17,
University of Debrecen, Institute of Mathematics and Informatics, 2001.

Dennis Shasha, The puzzling adventures of Dr Ecco (Hungarian translation:
Dr. Ecco talányos kalandjai), Typotex, Budapest, 1999.

Raymond Smullyan, Forever Undecided (A Puzzle Guide to Gödel), Alfred A.
Knopf, New York, 1987.

Raymond Smullyan, The Lady or the Tiger? and other logical puzzles, Al-
fred A. Knopf, New York, 1982, (Hungarian translation: A hölgy és a tigris)
Typotex, Budapest, 1991.

Raymond Smullyan, What is the name of this book? (The riddle of Dracula
and other logical puzzles) , Prentince Hall, 1978, (Hungarian translation Mi
a címe ennek a könyvnek) Typotex, Budapest, 1996.

Raymond Smullyan, The riddle of Scheherazade, and other amazing puzzles,
ancient & modern (Hungarian translation: Seherezádé rejtélye) Typotex, Bu-
dapest, 1999.

Received October, 2002

Acta Cybernetica 16 (2003) 93-131.

Infinite limits
and R-recursive functions

Jerzy Mycka*

Abstract
In this paper we use infinite limits to define R-recursive functions. We

prove that the class of R-recursive functions is closed under this operation.

Keywords: Theory of computation, Real recursive function.

1 Introduction
The theory of recursion had been originally formulated for enumerable domains
[3, 9]. Later the extensions on the continuous domains were proposed (for example
see [4]). During a few past years many authors have studied problems of recursion
theory for reals [1, 2].

The new approach was given by Moore in [5]. He used not only continuous
functions, but also continuous operators on real recursive functions. The set of R-
recursive functions defined by Moore is the subclass of real functions constructed
as the smallest set containing 0,1 and closed under operations of composition,
differential recursion and /^-recursion.

Infinite limits are the natural operation on real functions, and can be viewed
as a method to define new functions. It is mentioned in [5] that limits can be
expressed in terms of /¿-operation, but without giving the way of this 'translation'.
In this paper we give a proper way to define limits by /¿-recursion.

This result can be useful for a few reasons. First, infinite limits are natural
operations in calculus in contrast to the //-operation. Furthermore with infinite
limits we can define a limit hierarchy and relate it to the /i-hierarchy. This would
be a continuous analog of Shoenfield's theorem [8]. Infinite limits can also be
useful to compare the /¿-hierarchy with the levels of Rubel's [7] Extended Analog
Computer.

2 Preliminaries
This section summarizes some notions and results taken from [5], which are useful
in this paper. Let us start with the precise definition of an R-recursive function.

• "Institute of Mathematics, M. Curie-Sklodowska University, pi. M. Curie-Sklodowskiej 1,20-031
Lublin, Poland. E-mail: jmyckaagolem.umcs.lublin.pl

83

84 Jerzy Mycka

Definition 2.1. A function h : Rm —> Rn is R-recursive if it can be generated from
the constants 0 and 1 with the following operators:

1. composition: h(x) = f{g(x));
2. differential recursion: h(x, 0) = f(x), dyh(x,y) = g(x,y,h(x,y))

(an equivalent formulation can be given by integrals:
h{x, y) = f{x) + f0

y g(x, y', h(x, y'))dy');
3. [¿-recursion h(x) = p,yf(x,y) = inf{y : f{x,y) = 0}, where infimum chooses

the number y with the smallest absolute value and for two y with the same
absolute value the negative one.

Several comments are needed to the above definition. A solution of a differential
equation need not to be unique or can diverge. Hence, we assume that if h is defined
by differential recursion then h is defined only where a finite and unique solution
exists. This is why the set of i?-recursive functions includes also partial functions.
For coherence with Moore's paper[5] we use the name of -R-recursive functions in
the article, however we should remember that in reality we have partiality here
(partial .R-recursive functions).

The second problem arises with the operation of infimum. Let us observe that
if an infinite number of zeros accumulate just above some positive y or just below
some negative y then the infimum operation returns that y even if y itself is not a
zero.

The above defintion creates the class of R-recursive functions with some inter-
esting features. Let us cite a few results from [5].

Lemma 2.2. The functions —x,x -I- y,xy,x/y,ex,\nx, xy ,sinx, cosx and the pro-
jection functions In(xi, • • • ,xn) = Xi are R-recursive.

The power of the system of R-recursive functions can be viewed from the fol-
lowing lemma, which is sufficient to solve the classical halting problem.

f 1 x € S Lemma 2.3. The function xs such that Xs(^) = j q x g S ™ ^'recurs^ve for

any partial N-recursive set S (S is partial N-recursive if S = f s (N) for f s '• N —t
N, f s is some N-recursive function).

It is possible to define for every R-recursive function / : Rn x R R the
characteristic function r)yf for the set of x on which nyf is well-defined. Precisely
this fact is stated by the below theorem:

Theorem 2.4. If f(x, y) is R-recursive, then J]yf(x, y) is also R-recursive, where

»/ (. ,„) -{J **<*.»>-" 0 Vji/(x,s) jto
The operator p, is a key operator in generating the R-recursive functions. This

fact suggests creating a /¿-hierarchy, which is built with respect to the number of
uses of fi in the definition of a given / .

Infinite limits and R-recursive functions 85

Definition 2.5. For a given R-recursive expression s(x), let MXi(s) (the p-number
with respect to Xi) be defined as follows:

MZ(0) = MI(1) = MX(-1) = 0,

Mx(f(gi,g2, •••)) = max(MXj(/) + Mx(gj)),
3

Mx(h = f+ [V g(x,y',h)dy') = max(Mx(f),Mx(g),Mh(g)),
Jo

fy

My(h — / + / g(x,y',h)dy') = max.(My,(g), Mh(g)),
Jo

Mx{nyf(x,y)) = max(Mx(f),My(f)) + 1,

where x can by any x\,..., xn for x = (x\,..., xn).
For an R-recursive function / , let M (f) = max, MXi (s) minimized over all

expressions s that define / . Now we are ready to define //-hierarchy.

Definition 2.6. The p-hierarchy is a family of Mj = {/ : M (f) < j}.

Let us add that if / is in M j then rjyf is in Mj+2-

As it was mentioned we focus our interest on functions defined by the infinite
limits.

Definition 2.7. Let g : Rn x R —>• R, then we can say the function f : Rn R is
defined by an infinite limit from g if:

f(£\ _ f lim2/->oo g(x,y) limy^oo g{x, y) exists,
\ undefined otherwise.

3 Auxiliary results
In this section we give a few results which will be useful in the proof of the main
theorem. We start with a slight modification of the definition of R-recursive func-
tions.

Lemma 3.1. Let us consider the set of functions generated from 0 ,1 , -1 by the
operations 1,2 from the Definition 2.1 and by absolute fi-recursion Pyf{x,y) =
în/{|y| : f(x,y) = 0}. Then this set of functions is equal to the set of all R-recursive
functions.

Proof. Because —1 can be simply defined in the set of R-recursive functions, it is
sufficient to prove that in definitions operation /t can be replaced by and vice
versa.

As the first case we consider the method of replacing ¡iA by /¿. Let h(x) =
Vyi{x ,y) . Let us set f'(x,y) = f(x,y)f(x,-y). Clearly h(x) = -fiyf'{x,y).

86 Jerzy Mycka

Because —x and multiplication are R-recursive, so h defined as above is R-recursive
too.

Now we must show that function h(x) = P.yf(x,y) can be defined by ¡J.A.
Let us point out the fact that |z| = fiA (x — y). Then we will use f+{x,y) =
Hx,\y\)J-{x,y) = f(x,-\y\) to define

h+(x) = n*f+(x,y), h~{x) = ii*f-(x,y).

It is simple to observe that h+ gives as the result the smallest nonnegative zero of
/ and h~ the absolute value of the greatest nonpositive (the smallest with respect
to absolute value) zero of / .

We will choose as h(x) the proper value from h+(x),—h~(x). We can define
K=(w,y) = S(w - y), where ¿(x) = 1 - fj,A (x2 + y2)(y - 1). Prom definition
K-{w,y) is equal to 1 if w = y, 0 if w ^ y. Then the function Q(w) = 1 for x > 0,
0 otherwise, can be defined as K=(w, |to|).-

We can conclude the proof by the following observation

h(*\ - I Z n{X> - { h+(x) h+(x) < h-(x).

Hence h(x) = -h~{x)e(h+(x) - h~{x)) + h+(x)(1 r- Q(h+(x) - h~(x))) and since
+ is defined without /x and all remaining functions in the last equation are defined
only by fiA, so h(x) can be defined by instead of p. •

It is interesting to define the //^-hierarchy of R-recursive functions as the analog
to /¿-hierarchy.

Defini t ion 3.2. For a given R-recursive expression s(x), let MA(s) (the
number with respect to) be defined as follows:

MA(0) = MA{ 1) = MA(-1) = o, •

MA(f{gU92, •••)) = max(M*(f) + MA{9])),
3

M*(h = f+ g(x,y',h)dy') = m a x (M A (f) , MA(g), MA(g)),
Jo

My(h = f + f 9(x,y',h)dy') = m a x (M A (g) , MA(g)),
Jo

MA(nAf(x,y)) = m a x (M A (f) , M A (f)) + 1,

where x can by any x\,..., xn for x = (xi,... ,xn).

For an R-recursive function / , let M A (f) = max; MA (s) minimized over all
expressions s that define / and MA = {/ : M A { f) < j}.

. Now we can add a corollary from the previous lemma.

Infinite limits and R-recursive functions 87

Corollary 3.3. In the above lemma we use only one fi instead of \iA, when we
change the definition of function with \iA by the definition with p. Hence if some
function f is from MA then f € Mk •

The reverse relation is more complicated. In the definition of h given by h(x) =
-h~(x)Q(h+ (x) - h~(x)) + / i + (i) (l - Q(h+(x) — h~(x))) the operation fiA is used
3 times. So each function from Mj belongs to MAj.

Lemma 3.4. Let g : Rn+1 —> R be an R-recursive function. Then there are R-
recursive functions G : /?n+1 R, S : R —>• R such that

inf g(x,y) = S(pAG(x,w)). y

Proof. We can distinguish three cases in the proof:

1. (Vi, y)g(x, y) > 0. Then we can write

y

where

inf g(x, y) = inf { H : G'(x, w) = 0},

0 {3y)g(x,y)-w = 0,
G (x,w) | j otherwise

The condition (3y)g(x, y) — w = 0 is equivalent to the fact that py(g(x, y) — w)
is defined. But the last statement can easily be checked by the function rj.
Finally we have

G'(x,y) = 1-T)y(g(x,y) - w) and inf g{x,y) = pAG'(x,w),
y

so in this case S = I\,G = G'.
2. (Vx,y)g(x ,y) < 0. In this case we can observe that i n f y g (x , y) is a negative

number and the infimum 'searches' in the direction of the smallest negative
numbers, whereas gives us a positive result and its 'search' is oriented to
zero. That is why we must use some transformation in a construction of the
proper result. The simplest way to change 'the orientation' of the infimum is
the expression • Let our expression be equal to

otherwise.

then G"(x, w) is zero iff ^ is a value of g(x, y) for some y. Hence an infimum
on g is equal to:

- 1
in f № {H : G"(x,w) = 0}

and (like in the previous step) we eliminate the quantifier:

88 Jerzy Mycka

We can write now that

inf g(x,y) = S(V£G(X,W)), S(Z) = -L/z,G = G". y

3. Now we are prepared to consider the general case, where g : Rn+1 R is
an arbitrary function. Let us observe, that if there is one point y s u c h that
9{x>Vo) < 0 then i n f y g (x , y) must be negative and if such point y¿" does not
exist then the first case of our proof solves the problem.
To check an existance of the point it is sufficient to use the condition
riyK<(g(x,y),0) = 1 where K<(z,y) = 0 z <y. Then we can find y
We will use the following method (we must remember that HA gives us the
absolute value of the proper solution)

«- = / ^yK<(9(x,y),0) g(x,f,AK<(g(x,y),0))<0,
y° \ —fiyK<(g(x,y),0) otherwise.

Then we can define the function:

Q~(x v) = (y K \ g(x,y0) otherwise.

This function for a given x has the same infimum as g, but its values are
always negative.
As a summary of the previous considerations we give the conditional definition
of q(x), where q(x) denotes the expression in f y g{x ,y) :

q(x) = <

i n f ^ M : I - 7]y[g{x,y) - w) = 0} if (^y)g{x,y) > G,
if (Vy)g(x,y) < 0, - l

¡nMMil-Tfcf j^- i i^O}
. , f. i, t -^ t i—rr otherwise.

Let us add that the condition (Vy)g(x, y) > 0 is equivalent to the statement
does not exist, but this last phrase can be expressed by r]yK<(g(x, y), 0) — 0.
The similar translation of (Vy)g(x,y) < 0 is: J?yif<(0,g(i,2/)) = 0.

It is obvious that such q(x) is R-recursive (inf№{|w| : . . .} can be replaced by HA)-
The final forms of functions S and G can be obtained from the above definition of
q. •

Remark 3.5. Let us observe that in the general case (the third point of the above
proof) we used for the construction of the definition ofq the function TJ, infimum and
y^ , which gives the number of used ¡iA operations equal to 5. This is the maximal
number of p,A operations for all cases. Hence for-'g £ Mj we have q 6 Mj+5.

We also need a similiar result, but with restricted infimum.

Infinite limits and R-recursive functions 89

L e m m a 3.6. Let g : i ? n + 1 —» R be an R-recursive function. Then there are R-
recursive functions G : Rn+2 —> R, S : R—> R such that for all z £ R

inf g{x,y) = S(n*G(x,w,z)).

y€{z, oo)

Proof. Let us consider the set S9
Z'X such that

S«'* = {u; : (3y > z)g(x,y) = tu}.
We will use the characteristic function of this set: xz'x(.w) = 0 ^^ w € 5f
X9

z
,s(w) = 1 w £ S%'x. From the Lemma 3.4 we have Sg,Gg for a given g

and the problem of unrestricted infimum. It is clear that

inf g(x,y) = Sg(ni(\Gg(x,w)\ + | x * » |)) .
3 / 6 (2 , O O)

Now we should prove only that xl'x(w) is a n R-recursive function. But Xz'x(w)
can be written in the form

Xl's(w) = 0 (3y)[(g(x,y) =w)A(y> z)},

Xa
z''M = 1 «=> mM*,v)*w)V(y<z)].

These last equations define X3
z'x(w) as 1 — i?y(|5(S,2/)| -1- K>(y, z)), which ends this

proof. •

R e m a r k 3.7. Because Xg
z
x{w) defined by means of rj and K>, so it uses 3 fiA

operations but unrestricted infimum uses HA five times. Hence if g € Mj then the
infy 6 (2 i 0 0) g{x,y) belongs to Mj+5.

4 Main theorem
In this section we prove that the class of R-recursive functions is closed under the
operation of defininig functions by infinite limits.

T h e o r e m 4.1. Let F : Rn+1 R be an R-recursive function. Let us define
f : Rn —• R in the following way f(x) = lim^oo F(x,y). Then there exist such
R-recursive functions G : i?n+1 R, S : R -> R that

f(x) = S(^G(x,w)).

Proof. Let us consider the function f(x) defined as above. The function f(x) is
defined in the point x if there exist limits

liminf F(x,y), l imsupF(x,i/)

and they are equal to each other in this point.

90 Jerzy Mycka

Let us recall the definitions:

liminf F(x,y) = sup inf F(x,y), limsup-F(i,7/) = inf sup F(x,y).
2 V>z y->oo z y>z

To check that the function / is defined in x first we must check the conditions:
supz inf y > z F(x,y), inf2 supy > z F(x,y) are defined for x. So it will be helpful if we
prove that there exist functions K%,KS such that

Kit£\ = [1 SUPz infy>* F(x,y) exists,
\ 0 otherwise.

and Ks is analogously defined for inf2 supy > z F(x,y).
It is easy to see that we can replace the expression ' supF ' by the expression

'— inf(—F)' in the above equations. So we can apply Lemmas 3.4 and 3.6, which
means, that there are R-recursive functions Ss ,GS ,S\G% such that

sup inf F(x,y) = S'ipiG'ix^)), z V>z

inf sup F(x,y) = Ss(fiiGs(x,w)). 2 y>z

The left sides in the last two lines are defined iff there exist such wi,ws, that
Gl(x,Wi) = Gs(x,ws) = 0. This condition can be checked by the R-recursive
functions T]wGl(x,w),r]wGs(x,w). The above considerations imply that K%,KS

exist and they are R-recursive.
Now to end the proof it is sufficient to define:

f(x) =

\ undefined otherwise.

This definition of / by R-recursive functions is in the obvious way equivalent to the
definition by the operation of infinite limit. •

Let us point out that in the above proof we use two operations of infimum for
lim inf: the outer (unrestricted) infimum, which is obtained from the transformed
supremum and the second - inner (restricted) infimum. We have the analogous
construction for lim sup. Hence and from remarks below the Lemmas 3.4, 3.6 we
can give the following result:

Theorem 4.2. If F is a function from Mj then f defined as in the Theorem 4-1
is in Mj+io-

Infinite limits and R-recursive functions 91

References
[1] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity

over the real numbers: NP-completeness, recursive functions and universal
machines, Bull. Amer. Math. Soc. 21 (1989), 1-46.

[2] V. Brattka, Recursive characterization of computable real-valued functions and
relations, Th. Comp. Sc. 162 (1996) 45-77.

[3] K. Gódel, Uber formal unentscheidbare Sátze der Principia mathematica und
verwandter Systeme I, Monatsh. Math. Phys. 38 (1931), 173-198.

[4] A. Grzegorczyk, On the definitions of computable real continuous functions,
Fund. Math. 44 (1957), 61-71.

[5] C. Moore, Recursion theory on the reals and continuous-time computation,
Th. Comp. Sc., 162 (1996) 23-44

[6] P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, (1989).

[7] L. A. Rubel, The extended analog computer, Adv. in Appl. Math. 14 (1993)
39-50.

[8] J. R. Shoenfield, On degrees of unsolvability, Ann. Math. 69 (1959), 644-653.

[9] A. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc. 42 (1936-37), 230-265.

Received May, 2002

Acta Cybernetica 16 (2003) 93-131.

Derivation of Incremental Equations for PNF
Nested Relations

Jixue Liu* and Millist Vincent*

Abstract
Incremental view maintenance techniques axe required for many new types

of data models that are being increasingly used in industry. One of these
models is the nested relational model that is used in the modelling complex
objects in databases. In this paper we derive a group of expressions for
incrementally evaluating query expressions in the nested relational model. We
also present an algorithm to propagate base relation updates to a materialized
view when the view is defined as a complex query.

Keywords: view maintenance, data warehousing, nested databases, partitioned
normal form, incremental computation.

1 Introduction
Materialized views are stored data collections that are derived from source data.
Materialized views have attracted a significant amount of attention in recent years
because of their importance in data warehousing [5, 7, 20]. In using materialized
views, an issue of fundamental significance is developing efficient methods for up-
dating the materialized views in response to changes in the source data; a procedure
referred to as view maintenance. To maintain a materialized view, one has in gen-
eral a choice between recomputing the view from scratch or maintaining the views
incrementally. The incremental method is generally considered to be less expensive
[13, 4, 6] since the size of an update to the source data is generally small in relation
to the size of the source data. To maintain a view incrementally, one computes
the new view using the updates to the source data, the old view and possibly some
source data. For example, let the view V be defined in the flat relational model
(using set semantics) as V = tx] R2. For an insertion SRi to Ri, the incremental
technique calculates the change to V as SV = SRi cxi R2 and computes the new
view, V n e w , by V n e w = Vold U SV (where Vold equals Rx tx R2) [13, 6]. This ex-
pression is called an incremental propagation expression (or incremental expression
(IE) for short) for the Join operator.

"School of Computer and Information Science, University of South Australia, Mawson Lakes,
SA5095, Australia. Email: { j . l i u , v i n c e n t } O c s . u n i s a . e d u . a u

93

94 Jixue Liu and Millist Vincent

Incremental expressions for updating materialized views depend on the data
model and query operators. Up to now, incremental equations have been derived
for the models of flat relations [13], bags [4], and temporal data models [21]. Incre-
mental equations for the nested relational model, on the other hand, have not been
studied. The nested relational model is important because of its usage in mod-
elling complex objects, a feature that has been incorporated in several commercial
database systems such as Oracle8 and Illustra [18]. The nested model has also been
used in data warehouses to model complex semantics [3], where incremental view
maintenance has critical impact on system performances [20]. Further, the nested
relational model is an important subclass of the object- relational model; a model
that has been predicted to become the industry standard within the next few years
[18]. Motivated by these observations, in this paper we derive IEs and develop a
view maintenance algorithm for the nested relational model.

Several variations of the nested relational model have been proposed in the
literature, depending on whether null values are permitted [10], whether empty sets
are permitted [2], whether atomic attributes form a key and what data manipulation
operators are required [16, 15]. The model we use in this paper is the one proposed
by [2] and called the Verso model which is based on partitioned normal form (PNF)
relations [14]. The reason for adopting this model is because of its flexibility in
supporting empty sets, the assumption that relations are in partitioned normal
form (which has clearer semantics than general nested relations), and its ability to
allow partial updates. Also, some commercial object-relational database systems
such as Informix support the use of PNF relations.

The main contributions of this paper are as follows. Firstly, we derive in-
cremental expressions for the data manipulation operators in the Verso model.
Interestingly, these expressions differ significantly from those derived for the flat
relational model [13]. Secondly, we propose an algorithm to propagate base relation
updates to a materialized view when the view is defined as a complex nested rela-
tional algebra expression. Lastly, we implement our view maintenance algorithm
and perform experiments to determine what we call the maintenance limit of our
algorithm, which is defined to be the limit on the size of the update beyond which
incremental maintenance is no longer cheaper than full view recomputation. This
is an important issue and one that up to now has not been adequately investigated
in the literature.

The rest of this paper is organized as follows. In Section 2, we introduce the
Verso model and its operators. In section 3, we define containment and disjointed-
ness properties for the PNF nested relations. These two properties will be used in
Section 4 for deriving IEs. Section 4 contains IEs derived for PNF nested operators
and the derivation proofs. In Section 5, we propose a view maintaining algorithm
that maintains a view using IEs when the view is defined with multiple operators.
Section 6 covers the implementation details of the IEs and performance analysis.
In the last section of the paper, we give the conclusion.

Derivation of Incremental Equations for PNF Nested Relations 95

2 Data Model and Operators
In this section, we review the Verso data model and algebra defined in [2].

2.1 Trees
A tree T is a finite, acyclic, directed graph in which there is a unique node, called
the root and denoted by root(T), with in-degree (the number of edges coming into
the node) 0 and every other node has in-degree 1.

A node n' is a child of a node n (or equivalently, n is the parent of n') if there
is a directed edge from n to n'.

A node is a leaf if it has no children.
The level of a node n in a tree T is the number of nodes on a path from the

root of T to n. Thus, the level of the root node is 1 and the root node is said on
the top level.

The height of a tree is the maximum level of any node in the tree.
A tree T' is a subtree of a tree T if the nodes of X" are a subset of those of T

and for every pair of nodes n' and n, n' is a child of n in T if and only if n ' is a
child of n in T'.

A subtree T" is a child subtree of T if the root node of T' is a child of T and
the set of all nodes of T' and the set of all nodes of the child of T are equivalent.

2.2 Schema Trees and Nested Relation Schemas
Let U be a fixed countable finite set of atomic attribute names. Each attribute name
A £ U is associated with a countably infinite set of values denoted by dom(A).

A schema tree T is a tree having at least one node; each node of the tree is
labeled by a set of names from U. The names on the labeled nodes form a partition
of U.

A nested relation schema is the set of attribute names mapped from a schema
tree T, denoted by sch(T), and defined recursively by:

(i) If T contains only one node (the root), then sch(T) = {Ai,..., Am} where
Ai, ..,Am are attributes labeled on the root of T;

(ii) If Ti,...,Tn are child subtrees of T and A^,... Am are attributes labeled on
the root of T, then sch(T) = {Au ...,Am, sch^),..., sch{Tn)}.

In the schema definition, Ai,...,Am are called the atomic attributes while
sch(Ti),...,sch(Tn) are called the structured attributes. We denote each struc-
tured attribute sch(Ti) (i = 1,..., k) by R% and simplify sch(T) by R. As a result,
sch(T) = R = {Au ..., Am, Rl : sch(7\), .., R* : sch(Ti), ..., R*n : sch{Tn)}.
Note that Rl is used only for referencing the schema of the child tree. If necessary,
R* can be labeled at the edge from root(T) to root(Ti).

Let R' = sch(T') and R = sch(T). R' is a subschema of R, denoted by R'<£R,
if T' is a subtree of T. The level of an attribute in R is defined to be the level of
the node in the tree where the attribute is labeled. When the leyel I of an attribute

96 Jixue Liu and Millist Vincent

is specially concerned, I is attached to the attribute name as a superscript: A\ or
R*jl. The levels of the schema R is defined to be the height of T. If a schema has /
levels, the schema is called a l-level nested schema.

Because nested relation schemas are sets, set operations of union (U), difference
(—), and intersection (fl) can be applied to the top levels of schemas. Subset (C)
can also be defined on the top levels of two schemas.

We define some short-hand notations for schemas. The set of atomic attributes
on the top level of R is denoted by a(R) which is {Ai,...,Am}. The set of all
structured attributes on the top level of R is denoted by P(R) which is R — a(R).
The function au{R) is defined to return all atomic attribute names labeled on all
nodes of the schema tree of R.

The following is an example of a nested relation schema.

Example 2.1. We introduce a nested relation schema for a student database.
A student with the name of Name has studied some subjects Subjs*. The
student has achieved a set of marks (denoted by Marks*) for each sub-
ject; each mark is for a different test type of the subject. The stu-
dent also has a set of telephone numbers stored in the database for the
convenience of communication. The schema tree describing the student
data is given in Figure 1. The schema of the schema tree is Stud =
{A^ame, Subjs*:{sjName, Year, Marks*-.{testName, Mark}}, Tel*:{Tel}}.

The schema is a three-level nested relation schema. On the first level, there
is one atomic attribute Name and two structured attributes (structured at-
tributes) subjs* and Tels*. That is, a (Stud) = {Name} and fi(Stud) =
{subjs*,Tels*}. The set of all atomic attributes of the schema is au(Stud) —
{Name, sjName, Year, Tel, testName, Mark}.

A subschema of Stud is sjTest = {sjName, tests* : {testName}} or studTel =
{Name,Tels* : {Tel}}.

Stud

|Name|

sjName, Year| | Tel |

Marks*

testName, Mark

Figure 1: Schema tree Stud

Now we define the notion of prime subschema.

Derivation of Incremental Equations for PNF Nested Relations 97

Definition 2.1 (Prime Subschema). Let R = a{R){R^,..., R*n} and S =
a(S){S*,..., 5*s}. S is a prime subschema of R, denoted by S%PR, if

(1) a(R) = a{S) and 0(R) = /3(E) = <t>;
(2) a(R) = a(S) and for each (k 6 [1, ...,ns]), there exists aRj (j e [1, ...,nr])

such that SI is the prime subschema of Rj.

Note that if S is a prime subschema of R, then a(S) = a(R) and the definition
is recursive, which means that on each level of the two schemas, two corresponding
structured attributes share the same atomic attribute set. The next example shows
a prime subschema.

Example 2.2. Let StudTel = {Name,Tels* : {Tel}}. Then StudTel is a prime
subschema of Stud defined in Example 2.1 because the two schemas have the same
set of atomic attributes {Name} on the top level and because Tels* in StudTel is
the same as Tels* in Stud.

2.3 Nested Relations
We now recursively define the domain of a schema R, denoted by dom(R), by:

(i) If R is of one level, dom(R) = dom(Ai) x ... x dom(Am)-,
(ii) If R is of more than one level, then dom(R) = dom(Ai) x ... x dom(Am) x

P(dom(R\)) x . . . x P(dorri(R*n)) where P(D) denotes the set of all nonempty,
finite subsets of a set D.

A nested relation over a nested relation schema R — {Ai,...,Am,Rl,...,R^},
denoted by r(R), or often simply by r when R is understood, is defined to be a
finite set of elements from dom(R). An element i in a relation is called a tuple
and has the form of t =< ai, ...,am,ri, . . . ,rn > where ai € dom(Ai) and rj, called
a subrelation, is a relation over the definition of structured attribute R j . Each
item, ai or r j , is called a value or a component. Two tuples are equivalent if their
corresponding components are equivalent.

The restriction of tuple t to attributes Ai and to Rj , denoted by t[Ai\
and t[Rj] respectively, is defined to be t[At] = m and t[R*] = rj. If Y =

myR*y-Rny} is a subset of R, the restriction of t to the subset Y,
denoted by i[Y], is defined to be a tuple < t[Aly], ...t[Amy], t[Rly], ...¿[ii 'J >. The
restriction of relation r to Y, denoted by r\Y], is defined to be the nested relation
{t[Y]\te r}.

We now give an example of a nested relation.

Example 2.3. Let Stud be the nested relation schema defined in Example 2.1. A
nested relation r over the schema Stud is given in Table 1. There are three tuples
in the relation: two tuples are for student Jack and one for John. Subrelations are
labeled by pairs of curly brackets.

A nested relation is in Partitioned Normal Form(PNF) if all atomic attributes on
the top level of the relation comprise the key and all subrelations are in partitioned
normal form [14]. The nested relation in Table 1 is a PNF nested relation.

98 Jixue Liu and Millist Vincent

Table 1: A nested relation stud on schema Stud

Name Snbjs' Tels' Name
sjName Year Marks' Tel

Name
sjName Year

testName \ Mark
Tel

Jack <

(test 1 8 1 1 1
DB 1998 I test2 90 I (04143]

[exam 80 J I J 1435 >
, „ „ , f assl 60 I i 2302 J Java 1997 < . . > v ' 1 exam 80 1

John { DB 1998 { f e f 2 J] } } { 2354 }

2.4 Verso Operators
In this section we review the definitions of the Verso operators proposed in [2] and
reviewed in [8].

Definition 2.2 (Expansion Operator). Let S be a prime subschema of R. Let
s be a relation defined over S. The expansion of s to schema R is a relation over
R, denoted by r)R(s), is defined recursively by:

•>1R(S) = {x\3v £ s A x[a(i?)] = w[a(i?)] A V i e [l , . . . , n]
(if i s ; A s;en;(x[RR] = T,Ri(v[S]]))
else x[R*{] = <f>) }

The expansion operator recursively packs each tuple in s. with empty sets to
make it match the schema of R. The next example shows the use of the operator.

Example 2.4. Let s = {< Tony, {51234,51535} >} be a relation on schema
S = {Name,Tels* : {Tel}}. Let Stud be the schema described in Example 2.3.
Then, rjstudis) = {< Tony, <j>, {51234,51535} >} where the empty set <f> is the value
packed for structured attribute Subjs*.

Definition 2.3 (Projection Operator). Let S be a prime subschema of schema
R. Let r be a relation defined over R. The projection of r onto S is a relation over
S, denoted by ns(r), defined recursively by:

(i) #s(r) = {x\x € r}, if R is flat;
(ii) Tts(r) = {x\Mu e r (x[a(i?)] = u[a(i?)] A V i e [l , . . . ,ns]

(X[S*] = KS:(U{R*}) where S ' ^ R *) }

The projection operator preserves key values of r on every level and recursively
projects subrelations of r. Following is an example showing.the use of the projection
operator.

Example 2.5. Let pstud be the relation defined as in Table 1. Let StudTel =
{Name, Tel* : {Tel}}. The projection of pstud to StudTel, i.e. ftstudTei{pstud!) is
given in Table 2.

Derivation of Incremental Equations for PNF Nested Relations 99

Table 2: Projection of pstud to StudTel

Name Tels* Name
Tel

(04143 ^
Jack ^ 1435 I

1 2302 j
John { 2354)

We now define the selection condition for the Verso selection operator.

Definition 2.4 (Atomic condition). An atomic condition ca over a schema
R = {Au..., •n-m j •Ri>•••>#«} is defined, by ca = AiOai where Ai € {Ai,...,Am},
a» £ dom(Ai), and 6 € {<, <, >, >, =,

An atomic condition is set to an atomic attribute on the top level of a schema.

Definition 2.5 (Basic condition). A basic condition C& over a schema R =
{A\, ...,Am,R[, ...,ii*} is defined by connecting a set of atomic conditions with V
(or), A (and), -i (not), and brackets.

Definition 2.6 (Selection condition). A selection condition c over a schema
R = {Ai, ...,Am,R*, ...,i?*} is defined recursively by

(i) c— (ci,) if R is flat;
(ii) c=(cb A c ri : R\.C\6'r\ A ... A C™ : R*n.cn0'rn).

In the condition c, crj (j — l,...,n) is a reference name to the expression
Rj.CjO'rj and ':' means 'defined by'. In R*.Cj6'rj, R*.Cj denotes the returned
set selected from the subrelation over Rj by recursively applying selection
condition Cj. The returned set then participates in the evaluation of 6'rj
where rj is either the empty set <j> or the any set w 1 over Rj. When rj is cj>,
6' is one of {=, while when rj is to, 6' is —.
We call crj the existence condition on subrelation of R*.

We now give an example of a selection condition.

Example 2.6. For schema Stud = {Name, Subjs*:{sjName,Year, Marks*:
{testName, Mark}}, Tel*:
{Tel}} defined in Example 2.1, a select condition over the schema is c = (Name ='
Jack' A Subjs* : (Marks* : (Mark > 90) ± <f>) £ 4>). This selection condition
selects a student named 'Jack' who has obtained at least a good mark (> 90) for
some subjects.

We use c&(a;[a:(.R)]) = true to denote the case where the key value of a tuple x
makes an existence condition true. Accordingly, we use crj (x[#}]) = true to mean
the case where a subrelation on R* makes an existence condition is true.

1 'Any set' means that the number of elements in the set does not matter.

100 Jixue Liu and Millist Vincent

Definition 2.7 (Selection Operator). Let R = a(R){Rl,..., R„} be a schema
and r be a relation over R. Let c be a selection condition defined with Definition
2.6. The selection of r based one is a relation over R, denoted by crc(r), recursively
defined by:

(i) oc(r) = {x | i 6 r and c&(z[a:(i?)]) = true}, if R is flat;
(ii) oc(r) = {x|3u £ r A c6(i[a(iZ)]) = true A x[a(i?)] = u[a(i?)] A

V j € (1, ...^UcrMR*} = *CJ №,*])) = true) }

Example 2.7. We apply the selection to relation stud in Table 1 with the selection
condition c defined in Example 2.6. The returned relation from the selection is given
in Table 3. We take the second tuple, denoted by t2 in stud as an example to explain
the operation. t2[Name] is 'Jack', which makes the basic condition Name — Jack'
true. In the recursive part and on the inner-most level, the evaluation of (Mark >
90) against Marks* is <j> since the mark in tuple of Marks* is less than 90. Therefore
Marks*.(Mark > 90) ^ 4> is evaluated 'False'. Since t2[Subj*] has only one tuple
and its subrelation is evaluated to 'False', so no tuple in t2[Subj*] can be selected.
This makes Subjs*.(Marks*.(Mark > 90) <p) <f> 'False'. As a result, the
evaluation of the selection condition against this tuple is 'False' and not in Table
3.

Table 3: &c (stud)

Name Subjs* Tels*
sjName Year Marks* Tel

testName | Mark

Jack { DB 1998 test2 90 } } J 04143 \
\ 1435 /

Definition 2.8 (Union Operator). Let r and s be two relations over R. The
union of r and s is a relation over R, denoted by r ® s, and recursively defined by:

(i) r © s = {x\x £ r or x £ s}, if R is flat;
(ii) r®s- { x | 3 u £ r A 3 » 6 s A a;[a(i?)] = w[a(J?)] = w[a(i?)] A

Vi e [l,...,n](x[R*i) = u[R*i] © v [R f]) or
3u£r A x[a(-R)] = •"[«(#)] ^ s[a(-R)j A x = u) or
3u € s A x[a(i?)] = w[a(i?)] £ r[a(i?)] A x = v)}

The union operator recursively combines two tuples, one from each operand
relation, if their key values match on each level. The operation guarantees that
the output of the union is in PNF, i.e., there are no duplicate values for atomic
attributes on each level of the relation. The next example introduces the use of the
union operator.

Derivation of Incremental Equations for PNF Nested Relations 101

Example 2.8. Table 5 shows the union of relation pstud in Table 1 and relation
Spstud in Table 4. pstud and Spstud each has a tuple with key value of Jack. As a
result, the subrelations of the two Jack tuples are combined. This rule is applied
recursively until two assl tuples on the most internal level of java 1997 merges
into one tuple in the union and ass2 of java 1997 is added to the union. The same
combination applies to Tels*.

Tuple John in pstud and tuple Andrew in Spstud do not match any tuples in
the other relation, they appear the same as they were before the union.

Table 4: Spstud

Name Subjs' Tels-
sjName Year Marks* Tel

testName Mark

Jack ^ Java 1997 J ass 1
1 ass2 { 54111 }

Andrew { DB 1999 { testl 6 0 } } *

Table 5: Union of pstud and Spstud

Name Subjs' Tels' Name
sjName Year Marks' Tel

Name
sjName Year

testName | Mark
Tel

Jack

DB 1998

Java 1997

54111
04143
1435
2302

John I DB 1999 f test 1
| test2 »2U { 2354 }

Andrew { DB 1999 { test l 6 0 } } 4>

Definition 2.9 (Difference Operator). Let r and s be two relations over R.
The difference of r and s is a relation over R, denoted by r © s, and recursively
defined by:

(i) r 9 s = {x\x G r and x g s}, if R is flat;
(ii) rQs = { i | 3 u £ r A 3v € s A x[a(i?)] = u[a(H)] = u[a(i i)] A

Vi e [1,.• •, ntj(x[R;] = © t/[JZJ] ¿<t>) or
3u£r A x[a(R)] = u[a(i?)] g s[a(i?)] A x = u }

The difference operator is like the union operator in that it recursively differ-
ences subrelations if the key values of two tuples, one from each operand relation,

102 Jixue Liu and Millist Vincent

match. The output of the difference operator is a relation in PNF. The following
example shows the use of the difference operator.

Example 2.9. Table 6 gives the difference of pstud in Table 1 and the relation
Spstud in Table 4. The difference is applied to the two tuples having the name of
Jack in the two relations. This procedure recursively applies until it reaches the
most inner level. As a result, in the most inner level the tuple assl of Java 1997
does not appear in the result. The tuple John in relation pstud does not match
any tuples in the relation Spstud and it appears the same in output. In contrast,
the tuple Andrew in relation Spstud does not affect any tuple in pstud because of
no match of key values and is excluded in the result.

Table 6: pstud © Spstud

Name Subjs" Tels* Name
sjName Year Marks* Tel

Name
sjName Year

testName \ Mark
Tel

Jack <

(testl 81 4 '
DB 1998 ^ test2 90 i

I. exam 80 . J
„ Java 1997 { exam 80 }

(04143 Ï
> ^ 1435 I

{ 2302 J

John { DB 1999 { ЩИ ¡ J } } ' (2354 }

Definition 2.10 (Intersection Operator). Letr and s be two relations over R.
The intersection of r and s is a relation over R, denoted by r Q s, and recursively
defined by:

(i) r © s = {x\x £ r and x £ s}, if R is flat;
(ii) r © s = {z |3и £ r A 3v £ s (x[a(R)} = u[a(i?)] = и[а(Д)] A

Vi G (1, ...,n) (x[R*] = «[Я?] © v[RT]) }

The use of the intersection operator is shown in the next example.

Example 2.10. Table 8 shows the intersection of pstudi in Table 7 and pstud in
Table 1.

Table 7: A nested relation pstudi

Name Subjs' Tels'
sjName Year Marks' Tel

testName \ Mark
Jack { DB 1998 { exam 80 } } 83304143

Derivation of Incremental Equations for PNF Nested Relations 103

Table 8: pstud © pstudi

Name Subjs* Tels*
sjName Year Marks* Tel

testName | Mark
Jack { DB 1998 { exam 80 } } <t>

Definition 2.11 (Joinable schémas). Let S and R be two schémas satisfying
a(R) — a(S). Then R and S are joinable schémas if there exists a schema T such
that (1) au(T) = au(R) Uau(S); (2) both R and S are prime subschemas ofT.
We call T the joined schema.

Example 2.11. Let Stud be a schema defined in Example 2.3. Let S =
{Name,Addrs* : {Addr}} be another schema which describes the student ad-
dresses. Stud and S are joinable because a(Stud) = a(S) and there exists a schema
T = {Name, Subjs* : {Subj, Y ear, Marks* : {TestName, Mark}},Tels* :
{Tel}, Addr s* : {Addr}} such that (1) av(T) = av(Stud) U a y (5); (2) Stud
and S are prime subschemas of T. So T is the joined schema.

Definition 2.12 (Join). Let S and R be joinable schémas and T be the joined
schema. Let r and s be relations on R and S respectively. The join of r and s is a
relation over T, denoted by rc<Js, defined recursively by:

(i) rtxjs = {x\x £ r A x £ s}, if R — S = T are flat;
(ii) r & s = {x\3u £ r A 3 d ê s A x[a(i î)] = ti[a(.R)] = u[a(-R)] A V i e [l , . . . , n

(if 3R*ÇPT* A 3 S * K ^ T * (X[T;\ = u [i # * w [S j E] ; o r
if 3 R*<G?T* A FI S*K&T* (x[T*} = u[R*]) or
if 3 S*K^T* A FL R*&>T* (x[T*} = v[Sj;])) }

The join operator joins two relations based on the equivalence of the values of
the atomic attributes starting from the top level. The next example shows the use
of the join operator.

Example 2.12. Let pstud be defined in Table 1. Let studAddr be a relation
defined in Table 9. The results of join of pstud and studAddr is shown in Table 10.

Table 9: studAddr
Name Addrs* Name

Addr
John (12 Newton st, 5 Darling av }

The Verso operators presented in this section have the property of preserving key
attributes on all levels. In other words, all operators do not shrink or expand keys of
relations. For example, the projection operation only projects structured attributes
but not atomic attributes. This property guarantees the results of operations are
in partitioned normal form.

104 Jixue Liu and Millist Vincent

Table 10: The join of pstud and stAddr

Name Subjs" Tels' Addrs* ,
sjName Year Marks' Tel • Addr

testName Mark

John | DB 1999 1 testl
test2 S}} { 2354 } j 12 Newton st \

} 5 Darling av j

3 Containment and Disjointedness in Nested Re-
lations

In this section, we review the definitions and results from [11] concerning the prop-
erties of containment and disjointedness in PNF relations. These results will be
used in deriving IEs in the next section. At the same time, we compare the proper-
ties of containment and disjointedness for nested relations with the corresponding
properties in flat relations.

In flat relations [13, 4], disjointedness means that when an insertion is made to
a relation, the tuples to be inserted should not be included in the relation; whereas
containment means that when tuples are deleted from a relation, the deleted tuples
should be contained in the relation. It is also desirable in many applications, such
as those involving triggers or real-time databases, that the changes to the view
computed using IEs also satisfy the containment and disjointedness properties.

The issue of how to extend the definitions of containment and disjointedness
from flat relations to PNF relations is not as straightforward as might first appear.
This is discussed in more detail in [11] but we briefly summarise our approach here
for the sake of completeness. In [11] we adopted the approach of [10, 15]. In this
approach we require that the definitions for containment for and disjointedness
must be faithful and precise. By faithful, we mean that the definitions for con-
tainment and disjointedness for PNF relations should coincide with the definitions
for containment and disjointedness for flat relations when the PNF relations are
in fact flat. By preciseness we mean that the properties should coincide with the
corresponding properties for flat relations when applied to the total unnnests of the
PNF relations.

For containment, we proposed the following definition in [11] and showed it to
be faithful and precise.

Definition 3.1 (Containment). Let r and Sr be two instances over schema R.
Then 6r is defined to be contained in r, denoted by Sr © r, if:

(i) when R is flat, Vu 6 Sr A v 6 r;
(ii) when R is not flat, Vu e Sr A 3u £ r A t;[a(i?)] = u[a(i?)] A Vi 6

[1, ...,nr](v[Ri]<a u\R*\).

For example in Table 11, Jrffir . However, we note that in this table that Sr is
not a subset of r.

Derivation of Incremental Equations for PNF Nested Relations 105

Table 11: Relations showing the containment

A B' A
B

a l {61}

A B* A
B

dl {i>l,f>2}
6r

Also, in [11] we show that nested containment has the following properties.
These properties will be used in the next section.

Theorem 3.1. Let r and ôr be two instances over schema R. Then the following
are equivalent:

(i) Sr<ar;
(ii) r © 5r = 5r;

(iii) r © ôr = r.

As for disjointedness, the following definition was proposed in [11] and shown
to be faithful and precise.

Definition 3.2 (Disjointedness). Let Sr (f> and r be two relations over schema
R. Sr is defined to be disjoint from r, denoted by Sr r, if

(i) r is <j>;
(ii) when R is flat, Vîi £ Sr A v 0 r;

(iii) when R is not flat, Vug Sr,
(a) v[a(R)} <£ r[a(R)} or
(b)3u£ r, u[a(.R)] = u[a(i?)] and

3 i(v[R*]^4> A t,[iÇ]

For example, the two relations shown in Table 12 are disjoint.

Table 12: Two cases of disjointedness

A B* C" A
B C

a {61} { c i }

A B* C* A
B C

a {62} {c2>
Sr r

We now introduce another type of disjointedness which, when it holds, we will
show in the next section to considerably simplify incremental equations.

Definition 3.3. Let r\ and r2 be two nested relations defined over schema R and let
AC R. Then a tuple x £ r\ is .4-disjoint from r2 if x[A] is not in r2[A\ (otherwise
x is said A-overlapping with r2). The two relations ri and r2 are defined to be A-
disjoint if every x £ ri is A-disjoint from r2 (note that the definition is symmetric).

We now illustrate the definition by Example 3.1.

106 Jixue Liu and Millist Vincent

Example 3.1. There are three relations r0 , rlt and r2 defined over a schema
R = {A,B,C* : {C},D* : {D}} in Table 13. Let Y = {B,C*}. Then r0 and n
are R-Y disjoint, but r0 and r2 are not. This is because R — Y = {A, D*} while
roKA.D ' J JnnKA.D*}] = 4> and r 0 [{ A f l ' }] n r 2 p , O * }] = {< au{dud2) >

The first tuple in ro is a R — Y overlapping tuple with r2 while the second tuple
in r0 is a R - Y disjoint tuple with r2.

Table 13: An example for R - Y disjointedness

A B c* D*
c D

ai bi {ci,c2} {dud2}
a.2 bi {ci,c2} {di,d2}

r 0

A B C' D* A B
c D

oi b2 {ci,c2} {di}
r 1

A B C' D" A B
c D

a i 62 {ci,C2} {di, (¿2}
ri

4 Incremental Equations for Nested Operators
In this section, we derive incremental expressions for the nested operators defined
in Section 2. We assume that the update to a relation is a full tuple update, i.e., the
updating tuples and the relation have the same schema. Otherwise, if the schema
of the update is a prime subschema of the updated relation, we assume that the
expansion operator has been applied to expand the updating tuples into full tuples.

We firstly give a general overview of what we are aiming to derive in this sec-
tion of the paper. We are aiming to derive equations of the form opu(r@Sr) —
f(opu(r),r,6r) in the case of a unary query operator opu, and opt(r@5r,s) =
f(opb(r, s),r,s,Sr) in the case of a binary operator opb- In this notation @ means
either the PNF union operator © or the PNF difference operator ©; r and s are
called base relations; Sr is called the update to the base relation and / is a func-
tion. We call opu(r) and opi,(r,s) the old views, opu(r@5r) and opi,(r@5r, s) the
recomputation, f(opu(r),r,Sr) and f(opb(r@s),r,s,Sr) the incremental com-
putation. For each equation, we use the abbreviation of LHS for left hand side
and RHS for right hand side.

It is particularly desirable if the RHS of the IE for an operator take the sim-
ple form of opu(r)@opu(5r) (opb(r, s)@opb(Sr, s)). We call this form of IE the
standard form. The advantage of this form is that is does not involve extra
operators. When the size of the increment is small, in general it is much more
efficient to compute the new view incrementally than by recomputation. Standard

Derivation of Incremental Equations for PNF Nested Relations 107

IEs may not exist for some operators, but we can in some cases still derive IEs in
the limited standard form which means a standard form attached with some
conditions. The advantage of the limited standard form of an IE is that it reveals
the reason why the IE can not be standard. However, the test of conditions in the
limited standard form can be costly because recursive traversal down to subrela-
tions is needed and there is no index possible for the internal subrelations. To avoid
testing the expensive conditions, we define the implementation form for IEs. In
the implementation form, the concept of the attribute disjointedness defined in the
last section is used and testing the expensive conditions is replaced by top level
selection.

We note that we use induction to prove the IEs in the section because all the
operators involved in IEs of the section are recursive. In the proofs of induction, we
will firstly prove that an equation is correct for a flat relation and then prove the
equation is correct for a n-level nested relation if it holds for (n — l)-level nested
subrelations.

4.1 Incremental Equations for the Expansion Operator
Theorem 4.1. Let S be a prime subschema of a schema R and let r and Sr be two
instances over S. Then the following two expressions for the expansion operator
are true.

r)R{r © Sr) = T)R(r) © r]R(Sr) (1)
tir(r © Sr) = TjR(r) © t]R(Sr) (2)

Proof.
Proof of Equation 1:

(1) Base Case: when R = S are flat, the equation holds. The proof is obvious.
In this case, by the definition of expansion, on LHS: r}R(r) = r, i]R(Sr) = Sr,
r)R{r) © riR(Sr) = r ®Sr. on RHS: r)R(r © Sr) = r © Sr. Base case is proved.

(2) Induction: suppose i]R- («[£*]© u[S*]) = r]R- {u[S*}) ® ijR. (v[S*]) where u £r
and v £ Sr. We prove the equation is correct over r and Sr.
(a) rfR(r © Sr) C T]R(r) © T]R{Sr)

For a tuple x £ rjR(r © <5r), by the definition of union, x is expanded
from a tuple u of r, a tuple v of Sr, or a tuple unioned from u and v.
(i) x is expanded from u (i.e. u[a(ii)] £ <5r[a(i?)]):

x = u[a(R)](riaiu[Si])...(i,It:nu[S^]) .
m+l...nr

On RHS : since u £ r, the expansion of u, which is the same as x, is
contained in r}R(r). Because expansion does not change key values
of tuples, u[a(ii)] £ <5r[a(fl)] u[a(/2)] ft ^(s)[<*(#)]. Further,
the union in RHS does not change values of the tuple expanded from
u. Hence, x £ (r}R(r) ffir?/i(<5r)).

(ii) x is expanded from v: this case is symmetric to the last case.

108 Jixue Liu and Millist Vincent

(iii) x is expanded from the union of u and v (u[a(.R)] = w[a(ii)]):
The union of u and v is u[a(JQ](u[Sr] © w[5;])...(u[5^] © «[5^]).
Then x is expanded from this union,

m + l . . . n r
the induction assumption that the equation holds on level (n — 1),
we have union and expansion are exchangeable on second level.
Then

m + l . . . n r
By rewriting,
X = u[a(R)}(miu[Sl] © m'MSt])>-(VR'mu[S^] ©
mmv[SZl})(<j>®<t>)...(<jXB<t>) s v '

from m+1 to nr

By definition of union and expansion, x is the union of the expan-
sion of u and the expansion of v. So the tuple x is contained in
RHS.

Item (a) is proved.
(b) T]R(r)(Br}ii(8r) C T}R(r®6r) The proof is similar to Item (a) and omitted.

The equation is proved.
Intuitively, the expansion operator packs the structured attributes in R but not

in 5 with <f>. It changes neither values for the structured attributes nor the key
values of r and Sr. As a result, expansion does not affect the union property of
r and Sr, and the equation is correct. In other words, the expansion operator is
faithful [10] with respect to the union operator.

Proof of Equation 2:

(1) Base case: when R = S are flat, the equation holds. In this case, bythe
definition of expansion, on LHS, t]R(r) — r, TjR(Sr) = Sr, rm(r) QrjR(Sr) =
r © Sr. On RHS, r)n(r QSr) = r © Sr. Base case is proved.

(2) Induction: suppose tjh? (u[5*] 0 u[S*]) = rjR- (u[S*]) © r)R- (v[S*]) where u € r
and v € Sr. We prove the equation is correct over r and Sr.
(a) rm(u[S]ev[S\) C J?ij(u[5]) © 77fl(u[S])

For a tuple x 6 (?jii(u[S] © u[5])), there must exit a tuple x' € (r © Sr)
such that x is expanded from x'. By the definition of difference, x' must
be produced from r and Sr in two disjoint cases,
(i) x' is from r: 3 u € r, u[a(iZ)] 0 ¿r[a(i?)], x' = u.

In this case, x is expanded from u as x =
u[a(R)]nRMSi])---V^[SL]) On RHS : u £ r =>

m + l . . . n r
the expansion of u, which is the same as x, is contained in
VR' (u[S*]). Because expansion does not change key value of tuples,
u[q(/?)] k ¿r[a(i?)] u[a(-R)]. ^ r/fl((5r)[a(ii)]. By the definition

Derivation of Incremental Equations for PNF Nested Relations 109

of difference, the expansion of u is not changed by difference. So
x € RHS.

(ii) x' is the difference of tuples from r and Sr: 3 u G r, 3v 6 5r,
u[a(JQ] = v[a(fl)]
x' = u[a(R)](U[Si] © v[S;])...(u[S^) © v[S^]) and Ei 6
[i , . . . , m] M s :] e v [s ;]) t 4 >
x is expanded from x':
X = u[a(R)](nRMSfiev[S;]))...(riRm(u[Sttev[Sti)) and

m + l . . . n
3 i 6 [1,..., TO], (u[S*] © u[St*]) ± 4>.
Note that expansion adds empty sets to the structured attributes.
It does not change the values of existing attributes. Therefore,
(u[S*}ev[S*)) (mAS^emASi]) ? <f>. By rewriting x,
we have
X = u[a(R)]{riRlu[Si] e m A S i]) - ^ ^] ©
r)Rmv[S*m])(<f>e4>)...(<fiQ<l>) and 3 i € [1,...,rn], (w A S i] © v V '

from m+1 to n

mAS*}) i <f>-
This just equals to the difference of the expansion of u and the
expansion of v in RHS . So we proved that x € RHS.

Item (a) is proved.
(b) tfa (u[Si]) © № (v[Si]) C r)Ri (u[Si] © v[Si])

This item is proved in a similar way as in Item (a).
Equation 2 is proved. •

4.2 Incremental Equations for the Projection Operator

Lemma 4.1. Let S be a prime subschema of R. Let r and Sr be instances over R.
Then, the following two equations hold.

ns(r © Sr) = 7fs(r) © ns(Sr) (3)
fts(f © Sr) = fts(r) © fts(Sr) © fts(r Q Sr) (4)

Proof.
Proof of Equation 3:

(1) Base case: when R = S are flat, the projection does nothing to tuples in r
and s. So the equation holds.

(2) Induction: suppose that for u G r and v e s, fts, ("[/?!•] © w[/?*]) =
© № >])) , we prove fts(r © s) = (fts{r) © fts(s)).

(a) fts(r © s) C (f t s (r) © fts(s))
For a tuple x € fts(r ® s), there must exist a tuple x' £ (r © Sr) such
that x is the projection of x'. x' is generated by the union in 3 cases:

110 Jixue Liu and Millist Vincent

(i) 3 u £ r A u[a(i?)] g <$r[a:(i?)] and x' is produced by it:
In this case, x is the expansion of u. On RHS, u £ r => x ££ fts(r);
the projection does not change the key value of a tuple. Therefore
no tuple in ns(Sr) will affect x £ ns(r) when the union is conducted.
x £ (n s (r) © T T S (S)) .

(ii) 3 v £ Sr A u[a(/i)] £ r[a(i?)] and x' is produced by v: Symmetric
to case (i).

(iii) 3 u £r A 3u £ 6r A u[a(ii)] = i;[a(ii)] and x' is the union u and
v: x' = u[a(E)](u[i?r] © v[i?i])...(U[J£r] © v[R^r])f
x is the projection of x':
x = u[a(R)]{*s>MRl] evm-insMRns} ©«J)
By the induction assumption,
x = u[a{R)]{*S'MRi\) 9 *S'1(v[Rl}))...(*SnMKs}) ©

On RHS: let the projection of u be denoted by xu and the projection
of v be denoted by xv. Then xu £ #s(r) and xv £ ns{Sr):
xu = u[a(R)](isMR^)--^sM(Ks)}))
x" =v[a(R)}(fiS;(v[Rl})).-.(*s-M(Rns)]))
The union of xu and xv produces: u[a(i?)](#s* ©
*5? («[i2i])).:.(#5„(ti[K.]) e *sMK.])) => *
Consequently, x £ {ns(r) © ns{s)).

Item (a) is proved.
(b) (7rs(r)©7rs(s)) C 7rs(r ffis): This proof is similar to Item (a) is omitted.

The equation is proved.

Proof of Equation 4: We only need to prove that ^s(r) © ns(Sr) Q © Sr)
because of Theorem 3.1.

(1) Base case: when R = S are flat, the projection does nothing to tuples in r
and s. 7rs(r) © ns(Sr) = ns(r Q Sr).

(2) Induction: suppose that for u £ r and v £ s, (^.(ufi?^]) ©
№;])) ® (u[R*} © we prove (tfs(r) © ns(s)) ® ns(r © s).

For a tuple x £ (^s(r) © ns(s)), x is produced in two cases:
(i) x is the difference of xu and xv where xu £ 7Ts(r) and xv £ ns(Sr):

Suppose xu is the projection of u € r and xv is the projection of v £ r.
By the definition of projection, we have
x" - u[a(R)}(nsl(u[Rt}))...(^M(Rnsm
x" - v[a(RWsl(v[Rl])).Ms'nM(R*ns)}))
By the definition of difference,
X = U F A M ^ H I ? ;]) © ts-MRl)))-(*snAu[Ks}) © *sMK.]))
and 3i £ [1, ...,ns](#Si(u[R;]) © *s>[i?*]) # <t>)-
From {TtSi{u[R*}) © TtSi(v[R*i}) i <f>) we have zt[i?*] © ^ 0 because
projection makes a tuple have less attributes.

Derivation of Incremental Equations for PNF Nested Relations 111

On RHS: the difference of u and v produce a tuple y E (r 0 <5r):
y = u[a(i2)](u[J2i] e G v[R£r]) since 3 i E

The projection of y produces y' in RHS:
y' = u[a(i i)] (#si (u№] e v[Rl})-(*s„MKs] ev[R*ns]) and 3i E
[1 na](«[J2?] ©«[ii?] 0).
By induction assumption, all subrelations of x are contained in the ac-
cording subrelations of y'. Therefore, a; is tuple-contained in y'.

(ii) x is in 7rs(r) and x[a(i?)] 0 Sr[alpha(R)]: This prove is the similar to
Item (i) in the proof of Equation 3 and omitted.

The containment is proved.
• •

Equation 4 reveals that ns(rQs) may not be contained in (ns(r) © tts(s)). The
following lemma gives the reason.

L e m m a 4.2.
•¿rsirQSr) = •Ks(r)Qfts(Sr) iff recursively 3uE.rA3vE.6rA = t;[a(j4)] A

3 j E [l-mMiRj)} © vKRj)} jL <f © *s>v[R*}) ± <t>).

The proof of the Lemma is the reverse of the proof of Equation 4. Generally,
(u[i?i]©v[.R*] <j>) i=> (is, J- <t>) because the projection makes
a tuple shorter. The shortened parts might be the difference of u[R*) and v[R*\.
Once this difference is shortened, i s , (u[i?*]) and become the same. So,

(u[-R*]) © ftSi(v[R*]) 4>) may not be true. When the condition in the lemma
is true, the equation becomes true.

The next example shows the importance of the condition in the lemma.

Example 4.1. Let R = {A,B* : {B},C* : {C}} and 5 = {A,B* : {5}}. Let
r and Sr be two instances over R shown in Table 14. We see that © Sr) ^
7fs(r) © nT(Sr). This is caused by the first tuple of r and in the first tuple of Sr.
The order of difference and projection on the two tuples affect the result.

When the two tuples are differenced first, the result is < a\,(j>, {ci} >, The
projection of the tuple is < ai, <f> > which is in the recomputation of r © Sr).

However, when the two tuples are projected, we obtain < a\, {61} > and <
ai, {bi} > respectively. The difference of these two tuples results none in the
result.

Based on the two lemmas given above, we propose the following implementation
form of IEs for the projection operator.

T h e o r e m 4.2. Let S be a prime subschema of R. Let r and Sr be instances over
R. Then, the following two equations hold.

rts(r © Sr) = 71 s(r) © ns(Sr)
7Ts(r © Sr) = <7a(fl)0Sr[a(fl)](#s(r)) © ^s(<?a(fl)€ir[a(fl)] W © Sr) (5)

112 Jixue Liu and Millist Vincent

Table 14: Relations for Example 4.1

A B* C' A
B c

a i {öl} {a}
Û2 {bi,b2} {ci,C2}
0.3 {b2,b3} {ci,C3}

A B* C' A
B c

ai {M {C2}
a. 2 {bub2} {ci,C2}
Û3 {¿>3} {C3}

A B"
B

a i M
03 (M

Sr •#s(r 6 Sr)

A B-A
B

Q3 {f>2}
fis(r) G fis(Sr)

The first equation has been proved in Lemma 4.1. We now prove the second
equation. From Lemma 4.2, the none equivalence of ns(r & Sr) and ^s(r) © ns(Sr)
is caused by a(.R)-overlapping tuples in r and Sr. . Based on this observation, in
Equation 5, we delete from the old view © Sr) the tuples that are produced
by key value overlapping tuples in r. We then recompute the a (R)-overlapping
tuples in r and Sr by ^s(^a(fl)e<5r[a(fi)](r) © 8r). At last, the recomputed tuples
are inserted to the view.

4.3 Incremental Equations for the Selection Operator
Incremental equations for the selection operator can not be in the standard form
because of the following lemma.

Lemma 4.3. Let r and Sr be two relations over schema R. Let c be a selection
condition defined with Definition 2.6. Then ac{r) is not always contained in âc(r ©
Sr) and âc(r Q Sr).

This lemma is supported by the next example.

Example 4.2. Let r and Sr be two relations given in Table 15 and c = {B*
(j), C* = 4>} be a selection condition. The selections of r, r © Sr, and r QSr are also
given Table 15. Obviously, oc(r) is not contained in ac(r © Sr) and âc(r © Sr).

Since it is not possible to have the standard form of IEs for the selection op-
erator, we derive IEs in the limited standard form for the selection operator if we
impose restrictions on r and Sr.

Lemma 4.4. Let r and Sr be two relations over schema R. Let c be a selection
condition defined with Definition 2.6. Then the following equations are true.

(i) âc(r © Sr) = âc(r) Q âc{Sr) i f f 3 (u G r A v G Sr A u[a(A)] = u[a(A)]) ,
then recursively Vie [l,...,n] (cr2(trCi (u[-Rt*]) © <rCi (f[/î*])) = true A
Cri(àCi(u[R1])) = true A cri(âCi №*])) = true A 3 i(u[Rl] © ^
4> A â C i (u [R i]) e * c M R ;]) ï < t >)

(ii) ac(r@8r) = âc(r) © âc(Sr) i f f 3 (u G r A v G Sr A u[a(A)] = w[a(A)]), then
recursively V î G [l,...,n] (cri(<TCi(u[iîi])) = true A Cri(oCi(v[Ri])) = true)

We now choose to prove the first equation. The proof of the second equation is
similar to that of the first one.

Derivation of Incremental Equations for PNF Nested Relations 113

Table 15: Relations for Example 4.2

A B' c*
B c

ai {Öl} 4>
as {65} 4>

A B' C'
B C

i i {{>2} {C2>
as {bs,b6} 4>

r
A B* C*

B C
ai {biM) {c2}
as {¿>5, M <t>

r © Sr

Sr

A B* C* A
B c

as {61} <t>
r Qôr

A B* C*
B c

ai (M <fi
as {65} <t>

»c(r)

A B* c* A
B c

as {bs,b6} {<t>}
dc(r © Sr)

A B' c* A
B c

a 1 {61} {4>}
Sc(rQ Sr)

Proof.
Proof of Equation (i) in Lemma 4.4:

(1) Base case: when /9(i?) = <t>, r and Sr are flat. The equation becomes oCb(r —
Sr) = oCb(r) - aCb(Sr). The correctness of this equation is proved in [13].

(2) Induction: when r is not flat and <rCi (" №] © « №]) = oCi MR-])GaC i ("[#*])
where u € r and v € Sr, we prove the equation is correct below.

(a) ac(r-©<5r) C 3c(r) Q &c(Sr)
For x 6 &c(r © Sr), there exist a tuple x' in (r © Sr) such that c(x') is
true, x' is computed by tuple u 6 r and tuple v £ Sr in one of two ways.
(1) u[a(i?)] i 5r[a(fl)] and x' = u. Thus,

x = u[a(/?)](<7Cl(u[/?J])...(<rc„ (u[ii*]) where Ci,(u[a(i?)]) = true and
Vi,cri((7c,.(u[i?*])) = true.
In RHS, the selection of u produces tuple y (= x) in ac(r):
y = u[o:(i?)](iTc1 (u[i?j,])...(<rCn(u[ii*]) where c6(u[a(i?)]) = true
and Vi(cri(<7Ci(u[i?*])) = true).
Since selection does not change the key value of a tuple, we have
u[a(iZ)] £ ¿r[a(i?)] = > y[a(R)] £ <Tc(Jr)[a(JR)]. By definition of
difference, no tuple in ac(Sr) affects y when difference is conducted
in RHS. After difference, y is still the same as x. So, x is in RHS.

(2) u[a(ii)] = u[a(i?)] and x' is the difference of u and v. That is,
x' = u[a(R)](u{Rl] 0 t>[fli])...(u[J£] e u[J?;]) where 3i(u[iif] G
u[i?*] (f>). In this case, the selection of x' gives
x = u [a (f l)] (* e i (u[Rl\ © ̂ [i?I]))...(ac„ (« №] 9 v[R^]))
where ct(u[a(ii)]) = true and Vi(cri(<TCi(u[.R*] © w[J?t*])) = true)
and 3i(u[R*]ev[R*] ± <j>).
By induction assumption,
x = U[a(E)](aCl(W[i?i,]) © *CI («))•••№>[/£]) © acJv[R*n}))

114 Jixue Liu and Millist Vincent

where ct(u[a(.R)]) = true and Vi(cri(iCi(u[iZi] 9v[iÇ])) = true)
and 3 © £ 4>).
In RHS , the selection of u and v results tuple yu £ àc(r) and tuple
yv G âc(s):

y« = u[a(iî)](«îCl(«[iîî]))...(<iCn(u[iî;])) where <*(«[«(£)]) = true
and Vi{cri{cCi («[/?,•])) = true).
yv = w[a(iî)](5cx(w[^Î]))-(<ic.(«[«;])) where C(,(u[a(.R)]) = true
and ViicviifTciM-R?])) = true).
Let y be the difference of yu and yv (because of u[a(iï)] = u[a(i?)]):
y = u K i ^ K ^ M i î ï]) © * C l № î ,])) » - (* e > [i £]) ©
where C(,(u[a(iî)]) = true, c&(t>[a(.R)]) = true, Vi(cri(^Ci(u[iîJ'])) =
true and cri(âCi(î;[iî?])) = true), and 3 i (d " c . © èCi{v[R*}) ±
4>).

The conditions attached to x and to y are the conditions attached
tot he equation. When these conditions are true, x equals to y.
Hence x is in RHS.

(b) àc(r)eâc{s) ç âc(res)
This proof is the reverse of the proof of Case (a).

The equation is proved.
•

We use the next example to show the importance of the conditions attached to
the equations in Lemma 4.4.

Example 4.3. Let R — {A, B* : {B}, C* : {C}} and let r and Sr be two instances
over R and given in Table 16. Let the selection condition be c = (̂ 4 = ' a[,C =
<f>). LHS=<rc(r © Sr) = <j>] while RHS= âc(r) © àc{Sr) (p. The reason is that
the condition of subrelations over C* being empty is violated by r and Sr: the
subrelation {ci} in r is not <f>.

Since the equations in Lemma 4.4 can not be applied to this example. The new
view has to be recomputed.

Table 16: Relations for Example 4.3

The above lemma indicates that the reason for not being able to derive a stan-
dard IE for the selection operator is that r and Sr having a(ii)-overlapping tuples.

The conditions attached to the equations in Lemma 4.4 are recursive. In other
words, the conditions have to be tested against subrelations on all levels. This
can be very time consuming because of traversing down to deep levels and because

Derivation of Incremental Equations for PNF Nested Relations 115

there is no index possible for subrelations in a relation. Furthermore, after the
test,' the conditions may be violated, in this case, we have to recompute to view.
Those tuples that have been traversed for testing the conditions will be traversed
again for the recomputation. Double traversal causes the test plus recomputation
to be more expensive than just recomputation without the pre-test. To overcome
the disadvantage of the performance, in the next theorem we avoid the test of the
conditions by proposing IEs in the implementation form.

Theorem 4.3.

<Jc(r Q Sr) = ia(fl)№[a(fl)](ic(r)) © &c(&a(R)e6r[a(R)](r) Q Sr) (6)
<7c(r © Sr) = ^a(R)iSr[a(R)}(^c(r)) © Vc(Pa(R)€6r[a(R)](r) © Sr) (7)

In the theorem, a(R)-overlapping tuples are recomputed while other tuples are
computed incrementally. The IEs in the theorem can applied without limitation.

4.4 Incremental Equations for the Intersection Operator
The next Lemma indicates that the IE for the intersection operator with union is
in the standard form. However, the IE for the intersection operator with difference
can not be in the standard form since (r © s) © (Sr © s) is contained in (r © Sr) © s,
but not the other way around.

Lemma 4.5. Let R be a schema and r, Sr, and s be instances over R. Then

(r eSr) © s = (r © s) e (Sr Qs)®(reSr)Qs (8)
(r ®Sr) © s = (r © s) © (Sr © s) (9)

We choose to prove Equation 8. The proof of the other equation can be achieved
in a similar way.

Proof.
Proof of Equation 8: To prove the equation, we only need to prove (r © s) ©
(Sr © s) <5 (r © Sr) © s because of Theorem 3.1.

(1) Base case: when R is flat, the equation is true since in flat case, (rQSr)Qs =
(r © s) O (Sr © s) is proved in [13].

(2) Induction: we suppose that for u E r A v G Sr A w G s, (u[i?*] © to[i?*]) ©
№*] © ® («[#*] © u[i?*]) © w[R*}. We prove (r © s) © (Sr © s) ®
(r © Sr) © s.
For x G ((r®s)Q(SrQs)), there exist tuple xu E (rQs) and tuple xv G (SrQs)
such that x is the difference of xu and xv. By the definition of the difference,
x is computed in the following ways from xu and xv.
(a) xu[a(R)] = xv[a(R)} then x is the difference of xu and xv.

Because xu is the intersection of u E r and w G s while xv is the
intersection of v G Sr and w E s, i.e.,

116 Jixue Liu and Millist Vincent

x" = ulaiEmulRnOwlR^-iulR^OwlR*,.]) and
= «[a(*)](t;[/îî] © tu[JÎÎ])...(t>[J£r] O w[R*nr]).

So x is the difference of xu and xv :
x = O «i[fl|]) © № *] 0 u;[flï]))...((u[Jî;r] © Mi?*r]) 9
(« r] © t « r]))
where (u[(i2J)] 9 (*>[/£] © w[Rf]) ± <j>.
By induction assumption,
x = u[a(R))((u[Rl) 9 v[Rl}) ©])...((«,.] © v[R*nr]) 0 w[R^r])
where (u[JÇ] 0 [/?*]) © (v[Rfl © M №)]) ^ 4>
In RHS, since u[a(-R)] = ti(a(iî)], the difference of u and v (u ^ v,
otherwise x does not exist) in (r 9 s), denoted y', is
y' = u[a(R)]{u[Rl] 9 v [R {]) . 9 v[R^r))
where (u[R^] © v[R*]) + cj>
By intersecting y' and w (u[a(i?)] = z;[a(iî)] = w[a(.R)]), we have a
tuple y in RHS as
y = «[a(H)]((u[J^] © v[Rl]) Q W[iîî]))...((u[iî;r] © v[RZr]) O w[R^r]))
where (4R?]©î;[(i?;)])^<A
Because (u[R^] © w[R*}) © (w[jR*] © ^ 4> => (№,*] © v[R*}) ©
ui[iîi]) t̂ (f> =>• (u[(i?*)] © ^ <f> (not vice versa), x equals to y or
tuple-contained in y. Therefore x is in RHS.

(b) xu[a(-R)] 0 (Sr © s)[a(R)]: then x = xu.
xu is computed by intersecting i i E r and w € s. That is,
x = xu= u[a(i?)](u[i?i] © t«[i î î])-(«[^ir] © « №]) •
In RHS, u[a(i?)j ^ ¿r[a(.R)]: This can be proved by the inverse method.
Suppose there is tuple v € Sr such that w[a(i?)] = u[a(iî)], the inter-
section of v and w (u[a(.R)] = w[a(iî)]) result in a tuple xv e (Sr © s)
such that xv[a(R)] = u[a(.R)] = xu[a(iî)]. This is a contradiction to the
condition of xu[a(.R)] 0 (Sr © s)[a(iî)]. Thus, u[a(.R)] 0 <Jr[a(.R)].
Prom this point, we conclude that there is not tuple in Sr affecting u
during the difference of (r © s). So the intersection of u and w is the
same as x. Consequently, x is in RHS.

This proof of ((r © s) © (<5r © s)) <5 ((r © s) © t) is done.
The equation is proved. •

If restrictions are placed on relations r and Sr, it is possible to derive IEs in
the limited standard form for the intersection operator as shown in the following
result.

L e m m a 4.6. (r © Sr) © s = (r © s) 9 (Sr O s), if recursively
3 u ' e r A 3 u € <5r A 3 i d é s A u[a(-R)] = u[a(-R)] = w[a(.R)] A
3 i ^ K R ^ e v ^ R i) } ^ ^ A (n [№)] 0 w p ,)]) e M №)] 0 w [№)]) ^) .

The condition attached to the lemma is extracted from the proof of Equation
8. We now use Example 4.4 to show that a standard IE is not valid unless the
relations satisfy the condition of Lemma 4.6.

Derivation of Incremental Equations for PNF Nested Relations 117

Example 4.4. Let r, Sr and s be relations given in Table 17. After recomputation
and incremental computation, (r © Sr) © s (r © s) © (Sr © s). This is because the
first tuple in r, i r and s violates the condition.

Table 17: Relations for Example 4.4

A B* A
B

a 1 {bub2}
a2 { 6 2 , 6 3 }

13 {64}
Ü4 {M

A B* A
B

a\ {bi,b3}
Ü 2 {bi,b2}
0 3 { 6 3 , 6 4 }

Sr

A B* A
B

a i { 6 1 }

0.2 { 6 2 , 6 3 }

<13 { 6 4 }

a 4 { 6 5 }

A B* A
B

a i <fi

a 2 { 6 3 }

Û 4 { 6 5 }

(r QSr)Qs

A B*
B

a2 { 6 3 }
Ü4 { 6 5 }

(r 0 s) e (Sr 0 s)

A closer inspection of this example and the previous results indicates that the
reason for not being able to derive a standard IE for the intersection operator is
caused by a(i?)-overlapping tuples in r and Sr. If we treat these tuples separately
then we can derive IEs in the implementation form that is more efficient than
recomputation.

Theorem 4.4. Let R be a schema and r, Sr, and s be instances over R. Then

(rQSr)Qs = âa(R)2Srla(R)] (rQs) © ((<Ta(«)e5r[a(fl)] (r)) eSr)Qs (10)

(r © Sr) © t = (r © s) © (Sr © s) (11)

The next example shows the usage of Equation 10. The example also shows
that Equation 10 is more efficient than recomputation.

Example 4.5. Let r, Sr and s be relations given in Table 17. The incremental
computation using Equation 10 is given in Table 18. We see that ©z2 is the same
as recomputation (r © <Sr) © £ in Table 17. We note that we did not recompute the
intersection of tuple < a4, {65} > in r and s. This is where Equation 10 is cheaper
than recomputation.

Table 18: Use of Equation 10

A B* A
B

ai { 6 1 }

a2 {b2,b3}
a 3 { 6 4 }

<X4 { M

ai
a2
03
6r[A]

A B* A
B

a 4 { 6 5 }

z 1
r O s

Zl = Va(.R)tST[a(R)]('T O S)

A B*

B
ai <t>
02

Z 2

A B* A
B

a\ 4>
Û2 (M
Ü4 {h}
Z1 © 22

Z2 = ((¿a(H)€ir[a(K)](r)) G Sr) O S

118 Jixue Liu and Millist Vincent

4.5 Incremental Equations for Join Operator
Theorem 4.5. Let R and S be joinable schemas. Let r and Sr be instances over
R and s be an instance over S. The following two equations hold.

(r 9 (5r)txis = (r&s) © (Jrt&s) © (r © ¿r)cSas (12)
(r © ¿r)cSas = (rcxjs) ffi (Srt&s) (13)

We choose to prove the first equation. The proof of the second equation is
similar to that of the first one.

Proof.
Proof of Equat ion 12: To prove the equation, we only need to prove (rt&is) ©
(Sr&s) Q (r 9 ¿r)c£js because of Theorem 3.1.

Let R = a{R){Rl,...,R*nr} and S = a(R){Sl,..., S*s}. Let r and 6r be relations
on R and s be a relation on S. Let T = a{R){Tf, ...,T*t} be joined schema of R
and S.

(1) Base case: when R = S = T = a(R), i.e. all schemas are flat and the same,
(rtks) 9 (¿rc*a,.s) = (r 9 <5r)t<is. This is because when relations are flat,
join operation is equivalent to set intersection operation. The equivalence is
proved in [13].

(2) Induction: we assume that for u E r A v E 6r A w E s, (u[i?j]tfiaii;[(5fc)]) 9
(« [¿^^[(Sfc)]) § (u[R*j] 9u[i^])t£m[(S i :)]. We prove (r&s) 9 (Sr&s) ®
(r 9 ¿r)t&s .
For x E ((n&is) 9 (¿rt&s)) inLHS, there exist xu E (rc&s) and xv E (¿rt*as)
such that x is the difference of xu and xv. By the definition difference, we
have

(rcSsi) 9 (s&i)
= {a;|a;[a(i?)] = xu[a(i?)] = ^[«(i?)] A Vi(xp7] = xu[T?} 9 xv[T*]) A

3i{x[T*)j:4>) or
x[a(i i)] = xu[a{R)) / V i » [a (f l) j A x = xu }

where by the definition of join,
xu E {xu\3u E r A 3w E s A x"[a(f i)] = u[a(f i)] = iu[a(.R)] A Vi

(zu[7;*] = u[/2;]tfiji«[5JE], if RjCPTi A S^Ti or.
xu[T*] = u[i?*], if RjCPTi A pSk<QTi or
xu[T*j = w[Sl], if /9 Rj^Ti A Sk^Ti) } and

xv E e Sr A 3w E s A xv[a(i?)] = v[oc(R)] = w[a(i?)] A Vi
{xv[T*} = w[ii;]£m[S£], if Rj^Ti A Sk^Ti or
xv[I?] = v[R*l if Rj <£pTi A $Sk(c Ti or
xv[T*] = w[S*k], if £ Rj^Ti A Sk€PTi) }

We replace xu and xv with their definition in the difference. Because the
schema of xu and xv are the same, each case in xu matches that in xv, and
does not match any of the other two cases. For this reason, we first consider
the first case of xu and the first case of xv in the first case of the difference.

Derivation of Incremental Equations for PNF Nested Relations 119

We then consider the second and third cases of xu and xv respectively in the
first case of the difference. After that, we consider each case of xu and xv in
the second case of the difference. From this procedure, we get the following
expression. In the expression, for the simplicity, we do not write the schema
conditions explicitly below.

(rc5as) © (¿rt&s)
= { x | (3 u € r A 3v€(Sr A 3 w £ s A

x[a(R)] = u[a(i?)] = i;[a(i?)] = io[a(J?)] A
Vi(x[T*] = (u[R*]&w[S*k}) © (v[R3]*w[St]) or

x[T*} = u[R*] © v[R*] or
x[T*]=w{S*k]ew{S*k}) A

3i(x[T*]?<l>) or
(3 u Er A V u 6 Sr A 3w € s A

z[a(.R)] = u[a(R)] = w[a(R)] ± v[a(iZ)] A
VHx[Tt] = (u[R*]tkw[S*k]) or

x[Tt) = u[R*} or
x[T*]=w[S*k}) }

Now we consider (r © 5r-)c<]s in RHS. Let y £ (r © ¿r)cSjs and yu € (r © Sr).
By the definition of join, we have

(r © Sr) cki s
={y|y[a(fl)] = < /> (#)] = Ma(i?)] A "

Vi(j/[I?] = if R j & T i A S k ^ T i or
y[Tt] = y»[R*], if Rj^Ti A £ Sk^Ti or
y[Tf] = w[S*k}, if ¡B RjSTi A Sk^Ti) }

where by the definition of difference,
yu 6 {yu\3u£ r A 3v £Sr A = u[a(i?)] = u[a(.R)] A

Vj(yu[R*} = u[R*] © «[/?*]) A 3 j(u[R*] © * <t>) or
3 u € r A VveSr A yu[a(R)} = u[a(ii)] ± v[a{R)] A yu = u }

Replace yu with its definition in the RHS,

(r©(5r)t<]s
= {i/|3 u£r A3v£ Sr A 3w £ s A

y[a(R)] = w[a(i?)] = = w[a(R)] A
vi(y[T?] = (u[R*} et/[fl;])tMsfc*] or

y{Tl]=u[R*]ev[R*} or
y[T*}=w{S*k])

3j{u[R*]ev[R']^<j>) or
3u £ r A Vii 6 Sr A 3w £ sA

y[a(R)] = u[a(J2)] = u>[a(Jl)] # v[a{R)} A
Vi(y[T?] = u[R]]*w[St] or

y[T*]=u[R*} or
y[T*] = w[s;]) }

Now we compare x and y. The second case of x equals to the second case

120 Jixue Liu and Millist Vincent

of y with conditions. With the induction assumption, the first case of x
equals to the first case of y with the condition that 3 i(x[T*] ± <j>)
3j(u{R;]ev[R*}?<j>).
We now prove that 3 i(x[Tf] ^ <f>) =» 3 j («[/?*] Qv[R*] ± </>) but not vice
versa. In the first case of x, x[T*] is computed in two ways (note that 0
w[Sl] always results 0 while we are discussing not being tf>).

• x[T?) = u[R*j] © v[R*j] ± 4). This is equivalent to 3 (u[R}] © ^ <f>
of y side.

• x[T?] = ± <j>. By the induction assump-
tion, we have x[T*] = (u[R]] © v[.R}])i£iiu[S£] ^ <f> By the definition of
join, © ^ D & ^ s , *] ¿ 4 > = > © «[/?.;]) ? 4>-
However, from (u[/?*] © w[i?*]) / </> we can not get (u[/?*] ©

<f) because the join of two non-empty sets can be an
empty set. Consequently, (u[_R}] © v[R^]) ± (j> (u[i?;]i£iio[SjJ]) ©
(v[R*)&w[S*k}) ± <j>.

Because the condition of x can lead to the condition of y to be true, any x
in LHS is contained or tuple-contained in RHS. However, the condition of y
can not always lead to the condition of x to be true, y is not always included
in RHS.
In summary, we proved that (rcxis) © (¿rt&is) © (r © <5r)c*as.

•

Equation 12 can be simplified if restrictions are placed on the update Sr.

Lemma 4.7. Let R and S be two joinable schemas. Let r and Sr be instances over
R and s be an instance over S. The following equation holds.

(r © ¿r)i&is = (rixis) © (¿rcias) iff r and Sr are a(R)-disjoint.

The proof of the lemma is similar to the proof of Equation 12. We now give an
example to show the importance of the condition in the lemma.

Example 4.6. Let r, Sr, and s be three relations given in Table 19. The recom-
putation (r ©<5r)t*as and the incremental computation (rtxi s) © (¿rcfias) of the join
operator are also included in the table. Because r and Sr have a(i?)-overlapping
tuples, the recomputation contains more tuple than incremental computation does.

Consider the performance and implementation, as we analyzed in Subsection
4.3, we give the following IEs in implementatation form. In the theorem, a(R)-
overlapping tuples in r and Sr are recomputed while other tuples in Sr are incre-
mentally computed.

Theorem 4.6. Let R and S be two joinable schemas. Let r and Sr be instances
over R and s be an instance over S. The following two equations hold.

(r e 5 r) & S = ¿a(R)g6r[a(R)](r&s) © ((<?a(fl)edr[a(fi)](r) ©¿O&s) (14)
(r © ¿r)cxis = (rcxis) © (<5rt&s) (15)

Derivation of Incremental Equations for PNF Nested Relations 121

Table 19: Relations for Example 4.6

A B* c' A
B c

ai {M id]
a 2 {foil { C 2 , C 3 }

<13 {biM { c i }

A B* c* A
B c

ai {61} { a }
0,2 {M { C 3 }

a 3 {62,63} W

A C' D* A
C C

0,1 {*} {<M
a 2 {ci} {¿2}
a3 {M {<M

A B* c* D'
B c D

a2 <t> 4> m
«3 {61} 4>

(r © 5r)cSjs

5r

A B* C' D* A
B c D

a 3 {61} 4> 4>
(rtxis) © (Srt&s)

4.6 Discussion
In this subsection, we highlight some of the important features of the IEs derived
in the last section and discuss the differences between incremental expressions for
flat relations and for nested relations.

Firstly, we note that some (but not all) of the incremental expressions are in
the standard form since the expressions do not involve recomputing the new view.
The performance gain of this type of IEs is obvious. This is the case where the
update is an insertion and the operators are expansion, intersection, projection, or
join. However, the IEs for some operators, e.g. Equation 8, involve recomputation.
These types of IEs do not avoid view recomputation unless restrictions are placed
upon the update. A similar situation occurs with the flat relational projection
operator where the incremental expression involves view recomputation [13]. This
highlights the fact that some views are impossible to maintain efficiently if the only
information available is the view itself. This has lead to the development of other
techniques which use counts [6] or auxiliary relations [19] to improve efficiency by
avoiding view recomputation. Similarly, one expects that views involving nested
operators can be more efficiently maintained if more information than just the view
is stored.

In comparing the equations derived in the last section and those in [13] for
the flat relational model, one notes that not only are the equations in this paper
generally more complex but also the symmetry shown in the equations of [13] is
absent in the expressions of the nested operators. For example, in flat relations the
incremental expressions for selections and joins are similar for both insertions and
deletions and are computed as <rc(r±s) = ac(r)±ac(s) and (r±s)&it = r&t±s&it
respectively. This symmetry is absent in the equations derived in Section 4.

Apart from the difference of patterns of IEs, the containment and disjointedness
properties used in deriving IEs for flat relations and those used for nested relations
are different. The containment and disjointedness for flat relations are defined on
set semantics. A tuple contained in a set means that the tuple is a member of the
set. In nested relations, however, a tuple is contained in a nested relation does not

122 Jixue Liu and Millist Vincent

mean that the tuple exists in the relation. The tuple may be contained in a tuple
of the relation. Tuple containment becomes a core concept in the containment for
nested relations. Similarly, the disjointedness for nested relations is built on the
basis that two tuples are disjoint if one tuple has a subrelation that is disjoint from
the corresponding subrelation of the other tuple.

Compared with the equations for flat relations, our equations in the imple-
mentation form incrementally compute the view update to the maximum extent
and avoid full view recomputation by recomputing only key attribute overlapping
tuples. The performance gain from the implementation form is obvious. This is
because in the implementation form, we make full use of indexes on the top level
to select key attribute overlapping tuples. We avoid to test the complex conditions
of IEs in the limited standard form and avoid full view recomputation.

5 Incremental Maintenance of Views with Com-
plex Queries

In this section, we present a technique for the incremental maintenance of PNF
views expressed as complex queries using the incremental equations derived pre-
viously. Our technique can handle both insertions and deletions. However, for
simplicity of exposition we assume that the update is a single insertion to a base
relation.

Our technique is firstly to represent the query expression for the view as an
expression or operator tree. In this representation, the leaves of the tree are the
base relations, the interior nodes are the query operators and the root of the tree
represents the final view. Our technique then computes the change to the view in
a 'bottom' up fashion starting with the changes to the leaf nodes and then propa-
gating the changes upwards in the expression tree using the incremental equations
derived previously. To be more precise, we can express the technique in the fol-
lowing algorithm (iri represents the intermediate relation corresponding to node i
in the tree, ir? and i r ^ are the intermediate relations corresponding to the child
nodes of node i).

Algor i thm 5.1. (Maintaining views wi th complex queries)
Inpu t : the operator t r e e and the i n s e r t i o n s 6r t o r
Ou tpu t : update to the view
Do: For each node i do

if Siri' or Sir^' i s non-empty, then
compute Siri according to IEs derived in previous sec t ions ,

end i f ;
endfor ;

The use of the algorithm is illustrated by the next example.

Example 5.1. Let relation pstud be defined in Table 1. Let relation subjLect be
defined in Table 20. We define a query to list

Derivation of Incremental Equations for PNF Nested Relations 123

• the name of a student;
• the subject taken by the student in 1998 if the student gets all marks over 69

for every test;
• the lectures for the taken subject.

This query can be expressed as
View = Tt{Name,Subj':{sjName,Year,Lecf-.{Lect}}}{

(0Subj':(Year=98 A M A R K S ^ M A R K Y ^ ^ ^ I P S T U C ^ ^ S U B J L E C T))

Table 21 shows the instance of the view.

Table 20: Relation subjLect

Name Sub s*
s j Name Year Lects*

Lect

Jack

John

(DB
\ DB
j DB
{ DB

98
96
98
96

{Ben,Tom) 1
{Kaven} J

{Ben, Tom} 1
{Kaven} J

Table 21: The materialized view View before update

Name Subjs'
sjName Year Lects*

Lect
Jack { DB 98 {Ben, Tom}}

We now update relation pstud. The update to pstud is an insertion Apstud
given in Table 22. The update is propagated through the following steps.

• AV3
={< Sean, {< DB, 98, {< exam, 90 >} >}, <t> >}

• AV2 = AV3tk subjLect
={< Sean,{< DB, 98, {< exam, 90 >},{< Ben >,< Tom >} >

• AVj — ^{Name,Subj' :{sjName,Year,Lect': {Lecf}}} (AV2)
={< Sean, {< DB, 98, {< Ben >, < Tom >} >} >}

• View = View © AVi is given in Table 23.
In the above procedure, we only computed the view update having the tuple of

'Sean'. We did not compute the tuple 'Jack' that had been in the old view. When
tuples in the old view are numerous, our way of maintaining the view can have
better performance than recomputation.

124 Jixue Liu and Millist Vincent

Table 22: An update Ar to r

Name Subjs' Tels'
sjName Year Marks * Tel

testName | Mark
Sean {DB 98 {exam 90} } <t>

Table 23: The materialized view View after update

Name Subjs*
sjName Year Lects*

Led
Jack { DB 98 {Ben, Tom}}
Sean { DB 98 {Ben,Tom}}

6 Implementation and Performance Analysis of
IEs

In this section, we present the results of our performance analysis of the IEs we
derived. A detailed description of implementation can be found in [12].

6.1 The database
We employed a university database for the implementation. It contains five rela-
tions. The schema of each relation is described in Figure 24. The schema Stud
has been described in Example 1. The schema Teach describes the lecturer names
(IcName) for each subject in a year. Led is a schema modeling the information
of lecturers. Test is the schema to describe the test details for a subject in a year.
The last schema, Hobby, describes hobbies of a student.

Table 24: Schemas of the university database

Name Subjs* Addrs' Name
sjName Year Marks' Addr

Name
sjName Year

TestName | Mark
Addr

schema Stud of relation pstud
sjName Year IcNames'

IcName IcName Salary Speciality

schema Teach of relation teach schema Led of relation le

sjName Year TestNames'
TestName | Description

Name Hobbies'
Hobby

schema Test of relation test schema Hobby of relation hobby

The implementation was performed on a Pentium 166 PC computer with two
hard disks, 96 MB of memory, and Microsoft Windows NT 4.0 operation system.

Derivation of Incremental Equations for PNF Nested Relations 125

The database management system used was the Informix Database Server with
Universal Data Operation (IDS/UDO) version 9.14. Clients interface and pro-
grams are connected to the server by TCP/IP loop-back connection [9], which is
the only option for Windows NT platform. The query language we use for the
implementation is the OR-SQL proposed in [17].

6.2 The Cost Model
The cost model for the performance analysis involves the costs of view creation,
incremental maintenance, and recomputation. Each cost is the time for computing
an item in an IE. We use the IE for the join operator with a deletion update as
an example to show the relationship between the costs in the cost model and the
items of the equations following.

(r © <5r)&s = ®» (<Ta(H)eír[Q(ñ)](r) G> 6 r) & s (16)
v ' > S v

Crec Cdct
 Cin> C „ „ , C " " B ° ' " C

We now detail each cost.
• ccre is the time for creating the materialized view rtfts.
• crec, on the left hand side, is the time for recomputing the view when an

update happens to a deriving relation of the view.

. • cmtn on the right hand side, is the time for incrementally maintaining the
view using right hand side of incremental equations when an update hap-
pens to a deriving relation of the view. This time consists of the following
components.

- Cdei is the time for deleting from the old view the tuples derived from
а(Д)-overlapping tuples in r.

- Cins is the time for inserting the tuples of the view update into the view.
Since the tuples in the view update are а(Д)-disjoint with the view
because of the select operation against r, this insertion in fact is the set
operation.

- Cqvi IS the time for selecting a(i?)-overlapping tuples from r, the relation
that is being updated.

- ссть labels the time to conduct PNF union or difference between a(R)-
overlapping tuples of r and Sr.

- Cinc denotes the time for computing the view update using the operator
that defines the view (e.g., сйз).

After defining all the costs, the total maintenance time is given by:

CMTN CDEL CINS COV\ + Ccm& + Cjnc

where costs of Cdei, Cins, covi, and ссть are not operator specific.

126 Jixue Liu and Millist Vincent

With this cost model, a typical performance analysis diagram is like the one
shown in Figure 2. The horizontal axis indicates the different update sizes while the
vertical axis indicates the relative time to view creation. There are three lines in the
diagram. One is labeled by 'rec' and shows the relative time of view recomputation:
Crec/Ccre- It goes downward from top-left corner when updates are deletions. When
the update size reaches 50% of the original size, it should come down to 50% along
the vertical atxes.

The second line is labeled by 'inc' and shows the relative time of cjn c /c c r e . It
goes up from the lower-left corner. This line is drawn by using updates that do
not have A-overlapping tuples with r. Because there are no A-overlapping tuples
in the update, no recomputation and no deletion from the old view are needed
for the incremental maintenance. Therefore, It is an ideal line for incremental
maintenance. When the size of the update reaches 50%, this line will cross with
'rec' at 50% of the vertical axis. This line and the location of the cross serve to
check the correct of the implementation programs.

The third line labeled by 'mtn' is the relative time for general incremental
maintenance: c m t n / c c r e . It goes up from the lower-left corner. The intersection of
the two lines 'rec' and 'mtn' being located at over 50% of the vertical axis and less
than 50% of the horizontal axis. The horizontal coordinate of the the intersection
point is called the maintenance limit. It is the size of an update with which the
time of incremental maintenance is equivalent to the time of view recomputation.

The 'mtn' line in the figure is the worst case where all tuples in Sr are a(R)-
overlapping with r and produce tuples in the view update to be inserted into the
old view. Lines 'mtn' and 'inc' are the minimum and maximum boundaries for the
incremental maintenance. The actual maintenance limit, depending on the update
type and a(i?)-overlapping property, falls within the boundaries.

Selection with del. upd. to 'sd' (Ivl 3)

0 80 •
E
~ 60 • g
1 40

20
0 •

0 80 •
E
~ 60 • g
1 40

20
0 •

Jk—Î

0 80 •
E
~ 60 • g
1 40

20
0 •

A" ; • mtn
• rec.

inc

0 80 •
E
~ 60 • g
1 40

20
0 •

4k
• mtn
• rec.

inc
upd-siz e 1% 10% 20% 30% A W% 50%

Figure 2: The performance analysis for selection on 3rd level

6.3 Maintenance Limit
In this section, we analyze the maintenance limit for the selection operator and the
join operator.

Derivation of Incremental Equations for PNF Nested Relations 127

6.3.1 Selection Operator

To study the maintenance limit for the selection operator, we simulate a query of
listing all tuples of table stud if a student has at least one good mark (> 90) for at
least one subject. The query is

Qs: S E L E C T * FROM stud s WHERE EXISTS
(S E L E C T * FROM table(s.Subjs*) j WHERE EX ISTS

(S E L E C T * FROM tablefl.Marks*) WHERE Mark> 90));
The selection condition Mark > 90 in the query is set up on third level of

relation stud with the selectivity being 10%.
The view defined with this query is maintained using the right hand side of

Equation 6.
The performance analysis diagram has been given Figure 2. From the diagram,

we see that the maintenance limit is about 32%.
We also analyzed the maintenance limits for the cases where selection conditions

are on the first level and the second level respectively. The maintenance limits for
selection condition on all levels are listed in Table 25.

Table 25: Maintenance limits for selection

condition level 1st 2nd 3rd
limits(%) 18 40.5 32

6.3.2 Join Operator

The query we study the maintenance limit of join operator is Qjn.
Qjn: S E L E C T * FROM stud s WHERE EXISTS

(S E L E C T * FROM table(s.Subjs*) j, test t
WHERE j.sjName=t.sjName AND j.Year=t.Year
AND EX ISTS (S E L E C T * FROM tableQ.Marks*) a, table(t.TestNames*) b

WHERE a.TestName=b.TestName));
In this query, test joins Stud on the second level and the third level of Stud.
We also simulated join operations on the first level and the second. The tree

presentation of the join in the three levels is given in Figure 3. The maintenance
limits for the three case is given in Table 26.

Table 26: Maintenance limits for join

condition level 1st 2nd 2nd & 3rd
limits(%) 21 44 36

The data in the table is quite similar to that of Table 25. So, we omit the
explanation.

128 Jixue Liu and Millist Vincent

sd_dctail sd

(a) (b)

(c)

Figure 3: Joins on different levels

The above data is obtained by applying updates to table stud, which we call
the left operand of the join. We now consider the cases where updates are applied
to the right operand of the join.

Line 'inc-lv3' in Figure 6.3.2 is the case where the right operand joins stud on
the third level. The figure shows that the incremental maintenance cost does not
vary with the change of the size of updates to the right operand. This maintenance
cost is almost the same as the view creation time. This is because the navigation of
stud down to the third level consumes most of the time of the join operation. Line
'inc-lv2' and Line 'inc-lvl' of the figure indicate that as the level on which the right
operand joins stud becomes shallower, the cost of the incremental maintenance
changes toward the trend of updates to stud.

7 Conclusion
In this paper, we derived IEs for the operators of PNF nested relations. We derived
IEs in three forms: the standard form, the limited standard form, and the imple-

Derivation of Incremental Equations for PNF Nested Relations 129

Effect of different join levels
120
1 0 0 -0)

I 80 -

i 60 - inc-lv1
5 40-n

inc-lv2
2 0 -

0 -I
upd-size 1% 40% 100%

inc-lv3

Figure 4: The performances when other joining tables are updated

mentation form. The standard form is the ideal form that we first aimed to achieve.
If an IE can not be in the standard form, we proposed the limited standard form.
This form aims to reveal the reason why the IE can not be standard. After the
limited standard form, by considering performance of testing complex conditions,
we have derived IEs in the implementation form to avoid testing such conditions.

In this paper, we also implemented IEs for the nested relations in the Informix
Universal Database Server. A database with multi-level nested relations was cre-
ated in the database server. We implemented the PNF operators using ESQL/C
functions. With the operators and the relations in the database, views were cre-
ated and the incremental equations are implemented. Afterward, the performance
of each incremental equation was analyzed.

The performance analysis show that the PNF union and difference operations
are the main reasons causing performance decrease of the incremental computation.
Generally, the maintenance limits of the incremental equations are between 17-44%.
As the number of nested levels increase, the maintenance limit decreases.

Nested relations are closely related to the new emerged semi-structured data
protocol XML (extensible Markup Language) [1]. Because of this, the IE ex-
pressions derived in this paper have the potential to be adapted for the use in
maintaining XML views. However, the adaption will not be direct because XML
allows missing elements and flexible structures. This leads to null sub relations
which challenge the adaption. We leave this as future research work.

References
[1] Serge Abiteboul. On views and xml. PODS, pages 1-9, 1999.

[2] Serge Abiteboul and Nicole Bidoit. Non first normal form relations: an alge-
bra allowing data restructuring. Journal of Computer and System Sciences,
33(3) :361-393, 1986.

130 Jixue Liu and Millist Vincent

[3] Stijn Dekeyser, Bart Kuijpers, and Jan Paredaens. Nested data cubes for olap.
LNCS 1552, Advances in Database Technologies, 1998.

[4] Timothy Griffin and Leonid Libkin. Incremental maintenance of views with
duplicates. SIGMOD Conference, pages 328-339, 1995.

[5] Ashish Gupta and Inderpal Mumick. Materialized Views - Techniques, Imple-
mentation, and Applications. The MIT Press, 1999.

[6] Ashish Gupta and Inderpal S. Mumick. Maintaining view incrementally. SIG-
MOD Conference, 1993.

[7] Ashish Gupta and Inderpal S. Mumick. Maintenance of materialized views:
problems, techniques and applications. IEEE Data Engineering Bulletin, spe-
cial issues on materialized views and data warehousing, 18(2), 1996.

[8] Richard Hull. A survey of theoretical research on typed complex database
objects. In J. Paredaens, editor, Databases, pages 193-255. Academic Press,
London, 1987.

[9] Informix. Informix-universal server administrator's guide, version 9.1. 1997.
Informix Corporation.

[10] Mark Levene. LNCS 595, The Nested Universal Relation Database Model.
Springer-verlag, Berlin, 1992.

[11] Jixue Liu and Millist Vincent. Containment and disjointedness in partitioned
normal form relations. Acta Informática, 38:325-342, 2002.

[12] Jixue Liu, Millist Vincent, and Mukesh Mohania. Implementation and perfor-
mance analysis of incremental equations for nested relations. IDEAS, pages
398-404, 2000.

[13] Xiaolei Qian and Wiederhold Gio. Incremental recomputation of active rela-
tional expressions. IEEE Transactions on Knowledge and Data Engineering,
3(3):337-341, 1991.

[14] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended algebra and calcu-
lus for nested relational database. ACM Transactions on Database Systems,
13(4):389-417, 1988.

[15] M A Roth, H F Korth, and A Silberschatz. Null values in nested relational
databases. .Acia Informática, 26(7):615-642, 1989.

[16] Mark A. Roth and James E. Kirkpatrick. Algebras for nested relations. Data
Engineering Bulletin, ll(3):39-47, 1988.

M. Stonebraker and Paul Brown. Object-relational DBMSs tracking the next
great wave. Morgan Kaufmann Publishers, Inc. California, 1999.

Derivation of Incremental Equations for PNF Nested Relations 131

[18] Michael Stonebraker and Dorothy Moore. Object Relational DBMSs, the Next
Great Wave. Morgan Kaufman publishers Inc., 1996.

[19] M. Vincent, M. K. Mohania, and Y. Kambayashi. A self maintainable view
maintenance technique for data warehouses. COMAD, pages 7-22, 1997.

[20] Jennify Widom. Research problems in data warehousing. CIKM, pages 25-30,
1995.

[21] Jun Yang and Jennifer Widom. Maintaining temporal views over non-historical
information sources for data warehousing. EDBT, pages 389-403, 1998.

Received February, 2002

Acta Cybernetica 16 (2003) 133-145.

Velocity and Distance of Neighbourhood Sequences

András Hajdu* and Lajos Hajdu*

Abstract

Das et al. [2] defined the notion of periodic neighbourhood sequences.
They also introduced a natural ordering relation for such sequences.
Fazekas et al. [4] generalized the concept of neighbourhood sequences, by
dropping periodicity. They also extended the ordering to these generalized
neighbourhood sequences. The relation 3* has some unpleasant properties
(e.g., it is not a complete ordering). In certain applications it can be useful to
compare any two neighbourhood sequences. For this purpose, in the present
paper we introduce a norm-like concept, called velocity, for neighbourhood
sequences. This concept is in very close connection with the natural ordering
relation. We also define a metric for neighbourhood sequences, and investi-
gate its properties.

Keywords: Digital Geometry, Neighbourhood Sequences, Distance, Metric
PACS 68U10

1 Introduction
Distance functions are used in many parts of digital geometry. They are usually
defined by digital motions, when we can move in the digital space from one point to
another, if they are neighbours in some sense. Rosenfeld and Pfaltz [9] introduced
two types of motions in Z2, the cityblock and chessboard motions. The cityblock
motion allows only horizontal and vertical steps, while the chessboard motion di-
agonal movements as well. By these motions Rosenfeld and Pfaltz defined the
distances d j and d%, respectively, as the number of steps needed to get from one
point to another. To obtain a better approximation of the Euclidean distance they
recommended the alternate use of the cityblock and chessboard motions.

•Institute of Mathematics and Informatics, University of Debrecen, H-4010 Debrecen P.O.Box
12. Email: hajdua9math.klte.hu
Research supported by the OTKA grant T032361.

tlnstitute of Mathematics and Informatics, University of Debrecen, H-4010 Debrecen P.O.Box
12. Email: hajduiamath.klte .hu
Research supported in part by the Netherlands Organization for Scientific Research (NWO), the
Hungarian Academy of Sciences, by grants T029330 and F034981 of the Hungarian National
Foundation for Scientific Research (HNFSR), and by the FKFP grant 3272-13/066/2001.

133

134 András Hajdú and Lajos Hajdú

By allowing arbitrary periodic mixture of the cityblock and chessboard motions,
Das et al. [2] introduced the concept of periodic neighbourhood sequences, and
generalized it to arbitrary dimension. A distance function can be attached to any
neighbourhood sequence A by defining the distance of two points as the number of
A-steps needed to get from one of them to the other. In [2] the authors provided a
criterion to decide when the distance function corresponding to A is a metric. They
also introduced a natural ordering relation on the set of periodic neighbourhood
sequences in the following way. Given two such sequences A and B, A is "faster"
than B, if for every two points the A-distance is less than or equal to the ¿^-distance
of these points. The name of this relation expresses that in this case A spreads
faster in the digital space than B. Das [1] studied the structure of the set of periodic
neighbourhood sequences with respect to this natural ordering.

By dropping the condition of periodicity, Fazekas et al. [4] generalized the
concept of neighbourhood sequences. They extended the "faster" relation to these
generalized neighbourhood sequences, and investigated its properties. It turned
out that this natural ordering has some unpleasant properties. It fails to be a
complete ordering on the set of neighbourhood sequences, moreover, the structure
obtained is not even a lattice in higher dimension. However, in certain applications
it can be useful to compare any two neighbourhood sequences, i.e. to decide which
one spreads "faster". For this purpose, in this article we introduce a norm-like
concept, called velocity, on the set of neighbourhood sequences, and investigate its
properties. This concept has to be introduced in a way to fit the relation "faster",
so we need some preliminaries before defining velocity. Further, we define a metric
for neighbourhood sequences. In practical applications it is usually sufficient to
consider.a finite part of a neighbourhood sequence. In our definition of velocity
this can be easily reached by assigning zero weight to the elements of the sequence
from some point on. On the other hand, the use of general (infinite) neighbourhood
sequences provides a more flexible and exact tool in building up the theoretical
background. Obviously, the restriction of the concepts to periodic neighbourhood
sequences, yields a notion of velocity and metric defined for them. We note that
our results are new already in the periodic case.

In this paper we deal with neighbourhood sequences defined on Zn . However,
there can be applications, where the grid points form another kind of structure
(e.g., triangular or hexagonal). For a survey on planar grids, see [8]. The concept
of neighbourhood sequences can be easily generalized to these grids, see [7] for the
cases of triangular and hexagonal grids. The investigations and concepts of the
present paper can be extended to these structures, too.

The aim of this article is to introduce velocity and metric on the set of neigh-
bourhood sequences. We do this in a way to fit the algebraic structure of such
sequences. We also work out a possible application scheme for broadcasting infor-
mation. The structure of this paper is as follows. In the second section we give
our notation, and provide some properties of the concepts introduced. In the third
section we clarify which conditions should be met by the notion of velocity. In
Section 4 the concept of velocity is introduced, and some important properties of

Velocity and Distance of Neighbourhood Sequences 135

this notion are proved. In Section 5 we give some theoretical examples to illustrate
the behaviour of velocity, and in the sixth section we show how the theory can be
applied for broadcasting information in a general network model. In Section 7 we
define a metric on the set of neighbourhood sequences, and study its properties.

2 Notation and basic concepts

In this section, we recall some definitions and notation from [2] and [4] concerning
neighbourhood sequences. In what follows, n denotes a positive integer.

Definition 2.1. Let p be a point in lLn. The i-th coordinate of p is indicated by
Prj(p) (1 <i<n). Let k be an integer with 0 < k < n. The points p, q G Z™ are
called k-neighbours, if the following two conditions hold:

• | Pr<(p) - Pr<(g)| < 1 (l < » < n) ,

• ¿ | P r i (p) - P r i (g) | < f c . t=i

The sequence A — , where 1 < a(i) < n for all i G N, is called an n-
dimensional (shortly nD) neighbourhood sequence. A is periodic, if for some I G N,
a(i + I) = a(i) (i G N). For every i G N and j = 1,... ,n put

i
aj(i) = min(a(i),j) and f f (i) = ^ajik).

k=1

The set of the nD-neighbourhood sequences will be denoted by Sn.
Let p, q G Zn , and A E Sn. The point sequence p = PO,PI, • • • ,pm — Q, where

Pi-i and pi are a(i)-neighbours in Z n (1 < i < m), is called an A-path from p to
q of length m. The A-distance d(p, q\ A) of p and q is defined as the length of the
shortest A-path between them.

A natural partial ordering relation on Sn can be introduced in the following
way (see [2] and [4]). For A,BeSn we define the relation • * by

A3* B & d(p, q; A) < d(p, q\ B) for all p, q G Z".

In case of A •* B we say that A is faster than B. There is a strong connection
between this relation and the values fj(i), shown by the following result from [4].

Theorem 2.2. Let A,B e Sn. Then

AD* B & f f (i) > f f (i) for every i G N and j = 1 , . . . , n.

136 András Hajdú and Lajos Hajdú

3 Preliminaries to introduce velocity
By defining velocity, we assign a positive real number to every neighbourhood
sequence. In this section we give some natural conditions, which should be met by
this concept.

(I) Velocity must be sensitive to the behavior of the sequences in different di-
mensions.
It can happen that a sequence spreads "faster" than another one in higher
dimensions, but they have the same "speed" in lower dimensional subspaces.
For example, in 3D the sequences (3,3,3,3,...) and (2,2,2,2,...) have the same
velocity on the planes {x,y}, {x, z], {y,z} defined by the coordinate axes; or
the Sequences (1,3,1,3,...) and (2,2,2,2,...) behave differently in the subspaces
of Z3. These features should be reflected in the definition of velocity.

(II) The elements of the sequences must be weighted with a suitable weight func-
tion.
There are two reasons to establish this condition. First, it is natural to
consider the initial elements of the sequences more important than the ele-
ments which occur later. The second reason comes from theoretical necessity.
Namely, if we want to take into consideration all elements of the sequences,
then we have to guarantee the convergence of certain sums or series of the
(weighted) elements of the sequences.

(Ill) Velocity must be defined such that it fits the natural ordering.
This condition is very evident: velocity should preserve the ordering •* . If
a neighbourhood sequence is faster than another one, its velocity should be
larger as well. As • * is only a partial ordering, the opposite statement cannot
be true. However, our velocity concept, introduced in the next section, will
have the nice property that in a certain sense this opposite statement also
holds (cf. Theorem 4.11).

4 Assigning velocity to neighbourhood sequences
According to (II), we first give the concept of a weight system, which will be
appropriate in our further investigations.

Definition 4.1. Let n 6 N. The set of functions Sj : N —> K (1 < j < n) is called
a weight system, if the following three conditions hold:

• 5j(i) > 0 (1 < j < n, i e N),
00

• E ¿jW < 0 ° (! <j< n) ,
i=1

• Sj is monotone decreasing (1 < j <n).

In order to meet (I), we introduce the concept of velocity in two steps. First, we
assign an n-tuple to every neighbourhood sequence. The elements of this n-tuple

Velocity and Distance of Neighbourhood Sequences 137

reflect the "velocity" of the given neighbourhood sequence in the subspaces of Z n

of dimensions from 1 to n. Then, we define one descriptive velocity value.

Definition 4.2. Let A 6 Sn, and ôj (1 < j < n) be a weight system. The
j-dimensional velocity of A is defined as

oo
vf = 53oj(t)ii(0-

»=1

Remark 4.3. Let T be the linear space of the bounded real sequences over K, and
let ôj (1 < j < n) be a weight system. It is well-known (see e.g., [5]J that for every
j, if 6j(i) > 0 for all i € N then with the norm

oo

i=1

T becomes a Banach space. Thus, for any A = (a(z))^1, vf could be defined as

Remark 4.4. For every A. E Sn WG have oo oo

i=l i=l

We define the velocity of A by the help of the j-dimensional velocities.

Definition 4.5. Let A G Sn. The velocity of A is given by

n

v A = l - Y j v f . n ^ 3
J=1

Remark 4.6. By the definition ofvf (j = 1 , . . . ,n) andvA, we have that for every
e > 0 there exists some ko S N such that for any k > ko

k
< e , (j = l,...,n),

i= 1

and also

^ n k

j=1 i=1
This shows that regardless of the system ôj, the j-dimensional velocities and

the velocity of A is "determined" by the first "few" terms of A. In particular, if
we take Sj(i) — 0 for 1 < j < n with some i € N, then only the first i — 1 terms
of A contribute to vA. This consideration can be important in certain practical
applications.

138 András Hajdú and Lajos Hajdú

In the next section we analyze the behavior of the velocity with respect to
various weight systems. Now, we show how conditions (I), (II) and (III) are met
by this velocity concept.

The velocity vector (vA,vA, ... ,vA), thus also vA is obviously sensitive to the
behavior of the sequence A in subspaces of Z" of dimensions from 1 to n. Thus,
(I) is satisfied. As we use a weight system to define (vA,vA, • • • ,vA) and vA, the
requirements of (II) are also met. The following theorem verifies that our velocity
concept satisfies condition (III), too.

Theorem 4.7. Let A,B £ Sn with A •* B, and let Sj (j = 1,... ,n) be a weight
system. Then, vA > vf for every j = 1 , . . . ,n.

Proof. Put A = (o(i))gx and B = (&(*))£and fix some j with 1 < j < n. Let
k € N be arbitrary. Since 5j is monotone decreasing, we can write

8j(k - 1) = Sj(k)+£j(k - 1),

8j(k - 2) = 6j{k) + £j(k - 1) + £j(k - 2) ,

¿,(1) = Sj(k) + £j(k - 1) + £j(k - 2) -I b £j(l),

with £j{m) > 0 (m = 1 , . . . , k - 1). Put £j(k) = Sj(k). Using these relations, by a
simple calculation we get

k k k / m m \

]T a,j {i)dj bj (i)5j w = E ei - hi) • (*)
i=1 i= 1 m=1 \/i=l /1=1 J

m m
Observe that as £ a0{h) = f f (m) and ^ hAh) = ff(m)-< by Theorem 2.2 A •*

h=1 /i=l
B implies

771 771

X > (/ i) > 5 > (/ i)
/1=1 /1=1

for every m with 1 < m < k. As £j(m) > 0 (m = 1 , . . . , k), (*) yields

k k
^^ aj(i)5j(i) > Y,bj{i)Sj(i).
i=l i= 1

By letting k oo, we obtain vf > v f . •

Remark 4.8. By the definition of the velocity, the above theorem implies that if
A B, then vA >vB.

In the following two remarks we explain why some alternative ways of introduc-
ing velocity would not be appropriate.

Velocity and Distance of Neighbourhood Sequences 139

Remark 4.9. The monotonity of Sj is necessary to have Theorem 4-7. Indeed, let
A,B £ Si be defined by

A = (2, 1, 1, 1, 1 , . . .) and B = (1 , 2 , 1 , 1 , 1 , . . .) .

Moreover, let <5i be arbitrary, and put

s = J b *f i = l<

\ 2^r> otherwise.

Clearly, A3* B holds, but vA = § and v2 = Thus, v2 > v2, and also vB > vA

in this case.

Remark 4.10. It would be possible to define vf in a more general way. Namely,
for any ragl with m > 0, we could put

\i= 1 /

However, on one hand the case m < 1 does not seem to be interesting. On the other
hand, in case of m > 1 it is easy to find sequences A,B 6 Sn and a weight system
Sj (j = 1,... ,n) such that Theorem 4-7, hence condition (III) fails for them.

As one can easily see, it can happen that with some weight system Sj, vA > vf
for every j = 1 , . . . ,n, but A •* B does not hold. However, in some sense we can
reverse Theorem 4.7, even in case of positive weight systems, i.e. when Sj(i) > 0
for all i 6 N, j = 1 , . . . , n. More precisely, we have

Theorem 4.11. Let A,B £ Sn. If for any positive weight system Sj (1 < j < n),
vf > vf holds for all j = 1,..., n, then A •* B.

Proof. Let A; £ N be arbitrary, and for every j with 1 < j < n set

if i < k,
rr—, otherwise.

Clearly, the system ¿j (j = 1 , . . . , n) is a weight system. Thus, by our assumptions ?(*0 in: ojoucin i
we have

oo oo
£ aj(i)Sf(i) = vf >vf = Y , bj(i)Sf(i).
i = l i = l

Hence, for every j = 1 , . . . ,n

! > < « + £ E
i=1 ft=fc+l i= 1 h=k+l

140 András Hajdú and Lajos Hajdú

k k
holds. Replacing £ a j (k) and £ bj(k) by f f (k) and f j (fc)> respectively, we get

1=1 1=1

//<*)-/№> t £
K=k+1 h=k+1

Since }f(k) - f f (k) is an integer, we may infer that

//(*)-//(*)><>. '

By Theorem 2.2 the proof is complete. •

Remark 4.12. It can be easily verified that the condition vf > vf for all j =
1 , . . . , n cannot be replaced by vA >vB.

5 Examples of weight systems
In this section we give examples of weight systems, and analyze the behavior of the
velocity concept. We investigate exponentially decreasing systems, and calculate
the velocity of some concrete sequences with respect to different weight systems.

Let c > 1, and put

Sj (i) = "¿TT f° r every j = 1 , . . . , n and i £ N.

Obviously, 5j is a weight system with

= 0' = l , . . . , n) . <>j W = 7 C

¿=i

Consider the nD-neighbourhood sequences

A = (h, 1 , 1 , 1 , 1 , . . .) and B = (1, n, n, n, n, . . .) , where 2 < h <n.

Then

V
A = vf = —— + h and vB = vf = + 1 (j = 1 , . . . ,n). J c — 1 c — 1

Clearly, the sequences A and B cannot be compared by the ordering •* . We
show how the relation between the velocity values oi A and B change according to
the choice of the parameter c.

First, suppose that c>n. Then, we have

vA — vf = ——— + /i > ———• + 2 = ——— + 1 > ——— + 1 = vf = vB. 3 c - 1 _ c - l c — 1 c— 1 J

Velocity and Distance of Neighbourhood Sequences 141

In general, using this weight system we obtain a very strong condition, namely that
vA > vB if and only if A precedes B lexicographically.

Now, let c = 2. In this case we have

vA=vf = l + h<l + n = vf=vB,

with equality only for h = n.
Finally, set c < 2. Now, by a simple calculation, we get vB —vB > vA =vA.
Summarizing, using such a weight system, we can get rid of the (sometimes

excessive) importance of the first "few" elements of a neighbourhood sequence.
Especially, for every k £ N, by choosing a suitable c, we can have vB > vA for the
nD-sequences

A = (n , n ,... , n , 1, 1, 1, . . .) and B = (1 ,1 ,... , 1 , n, n, n, ...).
* v ' V '

k k

On the other hand, by the appropriate choice of c we can give large significance
to the first "few" elements of the neighbourhood sequences, ignoring their later
elements.

By choosing other (e.g., polinomially decreasing) types of weight systems we
can have different properties. The weight system should be chosen appropriately
for the actual application, as we can see from a practical example given in the
following section.

6 An application for broadcasting information
In this section we give an application scheme of neighbourhood sequences and
velocity in a network model, where the members of the network are the points of
Z2. As we mentioned in the introduction, neighbourhood sequences and velocity
can be introduced also for other types of grids. Hence, this application scheme
could be used in such cases, too.

Our network model can be considered as a variant of the Manhattan Street
Network (MSN) introduced by Maxemchuk in [6]. In our scheme, the clients are
connected with horizontal/vertical and diagonal edges (see Figure 1). There is
an information source at the center (origin) which broadcasts information to the
other members of the network. The system is based on priority, that is if a client
is "closer" to the origin than another one, it has greater priority,. and receives
the information earlier. We can think of subscription systems for instance, where
clients pay different fees according to their positions with respect to the information
source.

It is worth indexing the clients by their "reachability" from the origin. For this
purpose, if a client sits on the point (x,y) € Z2, then its index will be given by the
first few (significant) elements of the slowest neighbourhood sequence A, for which
d((x,y), (0,0); A) is minimal. The clients with the same index have equal priority,
so they should pay the same fee (especially, clients indexed by "1" have the greatest
priority).

142 András Hajdú and Lajos Hajdú

i § i i . gi1 0 i i . 011 mi
m * j ë * ^ s p ^ S P

* \ t \ * * y ^ t

IS * SS 3S * S11 * 3
• \ • ^ L Í / / t

IS SS*:ai£*SS * IS
SS * SS * SS * i"

* í / ^ * \ 4- V T

g r « . g g * a n g i i ^ a

Figure 1: 2D priority-based model for broadcasting information

In this model, we use 2D-neighbourhood sequences to deliver the information
to the clients. Suppose that the cost of broadcasting information decreases with
the number of 2-s in the chosen neighbourhood sequence. The most expensive
sequence is (2 ,2, . . .) , while the cheapest one is (1 ,1 , . . .) . Knowing the importance
of the information, we have to choose one of the cheapest sequences, which is still
"fast" enough. That is, we take a neighbourhood sequence, whose velocity fits the
importance of the information to be sent. According to the size of the network, it
is sufficient to consider the first "few" terms of the sequences (i.e. to work with a
weight system in which 6j(N) = 0 for j — 1 , . . . , n with an appropriate TV e N).

By choosing different weight systems, we can increase or decrease the initial
priority of the clients in the network. If we do not take much care of the clients
residing far from the source, we need to choose a weight system, which decreases
rapidly. In the opposite case we can take a very slowly decreasing weight system.

This network model can be easily extended to higher dimensions. In this case,
we can take more advantage of the behavior of neighbourhood sequences in lower
dimensional subspaces. For example, in Z3, if we know in advance that a special
type of information is important only for a group of clients, we can place them onto
or close to the (x,y), (y,z) and (x,z) planes. Thus, for the distribution of this
special kind of information we can choose quite a cheap neighbourhood sequence,
which consists of mainly 1 and 2 values. To have a similar possibility in 2D, we
have to put such clients near the coordinate axes, and use sequences containing
mostly 1-s. For a known higher dimensional generalization of MSN, see [3].

Velocity and Distance of Neighbourhood Sequences 143

Finally, we note that our application scheme may be used at any other areas
which are based on regular network topologies. Such areas are e.g., chip architecture
design, or parallel processing.

7 Metric space of the neighbourhood sequences
We introduce a metric on the set of neighbourhood sequences in a similar fashion as
we did it for velocity. From this point on, we assume that for every weight system
A = {¿j | j = 1 , . . . , n} we have Sn(i) > 0 (i £ N), unless we state the contrary.

Definition 7.1. Let A = {5j \ j = 1 , . . . , n} be a weight system and A,B £ Sn.
The distance QA of these sequences is defined by

- n oo
£ > A (^ , = M O - M O I

j=i ¿=1

Remark 7.2. One can easily verify that in case of any weight system A, the
function QA is a metric on Sn. At this point we make use of our assumption that
Sn(i) > 0 for every i £ N.

Remark 7.3. The metric space (Sn, g&) is bounded. Its diameter is
J n oo

diam{Sn,eA) = PA ((1, 1, -..), (n, n, ...)) = XIX^'W-
71 j=i ¿=1

Remark 7.4. In practical applications usually only "finite" sequences are need-
ed. Thus, it may be useful to consider those sequences identical which agree in
their first "few" elements. This can be done in the following way. Let N £ N,
and A = {¿j | j = 1 , . . . ,n} be a weight system such that Sj(N + 1) = 0 for all j
(including j — n), butSn(N) > 0. Consider two neighbourhood sequences equivalent
if and only if their first N elements coincide. Then Definition 7.1 provides a metric
on the classes of Sn induced by this equivalence relation.

In what follows, we establish some useful and interesting properties of the metric
spaces (S n , QA)-

Theorem 7.5. For any weight system A, (5„,£>A) is a complete metric space.

Proof. Let A be any weight system. We prove the theorem by showing that every
Cauchy sequence in Sn has a limit. We actually construct this limit sequence in
the proof. Let be a Cauchy sequence in (S n , gA) , and let m £ N. By
the Cauchy-property of there exists some £ N such that for every

> ko, < Sn(m). Hence the first m elements of the neighbour-
hood sequences Aki and Ak2 are identical. Define the sequence A in the following
way. For every m £ N choose a ko £ N, such that the m-th elements of Akl and
Ak2 with k\, k2 > ko are equal. Let a(m) be this element, and put A = (a(m))m=i-
Clearly, A is well defined. By the construction of A we immediately get that
lim Ak = A. • k—* oo

144 András Hajdú and Lajos Hajdú

A sequence is monotone increasing (resp. decreasing), if Al+l •* Ai
(resp. Ai • * Ai+1) holds for every i e N .

Theorem 7.6. Every monotone increasing or decreasing sequence (Ak)'j°=l, with
Ak 6 Sn (k £ N) is convergent.

Proof. As in the previous proof, we construct the limit of We may assume
that is monotone increasing, the proof in the other case is similar.

Put Ak = (a ^ (i)) ^ . As (Ak)f=l is increasing, so is (« ^ (1)) ^ . As n >
a(fc)(l) (k € N), there exists some ko 6 N such that for any ki ,k2 > fco we have
a(fci)(l) = aC=2)(l). Put a(1) = a(*°)(l). Suppose that a{i) is already given for
i < m, and define a(m + 1) in the following way. Choose t0 £ N such that for
¿i,¿2 > t0 and 1 < i < m, = a^t2\i) holds. Since is increasing, so
is the sequence (a^ (m + l))£L to. As n > a^k\m + 1) for every k £ N, there exists
some so € N such that for any s i , s 2 > so we have a(Sl)(m + 1) = a^ S 2 \m + 1). Put
a(m + 1) = + 1).

From the construction of A = (a (m))^ = 1 it is clear that for every m 6 N there
exists some fco £ N, such that if k > ko, the first m elements of Ak and A coincide.
Thus, lim Ak = A, and the theorem follows. •

k—¥ oo

The next result shows that the Bolzano-Weierstrass theorem is true in the con-
structed metric spaces.

Proposit ion 7.7. For any weight system A, every subset of (Sn,f?A) of infinite
cardinality has an accumulation point.

Proof. Let H be an infinite subset of Sn. We construct an accumulation point of
H. Let a(l) be a number which is the first element of infinitely many sequences in
H. Suppose that a(i) with i < m is already defined. Let a(m + 1) be a number
which is the (m + l)-th element of infinitely many such sequences in H, whose
first m elements are a(l) ,a(2), . . . ,a(m). Put A = (a (m))^ = 1 . Clearly, A is an
accumulation point of H. •

Periodic neighbourhood sequences can play important role in certain applica-
tions. Our last result shows that they form a dense subset of (S n , As the set
of periodic neighbourhood sequences is countable, this also yields that (Sn, is
a separable metric space.

Theorem 7.8. For any weight system A, the set of periodic neighbourhood se-
quences is dense in (Sn,eA)-

Proof. Let A £ S n and E > 0. By the definition of QA there exists some k0 £ N, such
that if the first ko elements of B 6 Sn is the same as those of A, then g&(A, B) < e
holds. So put b{i) = a(i mod k0) {i € N), and B = (b(i))<?l 1. Clearly. B is periodic
and QA(A, B) < e, thus the proof is complete. •

Velocity and Distance of Neighbourhood Sequences 145

8 Conclusion
In this paper, we introduce velocity and metric for the set of neighbourhood se-
quences. We show that these notions fit well the structure of such sequences. By
their help we can compare neighbourhood sequences more precisely, than using
only the natural partial ordering relation. We also work out a possible application
scheme for broadcasting information.

Acknowledgements
The authors are grateful to Professor Mátyás Arató for his valuable remarks, and
to the referee for his useful comments.

References
[1] Das, P.P.: Lattice of octagonal distances in digital geometry, Pattern Recog-

nition Lett. 11 (1990), 663-667.

[2] Das, P.P., Chakrabarti, P.P. and Chatterji, B.N.: Distance functions in digital
geometry, Inform. Sci. 42 (1987), 113-136.

[3] Dally, W.J.: Performance analysis of fc-ary n-cube interconnection networks,
IEEE Transaction on Computers 39 (1990), 775-785.

[4] Fazekas, A., Hajdu, A. and Hajdu, L.: Lattice of generalized neighbourhood
sequences in nD and ooD, Publ. Math. Debrecen 60 (2002), 405-427.

[5] Hill, E.: Methods in classical and functional analysis, Addison-Wesley Pub.
Co., Reading Mass., 1972.

[6] Maxemchuk, N.F.: The Manhattan street network, in Proc. GLOBECOM'85,
New Orleans, LA, Dec. 1986, 255-261.

[7] Nagy, B.: Finding shortest path with neighbourhood sequences on triangular
grids, ITI - ISPA 2001, Pula, Croatia (2001), 55-60.

[8] Radvanyi, A.: On the rectangular grid representation of general CNN net-
works, Int. J. Circ. Theor. Appl. 30 (2002), 181-193.

[9] Rosenfeld, A. and Pfaltz, J.L.: Distance functions on digital pictures, Pattern
Recognition 1 (1968), 33-61.

Received April, 2002

Acta Cybernetica 16 (2003) 133-145.

Modelling a Sender-Receiver System

Cristian Vidra§cu *

Abstract
In this paper we present a sender-receiver system with an unlimited buffer

modelled by a jumping Petri net, and then we prove some properties of the
system.

Keywords: parallel/distributed systems, Petri nets, jumping Petri nets,
modelling, verification.

1 Introduction and Preliminaries
A Petri net is a mathematical model used for the specification and the analysis of
parallel/distributed systems. An introduction about Petri nets can be found in [4].

One formal analysis method for Petri nets is that of place and transition invari-
ants, which were first introduced in [3]. Place and transition invariants are useful
to prove dynamic properties, like reachability, boundedness, home state, liveness
and fairness properties.

It is well-known that the behaviour of some distributed systems cannot be ad-
equately modelled by classical Petri nets. Many extensions which increase the
computational and expressive power of Petri nets have been thus introduced. One
direction has led to various modifications of the firing rule of nets. One of these
extensions is that of jumping Petri net, introduced in [5].

Let us briefly recall the basic notions and notations concerning Petri nets and
jumping Petri nets in order to give the reader the necessary prerequisites for the
understanding of this paper (for details the reader is referred to [1], [4], [2]). Mainly,
we will follow [2], [5].

A Place/Transition net, shortly Petri net, (finite, with infinite capacities), is a
4-tuple E = (S , T , F , W) , where S and T are two finite non-empty sets (of places
and transitions, resp.), with S n T = 0, F C (5 x T) U [T x S) is the flow relation
and W : (5 x T) U (T x S) N is the weight function of E verifying W(x,y) = 0
iff {x,y)iF.

A marking of a Petri net E is a function M : S -» N ; it will be sometimes
identified with a |5|-dimensional vector. The operations and relations on vectors
are componentwise defined. N5 denotes the set of all markings of E.

'Faculty of Computer Science, "Al. I. Cuza" University of Ia^i, Romania. E-mail:
vidrascuOinfoiasi.ro

147

148 Cristian Vidra§cu

A marked Petri net is a pair 7 = (E, Mo), where E is a Petri net and Mo, called
the initial marking of 7, is a marking of E.

Let S be a Petri net, t £ T and w € T*. The functions : 5 N and
Ai,Aw : S -> Z are defined by: i"(s) = W(s,i) , i+ (s) = Ai(s) =
t+(s) — r (s) , and

A , \ i 0, if w = A . „ „ n Aw s = ^ n * , / \ -r . . for all s £ S.
I Z,,=1 l f w - tit2-.-tn (n > l)

The sequential behaviour of a Petri net E is given by the so-called firing rule,
which consists of

• the enabling rule: a transition t is enabled at a marking M in E (or t is fireable
from M), abbreviated M[£)s , iff t~ < M ;

• the computing rule: if M\t)z, then t may occur yielding a new marking M',
abbreviated M[t) s M', defined by M' = M + At.

In fact, any transition t of E establishes a binary relation on N5, denoted by
[i)s and given by: M[f) s M' iff t~ < M and M' = M + At.

If £1, £2, . . . , tn (n > 1) are transitions of E, [iii2 • • • will denote the classical
product of the relations [ii)s, • • •, [in)s- Moreover, the relation [A)s is considered,
by defining [A)s = {(M, M)|M e N s j .

Let 7 = (E,M0) be a marked Petri net, and ME N s . The word W £ T* is
called a transition sequence from M in E if there exists a marking M' of E such
that M[W)Y.M'. Moreover, the marking M' is called reachable from M in £. The
set of all reachable markings from Mo is called the reachability set of 7, and it is
denoted by [M0)7.

A place s £ S is bounded if there exists k £ N such that M(s) < k, for all
M € [M0)7. The net 7 is bounded if all its places are bounded.

A transition t £ T is live if for any reachable marking M £ [Mo)7, there exists
a marking M' reachable from M such that t is fireable from M'. The net 7 is live
if all its transitions are live.

In order to be able to define the notion of the incidence matrix for a Petri net
E = (S,T,F,W), it is necessary to have a total ordering of the sets 5 and T.
Without loss of generality, it will be assumed that, if these sets are of the form

S = {s i , . . . ,sm}, and T = { i i , . . . ,£„},

then they are totally ordered by the natural order on the indexes of the elements:

S : S\ < ... < sm, and T : t\ < ... < tn.

The incidence matrix of a Petri net E is the m x n-dimensional matrix IT. defined
by

Ix(i,j) = Atj(si), V 1 <i<m, V l < j < n .

The notion of incidence matrix is extended ailso to marked Petri nets (E, M0)
through the unmarked underlying net E.

Modelling a Sender-Receiver System 149

An S-invariant (or place invariant) of E is any m-dimensional vector J of integer
numbers which satisfies the equation J • = 0.

The characterization theorem of S-invariants says that, if J is an S-invariant of
a marked Petri net 7 = (E, Mo), then the relation

J-M = J-M0

holds for any M € [Mo)7. In other words, this theorem says that any S-invariant of
7 gives the weights for the places of a subnet of 7 in which the tokens are preserved
(through these weights).

Jumping Petri nets ([5]) are an extension of Petri nets, which allows them to do
"spontaneous jumps" from one marking to another one (this is similar to A-moves
in automata theory).

A jumping Petri net is a pair 7 = (£,/?), where E is a Petri net and R is a
binary relation on the set of markings of E (i.e. R C N5 x N s) , called the set of
(spontaneous) jumps of 7.

Let 7 = (E ,R) be a jumping Petri net. The pairs (M, M') £ R are referred to
as jumps of 7. S is called the underlying Petri net of 7. A marking of 7 is any
marking of its underlying Petri net. If 7 has finitely many jumps (i.e. R is finite),
then 7 is called a finite jumping Petri net.

For any jump r = (M, M') £ R, the function Ar : S —• Z is defined by
Ar(s) = M'(s) - M(s), for all s £ S. If the set of jumps R has finitely many
variations (i.e. the set A R = {Ar | r £ R} is finite), then 7 is called a A-finite
jumping Petri net.

A marked jumping Petri net is defined similarly as a marked Petri net, by
changing "E" into "E . iT .

Pictorially, a jumping Petri net will be represented as a classical net and, more-
over, the relation R will be separately listed.

The behaviour of a jumping Petri net 7 is given by the j-firing rule, which
consists of

• the j-enabling rule: a transition t is j-enabled at a marking M (in 7), abbrevi-
ated M[t)1j, iff there exists a marking M\ such that MR*Mi[t)x (R* being
the reflexive and transitive closure of R)\

• the j-computing rule: if M[i)7J-, then the marking M' is j-produced by oc-
curring t at M, abbreviated M[i) 7 J M' , iff there exists two markings M\,M2

such that MR*M1[t)sM2R*Ml.

The notions of transition j-sequence and j-reachable marking are defined simi-
larly as for Petri nets (the relation [A)7jJ- is defined by [A)

7J
- = R*). The set of all

j-reachable markings of a marked jumping Petri net 7 is denoted by [Mo)-fj (Mo
being the initial marking of 7).

All other notions from Petri nets (i.e. boundedness, liveness, etc.) are defined
for jumping Petri nets similarly as for Petri nets, by considering the notion of
j-reachability instead of reachability from Petri nets.

150 Cristian Vidra§cu

Some jumps of a marked jumping Petri net may be never used. Thus a marked
jumping Petri net 7 = (E, R, M0) is called R-reduced iff, for any jump (M, M') 6 R,
M ji M' and M € [M 0) 7 j .

The notion of place invariants for A-finite jumping Petri nets, and results re-
garding them, can be found in [6]. We will briefly present this notion.

As in the case of Petri nets, in order to be able to define the notion of the inci-
dence matrix for a A-finite jumping Petri net 7 = (E ,R) , where E = (S , T , F , W)
is the underlying Petri net of 7, it is necessary to have a total ordering of the sets
S, T and AR. Without loss of generality, it will be assumed that, if these sets are
of the form

S = { s i , . . . , s m } , T = { i i , . . . , i „} , and AR = { A n , . . . , Arp},

then they are totally ordered by the natural order on the indexes of the elements:

S : sx < ... <sm, T : h < ... < tn, and A R: A n < . . . < A rv.

The incidence matrix of a A-finite jumping Petri net 7 = (E, R) is the m x (n +
p)-dimensional matrix I y defined by

where Is is the incidence matrix of the underlying Petri net of 7 and I a is the
p x n-dimensional matrix given by

The notion of incidence matrix is extended also to marked A-finite jumping
Petri nets (E,i?, Mo) through the unmarked underlying net (E,R).

An S-invariant (or place invariant) of 7 is any m- dimensional vector J of integer
numbers which satisfies the equation J • I1 = 0 . The S-invariant J > 0 is called
minimal if there exists no S-invariant J ' such that 0 < J' < J.

The characterization theorem of S-invariants ([6]) says that, if J is an S-invariant
of a marked A-finite jumping Petri net 7 = (E, R, Mo), then the relation

holds for any M 6 [Mo)7,j. As in the case of Petri nets, the meaning of this theorem
is that any S-invariant of 7 gives the weights for the places of a subnet of 7 in which
the tokens are preserved (through these weights).

The paper is organized as follows. Section 2 presents an example of a sender-
receiver system modelled by a jumping Petri net, and section 3 presents the verifica-
tion of the system properties using the place invariant method. Section 4 concludes
this paper.

,V 1 <j<n
n + l<j <n + p V 1 <i<m,

IR{i,j) = A r j (S i) , V l < z < m , V I < j < p .

J-M = J-M0

Modelling a Sender-Receiver System 151

2 Sender-receiver with unlimited buffer
This section presents an example of using jumping Petri nets to model and analyse
real systems.

Let us consider a system consisting of a sender (producer) and a receiver (con-
sumer). The sender produces and sends messages to the receiver, one by one,
through an asynchoronous channel (a buffer with unlimited capacity for storing
messages). The receiver receives and consumes, one by one, the messages from
channel. Moreover, the sender can take a break at any moment, but we impose the
restriction that the receiver can enter his inactive state only if the sender is inactive
and there is no message pending in the channel.

The same system, but with a limited buffer, was modelled by a Petri net in [4].
Unfortunately, this system with an unlimited buffer cannot be modelled by a Petri
net because zero tests of a location with infinite capacity cannot be simulated by
Petri nets (a proof of this fact can be found in [2], where a similar system with an
unlimited buffer is modelled by a Petri net with inhibitor arcs).

A modelling of this system by a finite jumping Petri net 7 = (T,,R, Mo) is
presented in Figure 1, with the following interpretation of places:

ready to send ready to consume

R={((0,0,1,0.1,0,0), (0,0,1,0,0,0,1))}

Figure 1: Sender-receiver system with unlimited buffer

152 Cristian Vidra§cu

- s\ marked = the sender is ready to produce a message or to take a break;
- s2 marked = the sender is ready to send the last produced message;
- S3 marked = the sender is inactive (in a break);
- S4 = the unlimited buffer for storing messages;
- S5 marked = the receiver is ready to receive a message or to take a break;
- s6 marked = the receiver is ready to consume the last received message;

- S7 marked = the receiver is inactive (in a break).

The interpretations of transition firings are the following:
- t\ = the sender produces a message;
- t2 = the sender sends a message;
- tz = the sender becomes inactive (takes a break);
- ti = the sender resumes his activity;
- ts = the receiver receives a message;
- tg = the receiver consumes a message;
- ty = the receiver resumes his activity.
The entering of the receiver in his inactive state, possible only when the sender

is inactive and there are no messages in the buffer, is modelled by the jump of
this net, which occurs from the marking M' = (0,0,1,0,1,0,0) to the marking
M"= (0,0,1,0,0,0,1).

We say that the sender-receiver system with an unlimited buffer is modelled
correctly, if it has the following properties:
(Pi) At any moment, the sender is in one of the states "ready to produce", "ready

to send" or "inactive";
(P2) At any moment, the receiver is in one of the states "ready to receive", "ready

to consume" or "inactive";
(P3) The buffer can contain any number of messages;
(P4) The receiver can enter his inactive state only if the sender is in his inactive

state and there are no messages in the buffer;
(P5) The system is live, i.e. it will never reach a deadlock state.

In the next section we will show how the verification of these properties can be
done.

3 Verification of system properties
Using S-invariants, we prove in this section the correctness of our modelling.

Theorem 3.1. The jumping Petri net from Figure 1 models correctly the sender-
receiver system with unlimited buffer.

Modelling a Sender-Receiver System 153

Proof. Let 7 = (£, R, Mo) be the finite jumping Petri net from Figure 1. It is easy
to verify that the vectors

Ji

(1 \
1
1
0
0
0

V 0 y

Jo =

(0 \
0
0
0
1
1

V i 1
are S-invariants. Moreover, these are the only minimal S-invariants of 7.

Let M £ [Mo)7J be an arbitrary j-reachable marking of 7. Using the S-invariant
Ji and the characterization theorem of S-invariants, we find that

(*) M(si) + M(s2) + M(s3) = 1,

which proves (Pi). Similarly, using J2 we obtain that

(**) M(s5) + M(s6) + M(s7) = 1,

which proves (P2)-

In order to prove (P3), let us notice the following fact. Given any k £ N,
by firing the transition sequence w = (i i^)^ at the marking Mo, a new marking
M £ [Mo)~fj will be produced, with M(s4) = k and M(s) = M0(s) for all other
places of the net. This means that the buffer can contain any number of messages.

In order to prove (P4), let us notice that, if M is an arbitrary j-reachable
marking in which the receiver is inactive (i.e. M(s7) = 1), then M can be reached
only by the occurence of the jump of the net 7 (because M £ [M0)s, i.e. the
marking M is not reachable in the underlying Petri net of 7). It is obviously that
the jump of 7 can occur only if the sender is inactive and the message channel is
empty.

For proving the net 7 is live, i.e. it never reaches a deadlock state, we will show
that at any j-reachable marking M £ [M0)yj there exists at least one transition
of 7 which is fireable at M. Indeed, from the equality (*) follows that either the
transitions £1 and t3 are fireable at M, if M(s\) = 1, or the transition i2 is fireable
at M, if M(s2) = 1, or the transition t4 is fireable at M, if M(s3) = 1. Therefore,
the net from Figure 1 is live, which proves (P5).

This concludes the proof of the system properties. •

Let us remark that from the last argument from above follows also that the
sender is live (i.e. the net 7 w.r.t. the set of transitions {¿i, ¿2, ¿3, ¿4} is live).

Moreover, the receiver (i.e. the net 7 w.r.t. the set {h,t6,tr}) is not live, but
"almost live", i.e. it never deadlocks excepting the case when the sender is active
and the message channel is empty. Indeed, from the equality (**) follows that the
only possible cases are the following ones:

154 Cristian Vidra§cu

i) the transition t7 is fireable at M, if M(sj) = 1;
ii) the transition t6 is fireable at M, if M(se) = 1;

iii) the transition t5 is fireable at M, if M(s5) = 1 and M(s4) > 0;
iv) the transition is j-fireable at M (after occuring first the jump of the net at

M), if M(s5) = 1, M(s4) = 0 and M(s3) = 1;
v) the case M(s5) = 1, M(s4) = 0 and M(s3) = 0, i.e. the case in which the

sender is active ("ready to produce" or "ready to send") and the message
channel is empty, is the only case when the receiver has no directly possible
action, but only after an action of the sender (either the producing of a
message, or the sending of a message, or the entering of the sender in his
inactive state).

4 Conclusion
In this paper we have modelled a sender-receiver system with an unlimited buffer
by a finite jumping Petri net, and we have proved the correctness of our modelling
by using S-invariants.

References
[1] E. Best, C. Fernandez: Notations and Terminology on Petri Net Theory, Ar-

beitspapiere der GMD 195, 1986.

[2] T. Jucan, F.L. rf ipl e a : Petri Nets. Theory and Practice, The Romanian
Academy Publishing House, Bucharest, 1999.

[3] K. Lautenbach: Liveness in Petri Nets, Internal Report GMD-ISF 72-02.1,
1972.

[4] W. Reisig: Petri Nets. An Introduction, EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, 1985.

[5] F.L. 'J'iplea, T. Jucan: Jumping Petri Nets, Foundations of Computing and
Decision Sciences, vol. 19, no.4, 1994, pp. 319-332.

[6] C. Vidra§cu: S-Invariants for A-finite Jumping Petri Nets, Proc. of the 7th

International Symposium on Automatic Control and Computer Science, SACCS
2001, 7 pp.

Received January, 2002

Acta Cybernetica 16 (2003) 133-145.

Discovering Associations in Very Large Databases
by Approximating*

Shichao Zhang* and Chengqi Zhang*

Abs t rac t
Mining association rules has posed great challenge to the research com-

munity. Despite efforts in designing fast and efficient mining algorithms, it
remains a time consuming process for very large databases. In this paper, we
adopt a slightly different approach to this problem, which can mine approxi-
mate association rules quickly. By considering the database as a set of records
that are randomly appended, we can apply the central limit theorem to esti-
mate the size of a random subset of the database, and discover both positive
and negative association rules by generating all possible useful itemsets from
the random subset. However, because of approximation errors, it is possible
for some valid rules to be missed, while other invalid rules may be generated.
To deal with this problem, we adopt a two phase approach. First, we dis-
cover all promising approximate rules from a random sample of the database.
Second, these approximate results are used as heuristic information in an ef-
ficient algorithm that requires only one-pass of the database to validate rules
that have support and confidence close to the desired support and confidence
values. We evaluated the proposed technique, and our experimental results
demonstrate that the approach is efficient and promising.

K e y w o r d s : Da ta mining, data processing, approximating rule, assisting
knowledge discovery, da ta analysis.

1 Introduction
One of the main challenges in data mining is to identify association rules for very
large databases tha t comprise millions of transactions and items. Some recent
efforts have focused on designing efficient algorithms [2, 4, 7, 15], employing parti-
tioning techniques [6, 9, 14], supporting incremental updat ing and exploiting par-
allelism [10, 13, 16]. The main "limitation" of these approaches, however, is t ha t

*This research is partial supported by a large grant from the Australian Research Council
(DP0343109) and partial supported by large grant from the Guangxi Natural Science Funds

^Faculty of Information Technology, University of Technology, Sydney, PO Box 123, Broad-
way NSW 2007, Australia, and Guangxi Teachers University, Gulin, P R China. Email:
zhangs c® i t . u t s . edu .au

tFaculty of Information Technology, University of Technology, Sydney, PO Box 123, Broadway
NSW 2007, Australia. Email: chengqi®it .uts .edu.au

155

156 Shichao. Zhang and Chengqi Zhang

they require multiple passes over the database. For very large databases that are
typically disk resident, this requires reading the database completely for each pass
resulting in a large number of disk I/Os.

An alternative approach is to take a sample of the database, and determine
association rules that are valid on the sample database. In other words, the problem
of mining the association rules becomes a 3-step procedure:

(1) Generate a random subset of a given large database;
(2) Generate all large itemsets in the random subset;
(3) Generate all the rules with both support and confidence greater than or equal

to minimum support and minimum confidence respectively.

As the sample size is typically very much smaller than the original database size,
the association rules on the sample can be obtained at a much faster time. We
shall refer to these association rules (obtained from the sample) as approximate
association rules. The key issue in this approach is to pick a right sample that is
representative of the database, so that the approximate association rules are indeed
the association rules that hold on the database.

In this paper, we reexamine mechanisms for the 3 steps discussed above. To
obtain a random sample of the database, we apply the central limit theorem. As
we shall see shortly, the use of the central limit theorem allows us to cut down the
sample size by about half compared to known techniques [11, 12]. For the second
subtask, a new algorithm for generating all possible useful itemsets for mining rules
with -both positive and negative itemsets is proposed. Finally, the last subtask is
solved by generating all positive and negative association rules.

Unfortunately, because of approximation errors, it is possible for some valid rules
to be missed, while other invalid rules may be generated. To deal with this problem,
we adopt a two phase approach. First, we discover all promising approximate rules
from a random sample of the database. Second, these approximate results are used
as heuristic information in an efficient algorithm that requires only one-pass of the
database to validate rules that have support and confidence close to the desired
support and confidence values.. We evaluated the proposed technique, and our
experimental results demonstrate that the approach is efficient and promising.

The rest of this paper is organized as follows. In the next section, we briefly
review some concepts and definitions. In Section 3, we apply the central limit the-
orem to mine approximate association rules. In order to discover both of positive
and negative association rules, an algorithm to generate all possible useful itemsets
is also proposed. In Section 4, we evaluate the effectiveness of the proposed ap-
proach experimentally. In Section 5, we propose a method to (1) assist knowledge
discovery and (2) determine the validation of the rules with support or confidence
close to the user-specified thresholds. Finally, we summarize our contributions in
section 6.

Discovering Associations in Very Large Databases by Approximating 157

2 Basic Concepts
One of the most widely used data mining model for association rules is the support-
confidence framework established by Agrawal, Imielinski, and Swami [1]. We shall
review some of the concepts here.

Let I = {¿i, ¿2, • • • , IN} be a set of N distinct literals called items. D is a set of
variable length transactions over I . A transaction is a set of items, i.e., a subset of
I. A transaction has an associated unique identifier called TID.

In general, a set of items (such as the antecedent or the consequent of a rule) is
referred to as an itemset. For simplicity, an itemset ¿2,¿3} is sometimes written
as ¿ii2i3.

For an itemset A C I and a transaction T € D, A is purchased (occurred) in
T (or T contains A) if Va 6 A(3i((l < i < n) A (T(z) = a))), where 'T(z)' is ith

element of T.
The number of items in an itemset is the length (or the size) of an itemset.

Itemsets of some length k are referred to as a fc-itemsets.
An itemset has an associated measure of statistical significance called support,

denoted as supp. For an itemset AC I, supp(A) = s, if the fraction of transactions
in D containing A equals s. An itemset A is a large itemset if supp(A) > minsupp,
where lminsupp' is a user specified minimum support.

While A indicates the occurrence of an itemset A, the negation of A means
the nonoccurrence of A, stood for A The support of A is as supp(A) — 1 —
supp(A). Generally, for itemsets A = {ii,--- ,im} and B = {j i , --- ,jn}, the
support of A U S is supp(A\J B) = supp(B) — supp(AU B) = supp({ji, • • • ,jn}) —
supp({ii,-- - ,im,ji,--- ,jn})•

An association rule is an implication of the form A B (or written as A —> B),
where A, B C I, and A n B = 0. A is called the antecedent of the rule, and B is
called the consequent of the rule.

An association rule A —> B has a measure of its strength called confidence
(denoted as conf) defined as the ratio supp(A U B)/supp(A), where A U B means
that both A and B are present in transactions.

The work in this paper extends traditional associations to include association
rules of forms A —> B, A —> B, and A —> B, which indicate negative associations
between itemsets. We call rules of the form A —> B positive association rules, and
rules of the other forms negative association rules. Negative rules indicate that
the presence of some itemsets will imply the absence of other itemsets in the same
transactions. Negative rules are also very useful in association analysis, although
they are hidden and different from positive association rules.

The problem of mining association rules is to generate all rules A —» B that have
both support and confidence greater than or equal to some user specified minimum
support (min s u p p) and minimum confidence (m i n c o n f) thresholds respectively, i.e.

1 An itemset A is often taken as an event in computations meaning that A is true in a transaction
if item i presents in the transaction for Vi £ A. A is taken as an event in computations meaning
that A is true in a transaction if item i does not present in the transaction for 3i £ A. That is,
A is different from I — A.

158 Shichao. Zhang and Chengqi Zhang

for regular associations:

r, a supp(AuB)
supp(A U B) > minsupp, conf (A B) - — s u p p ^ — - m m c o n f -

It can be decomposed into the following two subproblems.

(1) All itemsets that have support greater than or equal to the user specified
minimum support are generated. That is, generating all large itemsets.

(2) Generate all the rules that have minimum confidence in the following naive
way: For every large itemset X and any B C X, let A — X — B. If the rule
A B has the minimum confidence (or supp(X)/supp(A) > minconj), then
it is a valid rule.

Example 1. Let Ti = {¿1,12,14}, T2 = T3 - {¿2,13,¿4}, T4 =
{¿2,13,14}, and T5 = {¿i,i2} be the only transactions in a database. Let the mini-
mum support and minimum confidence be 0.6 and 0.85 respectively. Then the large
itemsets are the following: {¿1}, {¿2}) {H}> {¿1^2} and {¿2,14}. The valid rules
are ¿1 —> ¿2 and ¿4 —»i2.

3 Mining Approximate Rules
In probability theory, if a situation is such that only two outcomes, often called
success and failure, are possible, it is usually called a trial. The variable element in
a trial is described by a probability distribution on a sample space of two elements,
0 representing failure and 1 success; this distribution assigning the probability 1—6
to 0 and 0 to 1, where 0 < 0 < 1. Suppose we consider n independent repetitions of
a given trial. The variable element in these is described by a probability distribution
on a sample space of 2n points, the typical point being x = (xi, x2, • • • , xn), where
each Xi is 0 or 1, and xl represents the result of the \ th trial. The appropriate
probability distribution is defined by

Pe{x) = (1 - 0)n~m^,

where m(x) = Xi is the number of Is in the results of the n trials, this being
so since the trials are independent.

Given an x in this situation it seems reasonable to estimate 0 by m(x)/n, the
proportion of successes obtained. This seems in some sense to be a 'good' estimate
of 0.

In data mining, a database D can be taken as a trial. For any itemset A, it is
1 if the itemset A occurs in a transaction T (written as T(A)), else it is 0 (written
as ->T(A)). Let P be the set of all transactions that the itemset A occurs in, and
Q be the set of all transactions that the itemset A doesn't occur in. Then P and
Q are partitions of D as follows.

P = {T\T(A)},
Q - {ThT(A)}.

Discovering Associations in Very Large Databases by Approximating 159

Given a database, its n transactions can be viewed as n independent data stored in
the database. Certainly, each transaction has two possible outcomes for an itemset
A, which are 1 and 0. Suppose the probability of A occurring in the database is p
and the probability of A not occurring is q = 1 — p. Since the database is static, we
can say that probability p of A occurring in each transaction is the same for each
transaction. Hence, this given database can be taken as a Bernoulli trial.

3.1 The Application of Central Limit Theorem
The central limit theorem is one of the most remarkable results in probability
theory. Loosely put, it states that the sum of a large number of independent
random variables has a distribution that is approximately normal. Hence it not
only provides a simple method for computing approximating probabilities for sums
of independent random variables, but it also helps explain the remarkable fact that
the empirical frequencies of so many natural populations exhibit bell-shaped (that
is, normal) curves. In its simplest form the central limit theorem is as follows.

Let X\, X2, • • • , Xn be a sequence of independent and identically distributed
random variables, each having finite mean E(Xi) = p and Var(Xi) = o2. Then
the distribution of

Xi + • • • + Xn - np
a-y/n

tends to the standard normal as n —» 00. That is,

n[X1 + --- + Xn-np ^ 1 fa _x2/2 P{ -rz < a} —= / e x ''dx as n 00. (1)
Oy/n V ^ i - o o

Readers are referred to [5] for other concepts and theorems.
We now set up a new mining model in this subsection, which applies central

limit theorem to mine approximate association rules from large databases.

Theo rem 1. Let I be the set of items in database D, A C I an itemset, rj > 0
the degree of asymptotic to association rules and £ > 0 the upper probability of
P[\Ave{Xn) - p\ < rj\, where Ave(Xn) is the average of A occurring in n transac-
tions in D and p is the probability of A in D. Suppose records in D are matched
Bernoulli trials. If n random records of D is enough for determining the approxi-
mate association rules in D according to central limit theorem, n must be as follows:

„ . M M (2)

where z(x) = —= I-oq e~y !2dy is a standard normal distribution function, which
can find out it from the Appendix in [5].

Proof. From the given conditions in this theorem, we take

P(\Ave(Xn)-p\<r,)=t

160 Shichao. Zhang and Chengqi Zhang

Clearly,
P(\Ave(Xn) - p| < ij) = P(-v < (Ave(Xn) - p) < V)

= P(< Ave(Xn) - p Tj

4 / (2 ^) ~ l /(2Vn) - 1/(2Jn)>

» N(2R]Y/N) - N(-2R)Y/N)

= 2N(2R)Y/N) - 1

where N() is the distribution function of the standard normal distribution. And
for this probability to equal £ we need

N{2LS/N) = \{ 1 + 0

which is satisfied by

2 ; = z((l + 0/2)

the required value for n then is

z2((1 + 0/2)
V

•

Example 2. Suppose a new process is available for doping silicon chips, used in
electronic devices, p (unknown) is the probability that each chip produced in this
way is defective. We assume that the defective chips are independent of each other.
How many chips, n, must we produce and test so that the proportion of defective
chips found (Ave(Xn)) does not differ from p by more than 0.01, with probability
at least 0.99? That is, we want n such that

P(\Ave(Xn) -p\< 0.01) > 0.99,

r) = 0.01, £ = 0.99,z(0.995) = 2.57, we have

2 572

n = 4 7 o o F = 1 6 5 1 3 '
considerably smaller than the value n = 27000 that is needed by using the model in
Chernoff bounds [11, 12].

Based on Theorem 1, the random target database can be obtained in two steps:
(1) generating a set X of pseudo-random numbers, where = n and (2) generat-
ing the random database RD (instance set) from D using pseudo-random number
set X. That is, for any Xi e X, get (Xi + l) t h record of D and append it into RD.

Note that generating random database RD of the given database D doesn't
mean to establish a new database RD. It only needs to build a view RD over D.

Discovering Associations in Very Large Databases by Approximating 161

3.2 Mining Approximate Association Rules
In this subsection, we construct a new model for discovering both of positive and
negative association rules. For this goal, an algorithm of generating all positive and
negative large itemsets is also proposed.

Positive and Negative Large Itemsets

For mining general approximate association rules, all positive and negative large
itemsets in a random database would be generated. For example, if one of A —> B,
A -» B and A —>• B can be discovered, then one of supp(A U B) > minsupp,
supp(A U B) > minsupp and supp(A U B) > minsupp must hold. This means that
supp(A U B) < minsupp. However, itemsets such as A U B, are not generated as
large itemsets into the set of all large itemsets. In order to mine negative rules, we
present a procedure to generate all positive and negative large itemsets in a random
database as follows.

Procedure 1. PNLargeltemsets
Input: D: database; minsupp: minimum support;
Output: PL: large itemsets; NL: negative large itemsets;
Begin

(1) generate sample RD of a given database D;
let PL <- 0; NL <- 0;

(2) let Li i- {large 1-itemsets}; PL <- PLU Li;
(3) for (k = 2; (Lk_i ± <D); k + + ; do

begin //Generate all possible positive and negative k-itemsets of interest in
RD.
(3.1) let Lk 4- {{¡ci,... xk-\,xk}\ {x\,..., G A

{xi,...xk-2,xk} E L/fc-i};
(3.2) for each transaction t in RD do

begin
//Check which k-itemsets are included in transaction t.

let txem the k-itemsets in t that are also contained in Lk;
for each itemset A in trem do

let A.count A.count + 1;
end

(3.3) //Selecting all positive k-itemsets in Lk
let Temk <- {C\C e Lk A (supp{C) = (C.count/\RD\) >= minsupp)};
let PL <- PL U Temk;
//Selecting all negative k-itemsets in Lk

let NL <- NL U (Lk - Temk);
end

(4) output PL and NL;
End.

162 Shichao. Zhang and Chengqi Zhang

The procedure PNLargeltemsets generates all positive and negative itemsets
in the sample RD. The initialization and generating sample RD of a given database
D are done in Step (1). Step (2) counts the frequencies of itemsets in RD. Step
(3) generates all positive and negative itemsets of interest.

Rules of Interest

In [8], Piatetsky-Shapiro argued that a rule X -» Y is not interesting if

supp(X —¥ Y) « supp{X)supp{Y)

According to probability interpretation [3]: supp(XuY) = P(XUY) and conf(X
Y) = P(Y\X) = P(X U Y)/P(X) Then Piatetsky-Shapiro's argument can be
denoted as

P(X\JY)^P(X)P(Y).

This means that X Y cannot be extracted as a rule if P(X U Y) « P(X)P(Y).
Actually, P(XUY) « P(X)P(Y) denotes X is approximately independent to Y in
probability theory. A statistical definition [3] of dependence of the sets X and Y is

Interest(X, Y) - U

P(X)P(Y)'

with the obvious extension to more than two sets. This formula is referred to as the
interest of Y given X is one of the main measurements of uncertainty of association
rules. Certainly, the further the value is from 1, the more the dependence. Or for
1 > A > 0, if | p(x)P(y) ~ - ^ e n X Y ' s a r u le °f interest.

By Piatetsky-Shapiro's argument, we can divide Interest(X, V) into 3 cases as
follows:

(1) if P{XUY)/{P{X)P(Y)) = 1, then P{Xl)Y) = P{X)P(Y) or Y and X are
independent;

(2) if P{XUY)/{P(X)P{Y)) > 1, or P(XLiy) > P{X)P(Y), then Y is positively
dependent to X;

(3) if P(XL>Y)/{P(X)P(Y)) < 1, or P(XUY) < P(X)P(Y), then Y is negatively
dependent to X, or Y is positively dependent to X.

In this way, we can define another form of interpretation of rules of interest as
follows. For 1 > A > 0, (a) if ¡^xyp^Y) ~ — t ' i e n A' -> Y is a rule of interest;

and (b) if — {p(xyp(Y) ~ 1) — ^ e n X —> Y is a rule of interest.

Discovering Associations in Very Large Databases by Approximating 163

Theorem 2. Let I be the set of items in database D, X,Y C I be itemsets,
X n Y = 0, P(X) ± 0 and P(Y) ± 0. minsuvv,minConf and A > 0 are given by
users or experts. If

(1) supp(X U Y) > minsupp, conf(X Y) > minconf, and P(X UK) -
P(X)P(Y) > A, then X -» Y can be extracted as a rule of interest.

(2) supp(X U Y) > minSUVp, suppiY) > TntTlgupp} conf(X ->• Y) > minconf, and
-(P(X U Y) - P(X)P{Y)) > A, then X ^ Y can be extracted as a rule of
interest.

Proof. From assumption of the above theorem, we have

\(P(X U Y) — P(X)P(Y))\ > A
P(X)P(Y) ~ P(X)P(Y)'

or
P(XUY) A
P(X)P(Y) 1 - P{X)P{Y)'

Because 0 < P(X)P(Y) < 1, so A / (P (X) P (Y)) > A. Hence,

]P(X)P(Y) '

That is, X —> Y can be extracted as a rule of interest. •

Mining Positive And Negative Rules

By our definition on interest, if P(X U Y) « P(X)P(Y), X is approximately
independent to Y in probability theory; if the greater the value of P(X U Y) —
P(X)P(Y) > 0 is, the more the positive dependence; and if the smaller the value
of P{X U Y) - P(X)P{Y) < 0 is, the more the negative dependence. However,
-P(X)P(Y) < P(XU Y) — P(X)P{Y) < P(X)(1-P(Y)). In order to reflect this
relationship between P(X U Y) and P(X)P(Y), we propose the probability ratio
(PR) model here. Under the PR model, we define the measure PR to determine
the degree in which the valid rule X Y is interesting.

r P ^ - P ^ n , i f P (X U Y) > P(X)P(Y),
PR(Y\X) = < P(X)(l-P(Y)) ¿0.

{ P{XU?№(TY)> V P(XVY) < P(X)P(Y),P(X)P(Y) ¿0.

Certainly, PR has some properties as follows.

Property 1. PR satisfies the following:

PR{Y\X) + PR(Y\X) = 0.

164 Shichao. Zhang and Chengqi Zhang

Proof. We shall only prove the property holds when P{X U Y) > P{X)P(Y). The
others can be derived in a similar manner. Since

P(X U Y)/P(X) = P(Y\X), P(X U Y)/P(X) = P(Y\X), P(Y\X) + P(Y\X) = 1,

and _
P{Y\X) = 1 - P(Y\X) < 1 - P(Y) = P(Y).

Therefore,

P(X U Y) - P(X)P(Y) _ P{Y\X) - P{Y)
PR(Y\X) =

PR(Y\X) =

P(X)(1-P(Y)) 1 -P(Y)

P{X U F) - P{X)P(Y) _ P(Y\X) - P(Y)
P(X)P(Y) ~ P(Y)

Hence,

PR(Y\X) 4- PR(Y\X) - P(XUY)-P(X)P(Y) P(X UY) - P(X)P(Y) PR(Y\X) + PR(Y\X) - p { x) { 1 _ p { Y)) + P{X)P(Y)

_ P(Y\X)-P(Y) P(Y\X) - P(Y)
1 -P{Y) + p(Y)

P(Y\X) - P(Y) (1 - P(Y\X)) - (1 - P(Y))
1 - P(Y) 1 - P(Y)

So, we have PR{Y\X) + PR{Y\X) = 0. •

We now apply the PR model to measure the uncertainties of association rules.

(1) For an association rule A -»• B, its supp(A U B) is P(A U B) and, PR(B\A)
is taken as the confidence of the rule. The task of mining this association
rule is defined as follows. For itemset A U B, if supp(A U B) > minsupp and
PR(B\A) > minconf, then A B can be extracted as a valid rule.

(2) For an association rule A B, PR(B\A) = -PR(B\A) according to
Property 1. Therefore, if supp(A U B) > minsupv, supp(B) > minsupp,
PR(B\A) < 0 and PR{B\A) > minconj, then A -t B can extracted as a
valid rule.

(3) For A B, PR(B\A) is taken as the confidence of the rule. The task
of mining this association rule is defined as follows. For itemset A u B , if
supp{A) > minsupp, supp(A U B) > TTlZTlgupp and PR(B\A) > minconf, then
A B can be extracted as a valid rule.

(4) For an association rule A B, PR(B\A) = -PR(B\A) according to
Property 1. Therefore, if supp(A U B) > minsupp, supp(A) > minsupp,
supp(B) > minsupp, PR(B\A) < 0 and PR(BjA) > minconj, then A -)• B
can extracted as a valid rule.

Discovering Associations in Very Large Databases by Approximating 165

Note that the requirements that supp(B) > minsupp and supp(A) > minsupp ensure
the probability significance of rules with negative itemsets.

We now demonstrate how to apply this model to discover association rules with
the data in Example 1. Let minsupp = 0.2 and minconf = 0.4.

Example 3. For itemset AllC, P{A) = 0.6, P(C) = 0.4 and P(A U C) = 0, we
have P(A U C) < P(A)P(C). This means that the disbelief increases, or A C
may be extracted as a rule of interest. Furthermore,

P(AUC)-P(A)P(0 0 - 0 - 6 . 0 . 4
PR{ClA) = P(A)P(C) = 0 .6 .0 .4 = - 1 '

According to our model, A —> C can be extracted as a valid rule due to PR(C\A) =
-PR(C\A) = 1 > minconf, supp(A U C) = 0.6 ^ TTllTlsxipp, and supp(C) = 0.4 >
TTltTlgupp.

As we have seen, our PR model is both reasonable and comprehensive. And
general association rules can be easily discovered. Furthermore, we can obtain the
following theorem that facilitates the extraction of interesting rules.

T h e o r e m 3. Let I be the set of items in database D, X, Y C I be itemsets,
X n Y = 0, P{X) 0 and P(Y) ^ 0. minsupp,minconf and A > 0 are given by
users or experts. Then

(1) if supp{X U Y) > minsupp and PR(Y\X) > Max{minconf, A}, then X Y
can be extracted as a rule of interest;

(2) if supp(X U Y) > minsuppj_ supp(Y) > minsupp and PR(Y\X) >
Max{minCOnf, A}, then X —> Y can be extracted as a rule of interest;

(3) if supp(X U Y) 777.2.72. suppj supp(X) > minsupp and P.R(F|X) >
Max{minconf, A}, then X —> Y can be extracted as a rule of interest;

(4) if supp(Xl>Y) > minsupp, supp(Y) mins_upv, supp(X) > minsupp and
Pi? (y |X) > Max{minconf, A}, then X Y can be extracted as a rule of
interest.

Proof. As before, we only prove (1) of the above theorem since the rest can
be obtained similarly. We first prove that (1) holds. Since PR(Y\X) >
Max{minconf, A}, according to the assumption in (1), we have PR(Y\X) >
minconf and PR(Y\X) > A.

On the othe^hand, because PR(Y\JQ > 0, and using the Property 1,
P i i (y | X) + PR(Y\X) = 0, we have -PR(Y\X) > A.

According to previous interpretation of rules of interest, X Y can be ex-
tracted as a rule of interest. That is

X Y

can be extracted as a rule of interest. •

166 Shichao. Zhang and Chengqi Zhang

Algorithm

Let D be a database, |D| the total number of transactions in D, I the set of all
items in D, and for X C I, the number of transactions in D that contain
itemset X, minsupp, minconf, A and 7 given by users. The algorithm of discovering
association rules in our probability ratio model is constructed as follows.

Algorithm 1. PRModel
Input: D: database, minsupp,minconf, X and 7: threshold values;
Output: approximate rules;

(1) Determine the sample size, n, based on the central limit theorem;
Generate the sample database with n transactions;
call routine PNLargeRemsets;

(2) for any large itemset A in PL begin
for any itemset X C A begin

let Y = A - X;
if |Pi?(Y|X)| > Max{minconf, A} then

output the rule X —> Y
with confidence PR(Y\X) and support P(A);

end
for any itemset A in NL begin

for any itemset X C A begin
let Y = A- X;
if (supp(X UF) > minsupp and supp(Y) > minsupp

and |Pi?(F|X)| > Max{minconf, A}) then
output the rule X —> Y

with confidence PR(Y\X) and support P{A);
end
if (supp(X U 7) > THZTlsupp and supp(X) > minsupp

and |Pi?(F|X)j_> Max{minconf, X}) then
output the rule X —> Y

with confidence PR(Y\X) and support P{A);
end
if (supp(X U Y) > minsupp and supp(X) > minsupp

and supp(Y) > minsupp and |P/?(y|X)| > Max{minconf, A},)
then
output the rule X -> Y

with confidence PR(Y\X) and support P{A);
end

end
end
endall.

Algorithm PRModel generates all positive association rules in PL and negative
association rules in NL. Step (1) calls procedure PNLargeltemsets to generate

Discovering Associations in Very Large Databases by Approximating 167

the sets PL and NL with positive and negative large itemsets in the database
D. Step (2) firstly generates positive association rules of interest of the form:
X Y, in PL. If PR(Y\X) > minconf, X Y is extracted as a valid rule.
If PR(X\Y) > minconf, y => X is extracted as a valid rule. ̂ Secondly, the step
generates negative association rules of interest of the forms X —> Y, Y X,
X - + F , a n d F ^ X, in NL.

4 An Experimental Study
To study the effectiveness of our model, we have performed several experiments.
Our server is Oracle 8.0.3, and the algorithm is implemented on Sun SparcServer
using Java, and JDBC API is used as the interface between the program and Oracle.
The database used in our experiments has the following conceptual scheme

Report(sno, test, grade, area)

where sno is the primary key about student numbers, test is an attribute about
examinations of subjects, grade is an attribute about students' grades with
{A, B, C, D, E) as its domain, area is an attribute about students' nationality with
a domain (China, Singapore, • • •). In order to illustrate the efficiency of our ap-
proximate rule model, we list partially the experimental results, which are the large
itemsets and their supports. For more details, please refer to Appendix A.

Let minsupp = 0.2 and minconf = 0.6. Some results are listed in Table 1.

We evaluated three methods: the traditional approach where the entire database
is used (denoted D), the sampling approach based on Chernoff bounds [11, 12] (de-
noted LRD), and the proposed approach using the central limit theorem (denoted
CRD). As shown in Table 1, the supports for the various useful itemsets are very
close among the three methods. For example, the supports of item "China" are
37%, 36.78% and 36.48% for D, LRD and CRD respectively. This shows that rel-
evant itemsets can be determined based on a small sample of the database. In our
case, LRD requires only 15000 records which is only 15% of the original database
size, while CRD makes use of no more than 7% of the original database size. We
also note that the running time of mining the original database is 815 seconds. The
time for LRD is 436 seconds (consisting of 207 seconds for LRD and 229 seconds
for approximate rules), while that of CRD is only 241 seconds (consisting 101 sec-
onds for LRD and 140 seconds for approximate rules). The significant reduction
is clearly due to the smaller size of the samples. We also note that CRD is more
efficient than LRD, making CRD a promising approach for mining association
rules.

Referring to the Table, some of the rules of interest are China —> B, China —•
C, China Singapore, Singapore —• C, B —> C. However, from the example, we
also note the following problems, which we shall investigate shortly.

(i) Some rules such as China Singapore and B —> C are also extracted as
rules of interest.

168 Shichao. Zhang and Chengqi Zhang

(ii) Due to the probability significance and the constraint condition of minsupp,
some rules such as China —> D, Singapore —• D, China —» E and
Singapore —> E, can't be extracted as negative rules of interest in our model.
In some context, these rules are useful for applications. But mining rules such
as China —» Tom has no significance, where "Tom" is name of some student.

Table 1: Some itemsets in the original database.

DB useful Itemset Support size of sample running time
China 37%

Singapore 50%
B 33.2%
C 42.05%

D China, B 27.75% 100000 815
Singapore, C 35%

China, Singapore 0%
China, C 3.1%

B, C 0%
China 36.78%

Singapore 50.43%
B 33.43%
C 42.17%

LRD China, B 27,83% 15000 436
Singapore, C 34.97%

China, Singapore 0%
China, C 2.87%

B, C 0%
China 36.48%

Singapore 50.82%
B 33,45%
c 42.3%

CRD China,B 27.71% 6724 241
Singapore, C 35.07%

China, Singapore 0%
China, C 3.01%

B, C 0%

As we have seen, if all data are randomly appended in to a given large database,
the association rules can be approximated by our model using central limit theorem.
The experiments also show the effectiveness of the proposed approach. Before
closing this section, we shall make the following claim.

/

Discovering Associations in Very Large Databases by Approximating 169

Claim 1. Consider the given database D, we have

(1) If all data are randomly appended into a given large database, association
rules can be approximated by our model using limit theorems.

(2) If A B can extracted as a rule in our model, it must be a rule of interest.
(3) The model in central limit theorem is more efficient than the model in Chernoff

bounds.

We now explain these arguments. (1) can directly be proven by the above
algorithm and Theorem 1; (2) can be obtained from Theorem 3 and Algorithm 1.

For Theorem 1 and model based on Chernoff bounds [11, 12], we can compare
the efficiency between Chernoff bounds and central limit theorem as follows.

where "||" is a comparison symbol, or

In-
z2

I (1+0/2
1 - S '

where (1 + £)/2 > 0.5. According to the list of standard normal distribution
function, the following inequality holds for 1 > £ > 0

In— > Z 2 { 1 + i) / 2 .
- 2

Hence,

J-ln — >
2r]2 1 — £ 4t f '

Thus, the model in central limit theorem is more efficient than the model in
large number law, i.e., (3) in Claim holds.

•

5 Assisting Knowledge Discovery
As has been shown, our model is efficient to discover approximate association rules
in large databases. However, if the support of an itemset A is in the neighbour
of minsupp, then A can be sometimes be treated as a large itemset and sometimes
not as a large itemset due to approximation errors. In other words, some such
itemsets are large itemsets in D but not in RD, and some such itemsets are not
large itemsets in D but they are large itemsets in RD. This is a weakness of our
model. For example, consider a random subset RD of a given large database D. Let
minsupp = 0.2 and the probability of error to be tolerated be 0.05. Let two itemsets
A and B in D with probabilities (supports) 0.18 and 0.23 respectively. Assume also

170 Shichao. Zhang and Chengqi Zhang

that A and B are generated with probabilities 0.21 and 0.194 respectively, in the
random database RD. This means that A is a large itemset in RD and B is not a
large itemset in RD due to approximating error 0.05. They are unexpected results.

On the other hand, if we cannot compromise the validity of mined rules, or
when certain support and confidence are necessary for some applications, 77 > 0
can be expected to be much smaller. This implies that we have to end up with a
very large sample of the database, which diminishes the gains of sampling.

However, because of the randomness of data in a given database, we can roughly
generate a possible large itemset set at first. Then this set is used as heuristic
information to obtain large itemsets with only one pass through the given database.
In this way, we can use such heuristic information to (1) assist knowledge discovery
where accuracy is important or certain support and confidence is desirable, and
(2) determine if an itemset in the neighbour of minsupp in the random subset of a
given database is a large itemset.

Definition 1. If an itemset A in RD is greater than or equal to minsupp — rj, then
it is reasonable in probability to conjecture that A is a large itemset in the database
D. And itemset such as A is called hopeful large itemset in D. Reversedly, if an
itemset A in RD is less than minsupp — rj, then it is reasonable and comprehensive
in probability to believe that A is impossible as a large itemset in the database D.

Apparently, assessing hopeful large itemset are not only useful to the itemsets
in the neighbour of minsupp, but also efficient to assist non-approximate knowledge
discovery in databases. We now present the algorithm of accomplishing such two
tasks as follows.

Procedure 2. TLargeltemset
Input: r): accuracy of results, probability of requirements, minsupp: minimum

support,
D: original database, HLIsSet: set of hopeful large itemsets;

Output: LI: large itemsets D;
Begin
let LI 0;
for each transaction r of D do

for each itemset a of HLIsSet do
if a 6 r then

let Counta Counta + 1;
for each itemset a of HLIsSet do

if supp(a) > minsupp then
let LI <- LIU {a};

output the set LI of all large itemsets in D;
end;

Again, if the confidence of a rule A —> B is in the neighbour of minconf, then
A —> B can be sometimes extracted as a valid rule and sometimes not as a valid

Discovering Associations in Very Large Databases by Approximating 171

rule due to the approximate error. The problem of the neighbour of minconf can
be addressed using a similar method as that for the neighbour of minsupp.

Now, we can describe the model of applying our method to assist non-
approximate knowledge discovery in databases as follows. For a given large
database D, with the users specified minsupp and minconf, the following steps
are performed.

(1) Generate a random subset RD of D according to our model in this paper;
(2) Generate the set HLIsSet of all hopeful large itemsets in RD with support

greater than or equal to max{0,minsupp — approximate error};
(3) Generate all large itemsets in D with support greater than or equal to minsupp

according to the set of hopeful large itemsets and Procedure 2;
(4) Generate all the rules with both support and confidence greater than or equal

to minimum support and minimum confidence respectively, according to the
large itemsets in the given database.

Certainly, applying approximate results to assist knowledge discovery needs only
rough estimation, such as TJ = 0.01 and £ = 0.9 are enough to generate all hopeful
large itemsets. On the other hand, Algorithm 1 is linear. It can be guaranteed by
the following theorem.

Theorem 4. For given large database D, let n = \D\, m be the time of generating
the set HLIsSet of all hopeful large itemsets in random subset RD of D. Then the
time of generating all large itemset in D is at least 0(m + n2).

Proof. According to the above definition, Algorithm 1 and Procedure 2, it needs
only one pass to read the given database D. And each reading takes t + t' to read
a transaction from D and count itemsets in HLIsSet, where t the time to read
a transaction from D, and t' the time to count all itemsets in HLIsSet. So, n
reading incurs time of n(t +1 ') . Hence, the time to generate all large itemsets in D
is m + n(t + t'). Let t" be the time to count an itemset. Then t' = t"\HLIsSet\ for
general databases. Because \HLIsSet\ is at least 0(n), and t and t" are two small
constants, so m + n(t + t') =m + n(t + t"\HLIsSet\) is at least 0(m + n2). •

In order to handle the problem caused by both the neighbour of minsupp and
the neighbour of minconf, we can use two methods as follows. One of them is
to take max{0,minsupp — t]} and max{0, minconf — r]} as the minimum support
and minimum confidence respectively, for applications that need only approximate
results. If an application requires more accurate results or certain support and
confidence, the following method can be performed.

For a given large database D, minsupp and minconf are given by users.

(1) Generate a random subset RD of D\
(2) Generate all hopeful large itemsets in RD with support greater than or equal

to max{0,minsupp — approximate error};

172 Shichao. Zhang and Chengqi Zhang

(3) Generate the set RSET of all the rules with both support and confidence
greater than or equal to minimum support (max{0 ,min s u p p — 77}) and mini-
mum confidence (max{0 , TflUl^QJlf — 77}) respectively, according to the hopeful
large itemsets in RD\

(4) For the subset PS of RSET with both support and confidence in the neigh-
bour of minsupp and the neighbour of Tninconf respectively, generate the set
VRS of all rules in PS that is valid in £>;

(5) Output (R S E T - PS) U VRS.
Theorem 5. For given large database D, minsupp and minconf are given by users.
A —• B can be extracted as an approximate rule in the above model if and only if
A —» B is a valid rule in D.
Proof. We first prove (—>). According to the above assumption, if

(1) supp(A U B) > max{0,minsupp — 77}; and
(2) conf(A —• B) > max{0,minconf — 77};

hold in random subset RD of D. By (4) and (5) in the above definition, we can
obtain

(i) supp(A US) > minsupp; and
(ii) conf(A -» B) > minCOnf;

This means, A B is still a valid rule in D.

The proof of (<=) can be directly obtained from Theorem 1, Theorem 3, and
the above definition.

So, A —> B can be extracted as an approximate rule in the above model if and
only if A —> B is a valid rule in D. •

6 Conclusions
Mining association rules is an expensive process. Mining approximate association
rules on a sample of a large database can reduce the computation cost significantly.
Srikant and Agrawal [11] suggested a method to select the sample of a given large
database for estimating the support of candidates using Chernoff bounds. Also,
Toivonen [12] applied the Chernoff bounds to discover association rules in large
databases. However, previous approximate models based on Chernoff bounds may
require a large sample size compared to the central limit theorem for discovering
association rules in large databases. In this paper, we have addressed the issue of
mining association rules, and have made the following contributions:

(1) Presented a method of applying the theorems to estimate the size of random
database that enables us to mine approximate association rules.

(2) Proposed the algorithm to discover approximate association rules with neg-
ative itemsets. In particular, an algorithm of generating all possible useful
(positive and negative large) itemsets is also presented.

Discovering Associations in Very Large Databases by Approximating 173

(3) Demonstrated the effectiveness of our approach experimentally. Our results
show that the approximating model is more efficient than models based on
Chernoff bounds [11, 12].

(4) Proposed a method to (a) assist knowledge discovery and (b) determine the
validation of a rule in the neighbour of minsupp or the neighbour of mincon¡
in the given database.

Acknowledgements
The authors would like to thank two anonymous reviewers for their detailed con-
structive comments on the first version of this paper.

References
[1] R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets

of items in large databases. In: Proceedings of the ACM SIGMOD Conference
on Management of Data, 1993:207-216.

[2] R. Agrawal, R. Srikant, Fast algorithms for mining association rules. In: Pro-
ceedings of the 20th VLDB Conference, 1994:487-499.

[3] S. Brin, R. Motwani and C. Silverstein, Beyond Market Baskets: Generaliz-
ing Association Rules to Correlations. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1997: 265-276.

[4] S. Brin, R. Motwani, J. Ullman and S. Tsur, Dynamic Itemset Counting and
Implication Rules for Market Basket data. In: Proceedings of the ACM SIG-
MOD International Conference on Management of Data, 1997: 255-264.

[5] R. Durrett, Probability: Theory and Examples, Duxbury Press, 1996.

[6] E. Omiecinski and A. Savasere, Efficient mining of association rules in large
dynamic databases. In: Proceedings of 16th British National Conference on
Databases BNCOD 16, Cardiff, Wales, UK, 1998.7: 49-63.

[7] J. Park, M. Chen, and P. Yu, Using a Hash-based Method with Transaction
Trimming for Mining Association Rules. IEEE Trans. Knowledge and Data
Eng., vol. 9, 5(1997): 813-824.

[8] G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules.
In: Knowledge discovery in Databases, G. Piatetsky-Shapiro and W. Frawley
(Eds.), AAAI Press/MIT Press, 1991: 229-248.

[9] A. Savasere, E. Omiecinski, and S. Navathe, An efficient algorithm for min-
ing association rules in large databases. Proceedings of the 21st International
Conference on Very Large Data Bases. Zurich, Switzerland, 1995.8: 688-692.

174 Shichao. Zhang and Chengqi Zhang

[10] T. Shintani and M. Kitsuregawa, Parallel mining algorithms for generalized as-
sociation rules with classification hierarchy. Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1998: 25-36.

[11] R. Srikant and R. Agrawal, Mining generalized association rules. Future Gen-
eration Computer Systems, Vol. 13, 1997: 161-180.

[12] H. Toivonen, Sampling large databases for association rules. Proceedings of
the 22nd VLDB Conference, 1996: 134-145.

[13] Shichao Zhang, Aggregation and maintenance for databases mining. Intelligent
Data Analysis: an international journal, Vol. 3(6) 1999: 475-490.

[14] Shichao Zhang and Xindong Wu, Large Scale Data Mining Based on Data
Partitioning. Applied Artificial Intelligence: an international journal, Vol. 15
2(2001): 129-139.

[15] Chengqi Zhang and Shichao Zhang, Association Rules Mining: Models and
Algorithms. Springer, LNAI 2307, p.243, 2002.

[16] Shichao Zhang and Chengqi Zhang, Anytime Mining for Multi-User Applica-
tions. IEEE Transactions on Systems, Man and Cybernetics (Part B), Vol. 32
No. 4(2002).

Appendix A
The size of the given database is 100000 and minsupp = 0.2. In order to illustrate
the efficiency of our approximate rule model, we partly list the experimental re-
sults, which are the large itemsets and their supports. The variables a, b, and XQ
are the initialized values used in the random number generator. In order to test
the approximation, we list three different supports of each itemset from different
samples with the same size as follows.

Some itemsets of PL and NL in original database

/* 1-items */

Item = China, count = 37000, support = 37'/,

Item = Singapore, count = 50000, support = 50'/,

Item = B, count = 33200, support = 33.2'/.

Item = C, count = 42050, support = 42.05'/,

/* 2-items .*/

Itemset = {China, B}, count = 27750, support = 27.75'/,

Itemset = {Singapore, C}, count = 35000, support = 35'/,

Itemset = {China, Singapore}, count = 0, support = 0'/.

Itemset = {China, C}, count = 3100, support = 3.1'/,

Itemset = {B, C}, count = 0, support = 0'/,

Discovering Associations in Very Large Databases by Approximating 179

Some itemsets of PL and NL in models based on Chernoff bounds

/* parameter value */

Accuracy of result: 0.01

Probability of requirements: 0.9

RandomDBSize: 15000

a = 53

b = 113

x0= 17

/* 1-item */

Item = China, count = 5517, support = 36.78'/,

Item = Singapore, count = 7565, support = 50.43"/,

Item = B , count = 5015, support = 33.43'/,

Item = C, count = 6326, support = 42.17'/,

/* 2-items */

Itemset = {China, B>, count = 4175, support = 27.83"/,

Itemset = {Singapore, C}, count = 5246, support = 34.97'/,

Itemset = {China, Singapore}, count = 0, support = 0'/,

Itemset = {China, C}, count = 431, support = 2.87'/,

Itemset = {B, C}, count = 0, support = 0'/,

/* parameter value */

Accuracy of result: 0.01

Probability of requirements: 0.9

RandomDBSize: 15000

a = 53

b = 113

x0= 43

/* 1-item */

Item = China, count = 5543, support = 36.95'/,

Item = Singapore, count = 7449, support = 49.66'/.

Item = B, count = 4946, support = 32.97%

Item = C, count = 6300, support = 42'/.

/* 2-items */

Itemset = {China, B>, count = 4109, support = 27.39'/.

Itemset = {Singapore, C>, count = 5249, support = 34.99'/,

Itemset = {China, Singapore}, count = 0, support = 0'/,

Itemset = {China, C}, count = 411, support = 2.74'/,

Itemset = {B, C}, count = 0, support = 0'/,

176 Shichao. Zhang and Chengqi Zhang

/* parameter value */

Accuracy of result: 0.01

Probability of requirements: 0.9

RandomDBSize: 15000

a = 53

b = 113

x0= 97

/* 1-item */

Item = China, count = 5513, support = 36.75'/,

Item = Singapore, count = 7568, support = 50.45'/,

Item = B, count = 5012, support = 33.41%

Item = C, count = 6332, support = 42.21'/,

/* 2-items */

Itemset = {China, B}, count = 4172, support = 27.81'/,

Itemset = {Singapore, C}, count = 5252, support = 35.01'/,

Itemset = {China, Singapore}, count = 0, support = 0'/,

Itemset = {China, C}, count = 473, support = 3.15'/,

Itemset = {B, C}, count = 0, support = 0'/.

Some itemsets of PL and NL in central limit theorem

/* parameter value */

Accuracy of result: 0.01

Probability of requirements: 0.9

RandomDBSize: 6724

a = 53

b = 113

x0= 17

/* 1-item */

Item =. China, count = 2453, support = 36.48'/,

Item = Singapore, count = 3417, support = 50.82'/,

Item = B, count = 2249, support = 33.45'/,

Item = C, count = 2844, support = 42.3'/,

/* 2-items */

Itemset = {China, B}, count = 1863, support = 27.71'/,

Itemset = {Singapore, C}, count = 2358, support = 35.07'/,

Itemset = {China, Singapore}, count = 0, support = 0'/,

Itemset = {China, C}, count = 202, support = 3.01'/

Itemset = {B, C}, count = 0, support = 0'/,

Discovering Associations in Very Large Databases by Approximating 181

/* parameter value */ }

Accuracy of result: 0.01

Probability of requirements: 0.9

RandomDBSize: 6724

a = 53

b = 113

x0= 43

/* 1-item */

Item = China, count = 2468, support = 36.7'/,
Item = Singapore, count = 3350, support = 49.82'/,

Item = B, count = 2216, support = 32.96%

Item = C, count = 2829, support = 42.077,

/* 2-items */

Itemset = {China, B>, count = 1830, support = 27.22'/,

Itemset = {Singapore, C}, count = 2359, support = 35.08°/,

Itemset = {China, Singapore}, count = 0, support = 0'/,

Itemset = {China, C}, count = 196, support = 2.91'/,

Itemset = {B, C}, count = 0, support = 0'/,

/* parameter value */

Accuracy of result: 0.01

Probability of requirements: 0.9

RandomDBSize: 6724

a = 53

b = 113

x0= 97

/* 1-item */

Item = China, count = 2456, support = 36.53'/,

Item = Singapore, count = 3412, support = 50.74'/,

Item = B , count = 2255, support = 33.54'/,

Item = C, count = 2837, support = 42.19'/,

/* 2-items */

Itemset = {China, B}, count = 1867, support = 27.77'/,

Itemset = {Singapore, C}, count = 2350, support = 34.95'/,

Itemset = {China, Singapore}, count = 0, support = 0'/,

Itemset = {China, C}, count = 204, support = 3.04'/.

Itemset = {B, C}, count = 0, support = 0%

Received October, 2000

Acta Cybernetica 16 (2003) 133-145.

Mining Dynamic databases by Weighting*

Shichao Zhang1' and Li Liu*

Abstract
A dynamic database is a set of transactions, in which the content and the

size can change over time. There is an essential difference between dynamic
database mining and traditional database mining. This is because recently
added transactions can be more 'interesting' than those inserted long ago
in a dynamic database. This paper presents a method for mining dynamic
databases. This approach uses weighting techniques to increase efficiency,
enabling us to reuse frequent itemsets mined previously. This model also
considers the novelty of itemsets when assigning weights. In particular, this
method can find a kind of new patterns from dynamic databases, referred to
trend patterns. To evaluate the effectiveness and efficiency of the proposed
method, we implemented our approach and compare it with existing methods.

1 Introduction
In real-world applications, a business database is dynamic, in which (1) its content
updates over time and (2) transactions are continuously being added. For example,
the content and size of the transaction database of a supermarket change time by
time, and different branches of Wal-Mart receive 20 million transactions a day. This
generates an urgent need for efficiently mining dynamic databases.

While traditional data mining is developed for knowledge discovery in static
databases, some algorithms have recently been developed for mining dynamic
databases [4, 5, 6, 13]. However, there is an essential difference between dynamic
database mining and traditional database mining. This is because recently added
transactions can be more 'interesting' than those inserted long ago in a dynamic
database. Actually, some items such as suits, toys, and some foods are with smart in
market basket data. For example, "jean" and "white shirt" were often purchased
in a duration from a department store, and "black trousers" and "blue T-shirt"
were often purchased in another duration. The department store made different

"This research is partially supported by the Australian Research Council Discovery Grant
(DP0343109) and partially supported by a large grant from the Guangxi Natural Science Funds

^Faculty of Information Technology, University of Technology, Sydney, PO Box 123, Broad-
way NSW 2007, Australia, and Guangxi Teachers University, Gulin, P R China. Email:
zhangscff l i t .uts .edu.au

^Faculty of Information Technology, University of Technology, Sydney, PO Box 123, Broadway
NSW 2007, Australia. Email: l i l i u f f l i t . u t s . e d u . a u

179

180 ShichcLO Zhang and Li Liu

decisions on buying behavior according to such different purchased models. This
means, some goods are very often purchased in a duration in market basket data,
and they are solely purchased in another duration. These items are called smart
goods. Apparently, most of smart items may not be frequent itemsets in a market
basket data set. But they are useful to making decisions on latest buying behavior,
referred to trend pattern.

Consequently, mining trend patterns is an important issue in mining market
basket data. Indeed, since new data may represent the changing trend of customer
buying patterns, we should intuitively have more confidence on the new data than
on the old data, therefore, the novelty of data should be highlighted in mining
models. However, mining customer buying behavior based on support-confidence
framework (see [1]) can only reflect the frequency of itemsets but the trend of data.
In this paper, a new method is proposed for mining association rules in dynamic
databases. The proposed approach is based on the idea of weighted methods and
aims at incorporating both the size of a database and the novelty of the data in
the database.

The rest of this paper is organized as follows. In the next section, we first show
our motivation, and then briefly recall some related work, concepts and definitions.
In Section 3, a weight model of mining association rules for incremental databases is
proposed. A competition is set up for tackling the problem of infrequent itemsets
in Section 4. In Section 5, we show the efficiency of the proposed approach by
experiments, and finally, we summarize our contributions in the last section.

2 Preliminaries

This section recall some previous work and concepts needed.

2.1 Related Work
Data mining can be used to discover useful information from data like 'when a
customer buys milk, he/she also buys Bread' and 'customers like to buy Sunshine
products'.

Strictly speaking, data mining is a process of discovering valuable information
from large amounts of data stored in databases, data warehouses, or other informa-
tion repositories. This valuable information can be such as patterns, associations,
changes, anomalies and significant structures [19]. That is, data mining attempts
to extract potentially useful knowledge from data.

Recently, mining association rules from large databases has received much at-
tention [1, 7, 12, 15, 17]. However, most of them [1, 10, 12] presuppose that the
goal pattern to be learned is stable over time. In real world, a database is often
updated. Accordingly, some algorithms have recently been developed for mining
dynamic databases [4, 5, 6, 13].

Mining Dynamic databases by Weighting 181

One possible approach to the update problem of association rules is to re-run
the association rule mining algorithms [1] on the whole updated database. This
approach, though simple, has some obvious disadvantages. All the computation
done initially at finding the frequent itemsets prior to the update are wasted and
all frequent itemsets have to be computed again from scratch. An incremental
approach for learning from databases is due to [6], which uses the maintaining
ideas in machine learning [13].

The most prevailing dynamic database mining model should be the FUP model
proposed by Cheung et al [4] (The model will be detailed in Subsection 2.3). The
FUP model reuses information from the old frequent itemsets. That is, old frequent
itemsets and promising itemsets are required to be kept. This can significantly re-
duce the size of the candidate set to be searched against the original large database.
Like the Aporiori algorithm [1], the FUP model employs the frequencies of item-
sets to mine association rules. However, the FUP approach only need to scan the
new data set for generating all the candidates. To deal with more dynamics, the
authors also proposed an extended FUP algorithm, called FUP2 [5], for general
updating operations, such as insertion, deletion and modification on databases.

However, previous models (such as the FUP model) use retrace technique to
handle the problem that smaller itemsets become frequent itemsets during main-
tenance. The retrace technique is to re-mine the whole data set. Unfortunately,
because the change is unpredicatable in applications, the technique may be repeat-
edly applied leading to poor performance.

In particular, previous models don't work well for the novelty of data. This
paper will present techniques to address the above problems. Before figuring out our
approach, we now present some well-known concepts for data mining and knowledge
discovery used throughout this paper.

2.2 Basic Concepts

Let I = {¿i, ¿2, • • • , ij\r} be a set of N distinct literal called items. D is a set
of variable length transactions over I . Each transaction contains a set of items
ii, ¿2, • • • , ik € A transaction has an associated unique identifier called TID. An
association rule is an implication of the form A=> B (or written as A —y B), where
A, B C I, and A D B = 0. A is called the antecedent of the rule, and B is called
the consequent of the rule.

In general, a set of items (such as the antecedent or the consequent of a rule)
is called an itemset. The number of items in an itemset is the length (or the size)
of an itemset. Itemsets of some length k are referred to as a /c-itemsets. For an
itemset A • B, if B is an m-itemset then B is called an m-extension of A.

Each itemset has an associated measure of statistical significance called support,
denoted as supp. For an itemset A C I, supp(A) = s, if the fraction of transactions
in D containing A equals s. A rule A —»• B has a measure of its strength called
confidence (denoted as conf) defined as the ratio supp(A U B)/supp(A).

182 ShichcLO Zhang and Li Liu

Definition 1. (support-confidence model): If an association rule A -t B has
both support and confidence greater than or equal to some user specified minimum
support (minsupp) and minimum confidence (minconf) thresholds respectively, i. e.
for regular associations:

supp(A U B) > minsupp

supp(AuB)
canfiA B) = , > minconf v ' supp(A) ~

then A B can be extracted as a valid rule.

Mining association rules can be decomposed into the following two issues.

(1) All itemsets that have support greater than or equal to the user specified
minimum support are generated. That is, generating all frequent itemsets.

(2) Generate all the rules that have minimum confidence in the following naive
way: For every frequent itemset X and any B C X, let A = X - B. If the
rule A —• B has the minimum confidence (or supp(X)/supp(A) > minconf),
then it is a valid rule.

Example 1. Let 7\ = {A,B,D}, T2 = {A,B,D}, T3 = {B,C,D}, T4 =
{B,C, D}, and T5 = {A, B} be the only transactions in a database. Let the min-
imum support and minimum confidence be 0.6 and 0.85 respectively. Then the
frequent itemsets are the following: {B}, {D}, {A, B} and {B,D}. The valid
rules are A —• B and D —>• B.

2.3 The FUP Model
For comparison, we now present the FUP model [4]. Let D be a given database,
D+ the incremental data set to D, A be an itemset that occurs in D, A+ stands
for A occurring in D+, Then A is a frequent itemset in D U D+ only if the support
of A is great than or equal to minsupp. We now define the FUP model as follows.

Definition 2. (F U P model): An association rule A —> B can be extracted as a
valid rule in DuD+ only if it has both support and confidence greater than or equal
to minsupp and minconf respectively. Or

, . „, t(A U B)+ t{A+ U B+) ^ " .
suppyA U B) = > minsupp

c[JJ) + c[D+)

.. . supp{Al)B) .
conftA B) = . > minconf.

supp(A)

where c(D) and c(D+) are the cardinalities of D and D+, respectively; t(A) and
t(A+) denote the number of tuples that contain itemset A in D and the number of
tuples that contain itemset A in D+, respectively.

Mining Dynamic databases by Weighting 183

According to the FUP model, the update problem of association rules can be
reduced to finding the new set of frequent itemsets [4]. It can be divided into the
following subproblems:

(1) Which old frequent itemsets will be become small in the updated database.
(2) Which old small itemsets will be become frequent in the updated database.
(3) Tackle these itemsets: delete the association rules A B that AuB became

small in the updated database; apply the mining algorithms into the itemsets
that became frequent in the updated database.

(4) How long would a database system be processed so as to update the factors
of all itemsets.

The FUP algorithm works iteratively and its framework is Apriori-like (For
details of the Apriori algorithm, please see [1]). At the /cth iteration it performs
three operations as follows:

1. Scan D+ for any fc-itemsets, A. If the support of A in D+ is greater than,
or equal to, minsupp, A is put into L'k that is the set of frequent itemsets in
D+.

2. For any fc-itemsets A in L'k, if A is not in that is the set of frequent
itemsets in D, the support of A in D U D+ is computed. If the support of A
in D U D+ is smaller than minsupp, A is removed from the candidate set of
D+.

3. A scan is conducted on D to update the support of A for each itemset in the
candidate set of D+.

3 Mining Strategies for Dynamic Databases
As we argued previously, the dynamic of databases is represented in two cases: (1)
the content updates over time and (2) the size changes incrementally. When some
transactions of a database are deleted or modified, it says that the content of the
database has been updated. And this database is referred to an updated database.
When some new transactions are inserted or appended into a database, it says
that the size of the database has been changed. And this database is referred to
incremental database. This section designs efficient strategies for mining updated
databases and incremental databases.

3.1 Pattern Maintenance for Updated Databases
The update operation includes deletion and modification on databases. Consider
transaction database

TD = {{A, B); {A, C}-, {A, B, C}; { B , C); {A, B, D}}

where the database has several transactions, separated by a semicolon, and each
transaction contains several items, separated by a comma.

184 ShichcLO Zhang and Li Liu

The update operation on TD can basically be

Case-1 Deleting transactions from the database TD. For example, after deleting
transaction {A,C) from TD, the updated database is TD\ as

TD1 = {{A,B}-,{A,B,C}-,{B,Cy,{A,B,D}}

Case-2 Deleting attributes from a transaction. For example, after deleting B from
transaction {A,B, C} in D, the updated database is TD2 as

TD2 = {{A, B}-, {A, C}-, {A, Cy {B, C}; {A, B, D}}

Case-3 Modifying existing attributes of a transaction in the database TD. For
example, after modifying the attribute C to D for the transaction {A, C} in
TD, the updated database is TD3 as

TD3 = {{A, B}-, {A, B}-, {A, B, C}; {B, C}; {A, B, D}}

Case-4 Modifying a transaction in the database TD. For example, after modifying
the transaction {A, C} to {A, C, D} for TD, the updated database is TD, as

TD, = {{A, B}-, {A, C, D}-, {A, B, C}; {B, C}; {A, B, D}}

Mining updated databases generates a significant challenge: the maintenance of
their patterns. To capture the changes of data, for each time of updating a database,
we may re-mine the updated database. This is a time-consuming procedure. In
particular, when a database mined is very large and the changed content of each
updating transaction is relatively small, re-mining the database is not an intelligent
strategy, where an updating transaction is a set of update operations. Our strategy
for updated databases is to scan the changed contents when the information amount
of the changed contents is relatively small;, otherwise, the updated database is re-
mined. The information amount is defined as follows.

Let D be a database with n transactions and the average number of attributes
per transaction be m. Then the information amount of D is

Amount(D) = mn

Let UO be an updating transaction, consisting of the k update operations, Ni,
N2, • • •, Nk, on the database D. As we have seen, each update operation, Ni, can
generates two sets: Additems(Ni) and deleteitems(Ni). Additems(Ni) is the set
of records, in which items are added to the database D. And deleteitems(Ni) is
the set of records, in which items are deleted from the database D. For example,

• Additems(UO\) = {} and deleteitems(UO\) = {{A,C}} for the example in
Case-1;

• Additems(U02) = {} and deleteitems(U02) = {{5}} for the example in
Case-2;

Mining Dynamic databases by Weighting 185

• Additems(U03) = {{-D}} and deleteitems(UOs) = {{C}} for the example
in Case-3; and

• AdditemsiJJOi) = {{£)}} and deleteitems{UOi) = {} for the example in
Case-4.

For Ni (1 < i < k) in UO, the information amount of N{ is the sum of
Amount(Additems(Ni)) and Amount(deleteitems(Ni)). Then the information
amount of UO is

k

Amount(UO) = Amount(Additems(Nj)) + Amount(deleteitems(Ni)))
i=1

For the above example, we have
(1) Amount(UOi) = 2 for Case-1, where UOi is the update operation in the

corresponding example;
(2) Amount(U02) = 1 for Case-2, where UO2 is the update operation in the

corresponding example;
(3) Amount{UOz) = 2 for Case-3, where UO3 is the update operation in the

corresponding example; and
(4) Amount(UOi) — 1 for Case-4, where UOi is the update operation in the

corresponding example.
For an updating transaction UO on a database D, if

Amount(UO)/Amount(D) > 7, the updated database D must be mined,
where 7 is a minimal relative information amount threshold. Otherwise, we only
need to mine the changed contents in the updated database.

Let

Additems(UO) = Additems(Ni) U Additems{N2) U • • • U Additems(Nk)
deleteitems(UO) = deleteitems(N\) U deleteitems(N2) U • • • U deleteitems(Nk)

When mining the changed contents over the database D, we need to mine both
Additems(UO) and deleteitems(UO). Let XAdditems be the number of itemsets X
occurring in Additems(UO) and Xdeieteitems be the number of itemsets X occurring
in deleteitems(UO). The the number, f (X) , of itemsets X is

/(-^0 — X-A dditems Xdeieteitems

There may be some hopeful itemsets in Additems(UO). Let A be an itemsets in
the changed contents and |D| be the number of records in D. The relative support
of A, rsupp(A), is defined as

rsupp(A) = -y^p

When rsupp{A) is large enough, the itemset A may be a frequent itemset in the
updated database. This means that we may scan the database D for checking
whether or not a hopeful itemset is frequent.

186 ShichcLO Zhang and Li Liu

On the other hand, if the total information amount of the updating transaction
UO and M updating transactions (ALLCC — {UOI, UO2, •••, UOM}) is greater
than 7, the database D must also be re-mined, where UO\ < 7, UO2 <7, • • •,
UOM < 7 and the M updating transactions have done before the updating trans-
action UO.

Including the above idea, the updating transaction UO leads to that the
database D must be re-mined if

Mut(UO, allCC) = Amount(UO)/Amount (D) > j\J
M

Amount(UO) + Amount(UOi)

— > 7 (1)

Amount(D) y '

Below we design the algorithm for updated database mining.

Algorithm 1. UpdatedDBMining;
Input D: original database; UO: set of update operations; FS: set of frequent

itemsets in D; 7: minimal relative information amount; a: relative minimal
support for itemsets in the changed contents;

Output newFS: set of frequent itemsets in the updated database;

1. compute Amount(D);
2. let CC <- the changed contents;
3. let allCC 0
4. compute Amount(UO)\
5. if Mut(UO, allCC) then begin
6. mine the updated database and put frequent itemsets into newFS;
7. allCC «- 0;
8. endif
9. else begin

10. hopeset 0;
11. allCC 4- the updating transaction ¡70;
12. mine the changed contents CC;
13. Cset the set of items in CC;
14. for any A in Cset do
15. if f(A) > a then
16. hopeset <— hopeset U {A};
17. Candidate the set of itemsets in FS, in which each itemset contains at

least an item in Csei;

Mining Dynamic databases by Weighting 187

18. scan the updated database for hopeset and Candidate-,
19. generate new F S by FS, hopeset and Candidate;
20. end else;
21. output newFS;
22. end procedure;

The algorithm UpdatedDBMining generates frequent itemsets in updated
databases. The initialization is carried out in steps 1-4. Step 5 checks whether
Mut(UO,allCC) is true or not. When Mut(UO,allCC) is true, the updated
database must be mined in step 6 and the set allCC is emptied in step 7. Oth-
erwise, we only need mine the changed contents in steps 9-20. The set hopeset is
used to save all hopeful itemsets in the changed contents. Step 11 puts the updat-
ing transaction UO into allCC. Step 12 mines the changed contents. Steps 14-16
generate the set of hopeful itemsets. Step 17 generates the set of itemsets in FS,
in which their supports have been changed. Step 18 takes one scan on the updated
database for tackling both hopeset and Candidate, so as to generate all frequent
itemsets in the updated database in step 19. Step 21 outputs all frequent itemsets
in the updated database.

We now illustrate the use of this procedure by an' example as follows.
Consider the above database TD. Let minsupp = 0.4. Then Amount(TD) = 12

and the frequent itemsets in TD are

A, 0.8; B, 0.8; C, 0.6; AB, 0.6; AC, 0.4; BC, 0.4

where there are 6 frequent itemsets, separated by a semicolon, and each frequent
itemset contains 2 items, its name and frequency, separated by a comma.

Let 7 = 0.2, a = 0.25 and the first updating transaction is UOi, in which the
transaction {A, C} is deleted from TD. Then the updated database is UD\ as

UD! = {{A, B}; {A, B, C}; {B, C}; {A, B, £>}}

And

Additems(UO\) = 0
deleteitems(UOi) = {{A,C}}

Because UOi is the first updating transaction, allCC = 0. For UO\,
Amount(UOi) = 2,

Amount(UOi)/Amount(TD) = 2/12

and Mut(UOi, allCC) is not true. Consequently, we only need to mine the changed
contents {A, C} and the itemsets are A, C and AC. By the definition of the relative

188 ShichcLO Zhang and Li Liu

support of itemsets,

Therefore,

rsupp(A) = = ^ = 0.2 < a

rsupp(C) = ¡Щ = 1 = 0 2 < а

f(AC) 1
rsupp(AC) = -Щ\= 5=0-2<"

hopeset = 0
allCC = {i/Oi}

For the set of frequent itemsets in D, we have

Candidate = {A, C,AB, AC, ВС}

By scanning the updated database for Candidate, we have

newFS = {A, 0.6; B, 0.8; C, 0.4; AB, 0.6; ВС, 0.4}

Note that the size of the updated database can approximately be equal to the
size of D when D is relatively large. Accordingly, the above example takes 5 as
the size of the updated database, aiming at showing how to deal with the frequent
itemsets using the changed contents.

Now, let the second updating transaction is UO2, in which the transaction
{B,C} in UDi is modified as {A,B ,C} . Then the updated database is UD2 as

UDi = {{А, В}; {А, В, С}; {А, В, С}; {A, B, D}}

And

Additems(U02) = {{A}}
deleteitems(U02) = 0

For UO2, Amount{U02) = 1 and

Amaunt(U02)/Amount{TD) = 1/12

Because allCC = {f/Oi}, Mut(U02,allCC) is true. Consequently, we need to
mine the updated database UD2 and the itemsets are as follows

newFS = {A, 1;B, 1;C, 0.4; AB, 0.75; ВС, 0.5; AC, 0.5; ABC, 0.5}

The above examples have shown our strategy for effectively maintaining frequent
itemsets in updated databases. We will focus on identifying trend patterns from
incremental databases in the following sections.

Mining Dynamic databases by Weighting 189

3.2 Pattern Maintenance for Incremental Databases
The incremental operation includes insertion and appending on databases. Con-
sider transaction database

D = {{F, H, I, J}; {E, H, J}; {E, F, H}-{E, I}}

where the database has several transactions, separated by a semicolon, and each
transaction contains several items, separated by a comma.

The incremental operation on a database TD can be

(1) inserting transactions into the database TD. For example, after inserting two
transactions {A, C} and {A, B, C} into TD before the transaction {E, H, J},
the incremental database is TDi as

TD\ = {{P, H, I, J}; {A, C}-, {A, B, C}; {E, H, J}; {E, F, H}\ {E, I}}

(2) Appending transactions into the database TD. For example, after appending
transactions {B, C} and { A , B , D } to TD, the incremental database is TD2
as

TD2 = {{F, H, I, J}-, {E, H, J}-{E, F, H}-, {E, /}; {B, C}-, {A, B, D}}

¿From the above observations, both the inserting and appending operations
do not change the original contents in the database TD. Therefore, we can take
an incremental operation transaction as the union of the database TD and the
incremental dataset D+, where the dataset D+ is a set of transactions that are
added to TD by the incremental operation transaction.

Example 2. Let TD be a set of a transaction database with 10 transactions in
Table 1 which is obtained from a grocery store, where A = bread, B = coffee,
C = tea, D — sugar, E = beer, F = butter and h = biscuit. Assume that D+ is
a set of transactions in Table 2, which are new sales records in the grocery store,
where G = choclate.

The databases TD and D+ are sets of data that represents the customer behav-
iors during two terms. And D+ illustrates the latest customer behavior, whereas
TD presents the old customer behavior. A frequent itemsets in D+ is referred to
trend pattern. Trend patterns are very important in marketing because they are
useful in the decision-making of merchandize buying. For example, H is a trend
pattern, which is frequently purchased in the new duration.

However, by using the support-confidence framework, H is not a frequent item-
set in TD U D+ when minsupp = 0.4. Therefore, trend pattern discovery has
become a key issue in incremental database mining. On the other hand, to cap-
ture the novelty of data, for each incremental operation transaction, we may also
re-mine the incremental database. In particular, when an original database mined
is very large and the dataset generated by an incremental operation transaction is
relatively small, re-mining the incremental database is time-consuming. Like the

190 ShichcLO Zhang and Li Liu

Table 1: Transaction databases in TD

Transaction ID Items
2i A, B, D, H
T2 A, B, C, D
T3 B, D, H
T4 B, C, D
?5 A, C, E
T6 B, D, F
T7 A, F
TS C , F
T9 B, C, F
Tic A, B, C, D, F

Table 2: Transaction databases in D+

Transaction ID Items
A, B, H

N2 B, C, G, H
N3 B, H

updated database mining, our strategy for mining incremental databases is to scan
the incremental dataset when the information amount of the incremental dataset
is relatively small; otherwise, the incremental database is re-mined.

For an incremental dataset D+ added to a database D, if
Amount(D+)/Amount(D) > /?, the incremental database D U D+ must be
mined, where /? is a minimal relative information amount threshold. Otherwise,
we only need to mine the incremental dataset and synthesize the patterns in D+

and D by weighting (see Sections 4 and 5).
If the total information amount of the incremental dataset D+ and M incre-

mental datasets (allaet = {D*, D2, • • •, D i s greater than /3, the database D
must also be re-mined, where Df < /3, D2 < /3, • • •, D^ < (3 and the M datasets
are added to D before the incremental dataset D+ is.

Intuitively, the constraint Amount(D+)/Amount(D) > /3 indicates that the
incremental dataset D+ contains a information amount large enough to drives the
mining of the incremental database. However, D+ may only contain few records
with much information. For example, let D+ only contain a records with 200
distinct items in Example 2 and these items are also different from items in.D.
Certainly, the constraint Amount(D+)/Amount(D) > ¡3 holds. This leads to the
mining of the incremental database. By using the support-confidence framework,
there are no frequent itemsets in D+ because the frequency of each item in D+

is 1. Accordingly, we must take into account the size, | i?+ | , of D+ in our mining

Mining Dynamic databases by Weighting 191

strategy. In this paper, the constraint is constructed as

constraint^, D) = L ^ h i ^ ^ i g l

Including the above idea, the incremental dataset D+ leads to that the database
D must be re-mined if

Mid{D+, allset) = constraint(D+, D) > ¡3\j
M

constraint(D+,D)+ ^2constraint(Di',D) >/3 (2)
i= 1

Below we design the algorithm for incremental database mining.

Algorithm 2. IncrementalDBMining;

Input D: original database; D+: incremental dataset; FS: set of frequent itemsets
in D; ¡3: minimal relative information amount; minsupp: minimal support;

Output weightedFS: set of frequent itemsets by weighting;

1. compute Amount(D);
2. let allset0
3. compute Amount(D+)\
4. if Mid(D+, allset) then begin
5. mine the database D U D+ and put frequent itemsets into weightedFS;
6. allset <- 0;
7. endif
8. else begin
9. allset <— the incremental dataset D+;

10. mine the incremental dataset D+;
11. Pset the set of frequent itemsets in D+\
12. weight the support and confidence of A in D and D+

13. if supp(A) > minsupp then
14. weightedFS <- A;
15. end else;
16. output weightedFS',
17. end procedure;

The algorithm IncrementalDBMining generates frequent itemsets in incre-
mental databases. The initialization is carried out in steps 1-3. Step 4 checks

192 ShichcLO Zhang and Li Liu

whether Mid(D+, all set) is true or not. When Mid(D+, all set) is true, the incre-
mental database must be mined in step 5 and the set allset is emptied in step 6.
Otherwise, we only need mine the incremental dataset D+ in steps 9-15. Step 9 puts
the incremental dataset D+ into allset when Mid(D+, allset) is not true. Step 10
mines the incremental dataset D+. Steps 11-14 generate the set of frequent itemsets
by weighting. Step 16 outputs all frequent itemsets in the incremental database.

The algorithm IncrementalDBMining includes a weighting procedure which
is used to identify trend patterns. We will present the weighting technique in the
following Sections.

4 Weight Method
Let D be a given database, D+ the incremental dataset to D, A be an itemset that
occurs in D, A+ stands for A occurring in D+. The support of A in the incremental
database Dt = D U D+ is as follows

S U P P { A) = c (D) + V) + c{D){fc{D+) (3)

Where c(D) and c(D+) are the cardinalities of D and D+, respectively; and t(A)
and t(A+) denote the number of tuples that contain itemset A in D and the number
of tuples that contain itemset A in D+, respectively.

Let suppi(A) = t(A)/c(D) and supp2(A) = t(A+)/c(D+) stand for the supports
of A in D and D+, respectively. Then the equation (3) can be represented as

C (D) c(Z?+)
supp(A) = c { D) + c{D+)supPL(A) + c [D) + c { d +) S U P P 2 (A) (4)

Let

C(D)
h =

k2 =

c(D) + c{D+)

c(D+)
c{D) + c{D+)

where ki and k2 are the ratios of D and D+ in the incremental database D\,
respectively. And the equation (4) can be represented as

supp(A) = k\ * suppi(A) + k2* supp2(A) (5)

For the equation (5), we can take k\ and k2 as the weights of D and D+ in
the incremental database D\. This means, if a dataset has a larger number of
transactions, the weight of the dataset is higher. And if a dataset has few trans-
actions, the dataset is assigned a lower weight. Therefore, traditional data mining

Mining Dynamic databases by Weighting 193

techniques, such as the support-confidence framework, can really be regarded as
trivial weighting methods.

Consider the database D and the incremental dataset D+ in Example 2. When
minsupp = 0.4, the frequent itemsets in D and D+ are listed in Tables 3 and 4,
respectively.

Table 3: Frequent itemsets in D

Item Number of Support Item Number of Support
Transactions P(X) Transactions P(X)

A 5 0.5 B 7 0.7
C 6 0.6 D 6 0.6
F 5 0.5 BC 4 0.4

BD 5 0.5

Table 4: Frequent itemsets in D+

Item Number of Support
Transactions P(X)

B 3 1
H 3 1

BH 3 1

After the transactions in D+ are added to D to form the incremental database
Di = DU D+, the frequent itemsets in D\ are listed in Table 5.

Table 5: Frequent itemsets in Dx

Item Number of Support
Transactions P(X)

A 6 0.4615
B 10 0.769
C 7 0.5385
D 6 0.4615

From Tables 3, 4 and 5, the desirable patterns H and B H are not frequent
itemsets in the incremental database D\. To identify trend patterns such as H and
BH, the novelty of data must be emphasized. In this paper, we propose to assign
the incremental dataset D+ a higher weight for stressing the novelty of data. For
example, for the database D and the incremental dataset D+, we have

194 ShichcLO Zhang and Li Liu

c(D) 10 _
= c(D) + c(D+) = 13 — ® ®

c(D+) 3
fc2 = c(D) + c(D+)=i3=0"231

Taking into account the above idea, we assign £> a weight wi = 0.66 and D+ a
weight W2 = 0.34. And the support of an itemset X in D\ is as follows

SUpp(X) =Wi* SUppi(X) + W2* supp2{X) (6)

Hence, for the itemsets B, H and BH, we have

supp(B) = 0.66 * suppi(B) + 0.34 * supp2(B)
= 0.66*0.7 + 0.34*1 =0.802

supp(H) — 0.66 * suppi (H) + 0.34 * supp2 (H)
= 0.66 * 0.2 + 0.34 * 1 = 0.472

supp(BH) = 0.66 * suppi (BH) + 0.34 * supp2(BH)
= 0.66*0.2 + 0.34* 1 = 0.472

This means that both H and BH are frequent itemsets in D\ according to the
equation (6). And all frequent itemsets in D\ are listed in Table 6.

Table 6: Frequent itemsets in D\

Item Number of Weighted Support
Transactions supp(X)

A 6 0.445
B 10 0.802
C 7 0.51
H 5 0.472

BH 5 0.472

Comparison with Table 6, the supports of itemsets A, C and D are decreased
in Table 7 because they are not frequent itemsets in the incremental dataset D+.
In particular, itemset D is not a frequent itemset in Di because

supp(D) = 0.66 * suppi(B) + 0.34 * supp2{B)
= 0.66 * 0.6 + 0.34 * 0 = 0.396

On the other hand, the supports of itemsets B, B and BH are increased in
Table 7 because they are strongly supported in the incremental dataset D+.

Mining Dynamic databases by Weighting 195

The above results have shown the following fact. In the weighting model, some
infrequent itemsets (for example H and BH) can be interested, whereas some
frequent itemsets (for example D) can be uninterested.

We now define the weighting model for maintaining association rules in incre-
mental databases.

Definition 3. (Weighting model): An association rule X Y can be extracted
as a valid rule in D U D+ only if it has both support and confidence greater than or
equal to minsupp and minconf respectively. Or

suppw(X U Y) = wi * suppi(X U Y) + w2 * supp2(X U Y) > minsupp (7)

The confidence of the rule X —¥ Y can be directly weighted as follows

confw(X Y) = w\ * confi(X Y) + w2 * conf2(X ->Y)> minconf (9)

Generally, for D, Di, •••, Dn with weights wi, w2,-- • we define the
weighted support, suppw(X), of itemset X as follows.

suppw(X) = wi* supp(X) + w2* suppi(XY) -\ 1- wn+i * suppn(X) (10)

where, supp(X), suppi(X), • • •, suppn(X) are the the supports of the itemset X
in D, Di, • • •, Dn respectively.

Let X —• Y be an association rule in D, we define the weighted support
suppw(X U Y) and confidence confw(X —> Y) for X —> Y as follows

suppw (X U Y) = wi * supp(X U Y) + w2 * suppi (XllF)H (11)

1- wn+i * suppn(X U Y)
confw(X ->Y) = Wi * conf{X -+Y)+W2* confi(X Y) + • • • (12)

h wn+i * confn(X Y)

where, supp(X U Y), suppi(X U Y), • • •, suppn(X U Y) are the the supports of
the rule X Y in D, Di, • • •, Dn respectively; conf(X -» Y), confi(X Y),
• • •, confn(X —> Y) are the confidences of the rule X —> Y in D, Di, - • •, Dn
respectively.

We now present the algorithm for weighting the support and confidence of as-
sociation rules.

Let D be the given database, D+ the incremental data set, supp and conf
the support and confidence functions of rules in D, supp+ and conf+ the support
and confidence functions of rules in D+, minsupp, minconf, mincruc: threshold
values given by user, where mincruc (< Min{minsupp, minconf}) is the crucial
value that an infrequent itemset can become frequent itemset in a system.

confw(X ->• Y) =
suPPw(X U Y)

suppw(X) > minconf (8)

196 ShichcLO Zhang and Li Liu

Procedure 1. Weighting

Input: D+: database; minsupp, minconf, mincruc: threshold values; R: rule
set; CS, CS': sets of itemsets;

Output: X —> Y: rule; CS, CS': sets of items ets;

(1) input wi 4- the weight of D\
input W2 the weight of D+;
let RR <- R\ R 0; temp 0;
let Itemset <- all itemsets in D+ \
let CSD+ all frequent itemsets in D+\
let i i + 1;

(2) for any X —» y € RR do
begin

let supp(X U Y) <- wi * supp(X UYJ+iuj* supp(X+ UY+) ;
let conf(X Y) <r- wi * conf{X -*Y) + w2* conf+(X Y)-,
if supp > minsupp and conf > minconf then

begin
let R rule X Y\
output X Y as a valid rule of ith mining;

end;
else let temp temp U {X, X \J Y} \

end;
(3) for any B 6 CS do

begin
let supp(B) w\ * supp(B) + ui2 * supp{B+)\
if supp(B) > minsupp then

for any A C B do

begin
let supp(A) w\ * supp(A) + w2* supp(A+)\
let conf (A (B - A)) <r- supp(B) / supp(A)-,
if conf (A (B — A)) > minconf then

begin
let R <= rule A (B - A)]
output A (B — A) as a valid rule of ith mining;

end;
else let temp 4- temp U {B, A}-,

end
end;

(4) call competing;
(5) return;

The procedure Weighting generates association rules that are weighted. Here
the initialization is done in Step (1). Step (2) performs the weighting operations on

Mining Dynamic databases by Weighting 197

rules in RR, where RR is the set of valid rules in the last maintenance. In this Step,
all valid rules are appended into R and, the itemsets of all invalid rules weighted is
temporarily stored in temp. Step (3) extracts all rules from competitive set CS and
all invalid itemsets weighted in CS is temporarily stored in temp. (Note that any
itemset in CS' can generally become as a hopeful itemset and may be appended into
CS by competition. However, it cannot become a frequent itemset. In other words,
CS' can be ignored when rules are mined.) Step (4) calls procedure competing to
tackle the competing itemsets for CS and CS1, which will be described in next
section.

5 Competitive Set Method
As has been shown, the proposed weighted model is efficient to mine trend patterns
in incremental databases. To capture the novelty, some infrequent itemsets or new
itemsets may be changed into frequent itemsets. We refer to this as the problem of
infrequent itemsets.

To deal with this problem, we use a competitive model to deal with this problem
so as to avoid retracing the whole data set. A competitive set CS is used to store
all hopeful itemsets, which each itemset in CS can become frequent itemset by
competition. We now define some operations on CS.

Let D be given database, D+ the incremental data set to D, A be an itemset,
supp(A) the support of A in D, supp(A+) the relative support of A in D+. Firstly,
all hopeful itemsets in D is appended into CS, which are defined in Theorem 2.

Secondly, an itemset may become invalid after each mining is done. Such an
itemset is appended into CS if its weighted support > mincruc.

Thirdly, some frequent itemsets in D+ are appended into CS after each mining
if their weighted supports > mincruc. These itemsets are neither in the set of
frequent itemsets, nor in CS. But their supports are pretty high in D+. This
means that their supports in D are unknown. For unknown itemsets, a compromise
proposal is reasonable. So we can regard their supports in D as mincruc/2. For
any such itemset X, suppw(X) = w\ * mincruc/2 + w2 * supp(X+) according to
Weight model. And if suppw{X) > mincruc, itemset X is appended into CS. In
other words, if

> mincrucj2-Wl)
' - 2W2

in D+, itemset X is appended into CS\ else itemset X is appended into CS' if its
weighted support mincruc/2, which CS' is an extra competitive set. CS' is used
to record another kind of hopeful itemsets. The operations on CS' are similar to
those on CS. The main use of CS' is to generate a kind of itemsets with middle
supports in D+. For example, let mincruc = 0.3 and minsupp = 0.6. Assume the
support of an itemset A be less than 0.3 in a given database D, and the supports
of A in incremental data sets: Di, D2, • • • Dg be all 0.64. Because the support
of A is less than 0.3 in D, A is not kept in system. Let wi = 0.75 be the weight
of the old database and w2 = 0.25 the weight of the new incremental data set.

198 ShichcLO Zhang and Li Liu

According to the operations on CS, suppw(A) = wi *mincruc/2 + W2*supp(A+) =
0.75 * 0.15 + 0.25 * 0.64 = 0.2725. This means that itemset A cannot be appended
into CS. But the support is greater than mincruc/2 = 0.15. From the novelty of
data, it can be generated as a frequent itemsets if there are enough incremental
data sets. Accordingly, we use CS' to capture this feature of new data. This kind
of itemsets such as A can become frequent as follows.

supp(A) < 0.3 -4 0.15 * 0.75 + 0.64 * 0.25 = 0.2725
A with supp(A) = 0.2725 => CS'
0.2725 * 0.75 + 0.64 * 0.25 = 0.364375
A with supp(A) = 0.2725 => CS
0.364375 * 0.75 + 0.64 * 0.25 = 0.43328
0.43328 * 0.75 + 0.64 * 0.25 = 0.48496
0.48496 * 0.75 + 0.64 * 0.25 = 0.52372
0.52372 * 0.75 + 0.64 * 0.25 = 0.55279

-4 0.55279 * 0.75 + 0.64 * 0.25 = 0.57459
-> 0.57459 * 0.75 + 0.64 * 0.25 = 0.590945

0.590945 * 0.75 + 0.64 * 0.25 = 0.60321

Fourthly, some itemsets in CS' are appended into CS after each mining if their
weighted supports > mincruc

Finally, some itemsets are deleted from CS after each mining of association
rules is done. By the weighted model, for any A G CS, suppw(A) = w\ *supp(A) +
W2 * supp(A+). If suppw(A) < mincruc, A is deleted from CS; else A is kept in
CS with new support suppw(A).

We now design the algorithm for pattern competition.

Procedure 2. Competing

Input: mincruc: threshold values; temp, Itemset, CSD+, CS': sets of itemsets;
w\, u>2: weights;

Output: CS, CS': competitive sets;

(1) let tempi 0; temp2 0;
(2) for A £ temp do

if suupp(A) > mincruc then
let tempi <— A;

else if suupp(A) > mincruc/2 then
let temp2 <— A\

(3) for A G CS' do
begin

let supp(A) w\ * supp(A) +w2* supp(A+)\

Mining Dynamic databases by Weighting 199

if suupp(A) > mincruc then
let tempi A;

else if suupp(A) > mincruc/2 then
let temp2 A;

end
(4) for A e CSD+ do

begin
let supp(A) wi * mincruc/2 + w2* supp(A+);
if suupp(A) > mincruc then

let tempi A;
else if suupp(A) > mincruc/2 then

let temp2 A;
end

(5) let CS <- tempi; let CS' temp2;
(6) return;

The procedure Competing generates a competitive set for infrequent itemsets. Here
the initialization is done in Step (1). Step (2) handles all itemsets in temp. And
all itemsets with supports in interval [mincruc, minsupp) is appended into CS and
the itemsets with supports in interval [mincruc/2, mincruc) is appended into CS'.
Step (3) and (4) are as similar as Step (2) to deal in the itemsets in CS' and CSD+ ,
respectively.

6 Experiments
To evaluate the proposed approach, we have done some experiments using synthetic
databases in the Internet. Our experiments shown, this model is efficient and
promising. For simplicity, we choose the UCI database BreastCancer to illustrate
the effectiveness and efficiency, which contains 699 records. For maintenance, the
set of the first 499 records is taken as the initial data set. And the set of each next
50 records is viewed as an incremental new data set. There are four incremental
new data sets. And they will be appended into the database one by one. It needs to
maintain the association rules once a new data set is appended into. The parameters
of experiment databases is summarized as follows.

Table 7: The Experiment Databases

Record number Attribute number
Old Database 499 10

New Database 1 50 10
New Database 2 50 10
New Database 3 50 10
New Database 4 50 10

200 ShichcLO Zhang and Li Liu

Comparing Running Time of Algorithms

We compare the large item set mining time with the Apriori and FUP. Undoubt-
edly the Apriori will spent the most time cost because it need scan for the candidate
items in the old plus new database. The FUP model gets a good improvement. It
scan the candidate items in the new database, it need scan in the old database only
when the item in old large item set but not in new item set, or in new item set but
not in old item set. But our algorithm only need to scan in the new database, so it
spent the least time cost. Same conclusion shown in our experiment as in Figure 1.

4000 i- time
"'Weight* — i —

* "FUP2" — x —
"Apriori" ---*•--

3500 -

3000 -

2500 - - *

2000 -

500 •

g , i , i maintenance times |

1 1.5 2 2.5 3 3.5 4

Figure 1: The large item set mining time cost comparison

Our algorithm gets a significant improvement by only scanning the new
database. But there are some different rules in our rule set to the rule set made by
Apriori which scan all old and new data. But on earth what is the difference, how
about its influence? Because Cheung's FUP algorithm also scans the old database,
which saves some cost by reducing the candidate number in old database, so it
generate the same large itemsets as Apriori. Then they will generate same rules
according certain confidence. So we only need to compare the result rule set with
one of them after generate Large itemset. But our algorithm don't scan the old data
but only the new database, then generates the Competitive Rule Set by weighting
and choose the winners as result (There is some similarity like genetic algorithm),
so it can consist with the new data better than their algorithms. According the
result rule sets from large itemset 1 to 4, we compared the difference between our
algorithm and Cheung's FUP model.

Mining Dynamic databases by Weighting 201

Comparison with FUP

Let minsupp = 0.2, minconf = 0.7, the confidence threshold mincruc = 0.25, the
weight of old and new rule confidence is 0.7 and 0.3 respectively, results shown as
follows.

Table 8: The rules in the maintenance

After 1st After 2nd After 3rd After 4th
maintenance maintenance maintenance maintenance

FUP2 1062 1096 1130 1189
Weight algorithm 1095 1185 1204 1397

Both in AKW 1044 1089 1114 1160
Only in Apriori 18 7 16 29

Only in our 51 96 90 237
Weight algorithm

All the rules have two supports and two confidences generated relatively by the
two algorithms, which Fconficience and Fsupport are for FUP algorithm, Wconfidence
and Wsupport are for weight algorithm. If the rule not generated by an algorithm, we
let its confidence and support equal zero. We define error = \ Wsupport — Fsupport\
to measure the difference between two confidence. For those results generated by
both FUP and weight algorithm, the comparison shown as follows.

Table 9: The comparison with generated results

After 1st After 2nd After 3rd After 4 th
maintenance maintenance maintenance maintenance

Average error 0.015 0.031 0.032 0.02
Max error in a rule 0.296 0.2 0.085 0.252
Rule number with 1 1 0 28

error over 0.1

We can see that they are almost equal at the first 3 maintenance, at most one
rule with error over 0.1. But at the 4th maintenance, there are 28 rules with error
over 0.1, because some rules from new database with significant different confidence
begin influence the old rule set by the Competitive Set.

Now we analysis those different rules: (1) To those rules generated by our algo-
rithm but not FUP, they are the new rules can not be found by FUP. They keep
more consistency with new database. For example, this is a rule with confidence
only 0.4 before maintenance, but in the new database it is a significance rule, al-
ways with confidence over 0.9. In FUP, because the new databases are relatively

202 ShichcLO Zhang and Li Liu

small than the old database, so the significant association in new data still can
not be shown in the all data. During maintenance, it got a confidence serials: 0.4,
0.44, 0.46,0.49, 0.55. But according our algorithm, the confidence change in the
maintenance should be:

0.4 0.4 * 0.7 + 0.9 * 0.3 = 0.45
-4 0.45*0.7 + 0.9*0.3 = 0.585

0.585 * 0.7 + 0.9 * 0.3 = 0.66
-> 0.66*0.9 + 0.3 = 0.732

Figure 2: The competitive procedure of a rule

(2) To those rules generated by FUP algorithm but not our algorithm, they
are the "lost" rules from FUP. It needs to know why they lost, how about the
influence when lost those rules?

So we analysis all those "lost" rules, and found that, for every rule, at least one
of it's Fsupport and Fconfidence near the relative thresholds. We define the neighbor
of minsupp and the neighbor of minconf as Sintervai and CinteTvai respectively.
There are four classes of lost rules as follows.

Classl: Rules with Fconfidence in Cinterval Fsupport ^ Sinterval>

Class2: Rules with Fconfidence
i n Cinterval a n d Fsupport n o t i n Sintervai 5

Class3: Rules with Fconfidence not in Cinterval and Fsupport in Sintervai!

Class4: Rules with Fconfidence not in Cintervai and Fsupp0rt not in

Mining Dynamic databases by Weighting 203

The following figure shown the rule distribution:

Table 10: The rule distribution

The 1st After 2nd The 3rd The 4th
maintenance maintenance maintenance maintenance

Classl 5.5% . 0 0 0
Class2 66.5% 0 19% 3%
Class3 27.8% 100% 81% 97%
Class4 0 0 0 0

As we know, those rules with support in Sintervai or confidence in Cintervais
usually mean the uncertain and debated knowledge. We often discard those rules
in practical decision, so we can say that those "lost" rule only generate some ne-
glectable influence. In order to capture the novelty, this error is certainly reasonable
and necessary.

We have seen, our algorithm can save much time cost in association rule main-
tenance. It keeps more association with the new data than old data, especially in a
time serial of continually maintenance. It can generate many new rules to describe
the new association in new data. At same time, it discards some old rules unfitting
the new data. Their confidence or support near the threshold, so deleting them will
only generate a slight influence to the final decision. At a word, our algorithm is
efficient in association maintenance, especially suit the practice company decisions
which pay more attention to the new market trend, need to a time serial support
analysis.

7 Conclusions

Database mining generally presupposes that the goal pattern to be learned is sta-
ble over time. This means that its pattern description does not change while
learning proceeds. In real-world applications, however, pattern drift is a natural
phenomenon which must be accounted for by the mining model. To capture more
properties of new data, we advocated a new model of mining association rules in
incremental databases in this paper. Our concept of mining association rules in this
paper is different from previously proposed ones. It is based entirely on the idea
of weighted methods; the main feature of our model is that it reflects the novelty
of dynamic data and the size of the given database. Actually, previous frequency-
based models are the special cases of our method working without respect to the
novelty. Our experiments shown, the proposed model is efficient and promising.

204 ShichcLO Zhang and Li Liu

References
[1] R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets

of items in large databases. In: Proceedings of the ACM SIGMOD Conference
on Management of Data, 1993: 207-216.

[2] S. Brin, R. Motwani and C. Silverstein, Beyond Market Baskets: Generaliz-
ing Association Rules to Correlations. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1997: 265-276.

[3] M. Chen, J. Han and P. Yu, Data Mining: An Overview from a Database
Perspective, IEEE Trans. Knowledge and Data Eng., vol. 8, 6(1996): 866-881.

[4] D. Cheung, J. Han, V. Ng and C. Wong, Maintenance of discovered association
rules in large databases: An incremental updating technique, Proceedings of
12nd International Conference on Data Engineering, New Orleans, Louisiana,
1996: 106-114.

[5] D. Cheung, S. Lee and B. Kao, A gerneral incremental technique for maintain-
ing discovered association rules, Proceedings of the Fifth International Confer-
ence on Database Systems for Advanced Applications, Melbourne, Australia,
1997.4: 185-194.

[6] R. Godin and R. Missaoui, An incremental concept formation approach for
learning from databases. Theoretical Computer Science, 133(1994): 387-419.

[7] J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate gen-
eration. In: Proceedings of ACM SIGMOD, 2000: 1-12.

[8] C. Hidber, Online Association rule mining, In: Proceedings of the ACM SIG-
MOD Conference on Management of Data, 1999.

[9] H. Liu and H. Motoda, Instance Selection and Construction for Data Mining.
Kluwer Academic Publishers, Feburary 2001.

[10] G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules.
In: Knowledge discovery in Databases, G. Piatetsky-Shapiro and W. Frawley
(Eds.), AAAI Press/MIT Press, 1991: 229-248.

[11] T. Shintani and M. Kitsuregawa, Parallel mining algorithms for generalized as-
sociation rules with classification hierarchy. Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1998: 25-36.

[12] R. Srikant and R. Agrawal, Mining generalized association rules. Future Gen-
eration Computer Systems, Vol. 13, 1997: 161-180.

[13] P. Utgoff, Incremental induction of desion trees. Machine Learning, 4(1989):
161-186.

Mining Dynamic databases by Weighting 205

[14] D. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov and A.
Rosenthal, Query flocks: A generalization of association-rule mining. Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
1998: 1-12.

[15] G. Webb, Efficient search for association rules. In: Proceedings of ACM
SIGKDD, 2000: 99-107.

[16] X. Wu, Building Intelligent Learning Database Systems, AI Magazine,
21(2000), 3: 59-65.

[17] S. Zhang and C. Zhang, Estimating Itemsets of Interest by Sampling. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Dec.
2001.

[18] S. Zhang and C. Zhang, Pattern discovery in probabilistic databases. In: Pro-
ceedings of AI'01, Dec. 2001.

[19] Chengqi Zhang and Shichao Zhang, Association Rules Mining: Models and
Algorithms. Springer-Verlag Publishers in Lecture Notes on Computer Science,
Volume 2307, p. 243, 2002.

Received December, 2001

CONTENTS

Z. Esik and M. Ito: Temporal Logic with Cyclic Counting and the Degree of
Aperiodicity of Finite Automata 1

Juha Honkala: On DOL systems with finite axiom sets 29
B. Imreh, Cs. Imreh, and M. Ito: On directable nondeterministic trapped

automata 37
Leah Epstein: On variable sized vector packing 47
Leah Epstein and Lene M. Favrholdt: On-Line Maximizing the Number of

Items Packed in Variable-Sized Bins . ; 57
Benedek Nagy: SW-type puzzles and their graphs 67
Jerzy Mycka: Infinite limits and R-recursive functions 83
Jixue Liu and Millist Vincent: Derivation of Incremental Equations for PNF

Nested Relations 93
András Hajdu and Lajos Hajdu: Velocity and Distance of Neighbourhood

Sequences 133
Cristian Vidra§cu: Modelling a Sender-Receiver System 147
Shichao Zhang and Chengqi Zhang: Discovering Associations in Very Large

Databases by Approximating 155
Shichao Zhang and Li Liu: Mining Dynamic databases by Weighting 179

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János

