1,066 research outputs found

    Extracting Patient-Centered Outcomes from Clinical Notes in Electronic Health Records: Assessment of Urinary Incontinence After Radical Prostatectomy

    Get PDF
    Objective: To assess documentation of urinary incontinence (UI) in prostatectomy patients using unstructured clinical notes from Electronic Health Records (EHRs). Methods: We developed a weakly-supervised natural language processing tool to extract assessments, as recorded in unstructured text notes, of UI before and after radical prostatectomy in a single academic practice across multiple clinicians. Validation was carried out using a subset of patients who completed EPIC-26 surveys before and after surgery. The prevalence of UI as assessed by EHR and EPIC-26 was compared using repeated-measures ANOVA. The agreement of reported UI between EHR and EPIC-26 was evaluated using Cohen\u2019s Kappa coefficient. Results: A total of 4870 patients and 716 surveys were included. Preoperative prevalence of UI was 12.7 percent. Postoperative prevalence was 71.8 percent at 3 months, 50.2 percent at 6 months and 34.4 and 41.8 at 12 and 24 months, respectively. Similar rates were recorded by physicians in the EHR, particularly for early follow-up. For all time points, the agreement between EPIC-26 and the EHR was moderate (all p < 0.001) and ranged from 86.7 percent agreement at baseline (Kappa = 0.48) to 76.4 percent agreement at 24 months postoperative (Kappa = 0.047). Conclusions: We have developed a tool to assess documentation of UI after prostatectomy using EHR clinical notes. Our results suggest such a tool can facilitate unbiased measurement of important PCOs using real-word data, which are routinely recorded in EHR unstructured clinician notes. Integrating PCO information into clinical decision support can help guide shared treatment decisions and promote patient-valued care

    Building Data-Driven Pathways From Routinely Collected Hospital Data:A Case Study on Prostate Cancer

    Get PDF
    Background: Routinely collected data in hospitals is complex, typically heterogeneous, and scattered across multiple Hospital Information Systems (HIS). This big data, created as a byproduct of health care activities, has the potential to provide a better understanding of diseases, unearth hidden patterns, and improve services and cost. The extent and uses of such data rely on its quality, which is not consistently checked, nor fully understood. Nevertheless, using routine data for the construction of data-driven clinical pathways, describing processes and trends, is a key topic receiving increasing attention in the literature. Traditional algorithms do not cope well with unstructured processes or data, and do not produce clinically meaningful visualizations. Supporting systems that provide additional information, context, and quality assurance inspection are needed. Objective: The objective of the study is to explore how routine hospital data can be used to develop data-driven pathways that describe the journeys that patients take through care, and their potential uses in biomedical research; it proposes a framework for the construction, quality assessment, and visualization of patient pathways for clinical studies and decision support using a case study on prostate cancer. Methods: Data pertaining to prostate cancer patients were extracted from a large UK hospital from eight different HIS, validated, and complemented with information from the local cancer registry. Data-driven pathways were built for each of the 1904 patients and an expert knowledge base, containing rules on the prostate cancer biomarker, was used to assess the completeness and utility of the pathways for a specific clinical study. Software components were built to provide meaningful visualizations for the constructed pathways. Results: The proposed framework and pathway formalism enable the summarization, visualization, and querying of complex patient-centric clinical information, as well as the computation of quality indicators and dimensions. A novel graphical representation of the pathways allows the synthesis of such information. Conclusions: Clinical pathways built from routinely collected hospital data can unearth information about patients and diseases that may otherwise be unavailable or overlooked in hospitals. Data-driven clinical pathways allow for heterogeneous data (ie, semistructured and unstructured data) to be collated over a unified data model and for data quality dimensions to be assessed. This work has enabled further research on prostate cancer and its biomarkers, and on the development and application of methods to mine, compare, analyze, and visualize pathways constructed from routine data. This is an important development for the reuse of big data in hospitals

    Natural Language Processing – Finding the Missing Link for Oncologic Data, 2022

    Get PDF
    Oncology like most medical specialties, is undergoing a data revolution at the center of which lie vast and growing amounts of clinical data in unstructured, semi-structured and structed formats. Artificial intelligence approaches are widely employed in research endeavors in an attempt to harness electronic medical records data to advance patient outcomes. The use of clinical oncologic data, although collected on large scale, particularly with the increased implementation of electronic medical records, remains limited due to missing, incorrect or manually entered data in registries and the lack of resource allocation to data curation in real world settings. Natural Language Processing (NLP) may provide an avenue to extract data from electronic medical records and as a result has grown considerably in medicine to be employed for documentation, outcome analysis, phenotyping and clinical trial eligibility. Barriers to NLP persist with inability to aggregate findings across studies due to use of different methods and significant heterogeneity at all levels with important parameters such as patient comorbidities and performance status lacking implementation in AI approaches. The goal of this review is to provide an updated overview of natural language processing (NLP) and the current state of its application in oncology for clinicians and researchers that wish to implement NLP to augment registries and/or advance research projects

    Visualisation of Integrated Patient-Centric Data as Pathways: Enhancing Electronic Medical Records in Clinical Practice

    Get PDF
    Routinely collected data in hospital Electronic Medical Records (EMR) is rich and abundant but often not linked or analysed for purposes other than direct patient care. We have created a methodology to integrate patient-centric data from different EMR systems into clinical pathways that represent the history of all patient interactions with the hospital during the course of a disease and beyond. In this paper, the literature in the area of data visualisation in healthcare is reviewed and a method for visualising the journeys that patients take through care is discussed. Examples of the hidden knowledge that could be discovered using this approach are explored and the main application areas of visualisation tools are identified. This paper also highlights the challenges of collecting and analysing such data and making the visualisations extensively used in the medical domain. This paper starts by presenting the state-of-the-art in visualisation of clinical and other health related data. Then, it describes an example clinical problem and discusses the visualisation tools and techniques created for the utilisation of these data by clinicians and researchers. Finally, we look at the open problems in this area of research and discuss future challenges

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    The application of process mining to care pathway analysis in the NHS

    Get PDF
    Background: Prostate cancer is the most common cancer in men in the UK and the sixth-fastest increasing cancer in males. Within England survival rates are improving, however, these are comparatively poorer than other countries. Currently, information available on outcomes of care is scant and there is an urgent need for techniques to improve healthcare systems and processes. Aims: To provide prostate cancer pathway analysis, by applying concepts of process mining and visualisation and comparing the performance metrics against the standard pathway laid out by national guidelines. Methods: A systematic review was conducted to see how process mining has been used in healthcare. Appropriate datasets for prostate cancer were identified within Imperial College Healthcare NHS Trust London. A process model was constructed by linking and transforming cohort data from six distinct database sources. The cohort dataset was filtered to include patients who had a PSA from 2010-2015, and validated by comparing the medical patient records against a Case-note audit. Process mining techniques were applied to the data to analyse performance and conformance of the prostate cancer pathway metrics to national guideline metrics. These techniques were evaluated with stakeholders to ascertain its impact on user experience. Results: Case note audit revealed 90% match against patients found in medical records. Application of process mining techniques showed massive heterogeneity as compared to the homogenous path laid out by national guidelines. This also gave insight into bottlenecks and deviations in the pathway. Evaluation with stakeholders showed that the visualisation and technology was well accepted, high quality and recommended to be used in healthcare decision making. Conclusion: Process mining is a promising technique used to give insight into complex and flexible healthcare processes. It can map the patient journey at a local level and audit it against explicit standards of good clinical practice, which will enable us to intervene at the individual and system level to improve care.Open Acces

    Data-Driven Modeling For Decision Support Systems And Treatment Management In Personalized Healthcare

    Get PDF
    Massive amount of electronic medical records (EMRs) accumulating from patients and populations motivates clinicians and data scientists to collaborate for the advanced analytics to create knowledge that is essential to address the extensive personalized insights needed for patients, clinicians, providers, scientists, and health policy makers. Learning from large and complicated data is using extensively in marketing and commercial enterprises to generate personalized recommendations. Recently the medical research community focuses to take the benefits of big data analytic approaches and moves to personalized (precision) medicine. So, it is a significant period in healthcare and medicine for transferring to a new paradigm. There is a noticeable opportunity to implement a learning health care system and data-driven healthcare to make better medical decisions, better personalized predictions; and more precise discovering of risk factors and their interactions. In this research we focus on data-driven approaches for personalized medicine. We propose a research framework which emphasizes on three main phases: 1) Predictive modeling, 2) Patient subgroup analysis and 3) Treatment recommendation. Our goal is to develop novel methods for each phase and apply them in real-world applications. In the fist phase, we develop a new predictive approach based on feature representation using deep feature learning and word embedding techniques. Our method uses different deep architectures (Stacked autoencoders, Deep belief network and Variational autoencoders) for feature representation in higher-level abstractions to obtain effective and more robust features from EMRs, and then build prediction models on the top of them. Our approach is particularly useful when the unlabeled data is abundant whereas labeled one is scarce. We investigate the performance of representation learning through a supervised approach. We perform our method on different small and large datasets. Finally we provide a comparative study and show that our predictive approach leads to better results in comparison with others. In the second phase, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variables. Finally, in the third phase, we introduce a new survival analysis framework using deep learning and active learning with a novel sampling strategy. First, our approach provides better representation with lower dimensions from clinical features using labeled (time-to-event) and unlabeled (censored) instances and then actively trains the survival model by labeling the censored data using an oracle. As a clinical assistive tool, we propose a simple yet effective treatment recommendation approach based on our survival model. In the experimental study, we apply our approach on SEER-Medicare data related to prostate cancer among African-Americans and white patients. The results indicate that our approach outperforms significantly than baseline models

    Designing an IT-Based System for Optimizing Lung Cancer Management

    Get PDF
    Digital health offers lung cancer patients to improve their health status while allowing patients, providers, and administrators to coordinate data and care at individual and community levels. While technology improvements provide lung cancer patients and healthcare providers with a valuable new tool for disease management, these are yet to be widely accepted. In particular, we aim to: (1) develop a Machine Learning (ML)-based framework for data collection from active online lung cancer forums and other parameters for patients, providers and their organizations, (2) build an AI-based model to develop a cancer ontology for exploring different factors and patients’ emotions associated to lung cancer management, (3) Design a mHealth app to set up a support system in terms of providing patients with information and social support, and ML models-based treatment recommendation system. The IT-based support system will provide the best and most specific treatment plan and recommendation system for lung cancer management

    Facilitating and Enhancing Biomedical Knowledge Translation: An in Silico Approach to Patient-centered Pharmacogenomic Outcomes Research

    Get PDF
    Current research paradigms such as traditional randomized control trials mostly rely on relatively narrow efficacy data which results in high internal validity and low external validity. Given this fact and the need to address many complex real-world healthcare questions in short periods of time, alternative research designs and approaches should be considered in translational research. In silico modeling studies, along with longitudinal observational studies, are considered as appropriate feasible means to address the slow pace of translational research. Taking into consideration this fact, there is a need for an approach that tests newly discovered genetic tests, via an in silico enhanced translational research model (iS-TR) to conduct patient-centered outcomes research and comparative effectiveness research studies (PCOR CER). In this dissertation, it was hypothesized that retrospective EMR analysis and subsequent mathematical modeling and simulation prediction could facilitate and accelerate the process of generating and translating pharmacogenomic knowledge on comparative effectiveness of anticoagulation treatment plan(s) tailored to well defined target populations which eventually results in a decrease in overall adverse risk and improve individual and population outcomes. To test this hypothesis, a simulation modeling framework (iS-TR) was proposed which takes advantage of the value of longitudinal electronic medical records (EMRs) to provide an effective approach to translate pharmacogenomic anticoagulation knowledge and conduct PCOR CER studies. The accuracy of the model was demonstrated by reproducing the outcomes of two major randomized clinical trials for individualizing warfarin dosing. A substantial, hospital healthcare use case that demonstrates the value of iS-TR when addressing real world anticoagulation PCOR CER challenges was also presented

    Integrative methods for analyzing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face
    • …
    corecore