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Abstract 
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by 

Damon Bruccoleri 
March 2018 

 
Dynamic Huffman compression algorithms operate on data-streams with a 

bounded symbol list.  With these algorithms, the complete list of symbols must be 
contained in main memory or secondary storage.  A horizontal format transaction 
database that is streaming can have a very large item list.  Many nodes tax both the 
processing hardware primary memory size, and the processing time to dynamically 
maintain the tree. 

 This research investigated Huffman compression of a transaction-streaming 
database with a very large symbol list, where each item in the transaction database 
schema’s item list is a symbol to compress.  The constraint of a large symbol list is, in 
this research, equivalent to the constraint of a memory-limited machine.  A large symbol 
set will result if each item in a large database item list is a symbol to compress in a 
database stream. In addition, database streams may have some temporal component 
spanning months or years.  Finally, the horizontal format is the format most suited to a 
streaming transaction database because the transaction IDs are not known beforehand.  
This research prototypes an algorithm that will compresses a transaction database stream.  

 There are several advantages to the memory limited dynamic Huffman algorithm.  
Dynamic Huffman algorithms are single pass algorithms.  In many instances a second 
pass over the data is not possible, such as with streaming databases.   Previous dynamic 
Huffman algorithms are not memory limited, they are asymptotic to O(n), where n is the 
number of distinct item IDs.   Memory is required to grow to fit the n items.   The 
improvement of the new memory limited Dynamic Huffman algorithm is that it would 
have an O(k) asymptotic memory requirement; where k is the maximum number of nodes 
in the Huffman tree, k < n, and k is a user chosen constant.  The new memory limited 
Dynamic Huffman algorithm compresses horizontally encoded transaction databases that 
do not contain long runs of 0’s or 1’s. 
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Chapter 1  

Introduction 

 

Background 

Streaming databases provide data processing functions for banking, process 

control, reservation systems, web analytics, the stock market, and market-basket 

transactions.   A streaming database is a real-time demand.  It contains data patterns in a 

data stream. Compression of the data stream is important for the efficient delivery of the 

stream over the communications channel, for possible storage of the database (or 

bounded sections thereof), and for the subsequent processing of the database by 

specialized hardware.  Compression of the data-stream can provide pre-processing of the 

dataset by identifying frequent items and item-sets.  Because it is a stream, multiple pass 

algorithms to process the streaming databases may not always be possible.  In some 

instances, it may be necessary to obtain results in a single scan for various purposes.  

In the streaming transaction, stream S consists of m transactions t1, …, tm, where t1 

is the oldest transaction in the stream, and tm is the youngest transaction.  Each 

transaction is a set of items.  The items in t are drawn from the set of n items I = {i1, …, 

in}.  Each transaction also includes a transaction id, tid. 

Prior research developed several compression algorithms for transaction databases 

including the run length encoding (RLE) compression techniques using a Golomb code.  

This is a single pass compression technique.  RLE compression using Golomb codes does 

not require prior knowledge of the item probabilities to achieve good compression 

(Golomb, 1966).  Thus, it is applicable to stream compression.  The prior research also 
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developed a Huffman compression algorithm (Huffman, 1952) for a static database and 

dataset.  The research applied the Huffman static compression to the item IDs in several 

benchmark transaction datasets.  The benchmark datasets had a bounded item list.  

Multiple passes over the database were possible.   In a first pass over the data item ID 

frequencies were determined.  A second pass compressed the dataset.   Several of the 

datasets had large sets of item IDs.  

The proposed new research is a progression of the previous research to streams 

with a very large alphabet.  The constraint of compressing a stream means the algorithm 

needs to be a single pass algorithm.  The constraint of a large alphabet is identical to the 

constraint of compression using a memory-limited machine.  Memory here refers to 

either primary memory or secondary storage.  If a machine had enough memory then it 

would be able to contain the complete Huffman tree, or list, of all the symbols in the 

alphabet.  Thus, the constraint of a large alphabet is identical to the constraint of a 

memory limited machine.  Field programmable gate arrays (FPGAs) are an example of 

memory limited computing hardware capable of massive and high-speed parallel 

operation.  In the literature, the term alphabet is often interchanged with the terms symbol 

or character.   

This new research proposes to extend the Huffman compression algorithm 

(Huffman, 1952) to achieve dynamic compression of database streams with a large 

alphabet on memory constrained hardware.  Previous research compared the static two 

pass Huffman compression to the RLE compression.  The static Huffman algorithm 

compressed a horizontally encoded transaction database.  The RLE compression 

algorithm (using Golomb codes) was used to compress the same transaction databases, 
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but they were vertically encoded.  The new proposed memory limited dynamic Huffman 

compression algorithm will be used to compress horizontally encoded transaction 

databases.  A transaction data stream will be horizontally encoded since a vertically 

encoded data stream would require prior knowledge of all transactions.   The horizontal 

encoded transaction databases are commonly structured as a transaction ID followed by 

one or more item IDs.  The vertically encoded databases are commonly encoded as a 

bitmap.  Each row of the bitmap represents an item.  Each row is a sequence of 1s and 0s 

that represent the presence or absence of that item in a transaction.  Thus, the complete 

list of items in a transaction would be assembled by noting the presence of a 1 bit in its 

column for each item row.  Table 7 summarizes several common transaction database 

formats. 

Because a transaction database stream may be responding to real time events, the 

horizontal format is most commonly used for these systems.  The vertical format is more 

suited for a static transaction database.  In the streaming format, as transactions are 

occurring in real time, each transaction ID and associated item IDs could appear in the 

stream.  Typical elements of a stream processing system are depicted in Figure 1. 

The stream processing systems may have several asynchronous input streams and 

one or more output streams.  Because, by definition, the streams are unbounded, portions 

of the data, aggregations, or queries over the data would be stored. Not the complete 

dataset. 
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Figure 1. Elements of a data stream processing system. 

Dynamic Huffman Compression algorithms exist to compress data streams with 

bounded item (or token) list (Vitter, 1987; Knuth, 1985; Gallager, 1978; Faller, 1973).  

They incrementally calculate the Huffman tree from streaming data and compress them 

dynamically.  A key to updating the Huffman tree is that the Huffman tree maintains the 

‘sibling property.’  Although the static Huffman algorithm does not maintain the sibling 

property across all nodes, it is important to the dynamic algorithms of Knuth and Vitter to 

keep the all the nodes in order of weight (sibling property) to balance the tree.  A binary 

tree has the sibling property “if each node (except the root) has a sibling and if the nodes 

can be listed in order of non-increasing probability with each node being adjacent in the 

list to its sibling” (Gallager, 1978).  The sibling property is illustrated in Figure 2.  Nodes 

A, B and C may be part of a larger tree.  Nodes B and C are siblings.  This tree is a 

Huffman tree if all siblings in the tree can be listed in order of non-increasing probability.  

Nodes B and C meet that requirement. 
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Figure 2. Sibling property. 

An algorithm for adaptive Huffman coding was conceived and proposed by Faller 

(1973), and Gallager (1978) independently.  It was improved by Knuth (1985).  Knuth 

described an efficient data structure for the tree nodes, and an efficient set of algorithms 

to process the dynamic tree to maintain the sibling property.   In the literature this is 

known as algorithm Faller-Gallager-Knuth or the FGK algorithm (Knuth, 1985).  This 

algorithm is similar to the original Huffman algorithm in that both sender and receiver 

build the same tree to compress and decompress the stream.  The sender performs the 

compression function and the receiver performs the decompression function.  There must 

be coordination between the sender and receiver to properly restore the data to its 

uncompressed state. 

The FGK algorithm builds the tree dynamically from the frequency of items in the 

stream.  The algorithm will be illustrated and described later in this paper.  The node 

frequencies change as new items arrive in the stream.  Both sender and receiver need to 

update their tree synchronously and dynamically to maintain the sibling property.  An 

aspect of the FGK algorithm is that a new node is added to the tree as each new item 

arrives, and in certain cases, nodes get exchanged.  Nodes are never removed from the 

A 

B 
P=0.2 

C 
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tree.  The space complexity of FGK (Knuth, 1985) is O(n), where n is the number of 

symbols in the alphabet to compress.  Thus, one of the challenges of these compression 

algorithms is in memory-limited machines with many items, or a stream with no bound 

on the number of items.   

An example of a memory limited machine is the FPGA.  FPGAs have been 

proposed for database processing (Mueller, Teubner & Alonzo, 2009a). In Figure 3, three 

possible architectures are presented.  The researchers suggest that data tuples from a 

network connection could be streamed through the FPGA, and only the results of the 

query output to the CPU.  Similarly, in Figure 3 (b), a stream from a secondary storage 

device could be processed.  The advantages of these two architectures is that tuple 

processing on the order of hundreds of thousands of tuples per second could be achieved 

without applying that loading to the main CPU.  

Network

FPGA

NIC Data Processing

CPU

MAIN 
MEMORY

FPGA

NIC Data Processing

CPU

MAIN 
MEMORY

FPGA

NIC Data Processing

CPU

MAIN 
MEMORY

DISK

Data Stream

Data Stream

Data Stream

 

Figure 3. FPGA/CPU Architecture for database applications.  
Adapted from “Data Processing on FPGAs” by R. Mueller, J.  
Teubner, and G. Alonso, 2009, Proceeding of the VLDB Endowment,  
2(1), 910-921. 
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As an example of how the circuitry in Figure 3 could be applied, researchers 

(Mueller, Teubner & Alonso, 2010) have developed a cross compiler that inputs SQL 

statements and a database schema, and outputs the FPGA circuits.  This is depicted in 

Figure 4.  Here, in section (a), is a declared the schema for a database stream.  The 

attributes, datatypes and order in the stream are defined.   In Figure 4(b) a SQL statement 

is declared by a user to filter the database stream.  The user is interested in tuple selection 

of stock transaction trades with a volume larger than 100,000 whose ticker symbol 

matches the symbol “USBN”.  Finally, the user is interested in tuple projection of only 

the price and volume attributes. 

In Figure 5 an architecture for a data mining application is presented using FPGA 

(Baker & Prasanna, 2009).  Here the researcher proposes implementing an FPGA 

configured as a set of systolic processors to implement the Apriori algorithm for frequent 

item data mining.  In their concept, the transaction database is streamed from some 

source through the systolic processors and the candidate item sets are built up.  First the 

L2 item sets are generated.  Next, the L2 candidate item sets need to be streamed through 

all the systolic processors to determine the L3 sets.  As with the Apriori algorithm, the 

complete transaction database needs to be streamed (again) through all the systolic 

processors to prune the L3 candidate item sets.  This operation continues until the 

maximal frequent itemset(s) is determined. 
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Figure 4. Glacier source code and circuitry examples.  Adapted from “Glacier: A Query-
to-Hardware Compiler,” by R. Mueller, J. Teubner, and G. Alonso, 2010, ACM SIGMOD 
International Conference on Management of Data, 1159-1162. 

CREATE INPUT STREAM Trades ( 
 Seqnr  int, -- sequence number 
 Symbol string (4) -- stock symbol 
 Price  int, -- stock price 
 Volume int ) -- trade volume 
 

(a) Stream Declaration 

SELECT Price, Volume 
FROM Trades 
WHERE Symbol =” USBN” AND 
  Volume > 100,000 
INTO LargeUBSTrades 
 

(b) Textual Query 

Large UBSTrades 
| 

ΠPrice, Volume 
| 

σC 
| 

c:(a,b) 
| 

b:(Volume,100,000) 
| 

a:(Symbol,”USBN”) 
| 

Trades 
 

(c) Algebraic Plan 

(d) FPGA Hardware Circuit 
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Figure 5. An FPGA data mining architecture. Adapted from “Efficient Hardware Data 
Mining With the Apriori Algorithm on FPGAs” by Z. Baker and V. Prasanna, 2009, 

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom 
Computing Machines, 3-12.  

 

The research in Figure 3, Figure 4, and Figure 5 are significant for three reasons.   

The first is it identifies the FPGA, a memory limited hardware element which is the 

object of database architecture research.  Secondly, these architectures might benefit from 

compression of the data to enable higher speed processing.  Finally, they all assume a 
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database will be the horizontal transaction format as depicted in Figure 6.  In this figure a 

transaction is created in real time at a cashier.  The transaction is inserted into the 

transaction stream.  A vertical format for the transaction database would not be a natural 

representation since the vertical format requires keying on the item IDs rather than the 

transaction IDs.  The item IDs are a static list of all items in the store.  Transaction IDs 

are created in real time.  Keying on the Item IDs would require listing all the Transaction 
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have been created yet.  Thus, the Horizontal transaction database format is a natural 

representation of a real-time streaming database. 

 

Figure 6. Streaming transactions horizontal format. 

An algorithm that is proposed to compress a horizontally encoded streaming 

transaction database on FPGAs is the dynamic Huffman compression algorithm (Knuth, 

1985).   In the case of item compression on FPGAs or specialized hardware using the 

FGK algorithm, the space complexity register requirements are O(n) since a node must 

exists for every item in I (the set of items).  This proposal is for a new type of 

compression algorithm, or variation of the FGK algorithm.  This new algorithm could 

dynamically compute the Huffman tree of only the most k frequent items without needing 

memory capable of holding all n items, where k is defined as: 

k < n 

For instance, k can vary from 1 to n and might be chosen based on available memory on 

memory limited hardware. 

Problem Statement 

A problem related to compression of transaction database streams on memory-

limited machines is identifying the frequent items in a data stream on memory-limited 

Transaction ID, Item ID 1, Item ID 2, … Previous Transaction Next Transaction 

time 

Real Time Transaction stream 
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machines.  This is the objective of several algorithms and research (Charikar, Chen, & 

Farach-Colton, 2002).  For instance, the Frequent-k algorithm dynamically finds the k 

most frequent items in streaming data base S (Demaine, López-Ortiz, & Munro, 2002; 

Karp, Shenker, & Papadimitriou, 2003).  A frequent item identification algorithm 

(Metwally, Agrawal, & El Abbadi, 2005) is another algorithm used to find the list of most 

frequent items in streams.  Their memory complexity is O(k), rather than O(n).  Here k is 

chosen so that  

k < n, 

The number of different items, i, in the stream S is n (as previously defined).  The 

number of items to be held in memory is k. 

A transaction database data stream can be compressed by applying a dynamic 

Huffman compression on the resulting stream’s items.  Algorithms exist for updating a 

dynamic Huffman tree as a single item arrives in a bounded stream with a bounded item 

list.  The dynamic Huffman algorithms are not designed for memory-constrained 

machines or to process streams with very large item lists.  They expect the tree to grow to 

accommodate all items in the stream.  

The dynamic Huffman compression algorithm as proposed by Knuth (1985) will 

be extended to accommodate operation on memory-limited machines or to compress 

database streams with a large set of items.   

 The new algorithm will be able to limit the required memory size of the dynamic 

Huffman algorithm.  Dynamic Huffman algorithms are single pass algorithms.   

Conventional, static, Huffman algorithms require two passes over the data to be 

compressed.  The first pass is used to tabulate the frequency of the symbols.  The second 
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pass compresses the data.  A single pass compression algorithm is applicable to streaming 

databases because a second pass may not be possible.  The complete stream may not fit 

into available memory.  Additionally, there may be many symbols to compress in the 

stream.   For instance, assume that each item ID in a streaming transaction database is 

represented as a 32-bit word, and each item ID in the stream is considered a symbol to 

compress.  A large Huffman tree would result if some method to moderate the Huffman 

tree is not employed.   

The work proposed is different than the prior dynamic Huffman algorithms 

(Knuth, 1985) because the prior work assumes a bounded item list and that the dynamic 

Huffman tree will fit into memory.  A new algorithm will build the Huffman tree, update 

the Huffman tree item frequencies as new items are added to the tree, or as they become 

old.  It must maintain the sibling property of the Huffman tree and moderate the size of 

the Huffman tree.  Node frequencies will be determined from the frequent item algorithm. 

A recognized benefit of the prior dynamic Huffman compression algorithms use 

on a data stream is that the algorithm is adaptive to temporal changing statistical 

frequencies of the symbols.  Enhancing the algorithm to manage the maximum size of the 

stored data structure will benefit compression of transaction data streams with large 

symbol lists.  This new algorithm to be researched is called the memory limited dynamic 

Huffman algorithm. 

Why Streaming?  Why Huffman? 

Streaming implies single pass.  Reading the database multiple time may not be 

possible, or may be slower.   
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Streaming is a real-time demand.  A horizontal encoded transaction database may 

be more natural for a real-time stream.  Existing compression schemes for vertically 

encoded bitmap or tidset transaction database schemas may not be applicable to a real-

time stream because they require the transaction IDs to be known beforehand. 

Several datamining algorithms exist for horizontal encoded transaction database 

formats.  A Huffman compression algorithm could compress the frequently used item IDs 

in a transaction database stream. 

Dissertation Goal 

High speed and large throughput data stream mining will require specialized 

computing hardware to analyze, summarize, monitor and tabulate user queries, perform 

algorithmic trading, and secure networks.  To this end reconfigurable hardware has been 

used to process the data stream using algorithms realized on a massively parallel scale.  

For instance, Muller, Teubner, and Alonzo (2009a, 2009b, 2009c, 2010, 2011a, 2011b) 

have published much research on mining streaming databases with algorithms 

implemented on a highly parallel scale.  In their research, they present a variety of 

algorithms for frequent item computation, stream queries, and stream joins using 

reconfigurable computing.  Other researchers using reconfigurable computing to mine 

streaming databases are Baker and Prasanna (2005, 2006).  Some of this research centers 

on computing frequent item-sets on transaction databases using systolic arrays.  The 

systolic arrays are implemented using reconfigurable computing hardware.  Other 

researchers are using the reconfigurable hardware to filter XML data streams (Mitra et 

al., 2009).  Other previous work in this research project explored and implemented 

algorithms for association rule mining using reconfigurable computing.  In this previous 
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research, the algorithms were designed to be massively parallel and fine grained.  The 

algorithm was scalable. 

Technology is enabling the implementation of the reconfigurable compute 

function.  Data compression techniques can increase the effective throughput of data that 

is transferred on a communications channel and the computer hardware.  Compression of 

the data can potentially make use of memory more effectively.  Typically, this would be 

secondary storage.  It is also used to more efficiently use primary memory.  Similarly, 

compression can be used to more effectively use the logic gates and interconnects in the 

reconfigurable computer hardware.   

Effective use of the computing hardware can be achieved by compressing the data 

at the source, and keeping the data compressed during processing.  For instance, Baker 

and Prasanna (2005) propose using an FPGA to implement the Apriori algorithm.   They 

propose a systolic array architecture that might benefit from compression of the data 

stream between the individual systolic processors.  The Viper algorithm (Shenoy, Haritsa 

& Sudarshan, 2000) proposes compression of the database stream. 

This research work will develop a dynamic Huffman compression algorithm for 

memory-constrained machines.  A memory-constrained machine is defined as one where 

the size of the database to be held in memory, approaches or exceeds the size of the 

memory.  It will benchmark the algorithm using several popular benchmark databases as 

summarized in Table 1.   
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Table 1 
Benchmark Databases 

Database Database source 
Accidents Traffic accident data b 
BMS1 KDD CUP 2000: click-stream data from a webstore named Gazellea 
Kosarak Click-stream data of a Hungarian on-line news portal b 
Retail Market basket data from an anonymous Belgian retail store b 
T10I4D100K Synthetic data from the IBM Almaden Quest research group c 
T40I10D100K Synthetic data from the IBM Almaden Quest research group c 
BMS-POS KDD CUP 2000: click-stream data from a webstore named Gazellea 
BMS-WebView2 KDD CUP 2000: click-stream data from a webstore named Gazellea 
aRetrieved from  http://www.sigkdd.org/kdd-cup-2000-online-retailer-website-
clickstream-analysis.  bRetrieved from http://fimi.ua.ac.be/data/  c Agrawal and Srikant 
(1994) 

 

The dynamic compression results will be compared to the static database 

compression results that were obtained in the previous experiments (see Chapter 2, 

“Initial Investigation,” for results).  The important metrics to collect are the compression 

ratio of prototyped algorithms compared to a two pass Huffman Compression (Huffman, 

1952) and the RLE compression techniques (Golomb, 1966).  The compression ratio will 

be calculated from the measurements of uncompressed and compressed file bit lengths.  

The performance of the Dynamic Huffman compression using limited memory algorithm 

developed in this research will depend on the amount of memory allocated to the 

algorithm.  The algorithm will be run multiple times on the benchmark databases to 

collect insight on how the allocated memory affects real world compression ratios.  A 

complete list of metrics and measurements will be detailed in Chapter 3, Methodology. 

The proposed work prototypes a compression algorithm using a frequent item 

algorithm to determine item frequencies.  A frequent item identification algorithm 

http://www.sigkdd.org/kdd-cup-2000-online-retailer-website-clickstream-analysis
http://www.sigkdd.org/kdd-cup-2000-online-retailer-website-clickstream-analysis
http://fimi.ua.ac.be/data/
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(Metwally, Agrawal, & El Abbadi, 2005) will be implemented and integrated into the 

FGK algorithm. 

The overall goal of this research is to facilitate knowledge discovery in streaming 

databases using reconfigurable computing.  This research will facilitate compression of 

the data stream with a large item list on memory limited devices.   

Research Questions 

A question this research will answer is how the frequent item identification 

algorithm affects the compression algorithms ability to compress different types of 

streaming data.  The benchmark databases represent several varieties of transaction 

databases and are used to represent the streaming data.  This research will compare the 

results of the streaming database algorithms with the static compression techniques 

previously developed and benchmarked.   

Secondly, the benchmark databases results will provide insight on how the new 

algorithms compression ratio varies with the type of data compressed.  For instance, it 

was determined in the initial study that artificial (computer generated) transaction 

databases compress poorly using the Huffman static compression.  Huffman techniques 

compress well when the data has a probability distribution function that is not uniform.  

In probability theory, a uniform probability distribution, f(x), has a constant value 

𝑓𝑓(𝑥𝑥) =  
1

𝑎𝑎 − 𝑏𝑏
 

over interval a ≤ x ≤ b and 𝑓𝑓(𝑥𝑥) = 0 otherwise (Mendenhall, Beaver, & Beaver, 

2012).   For example, when a single dice is rolled, there is a uniform probability of rolling 

any one of the six outcomes.  It was determined that for synthetic datasets with a more 

nearly uniform probability distribution a bit map representation of the database with an 
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RLE compression technique might offer better compression results.  It is expected that 

the memory limited dynamic Huffman compression will provide similar, poor, 

compression results as was obtained with the static Huffman algorithm for a synthetic 

database.  This will be verified using the benchmark datasets. 

A question this research will answer is what should be the criteria for selecting k, 

the number of nodes to hold in memory.  This question has not been found to be explored 

in the literature.   Certainly, this should be related to the total number of symbols in the 

input stream, n.  The metric used by most compression techniques to compare algorithms 

is the compression ratio.  The compression ratio is defined as the compressed data length 

divided by the uncompressed data length.  For streaming data, often the compression 

ratio is defined as the compressed data rate divided by the uncompressed data rate. 

Relevance and Significance (Benefit of Research) 

Because of the explosion of data, stream mining has come to the forefront.  In 

stream mining, the frequency of items t in T (as previously defined) may not be known 

beforehand and thus would require single pass compression.  Additionally, there is a push 

to perform the mining and queries using specialized hardware and reconfigurable 

computing (such as FPGAs) for high speed parallel processing to handle the high speed 

data streams.  The challenge with FPGAs is to create massive parallel high speed 

algorithms with the limited resources on chip.  Although algorithms scalable to a number 

of FPGAs are possible, compression of the data will reduce the number of registers and 

logic necessary.  

This research proposes to apply a single pass dynamic Huffman compression to 

the transaction database stream to compress the k most frequent items in the database, on 
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memory limited machines, where k is a user chosen constant chosen to limit the size of 

the Huffman tree.  It will provide a basis to make the tradeoff between computing 

memory/time required and the resulting compression ratio. 

This research may be beneficial to database storage.  Successfully compressing 

streaming items, i, in T (as previously defined) could result in a reduction in required 

primary storage.  Although a streaming database is not capable of being stored in primary 

memory, compression would allow larger sections, or windows, of the database to be 

stored than could be stored without compression. 

This research will be beneficial to the dynamic Huffman compression of data with 

a large symbol list, or a symbol list where the memory structure is larger than can be fit 

into available memory.   

Barriers and Issues 

In frequent item stream mining an in-memory data structure holds a list of items 

and their frequencies.  The data memory is limited and as it fills up, less frequent items 

are pushed out to make way for new items.  Thus, the main issue is to update the dynamic 

Huffman tree using the results from the frequent item-set mining. 

Specifically, incrementally updating the Huffman tree and keeping the sibling 

property using Vitter’s algorithm (Vitter, 1987), as the frequencies change poses 

problems.  Vitter provides a way to update the Huffman tree with a single new item and 

maintain the sibling property.  Vitter does not provide a way to remove items from the 

tree and rebalance the tree to maintain the sibling property.  Knuth (1985), in his 

algorithm, discusses how to add and remove items from the tree and perhaps by studying 

Knuth’s method, Vitters algorithm (1989) can be extended.  Another possible solution is a 



19 

 

brute force approach (Pigeon, 2003).  The brute force approach recalculates the complete 

Huffman tree as new frequent items are found or removed.  Pigeon also discusses using a 

fixed table as previously discussed in the “Questions” section.  A fixed table provides 

some set of fixed Huffman prefix codes.  These prefix codes are not calculated 

dynamically. They are pre-calculated and fixed.  In this approach the shortest prefix codes 

are simply assigned to the most frequent items. 

Because of these issues, the method that will be prototyped in this research 

proposal is to use the FGK dynamic Huffman algorithm and prune the tree using a 

frequent item algorithm (Metwally, Agrawal, & El Abbadi, 2005).   This algorithm will 

allow reuse of old tree nodes.  The deletion of a tree’s node, or decrementing of a node’s 

weight, will not be required, although it is possible as discussed by Knuth (1985). 

Measurement of Research Success 

There are several measurements that should be met to determine research success.   

The measurements should be quantitative rather than qualitative to avoid subjective 

measurement.   For instance, some metrics might be: Benefits, Value, Goals/milestones.  

Value may be a subjective measurement.  For this research, the following framework 

should be used to determine final success: 

o The coding of a memory limited dynamic Huffman algorithm that: 

 can compress/decompress a file and is verified against Knuth’s 

original results. 

 Consumes comparable memory and time as Knuth’s algorithm. 

 provide a ‘dial’ to control the amount of memory consumed. 
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 Compression ratio comparable to Knuth’s original algorithm when 

memory is not limited.  If not, why? 

o Verification of the ability to compress real life transaction database files 

formats. 

o A method to predict or estimate the compression ratio/memory tradeoff for 

a database application, perhaps based on the distribution of items. 

 This last item is important because if this algorithm is to be included in a design, 

then some expectation of the results should be able to be determined in the design stage. 

Definition of Terms 

Adaptive Compression – A type of single pass compression where the algorithm 

change based on the data being compressed.  The algorithm may 

automatically learn or adapt to the type of data with the goal of increasing 

the compression ratio, or other metric.   

Apriori [algorithm] – A computer algorithm for knowledge discovery in 

databases.  It finds association rules in the data based on a support and 

confidence.  It does this by successively pruning larger supersets of data 

patterns based on the frequency of its subsets.  This bottom up algorithm 

significantly reduces the number of item sets that are considered.     

Canonical [Huffman Code] –It means a ‘useful’ code, given the many different 

Huffman Code sets that could result depending on the arrangement of the 

Huffman tree.  Canonical Huffman codes are lexicographically ordered by 

length of the code. 
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Compression – the act of representing a larger set of data with a smaller set of 

data.  Decompression would be the restoration of the larger set of data, or 

the approximate restoration of the data, from the smaller compressed set. 

Dynamic Compression – see Adaptive Compression 

Entropy – Originally defined in the field of thermodynamics, it is a measure of the 

degree of randomized energy in the system and its ability to produce work.  

A system with higher entropy is more randomized and has less ability to 

do useful work.  In information science, higher entropy refers to a more 

randomized signal.  Shannon (1948b) reused the word and defined it to be 

negative the log of the expected value of the probability of an event.  The 

event in this case would be the symbol or bit in a message.   

Entropy coding – A lossless Compression technique which is accomplished by 

removing redundancy in the data.  

FPGA – Field Programmable Gate Array.  This is a chip that has I/O pins and an 

internal ‘sea of gates’ whose connections are programmable after 

manufacture.  The internal structure of the FPGA is determined by the 

manufacturer but can realize any logic function as determined by the users 

programming.  Commonly, FPGA also contain ‘macro’ functions such as 

memory, phase lock loop clocking circuitry, non-volatile memory, analog 

conversion, and specialized I/O. 

Lossy compression -  a compression technique where the reconstituted data only 

approximates the original signal.  The algorithm accomplishes this by 

partially discarding data.  It may also match data as redundant that only 
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partially matches and then remove the redundancy.  Typically used for 

applications that can tolerate inexactness in the reconstituted data such as 

digitized photos, video and sound.  

Lossless compression – Any compression technique where the reconstituted data 

is identical to the original data for all data targeted by the algorithm. 

LUT – In the context here it refers to Look up Table for an FPGA.  From Boolean 

logic, it is well known that any logic function can be implemented using a 

NAND gate.  FPGA manufacturers do not use the NAND gate as the basic 

building block of the logic that can be implemented on the FPGA.  Rather, 

they use the LUT.  Each LUT typically may have four input bits and a 

single output bit.  Sixteen memory cells hold the logic mapping between 

input and output.  Thus, any Boolean logic function is realizable.  Rather 

than using LUTs to implement flip-flops and registers, manufacturers will 

include a few flip-flops with each LUT on the chip.  Different 

manufacturers may call these LE’s (logic elements), macrocells, or gates. 

Memory constrained – Any real computer system is memory constrained when 

the application or algorithms requirement for data exceeds the memory 

limits.  This could refer to either secondary storage or main memory 

constraints.  

Mining – The term data mining is a misnomer.  A more apt term, and the industry-

accepted term, is Knowledge Discovery in Databases.  The goal of Mining 

is the discovery of useful patterns and relationships in the data and not the 

data itself. 
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Prefix code – A prefix code can be uniquely (and instantaneously) decoded in the 

input stream.  It is usually a variable length code.  Unary coding is a type 

of prefix code. 

Reconfigurable computing – This is the ability of the computing hardware to 

change its hardware connections either dynamically (at runtime), or more 

commonly, to adapt itself to the application after its manufacture.  

Reconfigurable computing was made possible by the development of 

FPGAs with high density.  Reconfigurable computing has the unique 

characteristic of being able to reconfigure itself during or before runtime 

to implement a variety of fine grained, massively parallel, algorithms. 

RLE – Run length encoding is a simple form of lossless data compression where 

long sequences of identical symbols (or data patterns) are coded as a data 

count and symbol (or pattern).  A familiar application that uses RLE 

compression is facsimile transmission.  In this application, it is common to 

scan pages of text which have large sections of white space.  If the pixels 

that represent the white space were encoded as a ‘0’, and the black text 

pixels as a ‘1’, the RLE model would be tuned to encode the large ‘runs’, 

or sequences of 0s as a count and a single 0 bit.   

Streaming – In the context of this document, refers to an unbounded real-time 

data transmission. 

Transaction database – a database whose records (or tuples) contain the presence, 

or absence, of items.  Each tuple also has a key, also called the transaction 

id.  
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Truncated binary coding – a binary coding that is used because of its entropy 

efficiency.  To encode n symbols requires between k and k+1 bits, where 

𝑘𝑘 =  ⌊log2 𝑛𝑛⌋,  In this coding the first few symbols can be transmitted with 

k bits, while the remainder of the symbols require the full k+1 bits. 

Unary coding – This is a type of prefix code.  In this system the number n is 

represented by n 1s followed by a 0 (or the opposite).  Note that the 

number of bits required to transmit this code increases with the number to 

transmit.  Thus, it is an entropy encoding where the probability of each 

symbol is given by 𝑃𝑃(𝑛𝑛) =  2−𝑛𝑛.  It is similar to tallying where a mark is 

drawn for each item to be represented. 

XML – Extensible Markup Language is a set of rules for encoding documents.  It 

is text based and designed to be readable by humans, but efficient for 

machine processing as well.  It is the basis for many formats including 

RSS, SOAP and ATOM.  XML formats have become the basis for many 

applications including Microsoft Office.  Part of the format is textual data 

delimited by text tags.   
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Chapter 2 

Review of the Literature 

 

The Data Stream 

Advances in computing have facilitated the collection of continuous data 

(Aggarwal, 2007).  Much of this type of data is generated from simple transactions, such 

as using a credit card on the telephone, browsing a website with a browser, a stock 

transaction or the daily itinerary of commercial aircraft.  Much of the data flows across IP 

networks.  This data can be mined for interesting relationships for many different 

applications.  When the volume of data is large there are significant challenges: 

1. Because of processing time cost constraints, it may no longer be possible to mine 

the data in multiple passes.  A single pass of the data for its processing may be 

desirable.  This will define the algorithm chosen to process the stream.  Stream 

mining algorithms process the data in a single pass. 

2. In many cases, there is a temporal component to the data.  The data may change 

with some periodicity given the time of day, season, or perhaps it may evolve 

apparently randomly given the political situation of the time.  Item frequencies 

may change over time.  There is a need for stream mining algorithms to 

accommodate this temporal or ‘time varying’ component. 

This second bullet seems to corroborate this research.  The author also notes that 

stream mining is often accomplished with distributed algorithms/hardware (Aggarwal, 

2007).   
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S. Muthukrishnan (2011) presents some further thoughts on the progress and 

direction of stream computing.  He presents an alternate view of stream computing.  He 

notes that computing capacity, memory and communications have been growing steadily.  

With it the amount of generated data has also grown and it needs to be analyzed.  The 

generated data streams are created in “massive” rates far higher than can be captured and 

stored.  It arrives at a faster rate than can be sent to a central database without 

overwhelming the communication’s channel and faster than can be computed.  The 

assumption is that all data can be captured, processed, and stored.  For instance, digital 

signal processing starts with the Nyquist theorem (Nyquist, 1928; Shannon, 1948) that 

states the sample rate should be twice the highest signal frequency for full reconstruction.  

Database theory leads to a relational algebra that is continuously applied to the data and 

is provable to be correct on its results.  Communications theory incorporates the thought 

that there is a minimum number of bits required to transfer the information content.  This 

is Shannon’s concept of self-information (Shannon, 1948).  As a future direction of 

research, Muthukrishnan (2011) notes:  

Streaming and compressed sensing brought two groups of researchers (computer 

science and signal processing) together on common problems of what is the 

minimal amount of data to be sensed or captured or stored, so data sources can be 

reconstructed, at least approximately.  ...This is however just the beginning.  We 

need to extend compressed sensing to functional sensing, where we sense only 

what is appropriate to compute different functions and SQL queries (rather than 

simply reconstructing the signal) and furthermore, extend the theory to massively 
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distributed and continual framework to be truly useful for new massive data 

applications above.  (p. 319) 

In “Data Streams: Algorithms and Applications” (Muthukrishnan, 2005), the 

concept of transmit, compute and store, or TCS, capacity is outlined to differentiate data 

stream processing from other ‘normal’ compute data flow.  The data stream is data that 

occurs as an input to some program at a very high rate.  At this rate it may be difficult for 

the computing hardware to transmit (T) the entire data to the program.  The program may 

have limitations on its ability to compute (C) the algorithms and processing necessary on 

all the large chunks of data.  The program may not be able to store (S) either temporarily 

or to archive the data.  

This view defines data stream processing as relating to the stress on these 

resources. 

Another interesting definition of a data stream, that is relevant to this research, 

comes from the Blog “Development Blog on compression Algorithms” (Collet, 2011).  

The author demonstrates quite a bit of knowledge and the writings do provide 

confirmation of some basic concepts to understand a data stream.  Here Collet (2011) 

says, 

At its most basic level, a file satisfies the definition of a stream.  These are 

ordered bytes, with a beginning and an end.  File is in fact a special stream with 

added properties.  A file size can to be known beforehand.  And in most 

circumstances, it is likely to be stored into a seek-able media, such as a hard disk 

drive.  But a stream is not limited to a file.  It can also be a bunch of files grouped 
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together (tar), or some dynamically generated data. It may be read from a 

streaming media, such as pipe, with no seek capability.  (p. 1) 

Babcock, Babu, Datar, Motwani, and Widom (2002) expound on the unique 

aspects of the data stream.  They note that the database system cannot control the order in 

which the data arrives.  Either between data streams, or within a stream.  They note that 

data streams are unbounded in size and that once a data stream element has been 

processed or discarded, it cannot be easily retrieved unless the element was stored.  But 

typical storage is small compared to the size of the stream.   

There are several real-world examples of stream processing database systems 

(Babcock et al., 2002).  Traderbot is a web-based financial search engine that processes 

queries over streaming financial data.  iPolicy Networks processes network packet 

streams in real time.  It performs complex stream processing, table lookups, URL 

filtering, and correlates the data across multiple network flows.  Large websites such as 

Yahoo may coordinate distributed clickstream analysis to track heavily accessed web 

pages.  Finally, they cite sensor monitoring as a streaming database application.  Large 

number of sensors may generate data that needs to be processed and analyzed by the 

database management system.  An example query from a network management system is 

presented.  This query will compute the averaged load over one minute on link B and to 

notify the operator when the load crosses some value t: 

SELECT notifyoperator(sum(len)) 
FROM B 
GROUP BY getminute(time) 
HAVING sum(len) > t 
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Introduction to Compression  

Both RLE compression (Golomb, 1966) and Huffman Compression (Huffman, 

1952) take advantage of a statistical modeling of the data stream to achieve a level of 

compression.  Without some model of the data, its compression may not be possible 

(Nelson & Gailly, 1996).  For instance, consider all possible 1000-bit messages (Blelloch, 

2001).  It should be obvious that all possible 1000-bit messages (there are 21000 of them) 

cannot be represented by less than 1000-bits, unless some set of those messages are 

represented by more than 1000-bits.  As a more concrete example, take for example an 

alphabet that consisted of only four symbols.  It is impossible to represent 10 different 

values using only four symbols (unless multiple symbol combinations are used).  The ten 

decimal digits cannot be compressed to only four symbols.  Going back to the 1000-bit 

example, a model of the 1000-bit messages is required that identifies a subset of those 

messages and/or some redundancy in the representation of information contained in that 

message subset.  It is reasonable to expect to compress only that subset of messages.  For 

instance, identify a model of data that represents a color static picture, then identify 

redundancies in the structure of the data.  From that model, develop an algorithm and 

code that compress that subset of messages.  Data that falls outside of the model might 

not be effectively compressed.  In fact, data that falls outside the model often result in a 

larger size when run though a compression algorithm not intended for its model. 

Some common ways compression algorithms achieve results is to exploit the 

redundancies in the data (Salomon, 2004).  Redundancies in the database can exist at 

many different levels; from the bit stream level (RLE), to the identification of repeated 

symbol patterns (Ziv & Lempel, 1977, 1978), up to the taxonomy of attributes/records as 
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identified by database normalization (Codd, 1970, 1972).  Note that neither of these last 

two methods require a statistical model of the data.  Non-random data has some sort of 

structure.  Compression takes advantage of that structure to represent that data in a 

smaller version.  Ideally, the smaller, compressed, version of the data would not have any 

noticeable format. 

   For instance, Huffman compression takes advantage of the statistical frequency 

of characters (or tokens) in the message.  In this model of the data used by Huffman, 

there is a statistical non-uniformity in the frequency of characters.  Messages that fall 

outside that model, i.e., do not have a non-uniformity in the frequencies of their data 

characters, when compressed, would likely result in ‘compressed’ messages that are 

larger than the original message.   

As an example, assume a message to be compressed was composed of an alphabet 

that was 127 characters and these characters were encoded in 7-bit ASCII.  Further 

assume that all 127 characters appeared in the original message with equal probability.   

The proposed message might consist of 500 occurrences of each of the 127 characters in 

the symbol set.  Further assume that the occurrence of each of the characters is random 

within the message.  This message falls outside of the Huffman model.  In the Huffman 

model there is a non-uniformity in the symbol probabilities.  The resulting Huffman 

compressed message from this equal probability symbol set would consist of the same 

sized message as the original, also encoded in 7-bit characters.  This can be confirmed by 

trying to build a Huffman tree of the 127 characters where each character has equal 

probability of 0.79%.  The probability of any of the 127 characters occurring is 100%, 

then the probability of a single character, if all had equal probability, is 100%
127

 = 0.79%.   
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Each character would be encoded by the Huffman tree using 7 bits, the same as the 

original ‘uncompressed’ coding.  In addition, the compressed message would contain 

‘overhead’.  The overhead would at least need to contain some representation of the 

Huffman tree, or if canonical codes are used, a dictionary of the input characters.  The 

result in this case would be a compressed message that is larger than the original 

message. 

Arithmetic compression (Witten, Neal, & Cleary, 1987) builds on Huffman by 

taking advantage of inefficiencies in Huffman’s representation of the compressed data.  

This model recognizes that the ideal number of bits to represent the Huffman token is 

most often not an even integer. 

Lempel-Ziv (Ziv & Lempel, 1977) does not look at individual character’s 

frequencies as in Huffman or arithmetic compression techniques.  It looks for repeated 

sequential patterns of characters in streaming message.  It is effective at compression 

long strings of repeated characters.  The Lempel-Ziv model recognizes recurring patterns 

in streaming data. 

A model of a streaming transaction database presents several features that can be 

exploited to code a compression scheme algorithm.  This research is intended to explore 

and find that redundancy.   

Streaming data has a sender, a receiver, and a communications channel.  The 

sender compresses the data.  In some literature, this is also called the coder.  The receiver, 

on the other end of the communications channel, decompresses the data.  In some 

literature, this is called the decoder.  Streaming data compression algorithms need to pay 
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attention to this decompression algorithm as well.  Both the sender and receiver need to 

stay synchronized over the data stream.    

The model of compression may be fixed or adaptive.  An example of a fixed 

compression algorithm might be one which compresses ASCII characters and the relative 

frequencies of the various ASCII character are determined beforehand.  Both the sender 

and receiver require the same model of the data for successful compression to occur.  

With an adaptive model, both the sender and receiver would respond to changes in the 

frequencies of the characters as the data is processed.   

Adaptive, often called dynamic, compression is a type of single pass compression.  

Single pass compression algorithms do not need to know the frequency of items to be 

compressed in advance.  They may have ‘meta-information’ about the model of the data 

but not be tuned to specific probabilities of redundancies in the data.  These techniques 

are applicable to streaming databases because the database may have a temporal 

component and the frequencies may vary over some period.  

Figure 7 shows two models for adaptation.  The forward model assembles a 

packet from the stream.  Statistics on the item frequencies or other redundancies are 

computed over the packet.  The compressed stream is transmitted along with the 

adaptation information.  For instance, in the Huffman two pass compression the source 

transmits the table necessary to reconstruct the Huffman tree.  

In the backward adaptation model, encoding is immediately performed using 

stored information from previous conversions.  As new symbols enter the source stream, 

they are immediately transmitted into the compressed stream (since there is no adaptation 
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information on them yet).  Both the source and destination sides compute the adaptation 

information synchronously. 

  

 

 

Figure 7. Two models of compression adaptation. 

Transaction databases occur in several applications.  Finding association rules in 

market basket analysis is introduced by Agrawal, Imieliński, and Swami (1993).  The 

data typically consists of marketing and transaction information.  This might include the 

date of purchase, a customer ID, a transaction ID, and most importantly the list of items 

and quantities.  In this application, the data may come from a web store, or it may come 
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from a supermarket.  It may come from the register at the checkout counter.  Association 

rules identify those items frequently purchased with other items at the checkout.  For 

example, the association rule might state that 80% of customers who purchased a tablet 

computer also purchased a black carrying case and a mouse.  This type of information 

may determine the advertisements that appear on a web store checkout page, product 

placement within a retail store, layout of a mailing flyer, target marketing…   

Table 2 illustrates popular and proposed transaction database formats.  In the 

horizontal format illustrated in (a), a transaction id (tid) is followed by a variable length 

list of item identifiers. The record, or tuple, is variable length.  For the purposes of a 

compression algorithm, each of these ids would be considered a token in the input stream.  

The tid would be a unique identifier and would have a frequency of 1 in the stream.  The 

item identifiers might not and items that are popular and sold frequently might would 

have a higher probability.  Some algorithms for association rule mining, such as the 

popular Apriori algorithm, assume the horizontal format for the transaction database.  

This database format is also assumed by the MaxMiner (Bayardo, 1998) and 

DepthProject (Agrawal, Aggarwal, & Prasad, 2000) algorithms.  

In contrast is the vertical format as illustrated in Table 2 (c).  In this format, each 

tuple is keyed to the item ID.  Each tuple contains the item tidset.  The tidset is the set of 

all tids in which the item occurs.  Table 2(d) illustrates the vertical bitmap format.  This 

format is used by the Mafia (Burdick, Calimlim & Gehrke, 2001), Viper (Shenoy et al., 

2000), Eclat (Zaki, 2000), Charm (Zaki, 2000), and Partition (Savasere, Omiecinski, & 

Navathe, 1995) algorithms.  Compressed vertical bit vectors are used in this format. 
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Table 2  
Transaction Database Formats 

 
(a) Horizontal format 

ID Item    
100 A, B    
200 D, E    
300 A, C    
400 A, C, E    
500 C    
600 D, E    

 
(b) Horizontal bitmap format 

 Item  
ID A B C D E  

100 1 1 0 0 0  
200 0 0 0 1 1  
300 1 0 1 0 0  
400 1 0 1 0 1  
500 0 0 1 0 0  
600 0 0 0 1 1  

 
(c) Vertical tidset format 

Item Transaction ID   
A 100, 300, 400   
B 100   
C 300, 400, 500   
D 200, 600   
E 200, 400, 600   

 
(d) Vertical bitmap format 

 Transaction ID 
Item 100 200 300 400 500 600 
A 1 0 1 1 0 0 
B 1 0 0 0 0 0 
C 0 0 1 1 1 0 
D 0 1 0 0 0 1 
E 0 1 0 1 0 1 

 

Two Pass Compression of a Transaction Database 

Data mining, or knowledge discovery in databases (KDD), attempts to find 

interesting relationships in a database.  Association rule mining is a machine learning 
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algorithm used for KDD.  Association Rule learning finds frequent item-sets in a 

transaction database, D (Agrawal, Imieliński, & Swami, 1993).  Let the set of 

transactions in D be  

T = {t1, t2,…, tj}, where t1 is the first transaction and tj is the last transaction in the 

database.  Let the set of items in the database be  

I = {i1, i2,…, in}   

Thus, n is the number of different items in the database, and j the number of 

different transactions in the database.  The transactions each have a TID, or transaction 

ID.  An association rule is defined as  

𝐴𝐴 ⟹ 𝐵𝐵; where 𝐴𝐴 ⊆ 𝐼𝐼,𝐵𝐵 ⊆ 𝐼𝐼 and 𝐴𝐴 ∩ 𝐵𝐵 ≠  ∅.   

An example of an association rule is {𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸} ⟹𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘.  The task is to find 

all the frequent association rules in the transaction database, T.  A maximal frequent item-

set, of length k. is defined as  

{𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, … , 𝑀𝑀𝑘𝑘}  

A maximal frequent item-set is not a subset of a frequent item-set.  Finally, a 

transaction ti in D will contain some of the items in I.  Let the cardinality of items in a 

transaction ti in T be |ti| . 

Run Length Encoding (RLE) Compression. 

RLE compression notes that in sparse matrices, there will be long runs of 0 bits in 

each row.  The probability of a 1 bit in the database will be the number of items in the 

transaction database D, divided by the total number of transactions times the number of 

different items in item list.   
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ℕ = � |𝑡𝑡𝑖𝑖|
𝑗𝑗

𝑖𝑖=1

 

ℕ is the total number of items in the database.  The probability of a 1 bit becomes  

𝑝𝑝 =  
ℕ
𝑗𝑗 ∙ 𝑛𝑛

 

 where j is the number of transactions in the database and n is the number of 

different items in the database. 

The probability of a 0 bit will be 1 - p. 

An RLE algorithm using Golomb prefix codes will compress a long string of 0 or 

1 bits with a minimal entropy (Golomb, 1965).  Golomb codes first require computation 

of a factor, m , based on the probability, p, of a 0 bit in the string to be encoded.  This 

quantity is computed as  

𝑝𝑝𝑚𝑚 ≈
1
2

 

        or, 

𝑚𝑚 ≈
− log10 2

log10 𝑝𝑝
=

1
−log2 𝑝𝑝

 

Based on work by Gallager and van Voorhis (1975), Salomon (2007) refines this 

equation.  Salomon more accurately obtains:  

𝑚𝑚 = �−
log2(1 + 𝑝𝑝)

log2 𝑝𝑝
� 

A larger m value means a higher probability of a long run of 0 bits.  This will be 

used to calculate a Golomb prefix code whose length is shorter for runs of 0 bits around 

the ideal mean run length. 
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A Golomb code consists of two concatenated parts; a q value coded in unary, and 

an r value with a truncated binary coding.  Let the run of 0 bits be n in length.  The first 

step, after computation of m, is to compute the three values: 

𝑞𝑞 = �
𝑛𝑛
𝑚𝑚
� 

𝐵𝐵 = 𝑛𝑛 − 𝑞𝑞𝑚𝑚 

𝑐𝑐 = ⌈log2 𝑚𝑚⌉ 

The case where m is a power of two results in c = 0.  This is a special case of the 

Golomb code and is easier to encode/decode.  These are the Rice codes (Rice, 1979).  To 

code the truncated binary quantity r, unsigned integers are used to encode the first 

2𝑐𝑐 − 𝑚𝑚 integers using c-1 bits. The rest are encoded using c bits.   The Rice code do not 

require the first c-1 bit codes.   See Salomon (2007) for a complete description of 

Golomb encoding/decoding.   

Table 3 summarizes some typical Golomb codes.  To use the table, calculate the m 

value.  The length of the run of 0 bits is the n value, then lookup the compression code in 

the table.  If the average number of items in a transaction T can be computed, then RLE 

using Golomb codes can be used to provide a maximal compression of the database in 

Table 2 (b) and Table 2 (d) without knowing the individual probability of each item (as is 

required using Huffman coding.)  For an exact value of P, the database must be read prior 

to compression to determine the average number of items in a transaction.  Fortunately, 

an exact value of P not usually required and an approximate value is usually sufficient 

(Golomb, 1966).  This characteristic enables it as a single pass compression algorithm. 
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Table 3  
Golomb Codes for m = 2 to 13 

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
c 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 

2c – m 0 1 0 3 2 1 0 7 6 5 4 3 2 1 0 
 

 n (number of 0s to compress) 

m 

 0 1 2 3 4 5 6 7 8 9 10 11 12 
2 0|0 0|1 10|0 10|1 110|0 110|1 1110|0 1110|1 11110|0 11110|1 111110|0 111110|1 1111110|0 

3 0|0 0|10 0|11 10|0 10|10 10|11 110|0 110|10 110|11 1110|01 1110|10 1110|11 11110|0 

4 0|00 0|01 0|10 0|11 10|00 10|01 101|0 10|11 110|00 110|01 110|10 110|11 11110|00 

5 0|00 0|01 0|10 0|110 0|111 10|00 10|01 10|10 10|110 10|111 110|00 110|01 110|10 

6 0|00 0|01 0|100 0|101 0|110 0|111 10|00 10|01 10|010 10|101 10|110 10|111 110|00 

7 0|00 0|010 0|011 0|100 0|101 0|110 0|111 10|00 10|010 10|011 10|100 10|101 10|110 

8 0|000 0|001 0|010 0|011 0|100 0|101 0|110 0|111 10|000 10|001 10|010 10|011 10|100 

9 0|000 0|001 0|010 0|011 0|100 0|101 0|110 0|1110 0|1111 10|000 10|001 10|010 10|011 

10 0|000 0|001 0|010 0|011 0|100 0|101 0|1100 0|1101 0|1110 0|1111 10|000 10|001 10|010 

11 0|000 0|001 0|010 0|011 0|100 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111 10|000 10|001 

12 0|000 0|001 0|010 0|011 0|1000 0|100 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111 10|000 

13 0|000 0|001 0|010 0|0110 0|0111 0|1000 0|1001 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111 
Note. The vertical bar (|) indicates the split between the r and q values. 

As an example of compression of a string, assume the following string is to be 

compressed, 000011001000000001.  Assume an exact solution is required and the m 

value is to be calculated.  If an m value is not necessary, then an approximate value can 

be used.  There are 14 zero bits in this sequence of 18 bits.  The probability of a 0 bit in 

the sequence is determined as p = 14/18 = 78%.  An exact value of m is 

�
− log2 1.78

log2 0.78
� = ⌈2.3⌉ = 3 

The run of 0 bits in the string are 4, 0, 2, 8.  Therefore the string can be 

compressed as 1010 | 00 | 011 | 11011.  The compression ratio is 78%.  As a second 

example, encode the string 00000000001000000000010000000001. This example has 29 

zeros in the sequence of 32 bits.  p = 29/32 = 91%.  m becomes 8.  The compressed string 

is 10010 | 10010 | 10001.  The compression ratio here is 45%.  In this second example, 
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there are many runs of 0 bits about the median run length and the sequence compresses 

better. 

In contrast to the RLE using Golomb prefix codes, the Huffman compression 

scheme requires a value for each of the item probabilities.  A static Huffman compression 

algorithm requires two passes over the data.  If applied to a streaming database, it would 

introduce a delay in the data as the statistical frequencies of the symbols are determined 

for the packet.  It would fall under the backward adaptation model. 

Huffman Compression. 

Huffman codes provide a minimum entropy-encoding scheme for items (or any 

tokens) (Huffman, 1952).  Huffman codes require knowing the probability of each item’s 

occurrence in I.  The total number of items in all transactions in D is given by:  

ℕ = � |𝑡𝑡𝑖𝑖|
𝑗𝑗

𝑖𝑖=1

 

If a transaction, ti, contains an item, ik, then |𝑡𝑡𝑖𝑖 ∩  𝑀𝑀𝑘𝑘| = 1 .  Given an item ik in 

database D, the probability, Hk, of that item symbol will be  

𝐻𝐻𝑘𝑘 =  
∑ |𝑡𝑡𝑖𝑖 ∩  𝑀𝑀𝑘𝑘|𝑗𝑗
𝑖𝑖=1

ℕ  
  

Creation of the Huffman encoding table will require a separate pass over the 

database to count the number of times each item appears in the transactions to compute 

each of the Hk’s.  Other options to reading the entire database would be to sample the 

database to determine the item probabilities, or to update the probabilities as the 

transactions in T are written to the database. 

To build the Huffman codes the algorithm first creates a list of all the tokens with 

their associated probabilities.  Each item in the list should be a node of a tree.  Each of 
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these nodes are initially unlinked and free. The Huffman algorithm then builds a binary 

tree bottom-up.  It first selects the two nodes with the least probable tokens from the list.  

It links these two nodes together with a new parent and returns this subtree to the list.  

The probability of this parent node is the joint probability of its two children.  Next, from 

the list containing the remaining free nodes, and the subtrees, the algorithm chooses the 

two next least probable items.  It links these together with a parent node.  This continues 

until it builds the complete tree, with all the items. The root node of the Huffman tree is 

the only node left in the list.     

The Huffman algorithm labels each of the tree branches and enumerate the 

Huffman codes in a dictionary or list of input/output symbols.  When labeling the 

Huffman tree, a consistent approach would be to label all left branches a 1 and right 

branches a 0.  Different labeling schemes will result in different Huffman code mappings.  

The compressed output symbol is the path back to the root.  This is the first pass of the 

algorithm.   

In the second pass, the input file is processed again and the corresponding 

compressed output symbol found in the dictionary to achieve the compression.. 

An example of a Huffman mapping is presented in Figure 8 and Table 4.  In this 

example an imaginary transaction database, D, has five items in its set of items I, Beer, 

Butter, Diapers, Eggs and Milk.  The probabilities are listed in Table 4; each of the Hk‘s, 

were determined by counting the occurrences of items in a database, D.  In this mapping 

Beer would have the Huffman code of 00 and Milk would have the Huffman code of 110 

as shown in the “Huffman Code” column of Table 4.  Beer has a shorter prefix code 

because it has a higher probability of occurring in the database. 
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Figure 8.  Huffman tree. 

 

 

Figure 9. Pseudocode for static Huffman compression. 

  

Create Huffman tree 
Input: list of items and probabilities 
Output: Huffman tree 
 
1.  Create a node for each item. Each node contains item ID  

and probability. 
2.   Initialize a list of the nodes 
3. Repeat 
4.  Sort the list of nodes by probability 
5.   Select two nodes from list containing least probabilities. 
6.  Link the two nodes with a parent node.  The probability of  

the parent node is the joint probability of the child  
nodes. 

7.   Add parent node back to priority list. 
8.   Until list contains single node. 
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Table 4  
Huffman and Canonical Huffman Codes 

Item Huffman code A canonical Huffman code Probability 
Beer   00   00 0.3 
Diapers   10   01 0.3 
Butter   01    10 0.2 
Eggs 111 110 0.1 
Milk 110 111 0.1 
 

Canonical Huffman Codes 

In general, a Huffman code mapping results in a code that is seemingly arbitrary 

(they are based on probabilities of course) since it is not unique and is just one code set 

from many possible mappings.  Decoding of an arbitrary Huffman mapping can be more 

difficult because the decoder needs to replicate the Huffman tree.  One way to make the 

decoding simpler is to use a canonical Huffman code (Schwartz & Kallick, 1964).  The 

canonical Huffman codes add an additional constraint on the generated codes.   

An interesting insight into generating the Huffman code can be gained by looking 

at the Huffman tree.  For the purposes of this research, assume that a left branch from a 

node creates a “0” bit in the resulting compressed code and the right branch a “1” bit.  

Assume for a moment that the “0” and “1” labeling of one of the left and right child 

branches are swapped.  This is a simple swap that the reader should verify does not 

change the Huffman tree.  What it does change is the generated code.  The number of bits 

that encode each symbol does not change with this swap.  Thus, one can conclude, a 

carefully crafted constraint has the latitude to change the generated Huffman code, as 

long as the number of bits remains the same, and still be a Huffman tree.  This constraint 

must also maintain the constraint that each compression code be a prefix code.  To be a 
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prefix code, each generated code cannot be a prefix of any other generated code.  If the 

resulting tree is a Huffman tree, it will automatically also generate prefix codes.  The 

algorithm presented by Schwartz and Kallick maintains these features. 

Table 4 lists a canonical Huffman code.  The first step to building canonical 

Huffman code is to sort the Huffman table by number of bits in the Huffman code.  Next, 

each group of in the list that have identical number of bits are sorted alphabetically.  In 

this example Beer, Butter, and Diapers are first because they each have a two-bit code.  

They appear alphabetically. 

Each of the canonical codes will be the same length as the original code.  The first 

symbol gets assigned the code a code of all 0’s with the same number of bits as the 

originally symbol.  To determine the canonical code of the next symbol in the list, simply 

increment the previous symbols code.  Do this for all equal length codes.  When the next 

symbol in the list has a longer code word, the previous canonical code is incremented and 

an additional ‘0’ bit is appended to the least significant bit.  Append more than one ‘0’, as 

is necessary, to maintain the same number of bits as the original Huffman code.  A 

straightforward algorithm re-encodes the Huffman mapping into new codes (Schwartz & 

Kallick, 1964).   

Decoding of a canonical Huffman code is simple and is algorithmically 

programmable.  The original Huffman tree is not required.  All that is needed by the 

decoder is a list of the items and their Huffman code length.  The structure of the tree, or 

the complete list of Huffman code is not required.  The decoder can build the canonical 

code list from the list of items and their Huffman bit length since the codes are ordered.  

Algorithms (non-table or tree based) exist for decoding canonical Huffman codes.  The 
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canonical code both simplifies the decoding of the compression code by not requiring the 

original tree, but also decreases the amount of data transmitted.  The canonical code 

decreases the ‘overhead’ that should be considered as part of the transmitted data when 

calculating the compression ratio. 

Prefix Codes 

Huffman and RLE compression techniques represent the compressed token as 

unique characters using a prefix code (Blelloch, 2001).  A Huffman code is a particular 

type of prefix code.  In a transaction database stream, where all transaction and item IDs 

are 32 bits, and assuming no errors in the stream, each unique item ID can be identified.  

But assume an entropy encoding were to encode the item IDs as a variable number of 

bits.  It may not be possible to identify where an ID ends, and the next one begins, unless 

some sort of unique stop pattern is used between IDs.  The stop pattern would lower the 

compression ratio.  Another solution is to use prefix codes. 

To appreciate the feature of a prefix code, refer to the three sets of possible prefix 

coding in Table 5.  Code 1 encoding of the characters has a problem.  Assume the 

following sequence of characters is to be encoded, x1x2x3.  The encoded bit stream would 

be 0100.  A decoder could interpret this as x1x2x1x1 or even as the sequence x4x3.  The 

coding does not offer a uniquely decodable sequence.  Contrast this with the compression 

coding of Code 2.  Assume the decoder has the simple algorithm of reading bits until 

either 3 one bits are read, or a 0 is read.  With this algorithm, the decoder can uniquely 

determine the original token as soon as the last bit of the compression code is received.  

Now consider code set 3.  The encoding of Code 3 also offers a unique coding for a bit 

stream.  An algorithm the decoder might use for this coding is to read characters in the 
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input stream until the second 0 is received.  The difference with this is that the decoder 

cannot determine the original token until after the first bit of the next code word is 

received (the second 0).  Code 3 is not an instantaneous code (Salomon, 2004). 

Table 5  
Illustration of Three Possible Prefix Codes 

Token Probability Code 1 Code 2 Code 3 
x1 0.500   0   0     0 
x2 0.250   1 10   01 
x3 0.125 00 110  011 
x4 0.125 01 111 0111 
Average weighted length 1.125 1.75 1.875 

 

Code 2 is the only prefix code because it is uniquely and instantaneously 

decodable in the input stream.  There are many different possibilities for prefix codes 

other than the sequence presented as Code 2. 

 A code is uniquely decodable iff for each source symbol, 𝐸𝐸 ∈ 𝑆𝑆, a valid coded 

representation b exists, and the representation b is unique for every possible combination 

of source symbols s in S, where S is a stochastic process.  

It is a simple matter to build up other prefix codes.  For instance, following the 

procedure given by Huffman, an infinite variety of prefix codes can be generated.  As 

another example, all fixed length codes are prefix codes; such as ASCII codes.  Because 

fixed length codes are all the same length they are uniquely decodable in the input 

stream. 

Adaptive (Dynamic) Compression 

Adaptive Huffman coding was first introduced by Faller (1973), independently 

introduced by Gallager (1978), and then further refined by and Knuth (1985).  It is known 
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as the FGK algorithm.  In the traditional Huffman algorithm, the source is read (in a first 

pass over the data) to determine the symbol frequencies.  The algorithm reads the source 

again (in the second pass) to compress the data.  Often, such as the case with a streaming 

database, this is impractical.  Another example where this would be impractical is where 

a very large dataset is stored in secondary storage and the time to read it in a first pass is 

deemed impractical.  Dynamic or adaptive compression identifies the data source and a 

destination to achieve the compression in a single pass over the data.  Both the source and 

destination work together, they mirror each other.  Both start with an empty Huffman tree 

and build it dynamically, as new symbols in the stream arrive, and the tree must be 

identical on both ends.  On both ends, as symbols are added to the tree, the tree must be 

examined to see if it is still a Huffman tree, and rebalanced if it is not.  Notice that since 

both sides build the tree dynamically there is some savings in data transmission since the 

tree does not have to be initially transmitted as is required in the two pass algorithm.  On 

the other hand, the source symbol frequencies have to be learned, and there is some 

inefficiency as each side asymptotically reaches the ideal source entropy.  The FGK 

algorithm updates the frequencies in the Huffman tree dynamically as new items arrive in 

the stream.  It also rebalances the tree to maintain the sibling property.  A key point, and 

the key to keeping the receiver and transmitter Huffman trees in synchronism, is what 

happens when a symbol that neither the transmitter nor receiver have seen yet is received 

in the stream.  In this case, a special escape symbol, the NYT (Not Yet Transmitted) 

symbol, is transmitted with the new uncompressed symbol, so each side can build the 

identical tree with the new character.  The NYT symbol is defined to have a frequency of 

0.  It is a node in the Huffman tree.  This is the longest code.  As new symbols arrive in 
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the stream, their frequencies in the tree are updated.  If the character is not seen before, 

the NYT node become a parent node and is split into a new NYT node with frequency 0, 

and a new node is added to the tree that represents the new character with a frequency of 

1.  Next, the tree may need to be rebalanced and all the parent nodes may have to be 

incremented. 

The first option in rebalancing the tree is to simply rebuild the whole tree when 

the tree is no longer a Huffman tree.  This is neither Vitter’s (1987) algorithm nor FGK 

(1985), but it is an option for a dynamic compression scheme.  To tell if the tree is a 

Huffman tree, scan the nodes, from left to right and bottom to top, each leaf and parent 

node.  The node frequencies should be in sorted, non-descending order.  This is referred 

to as the sibling property.  Rebuilding the whole tree from scratch every time can be a 

lengthy process (Pigeon, S., 2003).  A second option would be to completely rebuild the 

Huffman tree after some ‘arbitrary’ number symbols are received in the input stream, say 

100.  This option could result in non-optimal compression ratios, but would reduce the 

required processing time.  A third option (Pigeon, 2003) is to rebuild the tree when the 

symbols rank has significantly changed.  In the implementation proposed by Pigeon a 

table is kept with the list of input symbols and frequencies.  As new symbols arrive in the 

input stream the frequencies are updated and the table sorted by frequency.  When a swap 

occurs due to sorting, the Huffman tree is rebuilt.  Pigeon points out that the table 

operations coding is more efficient than Vitter’s algorithm, but on the other hand the tree 

rebuilding is costly. 

The FGK algorithm rebalances the tree more compute efficiently for incremental 

updating of the frequency of a single symbol using the algorithm as outline in the 
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pseudocode given in Figure 10.  The ‘block’ (in line 2) is defined as the set of nodes with 

the same weight.   

 

Figure 10. FGK algorithm tree update pseudocode. Adapted from “Dynamic Huffman 
Coding” by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.   

 

As an example, in Figure 17(b) nodes 2, 3, 4 and 5 are in the same block because 

their weight is 1.  More detailed pseudocode for this same algorithm follows. As Knuth 

(1985) says, “The heart of the dynamic Huffman tree processing is the update 

procedure.” 

Figure 11 lists pseudocode for the update procedure as presented by Knuth 

(1985).  The input to the procedure is the symbol to encode, k.  A following procedure 

uses k.  It is not used here.  The data structure, P, is an array of backward links to the 

parent of the node q.  Line 2 sets q to be the node whose weight should increase.  Note 

the math when indexing the array P.  P is the pointer to node parents and has a range of 1 

to n, where n is the number of nodes (and is a constant).  The parent of node 2j and 2j-1 is 

P[j].  When q becomes 0, the root node is reached.  The procedure calls in lines 4 and 5 

follow. 

Pseudocode FGK Update Huffman Tree 
 
 Input: Huffman Tree, pointer to Node N.  N is the node to increment. 
 Output: Updated Huffman Tree. 
 
1.  Repeat 
2.  Exchange N with the last (rightmost) node in its ‘block’. 
3.  Increment the frequency of node N. 
4.  N  parent of N.   
5.  Until N is the root 
6. Increment frequency of the root 
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Figure 11. Detailed update procedure. Adapted from “Dynamic Huffman Coding” by D. 
E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.   

 

Figure 12 presents the “Move q to the right of its block” procedure (Knuth, 1985).  

Two new arrays here are “B” and “D”.  B is an array of pointers to the blocks.  All nodes 

j of a given weight have the same value of B[j].  The D array is an array of pointers to the 

largest node number in each block. Both arrays have a range of from 1 to 2n-1.  This 

subroutine moves node q to the right of its block, unless both q and it parent are at the 

right of its block already.  This subroutine uses the ‘exchange’ procedure.  The ‘exchange’ 

procedure in Figure 13 exchanges two subtrees (as long as neither is the child of the 

other). 

 

Figure 12. Move q to the right of its block. Adapted from “Dynamic Huffman Coding” 
by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.   

 

Knuth update procedure 
 
1. procedure update (integer k); 
2. (Set q to the external node whose weight should increase); 
3. while q > 0 do 
4.   (Move q to the right of its block); 
5.   (Transfer q to the next block, with weight one higher); 
6.   q ← P [(q + 1) div 2] od; 
7. end; 

Knuth <Move q to the right of its block>= 
 
1. if q< D[B[q]] and D[B[P[(q + 1) div 2]]] > q + 1 then 
2.   exchange (q, D[B[q]]); q ← D[B[q]] fi 



51 

 

 

Figure 13. Exchange procedure. Adapted from “Dynamic Huffman Coding” by D. E. 
Knuth, 1985, Journal of Algorithms, 6(2), 163-180.   
 

The subroutine shown in Figure 14 will update the weight of q, and it will update 

the weight of q’s parent if it has the same weight (Knuth, 1985).  This subroutine 

introduces arrays A, L, G, and W.  Array A has a range of 0 to n.  It is an array of the 

symbols.  Arrays L and G are the left and right pointers to the blocks.  They have a range 

of 1 to 2n-1.  Array W is the weights of each block.  Block k has a weight of W[k].  Its 

range is 1 to 2n-1.  

1.  procedure exchange (integer q, t); 
2.  begin integer ct, cq, acq; 
3.  ct ←  C[t]; cq ← C[q]; acq ←  A[cq]; 
4.  if A[ct] ≠ t then P[ct] ←  q else A[ct] ←  q fi; 
5.  if acq ≠  q then P[cq] ←  t else A[cq] ←  t fi; 
6.  C[t] ←  cq; C[q] ←  ct; 
7.  end; 
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Figure 14. Transfer q to the next block subroutine. Adapted from “Dynamic Huffman 
Coding” by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.   
 

The Encode Procedure of Figure 15 accepts a symbol to encode, k.  The symbol is 

‘looked up’ in a simple hash table, the A array, in line 3.  Typically, the A array stores the 

pointer to the external node containing the symbol.  If the symbol is not stored in the tree, 

then contents of A contain a value less than M to encode the zero-weight symbol.   M is 

the number of zero weight symbols.  The nodes are stored in positions 2M-1 through 

position 2n-1.  M is calculated from E and R.  M = 2E + R, where 0 ≤ R < 2E. 

Knuth < Transfer q to the next block, with weight one higher) >= 
 
1. begin integer j, u, gu, lu, x, t, qq; 
2. u ← B[q]; gu ← G[u]; lu ← L[u]; x ← W[u]; qq ← D[u]; 
3. if W[gu] = x + 1 then 
4.  B[q] ← B[qq] ← gu; 
5.  if D[lu] = q - 1 or (u = H and q = A[O]) 
6.  then comment block u disappears: 
7.   G[lu] ← gu; L[gu] ← lu; if H = u then H ← gu fi; 
8.   G[u] ← V, V ← u; 
9.  else D[u] ← q - 1 fi; 
10. else if D[lu] = q - 1 or (u = H and q = A[O]) then W[u] ← x + 1; 
11.  else comment a new block appears; 
12.   t ← V; V ← G[V]; 
13.   L[t] ← u; G[t] ← gu; L[gu] ← G[u] + t; 
14.   W[t] ← x + 1; D[t] ← D[u]; D[u] ← q - 1; 
15.   B[q] ← B[qq] ← t fi; 
16. fi; 
17. q ← qq; 
18. end 
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Figure 15. Encode procedure. Adapted from “Dynamic Huffman Coding” by D. E. 
Knuth, 1985, Journal of Algorithms, 6(2), 163-180.   

 

Line 6 calculates a temporary value, t, that will be used to loop through the 

symbol to collect the bits to transmit.  The bits are put onto a stack, S, in line 7.  Line 

number 8 sets q to point to the NYT node.  Lines 9 through 11 traverse q up to the root 

node and put the code for the NYT node on the stack.  Z points to the node that contains 

the root of the tree.   Line 11 sets q to its parent.  Line 10 determines if q is an odd or 

even number.  If it’s odd, it’s a right child, if it’s even, it’s a left child, and adds a 1 or 0 

to the stack to transmit. Line 12 transmits the bits just stored on the stack.  

The NYT node represents all the “as of yet” unseen symbols.  It is emitted prior to 

emitting any new symbol.  It is used to keep the encoder and decoder in synchronism. 

When the decoder sees the NYT symbol, it will be used to indicate a new symbol follows 

and to split the new symbol out of the NYT symbol in the tree.  

As an example of the steps an FGK compression algorithm would take, assume 

the string ‘engineering’ are the first characters to appears in the input stream.  Assume the 

1.  procedure encode (integer k); 
2.  begin integer i, j, q, t; 
3.  i ←  0; q ←  A[k]; 
4.  if q ≤ M then comment encode zero weight; 
5.    q ← q – l; 
6.  if q <  2 × R then t ←  E + 1 else q ←  q - R; t ←  E fi; 
7.  for j ←  1 to t do i ←  i + 1; S[i] ←  q mod 2; q ←  q div 2 od; 
8.  q ←  A[0] fi; 
9.  while q < Z do 
10.  i ←  i + 1; S[i] ←  (q + 1) mod 2; 
11.  q ←  P[(q + 1) div 2] od; 
12. while i > 0 do transmit (S[i]); i ←  i - 1 od; 
13. end; 
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character are encoded with an 8 bit ASCII code.  The Huffman tree starts out with an 

empty tree as depicted in Figure 16(a).  The NYT node is split, a new node that 

represents the ‘e’ is assigned to the split node, and a both nodes are assigned to a new 

parent as depicted in Figure 16(b).  This is an example of a new symbol splitting out of 

the NYT node.  The NYT node represent ‘all symbols’ with weight 0.  All the symbols 

that may be received, but as of yet are unseen.  When the NYT node is split it is 

equivalent to pulling one of the symbols out of it.  In the figure, the number inside the 

node represents the node symbol frequency, and the number outside the node represents 

the node number. 

The emitted, or output stream would be the 8-bit ASCII code for the single 

symbol e: 

Input stream : e 

Output stream : e 

 

Figure 16. FGK algorithm example, 'e' input to tree. 

Note that the NYT symbol for the first symbol is not emitted (transmitted) into the 

output stream.  If it were emitted, then the output stream would contain 0e.  It does not 

have to be emitted because for the first symbol only, it can be assumed to be emitted. 

In Figure 17(a) the ‘n’ is added to the tree.  In Figure 17(b) the second ‘g’ is input 

and the tree is updated to reflect the new node weighting.  In Figure 17(b) the parent of 

(a) (b) 
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the new node (the ‘g’) is interchanged with the last node in the block of nodes that has the 

same weight as it.  The last node in that block is then incremented by 1.  Therefore, the 

leaf node that contains the ‘e’ moves to the left side of the root. 

The output stream now has the addition of the two NYT symbols, the n and the g 

symbols.  Notice the NYT code changes dynamically. 

Cumulative input stream: eng 

Cumulative output stream: e 0n 00g 

 

Figure 17. FGK algorithm example, ‘n’ and ‘g’ input to tree. 

In Figure 18 (a) the ‘i’ is added to the tree.  Because the parent of the ‘g’ now has 

a frequency of 2, its subtree will be exchanged with the highest numbered node that has 

the same weight.  In this case, that is the leaf node that represents the ‘e’.   

In Figure 18(b) a second ‘n’ character is input.  This symbol is not in the tree.  

Since the ‘n’ node is the highest numbered node in its weight group, it is not exchanged 

with any node.  The ‘n’ node is incremented.  Now the algorithm moves up to the parent.  

That node is also the highest numbered node in its group.  In fact, it is the only node in 

the group with a weight of three.  An exchange of this node is not required. 
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Cumulative input stream: engin 

Cumulative output stream:  e 0n 00g 100i 11 

 

Figure 18. FGK algorithm example, 'i' and second 'n' input to tree. 

The addition of the two e’s results in the trees shown in Figure 19 (a) and Figure 

19 (b).  Finally, the input of the last part of the string, ‘ring’, causes a few exchanges of 

parent nodes as the algorithm recursion travels up the Huffman tree.  Figure 20 shows the 

final tree. 
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Figure 19. FGK algorithm example, input of the two e's in the string 'enginee.' 

 

Figure 20. FGK algorithm example, adding the ‘r’ (a). and the final ‘ing’ (b). 
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Cumulative input string: engineering 

Final, cumulative output stream:  e 0n 00g 100i 11 10 10 1000r 1111 10 110 

 

Assuming that the input characters are coded with an 8 bit ASCII code, the 

effective compression ratio would be (5*8+25)/(11*8) = 74%.   The compression ratio is 

defined as the compressed string length divided by the uncompressed string length.  In 

this calculation, each symbol is assumed to be an 8-bit ASCII character.  There are 5 

input ASCII characters in the output stream and 11 ASCII characters in the input stream.  

Shannon, in his 1950 paper “Prediction and Entropy of Written English”, calculates the 

ideal as about 1.5 bits per character in the 27-letter written English.   The ideal 

compression ratio to be asymptotically reached by a dynamic Huffman compression 

algorithm would be 1.5/8 = 18.75%. 

Table 6 summarizes the weights (or frequencies) of each of the leaf nodes and the 

generated compression code for each symbol at the termination of the input stream.  It is 

interesting to compare the dynamically generated tree in Figure 20(b) to a tree built with 

Huffman’s original algorithm.  To make an equivalent comparison, initially a list is 

created that contains the NYT node and node’s whose contents are the tuple of the 

symbol and the frequency as listed in Table 6.   
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Table 6 
Final Huffman Codes After Input String 'Engineering' 

Symbol Frequency Code 
E 3     11 
N 3     10 
I 2     00 
G 2   011 
R 1 0101 
NYT 0 0100 

 

The first step by the static Huffman would be to combine the NYT and the ‘r’ leaf 

node into a subtree because these are the lowest frequency (probability) in the list of 

Table 6.  The resulting subtree has a frequency of 1.  Next, this subtree is combined with 

the ‘g’ leaf node.  There is another choice here, the ‘i’ leaf node, because it has the same 

frequency, but choosing the ‘g’ will eventually lead to the tree determined dynamically.  

This subtree has a frequency of 3.  Next, combine the leaf node ‘i’ and the subtree with 

the frequency 3 to obtain a new subtree with a frequency of 5.   

At this point, there are three items left in the list.  These are the subtree with the 

frequency 5, and the ‘e’ and ‘n’ nodes (each with a frequency of 3).  The next step in 

Huffman’s algorithm is to combine the ‘e’ and ‘n’ nodes to obtain a subtree with 

frequency 6.  Finally, two subtrees are left with frequencies 6 and 5.  These combine to 

obtain the Huffman tree with a root that has a frequency of 11.  Thus, the tree determined 

with the static algorithm would be identical to the dynamically generated tree of Figure 

20(b).  Generally, the trees determined by the static Huffman algorithm and the FGK 

algorithm will not be identical, Vitter (1987) discusses this further.  Differences in the 

shape of the tree can stem from choices in building the tree when two nodes (leaf or 

internal) have the same weight and from the rebalancing procedure..   
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Figure 21 more clearly illustrates the sibling property.  Gallager (1978) defines a 

binary tree as having the sibling property “if each node (except the root) has a sibling and 

if the nodes can be listed in order of non-increasing probability with each node being 

adjacent in the list to its sibling.”  

Figure 21 lists each node in the tree.  The list of nodes is in order of decreasing 

probability.  The table illustrates that each node has a sibling (except for the root node).  

Further, each node is adjacent to its sibling in the list.  More formally, if the tree holds K 

symbols, then Knuth shows that the tree has 2K-1 nodes.  For each k, where k is between, 

0 < k < K – 2, the 2kth and the (2k-1)th element must be siblings (Knuth, 1987). 

 

Figure 21. Sibling property illustration. 

  Algorithm Ʌ, also known as Vitter algorithm (Vitter, 1987), improves upon the 

FGK algorithm in several ways.  Vitter proves that both the lower bound, and the upper 

bound, on the number of transmitted bits is up to two times better with algorithm Ʌ.  

Vitter achieves this efficiency by improving his algorithm so the tree is in better balance 
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than with the FGK algorithm.  A second improvement is that when a node moves, the 

number of interchanges is limited to one.  Vitter’s algorithm is known to create a more 

balanced tree than Knuth’s algorithm.  If an input file can be compressed using the static 

Huffman algorithm down to S bits and it consists of n symbols, then the FGK algorithm 

can compress with a maximum of to 2S + n bits. Vitter significantly improves this.  With 

algorithm Ʌ, less than S + n bits will be transmitted (Vitter, 1987).   

For this research the resulting algorithm can be applied equally well to both 

algorithms Ʌ and FGK.  The technique of using a frequent item identification algorithm 

(Metwally, Agrawal, & El Abbadi, 2005)  to moderate the size of the data structures and 

the algorithm and its improvements can be applied to either. 

The Huffman tree only approaches the true minimum bound for the entropy in the 

message.  The true minimum bound for the entropy in each message is  

𝐻𝐻 =  −�𝑃𝑃𝑖𝑖 log2 𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

where n is the number of bits to be encoded and Pi is the probability of the symbol 

in the message of length n.  This was one of the main contributions of Shannon (1948).  

The number returned by this equation is a lower bound on the entropy in a given message 

and in general is NOT an integer.  The Huffman tree is a minimum encoding, as 

represented by an integer number of bits.  This is because each compressed token is 

transmitted independent of the other tokens.  It is possible to encode with non-integer 

numbers of compressed bits using the arithmetic compression algorithm (Witten, Neal & 

Cleary, 1987).       

In both Vitters algorithm and the FGK algorithm, a special node, the NYT node 

(for ‘not yet transmitted’), is part of the tree with a frequency of zero.  When a new 
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symbol is processed in the data stream, and the symbol is not already in the tree, the NYT 

symbol, and then the uncompressed token immediately following, is transmitted to the 

receiver.  Both sender and receiver then incrementally update their Huffman tree by 

adding the new symbol with a frequency of one.  On the other hand, if the symbol is 

already in the tree, then the Huffman code corresponding to the position in the tree is 

transmitted.  In this case both sender and receiver need to increment the frequency of the 

item in the tree.   

The tree is then updated to maintain the sibling property using the FGK algorithm 

or algorithm Ʌ, since nodes were either added to the tree or item frequencies updated 

(Knuth, 1985) (Vitter, 1987).   

In algorithm Ʌ each node is numbered as with the FGK algorithm.  Knuth (1985) 

shows that a Huffman tree with n leaf nodes has n-1 internal nodes and 2n-1 total nodes.  

This applies to the tree as built by algorithm Ʌ as well.  The Ʌ empty tree starts with the 

single NYT node.  It has a frequency of 0 and a node number of 2n-1.  When an existing 

symbol is encountered in the tree, its node frequency is incremented and the tree is 

checked for the sibling property.  If the tree needs to be updated, then algorithm Ʌ is 

called.  If the symbol is a new symbol not yet in the tree then the NYT node frequency is 

set to 1, the symbol is transmitted and the NYT node is set to the new symbol.  A new 

NYT node is spawned.   

As with the FGK algorithm, the nodes are numbered from left to right, and from 

bottom to top.  Algorithm Ʌ uses an implicit numbering.  With Vitter all leaves of the 

same weight w precede all internal nodes of the weight w.  The FGK algorithm did not 
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enforce this constraint.  This constraint keeps the tree in balance better than the FGK 

algorithm. 

The dynamic tree starts with the NYT node, and spawn from it.   The root node 

will always have the node number 2n-1.  Next, Vitter defines a block to be all nodes with 

the same frequency and uses the implicit numbering scheme.   

The algorithm Ʌ (Vitter, 1987) update procedure is as follows.  Its purpose is to 

maintain the sibling property and implicit numbering.   

If the symbol received has never been seen before then the NYT node spawns a 

new NYT node and a leaf node as its two children.  The old NYT node (which is now the 

parent) and the new leaf node’s frequency are both incremented.  The leaf node’s identity 

is set to the received symbol.  If the received symbol is already in the tree that node is 

inspected to see if it’s the highest numbered leaf node in the block.  If it is not, it is 

shifted into the spot where it is the spot ahead of all the internal nodes in its block.  Then 

the weight of the node is incremented.  The word ‘shifted’ is important because all the 

internal nodes ahead of it must be shifted into the position just opened.  If the node is an 

internal node to be incremented, then there is a different sequence.  Internal nodes must 

be shifted into the place above all leaf nodes with a weight that is 1 higher than the 

current weight.  All the leaf nodes then get shift to down one into the spot just open.  The 

internal node then gets incremented.  Thus, the internal node maintains a spot with all 

other internal nodes of the same weight. 

 This completes the exchange of nodes at that level in the Huffman tree.  If this 

was the root node, then the algorithm is finished.  If it is not, then the current node is set 
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to the parent node of the current node and this algorithm is repeated one level up the 

Huffman tree.  The pseudocode is presented in Figure 22. 

 

Figure 22. Core pseudocode for Vitters algorithm Ʌ. Adapted from “Algorithm 673: 
Dynamic Huffman Coding” by J. S. Vitter, 1987, ACM Transactions on Mathematical 
Software, 15(2), 158-167.   

 

A simpler but less efficient method pre-calculates a set of Huffman variable size 

codes based on preset probabilities (Salomon, 2004).  This set of Huffman codes are 

randomly assigned to items in the input stream.  As the input stream progresses the 

frequency of each item is updated.  The list of items is then sorted by frequency.  The 

most frequent items are then at the top, which has the shorter preset Huffman code.  This 

method is simple and seems straightforward to adapt.   

Pseudocode Ʌ 

Input: Huffman Tree, pointer N to leaf to increment) 

Output: Updated Huffman Tree 

1. Repeat 
2.   If (N is a leaf node) 
3.    Slide N into the last (rightmost) node in its block ahead of all  
    internal nodes with the same weight. 
4.    Slide all nodes into the spot open by N. 
5.    Increment the frequency of node N.  
6.  Else {N is an internal node} 
7.  Slide N into the spot to the right of all leaf nodes with a  
   weight of 1 higher. 
8.  Slide all nodes into the spot open by N 
9.  Increment the frequency of node N 
10.  N  parent of N 
11. Until N = root 
12. Increment frequency of the root 
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Dynamically Decreasing a Node Weight 

Knuth (1985) provides a procedure for the FGK algorithm to decrease a nodes 

weighting and rebalancing the Huffman tree dynamically.  Knuth did not provide any 

insight as to why a decrement of the node weights might be necessary.  In the context of a 

data compression scheme for a database stream, perhaps the weight of nodes would be 

decreased because of a time sensitivity of tokens in the stream.   

In any case, an algorithm that can decrease a node weighting in a dynamic 

Huffman tree may be important to reducing the dynamic trees size to fit into a memory-

limited machine as the algorithm removes old symbols.  Knuth’s algorithm to decrease a 

nodes weight by unity proceeds similar to his FGK algorithm for increasing the weight, 

but in reverse.  First, the node to be decreased is identified.  This leaf node is exchanged 

with the node that is the lowest numbered node in its block.  Recall that the block is all 

nodes that have the same weight, consisting of both leaf and internal nodes.  After the 

exchange, the node weight is decreased by one.  The algorithm then moves up one level 

in the Huffman tree to its parent.  That node is then exchanged with the lowest numbered 

node in its block and then the weight is decreased by one.  The algorithm will 

sequentially process nodes up the tree until it gets to the root.   

As an example, consider the tree previously given as an example and depicted in 

Figure 20(b).  This tree will have its weighting of the ‘e’ node decreased by one, three 

times.  Since it has a weight of three, it is expected that the NYT node will absorb the ‘e’ 

node after the operation.  Figure 23 depicts the tree after the ‘e’ weight is decreased by 

one and the tree rebalanced.  Figure 24 and Figure 25 depict the tree after the ‘e’ weight 

is decreased by one, two more times, and the NYT node absorbs the ‘e’ node (Figure 26). 
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Figure 23. Decreasing the symbol "e" weight by one, to 2. 

 

Figure 24. Decreasing a node ‘e’ weight by one, to 1. 
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Figure 25. Decreasing a node ‘e’ weight by one, to 0. 

 

Figure 26.  'e' is absorbed by NYT node. 

 

Frequent Item Counting in Streams 

Two frequent item counting algorithms investigated to moderate the size of the 

Huffman tree by identifying the frequent items are the Frequent-k and SpaceSaving 

algorithms.  The Frequent-k algorithm (Karp, Shenker & Papadimitriou, 2003) keeps an 
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item list of length k where k is chosen to be less than the number of unique items in the 

streams alphabet.  It counts frequent items in the data stream.  The problem is defined as 

follows.  Assume a data stream S contains items x1, …, xN.   The number of items in the 

stream is N.  These items are drawn from a set I.  The frequent items are those items in S 

that occur more than ϕ N times.  ϕ is the support of an item in the stream.  An item must 

occur more than ϕ N times in the stream for it to be a frequent item.  An exact solution to 

this problem will require O(min{N, |I|}) space.  The Frequent-k and SpaceSaving 

algorithms focus on an inexact solution where the memory required is less than 

O(min{N, |I|}) (Teubner, Muller, & Alonso, 2011).   

The Frequent-k algorithm maintains a list of the k items and a counter for each 

item, ti, in the stream, and where k is picked to be less than n. The algorithm inserts new 

items into the list if they are not there already, and it initializes the count to one.  It does 

not allow the list to grow larger than k.  A proof exists to show that it maintains the list of 

the k most frequent items and their relative frequency.   

Frequent-k is an “є approximate” algorithm.  Cormode and Hadjieleftheriou  

(2008) note that according to Bose (2003) “executing this algorithm with k = 1/є ensures 

that the count associated with each item on termination is at most єn below the true 

value.”  Cormode and Hadjieleftheriou provide a definition, “Given a stream S of n items, 

the є-approximate frequent items problem is to return a set of items F so that for all items 

i є F, fi > (ϕ -є) n, and there is no i ∉ F such that fi > ϕn”; ϕ is the support of the item in 

the stream.  Then ϕn is the ideal frequency of the item in the stream for it to be 

considered frequent.   fi is the frequency of each of the items i in the є-approximate set F.   

ϕ - є, therefore, is an approximation to ϕ.  If є ≠ 0, then fi approximates ϕn, and it must 
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not be less than fi.  In other words, the є approximate set should not overestimate the 

count. 

 

Figure 27. Frequent-k algorithm.  From “A Simple Algorithm for Finding Frequent 
Elements in Streams and Bags” by R. M. Karp, S. Shenker, and C. H. Papadimitriou, 
2003, ACM Transactions on Database Systems, 28(1), 51-55. 
 

The time costs of Frequent-k are dominated by O(1) dictionary operations every 

update, and the O(k) cost of decrement all the counts in the list (Cormode & 

Hadjieleftheriou, 2008).  

The SpaceSaving algorithm (Metwally. Agrawal, & El Abbadi, 2005) pseudocode 

is listed in Figure 28. The time costs of SpaceSaving are dominated by O(1) dictionary 

operations every update and finding the item with minimum count O(log k) (Cormode & 

Hadjieleftheriou, 2008).   

Frequent-k Algorithm 

1. A list, which is initialized to null, is maintained of item/count pairs.   

2. The list is updated as new items arrive in the stream.  There are three 

possibilities when an item arrives: 

a. If the item is in the list, then its count is simply incremented.   

b. If the item is not in the list, and the list length is less than the 

maximum list length k, then the new item is added to the list and the 

its count is initialized to 1.   

c. The final possibility is that the item is not in the list and the list is full 

(number of items in list > k).  In this case: 

i. all items counts in the list are decremented by one.   

ii. Items whose count reaches 0 are removed from the list.   

iii. The new item is not added to the list.   
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Figure 28. SpaceSaving algorithm.  From “Efficient Computation of Frequent and Top-k 
Elements in Data Streams,” by A. Metwally, D. Agrawal, and A. El Abbadi, 2005,   
Proceedings of the 10th International conference on Database Theory, 398-412.  
 

When the SpaceSaving algorithm finds a new item in the input stream, and the list 

is full, it does not start the new item out at a count of 1 as in the Frequent-k algorithm.  

Rather, it assumes that the new item might have occurred in the stream before and it just 

lost count of it because another item had replaced it.  Thus, SpaceSaving algorithm never 

underestimates the count of an item.  SpaceSaving has the property of maintaining an 

accurate count for items that appear early in the stream (Cormode & Hadjieleftheriou, 

2008). 

Figure 29 presents an example of the Frequent-k algorithm.  Figure 30 presents 

an example of the SpaceSaving algorithm.  In part (a) an initial string of 

SpaceSaving Algorithm 

1. A list, which is initialized to null, is maintained of item/count pairs.   

2. When a new item arrives, there are three possibilities: 

a. If it is in the list, then its count is incremented.   

b. If the new item is not in the list, and the list is not full, then the item is 

added to the list and its count is initialized to 1 (as with Frequent-k). 

c. If the item is not in the list, and the list is full, then Space-Saving operates 

differently than Frequent-k.  In this case: 

i. Space-Saving finds the item with the smallest count.  

ii. It replaces the item with the smallest count with the new item. 

iii. It increments the count by 1.   
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‘aacccbbbbddeeeee’ is input on the stream.  This fills all the available slots in the list for 

each algorithm.  In part (b) the subsequent string ‘ffbbgg’ is input on the stream. 

The first two ‘f’ character input to the Frequent-k algorithm result in count of all 

symbols in the list being decrement by 2.  In addition, the ‘a’ and the ‘d’ symbol counts 

reach zero, so they are removed from the list.  Next, two ‘b’ characters are input to the 

algorithm.  This symbol is in the list, its count is incremented twice.  Its count is restored 

a value of 4.  Finally, two ‘g’ characters are input to the algorithm.  ‘g’ is not in the list, 

but there are empty slots in the list.  The ‘g’ symbol is put into the first available slot, the 

slot previously occupied by ‘a’. 

 

Figure 29. Frequent-k algorithm example, k = 5. 

The SpaceSaving algorithm proceeds differently from Frequent-k  as illustrated in 

(b) of Figure 30.  The first ‘f’ character is not in the list and the list is full.  The algorithm 

finds the first symbol in the list with the lowest count.  This is the ‘a’ character.  The ‘a’ 

character is then replaced with the ‘f’ character and its count is incremented.  The second 

‘a’ character results in the count being increment one more time.  Next, the two ‘b’ 

characters are input to the algorithm.  ‘b’ is in the list, its count is incremented twice.  

Finally, two ‘g’ characters are input to SpaceSaving.  ‘g’ is not in the list and the list is 

a 2 
c 3 
b 4 
d 2 
e 5 

 
‘aacccbbbbddeeeee’ 
 

(a) 

g 2 
c 1 
b 4 
  
e 3 

 
+‘ffbbgg’ 

 
(b) 
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full.  SpaceSaving identifies the first item in the list with the lowest count.  This time that 

is the ‘d’ character.  The ‘d’ character is replaced with the ‘g’ character and the count is 

incremented twice.  Once the list is full, it will always remain full with SpaceSaving.  

SpaceSaving simply replaces the symbol with the lowest count with the new symbol 

when the list is full. 

 

Figure 30. SpaceSaving algorithm example, k = 5. 

 

Another algorithm to find frequent item in a stream is Lossy Counting (Manku & 

Motwani, 2002).  This algorithm is further optimized around the time complexity of the 

frequent item task; it is like Frequent-k in that it keeps a count of recent items.  The 

SpaceSaving algorithm has the additional benefit of accurately counting items that occur 

early in the stream (Cormode & Hadjieleftheriou, 2008), rather than just providing 

identification of frequent items.   

  

a 2 
c 3 
b 4 
d 2 
e 5 

 
‘aacccbbbbddeeeee’ 
 

(a) 

f 4 
c 3 
b 6 
g 4 
e 5 

 
+‘ffbbgg’ 

 
(b) 
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Lossy Compression 

In a lossy compression scheme, the recovered data stream would not be identical 

to the original stream.  Lossy compression is typically applied to data such as voice and 

video where some loss of the original fidelity can be tolerated.  Several researchers have 

explored lossy compression applied to a database stream. 

As an example of lossy compression applied to a database stream, 

Muthukrishnan’s (2011) recommends that a sensor database stream may be compressed 

using a lossy algorithm.  In this research, the author looks at several data stream sources.  

A compressed sensing system would compress the data at the generating data source.  A 

system that employs a lossy compression system, if the goal were to minimize compute 

resources rather than communications bandwidth, could employ the lossy compression 

hardware anywhere in the transmission channel (for instance at the receiver rather than 

the source).   He suggests “Compressed Functional Sensing” and he writes “We need to 

extend compressed sensing to functional sensing, where we sense only what is 

appropriate to compute different functions and SQL queries (rather than simply 

reconstructing the signal) and furthermore, extend the theory to massively distributed and 

continual framework to be truly useful for new massive data applications above.”  In 

effect, he may be suggesting that the SQL query be moved to the source to achieve 

compression of the data stream.  Another possibility he may be suggesting, for a lossy 

compression of the data stream, would be to move up the concept hierarchy. 

Lossy compression of XML data is proposed by M. Cannataro (Cannataro, 

Carelli, Pugliese, & Sacca, 2001).  This may have application to a lossy compression 

streaming algorithm.  In this application, the author envisions a sales application where 
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daily sales are sent to a manager for approval.  If the manager were sitting at their desk 

with a large monitor, there may be no problem in displaying or accessing the information.  

On the other hand, if the manager were using their cell phone then perhaps only the daily 

sales total amount is presented.  However, perhaps that is too little information.  The 

phones display and network may have more capacity to present additional information.  

In the scenario, they envision the phone negotiating with the source an available 

bandwidth.   

The solution the authors (Cannataro, Carelli, Pugliese, & Sacca, 2001) proposes is 

for the source to first negotiate a transmission and lossy compression rate.  The document 

is then delivered at the negotiated rate.  The source then identifies several dimensions of 

the original datacube such as item type and customer city.  It then processes the hierarchy 

over those dimensions and some aggregate measures, such as the item quantity.  It 

processes the datacube over those aggregate functions, over the dimensions and delivers 

to the destination a ‘synthetic’ datacube.  The author claims that this is a lossy synthetic 

version of the original datacube.   

 Cannataro (2001) points out the various categories of data compression.  For 

instance, lossless vs. lossy compression.  These terms reference the reversibility of the 

compression.  If the restored data is identical to the original data, the compression is 

lossless.  Another category is on which features the data is compressed.  Cannataro makes 

a distinction between source coding and entropy coding.   Source coding refers to 

compression made on the semantics of the data, whereas entropy coding is made on the 

redundancy in the data. 
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One of the future directions proposed by Cannataro is to focus on the analysis of 

the error in this lossy scheme.  Many lossy compressors have measurable errors and 

suitable metrics could be developed.  This is an important metric that could be delivered 

with the compressed data.  While the author explores the possibility of lossy compression 

on a database stream, it seems to be most applicable to data that can tolerate an 

inexactness in the reproduced, uncompressed, stream such as audio, video or other sensor 

data such as temperature. 

A typical data stream processing system (Rajaraman & Ullman, 2012) may have 

several input streams which are asynchronous, or even have non-periodic time schedules.  

There may or may not be an archival storage system in any data stream processing 

system.  In this data stream processing, although it may be archiving parts or the whole 

stream, it is generally not practical to answer queries over the database using the database 

archive.  Secondly, as the author points out, there is a limited working store that may hold 

summaries, or parts, of the data stream.  This is central support to the ‘memory limited’ 

premise of this research.   

Rajaraman and Ullman (2012) point out typical sources of the streaming data.  

They point out the data may be sensor data, image data, or internet and web traffic.  

Sensor data might come from a temperature sensor that is coupled with a GPS unit that 

can read altitude or height.  If the oceans were covered in sensors, one every 150 sq. mi., 

and each sensor generated a data point at a 10Hz rate, then 3.5 terabytes of information 

would be generated every day (Rajaraman & Ullman, 2012). 

Web traffic is another source of Streaming data.  Sites such as Google and Yahoo! 

generate billions of clicks per day.  “A sudden increase in the click rate for a link could 
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indicate some news connected to that page, or it could mean the link is broken and needs 

to be repaired” (Rajaraman & Ullman, 2012). 

The limited memory of a data stream processing system is reiterated by Marascu 

and Masseglia “Mining Sequential Patterns from Temporal Streaming Data” (2005).  

Here they note the attributes that set data stream processing apart from other database 

processing.  For instance, new elements are generated continuously and they must be 

considered as fast as possible.  Blocking of the data or operations is not allowed and the 

data may be considered only once (single-pass).  Most importantly they note that memory 

size is “restricted.” 

Frequent Item-Set Stream Mining 

Frequent item-set stream mining is closely related to frequent item stream mining.  

Jin and Agrawal (2005) propose a method based on the Frequent-k algorithm (Karp, 

Shenker & Papadimitriou, 2003).  In their Item-set mining algorithm, a Lattice of all 

item-sets up to some Lk is maintained, where k is the maximal frequent item-set.  Item-

sets for k < 2 are maintained similar to the Frequent-k algorithm.  All two-item 

combinations of items in the stream enumerated and are added to L2 using Frequent-k.  

The researchers invoke a routine “ReducFreq” when the array for Lattice L2 is filled.  

ReducFreq decrements the count of all items in L2.  It also triggers a second stage.  The 

second stage deals with item-sets for k > 2.  It progresses one level at a time.  For L3 it 

enumerates all three item-set combinations in the transaction in the input stream.  

However, if the 2 item subsets are not contained in L2, then the 3 itemset is not added to 

L3.  In this way, the Apriori property is exploited.  This second phase continues until all 
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lattices are updated, up to the maximum item-set.  As item-sets are added to each lattice, 

a count is updated, or ReducFreq is called again if the Lattice is filled. 

Item-set compression poses memory challenges as well.  Item-set compression 

finds frequent combinations of items that occur in each of the stream’s transactions.  The 

combinatorial memory requirement growth of an item-set compression algorithm from 

direct application of a bottom-up item-set identification algorithm will require (Jin & 

Agrawal, 2005): 

Ω(�1
Θ� � × � 𝐶𝐶𝑖𝑖𝑙𝑙 �) 

space for the lattice, where l is the length of each transaction, i is the number of 

potential frequent item-sets, θ is the support threshold, Ω is a constant, and C is the 

combinatorial operator.  As the equation indicates, this approach is prohibitively 

expensive when l and i are large. 

The amount of compression offered by an item-set identification and compression 

algorithm varies by the cardinality of the item-set and the frequency of the item-sets.  

Smaller item-sets that occur more often could possibly provide a higher overall 

compression ratio than larger items that occur less often. 

The definition of the compression ratio commonly used is  

𝑐𝑐
𝑢𝑢

 

where c is the length of the compressed data stream and u is the length of the 

uncompressed data stream.  An estimate on the compression ratio for a frequent item-set 

compression algorithm can be developed with a few assumptions about the data stream.  

The first is the number of item IDs are “much much” greater than the number of 

transaction IDs.  That is, the item IDs dominate the data stream.  The second is that a 
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frequent item-set compresses to a single ‘compression ID’ that is the same size as each of 

the item IDs.  Finally, it is assumed that synchronization data, such as the NYT token to 

be discussed later, are a negligible part of the stream.  If an item-set, x, has a support of 

supp(x), and the length of the item-set is |x|, then the contribution of any single itemset to 

the compression ratio estimate is: 

𝑐𝑐
𝑢𝑢

=  
𝑢𝑢 −  𝐸𝐸𝑢𝑢𝑝𝑝𝑝𝑝(𝑥𝑥) ∙ 𝑢𝑢 ∙ (|𝑥𝑥| − 1)

𝑢𝑢
 = 1 − 𝐸𝐸𝑢𝑢𝑝𝑝𝑝𝑝(𝑥𝑥) ∙ (|𝑥𝑥| − 1) 

Thus, the contribution that an itemset x makes to the overall compression is 

proportional to 

(|𝑥𝑥| − 1) ∙ 𝐸𝐸𝑢𝑢𝑝𝑝𝑝𝑝(𝑥𝑥) 

Finding the frequent item-sets that minimize the compression based on 

identification of frequent item-sets may be an area for future research. 

Several algorithms for frequent item-set identification on a static database exist 

(Agrawal & Srikant, 1994; Savasere, Omiecinski, & Navathe, 1995).  A common 

requirement for these algorithms is that they require the database to reside in memory, or, 

the database to stream into memory once, or several times. 

Several algorithms for frequent item-set identification provide for some sort of 

compression of the in-memory database structure (Bodon & Rónyai, 2003; Han, Pei & 

Yin, 2000; Shenoy, Haritsa & Sudarshan, 2000; Zaki & Gouda, 2003; Zaki, 

Parthasarathy, Ogihara & Li, 1997).  These are examined next. 

Transaction Database Compression 

Several of the popular frequent item set mining algorithms identify compression 

as a technique to help advance the frequent item set mining process. 
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Han, Pei, and Yin (2000) proposed a form of compression.  Their FP-growth 

algorithm builds a tree in memory from the transaction database.  The tree represents the 

database in compressed format.   Branches of the tree point from item-sets with common 

prefixes to their super-sets.  FP-growth is not bottom up as with Apriori.  FP-growth trees 

can grow to large sizes.  Although FP-growth can be very fast, it is considered impractical 

for very large databases (Zhang, Zhang, Jin, & Bakos, 2013). 

Eclat (Zaki, Parthasarathy, Ogihara & Li, 1997) provides a depth first traversal for 

frequent item sets.  In this algorithm intersections of known frequent item-sets identify 

new frequent item sets.  This algorithm uses the vertical representation of the transaction 

database as depicted in Table 7 (c).  The vertical format provides a type of compression in 

the Eclat algorithm.  Assume that the vertical transaction database is stored in main 

memory.  The items that do not meet the minimum support count do not need to be in 

memory. “The main benefit of vertical tid is that it allows intersect, thereby enabling us 

to ignore all infrequent items/itemsets” (Ashrafi, Taniar, & Smith, 2007).  These authors 

note that for large databases Eclat can run out of a limited memory. 
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Table 7  
Vertical Versus Horizontal Formats 

(a) Horizontal format and (b) horizontal bitmap format 
 

Transaction ID Item  Transaction 
ID 

Item 
100 A, B A B C D E 
200 D, E 100 1 1 0 0 0 
300 A, C 200 0 0 0 1 1 
400 A, C. E 300 1 0 1 0 0 
500 C 400 1 0 1 0 1 
600 D, E 500 0 0 1 0 0 

  600 0 0 0 1 1 
 

(c) Vertical tidset format and (d) Vertical bitmap format 
 

Item 
Transaction ID 

 

Item 
Transaction ID 

100 100 200 300 400 500 600 
A 1 A 1 0 1 1 0 0 
B 1 B 1 0 0 0 0 0 
C 0 C 0 0 1 1 1 0 
D 0 D 0 1 0 0 0 1 
E 0 E 0 1 0 1 0 1 

 

Eclat using diffsets was proposed (Zaki & Gouda, 2003).  Diffsets was 

demonstrated to drastically cut down the amount of memory necessary to hold 

intermediate results and speed up processing.  Zaki and Gouda (2003) present in their 

paper a comparison of the performance and compression offered by Apriori, Viper, FP-

growth, Eclat and Eclat using diffsets.  The Eclat using diffsets algorithm identifies 

memory as a limited resource.  Diffsets does not compress the transaction database, they 

compress candidate item-sets.   

Bodon and Rónyai (2003) compare a Trei data structure to hash trees to store the 

candidate item-sets.  Their compression method provides significant savings of memory 

and processing speed over hash trees.  They use Apriori, bottom up processing to build 

the max itemsets.  The Treis data structure does not compress the transaction database. 
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VIPER (Shenoy, Haritsa & Sudarshan, 2000) is a vertical mining algorithm that 

stores data in compressed bit vectors called ‘snakes’.  This algorithm uses the Vertical bit 

vector format of the transaction database.  In the compression scheme runs of 0 bits and 

runs of 1 bits are encoded using an encoding based on the Golomb encoding scheme.  

The compression process to create the snake they called ‘skinning.’  Runs of 1 and 0 bits 

are divided into groups of size W1 and W0 respectively.  Each group is represented by a 

bit vector with single weight bit set to 1.  The authors claim that this approach is superior 

than a simple RLE encoding because in a transaction database there will be runs of many 

0 bits and only a few 1 bits.   

  In their scheme, they believe they have identified additional redundancies in the 

vertical bit vector format that they can remove and achieve a higher compression ratio.  

For a full description of the Viper skinning compression scheme to create snakes, please 

see Shenoy, Haritsa, and Sudarshan.  Compressed Bitmaps are proposed by Garcia-

Molina, Ullman and Windom (2008) for the bitmap database formats as depicted in Table 

2 (b) and Table 2 (d) although Garcia and Molina are not specifically addressing 

transaction databases in their proposal.  In this book the authors note that if the file has n 

records, and each record consists of a field of items with m items, then the file consists of 

a bit vector of mn bits.  The book notes that if m is large, and the number of items in each 

transaction is small, then the probability of a 1 bit is ≈ 1/m.  The research goes on to 

describe a run length encoding (RLE) scheme. 

An important note made by the authors is that the RLE scheme they propose is 

not an optimal encoding scheme for long runs of 0, although they characterize it as a 

simple encoding scheme.  They note that other encoding schemes can improve the 
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compression ratio by a factor of 2.  An optimal encoding scheme presented in this 

research proposal is the Golomb encoding scheme.   

 Similar to Golomb encoding, Compressed Bitmaps breaks the encoded run into 

two parts.  The first part is a unary prefix code.  The second part is the binary coded 

number of 0 bits in the run.  This second field is a variable length field.  A unary code is 

required for the first part because unary is a prefix code.  The unary code is chosen to 

represent the number of bits in the second binary part.  As an example, suppose the record 

000001101 is to be encoded.  The first task is to encode a string of five 0’s followed by a 

1.  In binary this is coded as 101.  Three bits are required to specify the number of 0 bits.  

Thus, the unary part will be 110.  This is a 3 in the unary system.  The coding will start 

out as 110101.  Next, a string of no zero bits will be encoded.  The binary part is encoded 

as 0.  One bit is required so the unary part is encoded as 0.  The encoded string now 

becomes 11010100.  Finally, a string of 1 zero bits will be encoded.  The binary part is 

encoded as 1.  One bit is required for this encoding; thus the unary part is encoded as 0.  

The final encoded string becomes 1101010001. 

 It is important to note that in this example the string to encode ended in a 1.  

Typically, in a vertical bitmap encoded transaction database with a low support count, the 

record will end in a string of 0’s since the probability of a 1 bit is low.  Similar to the 

Golomb encoding scheme prototyping in the initial investigation, the authors point out 

that the trailing string of 0’s need not be encoded.  “Since we presumably know the 

number of records in the file, the additional 0’s can be added.” 

 Golomb compression gains its edge in compression because it ‘tunes’ the length 

of the binary part of the code, and the prefix code, to the length of the median number of 
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0 bits.  Their research shows how to perform bitwise AND and OR operations on the 

RLE encoded vectors, and how to manage the indexes of the bitmaps.  They demonstrate 

that decompression of the compressed bit vector stored database is not necessary for 

many common database operations.  Ashrafi, Taniar and Smith (2007) propose an 

interesting compression technique they call “diff-bits” for the vertical tidset format 

depicted in Table 2 (b).  They note their format offers good compression when the 

support is below 3.33%.  As an example, consider the database in Table 8. 

Table 8  
Sample Database for Diff-Bits Algorithm 

Item Transaction IDs (TIDs) 
Bread 1, 2, 10, 20 
Butter 1,3,10,40 
Beer 1,10 

 

The first step in compressing this database is to compute the difference in the 

TIDs.  The authors offer that the reason for using the difference in the TIDs, rather than 

the TIDs themselves, is that there may be, on average, several transactions per item.  The 

size of the required memory will divide down by this average size.  For example, assume 

that standard 32-bit TIDs are used.  This is a typical word size in a computer.  Assume 

that the average number of items per transaction is 20. If instead the difference in the tids 

is stored rather than the tids themselves, then each tid difference only requires a 20-bit 

word on average. On average the tid values would be spread across all 32-bit values.   Tid 

differences for the example are show in Table 9.   

Table 9  
Calculation of Transactional ID (TID) Differences 
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Item TID differences 
Bread 1, 1, 8, 10 
Butter 1,2,7,30 
Beer 1,9 

 

The next step in compressing the vertical transaction database is to calculate the 

binary compression code.  The binary compression code is in two parts.  The first part is a 

prefix code and the second part is the binary representation of the tid differences.   

For the prefix code, the authors suggest a 5-bit fixed width integer.  They suggest 

5-bits because a 5-bit code can encode a number from 0 to 31, which is the maximum 

number of bits in a tid and the standard word size for many computers.  In the example 

for Bread, the third tid difference is an 8.  This can be encoded as 1000 in binary.  

Because the proposed compression scheme uses a variable number of bits to encode the 

tid difference, the prefix needs to indicate the number of bit used.  Encoding 1000 

requires 4-bits.  Four bits are indicated as a 5-bit prefix with the binary number 00100. 

Next the authors point out that the tid difference will always start in a 1.  This is because 

the leading 0 padding bits are not required.  Therefore, the starting 1 need not be encoded 

in the tid difference.  A tid difference of 8 is encoded as 00100|000.  The vertical bar 

indicates the partition between the prefix and the encoded tid difference.  Table 10 

summarizes the calculated bit vectors for the diff-bits compressions scheme. 

Table 10  
Calculation of Diff-Bits in Bit Vector 

Item Diff-bits compressed bit vector 
Bread  00001 00001 00100|000 00100|010 
Butter  00001 00010|0 00011|11 00101|1110 
Beer 00001 00100|001 
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Other Compression Algorithms 

Modern compression software for the PC is based on dynamic dictionary 

compression algorithms (Nelson & Gailly, 1996).  Dictionary based techniques differ 

from the Huffman/RLE based techniques in that these do not require a statistical model of 

the data.  Dictionary based techniques identify and compress strings of data.  The 

simplest type of dictionary compression may be that which uses a static dictionary.  This 

approach creates a fixed dictionary prior to encoding.  The encoding process can only 

compress strings in that are contained in the dictionary.  The receiver, or decoder, must 

also have the fixed dictionary.  An algorithm might proceed by looking up items to 

compress in the dictionary and returning their index in the table.  The index would be 

shorter than the string and would be the transmitted or stored value.  If for instance the 

table were to hold 2048 entries, then long strings might be compressed to 11-bit values.  

In the case of a transaction database the item ID might be compressed using this method.  

This table-based substitution is the normal consequence of the decomposition of a 

database schema. 

Static dictionary techniques based on Diagram Coding (Gage, 1994) have been 

proposed as a compression technique.  In diagram encoding the source alphabet is 

encoded using the ‘standard’ encoding symbols, and frequently used pairs of the source 

alphabet are also encoded using any remaining symbols.  For instance, assume that the 

standard symbol size is 10 bits, thus 1024 symbols are available.  An encoding scheme 

might use the first 600 symbols to encode item keys in a small grocery store.  The 

remaining 424 symbols would be used for frequent item symbol pairs.   
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In 1977 and 1978 two papers were written (LZ77 and LZ78) by Jacob Ziv and 

Abraham Lempel on which modern dynamic dictionary based compression programs are 

built.  “Dictionary-based compression techniques are presently the most popular forms of 

compression in the lossless arena.  Almost without exception, these techniques can trace 

their origins back to the original work published by Ziv and Lempel in 1977 and 1978” 

(Nelson & Gailly, 1996).   

The Lempel/Ziv 1977 algorithm achieves compression by using a sliding window 

on the data stream to compress.  There are two parts to the sliding window.  The first part 

is a buffer of recent data.  The second part is a short look-ahead buffer.  New data is 

shifted into the look-ahead buffer and then shifts into the recent data buffer.  The 

algorithm looks for matches of data from the look-ahead buffer to that in the recent data 

buffer.  If it finds a match, a token is emitted that contains the offset in the recent data 

buffer, the length of the match, and the next character in the look-ahead buffer that does 

not match.  If there is not a match, the token emitted is two zeros followed by the non-

matching character.  The algorithm can then transmit the message one token at a time if 

there are no matching characters.  This algorithm is suited to compressing data that 

contains strings of similar data.  For instance, LZ77 will compress a long string of ASCII 

space characters as a single token.  The algorithm can compress strings that exceed the 

length of the look-ahead buffer.  For instance, suppose there is a long string of space 

characters.  A space character in the look ahead buffer will match on a space character in 

the data buffer.  As that character is shifted into the data buffer it will now match with the 

next space to be shifted into the look-ahead buffer.  In this manner long strings can be 

compressed as long as the repeating character part of the string is shorter than the data 
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buffer.  The main challenge in this algorithm is to program a string-matching algorithm 

that looks for variable length strings starting at each index in the recent data buffer (Ziv 

& Lempel, 1977).  LZ77 is a greedy algorithm.  Once it finds a match, it does not look 

any farther in the buffer for a better match.  Because LZ77 only compress on strings 

contained in its buffer, it compresses better on data that favors repetitiveness in its recent 

data.  So, for instance, a dictionary or address book might compress well.  LZ77 might do 

well on the last name in the address book, whereas the street names or first name might 

not compress as well. 

Another algorithm, LZSS, based on LZ77, improves compression (Storer & 

Szymanski, 1982).  It keeps another data structure, a binary tree, to maintain the list of 

recent matches that shift out of the data buffer.  LZSS also improves on the emitted 

tokens compression when there is not a match.  LZSS uses a single bit to indicate 

whether the data byte is a token or a character.  Thus, when a match does not occur, 

LZSS can more efficiently encode that data. 

Both LZ77 and LZSS cannot match recent data on data that shifts out of the 

recent data buffer (although LZSS keeps a list of previous matches).  LZ78 solves this 

issue (Ziv & Lempel, 1978) by removing the sliding window.  Instead, it keeps a 

dictionary of matching strings.  The dictionary structure is a multi-way tree.  Although 

traversing such a tree is easy to find matching leaves, each node can have up to 256 

children (if an 8-bit alphabet is used.)  Thus, to minimize memory requirement in the data 

structure, each node must keep a list of pointers to its children rather than a static array 

structure.  LZ78 starts the tree off with a single pointer with the NULL character.  When 

the first character is read in, it matches its previous character, which is NULL, on the 
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single NULL node in the tree.  The algorithm then outputs its first token.  The token 

contains the index of the matched node (in this case 0), and the matched character.  It also 

adds this matched string to the tree.  Suppose now the second character is the same as the 

first.  The algorithm would now match with node 1 in the tree.  The algorithm would read 

one more character from the input.  This character would not match node 1.  The output 

would then be a token, which contained the node number, 1, and the third character.  A 

new node would be created in the tree, which would contain the three characters in the 

input stream recently read.  LZ78 continues in this way. 

LZ78 (Ziv & Lempel, 1978), like LZ77 (Ziv & Lempel, 1977) and LZSS (Storer 

& Szymanski, 1982), compresses continuous strings of input characters.  LZ78 differs 

from LZ77 in that it will match on strings farther back than LZ77 can with its limited 

data buffer.  This may or may not be an advantage depending on the nature of the data to 

compress.  Two issues with the LZ78 algorithm are that the decoder needs to maintain the 

same tree structure as the encoder, and the tree can grow to fill up available memory 

quickly.  Nelson & Gailly (1996) discuss these issues in their book. 

Initial Investigation (Prior Research Work) 

Overview 

Prior research provided encouraging results for the compression of a static 

database.  In the research, a database compression harness was written to compress and 

compare several benchmark databases for machine learning.  The code was written in C# 

in the Visual Studio IDE.  It was based on the original algorithm by Huffman (1952) and 

Golomb (1966).  The three algorithms compared were: 

• A static (two pass) Huffman compression scheme. 
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• An RLE compression based on ideal Golomb prefix codes. 

• An RLE compression based on ideal Golomb prefix codes, with items sorted by 

frequency. 

The asymptotic time to compress a database is determined for each compression 

type.  The research develops an algorithm for RLE encoding, based on Golomb prefix 

codes, to exploit the horizontal bit vector, transaction database, structure.  Note that it 

would be straightforward to apply results of the RLE compression algorithms to 

streaming databases.  As noted in the literature review the RLE compression using 

Golomb prefix codes is a two-pass algorithm, but a good approximation can be made of 

the m value and compression achieved in a single pass. 

Compression Algorithms Used to Achieve Results in the Initial Study 

Figure 31 lists the pseudocode for the Huffman Compression Algorithm used in 

the compression harness.  The compression harness also implements two other 

compression schemes based on a Golomb RLE compression described later in this paper.  

The Huffman compression algorithm reads the complete database twice.  The first pass 

tabulates the frequencies of each database item.  In the second pass each item is re-

encoded with its new optimal minimum entropy ID.  A dictionary data structure performs 

a fast lookup of items codes and their calculated Huffman code and code length.   

The first step in calculating the Huffman codes is to build the Huffman tree.  The 

tree is a set of nodes whose leaf nodes are each item in the original database.  The 

software builds a dictionary by searching the tree for each item, then traversing the tree 

back to the root.  The path back to the root is the Huffman code and Huffman code 

length.  Left branches are arbitrarily set to be a ‘1’ bit, and right branches a ‘0’.  
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The list, T, is initialized to a list of nodes.  Initially there are r nodes, one for each 

symbol.  Each node is a 5-tuple.  The 5-tuple is a structure containing a symbol (if the 

node is a leaf node), a count, two links to its children, and a link back up to its parent.  If 

the node is an internal node, the count is the sum of the count of its two children.  If the 

node is a leaf node, then the count is the number of times the symbol occurs in the file.  

Lines 1 through 12 of the pseudocode calculate the item frequencies and set up the initial 

list of nodes.  It is asymptotic to O(n) time, where n is the total number of items sold in 

the database.   
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Figure 31. Pseudocode for static Huffman compression. 

Static Huffman Compression 
Input: Horizontal Format file of Transactions 
Output: Compressed Horizontal Format file. 
 
1. T  Ø  // initialize list of nodes.  Each node is a 5-tuple 
2. Reset transaction file // pass 1 calculate frequencies 
3.  Repeat 
4.  t  input next item in transaction file. 
5.   If t = item ID // do not process TIDs 
6.    If t є T 
7.     c   Tt(c) + 1 // increment count 
8.     T  T / Tt // remove item from list 
9.    Else  
10.     c  1 // not there, set count to 1 
11.    T  T ∪ ( t, c , Ø, Ø, Ø)  // add item (back) to list 
12. Until EOF 
13.  Repeat   // pass 1 create Huffman tree 
14.  p  Ø // initialize new parent node 
15.  a  minc T  // find node with minimum  count in T 
16.  T  T / a 
17.  a  a( , , , ,p)  // backlink node to parent 
18.  b  minc T 
19.  T  T / b 
20.  b  b( , , , , p )  // backlink node to parent 
21.  T  T ∪ p(  Ø, a(c) + b(c), a, b , Ø)    // add parent to list 
22. Until |T| = 1 
23. 
24. D  Ø   // pass 1 create dictionary of codes 
25. For each leafnode t є T 
26.  node  t 
27.  x  0 
28.  Repeat 
29.   If node link to parent = left link 
30.    x  left-shift(x) + 1 
31.   Else 
32.    x  left-shift(x) + 0 
33.   node  parentof( node ) 
34.  Until  node = ROOT  
35.  Dictionary  D  D ∪ x 
36. Next t 
37. 
38. Reset transaction file // pass 2 encode file 
39. Repeat 
40.  c  next ID in file 
41.  if c = item ID 
42.   Output uncompressed TID c  // if not item ID, it’s a TID 
43.  else 
44.   Output D(c) 
45. Until EOF 
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In Lines 13 through 22 the nodes are built into a binary tree using Huffman’s 

approach.  Line 15, assuming a binary sort, is O(log2r) time, where r is the total number 

of different items in the database.  The item IDs are represented in a binary format.  The 

list of nodes needs to be sorted r times.  Thus, building the Huffman tree occurs in 

O(r*log2r) asymptotic time. To write the compression codes, lines 37 to 44, to the output 

requires O(n) time, for all n items.  Line 14 creates a new node and sets it to null.  This 

will be the parent of the two nodes, a and b, with the smallest count in T.   

Lines 24 through 36 create a dictionary of the uncompressed symbol, and 

compressed symbol codes.   Finally, in lines 38 through 45, the input file is read a second 

time to compress the ID’s. 

The canonical form of the Huffman code is not determined in this software 

harness.  Use of the canonical form would not affect the compression ratios.  The 

canonical Huffman codes will have the same length as the codes calculated and provide 

the same compression ratios.  Calculation of the canonical codes would occur in O(r) 

time.  A canonical Huffman code will be relevant to the hardware item decoding in 

transaction support count circuitry implemented in reconfigurable hardware. 

Figure 32 presents the pseudocode to RLE encode a transaction database.  The 

resulting output file will be a bit map RLE encoded file using Golomb ideal prefix codes.  

Calculation of the prefix codes is straight forward using algorithms in Salomon (2007).  

Although the pseudocode shows a single pass over the database, an extra pass over the 

file before processing was necessary in the compression harness.  This extra pass served 

three purposes.  It was used to collect statistics and compute the optimal “M” value.  It 

was also necessary to sort each line of the transaction database.  Several of the databases 
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had lines not in lexicographic order.  Finally, and most important, it was necessary to 

renumber the items to remove non-existent item ID numbers.  Non-existent item ID 

numbers would lower the overall Golomb compression ratio score by adding unnecessary 

0’s to the strings. 

 

Figure 32. Pseudocode to write Golomb RLE database. 

 
This form of RLE compression is very good at compressing long runs of 0 bits.  

This corresponds to only a few of the available items occurring in each transaction.  If 

long runs of 0 bits can be followed by long runs of 1 bits then other compression schemes 

should be considered. 

An important optimization occurs in this pseudocode that gives an edge to the 

RLE compression scheme.  The trailing string of 0’s was not encoded.  This is because a 

carriage return (or other special character) delimits each transaction in the file.  When the 

Input: Horizontal Format file of Transactions in lexicographic order, and parameter M 
Output: RLE Compressed Horizontal Bit Vector Format file. 
 
1. Repeat 
2.  x  Input item from file 
3.  if x = TID  // is this a new transaction? 
4.   N  0 
5.   x  Input item from file  // next ID must be an item ID 
6.   Output uncompressed TID 
7.  N  x - N 
8.  𝑞𝑞  �𝑁𝑁

𝑀𝑀
� 

9.  r  N % M 
10.  Output q length string of “1” bits 
11.  Output  single “0” bit 
12.  𝑏𝑏  ⌈log2 𝑀𝑀⌉ 
13.  if  r < 2b – M 
14.   Output r in binary using b-1 bits 
15.  Else 
16.   Output r + 2b – M in binary using b bits 
18.  Until EOF 
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compressed database is read later to create the specialized hardware, the synthesizer need 

not create registers for the last run of 0’s.  A single special bit can encode the transaction 

delimiter outside of the registers used to hold the compressed IDs.  A similar approach is 

used by Compressed Bitmaps (Garcia-Molina, Ullman and Windom , 2008).  Here, the 

authors note that each record in the horizontal bitmap format has a fixed length, thus the 

length of the last run of 0’s can be inferred. 

Compression using a transaction delimiter was included in the harness and used to 

compare compression schemes.  The transaction delimiter was implemented as a ‘special’ 

item with the largest item ID.  Each transaction ended in this special ID.  These results 

are not presented in this research.  The compression ratios obtained were like those 

obtained here, but were a few percent less in each case. 

A second optimization to the RLE compression was coded in the harness.  This 

optimization is presented as a separate result herein.  This optimization provides a few 

percent gain to the ‘standard’ Golomb RLE compression as evidenced in Table 11.  Since 

the last run of 0’s need not be coded and registers created, it is of benefit to make this last 

run of 0’s as long as possible.  This can be achieved by making a “1” in the last run of 0’s 

less probable.  The software harness renumbers the items such that low items numbers are 

frequent items in the database, and the higher numbered items are the less frequent items.  

This requires an initial pass through the database similar to the Huffman compress to 

determine the item frequencies and sort the items by frequency. 
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Table 11  
Comparison of Compression Ratio (c/u) Results from prior research 

Database 

Static Huffman 
compression 

ratio (%) 

Golomb 
compression 

ratio (%) 

Optimized Golomb 
compression ratio 

(%) 
Accidents 72.4 54 44 
BMS1 72.5 93 90 
Kosarak 61.0 77 76 
Retail 72.0 77 77 
T10I4D100K 88.0 78 74 
T40I10D100K 92.0 60 58 
BMS-POS 64.1 75 74 
BMS-WebView2 78.0 85 83 

 

The asymptotic time to RLE compress the transaction database using ideal 

Golomb prefix codes is O(n) time, where n is the length of the binary string to compress.  

Calculation of the prefix codes is a straightforward calculation from each of the input 

items in each transaction.  This assumes an approximate value of m is sufficient, or an 

exact m value is available before encoding, where m is the parameter as required by the 

Golomb compression algorithm to determine the mean run length.  An exact value of m 

can be calculated in O(n) time. This is because a second, initial, pass over the data will be 

required to calculate the probabilities. 

Optimization of the Golomb compression using this scheme requires an initial 

pass through the database, similar to Huffman, to determine item frequencies.  This extra 

pass occurs in O(n) time.  Sorting of the list of items occurs in O(log2r) time.  The O(n) 

term will dominate since the items are being streamed from secondary storage and n will 

always be larger than r.  The asymptotic time comparisons are listed in Table 12. 
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Table 12  
Comparison of Asymptotic Encoding Time for Compression Schemes 

 
Static Huffman 

compression 
Golomb RLE 
compression 

Golomb RLE 
compression with 

optimization 
Time to prepare 
symbols 

O(n) to read database 
O(r*log2 r) to build tree 

O(r*log2 r) to traverse tree 

O(1) O(n) to read 
database 

O(log2r) to sort item 
list 

 
Time to encode 
database 

 
O(n) to encode 

 
O(n) to encode 

 
O(n) to encode 

Note. n is the total number of items in the database.  r is the number of different items in 
the database. 
 

 

Conclusion From the prior research 

Huffman Compression (Huffman, 1952) provides a maximal compression when 

there is a large variation in the frequency of items. Huffman will compress the worst 

when all items are of similar probability, that is, the symbols are all of minimum entropy 

because they are all random. In these cases, RLE compression (Golomb, 1966) will be a 

better choice. A Huffman algorithm also will not compress a two-symbol alphabet. RLE 

compression may be able to be used for these cases. Golomb codes are a minimum 

entropy prefix code (Golomb, 1966) for RLE compression. The Golomb compression 

ratio is related to the “m” value (Golomb, 1966).  Databases that will compress well with 

this RLE compression are those where each transaction includes, on average, a few of 

many items. This corresponds to a large m value and long runs of 0 bits. Golomb 

compression, using the algorithm in this paper, will compress well when low numbered 

items are more frequent in the database. This is because the algorithm in this paper does 

not encode the last run of 0’s and uses a transaction terminator instead. The RLE 

compression with optimization (the second form of Golomb prefix RLE compression 
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implemented in the compression harness) will favor those databases where a few items 

occur more frequently, not necessarily low numbered items. 

The exact compression ratio obtained using each compression scheme is 

dependent on the real-world probabilities of items in the database. Synthetic data did not 

compress well using the Huffman Compression. 
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Chapter 3 

Methodology 

Approach 

The first part of this research is investigatory.  In the first part, algorithms will be 

prototyped and verified to be correct.  Steven M. Ross and Gary R. Morrison outline the 

essence of the experimental research method (1996).  Here they identify the “true 

experiment” as maximizing the validity of the experiment.  The scientific method is a 

logical method of posing a question and finding an answer.  An abbreviated version of 

this method (Dodig-Crnkovic, G., 2002) identifies several steps to answering the 

question: 

1. Posing the question 

2. Formulate a hypothesis and a possible answer. 

3. Make predictions about the outcome 

4. Test the hypothesis.  If the results do not match the predicted outcome, then 

repeat tests 2, 3 and 4 until agreement occurs. 

5. Once there is agreement between the hypothesis and the results then the 

hypothesis becomes a theory.  The theory provides a set of rules that define a 

new class of phenomena or a new concept. 

Discussion of the Proposed Memory Limited Dynamic Huffman Algorithm 

In the fourth step of this series, a modified FGK (Knuth, 1985) algorithm will be 

developed to work in a memory limited machine using a frequent item identification 

algorithm (Metwally. Agrawal, & El Abbadi, 2005).  The modification should be 

straightforward.  The FGK algorithm, modified to work on memory limited machines, 
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will need to keep track of the number of nodes in the dynamic Huffman tree.  When the 

number of nodes exceeds the preselected value, k, a new node will not be added to the 

tree.  In this case, the algorithm will search the tree for the node with the lowest 

frequency.  When that node is identified, then its symbol will be replaced with the new 

symbol found in the input stream.  The weight of this symbol is also incremented.  At this 

point in the algorithm, the code for the Not Yet Transmitted (NYT) symbol is emitted in 

the output stream.  The path from the leaf node to the root of the tree determines the 

compressed code.  Following the NYT symbol, the uncompressed symbol is emitted in 

the output stream.  Next, the tree will need to be rebalanced.  Anytime the frequency of a 

node is changed, the tree needs rebalancing.  The node rebalancing subroutine will 

process nodes up the Huffman tree and exchange the leaf node and its subtree, or its 

ancestor’s node and its subtree, with the node that has the highest count in its block. 

When a node is exchanged with the highest numbered node in its block, this is the time 

the nodes frequency is incremented.  The node frequency is always incremented, whether 

the symbol was found in the tree, it was a new symbol, or it is replacing an existing 

symbol because the tree is full. 

There is one algorithm detail that is required to keep the decoder in synchronism 

with the encoder.  When a new symbol is input to the compressor, and the compressor 

tree is full, the new symbol is required to be transmitted to the decoder so both sides 

(compressor and decoder) can keep identical trees.  In this case, the frequent item 

identification algorithm by Metwally. Agrawal, and El Abbadi (2005) dictates that the 

new symbol replaces the symbol in the tree with the lowest frequency.  However, the 

NYT symbol will need to be transmitted to the receiver along with the uncompressed 
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symbol on the input, not the replaced symbols code.  Additionally, in this case, the NYT 

node will not be split and a new node will not be created.   

Figure 33 presents the pseudocode for the Memory Limited Dynamic Huffman 

algorithm.  Inputs to the pseudocode are the Huffman tree and the new symbol, s, from 

the input stream.  Outputs are the compressed output stream, and the updated Huffman 

tree.   

When a symbol arrives in the input stream, the algorithm needs to locate it in the 

Huffman tree.  There are three possibilities.  The first possibility is the symbol already 

exists in the Huffman tree.  In this case the compressed code is determined from the path 

in the Huffman tree from the symbols node to the root node.  The weight of this symbol is 

then incremented.  

The next possibility is that symbol does not exist in the Huffman tree, but the 

number of nodes is less than the maximum allowed number of nodes.  It can be proven 

that if the max allowable number of symbols or leaf nodes in the tree is N, then the 

maximum nodes (including internal nodes) in the binary tree will be N*2-1.  If the 

Huffman tree is not full, then the algorithm proceeds to grow the tree.  First the NYT 

node is split.  A parent is created with two new children, the NYT node and a new leaf 

node that contains the input symbol, s.  The output stream contains the compressed code 

for the NYT node (determined from the path of the NYT node to the root), and the 

uncompressed symbol, s.  The weight of the new leaf node is set to 0.  This will be 

incremented to 1 later in the call to the tree rebalancing routine. 

The third and last possibility is that the symbol, s, does not exist in the Huffman 

tree, and the number of nodes in the Huffman tree is larger than the maximum allowed 
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limit.  In this case the Huffman tree, H, is searched for the leaf node with the smallest 

weight.  The symbol in this leaf node is replaced with the symbol, s.  Later in the call to 

the tree rebalancing, its weight will be incremented and the tree rebalanced.  Finally, the 

compressed code for the NYT symbol, and the uncompressed symbol, s, is output.   

 

Figure 33. Memory limited dynamic Huffman algorithm pseudocode. 

The memory limited dynamic Huffman algorithm is diagrammatically illustrated 

in Figure 34 to Figure 36.  Note that Figure 34 mirrors the “backward adaptation model” 

(as previously illustrated in Figure 7). 

Memory limited dynamic Huffman algorithm 
 
 Input: Huffman Tree H, Stream to process S. 
 Output: Updated Huffman Tree H, compression stream 
 
1. For each s in S 
2.    If s є H 
3.   Current Node  Find node with s in H 
4.  Output Compression Code  //Path from Current Node to Root 
5.   Else 
6.   If |H| > MaxNodes 
7.   Current Node  Find node min weight symbol in H 
8.   Current_Node Symbol  s.    
9.  Else 
10.    Split NYT node into two nodes with new parent.   
11.   Assign one of the new nodes symbol s with weight 0 
12.   Current Node Symbol  NYT node 
13.    Output uncompressed symbol, s 
14.   Output Compression Code  //Path from Current Node to Root 
15.  Call Rebalance Tree (H, Current_Node) // Pseudocode from Figure 6 
16. Return H 
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Figure 34. Overview of the memory limited dynamic Huffman algorithm. 

 

Figure 35  illustrates the three possibilities when the memory limited dynamic 

Huffman tree is updated with a symbol for encoding.  The three possibilities are (a) the 

symbol is already in the tree, (b) the symbol is not in the tree and needs to be added to the 

tree, or (c) the symbol is not in the tree, the tree is full and an old symbol must be 

swapped with the new symbol.  Figure 36 illustrates rebalancing the tree.  In this example 

the leaf node with symbol ‘n’ is swapped with the highest numbered node in its group, 

the ‘e’.  After the swap the ‘n’ node’s weight is incremented and processing continues 

with its parent. 

 

Uncompressed Stream Update Tree with New Symbol 
Compressed Stream 

Compressed Stream 
Uncompressed Stream 

(a) Encoder 

(b) Decoder 

Update Tree with New Symbol 

Compression/Decompression Overview 
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Figure 35. Memory limited dynamic Huffman algorithm cases. 

  

Update Tree with new Symbol – 3 Choices 

(a) Input symbol already in tree :  
Increment weight, then Rebalance tree 

(b) Input symbol not in tree, and tree not full : 
Split NYT node and add new node. 

(c) Input symbol not in tree, and tree full : 
Find symbol node with minimum weight and replace symbol, then 

increment weight and rebalance tree. 

Symbol: ⅌ 
⅌ ⅋ 

Symbol: ⅌ 

⅋ 

NYT 
⅌ 

5 4 

1 

Symbol: ⅌ 
⅌ ⅋ 
2 1 
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Figure 36.  Rebalancing the Huffman tree. 

 

The pseudocode in Figure 37 builds upon the pseudocode provided by Knuth 

(1985) to implement the memory limited dynamic Huffman compression.  Knuths 

pseudocode was presented in Figure 10 through Figure 15.  The pseudocode of Figure 37 

replaces that in Figure 15.   

The pseudocode by Knuth implements a simple hash lookup to find the node in 

the tree that corresponds a symbol.  The “A” array provide the hash function.  Its lookup 

is based on the ASCII character code of the symbol being processed.  A more robust hash 

function is assumed by the insert, delete, length and try/search methods in lines 3, 7, 12, 

15 and 16.  Typically, the hash table will provide constant time, O(1) searching of the 

table (Cormen, Leiserson, Rivest, & Stein, 2009).  It is necessary to use a more robust 

hash table function such as this, rather than the statically allocated hash table as proposed 

by Knuth.  A statically allocated hash table that would hold all the possible input symbols 

would defeat the purpose of the memory limited function.   A complete description of the 

new encode procedure follows.  The new Hashtable is named HASHTABLE_A.  It is 

assumed that there are four methods on this object.  The TrySearch method looks up a 

NYT 
0 2 1 

e 
1 3 

2 

n 
1 

1 4 

5 

NYT 
0 2 1 

n 
2 3 

3 

e 
1 

1 4 

5 

Rebalancing the Huffman Tree 

 

group 
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key in the dictionary.  If the key is not contained in the dictionary, the exists variable is 

set to false.  If the key does exist in the dictionary, the exists variable is set to true and the 

value is returned.  The Delete method deletes a key/value pair from the dictionary, the 

Insert method inserts a key/value pair, and the Length method returns the number of 

items in the dictionary. 

 

Figure 37.  Original algorithm FGK modified to be memory limited.  Adapted from 
“Dynamic Huffman Coding” by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.   

 
First the encode procedure looks to see if the symbol exists in the hash table.  If it 

does, then the node that corresponds to that symbol is identified and the encode 

procedure proceeds as before.  If the symbol does not exist in the hash table, then there 

are either one of two possibilities from here.  The first is the number of symbols in the 

1.  procedure encodeMemLimited (integer key); 
2.  begin integer i, j, q, t; boolean exists; 
3.  exists = HASHTABLE_A.TrySearch(key, value ); 
4.  i ← 0; 
5.  if exists then q ← A[value]  
6.  else comment encode zero weight; 
7.   if HASHTABLE_A.Length < MAXNODES then 
8.     q ← A[PSEUDO_SYM]; PSEUDO_SYM = PSEUDO_SYM + 1; 
9.   if q < 2 × R then t ← E + 1 else q ← q - R; t ← E fi; 
10.   for j ← 1 to t do i ← i + 1; S[i] ← key mod 2; key ← key div 2 od; 
11.   q ← A[0] comment point to new node; 
12.   HASHTABLE_A.Insert(key, q) 
13.  else 
14.   q ← B[H]; comment point to the node with least weight; 
15.   HASHTABLE_A.Delete(A[q]) comment delete this key in hash table; 
16.   HASHTABLE_A.Insert(key, q) comment create new key, value fi fi; 
17.  while q < Z do 
18.  i ← i + 1; S[i] ←  (q + 1) mod 2; 
19.  q ← P[(q + 1) div 2] od; 
20. while i > 0 do transmit (S[i]); i ← i - 1 od; 
21. end; 
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table exceeds a constant.  That constant is MAXNODES, the maximum number of 

symbols allowed in the hash table and tree. If the number of nodes in the hash table is 

less than the maximum number allowed, then the symbol is added to the hash table and a 

new node is created in the tree for it.  The new symbol is a ‘pseudo’ symbol.  It is created 

with the NEXT_SYMBOL global variable.  The new hash table then simply maps 

symbols on the input to the new ‘pseudo’ symbols created.  On the other hand, if the 

maximum number of nodes allowed has been reached, then the node with the least weight 

is identified in line 13.  Its symbol and ‘pseudo symbol’ pair is deleted from the hash 

table, and a new key, value pair is created in the hash table with the new symbol. 

As an example of the memory limited dynamic Huffman algorithm follows.   

Assume that in the example given in Figure 16 the maximum number of nodes is set to 9.  

The algorithm will proceed as before up to Figure 19.  Figure 19 is repeated here as 

Figure 38.  At this point the next character that appears in the input stream is the ‘r’ 

symbol.  This is a new symbol and is not contained in the Huffman tree.  The Huffman 

tree contains 9 nodes, the maximum number of nodes for this example.  The algorithm 

then searches for the leaf node with the smallest weight.  In this case that will be either 

the node with the ‘i’ or the ‘g’ symbol.  Both have a weight of 1.  If the algorithm 

searches the tree down left branches first the ‘i’ node will be selected.  The tree will be 

rebalanced as shown in Figure 39. 

Cumulative input string: engineer 

Cumulative output stream:  e 0n 00g 100i 11 10 10 1000r 
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Figure 38.  Dynamic Huffman tree for string "enginee."  

 
Figure 39. Huffman tree for string "engineer." 
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Up to the point as illustrated in Figure 38, the dynamic Huffman compression 

algorithm and the new memory limited dynamic Huffman compression algorithm 

generate identical trees. 

The next symbol to appear in the input stream is the symbol ‘i’.  But this symbol 

is no longer in the tree, it was replaced by the ‘r’ symbol.  Again, the leaf node with the 

lowest weight is selected and replaced with the input symbol.  This time it’s the ‘g’ 

symbol.  The updated Huffman tree is presented in Figure 40. The output stream now 

looks as follows: 

Cumulative input string: engineeri 

Cumulative output stream:  e 0n 00g 100i 11 10 10 1000r 0011i 

 Finally, the last ’n’ and ‘g’ are added as illustrated in Figure 41 and Figure 

42.   When the ‘g’ is input to the algorithm, it does not exist in the Huffman tree anymore 

(it was replaced by the ‘i’ symbol.)  This time the symbol with the lowest weight is the ‘i’ 

symbol.  ‘g’ replaces ‘i', then “g’s” weight is incremented and the tree rebalanced.   

Final, cumulative input string: engineering 

Final, cumulative output stream:  e 0n 00g 100i 11 10 10 1000r 0011i 01 000g 

The compression ratio would be (8*7+25)/(8*11) = 92%.  Compare this with the 

compression ratio of the previous example, where the Huffman tree is allowed to grow 

without a memory constraint; 74%.   These hand calculations were verified with 

computer simulations. 
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Figure 40. Huffman tree for string "engineeri," memory constrained. 

 

 

Figure 41. Huffman tree for string "engineerin," memory constrained. 
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Figure 42.  Comparison of the final Huffman trees for string "engineering.” 

 

Space and Time Asymptotic Complexity 

The space complexity for the dynamic Huffman compression is O(n), where n is 

the number of nodes in the Huffman tree.  When the Huffman compression is applied to a 

transaction database, and the symbols to compress are the transaction item ID’s, then n is 

also the number of items in the database.  The memory limited dynamic Huffman 

compression has a space complexity of O(min(n,k)), where n is defined as before and k is 

the maximum number of nodes in the tree.  If the tree is stored in a binary tree data 

structure represented as a set of arrays as suggested by Knuth (1985), then the total 

memory requirements are about 12n lg n + 2n lg w bits, where w is a bound on the 

number of bits required to hold the weight of the of all n symbols (Knuth, 1985).  For the 

memory limited version of the dynamic Huffman table, substitute min(n, k) into this 
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equation for n.  Thus, the memory limited version of the binary tree will never grow to be 

larger than 12r lg r + 2r lg w bits. 

Creating and maintaining the memory limited dynamic Huffman tree requires the 

following four operations (and only these four operations): 

• Identify and split the NYT node (researched by Knuth and others) 

• Find a symbols node in the tree (researched by Knuth and others) 

• Find the node with the minimum weight in the tree (new) 

• Increment a nodes weight and rebalance the tree (researched by Knuth and 

others) 

Beyond these four operations, no other operations on the Huffman tree are 

required to maintain the tree and support the memory limited dynamic Huffman 

algorithm. 

Furthermore, three of the operations are discussed by Knuth (1985). The 

algorithm, coding, time requirements are all well researched. Only one new operation is 

required to support the proposed memory limited dynamic Huffman algorithm (above 

Knuth’s original algorithm). The new operation is finding the node with minimum weight 

in the tree.  

Knuth (1985) presents a time complexity for rebalancing the dynamic Huffman 

tree.  Worst case the time complexity is O(b), where b is the level of the tree.  The 

procedure for rebalancing the Huffman tree includes switching the node being 

incremented with the highest numbered node in its block.  If a binary tree is a Huffman 

tree, then a block will never span more than two levels.  Once the interchange is 

complete, then the algorithm moves to the parent node, where that node is then 
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interchanged with the highest numbered node in its block.  The worst-case number of 

interchanges thus will be b, where b is the maximum depth of the tree.  Pigeon (2003) 

credits Knuth as further ‘fine tuning’ the time complexity as O(−lgP(X = ai)) for a symbol 

ai. 

Understanding that the tree rebalancing has time complexity of O(b), worst case, 

requires understanding the rebalancing process. First, Knuth (1985) defines a ‘group’ as 

all nodes with the same weight. Knuth notes that a group will span a maximum of two 

levels (the simple explanation for this phenomenon is that if you select any node, the 

parent node exists on the level above it and it must have a weight higher than the selected 

node). The first step is to identify the leaf node whose weight is to be incremented. This 

node will be swapped with the highest numbered node in its group. When the node is 

swapped, its sub-tree (if any) is swapped with it. The node’s weight is then incremented. 

The algorithm then recursively proceeds to the parent of the node just incremented until 

the root is reached. Worst case, there will be b levels to iterate and swap subtrees.  The 

swap itself is as simple as setting the 6 sets of pointers.  The setting of pointers will be 

accomplished in constant asymptotic time. 

Searching for a symbol in the Huffman tree can be done in O(1)  time (constant 

time).  An efficient data structure, such as a hash table, could be used.  Knuth uses a hash 

table.   

Identification of the NYT node and finding the node with the minimum weight 

are related.  Finding the NYT node and splitting it can be done in O(1) asymptotic time. 

Typically, a pointer will be maintained to this important node so it can be readily found. 

Searching for an item with the lowest weight will not be necessary.  The node with the 



113 

 

lowest weight will always be the highest numbered leaf node, not including the NYT 

node, in the table.  Finding the node with the minimum weight can be accomplished in 

O(1) time. This node will always be on the same subtree as the NYT node. This subtree 

can only look like either of the subtrees in Figure 43. 

 

Figure 43. NYT node configuration. 

 

As suggested by Knuth, a pointer structure can be included as part of the nodes 

data structure to quickly traverse nodes.  In the memory-limited version of the algorithm, 

a larger symbol word size would need to be accommodated and therefore the dictionary is 

required to be dynamically maintained.   An O(1) asymptotic search time can be achieved 

in the memory limited algorithm as well. 

Expansion of the Compressed File 

Related to the asymptotic time and memory complexity of the algorithm, is the 

maximum number of ‘swaps’ that will result from various values of k, and how this is 

related to other parameters of the database.  When the Huffman tree is full, and a new 

item is input to be compressed, then the algorithm must find the item in the tree with the 

lowest frequency and swap this item with the new item.  This is a swap.  The swap is 

important because it is the behavior that is different between the memory limited dynamic 

Huffman, and the ‘standard’ dynamic Huffman compression.  If the number of swaps is 
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finite, then there is an assurance that the expansion of the compressed file is also finite.   

When a swap occurs, the algorithm also outputs the NYT code.  This is the longest code 

in the dynamic Huffman tree.  The algorithm also outputs the uncompressed symbol.  For 

each memory swap, the algorithm will output this pair because it constantly ‘forgets’ 

infrequent, but previously seen symbols.  To establish that the expansion of the 

compressed file is limited, three limitations must first be established.  The NYT code 

length is limited, the uncompressed symbol is limited in length, and the number of swaps 

is limited. 

The uncompressed symbol length is a function of the overall system.  This will be 

limited by the user to typically 8 bits, 32 bits, or a number of bits optimized for the size 

of the alphabet. 

An upper bound on the length of the NYT code is possible using research 

provided by Abu-Mostafa and McEliece  (2000).  Here, the researchers calculate the 

maximum length of a Huffman code word.  They find that if the probability, p, of a 

symbol is in the range 0 < p < 1/2, and if r is an index such that  

1
𝐹𝐹𝐵𝐵 + 3 

< 𝑝𝑝 <  
1

𝐹𝐹𝐵𝐵 + 2
 

where Fr is the rth Fibonacci number, then the longest code word for that symbol 

is at most of length r bits.  The Fibonacci sequence is recursively defined as: 

F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2 , for n ≥ 2 

This research is significant because when a swap occurs, the output stream will 

receive the NYT symbol and the uncompressed symbol.  The length of the NYT symbol 

at this point will be the same as the length of the least probable symbol up to that point in 

the stream.  Note that this establishes an upper bound on the length of the symbol. 
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Swap Maximum Bound Analysis 

An analysis of the upper bound on the maximum number of swaps follows.  As an 

example, suppose during compression the Huffman tree is full and a new symbol appears 

in the stream.  Assume that new symbol only occurs once in the stream (its frequency is 

1).  It is the least probable symbol.  At most two swaps will occur.  The first swap occurs 

when the new symbol is swapped with the least frequent symbol in the Huffman tree.  

The second swap occurs when the previously swapped out symbol is swapped in again 

because it is a more probable symbol.   

For example, if the total number of symbols in the alphabet is 5, the limit is set to 

4 symbols, and the least probable of the 5 symbols occurs once, then the most swaps that 

can occur is 2. 

Next, assume that the least probable symbol occurs more than once.  The most 

number of swaps that can occur will be two times p, the probability of the symbol in the 

stream, times m, the number of items in the stream. 

This result can be generalized.   

Formally, given: 

𝐼𝐼 = { 𝑀𝑀1,⋯ , 𝑀𝑀𝑛𝑛} ; I is the set of symbols and n is the number of different symbols 

in the input stream S. 

𝐼𝐼𝑥𝑥 = 𝑀𝑀𝑥𝑥1,⋯ , 𝑀𝑀𝑥𝑥𝑛𝑛  ; Ix is the list of symbols ordered by probability where, 

𝑃𝑃(𝑀𝑀𝑥𝑥1) <  𝑃𝑃(𝑀𝑀𝑥𝑥2) ⋯ < 𝑃𝑃�𝑀𝑀𝑥𝑥(𝑛𝑛−𝑘𝑘)�⋯ <  𝑃𝑃(𝑀𝑀𝑥𝑥𝑛𝑛) ; k is a user chosen constant and 

k < n.   k will be the maximum number of symbols allowed in the Huffman tree and P(x) 

is the probability of an item x in the stream.  
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Note that the case, 𝑃𝑃(𝑀𝑀𝑥𝑥1) =  𝑃𝑃(𝑀𝑀𝑥𝑥2) ⋯ = 𝑃𝑃�𝑀𝑀𝑥𝑥(𝑛𝑛−𝑘𝑘)�⋯ =  𝑃𝑃(𝑀𝑀𝑥𝑥𝑛𝑛) is not a 

realistic case.  Huffman compression is possible only when there is a non-uniformity in 

the symbol probabilities.  Secondly, for this discussion, note that the frequency of an item 

in the stream is equal to the total number of items in the stream times the items 

probability in the stream. 

When the Huffman tree is full, and a new symbol is processed that is not already 

in the Huffman tree, a “swap” occurs in the Huffman tree.  The new symbol is swapped 

with the symbol with the lowest probability in the tree.  

Define the uncompressed data stream, S, as: 

 𝑆𝑆 = 𝐸𝐸1 ⋯  𝐸𝐸𝑚𝑚 ; where m is the number of symbols in the uncompressed stream 

and each item in 𝑆𝑆 ∈ 𝐼𝐼. 

An upper bound on the number of swaps that can occur will be equal to: 

𝑀𝑀𝑎𝑎𝑥𝑥 𝑆𝑆𝑆𝑆𝑎𝑎𝑝𝑝𝐸𝐸 = 2𝑚𝑚 �𝑃𝑃(𝑀𝑀𝑥𝑥1) +  𝑃𝑃(𝑀𝑀𝑥𝑥2)⋯+ 𝑃𝑃�𝑀𝑀𝑥𝑥(𝑛𝑛−𝑘𝑘)�� 

𝑀𝑀𝑎𝑎𝑥𝑥 𝑆𝑆𝑆𝑆𝑎𝑎𝑝𝑝𝐸𝐸 = 2𝑚𝑚�𝑃𝑃�𝑀𝑀𝑥𝑥𝑗𝑗�
𝑛𝑛−𝑘𝑘

𝑗𝑗=1

 

 
Where m is the total number of items in the stream, k is the maximum number of 

items allowed in the Huffman tree.  This is Equation 1.  If Ix = i1…ix is the list of items 

ordered by probability, then P(ix) is the probability of an item, ix, in the stream, then n is 

the number of distinct items in the stream.  The maximum swap’s that can occur is two 

times the sum of the frequency of the least probable n-k symbols.   

Equation 1 can be rewritten to use the frequency of the items, rather than their 

probabilities.  
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𝑀𝑀𝑎𝑎𝑥𝑥 𝑆𝑆𝑆𝑆𝑎𝑎𝑝𝑝𝐸𝐸 = 2 �𝐹𝐹�𝑀𝑀𝑥𝑥𝑗𝑗�
𝑛𝑛−𝑘𝑘

𝑗𝑗=1

 

Where k is the maximum number of items allowed in the Huffman tree, F(ix) is 

the frequency an item, ix (the number of times it occurs in the stream at some point in 

time), and n is the number of distinct items in the stream at some point in time.  A 

comparison of the memory and time complexity of the proposed memory limited 

algorithm to the dynamic Huffman algorithm as proposed by Knuth (1985) is 

summarized in Table 13. 

Table 13  
Comparison of Asymptotic Time/Memory Complexity 

 
Dynamic 
Huffman 

Memory limited 
dynamic 
Huffman Notes 

Asymptotic time 
complexity to 
determine node with 
smallest frequency 

(not required) O(1) Node with smallest 
frequency is last node in 
node list 

Asymptotic memory 
complexity 

O(n) O(min(n,r)) where n is number of 
unique symbols seen in 
stream, and r is a chosen 
constant 

Asymptotic time 
complexity to search 
tree for symbol 

O(1) O(1) Constant time using a hash 
table and appropriate data 
structure for Huffman tree 

Asymptotic time to 
identify and split the 
NYT node 

O(1) O(1) Constant time  

Asymptotic time to 
find minimum weight 
node 

O(1) O(1) Constant time  

Asymptotic max time 
complexity to re-build 
tree 

 

O(b) O(b) where b is the max depth 
of the Huffman tree 

O(−lg(P(ai))) O(−lg(P(ai))) For symbol ai, with 
probability P(ai) 
(Pigeon, 2003) 
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“Tail” Items 

In equation 1, the quantity n-k refers to the last n-k items in the list of items sorted 

by probability.  These can be called the “tail items” in the list.  The tail items are 

significant in this research because if there are many of them, then by equation 1, there 

may be many swaps leading to a greater expansion of the compressed file when the 

memory is limited (k < n).  In the example shown in Figure 44, the user chosen constant k 

is 305.  The value n is the number of different items in the database.  In this example, it is 

470.  The number of tail items is 165.  Each one of these items has a frequency of less 

than 50 in this database.  The shape of this item frequency histogram is typical for many 

real databases. 

 

Figure 44. Histogram of item distribution in a database depicting tail items. 
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Relationship of distribution and compression ratio 

The probability distribution of the database will affect the compression ratio in 

several ways.  As demonstrated in the literature review section, a source stream where the 

input symbols have a uniform probability distribution will not compress well, or at all, 

with Huffman compression techniques.  As a further example, the two benchmark 

synthetic databases exhibit a more uniform distribution profile.  The synthetic databases 

did not compress as well as the other benchmark databases using the Huffman algorithm 

in the prior research.   

Additionally, the synthetic databases have many tail items because the distribution 

profile is ‘flatter’.  It is expected that these databases will not compress well with the 

memory limited dynamic Huffman compression algorithm as proposed herein because 

there are more items in the tail.  Many tail items result in more swaps as indicated by 

equation 1.  Many swaps will lead to a rapid decrease in the compression ratio because 

there will be many NYT and uncompressed symbols in the compressed output stream.   

Swap Minimum Bound 

The equation for the minimum bound on the number of swaps is: 

Min Swaps = n – k 

This is Equation 2.  This minimum bound is found by noting that the minimum 

number of swaps occur when all the tail items appear at the end of the uncompressed 

stream.  Then, one swap must occur of each item in the list of tail items. 

Proposed Work 

First, the FGK algorithm (Knuth, 1985) will be prototyped and verified to be 

correct.  To verify correctness of the algorithm several texts will be compressed with the 
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algorithm.  The text will then be decompressed to restore the file.  The original and 

restored texts will be compared using commercial software that can compare files.  In his 

original paper, Knuth (1985) gives some results of compressing files.  The original files 

as used by Knuth will be compressed and the results compared to the results as 

documented by Knuth.  

Second, the algorithm will be modified to limit the size of the tree using the 

Frequent item identification method proposed by Metwally. Agrawal, and El Abbadi 

(2005).   This modification will be verified to be correct.  Two variation of the memory 

limited dynamic Huffman compression will be prototyped.  The first variation is the 

standard algorithm as outlined in Figure 28.  In the second variation of the memory 

limited dynamic Huffman compression algorithm, when a replacement of a symbol 

occurs because the table is full, the weight of the added symbol will not be incremented.  

This will be discussed in more detail later in this research.  See Figure 50 and Figure 51 

for a comparison of the variation.  The results of the memory limited dynamic Huffman 

algorithm will be verified to be correct before proceeding to the second step of the 

investigation.  In the second step this research will benchmark the compression on several 

transaction databases used by researchers to benchmark datamining algorithms.  These 

databases are listed in Table 1 and repeated in Table 14. 

The format of the raw data from these benchmark databases varies.  A synopsis of 

the database original formats is listed in Table 14.  Some formats require pre-processing 

to bring them into the horizontal transaction format.  During the initial investigation, it 

was found there were other anomalies in the databases.  The databases will need to be 
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‘scrubbed’ to remove the anomalies and put the databases into a constituent format.  The 

scrubbing process will focus on the following items: 

• Items are in lexicographic order (for consistency with prior research).  

• Gaps in Item ID numbering removed. 

• Transaction ID added if it is missing. 

• ‘Other’ anomalies, stray character, missing newline. 

• Item ID’s separated by a single comma character. 

• The file is in an ASCII coded binary format (for readability).  

• It is important to add a transaction delimiter to end of line since each 

transaction is not a fixed length. 

• Most importantly, the bit width of the item ID is assumed to be ideal for 

the database being considered.  The bit width is calculated as 

𝑏𝑏 = 𝑐𝑐𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸(log2𝑛𝑛 ), where n is the number of different items.   This is 

important when the compression ratio is calculated.  If for instance all 

item IDs in all databases were assumed to have a fixed 32-bit width, an 

inflated compression ratio would result. 

• Verify prior research (conducted over two years ago) was similarly 

scrubbed. 

Table 14  
Structure of Benchmark Databases 
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Database Database format 
Accidents Variable length list of item-IDs, one transaction per line. 
BMS1 Each line is a single transaction IDs followed by a single item-ID.  

Transactions span multiple lines. 
Kosarak Variable length list of item-IDs, one transaction per line. 
Retail Variable length list of item-IDs, one transaction per line. 
T10I4D100K Variable length list of item-IDs, one transaction per line. 
T40I10D100K Variable length list of item-IDs, one transaction per line. 
BMS-POS Each line is a single transaction IDs followed by a single item-ID.  

Transactions span multiple lines. 
BMS-WebView2 Each line is a single transaction IDs followed by a single item-ID.  

Transactions span multiple lines. 
 

A compression of these databases using the algorithms developed in phase 1 will 

be performed and the results of the compression tabulated.  Since this is a single pass 

(adaptive) compression a graph of the effective compression ratio over time will be an 

important metric.  This can be compared to the static compression ratios as tabulated in 

Table 11. 

 The compression ratio is a key metric used to compare the performance of the 

dynamic Huffman compression and the memory limited Huffman compression.    The 

native format of the databases listed in Table 14 is an ASCII character format.  The 

resulting compressed data stream will be in a binary format with a variable word length.   

For comparison, the ASCII input format will be changed to a binary format.  In addition, 

this research assumes the binary input format is a fixed width word whose word length is 

adjusted to fit the maximum number of items in the item list and no more.  More 

formally, if b is the word length of the input file item IDs, and n is the number of different 

items in the database: 

𝑏𝑏 =  𝑐𝑐𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸(log2 𝑛𝑛) 
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The compression ratio will be calculated as 

𝑐𝑐
𝑢𝑢

 

where c is the size of the uncompressed string in bits, and u is the length of the 

uncompressed string in bits. 

Other researchers, Abu-Mostafa and McEliece (2000), assume a fixed 32-bit TID 

code word size for all their research into transaction database compression.  Their 

argument can be simplified to noting that 32 bits is a typical word size for computers.  

This would provide better overall compression results than using a word size that was 

adjusted for the maximum number of transaction IDs, as in this research..  Having high 

compression numbers is not relevant in the long run.  This research is concerned with the 

relative compression result of the non-memory limited Dynamic Huffman compression to 

the memory limited results obtained with the algorithm proposed here. 

Each of the eight databases will be compressed with a Dynamic Huffman 

compression that is not memory limited.  Several metrics are important to collect.  These 

are:  

• Bit size of the input file and the output file 

• Compression ratio 

• Number of different items.  The number of different items is important to 

determine the input item bit size.  The benchmark database files are all in 

ASCII.  Further, each symbol is not of the optimum bit width.  

Preprocessing of each file is performed to optimize the input file size to be 

minimal by adjusting the input symbol bit size to be minimal. 
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• Algorithm run times (for comparison to the database size, and size of 

memory). 

• Actual number of “swaps” that occurred 

• Frequency of all symbols for calculation of “maximum swaps” (eq. 1). 

• A calculation of the theoretical maximum number of swaps. 

An important parameter is the number of symbols, k, to maintain in the frequent 

item identification List.  As the number of symbols is increased it is expected that the 

compression ratio would approach that as obtained by the static two pass compression.  

The experiments will be performed for several values of k.  The most effective value of k 

will be selected.  Finally, the most effective combination of algorithms will be run so a 

plot of k versus the compression ratio can be developed to determine how the size of 

memory affects the compression ratio for real world applications. 

Other plots to be generated are the compression ratio vs k/n.  The quantity k/n is a 

dimensionless number.  It can be expressed as a percentage of the maximum number of 

items in the Huffman tree to the total number of different items in the database.  It 

provides a look at the relationship between the compression ratio and k, that is 

independent of the value of n for a database.   In the initial study, it was determined that 

the database needed to be compressed with 20 different values of k, to get enough data 

points to plot well and to reasonably determine if the plot was a smooth function. 

 Figure 45 is a plot of the expected compression ratio that a dynamic compression 

algorithm will achieve without any memory limitation (as this research proposes).  The 

lower and upper bounds on the compression are calculated by Vitter (1978).  In this plot, 

the solid line indicates the compression ratio achieved by the static Huffman compression 
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algorithm on the file BMS1.  The static compression results in a constant compression 

ratio (straight line) for the file because the algorithm does not need to learn the tokens 

and their frequencies to compress.  The 12.5% compression ratio is the experimental 

value given in Table 11.  

The short-dotted line in the graph is the lower bound of the expected dynamic 

compression ratio.  It starts off at 100% because when the algorithm first starts 

processing the file, the Huffman tree is empty.  For each new symbol that is encountered 

in the input stream (a stream is a file that is processed in a single pass) it must transmit 

the NYT symbol and the uncompressed symbol on the input file.  Thus, initially, there 

may be more bits transmitted than received.  

 
Figure 45.  Expected dynamic versus static compression ratio. 
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compression achieved by the FGK algorithm will be less than 2S + t – 4n +2, and greater 

than S – n + 1; where S is the number of transmitted bits of the static Huffman for a 

message with n distinct symbols of length t.  It is important to note that in the upper 

bound, the FGK algorithm will asymptotically reach the performance of the static 

Huffman compression.  The number of bits transmitted by the FGK algorithm will never 

be more than twice the static Huffman algorithm.  The dynamic compression results of 

the memory limited algorithm will be less than that of the FGK algorithm.  The 

divergence between the solid line and the dotted lines will be determined by k, the 

maximum number of symbols to be held in memory. 

Knuth (1981) provides detailed pseudocode for the implementation of the FGK 

algorithm.   In addition, there are many implementations available in the public domain.  

As a base, public domain code will be chosen and verified to be correct.   Knuth provides 

results of the algorithm on an available dataset, the first ten Fairy Tales, by Grimm.  In 

the verification phase of this research the performance on this dataset with the 

implementation of FGK will be verified against Knuth’s results. 

Final tasks for the proposed work is to verify the eq. 1, the upper bound on the 

number of swaps.  This will be verified on the eight benchmark databases.  Each 

complete database file will be read in and the number of occurrences of each symbol will 

be tabulated and sorted.  The predicted upper bound on the number of swaps will be 

calculated from eq. 1.   

Next, the database will be compressed for various values of k. The maximum 

number of swaps will be recorded and compared to the predicted upper bound.   
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Resources 

This research will require a computer with a C# compiler to prototype and 

evaluate the compression algorithms.  The C# compiler will be the Microsoft product 

Visual Studio 2013.  This is free from the Nova Southeastern DreamSpark Academic 

Alliance.  The benchmark databases will be required to evaluate the algorithm 

performance.  These are available freely online from the UCI Machine Learning 

Repository (http://archive.ics.uci.edu/ml/datasets.html) and other sources (see benchmark 

list Table 1).  Nova Library resources will be required for the literature review portion of 

this research.  The Terasic DE0-Nano Cyclone IV development and evaluation board will 

be required for the FPGA processing study portion of this research.   

http://archive.ics.uci.edu/ml/datasets.html
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Chapter 4  

Results 

Verification of Algorithm Coding 

A prototype of the memory limited dynamic Huffman algorithm is coded and 

verified.  Base code of a dynamic Huffman algorithm in C# was downloaded from 

http://dynamichuffman.codeplex.com (Bassman, 2014).    This code is modified with the 

frequent item identification algorithm as proposed by Metwally. Agrawal, & El Abbadi 

(2005).  It also includes modifications that instrument the code to gather measurements.   

As a verification, the algorithm was tested with the textual data of the first ten Grimm’s 

Fairy Tales.  Although the original textual file used by Knuth (1985) was obtained, there 

were a few minor differences due to formatting characters in the file (the file was 

obtained in HTML format).  Donald Knuth confirms (personal communication, 

September 17, 2016) the original file was for a ‘SAIL’ computer with a slightly non-

standard character set.   This may account for the minor differences. 

First, the memory limited dynamic Huffman algorithm was used to compress the 

complete 1.41Mb text.  In Chapter 4 of this research, results will be presented on 

compression of the actual benchmark datasets.   The number of nodes in the Huffman tree 

were not limited.  The compressed text was then decompressed.  The recovered text was 

compared to the original text and no differences were found.  Next, the same exercise was 

repeated with memory limited.  Memory was limited by repeating the experiment with 

the number of nodes limited to 10, 20 and 30 nodes.  The file was compress and 

decompressed.  No differences were found between the original file and the restored file. 

http://dynamichuffman.codeplex.com/
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Next, the results obtained by Knuth (1985) were attempted to be duplicated.  In 

this research, he tabulates two metrics, ∑b and ∑bopt for 1000, 10000 and 100000 

characters processed.   Here, Knuth is comparing the performance of the Dynamic 

Huffman Algorithm with the Static Huffman Algorithm.   The ∑b quantity is the number 

of bits written into the output stream as produced by the dynamic Huffman algorithm.  

The ∑bopt quantity is the sum of the weighted path length of all symbols in the Huffman 

tree.  This weighted path length will be the same as the number of bits transmitted by a 

static Huffman algorithm.  Of course, the static Huffman algorithm must initially 

communicate or transmit the shape of the Huffman tree as well (or the canonical 

Huffman form of compressed codes must be used.)  The ∑bopt quantity does not include 

this overhead.  But the ∑b quantity does include the bits required to transmit the NYT 

code and the original symbol to the decoder.  As Knuth points out, “As the file gets larger, 

the overhead ratio grows to the point where a two-pass scheme would transmit fewer bits, 

yet the on-line method is not far from optimum.” 

Table 15 presents a comparison of Knuth’s FGK algorithm results to the results of 

the memory limited dynamic Huffman algorithm.  The small difference between the 

performance of the two algorithms may be attributed to minor difference in the symbols 

in the original file and the file used for comparison.  
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Table 15   
Algorithm Verification to Knuth’s Original Grimm Fairy Tale Results 

Dynamic vs. static 
Bits produced, 1 symbol = 1 characters 

Symbols  
processed 

Knuth’s original FGK resultsa 
Memory limited dynamic Huffman 

algorithm 

∑b ∑bopt ∑b ∑bopt 

1000 4558 4297 4579 4318 
10000 44733 44272 44738 44295 
100000 440164 439613 440151 439614 

a “Dynamic Huffman coding,” by D. E. Knuth, 1985,  Journal of Algorithms, 6(2), 163-
180.  

 

Performance 

Next, the compression performance of the memory limited dynamic Huffman 

algorithm was put to the test.  The compression performance was compared to the 

Grimms Fairy Tales file with ASCII characters taken “1 at a time”, and ASCII characters 

“taken 2 at a time.”   The “1 at a time” experiment is identical to Knuths 7-bit character 

experiment, and the “2 at a time” experiment is equivalent to his 14-bit character 

experiment.  In the “2 at a time” experiment, each symbol to compress is created from the 

next 2 ASCII characters in the input stream, whereas the 1 at a time algorithm creates a 

node in the Huffman tree for every new character in the input stream.  The algorithm did 

not try to do any ‘preprocessing’ of the symbol pairs.  It simply took the next two 

characters in the input stream and used them as the input symbol. 

In the series “1 at a time” in Figure 46, the line flattens out to a compression ratio 

of about 53% after a limit of 60 nodes.  Each character is 1 symbol.   60 characters are the 

maximum number symbols in the file when the characters are taken 1 at a time.  This 

corresponds to about 120 nodes in the Huffman tree.   The second series, “2 at a time”, 
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flattens out after 1900 nodes are set as the limit.  This is because when the characters are 

taken 2 at a time 1900 nodes are produced.  After 500 nodes are reached, the table 

indicates that “2 character at a time” processing compression ratio is better than the “1 

character at a time” processing.  Compression ratio is defined as compressed 

size/uncompressed size. 

In this “two at a time” compression, many more node are produced.  This is 

because the original file contained 60 different symbols.  When taken in combination, up 

to 3600 combinations may be produced.  The actual number of combinations of 

characters taken “2 at a time” the file produced was approximately 1900 different 

combinations. 

 

Figure 46. One- versus 2-at-a-time compression ratio comparison. 
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performed that considered three characters as a single symbol.  The “3 at a time” 

experimental compression results are compared to the character pair results in Figure 47.  

There was no preprocessing when creating the “3 at a time” symbols.  The next three 7-

bit ASCII characters in the input stream were assembled into the 21-bit symbol.  The 

memory limited compression ratio for the “2 at a time” compression is 48%, the ratio for 

the “3 at a time” is 44%.  An exact calculation of the improvement is 9.1% when 

compression is done on 2 vs. 3 at a time.  The number of symbols generated when the 

text is considered “3 at a time” is 6,121.  It takes at least 5,000 symbols when the 

symbols are considered “3 at a time” to equal the compression ratio when the symbols are 

considered “2 at a time”.  In the case of “2 at a time” a maximum of 1920 symbols were 

produced.  “3 at a time” produced 6121 symbols. The cumulative number of bits 

produced for the “3 at a time” dynamic algorithm vs the optimal number of bits a static 

compression algorithm would produce are tabulated in Table 16. 
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Figure 47.  Two- versus 3-at-a-time compression ratio comparison. 

 
Table 16  
Bits Produced “3 at a Time” 

Dynamic versus static 
Bits produced, 1 symbol = 3 characters 

Symbols processed ∑b ∑bopt 

1000 22,025 8,848 
10000 146,148 98,908 
100000 1,114,803 1,014,560 
 

In Figure 41 are the results of a compression experiment was run with the symbol 

chosen “4 at a time.”  In this experiment four 7-bit ASCII characters are considered a 

single 28-bit symbol. This experiment produced up to 41,347 symbols.  The best 
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tell from the graph, but “4 at a time” beat “3 at a time” by a tiny 0.0021% (at a cost of 

about 29,000 nodes). 

The cumulative number of bits produced for the “4 at a time” dynamic algorithm 

vs the optimal number of bits a static compression algorithm would produce are tabulated 

in Table 17. 

 

Figure 48. Three- versus 4-at-a-time compression ratio comparison. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 10000 20000 30000 40000 50000

C
om

pr
es

si
on

 R
at

io

Number of Nodes

Compression Ratio vs Nodes
for File Grimms Fairy Tales

3 vs 4 at a time

3 at a time 4 at a time



135 

 

Table 17  
Bits Produced “4 at a Time” 

Dynamic versus static 
Bits produced, 1 symbol = 4 characters 

Symbols processed ∑b ∑bopt 
1000 32,539 9,361 
10000 240,128 112,428 
100000 1,609,116 1,199,647 
 

Finally, an experiment was devised where the compression symbol is whole 

words.  Here, a ‘word’ is defined as any sequence of character separated by a space 

character.  This includes the special characters and punctuation characters.  Multiple 

space characters are collapsed to a single character.  The resulting single space character 

was not compressed into the output stream since it could be simply added during 

decoding as a separator between symbols.  The results for “word at a time” are shown in 

Figure 49.  

It is interesting that when the algorithm considers each symbol to be a word, the 

compression is more than the fixed number of character compression algorithms, at about 

40.5%.  On the other hand, a significant number of symbols are produced, 60,033 word 

symbols vs, 41,347 symbols chosen “4 at a time.”  

Knuth (1985) concluded that the extra memory requirements for the character 

double experiment did not justify the incrementally better compression ratio. 
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Figure 49.  “4 at a time” versus “word at a time” comparison. 

Table 18  
Bits Produced “Word at a Time” 

Dynamic versus static 
Bits produced, 1 symbol = 1 word 

Symbols processed ∑b ∑bopt 

1000 31,256 8,043 
10000 252,515 93,062 
100000 2,005,366 1,001,072 

 

Optimization of Algorithm 

The frequent item identification algorithm (Metwally, Agrawal & El Abbadi, 
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the new symbol.  Its weight is then incremented.   During verification of the algorithm it 

was noticed that perhaps the algorithm is over estimating the frequency of new symbols 

in the stream.  The pseudocode for the frequent item identification algorithm is presented 

in Figure 50.   

 

Figure 50.  Frequent item identification pseudocode. 

As a test the algorithm was modified to not increment a new symbol but only 

when replacing an old symbol.  When a new symbol replaces an old symbol, the 

algorithm does not increment the symbol after it is replaced.  When this change is applied 

to the Memory Limited Dynamic Huffman Algorithm it is called “Option B.”  The 

pseudocode is presented in Figure 51.  A comparison of the performance of the algorithm 

with and without “Option B” is presented Figure 52.   

Space-Saving Pseudocode 
1. T  ∅ 
2. For each i 
3.  If i є T 
4.   Then ci  ci + 1 
5.  Else if |T| < k 
6.   Then  T  T ∪ { i } 
7.    ci  1 
8.   Else j  arg min(jєT) cj 

9.     cj  cj + 1 
10.     T  T ∪ {i}\{j} 
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Figure 51. Frequent item identification pseudocode with “Option B.” 

The pseudocode of Figure 50 and Figure 51 are identical except for line #9.   A 

description of the pseudocode follows.  The array T is a set of tuples.  It is initialized in 

line 1.  The maximum size that T will be allowed to grow is k, where k is a user defined 

constant.  Each tuple in the set consists of an item ID and count.  The variable i is the 

next item in the input stream to process.  Line 2 iterates through all items in the stream.  

If the item is already in the set T, then the associated count is incremented in line 4.  If the 

item is not in the set, then there are two possibilities.  The set is less than the maximum 

size, k, or it has reached its maximum size.  If there is room in the set then lines 6 and 7 

add the item to the set, and the items count is initialized to 1.  If the set is full (it has 

reached its maximum size), then line 8 sets j to the item in the set T whose count in 

minimum.  Line 10 then removes the item with the minimum count from the set and adds 

the new item.  The item is removed, but not its count.  This is important.  In line 9 the 

count, which remained from the removed item, is incremented.  The “Option B” 

algorithm attempts to create a more accurate view of the item count by pessimistically not 

incrementing the removed item count.  This option requires more research since it is 

Space-Saving Pseudocode with “Option B” 
1. T  ∅ 
2. For each i 
3.  If i є T 
4.   Then ci  ci + 1 
5.  Else if |T| < k 
6.   Then  T  T ∪ { i } 
7.    ci  1 
8.   Else j  arg min(jєT) cj 

9.       
10.      T  T ∪ {i}\{j} 
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different from the frequent item identification algorithm as originally proposed by 

Metwally, Agrawal, and El Abbadi (2005). 

 

 

Figure 52. “Option B” performance. 

 

 To test the memory limited Dynamic Huffman algorithms compression ratio an 
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half of the total number of nodes in the file if the Huffman tree could grow to 

accommodate all symbols.   The actual measured values are shown in Table 19. 

Table 19  
Measured Data for Modified Frequent Item Identification Algorithm  

Nodes 

Compression ratio 

Without “Option B” With “Option B” 

  10 1.230698785 1.074234339 
  30 0.795063870 0.673381659 
  61 0.559337138 0.560810829 
101 0.549010153 0.549058881 
129 0.548742861 0.548742946 
135 0.548742692 0.548742692 

 

Characteristics of Benchmark Transaction Data 

The benchmark transaction databases were collected from several sources 

including the KDD 2000 Cup website and the original datasets as provided by Agrawal, 

Imielinski and Swami (1993).  See Table 1 for the citation to the source of each 

Transaction database.  Table 20 lists a brief description of the source and nature of the 

data.   

 Huffman compression is a statistical compression technique, the probability 

distribution of the item frequencies therefore is important to the achieved compression 

ratios.  The probability distribution of each of the benchmark database examples are 

presented in Figure 53 to Figure 60. 
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Table 20  
Description of Benchmark Transaction Database source data 

Database Database source 
Accidents Traffic accident data 
BMS1 KDD CUP 2000: click-stream data from a webstore 

named Gazelle 
Kosarak Click-stream data of a Hungarian on-line news 

portal 
Retail Retail market basket data from an anonymous 

Belgian retail store 
BMS-POS KDD CUP 2000: click-stream data from a webstore 

named Gazelle 
BMS-WebView2 KDD CUP 2000: click-stream data from a webstore 

named Gazelle 
T10I4D100K Synthetic data from the IBM Almaden Quest 

research group 
T40I10D100K Synthetic data from the IBM Almaden Quest 

research group 
 

 

Figure 53.  Frequency of items in the accidents database. 

 

0.1

1

10

100

1000

10000

100000

1000000

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "Accidents" Transaction Database



142 

 

 
Figure 54. Frequency of items in the BMS1 database. 

 

 
Figure 55.  Frequency of items in the BMS-POS database. 
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Figure 56.  Frequency of items in the BMS-Webview2 database. 

 
Figure 57. Frequency of items in the Kosarak database. 
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Figure 58.  Frequency of items in the Retail database. 

 

 
Figure 59.  Frequency of items in the T40I10D100K database. 
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Figure 60.  Frequency of items in the T1014D100K database. 

 

Each of the benchmark databases exhibit an approximate Zipf distribution 

(Powers, 1998).  The Zipf distribution is known to have an approximate distribution that 

follows a distribution inversely proportional to its rank, where the rank in this case is the 

item number (Powers, 1998).  Probability distributions that are more uniformly 

distributed, such as with the synthetic benchmark databases, did not compress well in the 

prior research.  These databases did not compress well in this research as well as is 

indicated in the data that follow.  Additionally, the synthetic databases had many items in 

their ‘tail’.  This resulted in a rapid deterioration in the compression ratio as memory was 

limited.  In fact, the achieved compression ratio (documented in the section to follow) 

was over 1.0, this indicates an expansion of the data rather than a compression.   
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Database Compression Results 

The coding of the memory limited dynamic Huffman algorithm was verified to be 

correct and the benchmark databases were compressed using the algorithm.  Summaries 

of several metrics and measurements follow for each benchmark database.  Appendix A 

presents the raw data.   As noted in Figure 59 and Figure 60, the synthetic databases 

T40I10D100K and T1014D100K show a flatter distribution curve.  This indicates the 

synthetic data set has less entropy than the ‘real’ data sets (the data is more random). In 

the previous research work the synthetic data did not compress well with the Huffman 

compression.  The compression ratios achieved were markedly less than the real data sets.  

In the results that follow, these synthetic data sets continued to not compress as well as 

the real data sets.   

Accidents Benchmark Transaction Database Summary 

The results of compressing the “Accidents” transaction database using the 

memory limited dynamic Huffman compression algorithm are presented as follows. 

Note. Ideal item ID size = 9 bits.  summarizes the produced bits and the minimum 

weighted path length for the Accidents benchmark database.  The minimum weighted 

path length is the sum of the weighted path from the root to the leaves in the dynamic 

Huffman tree using the frequency of each leaf node as its weight multiplied by the 

number of links to the root.  
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Table 21  
Accidents Produced Bits and Minimum Weighted Path Length 

Symbols processed ∑b ∑bopt 

1000 7590 6311 
10000 66044 64203 
100000 640211 637892 

Note. Ideal item ID size = 9 bits.  

Figure 61 through Figure 64 show the results of applying the memory limited 

dynamic Huffman algorithm to the benchmark “Accidents” database.  When plotted on a 

semi-log graph the histogram of the frequency of items appears to closely follow a 

straight line.  This approximates a “Zipf” distribution.  The paper “Applications and 

Explanations of Zipf's Law” provides a good start to understanding the origin of this 

empirical law (Powers, 1998).   Similar to the item frequency histogram, the compression 

ratio vs the number of nodes in the tree appears as a straight line.  It’s important to note 

that the actual number of swaps is always less than the maximum number of swaps as 

predicted by eq. 1.  This also appears almost as a straight line when plotted on a semi-log 

scale. 

Note that compression ratios greater than 1.0 are an expansion of the source data 

rather than a compression. 
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Figure 61.  Accidents static versus memory limited dynamic compression ratio. 

 

 
Figure 62.  Accidents actual versus calculated max swaps. 
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Figure 63.  Accidents actual versus calculated max swaps (semi-log). 

 
Figure 64. Accidents actual swaps versus the compression ratio (semi-log). 
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BMS1 Benchmark Transaction Database Summary 

The results of compressing the “BMS1” transaction database using the memory 

limited dynamic Huffman compression algorithm follow.  Table 22 summarizes the 

produced bits and the minimum weighted path length for the BMS1 benchmark database.  

The minimum weighted path length is the sum of the weighted path from the root to the 

leaves in the dynamic Huffman tree using the frequency of each leaf node as its weight 

multiplied by the number of links to the root.  

Table 22  
BMS1 Produced Bits and Minimum Weighted Path Length 

Symbols processed ∑b ∑bopt 

1000 8996 6913 
10000 64663 62087 
100000 619374 615942 

Note. Ideal item ID size = 9 bits. 

Figure 65 through Figure 68 show the results of applying the memory limited 

dynamic Huffman algorithm to the benchmark “BMS1” database.  When plotted on a 

semi-log graph the histogram of the frequency of items appears to closely follow a 

straight line.  Similarly, the compression ratio vs the number of nodes in the tree appears 

as a straight line.  The actual number of swaps is always less than the maximum number 

of swaps as predicted by eq. 1.  This also appears almost as a straight line when plotted 

on a semi-log scale. 
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Figure 65.  BMS1 static versus memory limited dynamic compression ratio. 

 

 
Figure 66. BMS1 actual versus calculated max swaps. 
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Figure 67.  BMS1 actual versus calculated max swaps (semi-log). 

 

 
Figure 68.  BMS1 actual swaps versus the compression ratio (semi-log). 
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BMS-POS Benchmark Transaction Database Summary 

The results of compressing the “BMS-POS” transaction database using the 

memory limited dynamic Huffman compression algorithm follow. 

Table 23 summarizes the produced bits and the minimum weighted path length for 

the BMS-POS benchmark database.  The minimum weighted path length is the sum of 

the weighted path from the root to the leaves in the dynamic Huffman tree using the 

frequency of each leaf node as its weight multiplied by the number of links to the root.  

Note that compression ratios greater than 1.0 are an expansion of the source data 

rather than a compression. 

 

Table 23   
BMS-POS Produced Bits and Minimum Weighted Path Length 

Symbols processed ∑b ∑bopt 

1000 9196 6586 
10000 68101 63725 
100000 730370 723163 

Note. Ideal item ID size = 11 bits. 

Figure 69 through Figure 72 show the results of applying the memory limited 

dynamic Huffman algorithm to the benchmark “BMS-POS” database.  When plotted on a 

semi-log graph the histogram of the frequency of items appears to closely follow a 

straight line.  Similarly, the compression ratio vs the number of nodes in the tree appears 

as a straight line.  Again, for this benchmark database, the actual number of swaps is 

always less than the maximum number of swaps as predicted by eq. 1.  This also appears 

almost as a straight line when plotted on a semi-log scale. 
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Figure 69. BMS-POS static versus memory limited dynamic compression ratio. 

 

 
Figure 70. BMS-POS actual versus calculated max swaps. 
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Figure 71.  BMS-POS actual versus calculated max swaps (semi-log). 

 

 
Figure 72. BMS-POS actual swaps versus the compression ratio (semi-log). 
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the produced bits and the minimum weighted path length for the BMS-Webview2 

benchmark database.  The minimum weighted path length is the sum of the weighted path 

from the root to the leaves in the dynamic Huffman tree using the frequency of each leaf 

node as its weight multiplied by the number of links to the root.  

Table 24  
BMS-POS Produced Bits and Table Minimum Weighted Path Length 

Symbols processed ∑b ∑bopt 

1000 12737 7670 
10000 103325 85794 
100000 932816 902000 

Note. Ideal item ID size = 11 bits. 

Figure 73 through Figure 76 show the results of applying the memory limited 

dynamic Huffman algorithm to the benchmark “BMS-Webview2” database.  When 

plotted on a semi-log graph the histogram of the frequency of items appears to closely 

follow a straight line.  Again, for this benchmark database, the compression ratio vs the 

number of nodes in the tree appears as a straight line.  It’s important to note that the 

actual number of swaps is always less than the maximum number of swaps as predicted 

by eq. 1.  This also appears almost as a straight line when plotted on a semi-log scale. 

Note that compression ratios greater than 1.0 are an expansion of the source data 

rather than a compression. 
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Figure 73. BMS-Webview2 static versus memory limited compression ratio. 

 

 
Figure 74.  BMS-Webview2 actual versus calculated max swaps. 
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Figure 75. BMS-Webview2 actual versus calculated max swaps (semi-log). 

 

 
Figure 76.  BMS-Webview2 actual swaps versus compression ratio (semi-log). 
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Kosarak Benchmark Transaction Database Summary 

The results of compressing the “Kosarak” transaction database using the memory 

limited dynamic Huffman compression algorithm follow.  Table 25 summarizes the 

produced bits and the minimum weighted path length for the Kosarak benchmark 

database.  The minimum weighted path length is the sum of the weighted path from the 

root to the leaves in the dynamic Huffman tree using the frequency of each leaf node as 

its weight multiplied by the number of links to the root.  

Table 25  
Kosarak Produced Bits and Minimum Weighted Path Length 

Symbols processed ∑b ∑bopt 

1000 15705 7617 
10000 138970 92114 
100000 1105771 958237 

Note. Ideal item ID size = 16 bits. 

 

Figure 77 through Figure 80 show the results of applying the memory limited 

dynamic Huffman algorithm to the benchmark “Kosarak” database.  When plotted on a 

semi-log graph the histogram of the frequency of items appears to closely follow a 

straight line.  Again, for this benchmark database, the compression ratio vs the number of 

nodes in the tree appears as a straight line.  It’s important to note that the actual number 

of swaps is always less than the maximum number of swaps as predicted by eq. 1.  This 

also appears almost as a straight line when plotted on a semi-log scale. 

Note that compression ratios greater than 1.0 are an expansion of the source data 

rather than a compression. 
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Figure 77. Kosarak static vs. memory limited dynamic compression ratio 

 
Figure 78.  Kosarak actual versus calculated max swaps 
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Figure 79.  Kosarak actual versus calculated max swaps (semi-log). 

 
Figure 80.  Kosarak actual swaps versus the compression ratio (semi-log). 
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Table 26 summarizes the produced bits and the minimum weighted path length for 

the Retail benchmark database.  The minimum weighted path length is the sum of the 

weighted path from the root to the leaves in the dynamic Huffman tree using the 

frequency of each leaf node as its weight multiplied by the number of links to the root.  

Table 26  
Retail Produced Bits and Minimum Weighted Path Length 

Symbols processed ∑b ∑bopt 

1000 16729 7953 
10000 140590 95212 
100000 1137663 1039451 

Note. Ideal item ID size = 15 bits. 

Figure 81 through Figure 84 show the results of applying the memory limited 

dynamic Huffman algorithm to the benchmark “Retail” database.  When plotted on a 

semi-log graph the histogram of the frequency of items appears to closely follow a 

straight line.  Again, for this benchmark database, the compression ratio vs the number of 

nodes in the tree appears as a straight line.  It’s important to note that the actual number 

of swaps is always less than the maximum number of swaps as predicted by eq. 1.  This 

also appears almost as a straight line when plotted on a semi-log scale 

Note that compression ratios greater than 1.0 are an expansion of the source data 

rather than a compression. 

. 
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Figure 81.  Retail static versus memory limited dynamic compression ratio. 

 

 
Figure 82.   Retail actual versus calculated max swaps. 
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Figure 83. Retail actual versus calculated max swaps (semi-log). 

 

 
Figure 84.  Retail actual swaps versus the compression ratio (semi-log). 
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T40I10D100K Benchmark Transaction Database Summary 

The results of compressing the “T40I10D100K” transaction database using the 

memory limited dynamic Huffman compression algorithm follow.  Table 27 summarizes 

the produced bits and the minimum weighted path length for the T40I10D100K 

benchmark database.  The minimum weighted path length is the sum of the weighted path 

from the root to the leaves in the dynamic Huffman tree using the frequency of each leaf 

node as its weight multiplied by the number of links to the root.  

Table 27  
T40I10D100K Produced Bits and Minimum Weighted Path Length 

Symbols processed ∑b ∑bopt 

1000 14084 8696 
10000 102203 92469 
100000 939618 928024 

Note. Ideal item ID size = 10 bits. 

Figure 85 through Figure 88 show the results of applying the memory limited 

dynamic Huffman algorithm to the benchmark “T40I10D100K” database.  When plotted 

on a semi-log graph the histogram of the frequency of items appears to closely follow a 

straight line.  Again, for this benchmark database, the compression ratio vs the number of 

nodes in the tree appears as a straight line.  It’s important to note that the actual number 

of swaps is always less than the maximum number of swaps as predicted by eq. 1.  This 

also appears almost as a straight line when plotted on a semi-log scale. 
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Figure 85.  T40I10D100K static versus memory limited dynamic compression ratio. 

 

 
Figure 86. T40I10D100K actual versus calculated max swaps. 
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Figure 87. T40I10D100K actual versus calculated max swaps (semi-log). 

 
Figure 88.  T40I10D100K actual swaps versus the compression ratio (semi-log). 
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T1014D100K Benchmark Transaction Database Summary 

The results of compressing the “T1014D100K” transaction database using the 

memory limited dynamic Huffman compression algorithm follow.  Table 28 summarizes 

the produced bits and the minimum weighted path length for the T1014D100K 

benchmark database.  The minimum weighted path length is the sum of the weighted path 

from the root to the leaves in the dynamic Huffman tree using the frequency of each leaf 

node as its weight multiplied by the number of links to the root.  

Table 28  
T1014D100K Produced Bits and Minimum Weighted Path Length 

Symbols processed ∑b ∑bopt 

1000 12870 8227 
10000 95467 87494 
100000 891435 881649 

Note. Ideal item ID size = 10 bits. 

Figure 89 through Figure 92 show the results of applying the memory limited 

dynamic Huffman algorithm to the benchmark “T1014D100K” database.  When plotted 

on a semi-log graph the histogram of the frequency of items appears to closely follow a 

straight line.  Again, for this benchmark database, the compression ratio vs the number of 

nodes in the tree appears as a straight line.  It’s important to note that the actual number 

of swaps is always less than the maximum number of swaps as predicted by eq. 1.  This 

also appears almost as a straight line when plotted on a semi-log scale. 

Note that compression ratios greater than 1.0 are an expansion of the source data 

rather than a compression. 
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Figure 89.  T1014D100K static versus memory limited dynamic compression ratio. 

 

 
Figure 90.  T1014D100K actual versus calculated max swaps. 
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Figure 91.  T1014D100K actual versus calculated max swaps (semi-log). 

 

 
Figure 92.  T1014D100K actual swaps versus the compression ratio (semi-log). 
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Discussion of Benchmark Compression Results 

 The first table presented above for each of the benchmark databases collected data 

summaries is the produced bits and the minimum weighted path length for 1000 symbols 

processed, 10,000 symbols processed and 100,000 symbols processed.  The raw data 

collected is presented in Appendix A. 

 Note that for each of the databases the produced bits are greater than the 

minimum weighted path length, as would be expected.  Recall the minimum weighted 

path length is the ideal number of bits in a compressed file that does not include the 

overhead of the dynamic compression or the overhead in transmitting the shape of the 

Huffman tree in a static compression scheme. 

 As noted above, most of the item distributions appear to follow the zipf (Powers, 

1998) distribution.  The distribution of items is a compilation, a list, of the number of 

times each item ID appears in the database.  The list of the items is then sorted by 

frequency and displayed as a histogram.  When plotted on a semi-log graph, the list 

appears almost as a straight line, following a zipf distribution.  An exception may be the 

synthetic databases.  The item distributions in these cases also appear to be straight line 

when plotted on a semi-log axis, but the distribution appears to be more uniform and 

flatter. 

 The next figure is that of the dynamic compression ratio vs the number of nodes.  

Also plotted on this figure is the static compression ratio as determined in prior research.  

There are a couple of important data points here.  Firstly, in all cases the dynamic 

compression ratio approaches the static compression ratio when the number of nodes is 

large.  When the number of nodes is large, the memory limited dynamic Huffman 
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compression algorithm performs identical to the dynamic Huffman compression 

algorithm as proposed by Knuth (1985).  This is because the number of nodes allowed in 

the tree, k, will equal the number of different items in the database, n.  Next, as identified 

by Knuth (1985) and Vitter (1989), it is noted that for a large number of compressed 

items, the static Huffman compression will approach that of the dynamic Huffman 

compression.  This is because, as noted by Vitter and Knuth, the ‘overhead’ is a fixed 

amount. 

 As the number of allowed nodes in the Huffman tree, k, is reduced, it is noted that 

the compression ratio decreases.  This is a result of eq. 1.  Eq. 1 predicts that the number 

of swaps will increase as the k is reduced (and the number of tail items, n-k, increases).  

The reduced compression is a result of more NYT symbols, and a corresponding 

uncompressed input symbol, being introduced into the compressed output stream, for 

each swap.  

 It is interesting to compare these results to the Pareto 80/20 principal (Reh, 2005).  

Pareto, based on the power law as proposed by Zipf, stated that 80% of the results come 

from the 20% vital few.  It’s a general heuristic rule.  If the Pareto rule holds for the 

compression of the benchmark databases using the memory limited dynamic Huffman 

compression algorithm, it would be expected that the achieved data compression would 

be 80% of the static data compression, if memory were limited to only 20% of the 

memory needed for the static compression.  Based on this principal the following 

tabulates the results of the compression ratio vs k with the actual 20% results, and what 

the Pareto 80/20 rule predicts in Table 29.  The Pareto 80/20 rule is a rough ‘rule of 
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thumb.’  The rule seems to underestimate the achieved compression for all but three of 

the benchmark databases. 

 The figures present the relationships of the actual vs theoretical number of max 

swaps as predicted by eq.1.  In every case the actual number of swaps is less than the 

theoretical number of maximum swaps.  This lends evidence to the correctness of the 

equation. 

Table 29  
Comparison of Actual 20% Compression Results to Pareto 

Benchmark database 
Actual 20% of final 

compression Pareto 20% 

Accidents   79.86%   87% 
BMS1   86.8%   86.6% 
BMS-POS   72.3%   77.47% 
BMS-Webview2   97.34%   93.9% 
Kosarak   66.5%   73.28% 
Retail   94.25%   86.9% 
T40I10D100K 107% 112% 
T1014D100K 106% 106% 

 

Note that compression ratios greater than 100% are an expansion of the source 

data rather than a compression.  For a discussion of the synthetic database results see the 

section on Characteristics of the Benchmark Transaction Data. 

The final figure presents the compression ratio vs. the actual number of swaps.  

The plot is a monotonically decreasing line or curve, indicating that the compression ratio 

is some monotonically decreasing function of the number of swaps, and thus k. 
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Chapter 5  

Conclusions, Implications, Recommendations 

Conclusions 

The streaming transaction database is important to many applications. These 

include retail and online sales, stock market transactions, security tracking of layer 3 and 

layer 2 switches, fitness trackers, connected cars and a host of other applications where 

the data can be fit as a transaction ID key and a list of item IDs.  Compression of the 

transaction data stream must be accomplished as compression of a horizontally formatted 

transaction database.  A streaming database may span periods of weeks or years.  During 

this period, the item IDs may change; new ones may appear and old ones disappear.  The 

frequency of the item ID’s may have a temporal component.   

In this research, Huffman compression is proposed as a solution to this 

compression.  This research presents a modification to dynamic Huffman compression 

(Knuth, 1985) that can scale to the limited hardware resources of high speed, dedicated 

computing hardware (i.e., the FPGA). It allows memory constrained hardware to perform 

Huffman compression using an alphabet, or symbol list, that would otherwise overflow 

the limited memory.  It adapts to the temporal changes to item frequencies. 

This research developed a new algorithm, the memory limited dynamic Huffman 

algorithm, that was demonstrated to compress a data stream using less memory than the 

dynamic Huffman algorithm proposed by Knuth (1985), also known as algorithm FGK.  

The amount of memory the algorithm uses is user defined.  The amount of memory 

consumed is chosen by a constant k that is defined as the number of nodes in the 

Huffman tree.  In the original FGK algorithm, the number of nodes allowed in the tree 
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was defined as n, and had to be greater than or equal to the total number of different 

items, or symbols, in the database schema.   

When the constant k is chosen to equal n, the memory limited dynamic Huffman 

algorithm operates identical to the original FGK algorithm.  It provides similar 

compression ratios, and asymptotic time and memory requirements.  On the other end, 

when k → 1, the resulting compression ratio will be worse than 1.0.   It will be an 

expansion.   In fact, at this extreme, the resulting compression can be calculated exactly.  

Note that when k = 1, only one symbol will be allowed in the Huffman tree.  This symbol 

will be the NYT symbol.  There will not be any room in the tree for new symbols so the 

algorithm will constantly emit the NYT symbol in the ‘compressed’ output stream 

followed by the uncompressed input symbol.  Further, the NYT symbol will have a length 

of 1 bit since it is the only item in the tree.  Assume the input symbols have a bit length of 

b.  Assume compression ratio is defined as 𝑐𝑐/𝑢𝑢 , where c is the compressed files length in 

bits, and u is the original file length in bits.  Then, the resulting compression ratio will be 

(𝑏𝑏 + 1)/𝑏𝑏, or  

𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝑀𝑀𝐶𝐶𝑛𝑛 𝑅𝑅𝑎𝑎𝑡𝑡𝑀𝑀𝐶𝐶|𝑘𝑘=1 =  1 +
1
𝑏𝑏

 

This is Equation 3.  Equation 3 will be greater than 1.0, thus it will be an 

expansion of the input file.  The designer can expect the resulting compression ratio when 

k is chosen between 1 < k < n, between these two extremes.  The exact relationship 

between the compression ratio and k may require additional research, but the empirical 

evidence suggests that mathematically, it is a concave up, decreasing, curve between 

these two points.  A concave down function f(x), is defined as one where all tangents to 
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the curve are below the function f(x).  The exception to this shape seem to be the 

synthetic databases.  The shape seems to ‘top’ out at low values of k.  This may be due to 

an item distribution that does not follow the zipf (Powers, 1998) distribution. 

Note that it was shown in the Discussion of Benchmark Compression Results 

section, that for these benchmark databases Pareto’s 80/20 heuristic of the vital few (Reh, 

2005) seems to roughly hold (see Table 29).  These results will guide a designer in 

choosing the constant k. 

Finally, eq. 3 will only be an upper bound for the transaction database 

compression result obtained herein.  The actual compression ratio will be less for two 

reasons.  Both reasons are due to the compression model chosen for the transaction 

database.  The compressed output stream includes an uncompressed transaction ID and a 

compressed transaction delimiter for each transaction. The transaction delimiter will also 

be encoded as a 1-bit prefix in the Huffman tree.   A transaction delimiter occurs at the 

end of every transaction.  It is used because each transaction is variable length.   These 

differences will cause the worst-case compression ratio to be a bit better than the upper 

limit of 1 + 1/𝑏𝑏.   

If a software engineer were to decide to use the memory limited dynamic 

Huffman algorithm, that person might have a couple questions: 

Question? Can the memory limited dynamic Huffman algorithm compress 

and decompress a data file? Has it been verified against the Knuth (1985) 

FGK algorithm? 
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Answer:  The algorithm has been verified to compress decompress data files.  It 

has been verified to obtain results identical to algorithm FGK (Knuth, 

1985). 

Question?  How much memory and processor time is required by the memory 

limited dynamic Huffman algorithm? 

Answer:  From a theoretical standpoint, the algorithm has identical memory and 

time requirements to algorithm FGK (Knuth, 1985) when k = n.  When k < 

n, the memory requirements are less than algorithm FGK.  The required 

size of the Huffman tree will be proportional to k.  It will be ‘controlled’ 

by the selection of the value k.  

Question?  What is the main advantage of the memory limited dynamic Huffman 

compression algorithm? 

Answer:  The algorithm provides a ‘dial’ that controls the amount of memory 

consumed.  This is particularly important for memory limited compute 

machines, or applications where the symbol list may be large.  The dial is 

the constant k.  On one end the dial allows the algorithm to perform no 

worse than the original algorithm FGK, but also has the same memory 

requirement.  On the other end, the dial will limit memory, but will also 

limit the resulting compression obtained. 

Question?  How can the resulting compression be determined for a given value of 

k at design time? 

Answer:  An equation to determine the compression ratio obtained would 

necessarily depend on the distribution of items and the distribution item 
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IDs in the transactions. Some rough guides can be provided.  A static 

compression of the data, or a sampling technique could determine the best-

case compression that can be obtained, i.e. k = n.   At the other end of the 

spectrum, when k = 1, Eq. 3 can be used.  Finally, Pareto’s 80/20 heuristic 

can be considered. 

Thus, this research shows that the memory limited dynamic Huffman algorithm 

does not consume more memory or time than the FGK algorithm.  It provides identical 

compress results to the FGK algorithm when it is uses the same amount of memory 

(k = n).  The amount of memory the algorithm consumes can be ‘dialed down’, when 

memory is reduced then the resulting compression will also be reduced.  When k = 1, the 

expected compression can be calculated by eq. 3.   

 Implications 

Data mining can be a data intensive operation.  Database operations such as the 

join and aggregation require access to large blocks of the database for their computation.  

In fact, as has been shown in this research, many algorithms exist for database mining 

applications that propose compression of the data as part of their algorithm.  Generally, 

the proposal in these algorithms is for the data to be compressed so larger sections can 

reside in main memory and reduce secondary memory I/O operations.  The memory 

limited dynamic Huffman algorithm provides a method to compress a transaction 

database so larger sections can fit into the primary memory.  The FPGA space study 

characterized how much of the database can fit into the on-chip memory for each of the 

benchmark databases. 
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Finally, the memory limited dynamic Huffman algorithm may find use as a 

general compression algorithm in an application where a large list of symbols will result 

compared to the available main memory.  The application would necessarily have a non-

uniform item frequency distribution.  An example of a non-linear distribution is the zipf 

distribution (Powers, 1998). 

Recommendations 

Vilfredo Paredo’s 80/20 heuristic (Rey, 2005) sparks an interesting possibility for 

further research.  The memory limited dynamic Huffman algorithm is based on algorithm 

FGK.  Perhaps a different approach, based on Paredo’s observation would yield a 

different compression algorithm.  A second recommendation for further research would 

be to provide a more exact theoretical and analytical basis for the shape of the 

compression ratio vs. k curve.  Finally, additional research could focus on alternate 

methods of updating the frequency of the NYT code.  The probability of the NYT code 

seems to differ between the memory limited and non-limited dynamic Huffman 

algorithms and may provide a possibility for algorithm optimization. 

Recommendations for the software engineer interested in implementing the 

memory limited dynamic Huffman algorithm include understanding the nature of the 

frequency distribution of items in the database.  Firstly, a non-uniform distribution of the 

item IDs should exist to take advantage of Huffman type compressions.  Other 

compression techniques, such as RLE compression, do not rely on a non-uniform 

distribution.  Second, Huffman compression will not compress a binary alphabet.  For 

this application RLE compression may be a better choice.  Finally, the item distribution in 

the target application should have many, infrequent, tail items.  When the shape of the 
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histogram has many infrequent tail items then less swaps will occur.  Less swaps will lead 

to a better overall compression ratio approaching that of the static Huffman compression 

algorithm and the opportunity to save memory as compared to algorithm FGK (Knuth, 

1985). 
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Appendix A  

Raw Data 

Table A1 

Accidents Database Raw Data: Ideal Item ID Bit Size = 9, Uncompressed File Size = 
106569477 

k 
swaps 
actual 

max 
swaps 

dynamic 
compression Compressed size run time (ms) 

1 - - 1.087 - - 
100 3323604 5001968 0.903 96232238 0:11:06.328 
200 844037 1336496 0.783 83443900 0:26:24.503 
300 170568 338352 0.739 78754844 0:38:58.548 
500 4682 9158 0.738 78648274 1:01:33.063 
600 680 1176 0.731 77902288 1:09:05.415 
700 214 304 0.731 77902288 1:14:20.623 
800 87 134 0.726 77369440 1:19:23.709 
900 19 34 0.725 77262871 1:21:58.996 
939 0 0 0.725 77262871 1:13:42.846 

- = data point not recorded 
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Table A2 

BMS1 Database Raw Data: Ideal Item ID Bit Size = 9, Uncompressed File Size = 
1881243 

k 
swaps 
actual 

max 
swaps 

dynamic 
compression Compressed size run time (ms) 

1 - - 1.064862434 - - 
2 - - 1.049138787 - - 

100 82255 158212 0.898146598 1689632 00:00:05.168 
200 53726 102794 0.868146598 1867453 00:00:11.140 
300 33796 65376 0.802481126 1509662 00:00:17.091 
400 20321 40340 0.795587667 1529454 00:00:23.512 
500 11870 22642 0.792587667 1491050 00:00:31.530 
600 5573 11424 0.738729659 1389730 00:00:37.083 
700 2583 4230 0.731160196 1375490 00:00:43.251 
800 800 1262 0.724355652 1362689 00:00:47.000 
900 184 234 0.722091192 1358429 00:00:47.941 
996 1 1 0.721839762 1357956 00:00:47.108 
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Table A3 

BMS-POS Database Raw Data: Ideal Item ID Bit Size = 11, Uncompressed File Size = 
42705542 

k 
swaps 
actual 

max 
swaps 

dynamic 
compression Compressed size run time (ms) 

1 - - 1.07 - - 

500 327902 601654 0.706750449 30182161 00:37:38.000 
800 138686 258540 0.673883029 28778540 01:05:51.086 
1000 86444 159386 0.662901831 28309582 01:22:32.290 
1250 48611 88084 0.656886312 28052686 01:21:12.228 
1500 26466 46664 0.652291499 27856462 01:39:25.122 
1750 13342 23064 0.64874786 27705129 01:53:57.752 
2000 6329 10440 0.647521743 27652767 02:16:07.656 
2250 2873 4228 0.646985092 27629849 02:26:37.191 
2500 1113 1476 0.646025989 27588890 02:34:37.465 
2750 453 590 0.64583496 27580732 02:30:55.774 
3000 191 312 0.645639973 27572405 02:34:23.000 
3250 35 62 0.645636836 27572271 02:44:31.288 
3500 1 1 0.645636789 27572269 02:44:25.756 
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Table A4 

BMS-Webview2 Database Raw Data: Ideal Item ID Bit Size = 12, Uncompressed File 
Size = 5227212 

k 
swaps 
actual 

max 
swaps 

dynamic 
compression Compressed size run time (ms) 

1 - - 1.07 - - 

500 222053 389856 0.995397279 6248595 02:12.134 
1000 169790 278912 0.981231111 5547280 08:17.011 
2000 110609 152996 0.957945031 5111926 10:02.757 
3000 74292 83110 0.906933088 4949820 29:22.104 
4000 37528 40058 0.88524571 4627367 22:01.680 
5000 7391 14832 0.838683795 4383978 34:04.437 
6000 292 2552 0.797821286 4170381 53:39.925 
6684 1 1 0.782809077 4091909 26:41.860 
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Table A5 

Kosarak Database Raw Data: Ideal Item ID Bit Size = 16, Uncompressed File Size = 
144144272 

k 
swaps 
actual 

max 
swaps 

dynamic 
compression Compressed size run time (ms) 

1 - - 1.040408994 - - 
100 5355473 10229312 1.002609982 144520486 00:03:31.840 
500 4508579 8019836 0.968413188 139591214 00:43:14.285 
1000 3810859 6680176 0.958983268 138231945 01:34:13.578 
2000 3010300 4987808 0.876791913 126384532 03:17:35.897 
5000 1760752 2775958 0.78738929 113497656 08:15:39.560 
8000 1212674 1794606 0.738336047 106426912 11:37:35.803 

10000 921185 1378346 0.704294847 101520068 13:57:21.962 
20000 362249 539258 0.643793151 92799095 1.21:44:24.255  
40000 93930 116156 0.618570032 89163327 5.05:12:14.685  
45000 66846 80812 0.616307147 88837145 7.08:42:45.846  
55000 31335 38614 0.612512463 88290163 10.14:16:53.829 
65000 14311 17538 0.611349156 88122479 12.21:51:18.261 
75000 4450 7538 0.610768751 88038817 15.04:35:25.072 
82542 1 1 0.610709602 88030291 16.06:55:02.405 
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Table A6 

Retail Database Raw Data: Ideal Item ID Bit Size = 15, Uncompressed File Size = 
14951070 

k 
swaps 
actual 

max 
swaps 

dynamic 
compression Compressed size run time (ms) 

1 - - 1.05683 - - 
1000 568599 972768 0.98428168 14716064.3 00:10:45.711 
5000 310246 427200 0.974856582 14575149 00:44:02.832 
10000 160639 182530 0.872991431 13052156 02:46:16.608 
20000 32017 33470 0.775495199 11594483 05:45:00.891 
25000 11701 12204 0.745606769 11147619 07:59:02.450 
30000 2885 2938 0.729850573 10912047 10:51:57.407 
32943 1 1 0.724280737 10828772 18:38:34.070 

 

Table A7 

T40I10D100K Database Raw Data: Ideal Item ID Bit Size = 10, Uncompressed File Size 
= 40605070 

k 
swaps 
actual 

max 
swaps 

dynamic 
compression Compressed size run time (ms) 

1 - - 1.08 - - 
1000 1072226 1128498 1.061436294 47160202 00:00:49:22.493 
1200 583436 644068 1.055367815 42853284 00:00:51:21.000 
1400 283515 304320 0.995682066 40429740 00:01:03:01.910 
1600 98857 100410 0.948954502 38532364 00:01:17:50.235 
1800 9031 9306 0.930760026 37793576 00:00:57:44.700 
1886 1 1 0.929365471 37736950 00:01:00:57.321 
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Table A8 

T1014D100K Database Raw Data: Ideal Item ID Bit Size = 10, Uncompressed File Size 
= 11102280 

k 
swaps 
actual 

max 
swaps 

dynamic 
compression Compressed size run time (ms) 

1 - - 1.098598 - - 
500 - - 1.0538722 - - 
900 283328 294560 0.995832478 11056011 12:37.4 
1100 152396 165744 0.989900183 10990149 19:22.6 
1300 46965 76610 0.91402847 10147800 18:18.1 
1500 15523 20550 0.895552535 9942675 22:03.7 
1742 1 1 0.883236867 9805943 27:15.9 
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