
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2018

Database Streaming Compression on Memory-
Limited Machines
Damon F. Bruccoleri
Nova Southeastern University, damon@bruccoleri.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova
Southeastern University. No part of this publication may be reproduced, distributed, or transmitted
in any form or by any means, now known or later developed, including but not limited to
photocopying, recording, or other electronic or mechanical methods, without the prior written
permission of the author or the publisher.

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Damon F. Bruccoleri. 2018. Database Streaming Compression on Memory-Limited Machines. Doctoral dissertation. Nova Southeastern
University. Retrieved from NSUWorks, College of Engineering and Computing. (1031)
https://nsuworks.nova.edu/gscis_etd/1031.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1031&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu

Database Streaming Compression on Memory-Limited Machines

by

Damon Bruccoleri

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Science

College of Engineering and Computing
Nova Southeastern University

2018

Abstract

An Abstract of a Dissertation Submitted to Nova Southeastern University
In Partial Fulfillments of the Requirements for the Degree of Doctor of Philosophy

Database Streaming Compression on Memory-Limited Machines

by

Damon Bruccoleri
March 2018

Dynamic Huffman compression algorithms operate on data-streams with a

bounded symbol list. With these algorithms, the complete list of symbols must be
contained in main memory or secondary storage. A horizontal format transaction
database that is streaming can have a very large item list. Many nodes tax both the
processing hardware primary memory size, and the processing time to dynamically
maintain the tree.

 This research investigated Huffman compression of a transaction-streaming
database with a very large symbol list, where each item in the transaction database
schema’s item list is a symbol to compress. The constraint of a large symbol list is, in
this research, equivalent to the constraint of a memory-limited machine. A large symbol
set will result if each item in a large database item list is a symbol to compress in a
database stream. In addition, database streams may have some temporal component
spanning months or years. Finally, the horizontal format is the format most suited to a
streaming transaction database because the transaction IDs are not known beforehand.
This research prototypes an algorithm that will compresses a transaction database stream.

 There are several advantages to the memory limited dynamic Huffman algorithm.
Dynamic Huffman algorithms are single pass algorithms. In many instances a second
pass over the data is not possible, such as with streaming databases. Previous dynamic
Huffman algorithms are not memory limited, they are asymptotic to O(n), where n is the
number of distinct item IDs. Memory is required to grow to fit the n items. The
improvement of the new memory limited Dynamic Huffman algorithm is that it would
have an O(k) asymptotic memory requirement; where k is the maximum number of nodes
in the Huffman tree, k < n, and k is a user chosen constant. The new memory limited
Dynamic Huffman algorithm compresses horizontally encoded transaction databases that
do not contain long runs of 0’s or 1’s.

Acknowledgements

 I would like to thank my dissertation committee, Dr. Junping Sun, Dr. Wei
Li, and Dr. Jaime Raigoza, for their excellent guidance and help in editing and guiding
this manuscript. Their input was significant on several levels, including the challenges
they presented, feedback and direction. Finally, I would like to specifically thank Dr. Sun
for his mentoring and guidance that started in his Database Management Systems class.
His encouragement is greatly appreciated.

I would like to thank my family; my wife Olivia and my three children, Darian,
Dalton and Jasmine. Thank you for all your patience, understanding and sacrifice while I
conducted my research. It has been several difficult years for all of us while I pursued
this degree.

I would like to thank the New York Transit Authority for their employee education
program and encouragement while I pursue this degree.

v

Table of Contents

Abstract iii
Table of Contents v
List of Tables vii
List of Figures ix

Chapters

1. Introduction 1

Background 1
Problem Statement 10
Why Streaming? Why Huffman? 12
Dissertation Goal 13
Research Questions 16
Relevance and Significance (Benefit of Research) 17
Barriers and Issues 18
Measurement of Research Success 19
Definition of Terms 20

2. Review of the Literature 25
The Data Stream 25
Introduction to Compression 29
Two Pass Compression of a Transaction Database 35

Run Length Encoding (RLE) Compression. 36
Huffman Compression. 40

Canonical Huffman Codes 43
Prefix Codes 45
Adaptive (Dynamic) Compression 46
Dynamically Decreasing a Node Weight 65
Frequent Item Counting in Streams 67
Lossy Compression 73
Frequent Item-Set Stream Mining 76
Transaction Database Compression 78
Other Compression Algorithms 85
Initial Investigation (Prior Research Work) 88

Overview 88
Compression Algorithms Used to Achieve Results in the Initial Study 89
Conclusion From the prior research 96

3. Methodology 98
Approach 98

Discussion of the Proposed Memory Limited Dynamic Huffman Algorithm 98
Space and Time Asymptotic Complexity 110
Expansion of the Compressed File 113
Swap Maximum Bound Analysis 115

vi

“Tail” Items 118
Relationship of distribution and compression ratio 119
Swap Minimum Bound 119
Proposed Work 119

Resources 127
4. Results 128

Verification of Algorithm Coding 128
Performance 130
Optimization of Algorithm 136
Characteristics of Benchmark Transaction Data 140
Database Compression Results 146

Accidents Benchmark Transaction Database Summary 146
BMS1 Benchmark Transaction Database Summary 150
BMS-POS Benchmark Transaction Database Summary 153
BMS-Webview2 Benchmark Transaction Database Summary 155
Kosarak Benchmark Transaction Database Summary 159
Retail Benchmark Transaction Database Summary 161
T40I10D100K Benchmark Transaction Database Summary 165
T1014D100K Benchmark Transaction Database Summary 168

Discussion of Benchmark Compression Results 171
5. Conclusions, Implications, Recommendations 174

Conclusions 174
Implications 178
Recommendations 179

Appendix A Raw Data 181
References 188
Certification of Authorship 195

vii

List of Tables

Tables
Table 1 Benchmark Databases 15

Table 2 Transaction Database Formats 35

Table 3 Golomb Codes for m = 2 to 13 39

Table 4 Huffman and Canonical Huffman Codes 43

Table 5 Illustration of Three Possible Prefix Codes 46

Table 6 Final Huffman Codes After Input String 'Engineering' 59

Table 7 Vertical Versus Horizontal Formats 80

Table 8 Sample Database for Diff-Bits Algorithm 83

Table 9 Calculation of Transactional ID (TID) Differences 83

Table 10 Calculation of Diff-Bits in Bit Vector 84

Table 11 Comparison of Compression Ratio (c/u) Results from prior research 95

Table 12 Comparison of Asymptotic Encoding Time for Compression Schemes 96

Table 13 Comparison of Asymptotic Time/Memory Complexity 117

Table 14 Structure of Benchmark Databases 121

Table 15 Algorithm Verification to Knuth’s Original Grimm Fairy Tale Results 130

Table 16 Bits Produced “3 at a Time” 133

Table 17 Bits Produced “4 at a Time” 135

Table 18 Bits Produced “Word at a Time” 136

Table 19 Measured Data for Modified Frequent Item Identification Algorithm 140

Table 20 Description of Benchmark Transaction Database source data 141

Table 21 Accidents Produced Bits and Minimum Weighted Path Length 147

Table 22 BMS1 Produced Bits and Minimum Weighted Path Length 150

viii

Table 23 BMS-POS Produced Bits and Minimum Weighted Path Length 153

Table 24 BMS-POS Produced Bits and Table Minimum Weighted Path Length 156

Table 25 Kosarak Produced Bits and Minimum Weighted Path Length 159

Table 26 Retail Produced Bits and Minimum Weighted Path Length 162

Table 27 T40I10D100K Produced Bits and Minimum Weighted Path Length 165

Table 28 T1014D100K Produced Bits and Minimum Weighted Path Length 168

Table 29 Comparison of Actual 20% Compression Results to Pareto 173

ix

List of Figures

Figures

Figure 1. Elements of a data stream processing system. 4

Figure 2. Sibling property. 5

Figure 3. FPGA/CPU Architecture for database applications. 6

Figure 4. Glacier source code and circuitry examples. 8

Figure 5. An FPGA data mining architecture. 9

Figure 6. Streaming transactions horizontal format. 10

Figure 7. Two models of compression adaptation. 33

Figure 8. Huffman tree. 42

Figure 9. Pseudocode for static Huffman compression. 42

Figure 10. FGK algorithm tree update pseudocode. 49

Figure 11. Detailed update procedure. 50

Figure 12. Move q to the right of its block. 50

Figure 13. Exchange procedure. 51

Figure 14. Transfer q to the next block subroutine. 52

Figure 15. Encode procedure. 53

Figure 16. FGK algorithm example, 'e' input to tree. 54

Figure 17. FGK algorithm example, ‘n’ and ‘g’ input to tree. 55

Figure 18. FGK algorithm example, 'i' and second 'n' input to tree. 56

Figure 19. FGK algorithm example, input of the two e's in the string 'enginee.' 57

Figure 20. FGK algorithm example, adding the ‘r’ (a). and the final ‘ing’ (b). 57

Figure 21. Sibling property illustration. 60

x

Figure 22. Core pseudocode for Vitters algorithm Ʌ. 64

Figure 23. Decreasing the symbol "e" weight by one, to 2. 66

Figure 24. Decreasing a node ‘e’ weight by one, to 1. 66

Figure 25. Decreasing a node ‘e’ weight by one, to 0. 67

Figure 26. 'e' is absorbed by NYT node. 67

Figure 27. Frequent-k algorithm. 69

Figure 28. SpaceSaving algorithm. 70

Figure 29. Frequent-k algorithm example, k = 5. 71

Figure 30. SpaceSaving algorithm example, k = 5. 72

Figure 31. Pseudocode for static Huffman compression. 91

Figure 32. Pseudocode to write Golomb RLE database. 93

Figure 33. Memory limited dynamic Huffman algorithm pseudocode. 101

Figure 34. Overview of the memory limited dynamic Huffman algorithm. 102

Figure 35. Memory limited dynamic Huffman algorithm cases. 103

Figure 36. Rebalancing the Huffman tree. 104

Figure 37. Original algorithm FGK modified to be memory limited. 105

Figure 38. Dynamic Huffman tree for string "enginee." 107

Figure 39. Huffman tree for string "engineer." 107

Figure 40. Huffman tree for string "engineeri," memory constrained. 109

Figure 41. Huffman tree for string "engineerin," memory constrained. 109

Figure 42. Comparison of the final Huffman trees for string "engineering.” 110

Figure 43. NYT node configuration. 113

Figure 44. Histogram of item distribution in a database depicting tail items. 118

xi

Figure 45. Expected dynamic versus static compression ratio. 125

Figure 46. One- versus 2-at-a-time compression ratio comparison. 131

Figure 47. Two- versus 3-at-a-time compression ratio comparison. 133

Figure 48. Three- versus 4-at-a-time compression ratio comparison. 134

Figure 49. “4 at a time” versus “word at a time” comparison. 136

Figure 50. Frequent item identification pseudocode. 137

Figure 51. Frequent item identification pseudocode with “Option B.” 138

Figure 52. “Option B” performance. 139

Figure 53. Frequency of items in the accidents database. 141

Figure 54. Frequency of items in the BMS1 database. 142

Figure 55. Frequency of items in the BMS-POS database. 142

Figure 56. Frequency of items in the BMS-Webview2 database. 143

Figure 57. Frequency of items in the Kosarak database. 143

Figure 58. Frequency of items in the Retail database. 144

Figure 59. Frequency of items in the T40I10D100K database. 144

Figure 60. Frequency of items in the T1014D100K database. 145

Figure 61. Accidents static versus memory limited dynamic compression ratio. 148

Figure 62. Accidents actual versus calculated max swaps. 148

Figure 63. Accidents actual versus calculated max swaps (semi-log). 149

Figure 64. Accidents actual swaps versus the compression ratio (semi-log). 149

Figure 65. BMS1 static versus memory limited dynamic compression ratio. 151

Figure 66. BMS1 actual versus calculated max swaps. 151

Figure 67. BMS1 actual versus calculated max swaps (semi-log). 152

xii

Figure 68. BMS1 actual swaps versus the compression ratio (semi-log). 152

Figure 69. BMS-POS static versus memory limited dynamic compression ratio. 154

Figure 70. BMS-POS actual versus calculated max swaps. 154

Figure 71. BMS-POS actual versus calculated max swaps (semi-log). 155

Figure 72. BMS-POS actual swaps versus the compression ratio (semi-log). 155

Figure 73. BMS-Webview2 static versus memory limited compression ratio. 157

Figure 74. BMS-Webview2 actual versus calculated max swaps. 157

Figure 75. BMS-Webview2 actual versus calculated max swaps (semi-log). 158

Figure 76. BMS-Webview2 actual swaps versus compression ratio (semi-log). 158

Figure 77. Kosarak static vs. memory limited dynamic compression ratio 160

Figure 78. Kosarak actual versus calculated max swaps 160

Figure 79. Kosarak actual versus calculated max swaps (semi-log). 161

Figure 80. Kosarak actual swaps versus the compression ratio (semi-log). 161

Figure 81. Retail static versus memory limited dynamic compression ratio. 163

Figure 82. Retail actual versus calculated max swaps. 163

Figure 83. Retail actual versus calculated max swaps (semi-log). 164

Figure 84. Retail actual swaps versus the compression ratio (semi-log). 164

Figure 85. T40I10D100K static versus memory limited dynamic compression ratio. 166

Figure 86. T40I10D100K actual versus calculated max swaps. 166

Figure 87. T40I10D100K actual versus calculated max swaps (semi-log). 167

Figure 88. T40I10D100K actual swaps versus the compression ratio (semi-log). 167

Figure 89. T1014D100K static versus memory limited dynamic compression ratio. 169

Figure 90. T1014D100K actual versus calculated max swaps. 169

xiii

Figure 91. T1014D100K actual versus calculated max swaps (semi-log). 170

Figure 92. T1014D100K actual swaps versus the compression ratio (semi-log). 170

1

Chapter 1

Introduction

Background

Streaming databases provide data processing functions for banking, process

control, reservation systems, web analytics, the stock market, and market-basket

transactions. A streaming database is a real-time demand. It contains data patterns in a

data stream. Compression of the data stream is important for the efficient delivery of the

stream over the communications channel, for possible storage of the database (or

bounded sections thereof), and for the subsequent processing of the database by

specialized hardware. Compression of the data-stream can provide pre-processing of the

dataset by identifying frequent items and item-sets. Because it is a stream, multiple pass

algorithms to process the streaming databases may not always be possible. In some

instances, it may be necessary to obtain results in a single scan for various purposes.

In the streaming transaction, stream S consists of m transactions t1, …, tm, where t1

is the oldest transaction in the stream, and tm is the youngest transaction. Each

transaction is a set of items. The items in t are drawn from the set of n items I = {i1, …,

in}. Each transaction also includes a transaction id, tid.

Prior research developed several compression algorithms for transaction databases

including the run length encoding (RLE) compression techniques using a Golomb code.

This is a single pass compression technique. RLE compression using Golomb codes does

not require prior knowledge of the item probabilities to achieve good compression

(Golomb, 1966). Thus, it is applicable to stream compression. The prior research also

2

developed a Huffman compression algorithm (Huffman, 1952) for a static database and

dataset. The research applied the Huffman static compression to the item IDs in several

benchmark transaction datasets. The benchmark datasets had a bounded item list.

Multiple passes over the database were possible. In a first pass over the data item ID

frequencies were determined. A second pass compressed the dataset. Several of the

datasets had large sets of item IDs.

The proposed new research is a progression of the previous research to streams

with a very large alphabet. The constraint of compressing a stream means the algorithm

needs to be a single pass algorithm. The constraint of a large alphabet is identical to the

constraint of compression using a memory-limited machine. Memory here refers to

either primary memory or secondary storage. If a machine had enough memory then it

would be able to contain the complete Huffman tree, or list, of all the symbols in the

alphabet. Thus, the constraint of a large alphabet is identical to the constraint of a

memory limited machine. Field programmable gate arrays (FPGAs) are an example of

memory limited computing hardware capable of massive and high-speed parallel

operation. In the literature, the term alphabet is often interchanged with the terms symbol

or character.

This new research proposes to extend the Huffman compression algorithm

(Huffman, 1952) to achieve dynamic compression of database streams with a large

alphabet on memory constrained hardware. Previous research compared the static two

pass Huffman compression to the RLE compression. The static Huffman algorithm

compressed a horizontally encoded transaction database. The RLE compression

algorithm (using Golomb codes) was used to compress the same transaction databases,

3

but they were vertically encoded. The new proposed memory limited dynamic Huffman

compression algorithm will be used to compress horizontally encoded transaction

databases. A transaction data stream will be horizontally encoded since a vertically

encoded data stream would require prior knowledge of all transactions. The horizontal

encoded transaction databases are commonly structured as a transaction ID followed by

one or more item IDs. The vertically encoded databases are commonly encoded as a

bitmap. Each row of the bitmap represents an item. Each row is a sequence of 1s and 0s

that represent the presence or absence of that item in a transaction. Thus, the complete

list of items in a transaction would be assembled by noting the presence of a 1 bit in its

column for each item row. Table 7 summarizes several common transaction database

formats.

Because a transaction database stream may be responding to real time events, the

horizontal format is most commonly used for these systems. The vertical format is more

suited for a static transaction database. In the streaming format, as transactions are

occurring in real time, each transaction ID and associated item IDs could appear in the

stream. Typical elements of a stream processing system are depicted in Figure 1.

The stream processing systems may have several asynchronous input streams and

one or more output streams. Because, by definition, the streams are unbounded, portions

of the data, aggregations, or queries over the data would be stored. Not the complete

dataset.

4

Figure 1. Elements of a data stream processing system.

Dynamic Huffman Compression algorithms exist to compress data streams with

bounded item (or token) list (Vitter, 1987; Knuth, 1985; Gallager, 1978; Faller, 1973).

They incrementally calculate the Huffman tree from streaming data and compress them

dynamically. A key to updating the Huffman tree is that the Huffman tree maintains the

‘sibling property.’ Although the static Huffman algorithm does not maintain the sibling

property across all nodes, it is important to the dynamic algorithms of Knuth and Vitter to

keep the all the nodes in order of weight (sibling property) to balance the tree. A binary

tree has the sibling property “if each node (except the root) has a sibling and if the nodes

can be listed in order of non-increasing probability with each node being adjacent in the

list to its sibling” (Gallager, 1978). The sibling property is illustrated in Figure 2. Nodes

A, B and C may be part of a larger tree. Nodes B and C are siblings. This tree is a

Huffman tree if all siblings in the tree can be listed in order of non-increasing probability.

Nodes B and C meet that requirement.

Secondary
Storage

Database Stream(s)

Stream
Processor

Fixed
Queries

Output
Stream(s)

On-the-fly
Queries

“Limited”
Working Storage

5

Figure 2. Sibling property.

An algorithm for adaptive Huffman coding was conceived and proposed by Faller

(1973), and Gallager (1978) independently. It was improved by Knuth (1985). Knuth

described an efficient data structure for the tree nodes, and an efficient set of algorithms

to process the dynamic tree to maintain the sibling property. In the literature this is

known as algorithm Faller-Gallager-Knuth or the FGK algorithm (Knuth, 1985). This

algorithm is similar to the original Huffman algorithm in that both sender and receiver

build the same tree to compress and decompress the stream. The sender performs the

compression function and the receiver performs the decompression function. There must

be coordination between the sender and receiver to properly restore the data to its

uncompressed state.

The FGK algorithm builds the tree dynamically from the frequency of items in the

stream. The algorithm will be illustrated and described later in this paper. The node

frequencies change as new items arrive in the stream. Both sender and receiver need to

update their tree synchronously and dynamically to maintain the sibling property. An

aspect of the FGK algorithm is that a new node is added to the tree as each new item

arrives, and in certain cases, nodes get exchanged. Nodes are never removed from the

A

B
P=0.2

C
P=0.1

6

tree. The space complexity of FGK (Knuth, 1985) is O(n), where n is the number of

symbols in the alphabet to compress. Thus, one of the challenges of these compression

algorithms is in memory-limited machines with many items, or a stream with no bound

on the number of items.

An example of a memory limited machine is the FPGA. FPGAs have been

proposed for database processing (Mueller, Teubner & Alonzo, 2009a). In Figure 3, three

possible architectures are presented. The researchers suggest that data tuples from a

network connection could be streamed through the FPGA, and only the results of the

query output to the CPU. Similarly, in Figure 3 (b), a stream from a secondary storage

device could be processed. The advantages of these two architectures is that tuple

processing on the order of hundreds of thousands of tuples per second could be achieved

without applying that loading to the main CPU.

Network

FPGA

NIC Data Processing

CPU

MAIN
MEMORY

FPGA

NIC Data Processing

CPU

MAIN
MEMORY

FPGA

NIC Data Processing

CPU

MAIN
MEMORY

DISK

Data Stream

Data Stream

Data Stream

Figure 3. FPGA/CPU Architecture for database applications.
Adapted from “Data Processing on FPGAs” by R. Mueller, J.
Teubner, and G. Alonso, 2009, Proceeding of the VLDB Endowment,
2(1), 910-921.

7

As an example of how the circuitry in Figure 3 could be applied, researchers

(Mueller, Teubner & Alonso, 2010) have developed a cross compiler that inputs SQL

statements and a database schema, and outputs the FPGA circuits. This is depicted in

Figure 4. Here, in section (a), is a declared the schema for a database stream. The

attributes, datatypes and order in the stream are defined. In Figure 4(b) a SQL statement

is declared by a user to filter the database stream. The user is interested in tuple selection

of stock transaction trades with a volume larger than 100,000 whose ticker symbol

matches the symbol “USBN”. Finally, the user is interested in tuple projection of only

the price and volume attributes.

In Figure 5 an architecture for a data mining application is presented using FPGA

(Baker & Prasanna, 2009). Here the researcher proposes implementing an FPGA

configured as a set of systolic processors to implement the Apriori algorithm for frequent

item data mining. In their concept, the transaction database is streamed from some

source through the systolic processors and the candidate item sets are built up. First the

L2 item sets are generated. Next, the L2 candidate item sets need to be streamed through

all the systolic processors to determine the L3 sets. As with the Apriori algorithm, the

complete transaction database needs to be streamed (again) through all the systolic

processors to prune the L3 candidate item sets. This operation continues until the

maximal frequent itemset(s) is determined.

8

Figure 4. Glacier source code and circuitry examples. Adapted from “Glacier: A Query-
to-Hardware Compiler,” by R. Mueller, J. Teubner, and G. Alonso, 2010, ACM SIGMOD
International Conference on Management of Data, 1159-1162.

CREATE INPUT STREAM Trades (
 Seqnr int, -- sequence number
 Symbol string (4) -- stock symbol
 Price int, -- stock price
 Volume int) -- trade volume

(a) Stream Declaration

SELECT Price, Volume
FROM Trades
WHERE Symbol =” USBN” AND
 Volume > 100,000
INTO LargeUBSTrades

(b) Textual Query

Large UBSTrades
|

ΠPrice, Volume
|

σC
|

c:(a,b)
|

b:(Volume,100,000)
|

a:(Symbol,”USBN”)
|

Trades

(c) Algebraic Plan

(d) FPGA Hardware Circuit

9

Figure 5. An FPGA data mining architecture. Adapted from “Efficient Hardware Data
Mining With the Apriori Algorithm on FPGAs” by Z. Baker and V. Prasanna, 2009,

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, 3-12.

The research in Figure 3, Figure 4, and Figure 5 are significant for three reasons.

The first is it identifies the FPGA, a memory limited hardware element which is the

object of database architecture research. Secondly, these architectures might benefit from

compression of the data to enable higher speed processing. Finally, they all assume a

horizontal encoding scheme of the database. The encoding scheme of a real-time

database will be the horizontal transaction format as depicted in Figure 6. In this figure a

transaction is created in real time at a cashier. The transaction is inserted into the

transaction stream. A vertical format for the transaction database would not be a natural

representation since the vertical format requires keying on the item IDs rather than the

transaction IDs. The item IDs are a static list of all items in the store. Transaction IDs

are created in real time. Keying on the Item IDs would require listing all the Transaction

IDs in items list and this would not be possible since all the Transaction IDs may not

Item Out

Sta In

C
on

tro
lle

r
Item

Buffer
(stall)

Set Comparator

Local
Mem

Controller

Support Counter

Item In

Sta Out

Mode In

Item
Buffer
(stall)

Set Comparator

Local
Mem

Controller

Support Counter

A
dd

iti
on

al
 S

ys
to

lic

Pr
oc

es
si

ng
 U

ni
ts

Systolic Processor Systolic Processor

10

have been created yet. Thus, the Horizontal transaction database format is a natural

representation of a real-time streaming database.

Figure 6. Streaming transactions horizontal format.

An algorithm that is proposed to compress a horizontally encoded streaming

transaction database on FPGAs is the dynamic Huffman compression algorithm (Knuth,

1985). In the case of item compression on FPGAs or specialized hardware using the

FGK algorithm, the space complexity register requirements are O(n) since a node must

exists for every item in I (the set of items). This proposal is for a new type of

compression algorithm, or variation of the FGK algorithm. This new algorithm could

dynamically compute the Huffman tree of only the most k frequent items without needing

memory capable of holding all n items, where k is defined as:

k < n

For instance, k can vary from 1 to n and might be chosen based on available memory on

memory limited hardware.

Problem Statement

A problem related to compression of transaction database streams on memory-

limited machines is identifying the frequent items in a data stream on memory-limited

Transaction ID, Item ID 1, Item ID 2, … Previous Transaction Next Transaction

time

Real Time Transaction stream

11

machines. This is the objective of several algorithms and research (Charikar, Chen, &

Farach-Colton, 2002). For instance, the Frequent-k algorithm dynamically finds the k

most frequent items in streaming data base S (Demaine, López-Ortiz, & Munro, 2002;

Karp, Shenker, & Papadimitriou, 2003). A frequent item identification algorithm

(Metwally, Agrawal, & El Abbadi, 2005) is another algorithm used to find the list of most

frequent items in streams. Their memory complexity is O(k), rather than O(n). Here k is

chosen so that

k < n,

The number of different items, i, in the stream S is n (as previously defined). The

number of items to be held in memory is k.

A transaction database data stream can be compressed by applying a dynamic

Huffman compression on the resulting stream’s items. Algorithms exist for updating a

dynamic Huffman tree as a single item arrives in a bounded stream with a bounded item

list. The dynamic Huffman algorithms are not designed for memory-constrained

machines or to process streams with very large item lists. They expect the tree to grow to

accommodate all items in the stream.

The dynamic Huffman compression algorithm as proposed by Knuth (1985) will

be extended to accommodate operation on memory-limited machines or to compress

database streams with a large set of items.

 The new algorithm will be able to limit the required memory size of the dynamic

Huffman algorithm. Dynamic Huffman algorithms are single pass algorithms.

Conventional, static, Huffman algorithms require two passes over the data to be

compressed. The first pass is used to tabulate the frequency of the symbols. The second

12

pass compresses the data. A single pass compression algorithm is applicable to streaming

databases because a second pass may not be possible. The complete stream may not fit

into available memory. Additionally, there may be many symbols to compress in the

stream. For instance, assume that each item ID in a streaming transaction database is

represented as a 32-bit word, and each item ID in the stream is considered a symbol to

compress. A large Huffman tree would result if some method to moderate the Huffman

tree is not employed.

The work proposed is different than the prior dynamic Huffman algorithms

(Knuth, 1985) because the prior work assumes a bounded item list and that the dynamic

Huffman tree will fit into memory. A new algorithm will build the Huffman tree, update

the Huffman tree item frequencies as new items are added to the tree, or as they become

old. It must maintain the sibling property of the Huffman tree and moderate the size of

the Huffman tree. Node frequencies will be determined from the frequent item algorithm.

A recognized benefit of the prior dynamic Huffman compression algorithms use

on a data stream is that the algorithm is adaptive to temporal changing statistical

frequencies of the symbols. Enhancing the algorithm to manage the maximum size of the

stored data structure will benefit compression of transaction data streams with large

symbol lists. This new algorithm to be researched is called the memory limited dynamic

Huffman algorithm.

Why Streaming? Why Huffman?

Streaming implies single pass. Reading the database multiple time may not be

possible, or may be slower.

13

Streaming is a real-time demand. A horizontal encoded transaction database may

be more natural for a real-time stream. Existing compression schemes for vertically

encoded bitmap or tidset transaction database schemas may not be applicable to a real-

time stream because they require the transaction IDs to be known beforehand.

Several datamining algorithms exist for horizontal encoded transaction database

formats. A Huffman compression algorithm could compress the frequently used item IDs

in a transaction database stream.

Dissertation Goal

High speed and large throughput data stream mining will require specialized

computing hardware to analyze, summarize, monitor and tabulate user queries, perform

algorithmic trading, and secure networks. To this end reconfigurable hardware has been

used to process the data stream using algorithms realized on a massively parallel scale.

For instance, Muller, Teubner, and Alonzo (2009a, 2009b, 2009c, 2010, 2011a, 2011b)

have published much research on mining streaming databases with algorithms

implemented on a highly parallel scale. In their research, they present a variety of

algorithms for frequent item computation, stream queries, and stream joins using

reconfigurable computing. Other researchers using reconfigurable computing to mine

streaming databases are Baker and Prasanna (2005, 2006). Some of this research centers

on computing frequent item-sets on transaction databases using systolic arrays. The

systolic arrays are implemented using reconfigurable computing hardware. Other

researchers are using the reconfigurable hardware to filter XML data streams (Mitra et

al., 2009). Other previous work in this research project explored and implemented

algorithms for association rule mining using reconfigurable computing. In this previous

14

research, the algorithms were designed to be massively parallel and fine grained. The

algorithm was scalable.

Technology is enabling the implementation of the reconfigurable compute

function. Data compression techniques can increase the effective throughput of data that

is transferred on a communications channel and the computer hardware. Compression of

the data can potentially make use of memory more effectively. Typically, this would be

secondary storage. It is also used to more efficiently use primary memory. Similarly,

compression can be used to more effectively use the logic gates and interconnects in the

reconfigurable computer hardware.

Effective use of the computing hardware can be achieved by compressing the data

at the source, and keeping the data compressed during processing. For instance, Baker

and Prasanna (2005) propose using an FPGA to implement the Apriori algorithm. They

propose a systolic array architecture that might benefit from compression of the data

stream between the individual systolic processors. The Viper algorithm (Shenoy, Haritsa

& Sudarshan, 2000) proposes compression of the database stream.

This research work will develop a dynamic Huffman compression algorithm for

memory-constrained machines. A memory-constrained machine is defined as one where

the size of the database to be held in memory, approaches or exceeds the size of the

memory. It will benchmark the algorithm using several popular benchmark databases as

summarized in Table 1.

15

Table 1
Benchmark Databases

Database Database source
Accidents Traffic accident data b
BMS1 KDD CUP 2000: click-stream data from a webstore named Gazellea
Kosarak Click-stream data of a Hungarian on-line news portal b
Retail Market basket data from an anonymous Belgian retail store b
T10I4D100K Synthetic data from the IBM Almaden Quest research group c
T40I10D100K Synthetic data from the IBM Almaden Quest research group c
BMS-POS KDD CUP 2000: click-stream data from a webstore named Gazellea
BMS-WebView2 KDD CUP 2000: click-stream data from a webstore named Gazellea
aRetrieved from http://www.sigkdd.org/kdd-cup-2000-online-retailer-website-
clickstream-analysis. bRetrieved from http://fimi.ua.ac.be/data/ c Agrawal and Srikant
(1994)

The dynamic compression results will be compared to the static database

compression results that were obtained in the previous experiments (see Chapter 2,

“Initial Investigation,” for results). The important metrics to collect are the compression

ratio of prototyped algorithms compared to a two pass Huffman Compression (Huffman,

1952) and the RLE compression techniques (Golomb, 1966). The compression ratio will

be calculated from the measurements of uncompressed and compressed file bit lengths.

The performance of the Dynamic Huffman compression using limited memory algorithm

developed in this research will depend on the amount of memory allocated to the

algorithm. The algorithm will be run multiple times on the benchmark databases to

collect insight on how the allocated memory affects real world compression ratios. A

complete list of metrics and measurements will be detailed in Chapter 3, Methodology.

The proposed work prototypes a compression algorithm using a frequent item

algorithm to determine item frequencies. A frequent item identification algorithm

http://www.sigkdd.org/kdd-cup-2000-online-retailer-website-clickstream-analysis
http://www.sigkdd.org/kdd-cup-2000-online-retailer-website-clickstream-analysis
http://fimi.ua.ac.be/data/

16

(Metwally, Agrawal, & El Abbadi, 2005) will be implemented and integrated into the

FGK algorithm.

The overall goal of this research is to facilitate knowledge discovery in streaming

databases using reconfigurable computing. This research will facilitate compression of

the data stream with a large item list on memory limited devices.

Research Questions

A question this research will answer is how the frequent item identification

algorithm affects the compression algorithms ability to compress different types of

streaming data. The benchmark databases represent several varieties of transaction

databases and are used to represent the streaming data. This research will compare the

results of the streaming database algorithms with the static compression techniques

previously developed and benchmarked.

Secondly, the benchmark databases results will provide insight on how the new

algorithms compression ratio varies with the type of data compressed. For instance, it

was determined in the initial study that artificial (computer generated) transaction

databases compress poorly using the Huffman static compression. Huffman techniques

compress well when the data has a probability distribution function that is not uniform.

In probability theory, a uniform probability distribution, f(x), has a constant value

𝑓𝑓(𝑥𝑥) =
1

𝑎𝑎 − 𝑏𝑏

over interval a ≤ x ≤ b and 𝑓𝑓(𝑥𝑥) = 0 otherwise (Mendenhall, Beaver, & Beaver,

2012). For example, when a single dice is rolled, there is a uniform probability of rolling

any one of the six outcomes. It was determined that for synthetic datasets with a more

nearly uniform probability distribution a bit map representation of the database with an

17

RLE compression technique might offer better compression results. It is expected that

the memory limited dynamic Huffman compression will provide similar, poor,

compression results as was obtained with the static Huffman algorithm for a synthetic

database. This will be verified using the benchmark datasets.

A question this research will answer is what should be the criteria for selecting k,

the number of nodes to hold in memory. This question has not been found to be explored

in the literature. Certainly, this should be related to the total number of symbols in the

input stream, n. The metric used by most compression techniques to compare algorithms

is the compression ratio. The compression ratio is defined as the compressed data length

divided by the uncompressed data length. For streaming data, often the compression

ratio is defined as the compressed data rate divided by the uncompressed data rate.

Relevance and Significance (Benefit of Research)

Because of the explosion of data, stream mining has come to the forefront. In

stream mining, the frequency of items t in T (as previously defined) may not be known

beforehand and thus would require single pass compression. Additionally, there is a push

to perform the mining and queries using specialized hardware and reconfigurable

computing (such as FPGAs) for high speed parallel processing to handle the high speed

data streams. The challenge with FPGAs is to create massive parallel high speed

algorithms with the limited resources on chip. Although algorithms scalable to a number

of FPGAs are possible, compression of the data will reduce the number of registers and

logic necessary.

This research proposes to apply a single pass dynamic Huffman compression to

the transaction database stream to compress the k most frequent items in the database, on

18

memory limited machines, where k is a user chosen constant chosen to limit the size of

the Huffman tree. It will provide a basis to make the tradeoff between computing

memory/time required and the resulting compression ratio.

This research may be beneficial to database storage. Successfully compressing

streaming items, i, in T (as previously defined) could result in a reduction in required

primary storage. Although a streaming database is not capable of being stored in primary

memory, compression would allow larger sections, or windows, of the database to be

stored than could be stored without compression.

This research will be beneficial to the dynamic Huffman compression of data with

a large symbol list, or a symbol list where the memory structure is larger than can be fit

into available memory.

Barriers and Issues

In frequent item stream mining an in-memory data structure holds a list of items

and their frequencies. The data memory is limited and as it fills up, less frequent items

are pushed out to make way for new items. Thus, the main issue is to update the dynamic

Huffman tree using the results from the frequent item-set mining.

Specifically, incrementally updating the Huffman tree and keeping the sibling

property using Vitter’s algorithm (Vitter, 1987), as the frequencies change poses

problems. Vitter provides a way to update the Huffman tree with a single new item and

maintain the sibling property. Vitter does not provide a way to remove items from the

tree and rebalance the tree to maintain the sibling property. Knuth (1985), in his

algorithm, discusses how to add and remove items from the tree and perhaps by studying

Knuth’s method, Vitters algorithm (1989) can be extended. Another possible solution is a

19

brute force approach (Pigeon, 2003). The brute force approach recalculates the complete

Huffman tree as new frequent items are found or removed. Pigeon also discusses using a

fixed table as previously discussed in the “Questions” section. A fixed table provides

some set of fixed Huffman prefix codes. These prefix codes are not calculated

dynamically. They are pre-calculated and fixed. In this approach the shortest prefix codes

are simply assigned to the most frequent items.

Because of these issues, the method that will be prototyped in this research

proposal is to use the FGK dynamic Huffman algorithm and prune the tree using a

frequent item algorithm (Metwally, Agrawal, & El Abbadi, 2005). This algorithm will

allow reuse of old tree nodes. The deletion of a tree’s node, or decrementing of a node’s

weight, will not be required, although it is possible as discussed by Knuth (1985).

Measurement of Research Success

There are several measurements that should be met to determine research success.

The measurements should be quantitative rather than qualitative to avoid subjective

measurement. For instance, some metrics might be: Benefits, Value, Goals/milestones.

Value may be a subjective measurement. For this research, the following framework

should be used to determine final success:

o The coding of a memory limited dynamic Huffman algorithm that:

 can compress/decompress a file and is verified against Knuth’s

original results.

 Consumes comparable memory and time as Knuth’s algorithm.

 provide a ‘dial’ to control the amount of memory consumed.

20

 Compression ratio comparable to Knuth’s original algorithm when

memory is not limited. If not, why?

o Verification of the ability to compress real life transaction database files

formats.

o A method to predict or estimate the compression ratio/memory tradeoff for

a database application, perhaps based on the distribution of items.

 This last item is important because if this algorithm is to be included in a design,

then some expectation of the results should be able to be determined in the design stage.

Definition of Terms

Adaptive Compression – A type of single pass compression where the algorithm

change based on the data being compressed. The algorithm may

automatically learn or adapt to the type of data with the goal of increasing

the compression ratio, or other metric.

Apriori [algorithm] – A computer algorithm for knowledge discovery in

databases. It finds association rules in the data based on a support and

confidence. It does this by successively pruning larger supersets of data

patterns based on the frequency of its subsets. This bottom up algorithm

significantly reduces the number of item sets that are considered.

Canonical [Huffman Code] –It means a ‘useful’ code, given the many different

Huffman Code sets that could result depending on the arrangement of the

Huffman tree. Canonical Huffman codes are lexicographically ordered by

length of the code.

21

Compression – the act of representing a larger set of data with a smaller set of

data. Decompression would be the restoration of the larger set of data, or

the approximate restoration of the data, from the smaller compressed set.

Dynamic Compression – see Adaptive Compression

Entropy – Originally defined in the field of thermodynamics, it is a measure of the

degree of randomized energy in the system and its ability to produce work.

A system with higher entropy is more randomized and has less ability to

do useful work. In information science, higher entropy refers to a more

randomized signal. Shannon (1948b) reused the word and defined it to be

negative the log of the expected value of the probability of an event. The

event in this case would be the symbol or bit in a message.

Entropy coding – A lossless Compression technique which is accomplished by

removing redundancy in the data.

FPGA – Field Programmable Gate Array. This is a chip that has I/O pins and an

internal ‘sea of gates’ whose connections are programmable after

manufacture. The internal structure of the FPGA is determined by the

manufacturer but can realize any logic function as determined by the users

programming. Commonly, FPGA also contain ‘macro’ functions such as

memory, phase lock loop clocking circuitry, non-volatile memory, analog

conversion, and specialized I/O.

Lossy compression - a compression technique where the reconstituted data only

approximates the original signal. The algorithm accomplishes this by

partially discarding data. It may also match data as redundant that only

22

partially matches and then remove the redundancy. Typically used for

applications that can tolerate inexactness in the reconstituted data such as

digitized photos, video and sound.

Lossless compression – Any compression technique where the reconstituted data

is identical to the original data for all data targeted by the algorithm.

LUT – In the context here it refers to Look up Table for an FPGA. From Boolean

logic, it is well known that any logic function can be implemented using a

NAND gate. FPGA manufacturers do not use the NAND gate as the basic

building block of the logic that can be implemented on the FPGA. Rather,

they use the LUT. Each LUT typically may have four input bits and a

single output bit. Sixteen memory cells hold the logic mapping between

input and output. Thus, any Boolean logic function is realizable. Rather

than using LUTs to implement flip-flops and registers, manufacturers will

include a few flip-flops with each LUT on the chip. Different

manufacturers may call these LE’s (logic elements), macrocells, or gates.

Memory constrained – Any real computer system is memory constrained when

the application or algorithms requirement for data exceeds the memory

limits. This could refer to either secondary storage or main memory

constraints.

Mining – The term data mining is a misnomer. A more apt term, and the industry-

accepted term, is Knowledge Discovery in Databases. The goal of Mining

is the discovery of useful patterns and relationships in the data and not the

data itself.

23

Prefix code – A prefix code can be uniquely (and instantaneously) decoded in the

input stream. It is usually a variable length code. Unary coding is a type

of prefix code.

Reconfigurable computing – This is the ability of the computing hardware to

change its hardware connections either dynamically (at runtime), or more

commonly, to adapt itself to the application after its manufacture.

Reconfigurable computing was made possible by the development of

FPGAs with high density. Reconfigurable computing has the unique

characteristic of being able to reconfigure itself during or before runtime

to implement a variety of fine grained, massively parallel, algorithms.

RLE – Run length encoding is a simple form of lossless data compression where

long sequences of identical symbols (or data patterns) are coded as a data

count and symbol (or pattern). A familiar application that uses RLE

compression is facsimile transmission. In this application, it is common to

scan pages of text which have large sections of white space. If the pixels

that represent the white space were encoded as a ‘0’, and the black text

pixels as a ‘1’, the RLE model would be tuned to encode the large ‘runs’,

or sequences of 0s as a count and a single 0 bit.

Streaming – In the context of this document, refers to an unbounded real-time

data transmission.

Transaction database – a database whose records (or tuples) contain the presence,

or absence, of items. Each tuple also has a key, also called the transaction

id.

24

Truncated binary coding – a binary coding that is used because of its entropy

efficiency. To encode n symbols requires between k and k+1 bits, where

𝑘𝑘 = ⌊log2 𝑛𝑛⌋, In this coding the first few symbols can be transmitted with

k bits, while the remainder of the symbols require the full k+1 bits.

Unary coding – This is a type of prefix code. In this system the number n is

represented by n 1s followed by a 0 (or the opposite). Note that the

number of bits required to transmit this code increases with the number to

transmit. Thus, it is an entropy encoding where the probability of each

symbol is given by 𝑃𝑃(𝑛𝑛) = 2−𝑛𝑛. It is similar to tallying where a mark is

drawn for each item to be represented.

XML – Extensible Markup Language is a set of rules for encoding documents. It

is text based and designed to be readable by humans, but efficient for

machine processing as well. It is the basis for many formats including

RSS, SOAP and ATOM. XML formats have become the basis for many

applications including Microsoft Office. Part of the format is textual data

delimited by text tags.

25

Chapter 2

Review of the Literature

The Data Stream

Advances in computing have facilitated the collection of continuous data

(Aggarwal, 2007). Much of this type of data is generated from simple transactions, such

as using a credit card on the telephone, browsing a website with a browser, a stock

transaction or the daily itinerary of commercial aircraft. Much of the data flows across IP

networks. This data can be mined for interesting relationships for many different

applications. When the volume of data is large there are significant challenges:

1. Because of processing time cost constraints, it may no longer be possible to mine

the data in multiple passes. A single pass of the data for its processing may be

desirable. This will define the algorithm chosen to process the stream. Stream

mining algorithms process the data in a single pass.

2. In many cases, there is a temporal component to the data. The data may change

with some periodicity given the time of day, season, or perhaps it may evolve

apparently randomly given the political situation of the time. Item frequencies

may change over time. There is a need for stream mining algorithms to

accommodate this temporal or ‘time varying’ component.

This second bullet seems to corroborate this research. The author also notes that

stream mining is often accomplished with distributed algorithms/hardware (Aggarwal,

2007).

26

S. Muthukrishnan (2011) presents some further thoughts on the progress and

direction of stream computing. He presents an alternate view of stream computing. He

notes that computing capacity, memory and communications have been growing steadily.

With it the amount of generated data has also grown and it needs to be analyzed. The

generated data streams are created in “massive” rates far higher than can be captured and

stored. It arrives at a faster rate than can be sent to a central database without

overwhelming the communication’s channel and faster than can be computed. The

assumption is that all data can be captured, processed, and stored. For instance, digital

signal processing starts with the Nyquist theorem (Nyquist, 1928; Shannon, 1948) that

states the sample rate should be twice the highest signal frequency for full reconstruction.

Database theory leads to a relational algebra that is continuously applied to the data and

is provable to be correct on its results. Communications theory incorporates the thought

that there is a minimum number of bits required to transfer the information content. This

is Shannon’s concept of self-information (Shannon, 1948). As a future direction of

research, Muthukrishnan (2011) notes:

Streaming and compressed sensing brought two groups of researchers (computer

science and signal processing) together on common problems of what is the

minimal amount of data to be sensed or captured or stored, so data sources can be

reconstructed, at least approximately. ...This is however just the beginning. We

need to extend compressed sensing to functional sensing, where we sense only

what is appropriate to compute different functions and SQL queries (rather than

simply reconstructing the signal) and furthermore, extend the theory to massively

27

distributed and continual framework to be truly useful for new massive data

applications above. (p. 319)

In “Data Streams: Algorithms and Applications” (Muthukrishnan, 2005), the

concept of transmit, compute and store, or TCS, capacity is outlined to differentiate data

stream processing from other ‘normal’ compute data flow. The data stream is data that

occurs as an input to some program at a very high rate. At this rate it may be difficult for

the computing hardware to transmit (T) the entire data to the program. The program may

have limitations on its ability to compute (C) the algorithms and processing necessary on

all the large chunks of data. The program may not be able to store (S) either temporarily

or to archive the data.

This view defines data stream processing as relating to the stress on these

resources.

Another interesting definition of a data stream, that is relevant to this research,

comes from the Blog “Development Blog on compression Algorithms” (Collet, 2011).

The author demonstrates quite a bit of knowledge and the writings do provide

confirmation of some basic concepts to understand a data stream. Here Collet (2011)

says,

At its most basic level, a file satisfies the definition of a stream. These are

ordered bytes, with a beginning and an end. File is in fact a special stream with

added properties. A file size can to be known beforehand. And in most

circumstances, it is likely to be stored into a seek-able media, such as a hard disk

drive. But a stream is not limited to a file. It can also be a bunch of files grouped

28

together (tar), or some dynamically generated data. It may be read from a

streaming media, such as pipe, with no seek capability. (p. 1)

Babcock, Babu, Datar, Motwani, and Widom (2002) expound on the unique

aspects of the data stream. They note that the database system cannot control the order in

which the data arrives. Either between data streams, or within a stream. They note that

data streams are unbounded in size and that once a data stream element has been

processed or discarded, it cannot be easily retrieved unless the element was stored. But

typical storage is small compared to the size of the stream.

There are several real-world examples of stream processing database systems

(Babcock et al., 2002). Traderbot is a web-based financial search engine that processes

queries over streaming financial data. iPolicy Networks processes network packet

streams in real time. It performs complex stream processing, table lookups, URL

filtering, and correlates the data across multiple network flows. Large websites such as

Yahoo may coordinate distributed clickstream analysis to track heavily accessed web

pages. Finally, they cite sensor monitoring as a streaming database application. Large

number of sensors may generate data that needs to be processed and analyzed by the

database management system. An example query from a network management system is

presented. This query will compute the averaged load over one minute on link B and to

notify the operator when the load crosses some value t:

SELECT notifyoperator(sum(len))
FROM B
GROUP BY getminute(time)
HAVING sum(len) > t

29

Introduction to Compression

Both RLE compression (Golomb, 1966) and Huffman Compression (Huffman,

1952) take advantage of a statistical modeling of the data stream to achieve a level of

compression. Without some model of the data, its compression may not be possible

(Nelson & Gailly, 1996). For instance, consider all possible 1000-bit messages (Blelloch,

2001). It should be obvious that all possible 1000-bit messages (there are 21000 of them)

cannot be represented by less than 1000-bits, unless some set of those messages are

represented by more than 1000-bits. As a more concrete example, take for example an

alphabet that consisted of only four symbols. It is impossible to represent 10 different

values using only four symbols (unless multiple symbol combinations are used). The ten

decimal digits cannot be compressed to only four symbols. Going back to the 1000-bit

example, a model of the 1000-bit messages is required that identifies a subset of those

messages and/or some redundancy in the representation of information contained in that

message subset. It is reasonable to expect to compress only that subset of messages. For

instance, identify a model of data that represents a color static picture, then identify

redundancies in the structure of the data. From that model, develop an algorithm and

code that compress that subset of messages. Data that falls outside of the model might

not be effectively compressed. In fact, data that falls outside the model often result in a

larger size when run though a compression algorithm not intended for its model.

Some common ways compression algorithms achieve results is to exploit the

redundancies in the data (Salomon, 2004). Redundancies in the database can exist at

many different levels; from the bit stream level (RLE), to the identification of repeated

symbol patterns (Ziv & Lempel, 1977, 1978), up to the taxonomy of attributes/records as

30

identified by database normalization (Codd, 1970, 1972). Note that neither of these last

two methods require a statistical model of the data. Non-random data has some sort of

structure. Compression takes advantage of that structure to represent that data in a

smaller version. Ideally, the smaller, compressed, version of the data would not have any

noticeable format.

 For instance, Huffman compression takes advantage of the statistical frequency

of characters (or tokens) in the message. In this model of the data used by Huffman,

there is a statistical non-uniformity in the frequency of characters. Messages that fall

outside that model, i.e., do not have a non-uniformity in the frequencies of their data

characters, when compressed, would likely result in ‘compressed’ messages that are

larger than the original message.

As an example, assume a message to be compressed was composed of an alphabet

that was 127 characters and these characters were encoded in 7-bit ASCII. Further

assume that all 127 characters appeared in the original message with equal probability.

The proposed message might consist of 500 occurrences of each of the 127 characters in

the symbol set. Further assume that the occurrence of each of the characters is random

within the message. This message falls outside of the Huffman model. In the Huffman

model there is a non-uniformity in the symbol probabilities. The resulting Huffman

compressed message from this equal probability symbol set would consist of the same

sized message as the original, also encoded in 7-bit characters. This can be confirmed by

trying to build a Huffman tree of the 127 characters where each character has equal

probability of 0.79%. The probability of any of the 127 characters occurring is 100%,

then the probability of a single character, if all had equal probability, is 100%
127

 = 0.79%.

31

Each character would be encoded by the Huffman tree using 7 bits, the same as the

original ‘uncompressed’ coding. In addition, the compressed message would contain

‘overhead’. The overhead would at least need to contain some representation of the

Huffman tree, or if canonical codes are used, a dictionary of the input characters. The

result in this case would be a compressed message that is larger than the original

message.

Arithmetic compression (Witten, Neal, & Cleary, 1987) builds on Huffman by

taking advantage of inefficiencies in Huffman’s representation of the compressed data.

This model recognizes that the ideal number of bits to represent the Huffman token is

most often not an even integer.

Lempel-Ziv (Ziv & Lempel, 1977) does not look at individual character’s

frequencies as in Huffman or arithmetic compression techniques. It looks for repeated

sequential patterns of characters in streaming message. It is effective at compression

long strings of repeated characters. The Lempel-Ziv model recognizes recurring patterns

in streaming data.

A model of a streaming transaction database presents several features that can be

exploited to code a compression scheme algorithm. This research is intended to explore

and find that redundancy.

Streaming data has a sender, a receiver, and a communications channel. The

sender compresses the data. In some literature, this is also called the coder. The receiver,

on the other end of the communications channel, decompresses the data. In some

literature, this is called the decoder. Streaming data compression algorithms need to pay

32

attention to this decompression algorithm as well. Both the sender and receiver need to

stay synchronized over the data stream.

The model of compression may be fixed or adaptive. An example of a fixed

compression algorithm might be one which compresses ASCII characters and the relative

frequencies of the various ASCII character are determined beforehand. Both the sender

and receiver require the same model of the data for successful compression to occur.

With an adaptive model, both the sender and receiver would respond to changes in the

frequencies of the characters as the data is processed.

Adaptive, often called dynamic, compression is a type of single pass compression.

Single pass compression algorithms do not need to know the frequency of items to be

compressed in advance. They may have ‘meta-information’ about the model of the data

but not be tuned to specific probabilities of redundancies in the data. These techniques

are applicable to streaming databases because the database may have a temporal

component and the frequencies may vary over some period.

Figure 7 shows two models for adaptation. The forward model assembles a

packet from the stream. Statistics on the item frequencies or other redundancies are

computed over the packet. The compressed stream is transmitted along with the

adaptation information. For instance, in the Huffman two pass compression the source

transmits the table necessary to reconstruct the Huffman tree.

In the backward adaptation model, encoding is immediately performed using

stored information from previous conversions. As new symbols enter the source stream,

they are immediately transmitted into the compressed stream (since there is no adaptation

33

information on them yet). Both the source and destination sides compute the adaptation

information synchronously.

Figure 7. Two models of compression adaptation.

Transaction databases occur in several applications. Finding association rules in

market basket analysis is introduced by Agrawal, Imieliński, and Swami (1993). The

data typically consists of marketing and transaction information. This might include the

date of purchase, a customer ID, a transaction ID, and most importantly the list of items

and quantities. In this application, the data may come from a web store, or it may come

Computation
of adaptation
information

Delay Encoding
Source
Signal

Decoding
Reconstructed
Signal C

om
m

un
ic

at
io

ns
 C

ha
nn

el

Forward Adaptation Model

Computation
of adaptation
information

Encoding
Source
Signal

Decoding
Reconstructed
Signal C

om
m

un
ic

at
io

ns
 C

ha
nn

el
 Computation

of adaptation
information

Backward Adaptation Model

34

from a supermarket. It may come from the register at the checkout counter. Association

rules identify those items frequently purchased with other items at the checkout. For

example, the association rule might state that 80% of customers who purchased a tablet

computer also purchased a black carrying case and a mouse. This type of information

may determine the advertisements that appear on a web store checkout page, product

placement within a retail store, layout of a mailing flyer, target marketing…

Table 2 illustrates popular and proposed transaction database formats. In the

horizontal format illustrated in (a), a transaction id (tid) is followed by a variable length

list of item identifiers. The record, or tuple, is variable length. For the purposes of a

compression algorithm, each of these ids would be considered a token in the input stream.

The tid would be a unique identifier and would have a frequency of 1 in the stream. The

item identifiers might not and items that are popular and sold frequently might would

have a higher probability. Some algorithms for association rule mining, such as the

popular Apriori algorithm, assume the horizontal format for the transaction database.

This database format is also assumed by the MaxMiner (Bayardo, 1998) and

DepthProject (Agrawal, Aggarwal, & Prasad, 2000) algorithms.

In contrast is the vertical format as illustrated in Table 2 (c). In this format, each

tuple is keyed to the item ID. Each tuple contains the item tidset. The tidset is the set of

all tids in which the item occurs. Table 2(d) illustrates the vertical bitmap format. This

format is used by the Mafia (Burdick, Calimlim & Gehrke, 2001), Viper (Shenoy et al.,

2000), Eclat (Zaki, 2000), Charm (Zaki, 2000), and Partition (Savasere, Omiecinski, &

Navathe, 1995) algorithms. Compressed vertical bit vectors are used in this format.

35

Table 2
Transaction Database Formats

(a) Horizontal format

ID Item
100 A, B
200 D, E
300 A, C
400 A, C, E
500 C
600 D, E

(b) Horizontal bitmap format

 Item
ID A B C D E

100 1 1 0 0 0
200 0 0 0 1 1
300 1 0 1 0 0
400 1 0 1 0 1
500 0 0 1 0 0
600 0 0 0 1 1

(c) Vertical tidset format

Item Transaction ID
A 100, 300, 400
B 100
C 300, 400, 500
D 200, 600
E 200, 400, 600

(d) Vertical bitmap format

 Transaction ID
Item 100 200 300 400 500 600
A 1 0 1 1 0 0
B 1 0 0 0 0 0
C 0 0 1 1 1 0
D 0 1 0 0 0 1
E 0 1 0 1 0 1

Two Pass Compression of a Transaction Database

Data mining, or knowledge discovery in databases (KDD), attempts to find

interesting relationships in a database. Association rule mining is a machine learning

36

algorithm used for KDD. Association Rule learning finds frequent item-sets in a

transaction database, D (Agrawal, Imieliński, & Swami, 1993). Let the set of

transactions in D be

T = {t1, t2,…, tj}, where t1 is the first transaction and tj is the last transaction in the

database. Let the set of items in the database be

I = {i1, i2,…, in}

Thus, n is the number of different items in the database, and j the number of

different transactions in the database. The transactions each have a TID, or transaction

ID. An association rule is defined as

𝐴𝐴 ⟹ 𝐵𝐵; where 𝐴𝐴 ⊆ 𝐼𝐼,𝐵𝐵 ⊆ 𝐼𝐼 and 𝐴𝐴 ∩ 𝐵𝐵 ≠ ∅.

An example of an association rule is {𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸} ⟹𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘. The task is to find

all the frequent association rules in the transaction database, T. A maximal frequent item-

set, of length k. is defined as

{𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, … , 𝑀𝑀𝑘𝑘}

A maximal frequent item-set is not a subset of a frequent item-set. Finally, a

transaction ti in D will contain some of the items in I. Let the cardinality of items in a

transaction ti in T be |ti| .

Run Length Encoding (RLE) Compression.

RLE compression notes that in sparse matrices, there will be long runs of 0 bits in

each row. The probability of a 1 bit in the database will be the number of items in the

transaction database D, divided by the total number of transactions times the number of

different items in item list.

37

ℕ = � |𝑡𝑡𝑖𝑖|
𝑗𝑗

𝑖𝑖=1

ℕ is the total number of items in the database. The probability of a 1 bit becomes

𝑝𝑝 =
ℕ
𝑗𝑗 ∙ 𝑛𝑛

 where j is the number of transactions in the database and n is the number of

different items in the database.

The probability of a 0 bit will be 1 - p.

An RLE algorithm using Golomb prefix codes will compress a long string of 0 or

1 bits with a minimal entropy (Golomb, 1965). Golomb codes first require computation

of a factor, m , based on the probability, p, of a 0 bit in the string to be encoded. This

quantity is computed as

𝑝𝑝𝑚𝑚 ≈
1
2

 or,

𝑚𝑚 ≈
− log10 2

log10 𝑝𝑝
=

1
−log2 𝑝𝑝

Based on work by Gallager and van Voorhis (1975), Salomon (2007) refines this

equation. Salomon more accurately obtains:

𝑚𝑚 = �−
log2(1 + 𝑝𝑝)

log2 𝑝𝑝
�

A larger m value means a higher probability of a long run of 0 bits. This will be

used to calculate a Golomb prefix code whose length is shorter for runs of 0 bits around

the ideal mean run length.

38

A Golomb code consists of two concatenated parts; a q value coded in unary, and

an r value with a truncated binary coding. Let the run of 0 bits be n in length. The first

step, after computation of m, is to compute the three values:

𝑞𝑞 = �
𝑛𝑛
𝑚𝑚
�

𝐵𝐵 = 𝑛𝑛 − 𝑞𝑞𝑚𝑚

𝑐𝑐 = ⌈log2 𝑚𝑚⌉

The case where m is a power of two results in c = 0. This is a special case of the

Golomb code and is easier to encode/decode. These are the Rice codes (Rice, 1979). To

code the truncated binary quantity r, unsigned integers are used to encode the first

2𝑐𝑐 − 𝑚𝑚 integers using c-1 bits. The rest are encoded using c bits. The Rice code do not

require the first c-1 bit codes. See Salomon (2007) for a complete description of

Golomb encoding/decoding.

Table 3 summarizes some typical Golomb codes. To use the table, calculate the m

value. The length of the run of 0 bits is the n value, then lookup the compression code in

the table. If the average number of items in a transaction T can be computed, then RLE

using Golomb codes can be used to provide a maximal compression of the database in

Table 2 (b) and Table 2 (d) without knowing the individual probability of each item (as is

required using Huffman coding.) For an exact value of P, the database must be read prior

to compression to determine the average number of items in a transaction. Fortunately,

an exact value of P not usually required and an approximate value is usually sufficient

(Golomb, 1966). This characteristic enables it as a single pass compression algorithm.

39

Table 3
Golomb Codes for m = 2 to 13

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4

2c – m 0 1 0 3 2 1 0 7 6 5 4 3 2 1 0

 n (number of 0s to compress)

m

 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0|0 0|1 10|0 10|1 110|0 110|1 1110|0 1110|1 11110|0 11110|1 111110|0 111110|1 1111110|0

3 0|0 0|10 0|11 10|0 10|10 10|11 110|0 110|10 110|11 1110|01 1110|10 1110|11 11110|0

4 0|00 0|01 0|10 0|11 10|00 10|01 101|0 10|11 110|00 110|01 110|10 110|11 11110|00

5 0|00 0|01 0|10 0|110 0|111 10|00 10|01 10|10 10|110 10|111 110|00 110|01 110|10

6 0|00 0|01 0|100 0|101 0|110 0|111 10|00 10|01 10|010 10|101 10|110 10|111 110|00

7 0|00 0|010 0|011 0|100 0|101 0|110 0|111 10|00 10|010 10|011 10|100 10|101 10|110

8 0|000 0|001 0|010 0|011 0|100 0|101 0|110 0|111 10|000 10|001 10|010 10|011 10|100

9 0|000 0|001 0|010 0|011 0|100 0|101 0|110 0|1110 0|1111 10|000 10|001 10|010 10|011

10 0|000 0|001 0|010 0|011 0|100 0|101 0|1100 0|1101 0|1110 0|1111 10|000 10|001 10|010

11 0|000 0|001 0|010 0|011 0|100 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111 10|000 10|001

12 0|000 0|001 0|010 0|011 0|1000 0|100 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111 10|000

13 0|000 0|001 0|010 0|0110 0|0111 0|1000 0|1001 0|1010 0|1011 0|1100 0|1101 0|1110 0|1111
Note. The vertical bar (|) indicates the split between the r and q values.

As an example of compression of a string, assume the following string is to be

compressed, 000011001000000001. Assume an exact solution is required and the m

value is to be calculated. If an m value is not necessary, then an approximate value can

be used. There are 14 zero bits in this sequence of 18 bits. The probability of a 0 bit in

the sequence is determined as p = 14/18 = 78%. An exact value of m is

�
− log2 1.78

log2 0.78
� = ⌈2.3⌉ = 3

The run of 0 bits in the string are 4, 0, 2, 8. Therefore the string can be

compressed as 1010 | 00 | 011 | 11011. The compression ratio is 78%. As a second

example, encode the string 00000000001000000000010000000001. This example has 29

zeros in the sequence of 32 bits. p = 29/32 = 91%. m becomes 8. The compressed string

is 10010 | 10010 | 10001. The compression ratio here is 45%. In this second example,

40

there are many runs of 0 bits about the median run length and the sequence compresses

better.

In contrast to the RLE using Golomb prefix codes, the Huffman compression

scheme requires a value for each of the item probabilities. A static Huffman compression

algorithm requires two passes over the data. If applied to a streaming database, it would

introduce a delay in the data as the statistical frequencies of the symbols are determined

for the packet. It would fall under the backward adaptation model.

Huffman Compression.

Huffman codes provide a minimum entropy-encoding scheme for items (or any

tokens) (Huffman, 1952). Huffman codes require knowing the probability of each item’s

occurrence in I. The total number of items in all transactions in D is given by:

ℕ = � |𝑡𝑡𝑖𝑖|
𝑗𝑗

𝑖𝑖=1

If a transaction, ti, contains an item, ik, then |𝑡𝑡𝑖𝑖 ∩ 𝑀𝑀𝑘𝑘| = 1 . Given an item ik in

database D, the probability, Hk, of that item symbol will be

𝐻𝐻𝑘𝑘 =
∑ |𝑡𝑡𝑖𝑖 ∩ 𝑀𝑀𝑘𝑘|𝑗𝑗
𝑖𝑖=1

ℕ

Creation of the Huffman encoding table will require a separate pass over the

database to count the number of times each item appears in the transactions to compute

each of the Hk’s. Other options to reading the entire database would be to sample the

database to determine the item probabilities, or to update the probabilities as the

transactions in T are written to the database.

To build the Huffman codes the algorithm first creates a list of all the tokens with

their associated probabilities. Each item in the list should be a node of a tree. Each of

41

these nodes are initially unlinked and free. The Huffman algorithm then builds a binary

tree bottom-up. It first selects the two nodes with the least probable tokens from the list.

It links these two nodes together with a new parent and returns this subtree to the list.

The probability of this parent node is the joint probability of its two children. Next, from

the list containing the remaining free nodes, and the subtrees, the algorithm chooses the

two next least probable items. It links these together with a parent node. This continues

until it builds the complete tree, with all the items. The root node of the Huffman tree is

the only node left in the list.

The Huffman algorithm labels each of the tree branches and enumerate the

Huffman codes in a dictionary or list of input/output symbols. When labeling the

Huffman tree, a consistent approach would be to label all left branches a 1 and right

branches a 0. Different labeling schemes will result in different Huffman code mappings.

The compressed output symbol is the path back to the root. This is the first pass of the

algorithm.

In the second pass, the input file is processed again and the corresponding

compressed output symbol found in the dictionary to achieve the compression..

An example of a Huffman mapping is presented in Figure 8 and Table 4. In this

example an imaginary transaction database, D, has five items in its set of items I, Beer,

Butter, Diapers, Eggs and Milk. The probabilities are listed in Table 4; each of the Hk‘s,

were determined by counting the occurrences of items in a database, D. In this mapping

Beer would have the Huffman code of 00 and Milk would have the Huffman code of 110

as shown in the “Huffman Code” column of Table 4. Beer has a shorter prefix code

because it has a higher probability of occurring in the database.

42

Figure 8. Huffman tree.

Figure 9. Pseudocode for static Huffman compression.

Create Huffman tree
Input: list of items and probabilities
Output: Huffman tree

1. Create a node for each item. Each node contains item ID

and probability.
2. Initialize a list of the nodes
3. Repeat
4. Sort the list of nodes by probability
5. Select two nodes from list containing least probabilities.
6. Link the two nodes with a parent node. The probability of

the parent node is the joint probability of the child
nodes.

7. Add parent node back to priority list.
8. Until list contains single node.

43

Table 4
Huffman and Canonical Huffman Codes

Item Huffman code A canonical Huffman code Probability
Beer 00 00 0.3
Diapers 10 01 0.3
Butter 01 10 0.2
Eggs 111 110 0.1
Milk 110 111 0.1

Canonical Huffman Codes

In general, a Huffman code mapping results in a code that is seemingly arbitrary

(they are based on probabilities of course) since it is not unique and is just one code set

from many possible mappings. Decoding of an arbitrary Huffman mapping can be more

difficult because the decoder needs to replicate the Huffman tree. One way to make the

decoding simpler is to use a canonical Huffman code (Schwartz & Kallick, 1964). The

canonical Huffman codes add an additional constraint on the generated codes.

An interesting insight into generating the Huffman code can be gained by looking

at the Huffman tree. For the purposes of this research, assume that a left branch from a

node creates a “0” bit in the resulting compressed code and the right branch a “1” bit.

Assume for a moment that the “0” and “1” labeling of one of the left and right child

branches are swapped. This is a simple swap that the reader should verify does not

change the Huffman tree. What it does change is the generated code. The number of bits

that encode each symbol does not change with this swap. Thus, one can conclude, a

carefully crafted constraint has the latitude to change the generated Huffman code, as

long as the number of bits remains the same, and still be a Huffman tree. This constraint

must also maintain the constraint that each compression code be a prefix code. To be a

44

prefix code, each generated code cannot be a prefix of any other generated code. If the

resulting tree is a Huffman tree, it will automatically also generate prefix codes. The

algorithm presented by Schwartz and Kallick maintains these features.

Table 4 lists a canonical Huffman code. The first step to building canonical

Huffman code is to sort the Huffman table by number of bits in the Huffman code. Next,

each group of in the list that have identical number of bits are sorted alphabetically. In

this example Beer, Butter, and Diapers are first because they each have a two-bit code.

They appear alphabetically.

Each of the canonical codes will be the same length as the original code. The first

symbol gets assigned the code a code of all 0’s with the same number of bits as the

originally symbol. To determine the canonical code of the next symbol in the list, simply

increment the previous symbols code. Do this for all equal length codes. When the next

symbol in the list has a longer code word, the previous canonical code is incremented and

an additional ‘0’ bit is appended to the least significant bit. Append more than one ‘0’, as

is necessary, to maintain the same number of bits as the original Huffman code. A

straightforward algorithm re-encodes the Huffman mapping into new codes (Schwartz &

Kallick, 1964).

Decoding of a canonical Huffman code is simple and is algorithmically

programmable. The original Huffman tree is not required. All that is needed by the

decoder is a list of the items and their Huffman code length. The structure of the tree, or

the complete list of Huffman code is not required. The decoder can build the canonical

code list from the list of items and their Huffman bit length since the codes are ordered.

Algorithms (non-table or tree based) exist for decoding canonical Huffman codes. The

45

canonical code both simplifies the decoding of the compression code by not requiring the

original tree, but also decreases the amount of data transmitted. The canonical code

decreases the ‘overhead’ that should be considered as part of the transmitted data when

calculating the compression ratio.

Prefix Codes

Huffman and RLE compression techniques represent the compressed token as

unique characters using a prefix code (Blelloch, 2001). A Huffman code is a particular

type of prefix code. In a transaction database stream, where all transaction and item IDs

are 32 bits, and assuming no errors in the stream, each unique item ID can be identified.

But assume an entropy encoding were to encode the item IDs as a variable number of

bits. It may not be possible to identify where an ID ends, and the next one begins, unless

some sort of unique stop pattern is used between IDs. The stop pattern would lower the

compression ratio. Another solution is to use prefix codes.

To appreciate the feature of a prefix code, refer to the three sets of possible prefix

coding in Table 5. Code 1 encoding of the characters has a problem. Assume the

following sequence of characters is to be encoded, x1x2x3. The encoded bit stream would

be 0100. A decoder could interpret this as x1x2x1x1 or even as the sequence x4x3. The

coding does not offer a uniquely decodable sequence. Contrast this with the compression

coding of Code 2. Assume the decoder has the simple algorithm of reading bits until

either 3 one bits are read, or a 0 is read. With this algorithm, the decoder can uniquely

determine the original token as soon as the last bit of the compression code is received.

Now consider code set 3. The encoding of Code 3 also offers a unique coding for a bit

stream. An algorithm the decoder might use for this coding is to read characters in the

46

input stream until the second 0 is received. The difference with this is that the decoder

cannot determine the original token until after the first bit of the next code word is

received (the second 0). Code 3 is not an instantaneous code (Salomon, 2004).

Table 5
Illustration of Three Possible Prefix Codes

Token Probability Code 1 Code 2 Code 3
x1 0.500 0 0 0
x2 0.250 1 10 01
x3 0.125 00 110 011
x4 0.125 01 111 0111
Average weighted length 1.125 1.75 1.875

Code 2 is the only prefix code because it is uniquely and instantaneously

decodable in the input stream. There are many different possibilities for prefix codes

other than the sequence presented as Code 2.

 A code is uniquely decodable iff for each source symbol, 𝐸𝐸 ∈ 𝑆𝑆, a valid coded

representation b exists, and the representation b is unique for every possible combination

of source symbols s in S, where S is a stochastic process.

It is a simple matter to build up other prefix codes. For instance, following the

procedure given by Huffman, an infinite variety of prefix codes can be generated. As

another example, all fixed length codes are prefix codes; such as ASCII codes. Because

fixed length codes are all the same length they are uniquely decodable in the input

stream.

Adaptive (Dynamic) Compression

Adaptive Huffman coding was first introduced by Faller (1973), independently

introduced by Gallager (1978), and then further refined by and Knuth (1985). It is known

47

as the FGK algorithm. In the traditional Huffman algorithm, the source is read (in a first

pass over the data) to determine the symbol frequencies. The algorithm reads the source

again (in the second pass) to compress the data. Often, such as the case with a streaming

database, this is impractical. Another example where this would be impractical is where

a very large dataset is stored in secondary storage and the time to read it in a first pass is

deemed impractical. Dynamic or adaptive compression identifies the data source and a

destination to achieve the compression in a single pass over the data. Both the source and

destination work together, they mirror each other. Both start with an empty Huffman tree

and build it dynamically, as new symbols in the stream arrive, and the tree must be

identical on both ends. On both ends, as symbols are added to the tree, the tree must be

examined to see if it is still a Huffman tree, and rebalanced if it is not. Notice that since

both sides build the tree dynamically there is some savings in data transmission since the

tree does not have to be initially transmitted as is required in the two pass algorithm. On

the other hand, the source symbol frequencies have to be learned, and there is some

inefficiency as each side asymptotically reaches the ideal source entropy. The FGK

algorithm updates the frequencies in the Huffman tree dynamically as new items arrive in

the stream. It also rebalances the tree to maintain the sibling property. A key point, and

the key to keeping the receiver and transmitter Huffman trees in synchronism, is what

happens when a symbol that neither the transmitter nor receiver have seen yet is received

in the stream. In this case, a special escape symbol, the NYT (Not Yet Transmitted)

symbol, is transmitted with the new uncompressed symbol, so each side can build the

identical tree with the new character. The NYT symbol is defined to have a frequency of

0. It is a node in the Huffman tree. This is the longest code. As new symbols arrive in

48

the stream, their frequencies in the tree are updated. If the character is not seen before,

the NYT node become a parent node and is split into a new NYT node with frequency 0,

and a new node is added to the tree that represents the new character with a frequency of

1. Next, the tree may need to be rebalanced and all the parent nodes may have to be

incremented.

The first option in rebalancing the tree is to simply rebuild the whole tree when

the tree is no longer a Huffman tree. This is neither Vitter’s (1987) algorithm nor FGK

(1985), but it is an option for a dynamic compression scheme. To tell if the tree is a

Huffman tree, scan the nodes, from left to right and bottom to top, each leaf and parent

node. The node frequencies should be in sorted, non-descending order. This is referred

to as the sibling property. Rebuilding the whole tree from scratch every time can be a

lengthy process (Pigeon, S., 2003). A second option would be to completely rebuild the

Huffman tree after some ‘arbitrary’ number symbols are received in the input stream, say

100. This option could result in non-optimal compression ratios, but would reduce the

required processing time. A third option (Pigeon, 2003) is to rebuild the tree when the

symbols rank has significantly changed. In the implementation proposed by Pigeon a

table is kept with the list of input symbols and frequencies. As new symbols arrive in the

input stream the frequencies are updated and the table sorted by frequency. When a swap

occurs due to sorting, the Huffman tree is rebuilt. Pigeon points out that the table

operations coding is more efficient than Vitter’s algorithm, but on the other hand the tree

rebuilding is costly.

The FGK algorithm rebalances the tree more compute efficiently for incremental

updating of the frequency of a single symbol using the algorithm as outline in the

49

pseudocode given in Figure 10. The ‘block’ (in line 2) is defined as the set of nodes with

the same weight.

Figure 10. FGK algorithm tree update pseudocode. Adapted from “Dynamic Huffman
Coding” by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.

As an example, in Figure 17(b) nodes 2, 3, 4 and 5 are in the same block because

their weight is 1. More detailed pseudocode for this same algorithm follows. As Knuth

(1985) says, “The heart of the dynamic Huffman tree processing is the update

procedure.”

Figure 11 lists pseudocode for the update procedure as presented by Knuth

(1985). The input to the procedure is the symbol to encode, k. A following procedure

uses k. It is not used here. The data structure, P, is an array of backward links to the

parent of the node q. Line 2 sets q to be the node whose weight should increase. Note

the math when indexing the array P. P is the pointer to node parents and has a range of 1

to n, where n is the number of nodes (and is a constant). The parent of node 2j and 2j-1 is

P[j]. When q becomes 0, the root node is reached. The procedure calls in lines 4 and 5

follow.

Pseudocode FGK Update Huffman Tree

 Input: Huffman Tree, pointer to Node N. N is the node to increment.
 Output: Updated Huffman Tree.

1. Repeat
2. Exchange N with the last (rightmost) node in its ‘block’.
3. Increment the frequency of node N.
4. N parent of N.
5. Until N is the root
6. Increment frequency of the root

50

Figure 11. Detailed update procedure. Adapted from “Dynamic Huffman Coding” by D.
E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.

Figure 12 presents the “Move q to the right of its block” procedure (Knuth, 1985).

Two new arrays here are “B” and “D”. B is an array of pointers to the blocks. All nodes

j of a given weight have the same value of B[j]. The D array is an array of pointers to the

largest node number in each block. Both arrays have a range of from 1 to 2n-1. This

subroutine moves node q to the right of its block, unless both q and it parent are at the

right of its block already. This subroutine uses the ‘exchange’ procedure. The ‘exchange’

procedure in Figure 13 exchanges two subtrees (as long as neither is the child of the

other).

Figure 12. Move q to the right of its block. Adapted from “Dynamic Huffman Coding”
by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.

Knuth update procedure

1. procedure update (integer k);
2. (Set q to the external node whose weight should increase);
3. while q > 0 do
4. (Move q to the right of its block);
5. (Transfer q to the next block, with weight one higher);
6. q ← P [(q + 1) div 2] od;
7. end;

Knuth <Move q to the right of its block>=

1. if q< D[B[q]] and D[B[P[(q + 1) div 2]]] > q + 1 then
2. exchange (q, D[B[q]]); q ← D[B[q]] fi

51

Figure 13. Exchange procedure. Adapted from “Dynamic Huffman Coding” by D. E.
Knuth, 1985, Journal of Algorithms, 6(2), 163-180.

The subroutine shown in Figure 14 will update the weight of q, and it will update

the weight of q’s parent if it has the same weight (Knuth, 1985). This subroutine

introduces arrays A, L, G, and W. Array A has a range of 0 to n. It is an array of the

symbols. Arrays L and G are the left and right pointers to the blocks. They have a range

of 1 to 2n-1. Array W is the weights of each block. Block k has a weight of W[k]. Its

range is 1 to 2n-1.

1. procedure exchange (integer q, t);
2. begin integer ct, cq, acq;
3. ct ← C[t]; cq ← C[q]; acq ← A[cq];
4. if A[ct] ≠ t then P[ct] ← q else A[ct] ← q fi;
5. if acq ≠ q then P[cq] ← t else A[cq] ← t fi;
6. C[t] ← cq; C[q] ← ct;
7. end;

52

Figure 14. Transfer q to the next block subroutine. Adapted from “Dynamic Huffman
Coding” by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.

The Encode Procedure of Figure 15 accepts a symbol to encode, k. The symbol is

‘looked up’ in a simple hash table, the A array, in line 3. Typically, the A array stores the

pointer to the external node containing the symbol. If the symbol is not stored in the tree,

then contents of A contain a value less than M to encode the zero-weight symbol. M is

the number of zero weight symbols. The nodes are stored in positions 2M-1 through

position 2n-1. M is calculated from E and R. M = 2E + R, where 0 ≤ R < 2E.

Knuth < Transfer q to the next block, with weight one higher) >=

1. begin integer j, u, gu, lu, x, t, qq;
2. u ← B[q]; gu ← G[u]; lu ← L[u]; x ← W[u]; qq ← D[u];
3. if W[gu] = x + 1 then
4. B[q] ← B[qq] ← gu;
5. if D[lu] = q - 1 or (u = H and q = A[O])
6. then comment block u disappears:
7. G[lu] ← gu; L[gu] ← lu; if H = u then H ← gu fi;
8. G[u] ← V, V ← u;
9. else D[u] ← q - 1 fi;
10. else if D[lu] = q - 1 or (u = H and q = A[O]) then W[u] ← x + 1;
11. else comment a new block appears;
12. t ← V; V ← G[V];
13. L[t] ← u; G[t] ← gu; L[gu] ← G[u] + t;
14. W[t] ← x + 1; D[t] ← D[u]; D[u] ← q - 1;
15. B[q] ← B[qq] ← t fi;
16. fi;
17. q ← qq;
18. end

53

Figure 15. Encode procedure. Adapted from “Dynamic Huffman Coding” by D. E.
Knuth, 1985, Journal of Algorithms, 6(2), 163-180.

Line 6 calculates a temporary value, t, that will be used to loop through the

symbol to collect the bits to transmit. The bits are put onto a stack, S, in line 7. Line

number 8 sets q to point to the NYT node. Lines 9 through 11 traverse q up to the root

node and put the code for the NYT node on the stack. Z points to the node that contains

the root of the tree. Line 11 sets q to its parent. Line 10 determines if q is an odd or

even number. If it’s odd, it’s a right child, if it’s even, it’s a left child, and adds a 1 or 0

to the stack to transmit. Line 12 transmits the bits just stored on the stack.

The NYT node represents all the “as of yet” unseen symbols. It is emitted prior to

emitting any new symbol. It is used to keep the encoder and decoder in synchronism.

When the decoder sees the NYT symbol, it will be used to indicate a new symbol follows

and to split the new symbol out of the NYT symbol in the tree.

As an example of the steps an FGK compression algorithm would take, assume

the string ‘engineering’ are the first characters to appears in the input stream. Assume the

1. procedure encode (integer k);
2. begin integer i, j, q, t;
3. i ← 0; q ← A[k];
4. if q ≤ M then comment encode zero weight;
5. q ← q – l;
6. if q < 2 × R then t ← E + 1 else q ← q - R; t ← E fi;
7. for j ← 1 to t do i ← i + 1; S[i] ← q mod 2; q ← q div 2 od;
8. q ← A[0] fi;
9. while q < Z do
10. i ← i + 1; S[i] ← (q + 1) mod 2;
11. q ← P[(q + 1) div 2] od;
12. while i > 0 do transmit (S[i]); i ← i - 1 od;
13. end;

54

character are encoded with an 8 bit ASCII code. The Huffman tree starts out with an

empty tree as depicted in Figure 16(a). The NYT node is split, a new node that

represents the ‘e’ is assigned to the split node, and a both nodes are assigned to a new

parent as depicted in Figure 16(b). This is an example of a new symbol splitting out of

the NYT node. The NYT node represent ‘all symbols’ with weight 0. All the symbols

that may be received, but as of yet are unseen. When the NYT node is split it is

equivalent to pulling one of the symbols out of it. In the figure, the number inside the

node represents the node symbol frequency, and the number outside the node represents

the node number.

The emitted, or output stream would be the 8-bit ASCII code for the single

symbol e:

Input stream : e

Output stream : e

Figure 16. FGK algorithm example, 'e' input to tree.

Note that the NYT symbol for the first symbol is not emitted (transmitted) into the

output stream. If it were emitted, then the output stream would contain 0e. It does not

have to be emitted because for the first symbol only, it can be assumed to be emitted.

In Figure 17(a) the ‘n’ is added to the tree. In Figure 17(b) the second ‘g’ is input

and the tree is updated to reflect the new node weighting. In Figure 17(b) the parent of

(a) (b)

NYT
0 1 NYT

0 2 1
e
1

3
1

55

the new node (the ‘g’) is interchanged with the last node in the block of nodes that has the

same weight as it. The last node in that block is then incremented by 1. Therefore, the

leaf node that contains the ‘e’ moves to the left side of the root.

The output stream now has the addition of the two NYT symbols, the n and the g

symbols. Notice the NYT code changes dynamically.

Cumulative input stream: eng

Cumulative output stream: e 0n 00g

Figure 17. FGK algorithm example, ‘n’ and ‘g’ input to tree.

In Figure 18 (a) the ‘i’ is added to the tree. Because the parent of the ‘g’ now has

a frequency of 2, its subtree will be exchanged with the highest numbered node that has

the same weight. In this case, that is the leaf node that represents the ‘e’.

In Figure 18(b) a second ‘n’ character is input. This symbol is not in the tree.

Since the ‘n’ node is the highest numbered node in its weight group, it is not exchanged

with any node. The ‘n’ node is incremented. Now the algorithm moves up to the parent.

That node is also the highest numbered node in its group. In fact, it is the only node in

the group with a weight of three. An exchange of this node is not required.

(a) (b)

7
3

NYT
0 2 1

e
1 3

2

n
1

1 4

5 e
1 5

1

3
n
1

2

4

NYT
0 2

g
1

1

6

56

Cumulative input stream: engin

Cumulative output stream: e 0n 00g 100i 11

Figure 18. FGK algorithm example, 'i' and second 'n' input to tree.

The addition of the two e’s results in the trees shown in Figure 19 (a) and Figure

19 (b). Finally, the input of the last part of the string, ‘ring’, causes a few exchanges of

parent nodes as the algorithm recursion travels up the Huffman tree. Figure 20 shows the

final tree.

(a) (b)

9 4

e
1 5 3

7

n
1

2

6 1 4
g
1

2 8

1
NYT

0 2
i
1

9 5

e
1 5 3

7

n
2

3

6 1 4
g
1

2 8

1
NYT

0 2
i
1

57

Figure 19. FGK algorithm example, input of the two e's in the string 'enginee.'

Figure 20. FGK algorithm example, adding the ‘r’ (a). and the final ‘ing’ (b).

(a) (b)

9 6

e
2 5 3

7

n
2

4

6 1 4
g
1

2 8

1
NYT

0 2
i
1

7

e
3 7

3

5
n
2

4

6

1 4
g
1

2

8

1
NYT

0 2
i
1

11 8

e
3 9

8
n
2

5

7

2 5
g
1

3

10

1 4 i
1

NYT
0 2

r
1 1

3

11 11

e
3 6

9

n
3

6

3

4
g
2

5 10

1

i
2

NYT
0 2

r
1

5

3

(b) (a)

6

1

7 8

58

Cumulative input string: engineering

Final, cumulative output stream: e 0n 00g 100i 11 10 10 1000r 1111 10 110

Assuming that the input characters are coded with an 8 bit ASCII code, the

effective compression ratio would be (5*8+25)/(11*8) = 74%. The compression ratio is

defined as the compressed string length divided by the uncompressed string length. In

this calculation, each symbol is assumed to be an 8-bit ASCII character. There are 5

input ASCII characters in the output stream and 11 ASCII characters in the input stream.

Shannon, in his 1950 paper “Prediction and Entropy of Written English”, calculates the

ideal as about 1.5 bits per character in the 27-letter written English. The ideal

compression ratio to be asymptotically reached by a dynamic Huffman compression

algorithm would be 1.5/8 = 18.75%.

Table 6 summarizes the weights (or frequencies) of each of the leaf nodes and the

generated compression code for each symbol at the termination of the input stream. It is

interesting to compare the dynamically generated tree in Figure 20(b) to a tree built with

Huffman’s original algorithm. To make an equivalent comparison, initially a list is

created that contains the NYT node and node’s whose contents are the tuple of the

symbol and the frequency as listed in Table 6.

59

Table 6
Final Huffman Codes After Input String 'Engineering'

Symbol Frequency Code
E 3 11
N 3 10
I 2 00
G 2 011
R 1 0101
NYT 0 0100

The first step by the static Huffman would be to combine the NYT and the ‘r’ leaf

node into a subtree because these are the lowest frequency (probability) in the list of

Table 6. The resulting subtree has a frequency of 1. Next, this subtree is combined with

the ‘g’ leaf node. There is another choice here, the ‘i’ leaf node, because it has the same

frequency, but choosing the ‘g’ will eventually lead to the tree determined dynamically.

This subtree has a frequency of 3. Next, combine the leaf node ‘i’ and the subtree with

the frequency 3 to obtain a new subtree with a frequency of 5.

At this point, there are three items left in the list. These are the subtree with the

frequency 5, and the ‘e’ and ‘n’ nodes (each with a frequency of 3). The next step in

Huffman’s algorithm is to combine the ‘e’ and ‘n’ nodes to obtain a subtree with

frequency 6. Finally, two subtrees are left with frequencies 6 and 5. These combine to

obtain the Huffman tree with a root that has a frequency of 11. Thus, the tree determined

with the static algorithm would be identical to the dynamically generated tree of Figure

20(b). Generally, the trees determined by the static Huffman algorithm and the FGK

algorithm will not be identical, Vitter (1987) discusses this further. Differences in the

shape of the tree can stem from choices in building the tree when two nodes (leaf or

internal) have the same weight and from the rebalancing procedure..

60

Figure 21 more clearly illustrates the sibling property. Gallager (1978) defines a

binary tree as having the sibling property “if each node (except the root) has a sibling and

if the nodes can be listed in order of non-increasing probability with each node being

adjacent in the list to its sibling.”

Figure 21 lists each node in the tree. The list of nodes is in order of decreasing

probability. The table illustrates that each node has a sibling (except for the root node).

Further, each node is adjacent to its sibling in the list. More formally, if the tree holds K

symbols, then Knuth shows that the tree has 2K-1 nodes. For each k, where k is between,

0 < k < K – 2, the 2kth and the (2k-1)th element must be siblings (Knuth, 1987).

Figure 21. Sibling property illustration.

 Algorithm Ʌ, also known as Vitter algorithm (Vitter, 1987), improves upon the

FGK algorithm in several ways. Vitter proves that both the lower bound, and the upper

bound, on the number of transmitted bits is up to two times better with algorithm Ʌ.

Vitter achieves this efficiency by improving his algorithm so the tree is in better balance

Tree

q0=1.0

q1=0.6 q2=0.4

q3=0.3
q4=0.3 q5=0.2

q6=0.2

q7=0.15 q8=0.15 q9=0.15 q10=0.05

Ordered List
q0 = 1.0

q1 = 0.6
q2 = 0.4

q3 = 0.3
q4 = 0.3

q5 = 0.2
q6 = 0.2

q7 = 0.15
q8 = 0.15

q9 = 0.15
q10 – 0.05

61

than with the FGK algorithm. A second improvement is that when a node moves, the

number of interchanges is limited to one. Vitter’s algorithm is known to create a more

balanced tree than Knuth’s algorithm. If an input file can be compressed using the static

Huffman algorithm down to S bits and it consists of n symbols, then the FGK algorithm

can compress with a maximum of to 2S + n bits. Vitter significantly improves this. With

algorithm Ʌ, less than S + n bits will be transmitted (Vitter, 1987).

For this research the resulting algorithm can be applied equally well to both

algorithms Ʌ and FGK. The technique of using a frequent item identification algorithm

(Metwally, Agrawal, & El Abbadi, 2005) to moderate the size of the data structures and

the algorithm and its improvements can be applied to either.

The Huffman tree only approaches the true minimum bound for the entropy in the

message. The true minimum bound for the entropy in each message is

𝐻𝐻 = −�𝑃𝑃𝑖𝑖 log2 𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1

where n is the number of bits to be encoded and Pi is the probability of the symbol

in the message of length n. This was one of the main contributions of Shannon (1948).

The number returned by this equation is a lower bound on the entropy in a given message

and in general is NOT an integer. The Huffman tree is a minimum encoding, as

represented by an integer number of bits. This is because each compressed token is

transmitted independent of the other tokens. It is possible to encode with non-integer

numbers of compressed bits using the arithmetic compression algorithm (Witten, Neal &

Cleary, 1987).

In both Vitters algorithm and the FGK algorithm, a special node, the NYT node

(for ‘not yet transmitted’), is part of the tree with a frequency of zero. When a new

62

symbol is processed in the data stream, and the symbol is not already in the tree, the NYT

symbol, and then the uncompressed token immediately following, is transmitted to the

receiver. Both sender and receiver then incrementally update their Huffman tree by

adding the new symbol with a frequency of one. On the other hand, if the symbol is

already in the tree, then the Huffman code corresponding to the position in the tree is

transmitted. In this case both sender and receiver need to increment the frequency of the

item in the tree.

The tree is then updated to maintain the sibling property using the FGK algorithm

or algorithm Ʌ, since nodes were either added to the tree or item frequencies updated

(Knuth, 1985) (Vitter, 1987).

In algorithm Ʌ each node is numbered as with the FGK algorithm. Knuth (1985)

shows that a Huffman tree with n leaf nodes has n-1 internal nodes and 2n-1 total nodes.

This applies to the tree as built by algorithm Ʌ as well. The Ʌ empty tree starts with the

single NYT node. It has a frequency of 0 and a node number of 2n-1. When an existing

symbol is encountered in the tree, its node frequency is incremented and the tree is

checked for the sibling property. If the tree needs to be updated, then algorithm Ʌ is

called. If the symbol is a new symbol not yet in the tree then the NYT node frequency is

set to 1, the symbol is transmitted and the NYT node is set to the new symbol. A new

NYT node is spawned.

As with the FGK algorithm, the nodes are numbered from left to right, and from

bottom to top. Algorithm Ʌ uses an implicit numbering. With Vitter all leaves of the

same weight w precede all internal nodes of the weight w. The FGK algorithm did not

63

enforce this constraint. This constraint keeps the tree in balance better than the FGK

algorithm.

The dynamic tree starts with the NYT node, and spawn from it. The root node

will always have the node number 2n-1. Next, Vitter defines a block to be all nodes with

the same frequency and uses the implicit numbering scheme.

The algorithm Ʌ (Vitter, 1987) update procedure is as follows. Its purpose is to

maintain the sibling property and implicit numbering.

If the symbol received has never been seen before then the NYT node spawns a

new NYT node and a leaf node as its two children. The old NYT node (which is now the

parent) and the new leaf node’s frequency are both incremented. The leaf node’s identity

is set to the received symbol. If the received symbol is already in the tree that node is

inspected to see if it’s the highest numbered leaf node in the block. If it is not, it is

shifted into the spot where it is the spot ahead of all the internal nodes in its block. Then

the weight of the node is incremented. The word ‘shifted’ is important because all the

internal nodes ahead of it must be shifted into the position just opened. If the node is an

internal node to be incremented, then there is a different sequence. Internal nodes must

be shifted into the place above all leaf nodes with a weight that is 1 higher than the

current weight. All the leaf nodes then get shift to down one into the spot just open. The

internal node then gets incremented. Thus, the internal node maintains a spot with all

other internal nodes of the same weight.

 This completes the exchange of nodes at that level in the Huffman tree. If this

was the root node, then the algorithm is finished. If it is not, then the current node is set

64

to the parent node of the current node and this algorithm is repeated one level up the

Huffman tree. The pseudocode is presented in Figure 22.

Figure 22. Core pseudocode for Vitters algorithm Ʌ. Adapted from “Algorithm 673:
Dynamic Huffman Coding” by J. S. Vitter, 1987, ACM Transactions on Mathematical
Software, 15(2), 158-167.

A simpler but less efficient method pre-calculates a set of Huffman variable size

codes based on preset probabilities (Salomon, 2004). This set of Huffman codes are

randomly assigned to items in the input stream. As the input stream progresses the

frequency of each item is updated. The list of items is then sorted by frequency. The

most frequent items are then at the top, which has the shorter preset Huffman code. This

method is simple and seems straightforward to adapt.

Pseudocode Ʌ

Input: Huffman Tree, pointer N to leaf to increment)

Output: Updated Huffman Tree

1. Repeat
2. If (N is a leaf node)
3. Slide N into the last (rightmost) node in its block ahead of all
 internal nodes with the same weight.
4. Slide all nodes into the spot open by N.
5. Increment the frequency of node N.
6. Else {N is an internal node}
7. Slide N into the spot to the right of all leaf nodes with a
 weight of 1 higher.
8. Slide all nodes into the spot open by N
9. Increment the frequency of node N
10. N parent of N
11. Until N = root
12. Increment frequency of the root

65

Dynamically Decreasing a Node Weight

Knuth (1985) provides a procedure for the FGK algorithm to decrease a nodes

weighting and rebalancing the Huffman tree dynamically. Knuth did not provide any

insight as to why a decrement of the node weights might be necessary. In the context of a

data compression scheme for a database stream, perhaps the weight of nodes would be

decreased because of a time sensitivity of tokens in the stream.

In any case, an algorithm that can decrease a node weighting in a dynamic

Huffman tree may be important to reducing the dynamic trees size to fit into a memory-

limited machine as the algorithm removes old symbols. Knuth’s algorithm to decrease a

nodes weight by unity proceeds similar to his FGK algorithm for increasing the weight,

but in reverse. First, the node to be decreased is identified. This leaf node is exchanged

with the node that is the lowest numbered node in its block. Recall that the block is all

nodes that have the same weight, consisting of both leaf and internal nodes. After the

exchange, the node weight is decreased by one. The algorithm then moves up one level

in the Huffman tree to its parent. That node is then exchanged with the lowest numbered

node in its block and then the weight is decreased by one. The algorithm will

sequentially process nodes up the tree until it gets to the root.

As an example, consider the tree previously given as an example and depicted in

Figure 20(b). This tree will have its weighting of the ‘e’ node decreased by one, three

times. Since it has a weight of three, it is expected that the NYT node will absorb the ‘e’

node after the operation. Figure 23 depicts the tree after the ‘e’ weight is decreased by

one and the tree rebalanced. Figure 24 and Figure 25 depict the tree after the ‘e’ weight

is decreased by one, two more times, and the NYT node absorbs the ‘e’ node (Figure 26).

66

Figure 23. Decreasing the symbol "e" weight by one, to 2.

Figure 24. Decreasing a node ‘e’ weight by one, to 1.

11 10

e
2 6

9

n
3

6

3

4
g
2

4 10

1

5
i
2

NYT
0

r
1

3

1

7 8

11 9

e
1

6

9

n
3

5

2

4

g
2

4 10

1

5
i
2

NYT
0

r
1

3

1

7 8

67

Figure 25. Decreasing a node ‘e’ weight by one, to 0.

Figure 26. 'e' is absorbed by NYT node.

Frequent Item Counting in Streams

Two frequent item counting algorithms investigated to moderate the size of the

Huffman tree by identifying the frequent items are the Frequent-k and SpaceSaving

algorithms. The Frequent-k algorithm (Karp, Shenker & Papadimitriou, 2003) keeps an

11 8

e
0

6

9

n
3

5

1

4

g
2

3 10

0

5 i
2

NYT
0

2

r
1 3

1

7 8

9 8

4

7

n
3

5

1

2

g
2

3 8

3 i
2

NYT
0

r
1 1

5 6

68

item list of length k where k is chosen to be less than the number of unique items in the

streams alphabet. It counts frequent items in the data stream. The problem is defined as

follows. Assume a data stream S contains items x1, …, xN. The number of items in the

stream is N. These items are drawn from a set I. The frequent items are those items in S

that occur more than ϕ N times. ϕ is the support of an item in the stream. An item must

occur more than ϕ N times in the stream for it to be a frequent item. An exact solution to

this problem will require O(min{N, |I|}) space. The Frequent-k and SpaceSaving

algorithms focus on an inexact solution where the memory required is less than

O(min{N, |I|}) (Teubner, Muller, & Alonso, 2011).

The Frequent-k algorithm maintains a list of the k items and a counter for each

item, ti, in the stream, and where k is picked to be less than n. The algorithm inserts new

items into the list if they are not there already, and it initializes the count to one. It does

not allow the list to grow larger than k. A proof exists to show that it maintains the list of

the k most frequent items and their relative frequency.

Frequent-k is an “є approximate” algorithm. Cormode and Hadjieleftheriou

(2008) note that according to Bose (2003) “executing this algorithm with k = 1/є ensures

that the count associated with each item on termination is at most єn below the true

value.” Cormode and Hadjieleftheriou provide a definition, “Given a stream S of n items,

the є-approximate frequent items problem is to return a set of items F so that for all items

i є F, fi > (ϕ -є) n, and there is no i ∉ F such that fi > ϕn”; ϕ is the support of the item in

the stream. Then ϕn is the ideal frequency of the item in the stream for it to be

considered frequent. fi is the frequency of each of the items i in the є-approximate set F.

ϕ - є, therefore, is an approximation to ϕ. If є ≠ 0, then fi approximates ϕn, and it must

69

not be less than fi. In other words, the є approximate set should not overestimate the

count.

Figure 27. Frequent-k algorithm. From “A Simple Algorithm for Finding Frequent
Elements in Streams and Bags” by R. M. Karp, S. Shenker, and C. H. Papadimitriou,
2003, ACM Transactions on Database Systems, 28(1), 51-55.

The time costs of Frequent-k are dominated by O(1) dictionary operations every

update, and the O(k) cost of decrement all the counts in the list (Cormode &

Hadjieleftheriou, 2008).

The SpaceSaving algorithm (Metwally. Agrawal, & El Abbadi, 2005) pseudocode

is listed in Figure 28. The time costs of SpaceSaving are dominated by O(1) dictionary

operations every update and finding the item with minimum count O(log k) (Cormode &

Hadjieleftheriou, 2008).

Frequent-k Algorithm

1. A list, which is initialized to null, is maintained of item/count pairs.

2. The list is updated as new items arrive in the stream. There are three

possibilities when an item arrives:

a. If the item is in the list, then its count is simply incremented.

b. If the item is not in the list, and the list length is less than the

maximum list length k, then the new item is added to the list and the

its count is initialized to 1.

c. The final possibility is that the item is not in the list and the list is full

(number of items in list > k). In this case:

i. all items counts in the list are decremented by one.

ii. Items whose count reaches 0 are removed from the list.

iii. The new item is not added to the list.

70

Figure 28. SpaceSaving algorithm. From “Efficient Computation of Frequent and Top-k
Elements in Data Streams,” by A. Metwally, D. Agrawal, and A. El Abbadi, 2005,
Proceedings of the 10th International conference on Database Theory, 398-412.

When the SpaceSaving algorithm finds a new item in the input stream, and the list

is full, it does not start the new item out at a count of 1 as in the Frequent-k algorithm.

Rather, it assumes that the new item might have occurred in the stream before and it just

lost count of it because another item had replaced it. Thus, SpaceSaving algorithm never

underestimates the count of an item. SpaceSaving has the property of maintaining an

accurate count for items that appear early in the stream (Cormode & Hadjieleftheriou,

2008).

Figure 29 presents an example of the Frequent-k algorithm. Figure 30 presents

an example of the SpaceSaving algorithm. In part (a) an initial string of

SpaceSaving Algorithm

1. A list, which is initialized to null, is maintained of item/count pairs.

2. When a new item arrives, there are three possibilities:

a. If it is in the list, then its count is incremented.

b. If the new item is not in the list, and the list is not full, then the item is

added to the list and its count is initialized to 1 (as with Frequent-k).

c. If the item is not in the list, and the list is full, then Space-Saving operates

differently than Frequent-k. In this case:

i. Space-Saving finds the item with the smallest count.

ii. It replaces the item with the smallest count with the new item.

iii. It increments the count by 1.

71

‘aacccbbbbddeeeee’ is input on the stream. This fills all the available slots in the list for

each algorithm. In part (b) the subsequent string ‘ffbbgg’ is input on the stream.

The first two ‘f’ character input to the Frequent-k algorithm result in count of all

symbols in the list being decrement by 2. In addition, the ‘a’ and the ‘d’ symbol counts

reach zero, so they are removed from the list. Next, two ‘b’ characters are input to the

algorithm. This symbol is in the list, its count is incremented twice. Its count is restored

a value of 4. Finally, two ‘g’ characters are input to the algorithm. ‘g’ is not in the list,

but there are empty slots in the list. The ‘g’ symbol is put into the first available slot, the

slot previously occupied by ‘a’.

Figure 29. Frequent-k algorithm example, k = 5.

The SpaceSaving algorithm proceeds differently from Frequent-k as illustrated in

(b) of Figure 30. The first ‘f’ character is not in the list and the list is full. The algorithm

finds the first symbol in the list with the lowest count. This is the ‘a’ character. The ‘a’

character is then replaced with the ‘f’ character and its count is incremented. The second

‘a’ character results in the count being increment one more time. Next, the two ‘b’

characters are input to the algorithm. ‘b’ is in the list, its count is incremented twice.

Finally, two ‘g’ characters are input to SpaceSaving. ‘g’ is not in the list and the list is

a 2
c 3
b 4
d 2
e 5

‘aacccbbbbddeeeee’

(a)

g 2
c 1
b 4

e 3

+‘ffbbgg’

(b)

72

full. SpaceSaving identifies the first item in the list with the lowest count. This time that

is the ‘d’ character. The ‘d’ character is replaced with the ‘g’ character and the count is

incremented twice. Once the list is full, it will always remain full with SpaceSaving.

SpaceSaving simply replaces the symbol with the lowest count with the new symbol

when the list is full.

Figure 30. SpaceSaving algorithm example, k = 5.

Another algorithm to find frequent item in a stream is Lossy Counting (Manku &

Motwani, 2002). This algorithm is further optimized around the time complexity of the

frequent item task; it is like Frequent-k in that it keeps a count of recent items. The

SpaceSaving algorithm has the additional benefit of accurately counting items that occur

early in the stream (Cormode & Hadjieleftheriou, 2008), rather than just providing

identification of frequent items.

a 2
c 3
b 4
d 2
e 5

‘aacccbbbbddeeeee’

(a)

f 4
c 3
b 6
g 4
e 5

+‘ffbbgg’

(b)

73

Lossy Compression

In a lossy compression scheme, the recovered data stream would not be identical

to the original stream. Lossy compression is typically applied to data such as voice and

video where some loss of the original fidelity can be tolerated. Several researchers have

explored lossy compression applied to a database stream.

As an example of lossy compression applied to a database stream,

Muthukrishnan’s (2011) recommends that a sensor database stream may be compressed

using a lossy algorithm. In this research, the author looks at several data stream sources.

A compressed sensing system would compress the data at the generating data source. A

system that employs a lossy compression system, if the goal were to minimize compute

resources rather than communications bandwidth, could employ the lossy compression

hardware anywhere in the transmission channel (for instance at the receiver rather than

the source). He suggests “Compressed Functional Sensing” and he writes “We need to

extend compressed sensing to functional sensing, where we sense only what is

appropriate to compute different functions and SQL queries (rather than simply

reconstructing the signal) and furthermore, extend the theory to massively distributed and

continual framework to be truly useful for new massive data applications above.” In

effect, he may be suggesting that the SQL query be moved to the source to achieve

compression of the data stream. Another possibility he may be suggesting, for a lossy

compression of the data stream, would be to move up the concept hierarchy.

Lossy compression of XML data is proposed by M. Cannataro (Cannataro,

Carelli, Pugliese, & Sacca, 2001). This may have application to a lossy compression

streaming algorithm. In this application, the author envisions a sales application where

74

daily sales are sent to a manager for approval. If the manager were sitting at their desk

with a large monitor, there may be no problem in displaying or accessing the information.

On the other hand, if the manager were using their cell phone then perhaps only the daily

sales total amount is presented. However, perhaps that is too little information. The

phones display and network may have more capacity to present additional information.

In the scenario, they envision the phone negotiating with the source an available

bandwidth.

The solution the authors (Cannataro, Carelli, Pugliese, & Sacca, 2001) proposes is

for the source to first negotiate a transmission and lossy compression rate. The document

is then delivered at the negotiated rate. The source then identifies several dimensions of

the original datacube such as item type and customer city. It then processes the hierarchy

over those dimensions and some aggregate measures, such as the item quantity. It

processes the datacube over those aggregate functions, over the dimensions and delivers

to the destination a ‘synthetic’ datacube. The author claims that this is a lossy synthetic

version of the original datacube.

 Cannataro (2001) points out the various categories of data compression. For

instance, lossless vs. lossy compression. These terms reference the reversibility of the

compression. If the restored data is identical to the original data, the compression is

lossless. Another category is on which features the data is compressed. Cannataro makes

a distinction between source coding and entropy coding. Source coding refers to

compression made on the semantics of the data, whereas entropy coding is made on the

redundancy in the data.

75

One of the future directions proposed by Cannataro is to focus on the analysis of

the error in this lossy scheme. Many lossy compressors have measurable errors and

suitable metrics could be developed. This is an important metric that could be delivered

with the compressed data. While the author explores the possibility of lossy compression

on a database stream, it seems to be most applicable to data that can tolerate an

inexactness in the reproduced, uncompressed, stream such as audio, video or other sensor

data such as temperature.

A typical data stream processing system (Rajaraman & Ullman, 2012) may have

several input streams which are asynchronous, or even have non-periodic time schedules.

There may or may not be an archival storage system in any data stream processing

system. In this data stream processing, although it may be archiving parts or the whole

stream, it is generally not practical to answer queries over the database using the database

archive. Secondly, as the author points out, there is a limited working store that may hold

summaries, or parts, of the data stream. This is central support to the ‘memory limited’

premise of this research.

Rajaraman and Ullman (2012) point out typical sources of the streaming data.

They point out the data may be sensor data, image data, or internet and web traffic.

Sensor data might come from a temperature sensor that is coupled with a GPS unit that

can read altitude or height. If the oceans were covered in sensors, one every 150 sq. mi.,

and each sensor generated a data point at a 10Hz rate, then 3.5 terabytes of information

would be generated every day (Rajaraman & Ullman, 2012).

Web traffic is another source of Streaming data. Sites such as Google and Yahoo!

generate billions of clicks per day. “A sudden increase in the click rate for a link could

76

indicate some news connected to that page, or it could mean the link is broken and needs

to be repaired” (Rajaraman & Ullman, 2012).

The limited memory of a data stream processing system is reiterated by Marascu

and Masseglia “Mining Sequential Patterns from Temporal Streaming Data” (2005).

Here they note the attributes that set data stream processing apart from other database

processing. For instance, new elements are generated continuously and they must be

considered as fast as possible. Blocking of the data or operations is not allowed and the

data may be considered only once (single-pass). Most importantly they note that memory

size is “restricted.”

Frequent Item-Set Stream Mining

Frequent item-set stream mining is closely related to frequent item stream mining.

Jin and Agrawal (2005) propose a method based on the Frequent-k algorithm (Karp,

Shenker & Papadimitriou, 2003). In their Item-set mining algorithm, a Lattice of all

item-sets up to some Lk is maintained, where k is the maximal frequent item-set. Item-

sets for k < 2 are maintained similar to the Frequent-k algorithm. All two-item

combinations of items in the stream enumerated and are added to L2 using Frequent-k.

The researchers invoke a routine “ReducFreq” when the array for Lattice L2 is filled.

ReducFreq decrements the count of all items in L2. It also triggers a second stage. The

second stage deals with item-sets for k > 2. It progresses one level at a time. For L3 it

enumerates all three item-set combinations in the transaction in the input stream.

However, if the 2 item subsets are not contained in L2, then the 3 itemset is not added to

L3. In this way, the Apriori property is exploited. This second phase continues until all

77

lattices are updated, up to the maximum item-set. As item-sets are added to each lattice,

a count is updated, or ReducFreq is called again if the Lattice is filled.

Item-set compression poses memory challenges as well. Item-set compression

finds frequent combinations of items that occur in each of the stream’s transactions. The

combinatorial memory requirement growth of an item-set compression algorithm from

direct application of a bottom-up item-set identification algorithm will require (Jin &

Agrawal, 2005):

Ω(�1
Θ� � × � 𝐶𝐶𝑖𝑖𝑙𝑙 �)

space for the lattice, where l is the length of each transaction, i is the number of

potential frequent item-sets, θ is the support threshold, Ω is a constant, and C is the

combinatorial operator. As the equation indicates, this approach is prohibitively

expensive when l and i are large.

The amount of compression offered by an item-set identification and compression

algorithm varies by the cardinality of the item-set and the frequency of the item-sets.

Smaller item-sets that occur more often could possibly provide a higher overall

compression ratio than larger items that occur less often.

The definition of the compression ratio commonly used is

𝑐𝑐
𝑢𝑢

where c is the length of the compressed data stream and u is the length of the

uncompressed data stream. An estimate on the compression ratio for a frequent item-set

compression algorithm can be developed with a few assumptions about the data stream.

The first is the number of item IDs are “much much” greater than the number of

transaction IDs. That is, the item IDs dominate the data stream. The second is that a

78

frequent item-set compresses to a single ‘compression ID’ that is the same size as each of

the item IDs. Finally, it is assumed that synchronization data, such as the NYT token to

be discussed later, are a negligible part of the stream. If an item-set, x, has a support of

supp(x), and the length of the item-set is |x|, then the contribution of any single itemset to

the compression ratio estimate is:

𝑐𝑐
𝑢𝑢

=
𝑢𝑢 − 𝐸𝐸𝑢𝑢𝑝𝑝𝑝𝑝(𝑥𝑥) ∙ 𝑢𝑢 ∙ (|𝑥𝑥| − 1)

𝑢𝑢
 = 1 − 𝐸𝐸𝑢𝑢𝑝𝑝𝑝𝑝(𝑥𝑥) ∙ (|𝑥𝑥| − 1)

Thus, the contribution that an itemset x makes to the overall compression is

proportional to

(|𝑥𝑥| − 1) ∙ 𝐸𝐸𝑢𝑢𝑝𝑝𝑝𝑝(𝑥𝑥)

Finding the frequent item-sets that minimize the compression based on

identification of frequent item-sets may be an area for future research.

Several algorithms for frequent item-set identification on a static database exist

(Agrawal & Srikant, 1994; Savasere, Omiecinski, & Navathe, 1995). A common

requirement for these algorithms is that they require the database to reside in memory, or,

the database to stream into memory once, or several times.

Several algorithms for frequent item-set identification provide for some sort of

compression of the in-memory database structure (Bodon & Rónyai, 2003; Han, Pei &

Yin, 2000; Shenoy, Haritsa & Sudarshan, 2000; Zaki & Gouda, 2003; Zaki,

Parthasarathy, Ogihara & Li, 1997). These are examined next.

Transaction Database Compression

Several of the popular frequent item set mining algorithms identify compression

as a technique to help advance the frequent item set mining process.

79

Han, Pei, and Yin (2000) proposed a form of compression. Their FP-growth

algorithm builds a tree in memory from the transaction database. The tree represents the

database in compressed format. Branches of the tree point from item-sets with common

prefixes to their super-sets. FP-growth is not bottom up as with Apriori. FP-growth trees

can grow to large sizes. Although FP-growth can be very fast, it is considered impractical

for very large databases (Zhang, Zhang, Jin, & Bakos, 2013).

Eclat (Zaki, Parthasarathy, Ogihara & Li, 1997) provides a depth first traversal for

frequent item sets. In this algorithm intersections of known frequent item-sets identify

new frequent item sets. This algorithm uses the vertical representation of the transaction

database as depicted in Table 7 (c). The vertical format provides a type of compression in

the Eclat algorithm. Assume that the vertical transaction database is stored in main

memory. The items that do not meet the minimum support count do not need to be in

memory. “The main benefit of vertical tid is that it allows intersect, thereby enabling us

to ignore all infrequent items/itemsets” (Ashrafi, Taniar, & Smith, 2007). These authors

note that for large databases Eclat can run out of a limited memory.

80

Table 7
Vertical Versus Horizontal Formats

(a) Horizontal format and (b) horizontal bitmap format

Transaction ID Item Transaction
ID

Item
100 A, B A B C D E
200 D, E 100 1 1 0 0 0
300 A, C 200 0 0 0 1 1
400 A, C. E 300 1 0 1 0 0
500 C 400 1 0 1 0 1
600 D, E 500 0 0 1 0 0

 600 0 0 0 1 1

(c) Vertical tidset format and (d) Vertical bitmap format

Item
Transaction ID

Item
Transaction ID

100 100 200 300 400 500 600
A 1 A 1 0 1 1 0 0
B 1 B 1 0 0 0 0 0
C 0 C 0 0 1 1 1 0
D 0 D 0 1 0 0 0 1
E 0 E 0 1 0 1 0 1

Eclat using diffsets was proposed (Zaki & Gouda, 2003). Diffsets was

demonstrated to drastically cut down the amount of memory necessary to hold

intermediate results and speed up processing. Zaki and Gouda (2003) present in their

paper a comparison of the performance and compression offered by Apriori, Viper, FP-

growth, Eclat and Eclat using diffsets. The Eclat using diffsets algorithm identifies

memory as a limited resource. Diffsets does not compress the transaction database, they

compress candidate item-sets.

Bodon and Rónyai (2003) compare a Trei data structure to hash trees to store the

candidate item-sets. Their compression method provides significant savings of memory

and processing speed over hash trees. They use Apriori, bottom up processing to build

the max itemsets. The Treis data structure does not compress the transaction database.

81

VIPER (Shenoy, Haritsa & Sudarshan, 2000) is a vertical mining algorithm that

stores data in compressed bit vectors called ‘snakes’. This algorithm uses the Vertical bit

vector format of the transaction database. In the compression scheme runs of 0 bits and

runs of 1 bits are encoded using an encoding based on the Golomb encoding scheme.

The compression process to create the snake they called ‘skinning.’ Runs of 1 and 0 bits

are divided into groups of size W1 and W0 respectively. Each group is represented by a

bit vector with single weight bit set to 1. The authors claim that this approach is superior

than a simple RLE encoding because in a transaction database there will be runs of many

0 bits and only a few 1 bits.

 In their scheme, they believe they have identified additional redundancies in the

vertical bit vector format that they can remove and achieve a higher compression ratio.

For a full description of the Viper skinning compression scheme to create snakes, please

see Shenoy, Haritsa, and Sudarshan. Compressed Bitmaps are proposed by Garcia-

Molina, Ullman and Windom (2008) for the bitmap database formats as depicted in Table

2 (b) and Table 2 (d) although Garcia and Molina are not specifically addressing

transaction databases in their proposal. In this book the authors note that if the file has n

records, and each record consists of a field of items with m items, then the file consists of

a bit vector of mn bits. The book notes that if m is large, and the number of items in each

transaction is small, then the probability of a 1 bit is ≈ 1/m. The research goes on to

describe a run length encoding (RLE) scheme.

An important note made by the authors is that the RLE scheme they propose is

not an optimal encoding scheme for long runs of 0, although they characterize it as a

simple encoding scheme. They note that other encoding schemes can improve the

82

compression ratio by a factor of 2. An optimal encoding scheme presented in this

research proposal is the Golomb encoding scheme.

 Similar to Golomb encoding, Compressed Bitmaps breaks the encoded run into

two parts. The first part is a unary prefix code. The second part is the binary coded

number of 0 bits in the run. This second field is a variable length field. A unary code is

required for the first part because unary is a prefix code. The unary code is chosen to

represent the number of bits in the second binary part. As an example, suppose the record

000001101 is to be encoded. The first task is to encode a string of five 0’s followed by a

1. In binary this is coded as 101. Three bits are required to specify the number of 0 bits.

Thus, the unary part will be 110. This is a 3 in the unary system. The coding will start

out as 110101. Next, a string of no zero bits will be encoded. The binary part is encoded

as 0. One bit is required so the unary part is encoded as 0. The encoded string now

becomes 11010100. Finally, a string of 1 zero bits will be encoded. The binary part is

encoded as 1. One bit is required for this encoding; thus the unary part is encoded as 0.

The final encoded string becomes 1101010001.

 It is important to note that in this example the string to encode ended in a 1.

Typically, in a vertical bitmap encoded transaction database with a low support count, the

record will end in a string of 0’s since the probability of a 1 bit is low. Similar to the

Golomb encoding scheme prototyping in the initial investigation, the authors point out

that the trailing string of 0’s need not be encoded. “Since we presumably know the

number of records in the file, the additional 0’s can be added.”

 Golomb compression gains its edge in compression because it ‘tunes’ the length

of the binary part of the code, and the prefix code, to the length of the median number of

83

0 bits. Their research shows how to perform bitwise AND and OR operations on the

RLE encoded vectors, and how to manage the indexes of the bitmaps. They demonstrate

that decompression of the compressed bit vector stored database is not necessary for

many common database operations. Ashrafi, Taniar and Smith (2007) propose an

interesting compression technique they call “diff-bits” for the vertical tidset format

depicted in Table 2 (b). They note their format offers good compression when the

support is below 3.33%. As an example, consider the database in Table 8.

Table 8
Sample Database for Diff-Bits Algorithm

Item Transaction IDs (TIDs)
Bread 1, 2, 10, 20
Butter 1,3,10,40
Beer 1,10

The first step in compressing this database is to compute the difference in the

TIDs. The authors offer that the reason for using the difference in the TIDs, rather than

the TIDs themselves, is that there may be, on average, several transactions per item. The

size of the required memory will divide down by this average size. For example, assume

that standard 32-bit TIDs are used. This is a typical word size in a computer. Assume

that the average number of items per transaction is 20. If instead the difference in the tids

is stored rather than the tids themselves, then each tid difference only requires a 20-bit

word on average. On average the tid values would be spread across all 32-bit values. Tid

differences for the example are show in Table 9.

Table 9
Calculation of Transactional ID (TID) Differences

84

Item TID differences
Bread 1, 1, 8, 10
Butter 1,2,7,30
Beer 1,9

The next step in compressing the vertical transaction database is to calculate the

binary compression code. The binary compression code is in two parts. The first part is a

prefix code and the second part is the binary representation of the tid differences.

For the prefix code, the authors suggest a 5-bit fixed width integer. They suggest

5-bits because a 5-bit code can encode a number from 0 to 31, which is the maximum

number of bits in a tid and the standard word size for many computers. In the example

for Bread, the third tid difference is an 8. This can be encoded as 1000 in binary.

Because the proposed compression scheme uses a variable number of bits to encode the

tid difference, the prefix needs to indicate the number of bit used. Encoding 1000

requires 4-bits. Four bits are indicated as a 5-bit prefix with the binary number 00100.

Next the authors point out that the tid difference will always start in a 1. This is because

the leading 0 padding bits are not required. Therefore, the starting 1 need not be encoded

in the tid difference. A tid difference of 8 is encoded as 00100|000. The vertical bar

indicates the partition between the prefix and the encoded tid difference. Table 10

summarizes the calculated bit vectors for the diff-bits compressions scheme.

Table 10
Calculation of Diff-Bits in Bit Vector

Item Diff-bits compressed bit vector
Bread 00001 00001 00100|000 00100|010
Butter 00001 00010|0 00011|11 00101|1110
Beer 00001 00100|001

85

Other Compression Algorithms

Modern compression software for the PC is based on dynamic dictionary

compression algorithms (Nelson & Gailly, 1996). Dictionary based techniques differ

from the Huffman/RLE based techniques in that these do not require a statistical model of

the data. Dictionary based techniques identify and compress strings of data. The

simplest type of dictionary compression may be that which uses a static dictionary. This

approach creates a fixed dictionary prior to encoding. The encoding process can only

compress strings in that are contained in the dictionary. The receiver, or decoder, must

also have the fixed dictionary. An algorithm might proceed by looking up items to

compress in the dictionary and returning their index in the table. The index would be

shorter than the string and would be the transmitted or stored value. If for instance the

table were to hold 2048 entries, then long strings might be compressed to 11-bit values.

In the case of a transaction database the item ID might be compressed using this method.

This table-based substitution is the normal consequence of the decomposition of a

database schema.

Static dictionary techniques based on Diagram Coding (Gage, 1994) have been

proposed as a compression technique. In diagram encoding the source alphabet is

encoded using the ‘standard’ encoding symbols, and frequently used pairs of the source

alphabet are also encoded using any remaining symbols. For instance, assume that the

standard symbol size is 10 bits, thus 1024 symbols are available. An encoding scheme

might use the first 600 symbols to encode item keys in a small grocery store. The

remaining 424 symbols would be used for frequent item symbol pairs.

86

In 1977 and 1978 two papers were written (LZ77 and LZ78) by Jacob Ziv and

Abraham Lempel on which modern dynamic dictionary based compression programs are

built. “Dictionary-based compression techniques are presently the most popular forms of

compression in the lossless arena. Almost without exception, these techniques can trace

their origins back to the original work published by Ziv and Lempel in 1977 and 1978”

(Nelson & Gailly, 1996).

The Lempel/Ziv 1977 algorithm achieves compression by using a sliding window

on the data stream to compress. There are two parts to the sliding window. The first part

is a buffer of recent data. The second part is a short look-ahead buffer. New data is

shifted into the look-ahead buffer and then shifts into the recent data buffer. The

algorithm looks for matches of data from the look-ahead buffer to that in the recent data

buffer. If it finds a match, a token is emitted that contains the offset in the recent data

buffer, the length of the match, and the next character in the look-ahead buffer that does

not match. If there is not a match, the token emitted is two zeros followed by the non-

matching character. The algorithm can then transmit the message one token at a time if

there are no matching characters. This algorithm is suited to compressing data that

contains strings of similar data. For instance, LZ77 will compress a long string of ASCII

space characters as a single token. The algorithm can compress strings that exceed the

length of the look-ahead buffer. For instance, suppose there is a long string of space

characters. A space character in the look ahead buffer will match on a space character in

the data buffer. As that character is shifted into the data buffer it will now match with the

next space to be shifted into the look-ahead buffer. In this manner long strings can be

compressed as long as the repeating character part of the string is shorter than the data

87

buffer. The main challenge in this algorithm is to program a string-matching algorithm

that looks for variable length strings starting at each index in the recent data buffer (Ziv

& Lempel, 1977). LZ77 is a greedy algorithm. Once it finds a match, it does not look

any farther in the buffer for a better match. Because LZ77 only compress on strings

contained in its buffer, it compresses better on data that favors repetitiveness in its recent

data. So, for instance, a dictionary or address book might compress well. LZ77 might do

well on the last name in the address book, whereas the street names or first name might

not compress as well.

Another algorithm, LZSS, based on LZ77, improves compression (Storer &

Szymanski, 1982). It keeps another data structure, a binary tree, to maintain the list of

recent matches that shift out of the data buffer. LZSS also improves on the emitted

tokens compression when there is not a match. LZSS uses a single bit to indicate

whether the data byte is a token or a character. Thus, when a match does not occur,

LZSS can more efficiently encode that data.

Both LZ77 and LZSS cannot match recent data on data that shifts out of the

recent data buffer (although LZSS keeps a list of previous matches). LZ78 solves this

issue (Ziv & Lempel, 1978) by removing the sliding window. Instead, it keeps a

dictionary of matching strings. The dictionary structure is a multi-way tree. Although

traversing such a tree is easy to find matching leaves, each node can have up to 256

children (if an 8-bit alphabet is used.) Thus, to minimize memory requirement in the data

structure, each node must keep a list of pointers to its children rather than a static array

structure. LZ78 starts the tree off with a single pointer with the NULL character. When

the first character is read in, it matches its previous character, which is NULL, on the

88

single NULL node in the tree. The algorithm then outputs its first token. The token

contains the index of the matched node (in this case 0), and the matched character. It also

adds this matched string to the tree. Suppose now the second character is the same as the

first. The algorithm would now match with node 1 in the tree. The algorithm would read

one more character from the input. This character would not match node 1. The output

would then be a token, which contained the node number, 1, and the third character. A

new node would be created in the tree, which would contain the three characters in the

input stream recently read. LZ78 continues in this way.

LZ78 (Ziv & Lempel, 1978), like LZ77 (Ziv & Lempel, 1977) and LZSS (Storer

& Szymanski, 1982), compresses continuous strings of input characters. LZ78 differs

from LZ77 in that it will match on strings farther back than LZ77 can with its limited

data buffer. This may or may not be an advantage depending on the nature of the data to

compress. Two issues with the LZ78 algorithm are that the decoder needs to maintain the

same tree structure as the encoder, and the tree can grow to fill up available memory

quickly. Nelson & Gailly (1996) discuss these issues in their book.

Initial Investigation (Prior Research Work)

Overview

Prior research provided encouraging results for the compression of a static

database. In the research, a database compression harness was written to compress and

compare several benchmark databases for machine learning. The code was written in C#

in the Visual Studio IDE. It was based on the original algorithm by Huffman (1952) and

Golomb (1966). The three algorithms compared were:

• A static (two pass) Huffman compression scheme.

89

• An RLE compression based on ideal Golomb prefix codes.

• An RLE compression based on ideal Golomb prefix codes, with items sorted by

frequency.

The asymptotic time to compress a database is determined for each compression

type. The research develops an algorithm for RLE encoding, based on Golomb prefix

codes, to exploit the horizontal bit vector, transaction database, structure. Note that it

would be straightforward to apply results of the RLE compression algorithms to

streaming databases. As noted in the literature review the RLE compression using

Golomb prefix codes is a two-pass algorithm, but a good approximation can be made of

the m value and compression achieved in a single pass.

Compression Algorithms Used to Achieve Results in the Initial Study

Figure 31 lists the pseudocode for the Huffman Compression Algorithm used in

the compression harness. The compression harness also implements two other

compression schemes based on a Golomb RLE compression described later in this paper.

The Huffman compression algorithm reads the complete database twice. The first pass

tabulates the frequencies of each database item. In the second pass each item is re-

encoded with its new optimal minimum entropy ID. A dictionary data structure performs

a fast lookup of items codes and their calculated Huffman code and code length.

The first step in calculating the Huffman codes is to build the Huffman tree. The

tree is a set of nodes whose leaf nodes are each item in the original database. The

software builds a dictionary by searching the tree for each item, then traversing the tree

back to the root. The path back to the root is the Huffman code and Huffman code

length. Left branches are arbitrarily set to be a ‘1’ bit, and right branches a ‘0’.

90

The list, T, is initialized to a list of nodes. Initially there are r nodes, one for each

symbol. Each node is a 5-tuple. The 5-tuple is a structure containing a symbol (if the

node is a leaf node), a count, two links to its children, and a link back up to its parent. If

the node is an internal node, the count is the sum of the count of its two children. If the

node is a leaf node, then the count is the number of times the symbol occurs in the file.

Lines 1 through 12 of the pseudocode calculate the item frequencies and set up the initial

list of nodes. It is asymptotic to O(n) time, where n is the total number of items sold in

the database.

91

Figure 31. Pseudocode for static Huffman compression.

Static Huffman Compression
Input: Horizontal Format file of Transactions
Output: Compressed Horizontal Format file.

1. T Ø // initialize list of nodes. Each node is a 5-tuple
2. Reset transaction file // pass 1 calculate frequencies
3. Repeat
4. t input next item in transaction file.
5. If t = item ID // do not process TIDs
6. If t є T
7. c Tt(c) + 1 // increment count
8. T T / Tt // remove item from list
9. Else
10. c 1 // not there, set count to 1
11. T T ∪ (t, c , Ø, Ø, Ø) // add item (back) to list
12. Until EOF
13. Repeat // pass 1 create Huffman tree
14. p Ø // initialize new parent node
15. a minc T // find node with minimum count in T
16. T T / a
17. a a(, , , ,p) // backlink node to parent
18. b minc T
19. T T / b
20. b b(, , , , p) // backlink node to parent
21. T T ∪ p(Ø, a(c) + b(c), a, b , Ø) // add parent to list
22. Until |T| = 1
23.
24. D Ø // pass 1 create dictionary of codes
25. For each leafnode t є T
26. node t
27. x 0
28. Repeat
29. If node link to parent = left link
30. x left-shift(x) + 1
31. Else
32. x left-shift(x) + 0
33. node parentof(node)
34. Until node = ROOT
35. Dictionary D D ∪ x
36. Next t
37.
38. Reset transaction file // pass 2 encode file
39. Repeat
40. c next ID in file
41. if c = item ID
42. Output uncompressed TID c // if not item ID, it’s a TID
43. else
44. Output D(c)
45. Until EOF

92

In Lines 13 through 22 the nodes are built into a binary tree using Huffman’s

approach. Line 15, assuming a binary sort, is O(log2r) time, where r is the total number

of different items in the database. The item IDs are represented in a binary format. The

list of nodes needs to be sorted r times. Thus, building the Huffman tree occurs in

O(r*log2r) asymptotic time. To write the compression codes, lines 37 to 44, to the output

requires O(n) time, for all n items. Line 14 creates a new node and sets it to null. This

will be the parent of the two nodes, a and b, with the smallest count in T.

Lines 24 through 36 create a dictionary of the uncompressed symbol, and

compressed symbol codes. Finally, in lines 38 through 45, the input file is read a second

time to compress the ID’s.

The canonical form of the Huffman code is not determined in this software

harness. Use of the canonical form would not affect the compression ratios. The

canonical Huffman codes will have the same length as the codes calculated and provide

the same compression ratios. Calculation of the canonical codes would occur in O(r)

time. A canonical Huffman code will be relevant to the hardware item decoding in

transaction support count circuitry implemented in reconfigurable hardware.

Figure 32 presents the pseudocode to RLE encode a transaction database. The

resulting output file will be a bit map RLE encoded file using Golomb ideal prefix codes.

Calculation of the prefix codes is straight forward using algorithms in Salomon (2007).

Although the pseudocode shows a single pass over the database, an extra pass over the

file before processing was necessary in the compression harness. This extra pass served

three purposes. It was used to collect statistics and compute the optimal “M” value. It

was also necessary to sort each line of the transaction database. Several of the databases

93

had lines not in lexicographic order. Finally, and most important, it was necessary to

renumber the items to remove non-existent item ID numbers. Non-existent item ID

numbers would lower the overall Golomb compression ratio score by adding unnecessary

0’s to the strings.

Figure 32. Pseudocode to write Golomb RLE database.

This form of RLE compression is very good at compressing long runs of 0 bits.

This corresponds to only a few of the available items occurring in each transaction. If

long runs of 0 bits can be followed by long runs of 1 bits then other compression schemes

should be considered.

An important optimization occurs in this pseudocode that gives an edge to the

RLE compression scheme. The trailing string of 0’s was not encoded. This is because a

carriage return (or other special character) delimits each transaction in the file. When the

Input: Horizontal Format file of Transactions in lexicographic order, and parameter M
Output: RLE Compressed Horizontal Bit Vector Format file.

1. Repeat
2. x Input item from file
3. if x = TID // is this a new transaction?
4. N 0
5. x Input item from file // next ID must be an item ID
6. Output uncompressed TID
7. N x - N
8. 𝑞𝑞 �𝑁𝑁

𝑀𝑀
�

9. r N % M
10. Output q length string of “1” bits
11. Output single “0” bit
12. 𝑏𝑏 ⌈log2 𝑀𝑀⌉
13. if r < 2b – M
14. Output r in binary using b-1 bits
15. Else
16. Output r + 2b – M in binary using b bits
18. Until EOF

94

compressed database is read later to create the specialized hardware, the synthesizer need

not create registers for the last run of 0’s. A single special bit can encode the transaction

delimiter outside of the registers used to hold the compressed IDs. A similar approach is

used by Compressed Bitmaps (Garcia-Molina, Ullman and Windom , 2008). Here, the

authors note that each record in the horizontal bitmap format has a fixed length, thus the

length of the last run of 0’s can be inferred.

Compression using a transaction delimiter was included in the harness and used to

compare compression schemes. The transaction delimiter was implemented as a ‘special’

item with the largest item ID. Each transaction ended in this special ID. These results

are not presented in this research. The compression ratios obtained were like those

obtained here, but were a few percent less in each case.

A second optimization to the RLE compression was coded in the harness. This

optimization is presented as a separate result herein. This optimization provides a few

percent gain to the ‘standard’ Golomb RLE compression as evidenced in Table 11. Since

the last run of 0’s need not be coded and registers created, it is of benefit to make this last

run of 0’s as long as possible. This can be achieved by making a “1” in the last run of 0’s

less probable. The software harness renumbers the items such that low items numbers are

frequent items in the database, and the higher numbered items are the less frequent items.

This requires an initial pass through the database similar to the Huffman compress to

determine the item frequencies and sort the items by frequency.

95

Table 11
Comparison of Compression Ratio (c/u) Results from prior research

Database

Static Huffman
compression

ratio (%)

Golomb
compression

ratio (%)

Optimized Golomb
compression ratio

(%)
Accidents 72.4 54 44
BMS1 72.5 93 90
Kosarak 61.0 77 76
Retail 72.0 77 77
T10I4D100K 88.0 78 74
T40I10D100K 92.0 60 58
BMS-POS 64.1 75 74
BMS-WebView2 78.0 85 83

The asymptotic time to RLE compress the transaction database using ideal

Golomb prefix codes is O(n) time, where n is the length of the binary string to compress.

Calculation of the prefix codes is a straightforward calculation from each of the input

items in each transaction. This assumes an approximate value of m is sufficient, or an

exact m value is available before encoding, where m is the parameter as required by the

Golomb compression algorithm to determine the mean run length. An exact value of m

can be calculated in O(n) time. This is because a second, initial, pass over the data will be

required to calculate the probabilities.

Optimization of the Golomb compression using this scheme requires an initial

pass through the database, similar to Huffman, to determine item frequencies. This extra

pass occurs in O(n) time. Sorting of the list of items occurs in O(log2r) time. The O(n)

term will dominate since the items are being streamed from secondary storage and n will

always be larger than r. The asymptotic time comparisons are listed in Table 12.

96

Table 12
Comparison of Asymptotic Encoding Time for Compression Schemes

Static Huffman

compression
Golomb RLE
compression

Golomb RLE
compression with

optimization
Time to prepare
symbols

O(n) to read database
O(r*log2 r) to build tree

O(r*log2 r) to traverse tree

O(1) O(n) to read
database

O(log2r) to sort item
list

Time to encode
database

O(n) to encode

O(n) to encode

O(n) to encode

Note. n is the total number of items in the database. r is the number of different items in
the database.

Conclusion From the prior research

Huffman Compression (Huffman, 1952) provides a maximal compression when

there is a large variation in the frequency of items. Huffman will compress the worst

when all items are of similar probability, that is, the symbols are all of minimum entropy

because they are all random. In these cases, RLE compression (Golomb, 1966) will be a

better choice. A Huffman algorithm also will not compress a two-symbol alphabet. RLE

compression may be able to be used for these cases. Golomb codes are a minimum

entropy prefix code (Golomb, 1966) for RLE compression. The Golomb compression

ratio is related to the “m” value (Golomb, 1966). Databases that will compress well with

this RLE compression are those where each transaction includes, on average, a few of

many items. This corresponds to a large m value and long runs of 0 bits. Golomb

compression, using the algorithm in this paper, will compress well when low numbered

items are more frequent in the database. This is because the algorithm in this paper does

not encode the last run of 0’s and uses a transaction terminator instead. The RLE

compression with optimization (the second form of Golomb prefix RLE compression

97

implemented in the compression harness) will favor those databases where a few items

occur more frequently, not necessarily low numbered items.

The exact compression ratio obtained using each compression scheme is

dependent on the real-world probabilities of items in the database. Synthetic data did not

compress well using the Huffman Compression.

98

Chapter 3

Methodology

Approach

The first part of this research is investigatory. In the first part, algorithms will be

prototyped and verified to be correct. Steven M. Ross and Gary R. Morrison outline the

essence of the experimental research method (1996). Here they identify the “true

experiment” as maximizing the validity of the experiment. The scientific method is a

logical method of posing a question and finding an answer. An abbreviated version of

this method (Dodig-Crnkovic, G., 2002) identifies several steps to answering the

question:

1. Posing the question

2. Formulate a hypothesis and a possible answer.

3. Make predictions about the outcome

4. Test the hypothesis. If the results do not match the predicted outcome, then

repeat tests 2, 3 and 4 until agreement occurs.

5. Once there is agreement between the hypothesis and the results then the

hypothesis becomes a theory. The theory provides a set of rules that define a

new class of phenomena or a new concept.

Discussion of the Proposed Memory Limited Dynamic Huffman Algorithm

In the fourth step of this series, a modified FGK (Knuth, 1985) algorithm will be

developed to work in a memory limited machine using a frequent item identification

algorithm (Metwally. Agrawal, & El Abbadi, 2005). The modification should be

straightforward. The FGK algorithm, modified to work on memory limited machines,

99

will need to keep track of the number of nodes in the dynamic Huffman tree. When the

number of nodes exceeds the preselected value, k, a new node will not be added to the

tree. In this case, the algorithm will search the tree for the node with the lowest

frequency. When that node is identified, then its symbol will be replaced with the new

symbol found in the input stream. The weight of this symbol is also incremented. At this

point in the algorithm, the code for the Not Yet Transmitted (NYT) symbol is emitted in

the output stream. The path from the leaf node to the root of the tree determines the

compressed code. Following the NYT symbol, the uncompressed symbol is emitted in

the output stream. Next, the tree will need to be rebalanced. Anytime the frequency of a

node is changed, the tree needs rebalancing. The node rebalancing subroutine will

process nodes up the Huffman tree and exchange the leaf node and its subtree, or its

ancestor’s node and its subtree, with the node that has the highest count in its block.

When a node is exchanged with the highest numbered node in its block, this is the time

the nodes frequency is incremented. The node frequency is always incremented, whether

the symbol was found in the tree, it was a new symbol, or it is replacing an existing

symbol because the tree is full.

There is one algorithm detail that is required to keep the decoder in synchronism

with the encoder. When a new symbol is input to the compressor, and the compressor

tree is full, the new symbol is required to be transmitted to the decoder so both sides

(compressor and decoder) can keep identical trees. In this case, the frequent item

identification algorithm by Metwally. Agrawal, and El Abbadi (2005) dictates that the

new symbol replaces the symbol in the tree with the lowest frequency. However, the

NYT symbol will need to be transmitted to the receiver along with the uncompressed

100

symbol on the input, not the replaced symbols code. Additionally, in this case, the NYT

node will not be split and a new node will not be created.

Figure 33 presents the pseudocode for the Memory Limited Dynamic Huffman

algorithm. Inputs to the pseudocode are the Huffman tree and the new symbol, s, from

the input stream. Outputs are the compressed output stream, and the updated Huffman

tree.

When a symbol arrives in the input stream, the algorithm needs to locate it in the

Huffman tree. There are three possibilities. The first possibility is the symbol already

exists in the Huffman tree. In this case the compressed code is determined from the path

in the Huffman tree from the symbols node to the root node. The weight of this symbol is

then incremented.

The next possibility is that symbol does not exist in the Huffman tree, but the

number of nodes is less than the maximum allowed number of nodes. It can be proven

that if the max allowable number of symbols or leaf nodes in the tree is N, then the

maximum nodes (including internal nodes) in the binary tree will be N*2-1. If the

Huffman tree is not full, then the algorithm proceeds to grow the tree. First the NYT

node is split. A parent is created with two new children, the NYT node and a new leaf

node that contains the input symbol, s. The output stream contains the compressed code

for the NYT node (determined from the path of the NYT node to the root), and the

uncompressed symbol, s. The weight of the new leaf node is set to 0. This will be

incremented to 1 later in the call to the tree rebalancing routine.

The third and last possibility is that the symbol, s, does not exist in the Huffman

tree, and the number of nodes in the Huffman tree is larger than the maximum allowed

101

limit. In this case the Huffman tree, H, is searched for the leaf node with the smallest

weight. The symbol in this leaf node is replaced with the symbol, s. Later in the call to

the tree rebalancing, its weight will be incremented and the tree rebalanced. Finally, the

compressed code for the NYT symbol, and the uncompressed symbol, s, is output.

Figure 33. Memory limited dynamic Huffman algorithm pseudocode.

The memory limited dynamic Huffman algorithm is diagrammatically illustrated

in Figure 34 to Figure 36. Note that Figure 34 mirrors the “backward adaptation model”

(as previously illustrated in Figure 7).

Memory limited dynamic Huffman algorithm

 Input: Huffman Tree H, Stream to process S.
 Output: Updated Huffman Tree H, compression stream

1. For each s in S
2. If s є H
3. Current Node Find node with s in H
4. Output Compression Code //Path from Current Node to Root
5. Else
6. If |H| > MaxNodes
7. Current Node Find node min weight symbol in H
8. Current_Node Symbol s.
9. Else
10. Split NYT node into two nodes with new parent.
11. Assign one of the new nodes symbol s with weight 0
12. Current Node Symbol NYT node
13. Output uncompressed symbol, s
14. Output Compression Code //Path from Current Node to Root
15. Call Rebalance Tree (H, Current_Node) // Pseudocode from Figure 6
16. Return H

102

Figure 34. Overview of the memory limited dynamic Huffman algorithm.

Figure 35 illustrates the three possibilities when the memory limited dynamic

Huffman tree is updated with a symbol for encoding. The three possibilities are (a) the

symbol is already in the tree, (b) the symbol is not in the tree and needs to be added to the

tree, or (c) the symbol is not in the tree, the tree is full and an old symbol must be

swapped with the new symbol. Figure 36 illustrates rebalancing the tree. In this example

the leaf node with symbol ‘n’ is swapped with the highest numbered node in its group,

the ‘e’. After the swap the ‘n’ node’s weight is incremented and processing continues

with its parent.

Uncompressed Stream Update Tree with New Symbol
Compressed Stream

Compressed Stream
Uncompressed Stream

(a) Encoder

(b) Decoder

Update Tree with New Symbol

Compression/Decompression Overview

103

Figure 35. Memory limited dynamic Huffman algorithm cases.

Update Tree with new Symbol – 3 Choices

(a) Input symbol already in tree :
Increment weight, then Rebalance tree

(b) Input symbol not in tree, and tree not full :
Split NYT node and add new node.

(c) Input symbol not in tree, and tree full :
Find symbol node with minimum weight and replace symbol, then

increment weight and rebalance tree.

Symbol: ⅌
⅌ ⅋

Symbol: ⅌

⅋

NYT
⅌

5 4

1

Symbol: ⅌
⅌ ⅋
2 1

104

Figure 36. Rebalancing the Huffman tree.

The pseudocode in Figure 37 builds upon the pseudocode provided by Knuth

(1985) to implement the memory limited dynamic Huffman compression. Knuths

pseudocode was presented in Figure 10 through Figure 15. The pseudocode of Figure 37

replaces that in Figure 15.

The pseudocode by Knuth implements a simple hash lookup to find the node in

the tree that corresponds a symbol. The “A” array provide the hash function. Its lookup

is based on the ASCII character code of the symbol being processed. A more robust hash

function is assumed by the insert, delete, length and try/search methods in lines 3, 7, 12,

15 and 16. Typically, the hash table will provide constant time, O(1) searching of the

table (Cormen, Leiserson, Rivest, & Stein, 2009). It is necessary to use a more robust

hash table function such as this, rather than the statically allocated hash table as proposed

by Knuth. A statically allocated hash table that would hold all the possible input symbols

would defeat the purpose of the memory limited function. A complete description of the

new encode procedure follows. The new Hashtable is named HASHTABLE_A. It is

assumed that there are four methods on this object. The TrySearch method looks up a

NYT
0 2 1

e
1 3

2

n
1

1 4

5

NYT
0 2 1

n
2 3

3

e
1

1 4

5

Rebalancing the Huffman Tree

group

105

key in the dictionary. If the key is not contained in the dictionary, the exists variable is

set to false. If the key does exist in the dictionary, the exists variable is set to true and the

value is returned. The Delete method deletes a key/value pair from the dictionary, the

Insert method inserts a key/value pair, and the Length method returns the number of

items in the dictionary.

Figure 37. Original algorithm FGK modified to be memory limited. Adapted from
“Dynamic Huffman Coding” by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-180.

First the encode procedure looks to see if the symbol exists in the hash table. If it

does, then the node that corresponds to that symbol is identified and the encode

procedure proceeds as before. If the symbol does not exist in the hash table, then there

are either one of two possibilities from here. The first is the number of symbols in the

1. procedure encodeMemLimited (integer key);
2. begin integer i, j, q, t; boolean exists;
3. exists = HASHTABLE_A.TrySearch(key, value);
4. i ← 0;
5. if exists then q ← A[value]
6. else comment encode zero weight;
7. if HASHTABLE_A.Length < MAXNODES then
8. q ← A[PSEUDO_SYM]; PSEUDO_SYM = PSEUDO_SYM + 1;
9. if q < 2 × R then t ← E + 1 else q ← q - R; t ← E fi;
10. for j ← 1 to t do i ← i + 1; S[i] ← key mod 2; key ← key div 2 od;
11. q ← A[0] comment point to new node;
12. HASHTABLE_A.Insert(key, q)
13. else
14. q ← B[H]; comment point to the node with least weight;
15. HASHTABLE_A.Delete(A[q]) comment delete this key in hash table;
16. HASHTABLE_A.Insert(key, q) comment create new key, value fi fi;
17. while q < Z do
18. i ← i + 1; S[i] ← (q + 1) mod 2;
19. q ← P[(q + 1) div 2] od;
20. while i > 0 do transmit (S[i]); i ← i - 1 od;
21. end;

106

table exceeds a constant. That constant is MAXNODES, the maximum number of

symbols allowed in the hash table and tree. If the number of nodes in the hash table is

less than the maximum number allowed, then the symbol is added to the hash table and a

new node is created in the tree for it. The new symbol is a ‘pseudo’ symbol. It is created

with the NEXT_SYMBOL global variable. The new hash table then simply maps

symbols on the input to the new ‘pseudo’ symbols created. On the other hand, if the

maximum number of nodes allowed has been reached, then the node with the least weight

is identified in line 13. Its symbol and ‘pseudo symbol’ pair is deleted from the hash

table, and a new key, value pair is created in the hash table with the new symbol.

As an example of the memory limited dynamic Huffman algorithm follows.

Assume that in the example given in Figure 16 the maximum number of nodes is set to 9.

The algorithm will proceed as before up to Figure 19. Figure 19 is repeated here as

Figure 38. At this point the next character that appears in the input stream is the ‘r’

symbol. This is a new symbol and is not contained in the Huffman tree. The Huffman

tree contains 9 nodes, the maximum number of nodes for this example. The algorithm

then searches for the leaf node with the smallest weight. In this case that will be either

the node with the ‘i’ or the ‘g’ symbol. Both have a weight of 1. If the algorithm

searches the tree down left branches first the ‘i’ node will be selected. The tree will be

rebalanced as shown in Figure 39.

Cumulative input string: engineer

Cumulative output stream: e 0n 00g 100i 11 10 10 1000r

107

Figure 38. Dynamic Huffman tree for string "enginee."

Figure 39. Huffman tree for string "engineer."

7

e
3 7

3

5
n
2

4

6

1 4
g
1

2

8

1
NYT

0 2
i
1

9

8

e
3 7

3

6 n
2

5

5

1 4 r
2

3

8

1
NYT

0 2
g
1

9

Memory Constrained
(9 node constraint) Not Memory Constrained

108

Up to the point as illustrated in Figure 38, the dynamic Huffman compression

algorithm and the new memory limited dynamic Huffman compression algorithm

generate identical trees.

The next symbol to appear in the input stream is the symbol ‘i’. But this symbol

is no longer in the tree, it was replaced by the ‘r’ symbol. Again, the leaf node with the

lowest weight is selected and replaced with the input symbol. This time it’s the ‘g’

symbol. The updated Huffman tree is presented in Figure 40. The output stream now

looks as follows:

Cumulative input string: engineeri

Cumulative output stream: e 0n 00g 100i 11 10 10 1000r 0011i

 Finally, the last ’n’ and ‘g’ are added as illustrated in Figure 41 and Figure

42. When the ‘g’ is input to the algorithm, it does not exist in the Huffman tree anymore

(it was replaced by the ‘i’ symbol.) This time the symbol with the lowest weight is the ‘i’

symbol. ‘g’ replaces ‘i', then “g’s” weight is incremented and the tree rebalanced.

Final, cumulative input string: engineering

Final, cumulative output stream: e 0n 00g 100i 11 10 10 1000r 0011i 01 000g

The compression ratio would be (8*7+25)/(8*11) = 92%. Compare this with the

compression ratio of the previous example, where the Huffman tree is allowed to grow

without a memory constraint; 74%. These hand calculations were verified with

computer simulations.

109

Figure 40. Huffman tree for string "engineeri," memory constrained.

Figure 41. Huffman tree for string "engineerin," memory constrained.

9

e
3 6

3

7

n
2

5

5 2 4
r
2

4 8

1
NYT

0 2
i
2

9

10

e
3 6

3

7

n
3

6

5 2 4
r
2

4 8

1 NYT
0

2 i
2

9

110

Figure 42. Comparison of the final Huffman trees for string "engineering.”

Space and Time Asymptotic Complexity

The space complexity for the dynamic Huffman compression is O(n), where n is

the number of nodes in the Huffman tree. When the Huffman compression is applied to a

transaction database, and the symbols to compress are the transaction item ID’s, then n is

also the number of items in the database. The memory limited dynamic Huffman

compression has a space complexity of O(min(n,k)), where n is defined as before and k is

the maximum number of nodes in the tree. If the tree is stored in a binary tree data

structure represented as a set of arrays as suggested by Knuth (1985), then the total

memory requirements are about 12n lg n + 2n lg w bits, where w is a bound on the

number of bits required to hold the weight of the of all n symbols (Knuth, 1985). For the

memory limited version of the dynamic Huffman table, substitute min(n, k) into this

11

e
3 6

7
n
3

6

5

2
4

r
2

5

8

1
NYT

0 2

g
3

9

3

Memory Constrained
(9 node constraint)

Not Memory Constrained

11

111

equation for n. Thus, the memory limited version of the binary tree will never grow to be

larger than 12r lg r + 2r lg w bits.

Creating and maintaining the memory limited dynamic Huffman tree requires the

following four operations (and only these four operations):

• Identify and split the NYT node (researched by Knuth and others)

• Find a symbols node in the tree (researched by Knuth and others)

• Find the node with the minimum weight in the tree (new)

• Increment a nodes weight and rebalance the tree (researched by Knuth and

others)

Beyond these four operations, no other operations on the Huffman tree are

required to maintain the tree and support the memory limited dynamic Huffman

algorithm.

Furthermore, three of the operations are discussed by Knuth (1985). The

algorithm, coding, time requirements are all well researched. Only one new operation is

required to support the proposed memory limited dynamic Huffman algorithm (above

Knuth’s original algorithm). The new operation is finding the node with minimum weight

in the tree.

Knuth (1985) presents a time complexity for rebalancing the dynamic Huffman

tree. Worst case the time complexity is O(b), where b is the level of the tree. The

procedure for rebalancing the Huffman tree includes switching the node being

incremented with the highest numbered node in its block. If a binary tree is a Huffman

tree, then a block will never span more than two levels. Once the interchange is

complete, then the algorithm moves to the parent node, where that node is then

112

interchanged with the highest numbered node in its block. The worst-case number of

interchanges thus will be b, where b is the maximum depth of the tree. Pigeon (2003)

credits Knuth as further ‘fine tuning’ the time complexity as O(−lgP(X = ai)) for a symbol

ai.

Understanding that the tree rebalancing has time complexity of O(b), worst case,

requires understanding the rebalancing process. First, Knuth (1985) defines a ‘group’ as

all nodes with the same weight. Knuth notes that a group will span a maximum of two

levels (the simple explanation for this phenomenon is that if you select any node, the

parent node exists on the level above it and it must have a weight higher than the selected

node). The first step is to identify the leaf node whose weight is to be incremented. This

node will be swapped with the highest numbered node in its group. When the node is

swapped, its sub-tree (if any) is swapped with it. The node’s weight is then incremented.

The algorithm then recursively proceeds to the parent of the node just incremented until

the root is reached. Worst case, there will be b levels to iterate and swap subtrees. The

swap itself is as simple as setting the 6 sets of pointers. The setting of pointers will be

accomplished in constant asymptotic time.

Searching for a symbol in the Huffman tree can be done in O(1) time (constant

time). An efficient data structure, such as a hash table, could be used. Knuth uses a hash

table.

Identification of the NYT node and finding the node with the minimum weight

are related. Finding the NYT node and splitting it can be done in O(1) asymptotic time.

Typically, a pointer will be maintained to this important node so it can be readily found.

Searching for an item with the lowest weight will not be necessary. The node with the

113

lowest weight will always be the highest numbered leaf node, not including the NYT

node, in the table. Finding the node with the minimum weight can be accomplished in

O(1) time. This node will always be on the same subtree as the NYT node. This subtree

can only look like either of the subtrees in Figure 43.

Figure 43. NYT node configuration.

As suggested by Knuth, a pointer structure can be included as part of the nodes

data structure to quickly traverse nodes. In the memory-limited version of the algorithm,

a larger symbol word size would need to be accommodated and therefore the dictionary is

required to be dynamically maintained. An O(1) asymptotic search time can be achieved

in the memory limited algorithm as well.

Expansion of the Compressed File

Related to the asymptotic time and memory complexity of the algorithm, is the

maximum number of ‘swaps’ that will result from various values of k, and how this is

related to other parameters of the database. When the Huffman tree is full, and a new

item is input to be compressed, then the algorithm must find the item in the tree with the

lowest frequency and swap this item with the new item. This is a swap. The swap is

important because it is the behavior that is different between the memory limited dynamic

Huffman, and the ‘standard’ dynamic Huffman compression. If the number of swaps is

(a) (b)

NYT
0 1 NYT

0 2 1
e
1

3
1

114

finite, then there is an assurance that the expansion of the compressed file is also finite.

When a swap occurs, the algorithm also outputs the NYT code. This is the longest code

in the dynamic Huffman tree. The algorithm also outputs the uncompressed symbol. For

each memory swap, the algorithm will output this pair because it constantly ‘forgets’

infrequent, but previously seen symbols. To establish that the expansion of the

compressed file is limited, three limitations must first be established. The NYT code

length is limited, the uncompressed symbol is limited in length, and the number of swaps

is limited.

The uncompressed symbol length is a function of the overall system. This will be

limited by the user to typically 8 bits, 32 bits, or a number of bits optimized for the size

of the alphabet.

An upper bound on the length of the NYT code is possible using research

provided by Abu-Mostafa and McEliece (2000). Here, the researchers calculate the

maximum length of a Huffman code word. They find that if the probability, p, of a

symbol is in the range 0 < p < 1/2, and if r is an index such that

1
𝐹𝐹𝐵𝐵 + 3

< 𝑝𝑝 <
1

𝐹𝐹𝐵𝐵 + 2

where Fr is the rth Fibonacci number, then the longest code word for that symbol

is at most of length r bits. The Fibonacci sequence is recursively defined as:

F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2 , for n ≥ 2

This research is significant because when a swap occurs, the output stream will

receive the NYT symbol and the uncompressed symbol. The length of the NYT symbol

at this point will be the same as the length of the least probable symbol up to that point in

the stream. Note that this establishes an upper bound on the length of the symbol.

115

Swap Maximum Bound Analysis

An analysis of the upper bound on the maximum number of swaps follows. As an

example, suppose during compression the Huffman tree is full and a new symbol appears

in the stream. Assume that new symbol only occurs once in the stream (its frequency is

1). It is the least probable symbol. At most two swaps will occur. The first swap occurs

when the new symbol is swapped with the least frequent symbol in the Huffman tree.

The second swap occurs when the previously swapped out symbol is swapped in again

because it is a more probable symbol.

For example, if the total number of symbols in the alphabet is 5, the limit is set to

4 symbols, and the least probable of the 5 symbols occurs once, then the most swaps that

can occur is 2.

Next, assume that the least probable symbol occurs more than once. The most

number of swaps that can occur will be two times p, the probability of the symbol in the

stream, times m, the number of items in the stream.

This result can be generalized.

Formally, given:

𝐼𝐼 = { 𝑀𝑀1,⋯ , 𝑀𝑀𝑛𝑛} ; I is the set of symbols and n is the number of different symbols

in the input stream S.

𝐼𝐼𝑥𝑥 = 𝑀𝑀𝑥𝑥1,⋯ , 𝑀𝑀𝑥𝑥𝑛𝑛 ; Ix is the list of symbols ordered by probability where,

𝑃𝑃(𝑀𝑀𝑥𝑥1) < 𝑃𝑃(𝑀𝑀𝑥𝑥2) ⋯ < 𝑃𝑃�𝑀𝑀𝑥𝑥(𝑛𝑛−𝑘𝑘)�⋯ < 𝑃𝑃(𝑀𝑀𝑥𝑥𝑛𝑛) ; k is a user chosen constant and

k < n. k will be the maximum number of symbols allowed in the Huffman tree and P(x)

is the probability of an item x in the stream.

116

Note that the case, 𝑃𝑃(𝑀𝑀𝑥𝑥1) = 𝑃𝑃(𝑀𝑀𝑥𝑥2) ⋯ = 𝑃𝑃�𝑀𝑀𝑥𝑥(𝑛𝑛−𝑘𝑘)�⋯ = 𝑃𝑃(𝑀𝑀𝑥𝑥𝑛𝑛) is not a

realistic case. Huffman compression is possible only when there is a non-uniformity in

the symbol probabilities. Secondly, for this discussion, note that the frequency of an item

in the stream is equal to the total number of items in the stream times the items

probability in the stream.

When the Huffman tree is full, and a new symbol is processed that is not already

in the Huffman tree, a “swap” occurs in the Huffman tree. The new symbol is swapped

with the symbol with the lowest probability in the tree.

Define the uncompressed data stream, S, as:

 𝑆𝑆 = 𝐸𝐸1 ⋯ 𝐸𝐸𝑚𝑚 ; where m is the number of symbols in the uncompressed stream

and each item in 𝑆𝑆 ∈ 𝐼𝐼.

An upper bound on the number of swaps that can occur will be equal to:

𝑀𝑀𝑎𝑎𝑥𝑥 𝑆𝑆𝑆𝑆𝑎𝑎𝑝𝑝𝐸𝐸 = 2𝑚𝑚 �𝑃𝑃(𝑀𝑀𝑥𝑥1) + 𝑃𝑃(𝑀𝑀𝑥𝑥2)⋯+ 𝑃𝑃�𝑀𝑀𝑥𝑥(𝑛𝑛−𝑘𝑘)��

𝑀𝑀𝑎𝑎𝑥𝑥 𝑆𝑆𝑆𝑆𝑎𝑎𝑝𝑝𝐸𝐸 = 2𝑚𝑚�𝑃𝑃�𝑀𝑀𝑥𝑥𝑗𝑗�
𝑛𝑛−𝑘𝑘

𝑗𝑗=1

Where m is the total number of items in the stream, k is the maximum number of

items allowed in the Huffman tree. This is Equation 1. If Ix = i1…ix is the list of items

ordered by probability, then P(ix) is the probability of an item, ix, in the stream, then n is

the number of distinct items in the stream. The maximum swap’s that can occur is two

times the sum of the frequency of the least probable n-k symbols.

Equation 1 can be rewritten to use the frequency of the items, rather than their

probabilities.

117

𝑀𝑀𝑎𝑎𝑥𝑥 𝑆𝑆𝑆𝑆𝑎𝑎𝑝𝑝𝐸𝐸 = 2 �𝐹𝐹�𝑀𝑀𝑥𝑥𝑗𝑗�
𝑛𝑛−𝑘𝑘

𝑗𝑗=1

Where k is the maximum number of items allowed in the Huffman tree, F(ix) is

the frequency an item, ix (the number of times it occurs in the stream at some point in

time), and n is the number of distinct items in the stream at some point in time. A

comparison of the memory and time complexity of the proposed memory limited

algorithm to the dynamic Huffman algorithm as proposed by Knuth (1985) is

summarized in Table 13.

Table 13
Comparison of Asymptotic Time/Memory Complexity

Dynamic
Huffman

Memory limited
dynamic
Huffman Notes

Asymptotic time
complexity to
determine node with
smallest frequency

(not required) O(1) Node with smallest
frequency is last node in
node list

Asymptotic memory
complexity

O(n) O(min(n,r)) where n is number of
unique symbols seen in
stream, and r is a chosen
constant

Asymptotic time
complexity to search
tree for symbol

O(1) O(1) Constant time using a hash
table and appropriate data
structure for Huffman tree

Asymptotic time to
identify and split the
NYT node

O(1) O(1) Constant time

Asymptotic time to
find minimum weight
node

O(1) O(1) Constant time

Asymptotic max time
complexity to re-build
tree

O(b) O(b) where b is the max depth
of the Huffman tree

O(−lg(P(ai))) O(−lg(P(ai))) For symbol ai, with
probability P(ai)
(Pigeon, 2003)

118

“Tail” Items

In equation 1, the quantity n-k refers to the last n-k items in the list of items sorted

by probability. These can be called the “tail items” in the list. The tail items are

significant in this research because if there are many of them, then by equation 1, there

may be many swaps leading to a greater expansion of the compressed file when the

memory is limited (k < n). In the example shown in Figure 44, the user chosen constant k

is 305. The value n is the number of different items in the database. In this example, it is

470. The number of tail items is 165. Each one of these items has a frequency of less

than 50 in this database. The shape of this item frequency histogram is typical for many

real databases.

Figure 44. Histogram of item distribution in a database depicting tail items.

0.1

1

10

100

1000

10000

100000

1000000

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

38
1

40
0

41
9

43
8

45
7

Ite
m

 F
re

qu
en

cy

Item

Distribution of items in "Accidents" transaction database

n-k
TAIL

119

Relationship of distribution and compression ratio

The probability distribution of the database will affect the compression ratio in

several ways. As demonstrated in the literature review section, a source stream where the

input symbols have a uniform probability distribution will not compress well, or at all,

with Huffman compression techniques. As a further example, the two benchmark

synthetic databases exhibit a more uniform distribution profile. The synthetic databases

did not compress as well as the other benchmark databases using the Huffman algorithm

in the prior research.

Additionally, the synthetic databases have many tail items because the distribution

profile is ‘flatter’. It is expected that these databases will not compress well with the

memory limited dynamic Huffman compression algorithm as proposed herein because

there are more items in the tail. Many tail items result in more swaps as indicated by

equation 1. Many swaps will lead to a rapid decrease in the compression ratio because

there will be many NYT and uncompressed symbols in the compressed output stream.

Swap Minimum Bound

The equation for the minimum bound on the number of swaps is:

Min Swaps = n – k

This is Equation 2. This minimum bound is found by noting that the minimum

number of swaps occur when all the tail items appear at the end of the uncompressed

stream. Then, one swap must occur of each item in the list of tail items.

Proposed Work

First, the FGK algorithm (Knuth, 1985) will be prototyped and verified to be

correct. To verify correctness of the algorithm several texts will be compressed with the

120

algorithm. The text will then be decompressed to restore the file. The original and

restored texts will be compared using commercial software that can compare files. In his

original paper, Knuth (1985) gives some results of compressing files. The original files

as used by Knuth will be compressed and the results compared to the results as

documented by Knuth.

Second, the algorithm will be modified to limit the size of the tree using the

Frequent item identification method proposed by Metwally. Agrawal, and El Abbadi

(2005). This modification will be verified to be correct. Two variation of the memory

limited dynamic Huffman compression will be prototyped. The first variation is the

standard algorithm as outlined in Figure 28. In the second variation of the memory

limited dynamic Huffman compression algorithm, when a replacement of a symbol

occurs because the table is full, the weight of the added symbol will not be incremented.

This will be discussed in more detail later in this research. See Figure 50 and Figure 51

for a comparison of the variation. The results of the memory limited dynamic Huffman

algorithm will be verified to be correct before proceeding to the second step of the

investigation. In the second step this research will benchmark the compression on several

transaction databases used by researchers to benchmark datamining algorithms. These

databases are listed in Table 1 and repeated in Table 14.

The format of the raw data from these benchmark databases varies. A synopsis of

the database original formats is listed in Table 14. Some formats require pre-processing

to bring them into the horizontal transaction format. During the initial investigation, it

was found there were other anomalies in the databases. The databases will need to be

121

‘scrubbed’ to remove the anomalies and put the databases into a constituent format. The

scrubbing process will focus on the following items:

• Items are in lexicographic order (for consistency with prior research).

• Gaps in Item ID numbering removed.

• Transaction ID added if it is missing.

• ‘Other’ anomalies, stray character, missing newline.

• Item ID’s separated by a single comma character.

• The file is in an ASCII coded binary format (for readability).

• It is important to add a transaction delimiter to end of line since each

transaction is not a fixed length.

• Most importantly, the bit width of the item ID is assumed to be ideal for

the database being considered. The bit width is calculated as

𝑏𝑏 = 𝑐𝑐𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸(log2𝑛𝑛), where n is the number of different items. This is

important when the compression ratio is calculated. If for instance all

item IDs in all databases were assumed to have a fixed 32-bit width, an

inflated compression ratio would result.

• Verify prior research (conducted over two years ago) was similarly

scrubbed.

Table 14
Structure of Benchmark Databases

122

Database Database format
Accidents Variable length list of item-IDs, one transaction per line.
BMS1 Each line is a single transaction IDs followed by a single item-ID.

Transactions span multiple lines.
Kosarak Variable length list of item-IDs, one transaction per line.
Retail Variable length list of item-IDs, one transaction per line.
T10I4D100K Variable length list of item-IDs, one transaction per line.
T40I10D100K Variable length list of item-IDs, one transaction per line.
BMS-POS Each line is a single transaction IDs followed by a single item-ID.

Transactions span multiple lines.
BMS-WebView2 Each line is a single transaction IDs followed by a single item-ID.

Transactions span multiple lines.

A compression of these databases using the algorithms developed in phase 1 will

be performed and the results of the compression tabulated. Since this is a single pass

(adaptive) compression a graph of the effective compression ratio over time will be an

important metric. This can be compared to the static compression ratios as tabulated in

Table 11.

 The compression ratio is a key metric used to compare the performance of the

dynamic Huffman compression and the memory limited Huffman compression. The

native format of the databases listed in Table 14 is an ASCII character format. The

resulting compressed data stream will be in a binary format with a variable word length.

For comparison, the ASCII input format will be changed to a binary format. In addition,

this research assumes the binary input format is a fixed width word whose word length is

adjusted to fit the maximum number of items in the item list and no more. More

formally, if b is the word length of the input file item IDs, and n is the number of different

items in the database:

𝑏𝑏 = 𝑐𝑐𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸(log2 𝑛𝑛)

123

The compression ratio will be calculated as

𝑐𝑐
𝑢𝑢

where c is the size of the uncompressed string in bits, and u is the length of the

uncompressed string in bits.

Other researchers, Abu-Mostafa and McEliece (2000), assume a fixed 32-bit TID

code word size for all their research into transaction database compression. Their

argument can be simplified to noting that 32 bits is a typical word size for computers.

This would provide better overall compression results than using a word size that was

adjusted for the maximum number of transaction IDs, as in this research.. Having high

compression numbers is not relevant in the long run. This research is concerned with the

relative compression result of the non-memory limited Dynamic Huffman compression to

the memory limited results obtained with the algorithm proposed here.

Each of the eight databases will be compressed with a Dynamic Huffman

compression that is not memory limited. Several metrics are important to collect. These

are:

• Bit size of the input file and the output file

• Compression ratio

• Number of different items. The number of different items is important to

determine the input item bit size. The benchmark database files are all in

ASCII. Further, each symbol is not of the optimum bit width.

Preprocessing of each file is performed to optimize the input file size to be

minimal by adjusting the input symbol bit size to be minimal.

124

• Algorithm run times (for comparison to the database size, and size of

memory).

• Actual number of “swaps” that occurred

• Frequency of all symbols for calculation of “maximum swaps” (eq. 1).

• A calculation of the theoretical maximum number of swaps.

An important parameter is the number of symbols, k, to maintain in the frequent

item identification List. As the number of symbols is increased it is expected that the

compression ratio would approach that as obtained by the static two pass compression.

The experiments will be performed for several values of k. The most effective value of k

will be selected. Finally, the most effective combination of algorithms will be run so a

plot of k versus the compression ratio can be developed to determine how the size of

memory affects the compression ratio for real world applications.

Other plots to be generated are the compression ratio vs k/n. The quantity k/n is a

dimensionless number. It can be expressed as a percentage of the maximum number of

items in the Huffman tree to the total number of different items in the database. It

provides a look at the relationship between the compression ratio and k, that is

independent of the value of n for a database. In the initial study, it was determined that

the database needed to be compressed with 20 different values of k, to get enough data

points to plot well and to reasonably determine if the plot was a smooth function.

 Figure 45 is a plot of the expected compression ratio that a dynamic compression

algorithm will achieve without any memory limitation (as this research proposes). The

lower and upper bounds on the compression are calculated by Vitter (1978). In this plot,

the solid line indicates the compression ratio achieved by the static Huffman compression

125

algorithm on the file BMS1. The static compression results in a constant compression

ratio (straight line) for the file because the algorithm does not need to learn the tokens

and their frequencies to compress. The 12.5% compression ratio is the experimental

value given in Table 11.

The short-dotted line in the graph is the lower bound of the expected dynamic

compression ratio. It starts off at 100% because when the algorithm first starts

processing the file, the Huffman tree is empty. For each new symbol that is encountered

in the input stream (a stream is a file that is processed in a single pass) it must transmit

the NYT symbol and the uncompressed symbol on the input file. Thus, initially, there

may be more bits transmitted than received.

Figure 45. Expected dynamic versus static compression ratio.

As the algorithm processes and learns the items in the database, the compression

is expected to asymptotically reach a limit defined by the compression ratio achieved

with the static algorithm. In fact, Vitter (1978) proves that bounds on the maximum

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

0% 25% 50% 75% 100%

C
om

pr
es

si
on

 R
at

io

Percent File Complete

Static Huffman
Compression
Expected FGK Lower
Bound (Vitter, 1978)
Expected FGK Upper
Bound (Vitter, 1978)

126

compression achieved by the FGK algorithm will be less than 2S + t – 4n +2, and greater

than S – n + 1; where S is the number of transmitted bits of the static Huffman for a

message with n distinct symbols of length t. It is important to note that in the upper

bound, the FGK algorithm will asymptotically reach the performance of the static

Huffman compression. The number of bits transmitted by the FGK algorithm will never

be more than twice the static Huffman algorithm. The dynamic compression results of

the memory limited algorithm will be less than that of the FGK algorithm. The

divergence between the solid line and the dotted lines will be determined by k, the

maximum number of symbols to be held in memory.

Knuth (1981) provides detailed pseudocode for the implementation of the FGK

algorithm. In addition, there are many implementations available in the public domain.

As a base, public domain code will be chosen and verified to be correct. Knuth provides

results of the algorithm on an available dataset, the first ten Fairy Tales, by Grimm. In

the verification phase of this research the performance on this dataset with the

implementation of FGK will be verified against Knuth’s results.

Final tasks for the proposed work is to verify the eq. 1, the upper bound on the

number of swaps. This will be verified on the eight benchmark databases. Each

complete database file will be read in and the number of occurrences of each symbol will

be tabulated and sorted. The predicted upper bound on the number of swaps will be

calculated from eq. 1.

Next, the database will be compressed for various values of k. The maximum

number of swaps will be recorded and compared to the predicted upper bound.

127

Resources

This research will require a computer with a C# compiler to prototype and

evaluate the compression algorithms. The C# compiler will be the Microsoft product

Visual Studio 2013. This is free from the Nova Southeastern DreamSpark Academic

Alliance. The benchmark databases will be required to evaluate the algorithm

performance. These are available freely online from the UCI Machine Learning

Repository (http://archive.ics.uci.edu/ml/datasets.html) and other sources (see benchmark

list Table 1). Nova Library resources will be required for the literature review portion of

this research. The Terasic DE0-Nano Cyclone IV development and evaluation board will

be required for the FPGA processing study portion of this research.

http://archive.ics.uci.edu/ml/datasets.html

128

Chapter 4

Results

Verification of Algorithm Coding

A prototype of the memory limited dynamic Huffman algorithm is coded and

verified. Base code of a dynamic Huffman algorithm in C# was downloaded from

http://dynamichuffman.codeplex.com (Bassman, 2014). This code is modified with the

frequent item identification algorithm as proposed by Metwally. Agrawal, & El Abbadi

(2005). It also includes modifications that instrument the code to gather measurements.

As a verification, the algorithm was tested with the textual data of the first ten Grimm’s

Fairy Tales. Although the original textual file used by Knuth (1985) was obtained, there

were a few minor differences due to formatting characters in the file (the file was

obtained in HTML format). Donald Knuth confirms (personal communication,

September 17, 2016) the original file was for a ‘SAIL’ computer with a slightly non-

standard character set. This may account for the minor differences.

First, the memory limited dynamic Huffman algorithm was used to compress the

complete 1.41Mb text. In Chapter 4 of this research, results will be presented on

compression of the actual benchmark datasets. The number of nodes in the Huffman tree

were not limited. The compressed text was then decompressed. The recovered text was

compared to the original text and no differences were found. Next, the same exercise was

repeated with memory limited. Memory was limited by repeating the experiment with

the number of nodes limited to 10, 20 and 30 nodes. The file was compress and

decompressed. No differences were found between the original file and the restored file.

http://dynamichuffman.codeplex.com/

129

Next, the results obtained by Knuth (1985) were attempted to be duplicated. In

this research, he tabulates two metrics, ∑b and ∑bopt for 1000, 10000 and 100000

characters processed. Here, Knuth is comparing the performance of the Dynamic

Huffman Algorithm with the Static Huffman Algorithm. The ∑b quantity is the number

of bits written into the output stream as produced by the dynamic Huffman algorithm.

The ∑bopt quantity is the sum of the weighted path length of all symbols in the Huffman

tree. This weighted path length will be the same as the number of bits transmitted by a

static Huffman algorithm. Of course, the static Huffman algorithm must initially

communicate or transmit the shape of the Huffman tree as well (or the canonical

Huffman form of compressed codes must be used.) The ∑bopt quantity does not include

this overhead. But the ∑b quantity does include the bits required to transmit the NYT

code and the original symbol to the decoder. As Knuth points out, “As the file gets larger,

the overhead ratio grows to the point where a two-pass scheme would transmit fewer bits,

yet the on-line method is not far from optimum.”

Table 15 presents a comparison of Knuth’s FGK algorithm results to the results of

the memory limited dynamic Huffman algorithm. The small difference between the

performance of the two algorithms may be attributed to minor difference in the symbols

in the original file and the file used for comparison.

130

Table 15
Algorithm Verification to Knuth’s Original Grimm Fairy Tale Results

Dynamic vs. static
Bits produced, 1 symbol = 1 characters

Symbols
processed

Knuth’s original FGK resultsa
Memory limited dynamic Huffman

algorithm

∑b ∑bopt ∑b ∑bopt

1000 4558 4297 4579 4318
10000 44733 44272 44738 44295
100000 440164 439613 440151 439614

a “Dynamic Huffman coding,” by D. E. Knuth, 1985, Journal of Algorithms, 6(2), 163-
180.

Performance

Next, the compression performance of the memory limited dynamic Huffman

algorithm was put to the test. The compression performance was compared to the

Grimms Fairy Tales file with ASCII characters taken “1 at a time”, and ASCII characters

“taken 2 at a time.” The “1 at a time” experiment is identical to Knuths 7-bit character

experiment, and the “2 at a time” experiment is equivalent to his 14-bit character

experiment. In the “2 at a time” experiment, each symbol to compress is created from the

next 2 ASCII characters in the input stream, whereas the 1 at a time algorithm creates a

node in the Huffman tree for every new character in the input stream. The algorithm did

not try to do any ‘preprocessing’ of the symbol pairs. It simply took the next two

characters in the input stream and used them as the input symbol.

In the series “1 at a time” in Figure 46, the line flattens out to a compression ratio

of about 53% after a limit of 60 nodes. Each character is 1 symbol. 60 characters are the

maximum number symbols in the file when the characters are taken 1 at a time. This

corresponds to about 120 nodes in the Huffman tree. The second series, “2 at a time”,

131

flattens out after 1900 nodes are set as the limit. This is because when the characters are

taken 2 at a time 1900 nodes are produced. After 500 nodes are reached, the table

indicates that “2 character at a time” processing compression ratio is better than the “1

character at a time” processing. Compression ratio is defined as compressed

size/uncompressed size.

In this “two at a time” compression, many more node are produced. This is

because the original file contained 60 different symbols. When taken in combination, up

to 3600 combinations may be produced. The actual number of combinations of

characters taken “2 at a time” the file produced was approximately 1900 different

combinations.

Figure 46. One- versus 2-at-a-time compression ratio comparison.

Since the compression using the Memory limited dynamic Huffman algorithm

was improved by considering character pairs as a single symbol, an experiment was

0.35
0.45
0.55
0.65
0.75
0.85
0.95
1.05
1.15
1.25

0 500 1000 1500 2000

C
om

pr
es

si
on

 R
at

io

Number of Nodes

Compression Ratio vs Nodes
for File Grimms Fairy Tales

1 vs 2 at a time

2 at a time 1 at a time

132

performed that considered three characters as a single symbol. The “3 at a time”

experimental compression results are compared to the character pair results in Figure 47.

There was no preprocessing when creating the “3 at a time” symbols. The next three 7-

bit ASCII characters in the input stream were assembled into the 21-bit symbol. The

memory limited compression ratio for the “2 at a time” compression is 48%, the ratio for

the “3 at a time” is 44%. An exact calculation of the improvement is 9.1% when

compression is done on 2 vs. 3 at a time. The number of symbols generated when the

text is considered “3 at a time” is 6,121. It takes at least 5,000 symbols when the

symbols are considered “3 at a time” to equal the compression ratio when the symbols are

considered “2 at a time”. In the case of “2 at a time” a maximum of 1920 symbols were

produced. “3 at a time” produced 6121 symbols. The cumulative number of bits

produced for the “3 at a time” dynamic algorithm vs the optimal number of bits a static

compression algorithm would produce are tabulated in Table 16.

133

Figure 47. Two- versus 3-at-a-time compression ratio comparison.

Table 16
Bits Produced “3 at a Time”

Dynamic versus static
Bits produced, 1 symbol = 3 characters

Symbols processed ∑b ∑bopt

1000 22,025 8,848
10000 146,148 98,908
100000 1,114,803 1,014,560

In Figure 41 are the results of a compression experiment was run with the symbol

chosen “4 at a time.” In this experiment four 7-bit ASCII characters are considered a

single 28-bit symbol. This experiment produced up to 41,347 symbols. The best

compression ratio was about 43.6%. It took up to 40,000 nodes to beat the compression

obtained by 12,241 nodes where the symbols were created “3 at a time.” It’s difficult to

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0 2000 4000 6000 8000 10000 12000 14000

C
om

pr
es

si
on

 R
at

io

Number of Nodes

Compression Ratio vs Nodes
for File Grimms Fairy Tales

2 vs 3 at a time

2 at a time 3 at a time

134

tell from the graph, but “4 at a time” beat “3 at a time” by a tiny 0.0021% (at a cost of

about 29,000 nodes).

The cumulative number of bits produced for the “4 at a time” dynamic algorithm

vs the optimal number of bits a static compression algorithm would produce are tabulated

in Table 17.

Figure 48. Three- versus 4-at-a-time compression ratio comparison.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 10000 20000 30000 40000 50000

C
om

pr
es

si
on

 R
at

io

Number of Nodes

Compression Ratio vs Nodes
for File Grimms Fairy Tales

3 vs 4 at a time

3 at a time 4 at a time

135

Table 17
Bits Produced “4 at a Time”

Dynamic versus static
Bits produced, 1 symbol = 4 characters

Symbols processed ∑b ∑bopt
1000 32,539 9,361
10000 240,128 112,428
100000 1,609,116 1,199,647

Finally, an experiment was devised where the compression symbol is whole

words. Here, a ‘word’ is defined as any sequence of character separated by a space

character. This includes the special characters and punctuation characters. Multiple

space characters are collapsed to a single character. The resulting single space character

was not compressed into the output stream since it could be simply added during

decoding as a separator between symbols. The results for “word at a time” are shown in

Figure 49.

It is interesting that when the algorithm considers each symbol to be a word, the

compression is more than the fixed number of character compression algorithms, at about

40.5%. On the other hand, a significant number of symbols are produced, 60,033 word

symbols vs, 41,347 symbols chosen “4 at a time.”

Knuth (1985) concluded that the extra memory requirements for the character

double experiment did not justify the incrementally better compression ratio.

136

Figure 49. “4 at a time” versus “word at a time” comparison.

Table 18
Bits Produced “Word at a Time”

Dynamic versus static
Bits produced, 1 symbol = 1 word

Symbols processed ∑b ∑bopt

1000 31,256 8,043
10000 252,515 93,062
100000 2,005,366 1,001,072

Optimization of Algorithm

The frequent item identification algorithm (Metwally, Agrawal & El Abbadi,

2005) instructs that when the table (or in this case the Huffman tree) is full, a search is

done for the symbol with the lowest weight or frequency. This symbol is replaced with

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000

C
om

pr
es

si
on

 R
at

io

Number of Nodes

Compression Ratio vs Nodes
for File Grimms Fairy Tales

"4 at a time" vs "word at a time"

4 at a time word at a time

137

the new symbol. Its weight is then incremented. During verification of the algorithm it

was noticed that perhaps the algorithm is over estimating the frequency of new symbols

in the stream. The pseudocode for the frequent item identification algorithm is presented

in Figure 50.

Figure 50. Frequent item identification pseudocode.

As a test the algorithm was modified to not increment a new symbol but only

when replacing an old symbol. When a new symbol replaces an old symbol, the

algorithm does not increment the symbol after it is replaced. When this change is applied

to the Memory Limited Dynamic Huffman Algorithm it is called “Option B.” The

pseudocode is presented in Figure 51. A comparison of the performance of the algorithm

with and without “Option B” is presented Figure 52.

Space-Saving Pseudocode
1. T ∅
2. For each i
3. If i є T
4. Then ci ci + 1
5. Else if |T| < k
6. Then T T ∪ { i }
7. ci 1
8. Else j arg min(jєT) cj

9. cj cj + 1
10. T T ∪ {i}\{j}

138

Figure 51. Frequent item identification pseudocode with “Option B.”

The pseudocode of Figure 50 and Figure 51 are identical except for line #9. A

description of the pseudocode follows. The array T is a set of tuples. It is initialized in

line 1. The maximum size that T will be allowed to grow is k, where k is a user defined

constant. Each tuple in the set consists of an item ID and count. The variable i is the

next item in the input stream to process. Line 2 iterates through all items in the stream.

If the item is already in the set T, then the associated count is incremented in line 4. If the

item is not in the set, then there are two possibilities. The set is less than the maximum

size, k, or it has reached its maximum size. If there is room in the set then lines 6 and 7

add the item to the set, and the items count is initialized to 1. If the set is full (it has

reached its maximum size), then line 8 sets j to the item in the set T whose count in

minimum. Line 10 then removes the item with the minimum count from the set and adds

the new item. The item is removed, but not its count. This is important. In line 9 the

count, which remained from the removed item, is incremented. The “Option B”

algorithm attempts to create a more accurate view of the item count by pessimistically not

incrementing the removed item count. This option requires more research since it is

Space-Saving Pseudocode with “Option B”
1. T ∅
2. For each i
3. If i є T
4. Then ci ci + 1
5. Else if |T| < k
6. Then T T ∪ { i }
7. ci 1
8. Else j arg min(jєT) cj

9.
10. T T ∪ {i}\{j}

139

different from the frequent item identification algorithm as originally proposed by

Metwally, Agrawal, and El Abbadi (2005).

Figure 52. “Option B” performance.

 To test the memory limited Dynamic Huffman algorithms compression ratio an

experiment was performed where the input to each algorithm (with and without “Option

B”) was the text of the file “Grimm’s Fairy Tales.”

The performance of the memory limited dynamic Huffman algorithm with the

Option B outperforms the memory limited dynamic Huffman algorithm without the

option by about 9% when the number of allowed nodes is low for this file. This is shown

in Figure 52. Note that the two algorithms converge at about 60 nodes. This is about

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

0 20 40 60 80 100 120

C
om

pr
es

si
on

 R
at

io

Number of Nodes

Compression Ratio vs Nodes
for File Grimms Fairy Tales, Option B

Space-Saving Algorithm

140

half of the total number of nodes in the file if the Huffman tree could grow to

accommodate all symbols. The actual measured values are shown in Table 19.

Table 19
Measured Data for Modified Frequent Item Identification Algorithm

Nodes

Compression ratio

Without “Option B” With “Option B”

 10 1.230698785 1.074234339
 30 0.795063870 0.673381659
 61 0.559337138 0.560810829
101 0.549010153 0.549058881
129 0.548742861 0.548742946
135 0.548742692 0.548742692

Characteristics of Benchmark Transaction Data

The benchmark transaction databases were collected from several sources

including the KDD 2000 Cup website and the original datasets as provided by Agrawal,

Imielinski and Swami (1993). See Table 1 for the citation to the source of each

Transaction database. Table 20 lists a brief description of the source and nature of the

data.

 Huffman compression is a statistical compression technique, the probability

distribution of the item frequencies therefore is important to the achieved compression

ratios. The probability distribution of each of the benchmark database examples are

presented in Figure 53 to Figure 60.

141

Table 20
Description of Benchmark Transaction Database source data

Database Database source
Accidents Traffic accident data
BMS1 KDD CUP 2000: click-stream data from a webstore

named Gazelle
Kosarak Click-stream data of a Hungarian on-line news

portal
Retail Retail market basket data from an anonymous

Belgian retail store
BMS-POS KDD CUP 2000: click-stream data from a webstore

named Gazelle
BMS-WebView2 KDD CUP 2000: click-stream data from a webstore

named Gazelle
T10I4D100K Synthetic data from the IBM Almaden Quest

research group
T40I10D100K Synthetic data from the IBM Almaden Quest

research group

Figure 53. Frequency of items in the accidents database.

0.1

1

10

100

1000

10000

100000

1000000

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "Accidents" Transaction Database

142

Figure 54. Frequency of items in the BMS1 database.

Figure 55. Frequency of items in the BMS-POS database.

0.1

1

10

100

1000

10000

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "BMS1" Transaction Database

0.1

1

10

100

1000

10000

100000

1000000

1 71 14
1

21
1

28
1

35
1

42
1

49
1

56
1

63
1

70
1

77
1

84
1

91
1

98
1

10
51

11
21

11
91

12
61

13
31

14
01

14
71

15
41

16
11

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "BMS-POS" Transaction Database

143

Figure 56. Frequency of items in the BMS-Webview2 database.

Figure 57. Frequency of items in the Kosarak database.

0.1

1

10

100

1000

10000

1
14

1
28

1
42

1
56

1
70

1
84

1
98

1
11

21
12

61
14

01
15

41
16

81
18

21
19

61
21

01
22

41
23

81
25

21
26

61
28

01
29

41
30

81
32

21

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "BMS-Webview2" Transaction Database

0.1
1

10
100

1000
10000

100000
1000000

1
17

21
34

41
51

61
68

81
86

01
10

32
1

12
04

1
13

76
1

15
48

1
17

20
1

18
92

1
20

64
1

22
36

1
24

08
1

25
80

1
27

52
1

29
24

1
30

96
1

32
68

1
34

40
1

36
12

1
37

84
1

39
56

1

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "Kosarak" Transaction Database

144

Figure 58. Frequency of items in the Retail database.

Figure 59. Frequency of items in the T40I10D100K database.

0.1

1

10

100

1000

10000

100000

1
66

0
13

19
19

78
26

37
32

96
39

55
46

14
52

73
59

32
65

91
72

50
79

09
85

68
92

27
98

86
10

54
5

11
20

4
11

86
3

12
52

2
13

18
1

13
84

0
14

49
9

15
15

8
15

81
7

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "Retail" Transaction Database

0.1

1

10

100

1000

10000

100000

1 39 77 11
5

15
3

19
1

22
9

26
7

30
5

34
3

38
1

41
9

45
7

49
5

53
3

57
1

60
9

64
7

68
5

72
3

76
1

79
9

83
7

87
5

91
3

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "T40I10D100K" Transaction Database

145

Figure 60. Frequency of items in the T1014D100K database.

Each of the benchmark databases exhibit an approximate Zipf distribution

(Powers, 1998). The Zipf distribution is known to have an approximate distribution that

follows a distribution inversely proportional to its rank, where the rank in this case is the

item number (Powers, 1998). Probability distributions that are more uniformly

distributed, such as with the synthetic benchmark databases, did not compress well in the

prior research. These databases did not compress well in this research as well as is

indicated in the data that follow. Additionally, the synthetic databases had many items in

their ‘tail’. This resulted in a rapid deterioration in the compression ratio as memory was

limited. In fact, the achieved compression ratio (documented in the section to follow)

was over 1.0, this indicates an expansion of the data rather than a compression.

1

10

100

1000

10000

1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

52
6

56
1

59
6

63
1

66
6

70
1

73
6

77
1

80
6

84
1

Ite
m

 F
re

qu
en

cy

Item

Distribution of Items in "T1014D100K" Transaction Database

146

Database Compression Results

The coding of the memory limited dynamic Huffman algorithm was verified to be

correct and the benchmark databases were compressed using the algorithm. Summaries

of several metrics and measurements follow for each benchmark database. Appendix A

presents the raw data. As noted in Figure 59 and Figure 60, the synthetic databases

T40I10D100K and T1014D100K show a flatter distribution curve. This indicates the

synthetic data set has less entropy than the ‘real’ data sets (the data is more random). In

the previous research work the synthetic data did not compress well with the Huffman

compression. The compression ratios achieved were markedly less than the real data sets.

In the results that follow, these synthetic data sets continued to not compress as well as

the real data sets.

Accidents Benchmark Transaction Database Summary

The results of compressing the “Accidents” transaction database using the

memory limited dynamic Huffman compression algorithm are presented as follows.

Note. Ideal item ID size = 9 bits. summarizes the produced bits and the minimum

weighted path length for the Accidents benchmark database. The minimum weighted

path length is the sum of the weighted path from the root to the leaves in the dynamic

Huffman tree using the frequency of each leaf node as its weight multiplied by the

number of links to the root.

147

Table 21
Accidents Produced Bits and Minimum Weighted Path Length

Symbols processed ∑b ∑bopt

1000 7590 6311
10000 66044 64203
100000 640211 637892

Note. Ideal item ID size = 9 bits.

Figure 61 through Figure 64 show the results of applying the memory limited

dynamic Huffman algorithm to the benchmark “Accidents” database. When plotted on a

semi-log graph the histogram of the frequency of items appears to closely follow a

straight line. This approximates a “Zipf” distribution. The paper “Applications and

Explanations of Zipf's Law” provides a good start to understanding the origin of this

empirical law (Powers, 1998). Similar to the item frequency histogram, the compression

ratio vs the number of nodes in the tree appears as a straight line. It’s important to note

that the actual number of swaps is always less than the maximum number of swaps as

predicted by eq. 1. This also appears almost as a straight line when plotted on a semi-log

scale.

Note that compression ratios greater than 1.0 are an expansion of the source data

rather than a compression.

148

Figure 61. Accidents static versus memory limited dynamic compression ratio.

Figure 62. Accidents actual versus calculated max swaps.

0.7

0.8

0.9

1

1.1

1.2

0 200 400 600 800 1000

C
om

pr
es

si
on

 ra
tio

k, number of nodes

Database "Accidents"

dynamic compression static compression

0
1000000
2000000
3000000
4000000
5000000
6000000

100 200 300 500 600 700 800 900 939

Sw
ap

s

k

Database "Accidents"
Actual/Max Swaps vs k

swaps actual max swaps

149

Figure 63. Accidents actual versus calculated max swaps (semi-log).

Figure 64. Accidents actual swaps versus the compression ratio (semi-log).

1
10

100
1000

10000
100000

1000000
10000000

100 200 300 500 600 700 800 900

Sw
ap

s

k

Database "Accidents"
Actual/Max Swaps vs k (Logarithmic)

swaps actual max swaps

1

10

100

1000

10000

100000

1000000

10000000

0.903 0.783 0.739 0.738 0.732 0.731 0.727 0.726 0.725

Sw
ap

s

Compression Ratio

"Accidents" Swaps vs Compression Ratio (Logarithmic)

150

BMS1 Benchmark Transaction Database Summary

The results of compressing the “BMS1” transaction database using the memory

limited dynamic Huffman compression algorithm follow. Table 22 summarizes the

produced bits and the minimum weighted path length for the BMS1 benchmark database.

The minimum weighted path length is the sum of the weighted path from the root to the

leaves in the dynamic Huffman tree using the frequency of each leaf node as its weight

multiplied by the number of links to the root.

Table 22
BMS1 Produced Bits and Minimum Weighted Path Length

Symbols processed ∑b ∑bopt

1000 8996 6913
10000 64663 62087
100000 619374 615942

Note. Ideal item ID size = 9 bits.

Figure 65 through Figure 68 show the results of applying the memory limited

dynamic Huffman algorithm to the benchmark “BMS1” database. When plotted on a

semi-log graph the histogram of the frequency of items appears to closely follow a

straight line. Similarly, the compression ratio vs the number of nodes in the tree appears

as a straight line. The actual number of swaps is always less than the maximum number

of swaps as predicted by eq. 1. This also appears almost as a straight line when plotted

on a semi-log scale.

151

Figure 65. BMS1 static versus memory limited dynamic compression ratio.

Figure 66. BMS1 actual versus calculated max swaps.

0.7
0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

0 200 400 600 800 1000 1200

C
om

pr
es

si
on

 ra
tio

k, number of nodes

Database "BMS1"

dynamic compression static compression

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

100 200 300 400 500 600 700 800 900 996

Sw
ap

s

k

Database "BMS1"
Actual/Max Swaps vs k

swaps actual max swaps

152

Figure 67. BMS1 actual versus calculated max swaps (semi-log).

Figure 68. BMS1 actual swaps versus the compression ratio (semi-log).

1

10

100

1000

10000

100000

1000000

100 200 300 400 500 600 700 800 900 996

Sw
ap

s

k

Database "BMS1"
Actual/Max Swaps vs k (Logarithmic)

swaps actual max swaps

1

10

100

1000

10000

100000

1000000

Sw
ap

s

Compression Ratio

BMS1 Swaps vs Compression Ratio (Logarithmic)

153

BMS-POS Benchmark Transaction Database Summary

The results of compressing the “BMS-POS” transaction database using the

memory limited dynamic Huffman compression algorithm follow.

Table 23 summarizes the produced bits and the minimum weighted path length for

the BMS-POS benchmark database. The minimum weighted path length is the sum of

the weighted path from the root to the leaves in the dynamic Huffman tree using the

frequency of each leaf node as its weight multiplied by the number of links to the root.

Note that compression ratios greater than 1.0 are an expansion of the source data

rather than a compression.

Table 23
BMS-POS Produced Bits and Minimum Weighted Path Length

Symbols processed ∑b ∑bopt

1000 9196 6586
10000 68101 63725
100000 730370 723163

Note. Ideal item ID size = 11 bits.

Figure 69 through Figure 72 show the results of applying the memory limited

dynamic Huffman algorithm to the benchmark “BMS-POS” database. When plotted on a

semi-log graph the histogram of the frequency of items appears to closely follow a

straight line. Similarly, the compression ratio vs the number of nodes in the tree appears

as a straight line. Again, for this benchmark database, the actual number of swaps is

always less than the maximum number of swaps as predicted by eq. 1. This also appears

almost as a straight line when plotted on a semi-log scale.

154

Figure 69. BMS-POS static versus memory limited dynamic compression ratio.

Figure 70. BMS-POS actual versus calculated max swaps.

0.63
0.68
0.73
0.78
0.83
0.88
0.93
0.98
1.03
1.08

0 500 1000 1500 2000 2500 3000 3500 4000

C
om

pr
es

si
on

 ra
tio

k, number of nodes

Database "BMS-POS"

dynamic compression static compression

0

100000

200000

300000

400000

500000

600000

700000

500 800 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

Sw
ap

s

k

Database "BMS-POS"
Actual/Max Swaps vs k

swaps actual max swaps

155

Figure 71. BMS-POS actual versus calculated max swaps (semi-log).

Figure 72. BMS-POS actual swaps versus the compression ratio (semi-log).

BMS-Webview2 Benchmark Transaction Database Summary

The results of compressing the “BMS-Webview2” transaction database using the

memory limited dynamic Huffman compression algorithm follow. Table 24 summarizes

1
10

100
1000

10000
100000

1000000

500 800 10001250150017502000225025002750300032503500

Sw
ap

s

k

Database "BMS-POS"
Actual/Max Swaps vs k (Logarithmic)

swaps actual max swaps

1

10

100

1000

10000

100000

1000000

Sw
ap

s

Compression Ratio

BMS-POS Swaps vs Compression Ratio (Logarithmic)

156

the produced bits and the minimum weighted path length for the BMS-Webview2

benchmark database. The minimum weighted path length is the sum of the weighted path

from the root to the leaves in the dynamic Huffman tree using the frequency of each leaf

node as its weight multiplied by the number of links to the root.

Table 24
BMS-POS Produced Bits and Table Minimum Weighted Path Length

Symbols processed ∑b ∑bopt

1000 12737 7670
10000 103325 85794
100000 932816 902000

Note. Ideal item ID size = 11 bits.

Figure 73 through Figure 76 show the results of applying the memory limited

dynamic Huffman algorithm to the benchmark “BMS-Webview2” database. When

plotted on a semi-log graph the histogram of the frequency of items appears to closely

follow a straight line. Again, for this benchmark database, the compression ratio vs the

number of nodes in the tree appears as a straight line. It’s important to note that the

actual number of swaps is always less than the maximum number of swaps as predicted

by eq. 1. This also appears almost as a straight line when plotted on a semi-log scale.

Note that compression ratios greater than 1.0 are an expansion of the source data

rather than a compression.

157

Figure 73. BMS-Webview2 static versus memory limited compression ratio.

Figure 74. BMS-Webview2 actual versus calculated max swaps.

0.7
0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

0 1000 2000 3000 4000 5000 6000 7000 8000

C
om

pr
es

si
on

 ra
tio

k, number of nodes

Database "BMS-Webview-2"

dynamic compression static compression

0

100000

200000

300000

400000

500000

500 1000 2000 3000 4000 5000 6000 6684

Sw
ap

s

k

Database "BMS-Webview-2"
Actual/Max Swaps vs k

swaps actual max swaps

158

Figure 75. BMS-Webview2 actual versus calculated max swaps (semi-log).

Figure 76. BMS-Webview2 actual swaps versus compression ratio (semi-log).

1

10

100

1000

10000

100000

1000000

500 1000 2000 3000 4000 5000 6000 6684

Sw
ap

s

k

Database "BMS-Webview-2"
Actual/Max Swaps vs k (Logarithmic)

swaps actual max swaps

1

10

100

1000

10000

100000

1000000

Sw
ap

s

Compression Ratio

BMS-Webview-2 Swaps vs Compression Ratio (Logarithmic)

159

Kosarak Benchmark Transaction Database Summary

The results of compressing the “Kosarak” transaction database using the memory

limited dynamic Huffman compression algorithm follow. Table 25 summarizes the

produced bits and the minimum weighted path length for the Kosarak benchmark

database. The minimum weighted path length is the sum of the weighted path from the

root to the leaves in the dynamic Huffman tree using the frequency of each leaf node as

its weight multiplied by the number of links to the root.

Table 25
Kosarak Produced Bits and Minimum Weighted Path Length

Symbols processed ∑b ∑bopt

1000 15705 7617
10000 138970 92114
100000 1105771 958237

Note. Ideal item ID size = 16 bits.

Figure 77 through Figure 80 show the results of applying the memory limited

dynamic Huffman algorithm to the benchmark “Kosarak” database. When plotted on a

semi-log graph the histogram of the frequency of items appears to closely follow a

straight line. Again, for this benchmark database, the compression ratio vs the number of

nodes in the tree appears as a straight line. It’s important to note that the actual number

of swaps is always less than the maximum number of swaps as predicted by eq. 1. This

also appears almost as a straight line when plotted on a semi-log scale.

Note that compression ratios greater than 1.0 are an expansion of the source data

rather than a compression.

160

Figure 77. Kosarak static vs. memory limited dynamic compression ratio

Figure 78. Kosarak actual versus calculated max swaps

0.58

0.68

0.78

0.88

0.98

1.08

0 20000 40000 60000 80000 100000

C
om

pr
es

si
on

 ra
tio

k, number of nodes

Database "Kosarak"

dynamic compression static compression

0
2000000
4000000
6000000
8000000

10000000
12000000

Sw
ap

s

k

Database "Kosarak"
Actual/Max Swaps vs k

swaps actual max swaps

161

Figure 79. Kosarak actual versus calculated max swaps (semi-log).

Figure 80. Kosarak actual swaps versus the compression ratio (semi-log).

Retail Benchmark Transaction Database Summary

The results of compressing the “Retail” transaction database using the memory

limited dynamic Huffman compression algorithm follow.

1
10

100
1000

10000
100000

1000000
10000000

100000000
Sw

ap
s

k

Database "Kosarak"
Actual/Max Swaps vs k (Logarithmic)

swaps actual max swaps

1000

10000

100000

1000000

10000000

Sw
ap

s

Compression Ratio

Kosarak Swaps vs Compression Ratio (Logarithmic)

162

Table 26 summarizes the produced bits and the minimum weighted path length for

the Retail benchmark database. The minimum weighted path length is the sum of the

weighted path from the root to the leaves in the dynamic Huffman tree using the

frequency of each leaf node as its weight multiplied by the number of links to the root.

Table 26
Retail Produced Bits and Minimum Weighted Path Length

Symbols processed ∑b ∑bopt

1000 16729 7953
10000 140590 95212
100000 1137663 1039451

Note. Ideal item ID size = 15 bits.

Figure 81 through Figure 84 show the results of applying the memory limited

dynamic Huffman algorithm to the benchmark “Retail” database. When plotted on a

semi-log graph the histogram of the frequency of items appears to closely follow a

straight line. Again, for this benchmark database, the compression ratio vs the number of

nodes in the tree appears as a straight line. It’s important to note that the actual number

of swaps is always less than the maximum number of swaps as predicted by eq. 1. This

also appears almost as a straight line when plotted on a semi-log scale

Note that compression ratios greater than 1.0 are an expansion of the source data

rather than a compression.

.

163

Figure 81. Retail static versus memory limited dynamic compression ratio.

Figure 82. Retail actual versus calculated max swaps.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5000 10000 15000 20000 25000 30000 35000

C
om

pr
es

si
on

 ra
tio

k, number of nodes

Database "Retail"

dynamic compression static compression

0
200000
400000
600000
800000

1000000
1200000

1000 5000 10000 20000 25000 30000 32943

Sw
ap

s

k

Database "Retail"
Actual/Max Swaps vs k

swaps actual max swaps

164

Figure 83. Retail actual versus calculated max swaps (semi-log).

Figure 84. Retail actual swaps versus the compression ratio (semi-log).

1

10

100

1000

10000

100000

1000000

1000 5000 10000 20000 25000 30000 32943

Sw
ap

s

k

Database "Retail"
Actual/Max Swaps vs k (Logarithmic)

swaps actual max swaps

1

10

100

1000

10000

100000

1000000

Sw
ap

s

Compression Ratio

Retail Swaps vs Compression Ratio (Logarithmic)

165

T40I10D100K Benchmark Transaction Database Summary

The results of compressing the “T40I10D100K” transaction database using the

memory limited dynamic Huffman compression algorithm follow. Table 27 summarizes

the produced bits and the minimum weighted path length for the T40I10D100K

benchmark database. The minimum weighted path length is the sum of the weighted path

from the root to the leaves in the dynamic Huffman tree using the frequency of each leaf

node as its weight multiplied by the number of links to the root.

Table 27
T40I10D100K Produced Bits and Minimum Weighted Path Length

Symbols processed ∑b ∑bopt

1000 14084 8696
10000 102203 92469
100000 939618 928024

Note. Ideal item ID size = 10 bits.

Figure 85 through Figure 88 show the results of applying the memory limited

dynamic Huffman algorithm to the benchmark “T40I10D100K” database. When plotted

on a semi-log graph the histogram of the frequency of items appears to closely follow a

straight line. Again, for this benchmark database, the compression ratio vs the number of

nodes in the tree appears as a straight line. It’s important to note that the actual number

of swaps is always less than the maximum number of swaps as predicted by eq. 1. This

also appears almost as a straight line when plotted on a semi-log scale.

166

Figure 85. T40I10D100K static versus memory limited dynamic compression ratio.

Figure 86. T40I10D100K actual versus calculated max swaps.

0.9

0.95

1

1.05

1.1

1000 1200 1400 1600 1800 2000

C
om

pr
es

si
on

 ra
tio

k, number of nodes

Database "T40I10D100K"

dynamic compression static compression

0

200000

400000

600000

800000

1000000

1200000

1000 1200 1400 1600 1800 1886

Sw
ap

s

k

Database "T40I10D100K"
Actual/Max Swaps vs k

swaps actual max swaps

167

Figure 87. T40I10D100K actual versus calculated max swaps (semi-log).

Figure 88. T40I10D100K actual swaps versus the compression ratio (semi-log).

1
10

100
1000

10000
100000

1000000
10000000

1000 1200 1400 1600 1800 1886

Sw
ap

s

k

Database "T40I10D100K"
Actual/Max Swaps vs k (Logarithmic)

swaps actual max swaps

1

10

100

1000

10000

100000

1000000

10000000

1.061 1.055 0.996 0.949 0.931 0.929

Sw
ap

s

Compression Ratio

T40I10D100K Swaps vs Compression Ratio (Logarithmic)

168

T1014D100K Benchmark Transaction Database Summary

The results of compressing the “T1014D100K” transaction database using the

memory limited dynamic Huffman compression algorithm follow. Table 28 summarizes

the produced bits and the minimum weighted path length for the T1014D100K

benchmark database. The minimum weighted path length is the sum of the weighted path

from the root to the leaves in the dynamic Huffman tree using the frequency of each leaf

node as its weight multiplied by the number of links to the root.

Table 28
T1014D100K Produced Bits and Minimum Weighted Path Length

Symbols processed ∑b ∑bopt

1000 12870 8227
10000 95467 87494
100000 891435 881649

Note. Ideal item ID size = 10 bits.

Figure 89 through Figure 92 show the results of applying the memory limited

dynamic Huffman algorithm to the benchmark “T1014D100K” database. When plotted

on a semi-log graph the histogram of the frequency of items appears to closely follow a

straight line. Again, for this benchmark database, the compression ratio vs the number of

nodes in the tree appears as a straight line. It’s important to note that the actual number

of swaps is always less than the maximum number of swaps as predicted by eq. 1. This

also appears almost as a straight line when plotted on a semi-log scale.

Note that compression ratios greater than 1.0 are an expansion of the source data

rather than a compression.

169

Figure 89. T1014D100K static versus memory limited dynamic compression ratio.

Figure 90. T1014D100K actual versus calculated max swaps.

0.85

0.9

0.95

1

1.05

1.1

1.15

900 1100 1300 1500 1700 1900

C
om

pr
es

si
on

 ra
tio

k, number of nodes

Database "T1014D100K"

dynamic compression static compression

0
50000

100000
150000
200000
250000
300000
350000

900 1100 1300 1500 1742

Sw
ap

s

k

Database "T1014D100K"
Actual/Max Swaps vs k

swaps actual max swaps

170

Figure 91. T1014D100K actual versus calculated max swaps (semi-log).

Figure 92. T1014D100K actual swaps versus the compression ratio (semi-log).

1

10

100

1000

10000

100000

1000000

900 1100 1300 1500 1742

Sw
ap

s

k

Database "T1014D100K"
Actual/Max Swaps vs k (Logarithmic)

swaps actual max swaps

1

10

100

1000

10000

100000

1000000

1.00 0.99 0.91 0.90 0.88

Sw
ap

s

Compression Ratio

T1014D100K Swaps vs Compression Ratio (Logarithmic)

171

Discussion of Benchmark Compression Results

 The first table presented above for each of the benchmark databases collected data

summaries is the produced bits and the minimum weighted path length for 1000 symbols

processed, 10,000 symbols processed and 100,000 symbols processed. The raw data

collected is presented in Appendix A.

 Note that for each of the databases the produced bits are greater than the

minimum weighted path length, as would be expected. Recall the minimum weighted

path length is the ideal number of bits in a compressed file that does not include the

overhead of the dynamic compression or the overhead in transmitting the shape of the

Huffman tree in a static compression scheme.

 As noted above, most of the item distributions appear to follow the zipf (Powers,

1998) distribution. The distribution of items is a compilation, a list, of the number of

times each item ID appears in the database. The list of the items is then sorted by

frequency and displayed as a histogram. When plotted on a semi-log graph, the list

appears almost as a straight line, following a zipf distribution. An exception may be the

synthetic databases. The item distributions in these cases also appear to be straight line

when plotted on a semi-log axis, but the distribution appears to be more uniform and

flatter.

 The next figure is that of the dynamic compression ratio vs the number of nodes.

Also plotted on this figure is the static compression ratio as determined in prior research.

There are a couple of important data points here. Firstly, in all cases the dynamic

compression ratio approaches the static compression ratio when the number of nodes is

large. When the number of nodes is large, the memory limited dynamic Huffman

172

compression algorithm performs identical to the dynamic Huffman compression

algorithm as proposed by Knuth (1985). This is because the number of nodes allowed in

the tree, k, will equal the number of different items in the database, n. Next, as identified

by Knuth (1985) and Vitter (1989), it is noted that for a large number of compressed

items, the static Huffman compression will approach that of the dynamic Huffman

compression. This is because, as noted by Vitter and Knuth, the ‘overhead’ is a fixed

amount.

 As the number of allowed nodes in the Huffman tree, k, is reduced, it is noted that

the compression ratio decreases. This is a result of eq. 1. Eq. 1 predicts that the number

of swaps will increase as the k is reduced (and the number of tail items, n-k, increases).

The reduced compression is a result of more NYT symbols, and a corresponding

uncompressed input symbol, being introduced into the compressed output stream, for

each swap.

 It is interesting to compare these results to the Pareto 80/20 principal (Reh, 2005).

Pareto, based on the power law as proposed by Zipf, stated that 80% of the results come

from the 20% vital few. It’s a general heuristic rule. If the Pareto rule holds for the

compression of the benchmark databases using the memory limited dynamic Huffman

compression algorithm, it would be expected that the achieved data compression would

be 80% of the static data compression, if memory were limited to only 20% of the

memory needed for the static compression. Based on this principal the following

tabulates the results of the compression ratio vs k with the actual 20% results, and what

the Pareto 80/20 rule predicts in Table 29. The Pareto 80/20 rule is a rough ‘rule of

173

thumb.’ The rule seems to underestimate the achieved compression for all but three of

the benchmark databases.

 The figures present the relationships of the actual vs theoretical number of max

swaps as predicted by eq.1. In every case the actual number of swaps is less than the

theoretical number of maximum swaps. This lends evidence to the correctness of the

equation.

Table 29
Comparison of Actual 20% Compression Results to Pareto

Benchmark database
Actual 20% of final

compression Pareto 20%

Accidents 79.86% 87%
BMS1 86.8% 86.6%
BMS-POS 72.3% 77.47%
BMS-Webview2 97.34% 93.9%
Kosarak 66.5% 73.28%
Retail 94.25% 86.9%
T40I10D100K 107% 112%
T1014D100K 106% 106%

Note that compression ratios greater than 100% are an expansion of the source

data rather than a compression. For a discussion of the synthetic database results see the

section on Characteristics of the Benchmark Transaction Data.

The final figure presents the compression ratio vs. the actual number of swaps.

The plot is a monotonically decreasing line or curve, indicating that the compression ratio

is some monotonically decreasing function of the number of swaps, and thus k.

174

Chapter 5

Conclusions, Implications, Recommendations

Conclusions

The streaming transaction database is important to many applications. These

include retail and online sales, stock market transactions, security tracking of layer 3 and

layer 2 switches, fitness trackers, connected cars and a host of other applications where

the data can be fit as a transaction ID key and a list of item IDs. Compression of the

transaction data stream must be accomplished as compression of a horizontally formatted

transaction database. A streaming database may span periods of weeks or years. During

this period, the item IDs may change; new ones may appear and old ones disappear. The

frequency of the item ID’s may have a temporal component.

In this research, Huffman compression is proposed as a solution to this

compression. This research presents a modification to dynamic Huffman compression

(Knuth, 1985) that can scale to the limited hardware resources of high speed, dedicated

computing hardware (i.e., the FPGA). It allows memory constrained hardware to perform

Huffman compression using an alphabet, or symbol list, that would otherwise overflow

the limited memory. It adapts to the temporal changes to item frequencies.

This research developed a new algorithm, the memory limited dynamic Huffman

algorithm, that was demonstrated to compress a data stream using less memory than the

dynamic Huffman algorithm proposed by Knuth (1985), also known as algorithm FGK.

The amount of memory the algorithm uses is user defined. The amount of memory

consumed is chosen by a constant k that is defined as the number of nodes in the

Huffman tree. In the original FGK algorithm, the number of nodes allowed in the tree

175

was defined as n, and had to be greater than or equal to the total number of different

items, or symbols, in the database schema.

When the constant k is chosen to equal n, the memory limited dynamic Huffman

algorithm operates identical to the original FGK algorithm. It provides similar

compression ratios, and asymptotic time and memory requirements. On the other end,

when k → 1, the resulting compression ratio will be worse than 1.0. It will be an

expansion. In fact, at this extreme, the resulting compression can be calculated exactly.

Note that when k = 1, only one symbol will be allowed in the Huffman tree. This symbol

will be the NYT symbol. There will not be any room in the tree for new symbols so the

algorithm will constantly emit the NYT symbol in the ‘compressed’ output stream

followed by the uncompressed input symbol. Further, the NYT symbol will have a length

of 1 bit since it is the only item in the tree. Assume the input symbols have a bit length of

b. Assume compression ratio is defined as 𝑐𝑐/𝑢𝑢 , where c is the compressed files length in

bits, and u is the original file length in bits. Then, the resulting compression ratio will be

(𝑏𝑏 + 1)/𝑏𝑏, or

𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝑀𝑀𝐶𝐶𝑛𝑛 𝑅𝑅𝑎𝑎𝑡𝑡𝑀𝑀𝐶𝐶|𝑘𝑘=1 = 1 +
1
𝑏𝑏

This is Equation 3. Equation 3 will be greater than 1.0, thus it will be an

expansion of the input file. The designer can expect the resulting compression ratio when

k is chosen between 1 < k < n, between these two extremes. The exact relationship

between the compression ratio and k may require additional research, but the empirical

evidence suggests that mathematically, it is a concave up, decreasing, curve between

these two points. A concave down function f(x), is defined as one where all tangents to

176

the curve are below the function f(x). The exception to this shape seem to be the

synthetic databases. The shape seems to ‘top’ out at low values of k. This may be due to

an item distribution that does not follow the zipf (Powers, 1998) distribution.

Note that it was shown in the Discussion of Benchmark Compression Results

section, that for these benchmark databases Pareto’s 80/20 heuristic of the vital few (Reh,

2005) seems to roughly hold (see Table 29). These results will guide a designer in

choosing the constant k.

Finally, eq. 3 will only be an upper bound for the transaction database

compression result obtained herein. The actual compression ratio will be less for two

reasons. Both reasons are due to the compression model chosen for the transaction

database. The compressed output stream includes an uncompressed transaction ID and a

compressed transaction delimiter for each transaction. The transaction delimiter will also

be encoded as a 1-bit prefix in the Huffman tree. A transaction delimiter occurs at the

end of every transaction. It is used because each transaction is variable length. These

differences will cause the worst-case compression ratio to be a bit better than the upper

limit of 1 + 1/𝑏𝑏.

If a software engineer were to decide to use the memory limited dynamic

Huffman algorithm, that person might have a couple questions:

Question? Can the memory limited dynamic Huffman algorithm compress

and decompress a data file? Has it been verified against the Knuth (1985)

FGK algorithm?

177

Answer: The algorithm has been verified to compress decompress data files. It

has been verified to obtain results identical to algorithm FGK (Knuth,

1985).

Question? How much memory and processor time is required by the memory

limited dynamic Huffman algorithm?

Answer: From a theoretical standpoint, the algorithm has identical memory and

time requirements to algorithm FGK (Knuth, 1985) when k = n. When k <

n, the memory requirements are less than algorithm FGK. The required

size of the Huffman tree will be proportional to k. It will be ‘controlled’

by the selection of the value k.

Question? What is the main advantage of the memory limited dynamic Huffman

compression algorithm?

Answer: The algorithm provides a ‘dial’ that controls the amount of memory

consumed. This is particularly important for memory limited compute

machines, or applications where the symbol list may be large. The dial is

the constant k. On one end the dial allows the algorithm to perform no

worse than the original algorithm FGK, but also has the same memory

requirement. On the other end, the dial will limit memory, but will also

limit the resulting compression obtained.

Question? How can the resulting compression be determined for a given value of

k at design time?

Answer: An equation to determine the compression ratio obtained would

necessarily depend on the distribution of items and the distribution item

178

IDs in the transactions. Some rough guides can be provided. A static

compression of the data, or a sampling technique could determine the best-

case compression that can be obtained, i.e. k = n. At the other end of the

spectrum, when k = 1, Eq. 3 can be used. Finally, Pareto’s 80/20 heuristic

can be considered.

Thus, this research shows that the memory limited dynamic Huffman algorithm

does not consume more memory or time than the FGK algorithm. It provides identical

compress results to the FGK algorithm when it is uses the same amount of memory

(k = n). The amount of memory the algorithm consumes can be ‘dialed down’, when

memory is reduced then the resulting compression will also be reduced. When k = 1, the

expected compression can be calculated by eq. 3.

 Implications

Data mining can be a data intensive operation. Database operations such as the

join and aggregation require access to large blocks of the database for their computation.

In fact, as has been shown in this research, many algorithms exist for database mining

applications that propose compression of the data as part of their algorithm. Generally,

the proposal in these algorithms is for the data to be compressed so larger sections can

reside in main memory and reduce secondary memory I/O operations. The memory

limited dynamic Huffman algorithm provides a method to compress a transaction

database so larger sections can fit into the primary memory. The FPGA space study

characterized how much of the database can fit into the on-chip memory for each of the

benchmark databases.

179

Finally, the memory limited dynamic Huffman algorithm may find use as a

general compression algorithm in an application where a large list of symbols will result

compared to the available main memory. The application would necessarily have a non-

uniform item frequency distribution. An example of a non-linear distribution is the zipf

distribution (Powers, 1998).

Recommendations

Vilfredo Paredo’s 80/20 heuristic (Rey, 2005) sparks an interesting possibility for

further research. The memory limited dynamic Huffman algorithm is based on algorithm

FGK. Perhaps a different approach, based on Paredo’s observation would yield a

different compression algorithm. A second recommendation for further research would

be to provide a more exact theoretical and analytical basis for the shape of the

compression ratio vs. k curve. Finally, additional research could focus on alternate

methods of updating the frequency of the NYT code. The probability of the NYT code

seems to differ between the memory limited and non-limited dynamic Huffman

algorithms and may provide a possibility for algorithm optimization.

Recommendations for the software engineer interested in implementing the

memory limited dynamic Huffman algorithm include understanding the nature of the

frequency distribution of items in the database. Firstly, a non-uniform distribution of the

item IDs should exist to take advantage of Huffman type compressions. Other

compression techniques, such as RLE compression, do not rely on a non-uniform

distribution. Second, Huffman compression will not compress a binary alphabet. For

this application RLE compression may be a better choice. Finally, the item distribution in

the target application should have many, infrequent, tail items. When the shape of the

180

histogram has many infrequent tail items then less swaps will occur. Less swaps will lead

to a better overall compression ratio approaching that of the static Huffman compression

algorithm and the opportunity to save memory as compared to algorithm FGK (Knuth,

1985).

181

Appendix A

Raw Data

Table A1

Accidents Database Raw Data: Ideal Item ID Bit Size = 9, Uncompressed File Size =
106569477

k
swaps
actual

max
swaps

dynamic
compression Compressed size run time (ms)

1 - - 1.087 - -
100 3323604 5001968 0.903 96232238 0:11:06.328
200 844037 1336496 0.783 83443900 0:26:24.503
300 170568 338352 0.739 78754844 0:38:58.548
500 4682 9158 0.738 78648274 1:01:33.063
600 680 1176 0.731 77902288 1:09:05.415
700 214 304 0.731 77902288 1:14:20.623
800 87 134 0.726 77369440 1:19:23.709
900 19 34 0.725 77262871 1:21:58.996
939 0 0 0.725 77262871 1:13:42.846

- = data point not recorded

182

Table A2

BMS1 Database Raw Data: Ideal Item ID Bit Size = 9, Uncompressed File Size =
1881243

k
swaps
actual

max
swaps

dynamic
compression Compressed size run time (ms)

1 - - 1.064862434 - -
2 - - 1.049138787 - -

100 82255 158212 0.898146598 1689632 00:00:05.168
200 53726 102794 0.868146598 1867453 00:00:11.140
300 33796 65376 0.802481126 1509662 00:00:17.091
400 20321 40340 0.795587667 1529454 00:00:23.512
500 11870 22642 0.792587667 1491050 00:00:31.530
600 5573 11424 0.738729659 1389730 00:00:37.083
700 2583 4230 0.731160196 1375490 00:00:43.251
800 800 1262 0.724355652 1362689 00:00:47.000
900 184 234 0.722091192 1358429 00:00:47.941
996 1 1 0.721839762 1357956 00:00:47.108

183

Table A3

BMS-POS Database Raw Data: Ideal Item ID Bit Size = 11, Uncompressed File Size =
42705542

k
swaps
actual

max
swaps

dynamic
compression Compressed size run time (ms)

1 - - 1.07 - -

500 327902 601654 0.706750449 30182161 00:37:38.000
800 138686 258540 0.673883029 28778540 01:05:51.086
1000 86444 159386 0.662901831 28309582 01:22:32.290
1250 48611 88084 0.656886312 28052686 01:21:12.228
1500 26466 46664 0.652291499 27856462 01:39:25.122
1750 13342 23064 0.64874786 27705129 01:53:57.752
2000 6329 10440 0.647521743 27652767 02:16:07.656
2250 2873 4228 0.646985092 27629849 02:26:37.191
2500 1113 1476 0.646025989 27588890 02:34:37.465
2750 453 590 0.64583496 27580732 02:30:55.774
3000 191 312 0.645639973 27572405 02:34:23.000
3250 35 62 0.645636836 27572271 02:44:31.288
3500 1 1 0.645636789 27572269 02:44:25.756

184

Table A4

BMS-Webview2 Database Raw Data: Ideal Item ID Bit Size = 12, Uncompressed File
Size = 5227212

k
swaps
actual

max
swaps

dynamic
compression Compressed size run time (ms)

1 - - 1.07 - -

500 222053 389856 0.995397279 6248595 02:12.134
1000 169790 278912 0.981231111 5547280 08:17.011
2000 110609 152996 0.957945031 5111926 10:02.757
3000 74292 83110 0.906933088 4949820 29:22.104
4000 37528 40058 0.88524571 4627367 22:01.680
5000 7391 14832 0.838683795 4383978 34:04.437
6000 292 2552 0.797821286 4170381 53:39.925
6684 1 1 0.782809077 4091909 26:41.860

185

Table A5

Kosarak Database Raw Data: Ideal Item ID Bit Size = 16, Uncompressed File Size =
144144272

k
swaps
actual

max
swaps

dynamic
compression Compressed size run time (ms)

1 - - 1.040408994 - -
100 5355473 10229312 1.002609982 144520486 00:03:31.840
500 4508579 8019836 0.968413188 139591214 00:43:14.285
1000 3810859 6680176 0.958983268 138231945 01:34:13.578
2000 3010300 4987808 0.876791913 126384532 03:17:35.897
5000 1760752 2775958 0.78738929 113497656 08:15:39.560
8000 1212674 1794606 0.738336047 106426912 11:37:35.803

10000 921185 1378346 0.704294847 101520068 13:57:21.962
20000 362249 539258 0.643793151 92799095 1.21:44:24.255
40000 93930 116156 0.618570032 89163327 5.05:12:14.685
45000 66846 80812 0.616307147 88837145 7.08:42:45.846
55000 31335 38614 0.612512463 88290163 10.14:16:53.829
65000 14311 17538 0.611349156 88122479 12.21:51:18.261
75000 4450 7538 0.610768751 88038817 15.04:35:25.072
82542 1 1 0.610709602 88030291 16.06:55:02.405

186

Table A6

Retail Database Raw Data: Ideal Item ID Bit Size = 15, Uncompressed File Size =
14951070

k
swaps
actual

max
swaps

dynamic
compression Compressed size run time (ms)

1 - - 1.05683 - -
1000 568599 972768 0.98428168 14716064.3 00:10:45.711
5000 310246 427200 0.974856582 14575149 00:44:02.832
10000 160639 182530 0.872991431 13052156 02:46:16.608
20000 32017 33470 0.775495199 11594483 05:45:00.891
25000 11701 12204 0.745606769 11147619 07:59:02.450
30000 2885 2938 0.729850573 10912047 10:51:57.407
32943 1 1 0.724280737 10828772 18:38:34.070

Table A7

T40I10D100K Database Raw Data: Ideal Item ID Bit Size = 10, Uncompressed File Size
= 40605070

k
swaps
actual

max
swaps

dynamic
compression Compressed size run time (ms)

1 - - 1.08 - -
1000 1072226 1128498 1.061436294 47160202 00:00:49:22.493
1200 583436 644068 1.055367815 42853284 00:00:51:21.000
1400 283515 304320 0.995682066 40429740 00:01:03:01.910
1600 98857 100410 0.948954502 38532364 00:01:17:50.235
1800 9031 9306 0.930760026 37793576 00:00:57:44.700
1886 1 1 0.929365471 37736950 00:01:00:57.321

187

Table A8

T1014D100K Database Raw Data: Ideal Item ID Bit Size = 10, Uncompressed File Size
= 11102280

k
swaps
actual

max
swaps

dynamic
compression Compressed size run time (ms)

1 - - 1.098598 - -
500 - - 1.0538722 - -
900 283328 294560 0.995832478 11056011 12:37.4
1100 152396 165744 0.989900183 10990149 19:22.6
1300 46965 76610 0.91402847 10147800 18:18.1
1500 15523 20550 0.895552535 9942675 22:03.7
1742 1 1 0.883236867 9805943 27:15.9

188

References

Abu-Mostafa, Y. S., & McEliece, R. J. (2000). Maximal codeword lengths in Huffman
codes. Computers & Mathematics with Applications, 39(11), 129-134. doi:
10.1016/S0898-1221(00)00119-X

Aggarwal, C. C. (2007). An introduction to data streams. Advances in Database Systems
Data Streams, (Vol. 31) 1-8. doi:10.1007/978-0-387-47534-9_1

Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. (2000). Depth first generation of long
patterns. Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 108-118. doi:10.1145/347090.347114

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets
of items in large databases. SIGMOD '93 Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, 22(2), 207-216.
doi:10.1145/170036.170072

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules.
Proceedings of the 20th International Conference on Very Large Databases, 487-
499.

Ashrafi, M., Taniar, D., & Smith, K. (2007). An efficient compression technique for
vertical mining methods. Research and Trends in Data Mining Technologies and
Applications, 143-173. doi:10.4018/978-1-59904-271-8.ch006

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues
in data stream systems. Proceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, 1-16. ACM.

Baker, Z., & Prasanna, V. (2005). Efficient hardware data mining with the Apriori
algorithm on FPGAs. Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'05), 3-12.
doi:10.1109/fccm.2005.31

Baker, Z., & Prasanna, V. (2006). An architecture for efficient hardware data mining
using reconfigurable computing systems. 2006 Proceedings of the 14th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, 67-75.
doi:10.1109/fccm.2006.22

Bassman, Frame (2014). Dynamic Huffman Coding algorithm in C# (Version 2)
[Software]. Retreived from http://dynamichuffman.codeplex.com

Bayardo, R. J. (1998). Efficiently mining long patterns from databases. Proceedings of
the 1998 ACM SIGMOD International Conference on Management of Data,
27(2), 85-93. doi:10.1145/276305.276313

189

Blelloch, G. E. (2001). Introduction to Data Compression. Computer Science
Department, Carnegie Mellon University. Retrieved from
https://www.cs.cmu.edu/~guyb/realworld/compression.pdf

Bodon, F., & Rónyai, L. (2003). Trie: An alternative data structure for data mining
algorithms. Mathematical and Computer Modelling, 38(7), 739-751.

Bose, F., Kranakis, E., Morin, P., & Tang, Y. (2003). Bounds for frequency estimation of
packet streams. Proceedings of the 10th SIROCCO International Colloquium on
Structural Information and Communication Complexity, 38(7), 33-42.

Burdick, D., Calimlim, M., & Gehrke, J. (2001). MAFIA: A maximal frequent item set
algorithm for transactional databases. Proceedings 17th IEEE International
Conference on Data Engineering, 443-451. doi:10.1109/icde.2001.914857

Cannataro, M., Carelli, G., Pugliese, A., & Sacca, D. (2001, September). Semantic lossy
compression of XML data. Proceedings of the 8th International Workshop on
Knowledge Representation Meets Databases, 45, 1-10.

Charikar, M., Chen, K., & Farach-Colton, M. (2002). Finding frequent items in data
streams. Automata, Languages and Programming Lecture Notes in Computer
Science, 693-703. doi:10.1007/3-540-45465-9_59

Codd, E. F. (1971). Further normalization of the database relational model. Database
Systems, Courant Computer Science Symposia 6, 65-98.

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM, 13(6), 377-387. doi:10.1145/362384.362685

Collet, Y. (2011, November 18). A format for compressed streams [Blog post]. Retrieved
from http://fastcompression.blogspot.com/2011/11/format-for-compressed-
file.html

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to
algorithms (3rd ed.). Cambridge, MA: MIT Press.

Cormode, G., & Hadjieleftheriou, M. (2008). Finding frequent items in data streams.
Proceedings of the VLDB Endowment, 1(2), 1530-1541.
doi:10.14778/1454159.1454225

Demaine, E. D., López-Ortiz, A., & Munro, J. I. (2002). Frequency estimation of internet
packet streams with limited space. Algorithms, ESA 2002 Lecture Notes in
Computer Science, 348-360. doi:10.1007/3-540-45749-6_33

Dillen, P. (2016, March 6). And the winner of Best FPGA of 2016 is… [Blog post]. EE
Times, retrieved from: https://www.eetimes.com/author.asp?doc_id=1331443

190

Dodig-Crnkovic, G. (2002). Scientific methods in computer science. Proceedings of the
Conference for the Promotion of Research in IT at New Universities and at
University Colleges in Sweden, 126-130.

Faller, N. (1973). An adaptive system for data compression. Record of the 7th Asilomar
Conference on Circuits, Systems, and Computers, 593(1), 597.

Gage, P. (1994). A new algorithm for data compression. The C Users Journal, 12(2), 23-
38.

Gallager, R. G., & Van Voorhis, D. C. (1975). Optimal source codes for geometrically
distributed integer alphabets (correspondence). IEEE Transactions on
Information Theory, 21(2), 228-230. doi: 10.1109/TIT.1975.1055357

Gallager, R. G. (1978). Variations on a theme by Huffman. IEEE Transactions on
Information Theory, 24(6), 668-674. doi: 10.1109/TIT.1978.1055959

Garcia-Molina, H., Ullman, J.D., & Widom, J., (2008). Database Systems, the Complete
Book (2nd ed.), 691-695, New Jersey: Prentice Hall Press.

Golomb, S. (1966). Run length encodings (correspondence). IEEE Trans on Information
Theory, 12(3), 399-401. doi: 10.1109/TIT.1966.1053907

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 8(1), 53-87. doi: 10.1023/B:DAMI.0000005258.31418.83

Hirschberg, D. S., & Lelewer, D. A. (1990). Efficient decoding of prefix codes.
Communications of the ACM, 33(4), 449-459. doi: 10.1145/77556.77566

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9), 1098-1101.

Janis, M. (2011). Analyzing and implementation of compression algorithms in an FPGA.
Retrieved from http://www.ep.liu.se/

Jin, R., & Agrawal, G. (2005). An algorithm for in-core frequent item set mining on
streaming data. The Fifth IEEE International Conference on Data Mining, 8. doi:
10.1109/ICDM.2005.21

Johnson, Jeff. (2011, July 15). List and Comparison of FPGA companies. FPGA
developer, retrieved from: http://www.fpgadeveloper.com/2011/07/list-and-
comparison-of-fpga-companies.html

Karp, R. M., Shenker, S., & Papadimitriou, C. H. (2003). A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Systems,
28(1), 51-55.

191

Knuth, D. E. (1985). Dynamic huffman coding. Journal of Algorithms, 6(2), 163-180.
doi:10.1016/0196-6774(85)90036-7

Manku, G. S., & Motwani, R. (2002). Approximate frequency counts over data streams.
Proceedings of the 28th International Conference on Very Large Data Bases, 346-
357.

Marascu, A., & Masseglia, F. (2005). Mining sequential patterns from temporal
streaming data. Proceedings of the First ECML/PKDD Workshop Mining Spatio-
Temporal Data. Retrieved June 12, 2016 from http://researchgate.net

Mendenhall, W., Beaver, R. J., & Beaver, B. M. (2012). Introduction to probability and
statistics (p. 222) Cengage Learning.

Metwally, A., Agrawal, D., & El Abbadi, A. (2005). Efficient computation of frequent
and top-k elements in data streams. Proceedings of the 10th International
conference on Database Theory, 398-412. doi: 10.1007/978-3-540-30570-5_27

Mitra, A., Vieira, M., Bakalov, P., Najjar, W., & Tsotras, V. (2009). Boosting XML
filtering with a scalable FPGA-based architecture. CIDR: Proceedings of the 4th
Conference on Innovative Data Systems Research. Retrieved June 12, 2016 from
arXiv database.

Mueller, R., & Teubner, J. (2009a). FPGA: what's in it for a database? Proceedings of
the 2009 ACM SIGMOD International Conference on Management of Data, 999-
1004. doi: 10.1145/1559845.1559965

Mueller, R., Teubner, J., & Alonso, G. (2009b). Streams on wires: a query compiler for
FPGAs. Proceedings of the VLDB Endowment, 2(1), 229-240. doi:
10.14778/1687627.1687654

Mueller, R., Teubner, J., & Alonso, G. (2009c). Data processing on FPGAs. Proceedings
of the VLDB Endowment, 2(1), 910-921. doi: 10.14778/1687627.1687730

Mueller, R., Teubner, J., & Alonso, G. (2010). Glacier: a query-to-hardware compiler.
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, 1159-1162. doi: 10.1145/1807167.1807307

Muthukrishnan, S. (2005). Data Streams: algorithms and applications. Foundations and
Trends in Theoretical Computer Science. 1(2), 117-236. doi:
10.1561/0400000002

Muthukrishnan, S. (2011, June). Theory of data stream computing: where to go.
Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. 317-319. doi: 10.1145/1989284.1989314

Nelson, M., & Gailly, J. L. (1996). The Data Compression book (2nd ed.). New York:
M&T Books.

http://researchgate.net/

192

Nyquist, H. (1928). Certain Topics in Telegraph Transmission Theory. Transactions of the
American Institute of Electrical Engineers (pp. 617-624), 47(2).

Pigeon, S. (2003). Huffman Coding. K. Sayood Editor, Lossless Compression
Handbook, 79-99. CA: Academic Press.

Powers, D. M. (1998). Applications and explanations of Zipf's law. Proceeding on the
Joint Conferences on New Methods in Language Processing and Computational
Natural Language Learning, pp. 151-160.

Rajaraman, A., & Ullman, J. D. (2012). Mining of massive datasets (2nd ed.).
Cambridge: Cambridge University Press.

Reh, F. J. (2005). Pareto's principle:The 80-20 rule. Business Credit, 107(7), 76.

Rice, R. F., (1979). Some Practical Universal Noiseless Coding Techniques, Pasadena,
CA: Jet Propulsion Laboratory,

Ross, S. M., & Morrison, G. R. (1996). Experimental research methods. In D.H.
Jonassen (Eds.), Handbook of Research for Educational Communications and
Technology: A Project of the Association for Educational Communications and
Technology(2nd ed.), (pp. 1021-1045). Mahwah, NJ: Lawrence Erlbaum
Associates.

Salomon, D. (2004). Data Compression: The Complete Reference (3rd ed.). New York,
NY: Springer Science & Business Media.

Savasere A., Omiecinski E., & Navathe S. (1995). An efficient algorithm for mining
association rules in large databases. Proceedings of the 21st International
Conference on Very Large Data Bases, 432–443.

Schwartz, E. S., & Kallick, B. (1964). Generating a canonical prefix encoding.
Communications of the ACM, 7(3), 166-169. doi: 10.1145/363958.363991

Shannon, C. E. (1948a). A mathematical theory of communication. The Bell Systems
Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x

Shannon, C. E. (1948b). A mathematical theory of communication. Published in The
Bell Systems Technical Journal, 27(4), 623-656. doi: 10.1002/j.1538-
7305.1948.tb00917.x

Shannon, C. E. (1951). Prediction and entropy of printed English. Bell Labs Technical
Journal, 30(1), 50-64. doi: 10.1002/j.1538-7305.1951.tb01366.x

Shenoy, P., Haritsa, J. R., Sudarshan, S., Bhalotia, G., Bawa, M., & Shah, D. (2000).
Turbo-charging vertical mining of large databases. Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, 29(2), 22-33. doi:
10.1145/335191.335376

193

Staff Writer. (2013, April 28). Top FPGA Companies For 2013. SourceTech 411,
retrieved from: http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/

Storer, James A.,Szymanski, Thomas G. (1982). Data Compression via Textual
Substitution. Journal of the ACM. 29 (4): 928–951. doi:10.1145/322344.322346.

Teubner, J., & Mueller, R. (2011a). How soccer players would do stream joins.
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, 625-636. doi: 10.1145/1989323.1989389

Teubner, J., Muller, R., & Alonso, G. (2011b). Frequent item computation on a chip.
IEEE Transactions on Knowledge and Data Engineering, 23(8), 1169-1181. doi:
10.1109/TKDE.2010.216

Veloso, A., Meira, W., & Parthasarathy, S. (2003). New parallel algorithms for frequent
itemset mining in very large databases. Proceedings of the 15th Symposium on
Computer Architecture and High Performance Computing. 158-166. doi:
10.1109/CAHPC.2003.1250334

Vitter, J. S. (1987). Design and analysis of dynamic Huffman codes. Journal of the
ACM, 34(4), 825-845. doi: 10.1145/31846.42227

Vitter, J. S. (1989). Algorithm 673: Dynamic Huffman coding. ACM Transactions on
Mathematical Software (TOMS), 15(2), 158-167. doi: 10.1145/63522.214390

Wiegand, T., & Schwarz, H. (2010). Source Coding: Part I of Fundamentals of Source
and Video Coding, Hanover, MA: Now Publishers Inc.

Witten, I. H., Neal, R. M., & Cleary, J. G. (1987). Arithmetic coding for data
compression. Communications of the ACM, 30(6), 520-540. doi:
10.1145/214762.214771

Xin, D., Han, J., Yan, X., & Cheng, H. (2005). Mining compressed frequent-pattern sets.
Proceedings of the 31st International Conference on Very Large Databases. 709-
720.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast
discovery of association rules. Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining, 283-286.

Zaki, M. J. (2000). Generating non-redundant association rules. In Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 34-43. doi: 10.1145/347090.347101

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering, 12(3), 372-390. doi: 10.1109/69.846291

194

Zaki, M. J., & Gouda, K. (2003). Fast vertical mining using diffsets. Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 326-335. doi: 10.1145/956750.956788

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3), 337-343. doi:
10.1109/TIT.1977.1055714

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, 24(5), 530-536. doi:
10.1109/TIT.1978.1055934

195

Certification of Authorship

Submitted to (Advisor’s Name): Dr. Junping Sun

Student’s Name: Damon Bruccoleri

Date of Submission: 2018

Purpose and Title of Submission: Database Streaming Compression on Memory-Limited

Machines

Certification of Authorship: I hereby certify that I am the author of this document and
that any assistance I received in its preparation is fully acknowledged and disclosed in the
document. I have also cited all sources from which I obtained data, ideas, or words that
are copied directly or paraphrased in the document. Sources are properly credited
according to accepted standards for professional publications. I also certify that this paper
was prepared by me for this purpose.

Student's Signature: __

	Nova Southeastern University
	NSUWorks
	2018

	Database Streaming Compression on Memory-Limited Machines
	Damon F. Bruccoleri
	NSUWorks Citation

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	Background
	Problem Statement
	Why Streaming? Why Huffman?
	Dissertation Goal
	Research Questions
	Relevance and Significance (Benefit of Research)
	Barriers and Issues
	Measurement of Research Success
	Definition of Terms

	Chapter 2 Review of the Literature
	The Data Stream
	Introduction to Compression
	Two Pass Compression of a Transaction Database
	Run Length Encoding (RLE) Compression.
	Huffman Compression.

	Canonical Huffman Codes
	Prefix Codes
	Adaptive (Dynamic) Compression
	Dynamically Decreasing a Node Weight
	Frequent Item Counting in Streams
	Lossy Compression
	Frequent Item-Set Stream Mining
	Transaction Database Compression
	Other Compression Algorithms
	Initial Investigation (Prior Research Work)
	Overview
	Compression Algorithms Used to Achieve Results in the Initial Study
	Conclusion From the prior research

	Chapter 3 Methodology
	Approach
	Discussion of the Proposed Memory Limited Dynamic Huffman Algorithm
	Space and Time Asymptotic Complexity
	Expansion of the Compressed File
	Swap Maximum Bound Analysis
	“Tail” Items
	Relationship of distribution and compression ratio
	Swap Minimum Bound
	Proposed Work

	Resources

	Chapter 4 Results
	Verification of Algorithm Coding
	Performance
	Optimization of Algorithm
	Characteristics of Benchmark Transaction Data
	Database Compression Results
	Accidents Benchmark Transaction Database Summary
	BMS1 Benchmark Transaction Database Summary
	BMS-POS Benchmark Transaction Database Summary
	BMS-Webview2 Benchmark Transaction Database Summary
	Kosarak Benchmark Transaction Database Summary
	Retail Benchmark Transaction Database Summary
	T40I10D100K Benchmark Transaction Database Summary
	T1014D100K Benchmark Transaction Database Summary

	Discussion of Benchmark Compression Results

	Chapter 5 Conclusions, Implications, Recommendations
	Conclusions
	Implications
	Recommendations

	Appendix A Raw Data
	References
	Certification of Authorship

