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CHAPTER 1 INTRODUCTION

Healthcare is transforming from a disease-centered model to a patient-centered model [106], in

a disease-centered model, medical decisions is made based on the clinical knowledge and expertise,

data from medical tests and different evidences. In a patient-centered model, patients actively are

considered in their own care plan and treated focused on individual needs and preferences. In an-

other word, patient-center model revolves around the patients rather than physicians and providers

[22]. The explosive increase of Electronic Medical Records (EMR) provides many opportunities

to carry out data science research by applying data mining and machine learning tools and tech-

niques. EMR contains massive and a wide range of information of patients concerning different

aspects of healthcare, such as patient conditions, diagnostic tests, lab results, imaging exams, ge-

nomics, proteomics, treatments and financial records [57]. Particularly, the extensive and powerful

patient-centered data enables data scientists and medical researchers to conduct their research in

the field of personalized (precision) medicine or healthcare. There are several definitions about

personalized medicine (healthcare) in the literature. It has been defined as: 1) “A medical model

that proposes the customization of healthcare, with decisions and practices being tailored to the

individual patient by use of genetic or other information.”, [108]; 2) “The tailoring of medical

treatment to the specific characteristics of each patient. It does not literally mean the creation of

drugs or medical devices that are unique to a patient. Rather, it involves the ability to classify

individuals into subpopulations that are uniquely or disproportionately susceptible to a particular

disease or responsive to a specific treatment”, [97]; and 3) “The use of combined knowledge (ge-

netic or otherwise) about a person to predict disease susceptibility, disease prognosis, or treatment

response and thereby improve that person’s health ”, [97].
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In general, the goal of precision medicine or personalized healthcare is to provide the right

treatment to the right patient at the right time. Personalized medicine is a multi-disciplinary

area that combines data science tools and statistics techniques with medical knowledge to develop

tailor-made treatment, prevention and intervention plans for individual patients [97]. By emerge of

huge amount of biomedical data, data-driven and networks-driven thinking and methods can play

a significant role in proceeding of personalized healthcare [22]. In recent years, many researchers

from different area focus on specific disease such as hypertension, diabetes and several cancer

types to discover individual preventable disease risk factors, precision diagnosis and personalized

treatment policy [121]. Therefore, personalized medicine (healthcare) needs a computing and in-

tegrated framework to aggregate and analyze big datasets, realize deep knowledge about patient

network and their similarities, and prepare personalized disease risk profiles for each individual

patient [22]. With this end, much recent research efforts have been provided to applying machine

learning, data analytics and business intelligent methodologies which can be used to derive real-

world medical and medicine data for designing personalized decision support systems in healthcare

delivery and treatment management [57].

In sum, integrating medical and medicine knowledge by applying data analytics tools and meth-

ods on huge electronic medical records (EMR) leads to achieve smart clinical decision support

systems which can assist physicians in providing precision and personalized clinical recommenda-

tions [12].

1.1 Research Framework

In recent years, several studies have been conducted in personalized medicine to answer the

questions such as: How to deeply use big data from EMRs, patients’ medical history and personal
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information to select and predict the specific disease risk factors for individual patient?, How to

detect a subgroup of patient that are more similar with each other and then assign special treatment

policy?, How to produce personalized drugs based on different patients’ characteristics? And how

to develop an intelligent system to optimize targeted therapy? [22]. Based on appropriate responses

to these questions in the literature; we can categorize the research works accomplished in the field

of data-driven personalized medicine (healthcare) as three main groups [57]:

1. Predictive modeling and risk factor identification for high dimensional data: Building

accurate prediction models for different healthcarre purposes and extracting the most important

features (Risk factors) is a key challenge in developing risk prediction models from high dimen-

sional (thousands to tens of thousands features) observational healthcare data. There are several

large-scale algorithms have been developed to come up this challenge in the field of precision

medicine.

2. Patient similarity analytics: Discovering similar subgroup of patients by applying data an-

alytics methods according to their disease condition risks; is an important component in person-

alized decision support systems and effective care management because for patients with similar

risks and behavior, we may assign similar treatment plans.

3. Mining care pathways and Personalized treatment optimization: Clinical pathways, a

sequence of medical treatment, traditionally devised by a physician after patient diagnosis based

on physician’s education, experience, and intuition. Recently, data analysis of rich longitudinal

data obtained from EMRs empowers clinicians with a data-driven precision care pathway and

based on patient’ similarities, the doctors can understand the pattern of treatment and make an

optimized decision.

In Figure1 a data-driven personalized healthcare platform obtained from IBM research demon-
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strates how the whole recommendation system works.

Figure 1: Intelligent Care Delivery Analytics (ICDA)–the data driven personalized
healthcare analytics platform at IBM research [57]

In this research we focus on these three categories as our research framework to develop some

novel personalized data-driven algorithms with competitive performance, then we apply our pro-

posed methods on some specific diseases such as hypertension, cardiovascular disease and cancers.

1.2 Motivations and Objectives

The goal of this research is to develop data-driven algorithms and methodologies for carrying

out precision medicine and personalized healthcare in some specific disease. With this motivation

we design our research framework as illustrated in Figure 2 to address three main objectives in this

study as following:



5
Research Framework

5

Predictive Modeling

Patient Subgroup
Detection

Treatment 
Recommendation

N
ew

 D
at

a-
D

ri
ve

n
 A

p
p

ro
a

ch
es

R
ea

l-
C

as
e 

P
re

ci
si

on
 M

ed
ic

in
e 

Personalized Clinical Decision Recommendation System

Figure 2: Our Research Framework

1. Predictive Modeling: Since in personalized healthcare applications, the clinical datasets are

usually high-dimensional, sparse, complex and noisy, learning an accurate model for predictive

analytics and patient risk monitoring is hard and challenging. To overcome this challenge, the first

goal of our study is to provide a predictive model which can handle complex medical data and

provide precise prediction in different clinical applications such as disease risk forecasting, drug

response discovering and health condition monitoring. Our method outperforms rather than the

well-known state of arts machine learning methods in the literature.

2. Patient Subgroup Detection: Discovering subgroup of patient who are similar in terms of

specific characteristic is highly useful in many clinical purposes such as finding the pattern of

treatment, evaluating treatment effects and discovering important risk factors. There are several

methods developed in the literature such as tree-based methods or clustering methods to detect the
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subgroup of patients from high-dimensional data. The other goal of this study is to propose a novel

patient subgroup detection method which considers similarities among risk factors and response

variable simultaneously.

3. Treatment Recommendation: There exist several approaches for treatment recommendation

in the healthcare domain such as clustering based models or collaborative filtering. Most of these

approach are not appropriate for high dimensional clinical data specially in the case that labeled

data is not enough. The goal of this step is developing a treatment recommendation approach using

an accurate novel survival analysis model from high-dimensional and personalized data.

The framework explained above can be considered as an integrated approach to make a decision

recommendation system for patients and healthcare providers. In other words, this data driven

approach can suggest optimal treatment policy for patients individually based on their personalized

data and can recommend important risk factors for individual patient and treatment policy for

healthcare providers.
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CHAPTER 2 PREDICTIVE APPROACH USING DEEP FEATURE
LEARNING FOR PERSONALIZED HEALTHCARE

In this chapter, we propose a new predictive approach based on feature representation using

deep feature learning and word embedding techniques. Our method uses different deep architec-

tures (Stacked autoencoders, Deep belief network and Variational autoencoders) for feature repre-

sentation in higher-level abstraction to obtain effective and more robust features from EMRs, and

then build prediction models on the top of them. Our approach is particularly useful when the

unlabeled data is abundant whereas labeled one is scarce. We investigate the performance of repre-

sentation learning through a supervised approach. First, we perform our method on a small dataset

related to a precision medicine application, which concentrates on prediction of cardiovascular

risk level measured by left ventricular mass indexed to body surface area termed LVMI among

African-Americans. Then we use two large datasets from eICU collaborative research database to

predict the length of stay in Cardiac-ICU and Neuro-ICU based on high dimensional features. Fi-

nally we provide a comparative study and show that our predictive approach leads to better results

in comparison with others.

2.1 Problem Definition

Recently, data-driven modeling and optimization has been applied in different domains such as

manufacturing [99], healthcare [87], quality assessment [43] and chemical processes sustainability

[84]. In healthcare domain, the explosive growing of Electronic Medical Records (EMRs) creates

huge opportunity to accomplish data science research by applying machine learning and data an-

alytics tools and techniques [86]. EMRs includes vast and wide range of information on patients

related to several aspects of healthcare, such as patient information, health conditions, lab results,

diagnostic tests, imaging data, genomics, proteomics, treatments and medication records [57, 87].
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Particularly, the massive and powerful patient-centered data encourages medical researchers and

data scientists to carry out their research in the field of personalized/precision medicine. Person-

alized/precision medicine is a multi-domain research area which use data science methods and

medical knowledge to recommend the right treatment to the right patient at the right time [97].

Since EMRs are complex, sparse, heterogeneous and time-dependent; using EMRs for person-

alized medicine is challenging and complicated to interpret. Representation learning or feature

learning provides the opportunity to overcome this problem by transforming medical features to

a higher level abstraction, which can provide more robust features. On the other side, labeling

of clinical data is expensive, difficult and time-consuming in several cases such as special disease

where unlabeled data (features) may be abundant. Representation learning through unsupervised

approach is a very beneficial way to extract strong feature learning from both labeled and unlabeled

data and improve training models performance made based on labeled data.

Representation learning [8] includes a set of techniques that learn a feature via transformation

of input data to a representation that can improve machine learning tasks such as classification and

regression. In the other words, representation learning helps to provide more useful information.

Despite the success of feature learning in several domains such as text mining, multimedia, and

marketing, these techniques have not been applied widely for Electronic Health Records (EHRs)

[81]. In this way, many research have been developed in recent years and those are growing up very

fast specially in the field of precision medicine and health informatics. The main challenges exist in

processing of EHRs listed as following [26]: 1) High-Dimensionality, 2) Temporality which refers

to the sequentiality of clinical events, 3) Sparsity, 4) Irregularity which means the high variabilities

exist in the EHRs and 5) Bias including systematic errors in the medical data.

Representation learning can overcome those challenges and the choice of data representation
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or feature representation plays a significant role in success of machine learning algorithms [8]. For

this reason, many efforts in developing machine learning algorithms focus on designing prepro-

cessing mechanisms and data transformations for representation learning that would enable more

efficient machine learning algorithms [8]. There are several approaches for feature learning such

as K-means clustering, Principal component analysis (PCA), Local linear embedding, Independent

component analysis (ICA) and Deep learning.

Deep learning methods with multiple layers of transformation are representation learning algo-

rithms, composing by simple but nonlinear transformations which represent the raw data at higher

level abstraction [51]. Deep learning models demonstrated promising performance and potential in

computer vision, speech recognition and natural language processing tasks. The rising popularity

of using deep learning in healthcare informatics is remarkable for different purposes. For instance

deep learning was recently employed to medicine and genomics to rebuilding brain circuits, per-

formance prediction of drug molecules, identifying the effects of mutations on gene expressions,

personalized prescriptions, treatment recommendations, and clinical trial recruitment [82]. Apply-

ing deep learning through unsupervised way on EHRs addressed in many recent research works

for feature representation in order to achieve specific or general goals [104]. For instance "Deep

patient" [82] and "Doctor AI" [28] approaches are good examples of these recent works which

used unsupervised learning via deep learning before supervised learning.

In this study we focus on two specific healthcare informatics problems using high dimensional

electronic medical records. The first one is related to a African-Americans cohort at high risk of

heart failure. In this case study, we use left ventricular mass indexed to body surface area (LVMI)

as a measure of heart failure risk. The capability to precisely predict LVMI could improve the

treatment and reduce the cost of LVMI measurement for patients and hospitals. In the second
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case study, we use eICU collaborative research database with several personalized factors to pre-

dict patient length of stay (LOS) in ICU for two different patient types. The more accurate LOS

prediction can lead to better scheduling in hospital which reduce the cost and increase the patient

satisfaction.

According to individual medical data with several features such as demographic information,

patient clinical history, individual health condition, laboratory test results, diagnosis and treatment

data, we first use feature representation by applying deep learning to transforms current features

to higher level abstraction and then, we implement machine learning methods to predict our target

of interest (LVMI and LOS) through a supervised approach. This prediction framework can be

applied as a decision support system to assist physicians and health systems managers.

Figure 3 demonstrates our integrated approach in three consecutive steps; first we start by

preprocessing raw data to overcome some popular issues such as missing values, outliers and

data quality, in the second step we apply unsupervised deep learning for producing higher-level

abstraction of input data and in the final step, supervised learning method is implemented for

forecasting the target value and model evaluation. Based on the model evaluation results, steps B

and C are applied iteratively to finalize and select the best deep architecture for feature learning.

Representation by deep learning is different from traditional feature learning techniques. In

fact, deep learning with multiple hidden layers provides meaningful and higher level abstractions

of the input data [82]. A completely unsupervised representation from raw data can be applied

to other unsupervised or supervised tasks such as patient subgroup analysis, treatment clustering

and disease risk prediction. Therefore we can infer our approach as a semi-supervised learning

framework where we apply the benefits obtained from unsupervised tasks to the different tasks as

well as risk prediction.
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Figure 3: An illustration of the three consecutive steps for our approach

We use unsupervised learning before supervised learning because the success of predictive

machine learning algorithms highly depends on feature representation and extraction [81]. Since

in several situation, data is sparse, noisy, high dimensional and repetitive, supervised learning and

feature selection approaches cannot identify the pattern of data which makes them inappropriate for

modeling the hierarchical and complex data. To overcome this shortcoming, unsupervised feature

learning or representation learning attempts automatically to discover complexity and dependen-

cies in the data to learn a compact and high-level representation which provides better features to

extract useful information when applying classifiers and predictive models.

In this chapter, we develop a new predictive approach using deep learning and data repre-

sentation for EMRs. In our method, we apply three deep architectures for feature representation

in higher levels abstraction: Stacked autoencoders, Deep belief network and Variational autoen-

coders. Our contributions in this chapter lie into three folds: 1) To our knowledge, it is one of the

first methods that uses Variational Autoencoders (VAE) for feature representation on EHRs where
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the advantage of VAE over traditional autoencoders is learning the true distribution of the train-

ing data as opposed to just remembering the particular training dataset, hence it can improve the

representation performance significantly, 2) It is the first work that provides a comparative study

to investigate the choice of deep representation among small and large datasets, and 3) Our pro-

posed framework is highly useful for exploiting a large amount of unlabeled medical records for

extracting high level representation of labeled data for supervised learning tasks.

2.2 Literature Review

Deep learning, including predictive modeling and feature representation, has been developed

and applied in a different areas, such as natural language processing, computer vision, remote sens-

ing, and healthcare informatics. The main causes for this wide range applications are improving

the prediction performance, ability to model of complex informations and providing high-level

features representation [71].

Deep learning with multiple hidden layers provides meaningful and higher level abstractions

of the input data [82]. Among several applications of deep learning in different domains, we focus

on the healthcare and bioinformatics applications. In this domain, deep learning have been applied

in different areas using EHRs, clinical imaging and genomics data [80].

In terms of research purpose and different applications, we categorize the current related works

in three following categories: 1) Research works applied deep learning to predict and classify

disease risk levels. For instances, Cheng et al. [26] represented the EHRs for every patient as

a temporal matrix with two dimension (i.e., time and event). The authors applied a four-layer

Convolutional Neural Network (CNN) to predict congestive heart failure and chronic disease and

demonstrated that method outperforms over the baseline. In the other study, Choi et al. [28]
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developed a predictive approach called Doctor AI for clinical events using Recurrent Neural Net-

work (RNN) and applied to longitudinal large EMR data to predict the diagnosis and treatment

categories for the following visit. Miotto et al. [81], used stack of denoising autoencoders for un-

supervised feature representation of EHRs of about 700,000 patients for different diseases such as

severe diabetes, schizophrenia, and various cancers. Their approach improved clinical prediction

which could provide a machine learning framework for medical decision systems. 2) Studies used

deep learning for feature representation in purpose of feature selection and discovering disease

phenotypes. Li et al. [71] proposed a deep feature selection method using regularized regression

idea for selecting important input features in a deep network. They added an one-to-one linear

layer right after the visible layer and connected it to the first hidden layer of a deep network with

an elastic-net regularization. After training of deep network, the significant features are selected

based on their weights in the input layer. Finally, the authors performed their model in a clinical

problem using genomics data. In the other research work [85], a new feature selection approach

is developed using a five-layers stacked autoencoders deep network. Authors applied their method

on a precision medicine application to discover risk factors among African-Americans at the high

risk of heart failure. 3) Research works applied deep learning for clinical image processing with

the goal of disease diagnosis and image segmentation. It is appropriate to mention that the first

application of deep learning to medical data is on clinacal image processing, especially on the

analysis of brain Magnetic Resonance Imaging (MRI) scans [82].

Cheng et al. [24] used deep learning for computer-assisted diagnosis for the diagnosis classi-

fication of benign and malignant nodules. They applied stacked denoising autoencoder on the two

applications for the classification of lung CT nodules and breast ultrasound lesions using clinical

images. In another research, Gulshan et al. [46] used CNN to identify diabetic retinopathy and di-
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Table 1: Summary of research works developed and applied deep learning approach in healthcare domain

Category Example Model Ref
Prediction and
classification of
disease risk level

Predict unplanned readmission after discharge using EHR
Multi-task prediction of disease onset from lab test results
Predict future clinical events using EHR
Predict chromatin marks from genomics data
Prediction of protein backbones using genomics data
Classification of cancer from gene expression profiles

CNN
RNN, CNN
SDA
CNN
SAE
SAE

[88]
[96]
[81]
[124]
[78]
[40]

Discovering of
important disease
risk factors and

phenotype

Risk factor prioritization using multi-task deep learning
Risk factors selection for cardiovascular disease
Deep feature selection approach using genomics data
Discovering of characteristic patterns of physiology
A semisupervised learning method for EHR phenotype ex-
traction

FDNN
SAE
MLNN
SAE
SDA

[70]
[85]
[71]
[23]
[6]

Diagnosis
detection and

segmentation by
image processing

Risk classification for skin cancer
Diagnosis of breast cancer using clinical images
Diagnosis of Alzheimer disease using brain MRIs
Deep feature learning for knee cartilage segmentation
Identifying modes of variations in Alzheimer disease

CNN
SDA
SAE
CNN
RBM

[39]
[24]
[75]
[92]
[16]

abetic macular edema in retinal fundus images. They applied CNN to classify those images using

a retrospective large datasets of nearly 128,000 retinal images.

The summary of our review based on above three categories demonstrated in Table 1. Readers

for more comprehensive review about applications of deep learning in health informatics can refer

to recent review papers provided by Miotto et al. [82], Shickel et al. [104] and Ravi et al. [95].

2.3 Introduction to Deep Architectures

Deep Learning is a subfield of machine learning algorithms that model raw data to higher-level

abstraction by training a deep network consisting several hidden layers with linear and non-linear

transformations [9, 65, 31]. In another word, deep learning applies computational techniques,

which include multiple processing layers to learn feature representation with several levels of ab-

straction [65].

Deep learning applications include many areas. The major ones are speech recognition, image
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processing, object detection and bio informatics or bio medicine [65]. In biomedical and health

science, improvements in information systems, technological development and research labora-

tory equipments have created huge amount of data with many characteristics. Since deep feature

learning outperformed some traditional methods such as singular value decomposition (SVD) or

principal component analysis (PCA) in handling of high-dimensional clinical data, it has great

potential for feature representation and dimensionality reduction in biomedical and biomedicine

research [80].

Among all different deep architectures, four deep architectures are more popular in clinical

data analysis [80]. 1) The Convolutional neural network (CNN), 2) Stacked Autoencoders (SAE),

3) Restricted Boltzmann Machine (RBM) and 4) Deep Belief Network (DBN). In this research,

we use three different deep architectures including Stacked Autoencoders, Deep Belief Network

and Variational Autoencoders for representation learning of continuous features. In this section we

review each architecture briefly as following.

2.3.1 Introduction to Stacked Autoencoders (SAE)

Training process for deep neural networks with several hidden layers is known to be hard and

challenging. Standard approach for learning neural network uses gradient-based optimization with

back-propagation method by initializing random weights in network concludes poor training re-

sults empirically when there exist three or more hidden layers in deep network [63]. Hinton et al.

[52] developed a greedy layer-wise unsupervised learning algorithm for training DBN parameters

by using a RBM in the top of deep architecture. Bengio et al. [10] used greedy layer-wise un-

supervised learning to train deep neural network when the building block of deep architecture is

an autoencoder instead of the RBM. Stacked Autoencoders shown in Figure 4 is constructed by

stacking multiple layers of autoencoder.
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An autoencoder is trained to reconstruct its own inputs by encoding and decoding processes.

Let us define w(h,l), w(h,2), b(h,l), b(h,2) as the parameters of hth autoencoder for weights and biases

in encoding and decoding processes respectively. Encoding process of each layer is a forward

process and mathematically described as follows:

a(h) = f(z(h)), (2.1)

z(h+1) = w(h,1)a(h) + b(h,1) (2.2)

Encoding Decoding

Input Output

Middle Layer

Figure 4: Stacked Autoencoders

f(x) is an activation function such as sigmoid or hyperbolic tangent function for transforming

data. If n represents the location of middle (latent) layer in stacked autoencoders, the decoding
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process is to implement the decoding stack of each autoencoder below [64]:

a(n+h) = f(z(n+h)), (2.3)

z(n+h+1) = w(n+h,2)a(n+h) + b(n+h,2). (2.4)

Training algorithm for estimating parameters of stacked autoencoders is based on a greedy

layer-wise approach [10]. It means that each autoencoder should be trained by encoding and

decoding process one by one. By training this deep network, a(n) (middle layer) demonstrates

the highest representation of the input data [64]. In the simplest case, when an autoencoder with

sigmoid activation function has only one hidden layer and takes input x, the output of encoding

process will be :

z = Sigmoid1(wx+ b). (2.5)

Therefore z is the vector of transformed input in the middle layer. In the second step (decoding

process), z is transformed into the reconstruction x′ , i.e.,

x
′
= Sigmoid2(w

′
z + b

′
). (2.6)

In the final step, autoencoder is trained by minimizing the reconstruction errors as follows:

Loss(x, x
′
) = ‖x− x′‖ =

‖x− Sigmoid2(w
′
(Sigmoid1(wx+ b)) + b

′
)‖. (2.7)
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2.3.2 Introduction to Deep Belief Network (DBN)

Deep Belief Networks are graphical models that are constructed by stacking of several RBMs

to get better performance rather than individual RBM. Hinton and Salakhutdinov [53] showed that

DBNs can be trained in greedy layer-wise unsupervised learning approach. They defined the joint

probability distribution between visible and hidden layers as follows:

P (x, h1, ..., hl) =
l−2∏
k=0

P (hk|hk+1)P (hl−1, hl) (2.8)

Where, x= h0, P (hk−1|hk) is a conditional distribution for the visible units conditioned on the

hidden units of the RBM at level k, and P (hl−1, hl) is the visible-hidden joint distribution in the

top-level RBM. This is illustrated in the figure below.

Input (x)

h1

h2

h3

RMB3

RMB2

RMB1

Figure 5: Deep Belief Network

In the layer-wised training, the input layer (visible unit) is trained as a RBM and transformed

into the hidden layer, then the representation in hidden units will be considered as input data

(visible units) for the second layer and this process continues. Readers for more detail about the
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training process can refer to Hinton et al. [52] and Bengio et al. [10].

2.3.3 Introduction to Variational Autoencoders (VAE)

Variational Autoencoders has been developed as one of the most useful approaches to repre-

sentation learning of complex data in recent years. VAE have already demonstrated promising

performance in complicated data including handwritten digits, faces, house numbers, speech and

physical models of scenes [34]. VAE has the structure of autoencoders including encoders, de-

coders and latent layer. Variational autoencoders are probabilistic generative models. Assume X

is our input data and z is the latent variable, based on the total probability law we have:

P (x) =

∫
P (X, z)dz =

∫
P (X|z)P (z)dz (2.9)

VAE tries to maximize the probability of each X in the training set according to the Eq.(2.9)

under the generative process. P (X|z) is the probability function of the observed data given to

latent variable, which means how can find the distribution of input data based on distribution of

sample of latent variable. The main idea in variational autoencoder is to attempt to sample values

of latent variables (z) that are likely produce X , and construct P (X) from those. In this way,

we need a new function Q(z|X) which can describe the distribution of z based on value of X. In

the other words, z is sampled from an arbitrary distribution and Q can be any distribution such as

standard normal distribution and help to compute Ez∼QP (X|z). For doing that, we start to match

P (z|X) to Q(z) using Kullback-Leibler divergence between P (z|X) and Q(z), for some arbitrary

Q:

D[Q(z) ‖ P (z|X)] = Ez∼Q[logQ(z) − logP (z|X)]) (2.10)
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The objective function of variational autoencoders can be formulated as following which max-

imizes logP (X) minus an error term:

logP (X) −D[Q(z|X) ‖ P (z|X)] (2.11)

We can infer P (X) and P (X|z) into Eq. (2.10) by applying Bayes rule to P (z|X) and refor-

mulate Eq. (2.11):

logP (X) −D[Q(z|X) ‖ P (z|X)] =

Ez∼Q[logP (X|z)]−D[Q(z|X) ‖ P (z|X)] (2.12)

This equation known as the core of the variational autoencoder. In particular, the right hand

side acts as an autoencoder, since Q is encoding X into z, and P is decoding it to reconstruct X .

2.4 Methodology

The method proposed in this research is a predictive approach using deep learning, which is

called Deep Integrated Prediction (DIP) approach. The work flow of DIP approach is illustrated in

Figure 6 that encompasses three main steps as following:

2.4.1 Features Partitioning

First, we separate categorical features from continuous features (if both exist in the dataset).

Since the representation learning algorithms are different for continuous and categorical features

we partition them in our framework.
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2.4.2 Features Representation

The second step is feature representation section. Continuous features are transformed in

higher-level abstraction by using deep network and categorical features are represented as vec-

tors by a well-known word-to-vector algorithm:
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Figure 6: The Proposed DIP Workflow

1. Categorical Features Representation using Word Embedding: Discovering efficient rep-

resentations of discrete categorical features has been a key challenge in a variety of applications

as well as bioinformatics [29]. Word Embedding algorithms are developed to map the categorical

features (words) to vectors of real numbers. Among several approaches for word embedding in

the literature such as Matrix Factorization methods and Shallow Window-Based methods, we use

Glove algorithm [90] as a well-known algorithm for word representation. GloVe algorithm uses
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the global word co-occurrence matrix to learn the word representations.

2. Continuous Features Representation using Deep Learning: This step is the key step of our

framework where we apply unsupervised learning using deep architecture to represent continuous

features in order to achieve more robust features with less complexity. We do feature representation

by three different deep architectures: stacked autoencoders, variational autoencoders and deep

belief network.

The deep architecture of stacked autoencoders and variational autoencoders are considered

with 5 hidden layers (two hidden layers of encoders, two hidden layers of decoders and one la-

tent/middle layer) as shown in Figure 7(a).

+1

x1

x3

x2

N

+1

X’’1

X’’3

X’’2

+1

X’1

X’3

X’2

N Nnn
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encoding decoding

nn

(a) SAE and VAE Architecture

Input (x)

h1

h3

RMB3

RMB1

N  units

n  units

N  units

h2

RMB2

n  units

(b) DBN Architecture

Figure 7: Deep architectures used for feature representation

In this deep architecture, N is the number of continuous variables in the dataset and n is a

parameter. The middle hidden layer has N units, same as input and output layers, and the other

four hidden layers have n units which is variant. The represented features are obtained from

latent/middle layer and n is selected in an iterative process through unsupervised and supervised

learning steps.

For deep belief network architecture, we choose a DBN with 3 hidden layers as depicted in
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figure 7(b). In this architecture N refers to the number of continuous features and n is a parameter

similar to SAE and VAE network.

The choice of deep architectures affects the performance of feature representation strongly.

In our deep architectures, we consider different amount of n (hidden units) which can be less or

higher than the number of original features. It means we not only try to transform data in lower

dimensions (under-complete representation) but also we try to represent data in higher dimensions

as well (over-complete representation) while an over-complete representations can be considered

as an alternative of "compressed" or under-complete representation [114].

2.4.3 Supervised Learning

In the final step, the represented continuous and categorical features are combined with each

others and then supervised learning to be performed on the top of new dataset. It begins with fea-

ture selection (if needed), which can apply any feature selection approach (e.g. random forests).

Significant features from represented data are used to train a supervised learner (regression or clas-

sification) and after training step, model should be evaluated by some specific measures/indicators

in testing process (e.g. in the regression problem this measure can be Mean Squared Error (MSE)

or R-Squared). If the stop criteria is reached then we stop, if not, model captures the other deep

architecture by changing the number of hidden units (n) and evaluates the new results. This iter-

ative process will be repeated until model converges to some specific criteria or given number of

iterations.

2.5 Implementation on Electronic Medical Records (EMRs)

In our experimental study, we implement our methodology on three different EMRs datasets.

First we use a small datasets related to cardiovascular disease with high dimensional features, then
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we apply our method on two large datasets from eICU collaborative research database. This study

design (considering small and large datasets) helps us to discover the performance of our method

in different scenarios and compare the choice of representation learning for each one.

2.5.1 Case study 1 (Small Dataset): DMC dataset

Cardiovascular disease (CVD) is the leading cause of death in the United States. Among dif-

ferent race groups, African-Americans are at higher risk of dying from CVD and have a worse risk

factor profile. Left ventricular hypertrophy is an important risk factor in cardiovascular disease

and echocardiography has been widely used for diagnosis. The data used in our first case study is

belong to a subgroup of African-Americans with hypertension who are at high risk of cardiovascu-

lar/heart failure disease. Data are captured from patients admitted in the emergency department of

Detroit Receiving Hospital in Detroit Medical Center (DMC). Across several features consisting

demographic information, patient clinical history, individual health condition, laboratory tests, and

cardiovascular magnetic resonance imaging results, 172 features remained after preprocessing step

for data analysis related to 91 patients. As mentioned before, the goal is to predict value of heart

damage risk level based on high-dimensional features.

We implemented all deep networks for feature representation using TensorFlow library in

Python and applied word embedding in R using "text2vec" package. According to figure 6; we

applied our approach for different deep architectures including SAE, DBN and VAE with different

number of hidden units. For the supervised learning step we consider four well-known super-

vised classifiers: Random Forests, Lasso Regression, Decision Trees and Support Vector Machine

(SVM). We used Mean Squared Error (MSE) as our evaluation measure for performance validation

in testing process.

Figure 8 shows the performance of different deep architectures (SAE, DBN and VAE) across
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Figure 8: Performance of SAE, DBN and VAE based on different architectures

different number of nodes in the hidden layers (Random Forests used for supervised learning). We

applied 150 different networks for each deep architecture and their performance for SAE, DBN and

VAE is demonstrated in Figure 8. It is obvious the performance of each deep network is fluctuated

across different number of hidden units. For instance SAE with n=16 nodes in all hidden layers

(except latent layer) yields least error (MSE= 45.26) among all different architectures and for DBN

and VAE; the best performance is achieved by 120 and 45 nodes respectively.

We performed our approach for different combinations of deep architectures (represented data)

and supervised classifiers as well as original data (unrepresented data), and compared their perfor-

mance based on average Mean Squared Errors (MSE) obtained from testing process with 5-folds

cross validation. This comparison has been shown in Table 15. According to this results, our

approach with representation learning reduces the prediction error and achieves a better accuracy

rather than using the original features. Among different combinations, using stacked autoencoders

for feature learning and Random Forests for supervised learning lead to the least MSE for this small

dataset (DMC dataset). Figure 9 demonstrates the MSE for different deep architectures when we

use random forests based on different number of trees. It is clear that SAE representation provides

better feature learning across different number of trees in comparison with DBN, VAE and original



26

data.

Table 2: Performance comparison among represented data and original features

Random

Forests

Lasso SVM Regression

Trees

SAE 45.56 81.74 75.73 63.72

DBN 62.54 96.06 100.49 74.04

VAE 75.41 103.55 98.82 101.05

Original 122.84 192.31 75.73 265.75

2.5.2 Case study 2 (Large Datasets): eICU dataset

In the second case study, we consider two large datasets from eICU collaborative research

database. This database is populated with data from a combination of many critical care units in

the Unites States. The data in the eICU database covers patients who were admitted to critical

care units in 2014 and 2015. Among different care units, we select cardiovascular intensive care

unit (eICU Cardiac) and Neurological intensive care unit (eICU Neuro). By integrating differ-

ent features including demographics data, hospital and administration information, diagnosis and

laboratory data, treatment and drugs information, monitored invasive vital sign data and clinical

patient history data, we finalize more than 150 features for each dataset with approximately 7000

and 8000 records related to eICU Cardiac and eICU Neuro respectively. In this case study, our

goal is to predict the patient length of stay in these ICU units based on personalized features. The

ability to predict the LOS can improve the scheduling process which leads to patient waiting time

and hospital cost reduction.
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Table 3: Performance comparison among repre-
sented data and original features (ICU-Cardiac)

RF Lasso SVM RT
SAE 2.51 18.63 5.22 6.32
DBN 0.79 16.21 4.11 4.57
VAE 0.08 6.31 2.62 2.41

Original 2.71 17.21 6.35 7.32

Table 4: Performance comparison among repre-
sented data and original features (ICU-Neuro)

RF Lasso SVM RT
SAE 1.63 6.37 11.25 4.36
DBN 0.47 4.06 3.25 3.61
VAE 0.02 0.54 1.99 1.88

Original 1.92 8.71 12.36 5.73
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Figure 9: Performance of Random Forests across represented data and original features

We applied our DIP approach on both datasets. We trained different deep architectures (SAE,

VAE and DBN) with different number of hidden unites and networks parameters (batch size, epoch

number and learning rate) to find the best feature representation. Similar to the first case study, we

used four different classifiers in supervised learning step on the top of both represented and original

data. The results has been demonstrated in Table 3 and Table 4 for each dataset.

According to these results, using representation learning based on different deep architectures

improved the accuracy of model (error reduction) for both datasets. Similar to the DMC dataset
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Figure 10: Performance of Random Forests across represented data and original features

(Small dataset), Random Forests outperforms the other supervised learners in general, but against

DMC dataset, variational autoencoders leads to significantly better results in comparison with SAE

and DBN.

Although using original features achieves good results, representation learning using VAE pro-

vides impressive accuracy while the average of MSE in testing process with 5-folds cross valida-

tion are 0.08 and 0.02 for Cardiac ICU and Neuro ICU datasets respectively when we use random

forests in supervised learning step. Also our model increases the R-squared from 93% to 98% and

from 95% to 99% for the first and second large datasets respectively. In the other words, our model

using VAE representation provides a perfect predictive approach for the second case study. Fig-

ures 10a and 10b demonstrate MSEs comparison for different deep networks when we use random

forests with different number of trees.

2.6 Discussion and Conclusion

In this research, we developed a novel predictive approach using deep feature learning for ap-

plications of Electronic Medical Records (EMRs). Our Deep Integrated Prediction (DIP) approach
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discovers the complexity and dependencies in the EMRs using unsupervised learning (feature rep-

resentation) which improves the clinical prediction performance significantly. First, we applied our

model on a small datasets obtained from Detroit Medical Center related to cardiovascular disease

to predict the heart failure risk level (LVMI) and then we captured two large datasets from eICU

collaborative research database to predict the patient length of stay in ICU units based on person-

alized features including demographics, diagnosis, medication and laboratory results information.

In both case study we applied four well-known supervised learning algorithms consisting of

Random Forests, Lasso Regression, Decision Tree and SVM on the top of clinical represented

features and original features. Our results indicate that feature learning using appropriate deep net-

work improves the accuracy of all supervised learners. We used three different deep architectures

(SAE, DBN and VAE) and considering different training parameters in each network (including

number of hidden units, bach size, number of epochs and learning rate).

The results emphasize that the choice of representation learning plays an effective rule in the

performance of clinical prediction. While in the first case study (small datasets), SAE has a better

accuracy in comparison with DBN and VAE, for large datasets (eICU database), VAE outperforms

the other deep architectures and SAE cannot improve the prediction results significantly. In other

words, we can conclude that feature representation using deep learning would be effective for both

small and large datasets and choice of deep network achieves different results. The advantage

of VAE in learning true distribution of input features based on distribution of sample from latent

variables makes it different and it seems that VAE achieves better representation in the case of

large and more complex data in comparison with traditional autoencoders such as SAE and DBN.

In summary, we present a novel data-driven approach for predictive modeling of clinical data

with high dimensional, complex and sparse features. Our model is the first model which use the ad-
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vantages of variational autoencoders in clinical feature representation and compare its performance

with two other traditional autoencoder deep architectures. We demonstrated that deep learning

could be effective for small datasets as well as large data and our comparative study between small

and large clinical datasets provides some new insights in the choice of deep representation. We

believe that our model with great EHRs feature learning has potential to be applied in different

clinical and health informatics aspects including treatment planning, risk factor identification, per-

sonalized recommendation and survival analysis. Also, our proposed framework is highly useful

for exploiting a large amount of unlabeled data in the feature learning (unsupervised learning) step

to extract high level abstraction of features when the labeled data are limited and expensive.

For further directions, we plan to apply our method to the other small, large and big datasets

for different clinical predictive purposes like as personalized recommendations. We will involve

the other deep architectures including Stacked Denoising Autoencoders and compare their perfor-

mance with each others. Finally we will consider clustering task in the last step of our approach

(instead of supervised learning) to discover important clinical patterns such as treatment schemes

among patients.
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CHAPTER 3 PATIENT SUBGROUP DETECTION APPROACH FOR
PERSONALIZED HEALTHCARE

Traditional medicine typically applies one-size-fits-all treatment for the entire patient popu-

lation whereas precision medicine develops tailored treatment schemes for different patient sub-

groups. One of the current focus of precision medicine emphasizes health disparities because

health in populations is driven by biologic, environmental, social, and economic factors. The fact

that some factors may be more significant for a specific patient subgroup motivates clinicians and

medical researchers to develop new approaches to subgroup detection and analysis, which is an

effective strategy to personalize treatment. In this chapter, we propose a novel patient subgroup

detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our

approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulner-

able demographic subgroup (African-American). Our approach not only finds patient subgroups

with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors

by pursuing sparsity of the input variables and encouraging similarity among the input variables

and between the input and target variables.

3.1 Problem Definition

The explosive increase of Electronic Medical Records (EMR) and emerge of precision (person-

alized) medicine in recent years holds a great promise for greatly improving quality of healthcare.

In fact, the paradigm in medicine and healthcare is transferring from disease-centered (empirical)

to patient-centered, the latter is called Personalized Medicine. The extensive and rich patient-

centered data enables data scientists and medical researchers to carry out their research in the field

of personalized medicine [85].

A crucial step in personalized medicine is to discover the most important input variables (dis-
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ease risk factors) related to each patient. Since identification of risk factors needs multi-disciplinary

knowledge including data science tools, statistics techniques and medical knowledge, many ma-

chine learning and data mining methods have been proposed to identify, select and prioritize risk

factors. Some popular methods such as linear model with shrinkage [112] and random forest

[15] effectively select significant risk factors for the entire patient population. However, these

approaches are not capable of detecting risk factors for each patient subgroup because they are

developed based on an assumption that the patient population is homogeneous with a common set

of risk factors.

While the point of input variable selection is well taken, the association with small subgroups,

a key notion in personalized medicine, is often neglected. As mentioned, personalized healthcare

aims to identify subgroup of patients who are similar with each other according to both target

variables and input variables. Discovering potential subgroups plays a significant role in design-

ing personalized treatment schemes for each subgroup. Therefore, it is essential to develop a

core systematic approach for patient subgroup detection based on both input and target variables

[41]. A number of data-driven approaches have been developed for subgroup identification. The

more popular methods can be divided in two categories: 1) Tree-based approaches [35] (or so

called recursive partitioning), and 2) Biclustering approaches [91]. Tree based methods in sub-

group analysis are greatly developed in recent years, such as Model-based recursive partitioning

[122], Interaction Trees [107], Simultaneous Threshold Interaction Modeling Algorithm (STIMA)

[36], Subgroup Identification based on Differential Effect Search (SIDES) [73], Virtual Twins

[42], Qualitative Interaction Tree (QUINT)[37] and Subgroup Detection Tree [69]. The second

approaches (Biclustering) have been extensively developed and applied to analyze gene expres-

sion data. Most of the biclustering algorithms developed up-to-date are based on optimization
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procedures as the search heuristics to find the subgroup of genes or patients.

Tree-based methods detect patient subgroups using the relationship between input and target

variables whereas biclustering methods just focus on clustering rows and columns of the input

variables simultaneously to identify different subgroups with specific risk factors (prioritized input

variables). The former employs a target variable to guide subgroup detection by selecting a com-

mon set of input variables. The latter selects subgroup of specific input variables without guidance

of a target variable. Moreover, both approaches are heuristic in nature that subgroup detection and

risk factor identification are sensitive to choices of data sets and initializations hence has a poor

generalization performance. Our proposed method combines the strength of the both approaches

by using a target variable to guide the subgroup detection and selecting subgroup of specific risk

factors. Meanwhile, our systematic approach overcomes the stability limitation of both approaches

by casting the problem into a stable and mature convex optimization framework. Figure11 demon-

strates consecutive steps of our approach.

Figure 11: The consecutive steps of our approach

In this study, we propose a new supervised biclustering approach, called SUBIC, for solving

patient subgroup detection problem. Our approach is the generalized (supervised) version of con-

vex biclustering [27], which enables prediction of target variables for new input variables. More-

over, we employ the elastic-net penalty [126] (both l1 and l2 regularization terms) that encourages

sparsity of the correlated input variable groups (X) with the guidance of a target value (Y ). Our



34

model is specifically designed for patient subgroup detection and target variable prediction from

high dimension data. To the best of our knowledge, our model is the first supervised biclustering

approach that can be applied in many domains such as personalized medicine. To demonstrate

the performance of SUBIC approach, we apply it to detect subgroups among hypertension (HTN)

patients with guidance of left ventricular mass indexed to body surface area (LVMI), a clinically

important target variable.

3.2 Related Works

Biclustering is defined as simultaneous clustering of both rows and columns in the input data

matrix. Such clusters are important since they not only discover the correlated rows, but also

identify the group of rows that do not behave similarly in all columns [38]. In the context of pre-

cision medicine, rows correspond to patients and columns correspond to input variables measured

in each patient. Biclustering was originally introduced in 1972 [47], and Cheng and Church [25]

were the first to develop a biclustering algorithm and applied it to gene expression data analysis.

There exist a wide range of biclustering methods developed using different mathematical and al-

gorithmic approaches. Tanay et al. [110] proved that biclustering is a NP-hard problem, and much

more complicated than clustering problem [33]. Therefore, most of methods are developed based

on heuristic optimization procedures [91]. Madeira and Oliveira [79], Busygin et al.[18], Eren et

al. [38] and Pontes et al.[18] provided four comprehensive reviews about biclustering methods

in 2004, 2008, 2012 and 2015 respectively. Based on the most recent review [91], biclustering

approaches can be divided in two main groups. The first one refers to methods based on evalua-

tion measures, which means some heuristic methods are developed using a measure of quality to

reduce the solution space and complexity of biclustering problem. Table 5 demonstrates different
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algorithmic categories within this group:

Table 5: Biclustering methods based on evaluation measure.

Algorithm Description Prosperous Methods

Iterative greedy

search

These methods follow a greedy strategy to find an approximate

solution. They improve the measure of evaluation in each step

and construct a set of objects from the smallest possible solu-

tion space recursively or iteratively.

Direct Clustering [47], Cheng and Church [25],

HARP Algorithm [120], Maximum Similarity

Bicluster[76]

Stochastic iterative

greedy search

These methods use a stochastic strategy by adding a random

variable to the iterative greedy search in order to speed up the

biclustering algorithm.

Flexible Overlapped Biclustering [117], Random

Walk Biclustering [2], Reactive GRASP Biclustering

[32], Pattern-Driven Neighborhood Search[5]

Nature-inspired meta-

heuristics

These methods are developed based on a nature-inspired meta-

heuristic, such as simulated annealing, ants colony and swarm

optimization.

Simulated Annealing Biclustering [17], Evolutionary

Algorithms for Biclustering [13], SEBI (Sequential

Evolutionary Biclustering) [33], Multi-objective Evo-

lutionary Algorithms for Biclustering[83]

Clustering-based ap-

proach

These methods carry out their search based on traditional clus-

tering methods in one dimension and then use an additional

approach to cluster second dimension.

Possibilistic Spectral Biclustering. [19], Biclustering

with SVD and Hierarchical Clustering.[118]

The second group of approaches is called non metric-based biclustering methods that do not

use any measure of quality (evaluation measure) for guiding the search. These methods use graph-

based or probabilistic algorithms to identify the patterns of biclusters in data matrix. Table 6

summarizes different algorithms of non metric-based group:
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Table 6: Biclustering method based on non-metric.

Algorithm Description Prosperous Methods

Graph-based ap-

proaches

These methods are developed based on the graph theory. They

use nodes for either genes, samples or both gene and sample

representations, or refer to nodes as representing the whole bi-

clusters.

Statistical-Algorithmic Method for Bicluster Analysis

(SAMBA)[110], Qualitative Biclustering algorithm

(QUBIC)[68], Pattern-based Co-Regulated Bicluster-

ing (QoBi) [98], MicroCluster [123]

One-way clustering-

based approaches

These methods are developed based on the same concept of

clustering-based approached, but they do not use any measure

of quality in their search path.

Coupled Two-way Clustering [44], Interrelated Two-

way Clustering [111]

Probabilistic search These methods are created using statistical modeling and prob-

ability theory.

Plaid Models [58], Rich Probabilistic Models [100],

Gibbs Sampling [103], Bayesian Biclustering Model

[45]

Linear algebra These methods use linear algebra to apply linear mapping be-

tween vector spaces for describing and identifying the most

correlated submatrices from the original dataset.

Spectral Biclustering [61], Iterative Signature Algo-

rithm [11], Non-smooth Non-negative Matrix Factor-

ization (nsNMF) [20]

Optimal reordering

rows and columns

These methods are based on the strategy of performing permu-

tations of the original rows and columns in the data matrix, to

achieve a better arrangement and make biclusters.

Pattern-based Biclustering [50], order-preserving

sub-matrices (OPSMs)[7]

One of the important aspects of bicluster structure is overlapping, which means several biclus-

ters share rows and columns with each other. Because of the characteristic of search strategy in

biclustering methods, overlapping may or may not be allowed among the biclusters. Most of the

algorithms mentioned in Table 5 and Table 6 allow overlapping biclusters [91]. Since these al-

gorithms use heuristic approach for guiding search, final biclusters may vary depending on how

the algorithm is initialized. Therefore, they don’t guarantee a global optimum nor are they robust

against even small perturbations [27].

Recently, Chi et al.[27] formulated biclustering problem as a convex optimization problem and

solved it with an iterative algorithm. Their convex biclustering model corresponds to checkerboard

mean model, which means each data matrix component is assigned to one bicluster. They used the
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concept of fused lasso [113] and generalized it with a new sparsity penalty term corresponding to

the problem of convex biclustering. This method has some important advantages over the previous

heuristic-based methods, that is, it created a unique global minimizer for biclustering problem,

which maps data to one biclustering structure, therefore the solution is stable and unique. Also

it used a single tuning parameter to control the number of biclusters. Authors performed sim-

ulation studies to compare their algorithm with two other biclustering algorithms, dynamic tree

cutting algorithm [62] and sparse biclustering algorithm [109], which assume the checkerboard

mean structure. Results showed that convex biclustering outperforms the competing approaches in

terms of Rand index [27].

Despite the improved performance, the convex biclustering method, like other biclustering

methods, does not exploit a target variable on subgroup detection and risk factor selection. As a

result, the detected biclusters do not link to target variables of interest. Hence, it is unable to predict

the target variable for future input variables. Clearly, the target variable such as LVMI provides a

critical guidance for detection and selection of the meaningful biclusters (patient subgroups). To

overcome this limitation, we develop a new supervised biclustering algorithm which uses a target

variable to guide the patient subgroup detection and risk factor selection.

Moreover, the l1 penalty term alone in convex biclustering encourages the sparsity of individual

input variables but overlooks the fact that they are also correlated within variable groups. To over-

come both limitations, we introduce a new elastic-net regularization term that seeks sparsity of the

correlated variable groups and employs a target variable to supervise the biclustering optimization

process. Consequently, our model is truly a predictive model that is capable of predicting value of

the target variable for new patients. In the next section, we describe our method in detail.



38

3.3 Method

3.3.1 The object function of the SUBIC method

The goal of convex biclustering is to identify biclusters using convex optimization. Chi et

al. [27] formulated biclustering problem as a regularized regression problem where their convex

biclustering approach can be seen as a generalization of the Fused Lasso. They developed this

model for checkerboard mean structure. We generalized and extend this concept and propose

a novel sparse supervised convex biclustering that is capable of using a target variable to guide

optimization. (you have mentioned it in the previous paragraph)

Let’s assume that the input data matrix Xn×p represents n instances with different p input

variables and Yn is the continues target variable (e.g. LVMI), corresponds to nth instance (patients).

According to the checkerboard mean structure, we assume R and C are the sets of rows and

columns of the bicluster B respectively, and xi,j refers to elements belong to the bicluster B, the

observed value of xi,j can be defined as [27]: xi,j = µ0 + µRC + εi,j , where µ0 is a baseline

mean for all elements, µRC is the mean of bicluster corresponds to R and C, and εi,j refers to error

that is i.i.d with N(0, σ). With considering non-overlapping biclusters, this structure corresponds

to a checkerboard mean model.[61] Without loss of generality, we ignore µ0 from all elements.

The goal of biclustering is to find the partition indices with regard to R and C then estimate the

mean of each corresponding bicluster (B). To achieve this goal, we minimize the following convex

objective function:

Fλ1,λ2 =
1

2
‖X − T‖2F + P (T ), (3.1)
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where matrix T ∈ Rn×p includes our optimization parameters, which are the estimate of means

matrix. The first term is frobenius norm of matrix X−T refers to error term and P (T ) = P1(T )+

P2(T ) is the elastic-net regularization penalty term formulated as follows:

P1(T ) = λ1[Σi<jwi,j‖T.i − T.j‖22 + Σi<jhi,j‖Ti. − Tj.‖22], (3.2)

and

P2(T ) = λ2[Σi<jwi,j‖T.i − T.j‖1 + Σi<jhi,j‖Ti. − Tj.‖1]. (3.3)

It is clear that this objective function is similar to subset selection problem in regularized regression

[112]. In the penalty function λ1 and λ2 are tunning parameters. The first term penalized by λ1 is a

l2-norm regularization term and the second term penalized by λ2 is a l1-norm regularization term.

Therefore the penalty term P (T ) acts as regression elastic-net penalty [126]. Ti. and T.i refer to

ith row and column of matrix T , which can be considered as a cluster center (centroid) of ith row

and column respectively.

By minimizing the objective function defined in Eq.3.1 with sparsity based regularization, the

cluster centroids are shrunk together when the tunning parameters increase. It means that sparse

optimization tries to unify the similar rows and columns to specific centroid simultaneously. Find-

ing the similarity between rows and columns is guided by different weights (wi,j , hi,j), which

are included in objective function. These weights has been defined based on distance between

input variables (X.i − X.j and Xi. − Xj.), distance between target variables (Yi − Yj) and cor-

relation between input variables and target variable (X.i, Y.j). Therefore both input variables and
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target variable play significant rule in guiding of sparsity to find the best centroids. The first kind

of weights (wi,j) proceeds the columns convergence and the second one (hi,j) proceeds the rows

convergence. The weights are constructed from un-supervised and supervised parts, where:

wi,j = w1
i,j + w2

i,j and hi,j = h1i,j + h2i,j. (3.4)

The unsupervised part (w1
i,j, h

1
i,j) attempts to converge rows(columns) based on the similarity exists

among input variables, and the supervised part (w2
i,j, h

2
i,j) converges rows and columns according

to the similarity of input and target variables. Since the rows and columns are in Rn and Rp

spaces respectively, it is required to normalize the weights (recommended the sum of row weights

and column weights to be 1√
n

and 1√
p

respectively). We used the idea of sparse Gaussian kernel

weights [27] for defining w1
i,j, w

2
i,j, h

1
i,j, h

2
i,j . Table 7 demonstrates the mathematical description of

weights:
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Table 7: Description of the weights formula.

# Weight Formula Description

1 w1
i,j = lki,j exp

(−ϕ‖X.i−X.j‖22) This weight is to converge the similar columns in terms of distance similarity

measure. lki,j is 1 when jth column is among the k-nearest neighbor of ith

column, otherwise it is zero. Therefore it guarantees the weights are sparse.

(0 ≤ ϕ ≤ 1)

2 w2
i,j = lki,j exp

(−ϕ|corr(x.i,Y )−corr(x.j ,Y )|) This weight is the supervised part of wi,j , the goal is to converge the columns

that have similar correlation with target variable. It means that the features which

behave similarly with target variable should be converged. In our model we used

Pearson correlation that assumes a linear relationship between input variable and

target variables. (0 ≤ ϕ ≤ 1)

3 h1i,j = lki,j exp
(−ϕ‖Xi.−Xj.‖22) This weight is the same as w1

i,j , which attempts to converge the similar rows

with lower distance from each other.(0 ≤ ϕ ≤ 1)

4 h2i,j = lki,j exp
(−ϕ

√
|(Yi−Yj)|) This weight is supervised part of hi,j , and it converges the rows that are similar

in term of target variable value. This weight considers the role of target variable

in clustering of similar rows.(0 ≤ ϕ ≤ 1)

The way to define the weights has a substantial impact on the quality of biclustering. The

weights described above guarantee the sparsity of the problem and employ the similarity of all input

and target variables in supervised and unsupervised manner. According to defined weights, the two

columns (rows) that are more similar with each other will get larger weight in the convex penalty

function, therefore in minimization process, those columns (rows) should be in higher priority,

and it means that convex minimizer attempts to cluster the similar columns (rows). The choice

of elastic-net penalty term can overcome the lasso limitations. While the l1-norm can generates

a sparse model, the quadratic part of the penalty term encourages grouping effect and stabilizes

the l1-norm regularization path. Also the elastic-net regularization term performs very suitable for

high dimensional data with correlated input variables and would be a better model when p � n

specially in the case of gene expression data and precision medicine problems [126].
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3.3.2 The algorithm to train the SUBIC model

It can be proved easily that the objective function in Eq.3.1 is a convex function. Therefore

we need to develop appropriate algorithm to solve this unconstrained convex optimization. Since

the second part of penalty function, P2(T ) is undifferentiated we use Split Bregman method [119]

developed for large-scale Fused Lasso. It can be shown that this method is equivalent to the alter-

nating direction method of multipliers (ADMM) [14]. Readers can refer to Split Bregman method

[119] or ADMM algorithm [14] for more comprehensive explanation. According to both methods

we need to use splitting variable and Lagrangian multiplier and then apply augmented Lagrangian

for undifferentiated part (P2(T )) of objective function. First we need to transform our problem

to the equality-constrained convex optimization problem by defining two new variables (V ,S) and

adding two constraints correspond to P2(T ) and then use Lagrangian multipliers:

min Fλ1,λ2 =
1

2
‖X − T‖2F + λ1[Σi<jwi,j‖T.i − T.j‖22 + Σi<jhi,j‖Ti. − Tj.‖22]+

λ2[Σi<jwi,j‖T.i − T.j‖1 + Σi<jhi,j‖Ti. − Tj.‖1],

subject to : wi,j(T.i − T.j) = Vi,j ∀i, j; i < j,

hi,j(Ti. − Tj.) = Si,j ∀i, j; i < j, (3.5)

where V and S are matrices in Rn×p. Assuming the differentiated part of objective function in (1)

is F ′λ1,λ2 , the Lagrangian Multiplier for the above problem is:

L̃(T,M,N, V, S) = F
′

λ1,λ2
+ λ2[Σi<jwi,j‖Vi,j‖1 + Σi<jhi,j‖Si,j‖1] + Σi<j 〈Mi,j , wi,j(T.i − T.j)− Vi,j〉+

Σi<j 〈Ni,j , hi,j(Ti. − Tj.)− Si,j〉, (3.6)
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whereM andN are the vectors of dual variables (Lagrangian Multipliers) corresponding with each

constraints in Eq.3.5 (totally there are
(
n
2

)
+
(
p
2

)
constraints). Finally the Augmented Lagrangian

function of Eq.3.5 is as following:

L(T,M,N, V, S) = F
′

λ1,λ2
+ λ2[Σi<jwi,j‖Vi,j‖1 + Σi<jhi,j‖Si,j‖1] + Σi<j 〈Mi,j , wi,j(T.i − T.j)− Vi,j〉+

Σi<j 〈Ni,j , hi,j(Ti. − Tj.)− Si,j〉+
µ1

2
[Σi<j‖wi,j(T.i − T.j)− Vi,j‖22] +

µ2

2
[Σi<j‖hi,j(Ti. − Tj.)− Si,j‖22],

(3.7)

where µ1 > 0 and µ2 > 0 are two parameters. The Split Bregman algorithm for supervised convex

biclustering problem described below:
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Algorithm 1 Split Bregman algorithm for Training the SUBIC model
1: Initialize T 0, V 0,S0, M0, N0

2: repeat

3: T k+1 = argminT
1

2
‖X − T‖2F + λ1[Σi<jwi,j‖T.i − T.j‖22 + Σi<jhi,j‖Ti. − Tj.‖22]

+ Σi<j
〈
Mk
i,j , wi,j(T.i − T.j)− V ki,j

〉
+ Σi<j

〈
Nk
i,j , hi,j(Ti. − Tj.)− Ski,j

〉
+
µ1

2
[Σi<j‖wi,j(T.i − T.j)− V ki,j‖22] +

µ2

2
[Σi<j‖hi,j(Ti. − Tj.)− Ski,j‖22]

4: V k+1
i,j = τλ2

µ1

(wi,j(T
k+1
.i − T k+1

.j ) + µ−1
1 Mk

i,j) ∀i, j; i < j

5: Sk+1
i,j = τλ2

µ2

(hi,j(T
k+1
i. − T k+1

j. ) + µ−1
2 Nk

i,j) ∀i, j; i < j

6: Mk+1
i,j = Mk

i,j + δ1(wi,j(T
k+1
.i − T k+1

.j )− V k+1
i,j ) ∀i, j; i < j; 0 < δ1 ≤ µ1

7: Nk+1
i,j = Nk

i,j + δ2(hi,j(T
k+1
i. − T k+1

j. )− Sk+1
i,j ) ∀i, j; i < j; 0 < δ2 ≤ µ2

8: until

9: Convergence

τ acts as a soft thresholding operator defined on vector space and satisfying the following

equation:

τλ(w) = [tλ(w1), tλ(w2), ...]
T , tλ(wi) = sgn(wi)max{0, |wi− λ|}. (3.8)

3.3.3 The SUBIC based prediction approach

For prediction of the target variable based on supervised biclustering framework, we introduce

a simple yet effective approach based on generalized additive model (GAM) [48]. Assuming that
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K biclusters {BC1,BC2,..., BCK } are detected by training the SUBIC model, we consider K

classifiers corresponding to each biclusters, i.e., fk(y|xbck , xnew) = ybck . It means that each clas-

sifier predicts the target value as an average of the target variables of the corresponding bicluster.

The proposed GAM model is as follows:

g(E(y)) = R1(xbc1) +R2(xbc2) + ...+Rk(xbck), where Rk(xbck) = qkfk(y|xbc, xnew).

(3.9)

qk is defined as normalized weight based on posterior probabilities. Assuming that each bicluster

follows a Gaussian distribution as N(µi, σ) and P (bck|xnew) is the posterior probability which

refers to the probability of each bicluster given a new instance , we can define qk as below:

qk =
P (bck|xnew)∑k
i=1 P (bci|xnew)

, where P (bck|xnew) = P (xnew|bck)× P (bck). (3.10)

P (xnew|bck) is conveniently calculated based on Gaussian distribution assuming equal variance and

zero covariance and P (bck) is the prior that can be calculated by counting the number of instances

in each bicluster.

3.4 Experimental Study and Model Evaluation

Evaluating the quality of clustering (biclustering) algorithms has been known very hard in the

literature. For assessing the performance of our approach, we carry out simulation studies and use

Rand index (RI) [93]and Adjusted rand index (ARI) [59] as two popular measures for evaluating

the quality of clustering. Since our biclustering method is supervised, we simulate data for input

and target variables based on a checkerboard mean structure. We used normal distribution with



46

different means to generate simulated data. Figure 12 illustrates an example simulation study.

As shown below, data was simulated in 20×20 matrix. Data in each segment has different size

and were created based on a different normal distribution, all sections are generated with low-noisy

data (σ = 1.5). Input data in segments (2, 3, 4 and 5) are in high positive correlation with the target

variable and input data in segment (6, 7, 8 and 9) are in high negative correlation with the target

variable. Segments 1 and 10 in general, are similar with very low correlation with target variable.

Segments 1 and 3 of the target variable are positive and the other two sections have negative values.

Figure 12: The chessboard structure (left panel) and the simulated data (right panel).

According to this assumptions and consider the effect of target variable, it is clear that the true

number of biclusters should be 16 (not 10). It means that segments 1 and 10 include 4 biclusters

within each. The results of SUBIC implementation for different tuning parameters are displayed

in Figure 13.
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Figure 13: Results of SUBIC method implementation on the simulated data for different tuning parameters

According to Figure 13, tuning parameters provide a flexible mechanism to analyze data with

both high and low variances. It is obvious that by increasing λ1 and λ2, rows and columns are

unified to mean in each bicluster but when λ1 and λ2 get larger values such as 10000, bicluster

patterns are “smoothed out" and the number of biclusters reduces.

We consider different scenarios in Figure 14 to show that the flexibility and generalization of

our method. Panel a shows our supervised biclustering approach, SUBIC, with elastic-net penalty

(l1 and l2) as the most general case. By zeroing out λ1, the l2 penalty (special case 1), SUBIC

becomes the extended (supervised) version of the convex biclustering approach [27] (Panel b).

If we instead zero out the supervised weight components w2
i,j and h2i,j (special case 2), SUBIC

becomes extended unsupervised convex biclsutering with elastic-net penalty (Panel c). Finally,

if we zero out both the l2 penalty and the supervised weight components w2
i,j and h2i,j (special

case 3), SUBIC becomes the bona fide convex biclustering method reported in [27]. Therefore,

our SUBIC approach is sufficiently general and flexible that employs a target value to guide the

subgroup detection by encouraging sparsity of the number of variable groups and variables within

each group. Correspondingly, our SUBIC approach most accurately detect the biclusters given in

the ground truth. Panel a and b in Figure 14 confirm that the impact of supervised weights (target

value guidance) in identifying of true biclusters in comparison with convex biclustering approach
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[27] (Panels c and d). Also in both cases the elastic-net regularization appears more accurate in

detecting true biclusters.

Figure 14: Different scenarios which show the flexibility of SUBIC method

We extend the above idea to 80× 80 matrix and consider different design (true biclusters) with

two noise levels (low and high) for assessment of our model. We use different tuning parameters in

each design and evaluate SUBIC method with rand index and adjusted rand index. The results of

average RI and ARI over 10 replicates are depicted in table 8 and 9 for low-noisy and high-noisy

data respectively.

Table 8: Evaluation results based on RI and ARI for different designs with low noisy simulated data

Row Design σ λ1 = λ2 = 100 λ1 = λ2 = 1000 λ1 = λ2 = 10000

RI ARI RI ARI RI ARI

1 2× 4 1.5 0.85 0.71 0.99 0.96 0.79 0.65

2 4× 4 1.5 0.79 0.62 0.98 0.95 0.76 0.64

3 4× 8 1.5 0.73 0.56 0.98 0.97 0.68 0.59

4 8× 8 1.5 0.82 0.69 0.96 0.93 0.72 0.61

Table 9: Evaluation results based on RI and ARI for different designs with high noisy simulated data

Row Design σ λ1 = λ2 = 100 λ1 = λ2 = 1000 λ1 = λ2 = 10000

RI ARI RI ARI RI ARI

1 2× 4 3 0.65 0.53 0.90 0.88 0.99 0.96

2 4× 4 3 0.68 0.58 0.85 0.81 0.99 0.97

3 4× 8 3 0.59 0.49 0.93 0.90 0.98 0.93

4 8× 8 3 0.55 0.43 0.87 0.82 0.99 0.95
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As shown above, the performance of SUBIC is fully tunable using the pair of tuning parameters

in response to data with different levels of variances. From Table 8, it is clear that SUBIC’s

superior performance is very stable for both low and high variance data. In particular, the robust

performance against high-variance data is achieved by setting larger values of tuning parameters.

3.5 Application in Personalized Medicine

In this section we demonstrate how SUBIC method is capable of identifying patient subgroups

with guidance of the target variable LVMI. We study the population of African-Americans with

hypertension and poor blood pressure control who have high risk of cardiovascular disease.

Figure 15: Results of SUBIC implementation (top panel) and COBRA method (bottom panel) on the data related to
African-American patients at high risk of cardiovascular disease.

Data are obtained from patients enrolled in the emergency department of Detroit Receiving

Hospital. After preprocessing step, our data consists of 107 features including demographic char-
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acteristics, previous medical history, patient medical condition, laboratory test result, and CMR

results related to 90 patients. To achieve a checkerboard pattern, we reorder rows and columns

(original data) at first [27] using hierarchical clustering and then apply SUBIC method. The results

are shown in the top panel of Figure 15. In addition, we implemented convex biclustering method

(COBRA) developed by Chi et al. [27] using package “cvxbiclustr" in R for comparing with our

SUBIC method. Results obtained using different tuning parameters (λ) are shown in the bottom

panel of Figure 15.

In Figure 15, our SUBIC method detects 4 subgroups using 15 features for λ1 = λ2 = 104.

These 15 features belong to 3 major groups of features including: 1) Waist Circumference Levels

(mm); 2) Average Weight (kg) and 3) Calculated BMI. The statistics related to these risk factors

based on 4 groups of patients is summarized in Table 10. It is worth mentioning that other poten-

tial risk factors such as "Troponin Level" or "Plasma Aldosterone" can be also significant but these

three groups of features are sufficient to describe the disparity among patients based on guidance

of the target variable LVMI. On the contrary, COBRA method fails to find any patient subgroups

for this data set.

Table 10: Average of three disparity factors and LVMI (along with standard deviation)
for subgroups detected by SUBIC

Subgroup size Waist Circumference Levels (mm) Average Weight (kg) Calculated BMI LVMI

A 24 1248.86 (104.73) 125.17 (13.16 ) 41.65 (5.20) 85.78 (11.95)

B 28 1092.65 (74.55) 99.73 (11.01) 35.18 (3.81) 82.74 (13.77)

C 29 972.83 (89.67) 84.88 (10.25) 30.01 (4.97) 80.97 (13.70)

D 9 813.33 (123.79) 64.46 (10.65) 23.83 (4.39) 79.38 (11.8)

Total 90 1067.76 (163.59) 98.20 (22.24) 34.10 (7.28) 82.64 (12.98)
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3.6 Discussion and Conclusion

In this chapter, we have developed a novel supervised subgroup detection method called SUBIC

based on convex optimization. We used the idea of convex biclustering approach [27] and proposed

a new supervised biclutering approach which overcomes the limitation of previous works when we

have a target variable.

SUBIC is a predictive model that combines the strength of biclustering and tree-based meth-

ods. We introduced a new elastic-net penalty term in our model and defined two new weights in

our objective function to enable the supervised training under the guidance of a clinically rele-

vant target variable in detecting biclusters. We further presented a generalized additive model for

predicting target variables for new patients. We evaluated our SUBIC approach using simulation

studies and applied our approach to identify disparities among African-American patients who are

at high risk of cardiovascular disease. Future directions include extending our SUBIC approach to

predict categorical target variables, such as stages and subtypes of heart diseases.
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CHAPTER 4 TREATMENT RECOMMENDATION USING SURVIVAL
ANALYSIS FOR PERSONALIZED HEALTHCARE

Survival analysis has been developed and applied in the number of areas including manufac-

turing, finance, economics and healthcare. In healthcare domain, usually clinical data are high-

dimensional, sparse and complex and sometimes there exists few amount of time-to-event (la-

beled) instances. Therefore building an accurate survival model from electronic health records is

challenging. With this motivation, we address this issue and provide a new survival analysis frame-

work using deep learning and active learning with a novel sampling strategy. First, our approach

provides better representation with lower dimensions from clinical features using labeled (time-to-

event) and unlabeled (censored) instances and then actively trains the survival model by labeling

the censored data using an oracle. As a clinical assistive tool, we introduce a simple effective

treatment recommendation approach based on our survival model. In the experimental study, we

apply our approach on SEER-Medicare data related to prostate cancer among African-Americans

and white patients. The results indicate that our approach outperforms significantly than baseline

models.

4.1 Problem Statement

Survival analysis has been applied in several real-world applications such as healthcare, manu-

facturing and engineering in order to model time until the occurrence of an future event of interest

(e.g. biological death or mechanical failure) [54]. Censoring attribute of survival data makes sur-

vival analysis different from the other prediction approaches. One popular survival model is the

Cox Proportional Hazards model (CPH) [30] which model the risk of an event happening based

on linear combination of the covariates (risk factors). The major problem of Cox-based models is

linear relationship assumption between covariates and the time of event occurrence. Hence, there
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have been developed several model to handle non-linear relationship in survival analysis like as

survival neural network and survival random forest models.

In the healthcare area, medical researchers apply survival analysis on EHRs to evaluate the

significance of many risk factors in outcomes such as survival rates or cancer recurrence and sub-

sequently recommend treatment schemes. There exist two specific challenges in survival analysis

from EHRs: 1) Clinical data are usually high dimensional, sparse and time-dependent where ap-

plying traditional survival approaches do not perform well enough to estimate the risk of a medical

event of interest accurately, 2) In many health survival applications, labeled data (time-to-event

instances) are small, time-consuming and expensive to collect. In this situation, it is hard to learn

a survival model based on traditional approaches which able to predict the relative risk of patients

precisely.

To address the first challenge, recently, semi-supervised learning using deep feature representa-

tion has been applied in number of areas and could improve the performance of different machine

learning tasks as well as survival analysis. In the other word, applying unsupervised learning us-

ing deep learning can reduce the complexity of raw data and provide robust features with lower

dimensions. Using this represented features in the supervised learning algorithms (e.g. survival

models) establishes a semi-supervised learning framework which achieve higher performance.

To overcome the second challenge, active learning is well suited to get high accuracy when the

labeled instances are small or labeling is expensive and time-consuming. Active learning approach

from censored data has been rarely addressed in the literature. However it has been widely used in

the other aspects of health informatics where the labeled data are scarce.

In this chapter, first, we propose a novel survival analysis approach using deep learning and

active learning termed DASA. Our model is capable to learn more accurate survival model using
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high dimensional and small size EHRs in comparison with some baseline survival models. Second,

we introduce a personalized treatment recommendation approach based on our survival analysis

model which can compare the relative risk (or survival time) associate with different treatment

plans and assign better one. We evaluate our approach using SEER-Medicare dataset related to

prostate cancer. We consider two racial subgroup of patients (African-American and whites) in our

analysis and apply our model on each dataset separately.

Our contributions in this chapter lie into three folds: 1) To best of our knowledge, we pro-

pose the first deep active survival analysis approach with promising performance, 2) In our active

learning framework we develop a new sampling strategy specifically for survival analysis and 3)

Our model with proposed treatment recommendation approach is highly potential to apply for

evaluation of new treatment effect on new patients where the labeled data is scarce.

4.2 Background

In this section, we review some basic concepts and approaches for modeling of survival analysis

and active learning. The background related to deep learning has been discussed in the chapter 1.

4.2.1 Introduction to Survival Analysis

Survival analysis is a kind of statistical modeling where the main goal is to analyze and model

time until the occurrence of an event of interest, such as death in biological systems and failure

in mechanical machines. The challenging characteristics of survival data is the fact that time-to-

event of interest for many instances is unknown because the event might not have happened during

the period of study or missing tracking occurred caused by other events. This concept is called

censoring which makes the survival analysis is different. The special case of censoring is where

the observed survival time is less than or equal to the true event time called right-censoring the
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main focus of our study.

Since the censored data is present in survival analysis, the standard statistical and machine

learning approaches are not appropriate to analyze and predict time-to-event outcome because

those approaches miss the censored/right-censored instances. Survival modeling provides different

statistical approaches to analyze such censored data in many real-world applications.

In survival analysis, a given instance i, represented by a triplet (Xi, δi, Ti) where Xi refers to

the instance characteristics and Ti indicates time-to-event of the instance. If the event of interest

is observed, Ti corresponds to the time between baseline time and the time of event happening,

in this case δi = 1. If the instance event is not observed and its time to event is greater than the

observation time, Ti corresponds to the time between baseline time and end of the observation,

and the event indicator is δi = 0. The goal of survival analysis is to estimate the time to the event

of interest (T ) for a new instance Xj .

Survival and hazard functions are the two main functions in survival modeling. The survival

function indicates to the probability that the time to the event of interest is not less than a deter-

mined time (t). This functions (S) denoted by following formula:

S(t) = Pr(T > t) (4.1)

The initial value of survival function is 1 when t = 0 and it monotonically decreases with t.

The second function, hazard function indicates the rate of occurrence of the event at time t given

that no event occurred earlier. It describes the risk of failure (dying) changing over time. The
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hazard function (or hazard rate or failure rate) is defined as following:

h(t) = lim
δ(t)→0

Pr(t ≤ T ≤ t+ δ(t)|T ≥ t)

δ(t)
(4.2)

Survival and hazard function are non-negative functions. While all the survival function de-

creases over time, The shape of a hazard function can be in different forms: increasing, decreasing,

constant, or U-shaped.

There exist several models for survival analysis in the literature. Among all, Cox Proportional

Hazards (CPH) model [30] is the most popular model for survival analysis. CPH estimates the

hazard function h(x) as a regression formulation:

h(t,Xi) = h0 exp(Xiβ) (4.3)

where h0 is the baseline hazard function which can be an arbitrary nonnegative function of

time and Xi refers to covariate vector for instance i, and β is the coefficient vector estimated after

survival model training by maximizing the cox partial likelihood. Because the baseline hazard

function h0(t) in CPH is not determined, we cannot use the standard likelihood function in training

process [30]. The partial likelihood is the product of the probability of each instance i at event time

Ti that the event has happened for that instance, over the summation of instances (Rj) probability

who are still at risk in this time (Ti):

L(β) =
∏

i=,δi=1

exp(Xiβ)∑
j∈Rj

exp(Xjβ)
(4.4)

Since the censored instances exist in survival data, the standard evaluation metrics such as
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mean squared error and R-squared are not appropriate for evaluating the performance of survival

analysis [49]. In survival analysis, the most popular evaluation metric is based on the relative risk

of an event for different instances called concordance index or c-index. This measure defines as

following formula:

1

N

∑
i,δi=1

∑
j,yi<yj

I[S(ŷi|Xi) < S(ŷj|Xj)] (4.5)

Where N refers to the all comparable instance pairs and S is the survival function. The main

motivation for using c-index in survival analysis is originated from the fact that the medical doctors

and researchers are often more interested in measuring the relative risk of a disease among patients

with different risk factors, than the survival times of patients.

In general, the survival analysis models can be divided into two main categories: 1) statis-

tical methods including non-parametric, semi-parametric and parametric and 2) machine learning

based methods such survival trees, bayesian methods, neural networks and random survival forests.

Readers for more comprehensive review can refer to the recent review provided by wang et al.

[116].

4.2.2 Introduction to Active Learning

Active learning is a subfield of machine learning and statistical modeling. The goal of an active

learner is the same as a passive learner but the key idea behind active learning is that a machine

learning algorithm can lead to better performance with fewer training labels if it can select the data

for learning. An active learner chooses queries, usually in the form of unlabeled data instances

to be labeled by an oracle which can be a human annotator. Active learning is very efficient

in many data-driven applications, where there exist numerous unlabeled data but labels are rare,
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time-consuming, or expensive to be labeled [102].

Since large amounts of unlabeled data is nowadays often available and can be easily collected

by automatic processes, active learning would be demanding in modern applications in order to

reduce the cost of labeling. The active learning framework overcomes the challenge of insufficient

labeled data by efficiently modeling the process of obtaining labels for unlabeled data. The ad-

vantage is that the active learner just requires to query the labels of just a few, carefully selected

instances during the iterative process in order to achieve more accurate learner [56].

There exist several approaches/scenarios in which active learners ask queries. The three main

approaches widely used in the literature are [102]: 1) membership query synthesis [3], 2) stream-

based selective sampling [4], and 3) pool-based sampling [67]. For all approaches, there are also

several different query strategies that have been developed to decide which unlabeled instances

should be selected. Among above three approaches, pool-based sampling is most popular in many

real-world applications. This approach has been demonstrated in Figure 16:

Oracle (e.g., human annotator)

Unlabeled 
pool set (U)

Labeled data 
(L)

Training 
process

Queries
selection

Machine learning model

Figure 16: The pool-based active learning approach [102]
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According to Figure 16, in pool-based sampling approach, A learner may start to be trained

with a few number of labeled instances (L), then requests labels for one or more carefully selected

unlabeled instances (U ) using an oracle. After labeling, the new instance is simply added to the

labeled set(L), and the learner proceeds training process in a standard supervised way. This process

continues until some specified iterations or achieved desired accuracy.

4.3 Related Works

Deep learning and active learning as two advanced machine learning methods have been ap-

plied in different areas but there exist a few research in the literature that use the benefit of deep

learning or active learning in survival analysis. In this section we review the research works which

use any of those methods in survival analysis.

Vinzamuri et al. [115] provided the first ever active learning framework for survival analysis.

They developed this approach just for regularized Cox regression survival models. Authors pro-

posed a novel sampling strategy based on discriminative gradient for selecting the best candidate

from the unlabeled pool set. Finally, they evaluated their model performance using public EHRs

datasets and compared with some state of the art survival regression methods.

In the deep learning domain, there exist few studies which developed survival analysis frame-

work using deep learning recently. In 2016, Ranganath et al. [94] proposed a new survival model

using deep learning termed deep survival analysis. They used Deep Exponential Family (DEF) for

capturing complex dependencies from clinical features including laboratory measurements, diag-

nosis, and medications codes. They applied their model on a large EHR dataset related to coronary

heart disease. In the other research [77], authors introduced a new deep learning approach which

can directly predict the survival times for graft patients using foundations of multi-task learning.
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They demonstrated that their model outperforms usual survival analysis models such as cox pro-

portional hazard model in terms of prediction quality and concordance index.

Katzman et al. [60] proposed a cox proportional hazards deep multi-layer perceptron called

DeepSurv to predict risk of event occurrence for patient and provided personalized treatment rec-

ommendations. They performed their approach on simulated and real-world datasets for testing

and evaluation. Finally, They used DeepSurv on real medical studies to illustrate how it can provide

treatment recommendations. In the other research, Lee et al. [66] introduced a different approach

called DeepHit which employs deep architecture to estimate the survival times distribution. They

used neural network including two types of sub-networks: 1) a single shared sub-network and 2)

family of cause-specific sub-networks. They evaluated their method based on real and synthetic

datasets which illustrate that DeepHit leads to better performance in comparison with state of the

art methods.

Based on our review, there exist no study to develop a survival analysis approach using both

deep learning and active learning. We address this gap in the literature to propose a deep active

learning framework for survival analysis. However, There are some studies that develop deep active

learning methods for other machine learning tasks. For example, Zhou et al. [125] developed a

semi-supervised learning framework termed active deep network (ADN) for sentiment analysis.

They used restricted Boltzmann machines (RBM) for feature learning based on labeled reviews

and large amount of unlabeled reviews, then applied gradient-descent based supervised learning

for fine tuning and constructing semi-supervised framework. Finally they used active learning in

their framework to improve model performance. In the other study, Liu et al. [74] proposed a deep

active learning approach using Deep Belief Network (DBN) for classifying hyperspectral images

in remote sensing application. A summary of our review has been illustrated in Table 11 which
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Table 11: Summary of research works used deep learning or active learning in survival analysis

Authors Research DL AL SA Ref
Zhou et al. (2013) proposed semi-supervised sentiment classification

algorithm
[125]

Vinzamuri et al. (2014) developed survival regression for censored data
for electronic health records

[115]

Ranganath et al. (2016) introduced a deep hierarchical generative ap-
proach for survival analysis in heart disease

[94]

Nei et al. (2016) proposed a survival analysis model applied on
high-dimensional multi-modal brain images

[89]

Liao et al. (2016) proposed a survival analysis framework using a
LSTM model

[72]

Huang et al. (2017) developed a survival model using CNN-based
and one FCN-based sub-network and applied on
pathological images and molecular profiles

[58]

Chaudhary1 et al. (2017) introduced a DL based, survival model on hepato-
cellular carcinoma patients using genomic data

[21]

Liu et al. (2017) proposed an active learning approach using DBN
for classification of hyperspectral images

[74]

Luck et al. (2017) developed a patient-specific kidney graft survival
model using principle of multi-task learning

[77]

Sener&Savarese. (2017) developed an active learning framework using
CNN for image processing applications

[101]

Katzman et al. (2018) proposed a Cox proportional hazards deep neural
network for personalized treatment recommenda-
tions

[60]

Lee et al. (2018) developed a survival model using deep learning
which trained based on a loss function that uses
both risks factors and survival times

[66]

Note: DL, AL and SA refer to Deep Learning, Active Learning and Survival Analysis.

indicates no research have been developed yet to address a survival approach using deep learning

and active learning.

4.4 Methodology

The method developed in this research is an active learning based survival analysis uses a novel

sampling strategy. In our model, we apply deep learning for feature reduction and extraction, when

data is high-dimensional, complex and sparse. Since in survival analysis we deal with censored

and uncensored instances, the active learning design should be different from the regular approach.

In our framework, we consider censored and uncensored instances in the training set as survival

analysis needs both instances in the training process and we consider uncensored data as unlabeled
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instances in the pool set which their labels (time to event) are unknown.

The general framework in our survival analysis approach includes two main steps: 1) Deep

feature learning for survival data and 2) Active learning based survival analysis. In the first step

we do unsupervised learning using deep learning to represent features in higher level abstractions

and extract data into lower dimensions. We represent both labeled (time to event) and unlabeled

(censored) instances with together (Xtrain

⋃
Xpool) to obtain strong representation using pool of

unlabeled data. In the other words, our framework uses the advantages of abundant unlabeled data

to provide less complex and more robust features (labeled and unlabeled) for survival analysis.

In the second step, we apply our novel active learning based survival analysis on the repre-

sented/lower dimensions features obtained from the first step. This process demonstrates in Figure

17:

1- Represented Train Set

- Time to event (T)

- Censored (C) 

2- Apply any survival 

analysis model (e.g. Cox 

model or RSF)

3- Represented Pool Set

- Censored (C) 

4- Apply sampling 

strategy for ranking 

unlabeled instances

5- Select the most 

informative candidate 

from the pool set

6- Labeling of the 

candidate by oracle and 

add it to the train set 

Stop based on 

number of iterations 

or evaluation 

criterion

Figure 17: Active Survival Analysis Approach

According to this Figure, we start by applying a survival analysis method such as Cox-based

regression or Random survival forest on represented train set. In the next step we use our novel

sampling strategy (explained in the next section) to rank the unlabeled data based on their infor-
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mativeness level. Then we select the most informative candidate from the pool and add it to the

train set and repeat the process untill the stop criteria happens.

4.4.1 Expected Performance Improvement (EPI) Sampling (Query) Strategy

All active learning scenarios as well as pool-based active learning use the informativeness mea-

sure for evaluation of unlabeled instances to select the best query (the most informative unlabeled

instance). There exist several proposed approach which formulate such query strategies in the lit-

erature which can be categorized in general frameworks [102]:1- uncertainty sampling, 2- query

by committee, 3- expected model change, 4- expected error reduction, 5- variance reduction and

6- density weighted methods.

In this research we developed a new sampling (query) strategy based on properties of survival

analysis. In our strategy, we select the unlabeled instance as the most informative instance (the best

query) when it has the greatest performance change to the current survival model if we knew its

label. Our sampling model use concordance index (C-index) to define the informative measure to

query the unlabeled data. The survival model is trained again by adding a new instance (X+) from

the pool to the training set: Trainnew = Train
⋃
X+ and the performance change is formulated

based on the c-index difference as follows:

∆CX+ = Cnew model − Ccurrent model (4.6)

Similar to the other active learning sampling strategy, Our goal is to select the most informative

instance which could maximally improve the current model performance. This selection can be
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formulated as follows:

X∗ = argmax
X+∈pool

∆CX+ (4.7)

Since in the real-world applications, We do not know the true label (time to event) of the

instances in the pool, We should calculated the expected performance change over all possible

time to events (Ts) for each unlabeled records as follows:

X∗ = argmax
X+∈pool

∑S
s=1 h(Ts|X+) ∆CX+∑S

s=1 h(Ts|X+)
(4.8)

Our sampling strategy works for all survival analysis approaches such as cox-based models,

parametric models and random survival forests. As an example for the cox regression, ∆CX+ can

be formulated as following equation and X∗ is chosen based on Eq. 4.8.

∆CX+ =
1

N
[
∑
δi=1

∑
Ti<Tj

(β̂s2Xi > β̂s2Xj)−
∑
δi=1

∑
Ti<Tj

(β̂1Xi > β̂1Xj)] (4.9)

Where β̂1 and β̂2 are the estimated cox model coefficients trained based on the current and

new training set (Trainnew). N refers to the comparable (permissible) pairs in validation set for

calculating c-index.

4.4.2 Proposed Deep Active Survival Analysis (DASA) Algorithm

Algorithm 1 describes our deep active survival analysis approach called DASA in detail. First,

we apply deep feature learning on both train and pool sets. In this step we need to keep the weights

of deep network for representation learning of new instances. In line 6, we apply survival analysis

on deep represented features (Deep−Survival). This framework is flexible and all survival models



65

can be used in this step. Then we start active learning iterations using EPI sampling strategy and

update the pool and train sets until convergence.

Algorithm 2 Deep Active Survival Analysis (DASA) Algorithm
Require: Training set (XT ), Pool set (XP ), Survival status (δ), Time to event (T ), Deep architecture pa-

rameters (hidden layers, hidden units, ...), Active learning maximum iteration (max−iter)

1: Round = 1

2: Training deep network for feature reduction on (XT
⋃
XP )

3: Train set←− X ′T

4: Pool set←− X ′P

5: repeat

6: Model = Deep−Survival (X
′
T , δ, T )

7: for each record in the pool (x ∈ X ′P ) do

8: Apply EPI sampling strategy and calculate the expected performance improvement for each

instance

9: end for

10: X∗ = argmax
x∈X′P

∑S
s=1 h(Ts|x) ∆Cx∑S

s=1 h(Ts|x)

11: Labeling (time-to-event) of X∗ by an Oracle based on original features

12: X
′
P ←− X

′
P− {X∗}

13: X
′
T ←− X

′
T

⋃
{X∗}

14: δX∗ ←− 1

15: Round←− Round+ 1

16: until Round 6= max−iter
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4.4.3 Treatment Recommendations Using Proposed DASA Approach

In this section, we propose a simple yet effective approach to discover treatment patterns and

treatment recommendations using DASA. Our method is highly useful when EHRs are high-

dimensional and small size. Suppose XT = {XT
1 , X

T
2 , ..., X

T
n } is the treatment set and XA =

{XA
1 , X

A
2 , ..., X

A
N} refers to all other personalized features related to each patient where N >> n.

Therefore, the input features is the union of these two sets (XT

⋃
XA). Since in the case of high-

dimensional features, traditional approaches such as cox proportional hazard or random survival

forests cannot find the pattern of specific features (e.g. small treatment set), we first represent XA

using deep learning to a lower dimension set (X ′A) and then combine this represented set with the

treatment set (XT ) to build the new feature set (Xnew = X
′
A

⋃
XT ). In the second phase, we apply

our active learning framework to train an accurate survival model based on new features and then

find the pattern of treatment sets and interpret the results (e.g. comparison the coefficient of treat-

ment options using Cox model or finding the importance of different treatment plan using random

survival forests).

In our treatment recommendation approach, we transform many clinical features to a small

feature set with higher level abstraction and more robust features. While we represent patient

information to lower dimension using deep learning we combine non-represented treatment op-

tions (as features of interest) to the represented set and then perform survival analysis using active

learning framework. In the next section, we demonstrate how our approach discover the treatment

patterns better than traditional approaches.
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4.5 Experimental Study: Survival Analysis for Prostate Cancer (SEER-Medicare

Data)

In this section, we evaluate the performance of our approach (DASA) through experimental

study. We use the Surveillance, Epidemiology and End Results (SEER)-Medicare linked database

from SEER program of the National Cancer Institute (NCI). SEER-Medicare data is a powerful

and unique source of epidemiological data on the occurrence and survival rates of cancer in the

United States. In our study, we use prostate cancer SEER-Medicare data to evaluate our survival

analysis approach and provide some insights by treatment recommendation.

4.5.1 Datasets: SEER-Medicare Prostate Cancer Data

Prostate cancer is the most popular diagnosed invasive cancer among men, with approximately

56% of all prostate cancer patients diagnosed in men with age 65 years and older [105]. For-

tunately, a wide range of men (nearly 90%) diagnosed with non-metastatic prostate cancer and

5-year relative survival rate is very high for them. The death rate for prostate cancer is different

among different populations. A good example of this racial disparity is the death rate for African-

American men which is 2.5 times higher than white men. there exists a critical need to develop

precision survival analysis for each cohort and discover the pattern of treatment.

In this study, we consider the SEER-Medicare data into two racial groups: 1) African-American

patients and 2) White patient. Both groups are including many features (more than 300 features)

such as demographic data, socioeconomic variables, tumor information and assigned treatment

with approximately 1000 and 5000 patients respectively.

Since SEER-Medicare data is high-dimensional, sparse and complex, feature representation

using deep learning can build more robust features when we use pool of unlabeled data (censored
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instances) in the representation process. In the other hand, our method using active learning has

highly potential to improve the performance of survival models when we deal with small sample

size (including time-to-event and censored instances). In this way, in experimental study, we con-

sider small samples in training of survival model and show that how our approach can improve the

prediction performance in comparison with baseline.

For labeling of the censored instances (unlabeled data) in active learning framework we used

some scientific reports such as SEER cancer statistics review from National Cancer Institute (NCI)

[55] which acts as a prior knowledge to establish an oracle. One of these statistics is illustrated in

Table 12:

Table 12: 5-Year conditional relative prostate cancer survival and 95% confidence intervals

Stage at Diagnosis Survival Time Since Diagnosis Percent Surviving Next 5 years

Percent Confidence Interval

Local

0-Year 100% (100, 100)

1-year 100% (100, 100)

3-year 100% (100, 100)

Regional

0-Year 100% (100,100)

1-year 99.3% (98.9, 99.5)

3-year 98.9% (98.4, 99.2)

Distant

0-Year 29.2% (28.4, 29.9)

1-year 34.1% (33.1, 35.1)

3-year 45.6% (43.9, 47.2)

Unstaged

0-Year 76.6% (75.6, 77.5)

1-year 81.1% (79.8, 82.1)

3-year 82.8% (81.4, 84.1)

To evaluate the performance of our approach, we first employ CPH regression model (as a well-

known survival analysis approach) and demonstrate how DASA can improve its performance based
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on different training sample size. For deep feature representation we used Stacked Autoencoder

(SAE) deep architectures with 5 hidden layers. Figure 18 shows the average performance of our

approach for 20 iterations in comparison with baseline on the test data. We sampled training

set with 25 instances from African-American patients over 10 runs and calculated the average

performance in each iteration.

Deep Learning 
effect

Active Learning 
effect

Figure 18: Performance of proposed approach in comparison with baseline
(training size =25)

As demonstrated in Figure 18, our method (DASA-COX) improves the performance of Basic-

COX significantly in terms of concordance index. This improvement caused by two effects: 1)

Deep learning effect which improve the model performance by features representation using la-

beled and unlabeled instances, and 2) Active learning effect which increase the model performance

by involving the best labeled censored instance from the pool set in training process across all it-

erations.
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Figure 19 shows our approach performance for training size of 50 and 100 instances. Top panel

belongs to African-American patients and bottom panel is related to white patients. It is clear

DASA-COX outperforms baseline approach in all cases. The effect of deep learning in improving

model performance is higher at the bottom panel which can be caused by larger amount of pool set

related to white patients that provide better feature learning.
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Figure 19: Performance of proposed approach in comparison with baseline for different training size

As mentioned before, our approach is flexible enough and can employ any survival analysis
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model in its framework to improve the baseline. Hence, we perform Random Survival Forests

(RFS) model as a well-know non-linear survival model along with CPH model and evaluate our

approach across different training sizes. The results are shown in Table 13 and 14 for African-

Americans and white patients respectively.

Table 13: Performance comparison (C-index) between DASA and baseline models
(African-Americans)

Training Size CPH DASA-CPH RSF DASA-RSF

25 instances 55.2% 84.7% 16.3% 57.6%

50 instances 54.2% 74.9% 17.6% 54.5%

100 instances 59.1% 76.6% 21.4% 48.2%

200 instances 58.6% 72.6% 22.3% 47.9%

Table 14: Performance comparison (C-index) between DASA and baseline models
(Whites)

Training Size CPH DASA-CPH RSF DASA-RSF

25 instances 52.4% 87.9% 13.3% 62.1%

50 instances 51.2% 84.4% 15.5% 58.3%

100 instances 50.8% 82.3% 15.7% 49.7%

200 instances 53.6% 77.1% 18.2% 46.4%

The results confirm that our method can improve the concordance index significantly for cox

proportional hazard model and random survival forests in each datasets. According to above re-

sults, we can conclude that DASA leads to larger performance improvement in smaller training

size caused by active learning effect.

In the second step, we demonstrate how our treatment recommendation approach works. we

considered three well-known treatment options for prostate cancer: chemotherapy, radiotherapy
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and surgery as three binary variables in our dataset. Our goal is to discover the importance of

each therapy using DASA approach for each subgroup of patients (African-Americans and white

patients). Since in the experimental study CPH illustrated a great performance, we performed

survival analysis using CPH. We do feature representation by deep stacked autoencoder network

with 150, 100 and 5 hidden unites in encoder, decoder and latent layers respectively. We used

small sample size with 50 instances in training process. Before training process, we combined

chemotherapy, radiotherapy and surgery variables (features of interest) to the represented features

came from deep learning performed on other features in training instances combined with unla-

beled pool set and then trained the cox survival model using active learning framework with 20

iterations over all features. The results for average exponential of coefficients (hazard ratios) over

10 runs shown in Table 15 for African-Americans and white patients:

Table 15: Average Hazard Ratio among different treatment plans

Method Chemotherapy Radiotherapy Surgery

African-Americans
COX-Base 1 1 1

COX-DASA 0.74 1.04 1.38

White Patients
COX-Base 1 1 1

COX-DASA 0.96 1.08 2.23

As shown above, traditional CPH model could not differentiate between treatment plans where

their hazard ratios are one. Since the data is high-dimensional traditional CPH leads to zero co-

efficients for these three treatment variables. On the other side, our approach using Cox model

can discover the risk associated to each treatment. Based on our results, surgery has the highest

risk in the both subgroup of patients, radiotherapy is associate with a decline in the survival rate

while chemotherapy increases the survival rate with lowest risk. It is obvious that the pattern of
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hazard ratios among treatment plans are different between African-American and white patients.

For example the risk related to surgery is significantly higher than the other two therapies in white

patients (more than 2 times) while in the African-Americans the pattern is different.

This experimental treatment recommendation was a simple example to show how our method

works. This approach is highly useful for comparing the risk associated with new treatment in

comparison with current treatment plans where the labeled data is rare and expensive.

4.6 Discussion and Conclusion

In this chapter, we proposed a novel survival analysis framework using deep learning and ac-

tive learning called Deep Active Survival Analysis (DASA). Our approach is able to improve the

survival analysis performance significantly and provides treatment recommendations. DASA is

highly applicable when the labeled data is scarce and high-dimensional. Our approach encom-

passes two main phases: 1) deep feature learning and 2) active learning process. We do feature

representation using deep learning to produce robust features from high-dimensional, sparse and

complex EHRs. We used the advantage of pool of unlabeled data (censored instances) to provide

better representation of labeled instances from deep learning implementation. In the active learn-

ing process, we developed a new sampling strategy specifically for survival analysis which can be

used for any survival analysis models such as Cox-based approaches and random survival forests.

In experimental study, we used SEER-Medicare data related to prostate cancer among African-

Americans and white patients to demonstrate how our model can enhance the performance of

survival analysis in comparison of traditional approach. Empirically we showed that deep learning

has greater effect on survival performance improvement in the case that we have larger pool of

unlabeled data and active learning effect is higher when we deal with smaller training sample size.
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We apply our treatment recommendation approach to find hazard ratio of three common treatment

plan (chemotherapy, radiotherapy and surgery) for prostate cancer based on Cox model. While

traditional CPH model fails to find the hazard ratios among high dimensional data, our approach

discovers them and provides some racial treatment insights.

In sum, our method leads to more accurate survival analysis for risk prediction, survival time

estimation and treatment recommendation. Our approach is flexible enough to capture any sur-

vival analysis model and improve its performance. Our model can be applied on different areas

especially in the case of testing and comparing the risk (impact) of new treatment (e.g. in health-

care) or new technology (e.g. in the manufacturing process) where the amount of labeled instances

are small and labeling is expensive. For the future works, we will implement DASA on the other

datasets and introduce some new sampling strategy with better performance.
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CHAPTER 5 CONCLUSION AND FUTURE STEPS

5.1 Conclusion

In this dissertation, we introduced an integrated framework to develop data-driven approaches

for different aspects of precision (personalized) healthcare. First we proposed a novel predictive

approach using deep feature learning which can be applied in many domains as well as healthcare

informatics. Second we introduced a new biclustering approach using convex optimization for

patient subgroup analysis which can discover the groups of patient with similar risk factors. Our

method has potential to use in cohort analysis and treatment planning. Finally in the last chap-

ter, we developed a novel treatment recommender model using survival analysis, deep learning

and active learning which has capable to improve the performance of traditional survival analysis

models significantly and provides better interpretation for treatment recommendations. In each

work, we provided some new insights based on our theoretical and empirical contributions which

is summarized as following:

In predictive modeling using deep learning, We used unsupervised learning before supervised

learning because the success of predictive machine learning algorithms highly depends on fea-

ture representation and extraction [81]. Since in several situation, data is sparse, noisy, high di-

mensional and repetitive, supervised learning and feature selection approaches cannot identify the

pattern of data which makes them inappropriate for modeling the hierarchical and complex data.

To overcome this shortcoming, unsupervised feature learning or representation learning attempts

automatically to discover complexity and dependencies in the data to learn a compact and high-

level representation which provides better features to extract useful information when applying

classifiers and predictive models.
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We demonstrated that deep learning could be effective for small datasets as well as large data

and our comparative study between small and large clinical datasets provides some new insights

in the choice of deep representation. We believe that our model with great EHRs feature learning

has potential to be applied in different clinical and health informatics aspects including treatment

planning, risk factor identification, personalized recommendation and survival analysis. Also, our

proposed framework is highly useful for exploiting a large amount of unlabeled data in the feature

learning (unsupervised learning) step to extract high level abstraction of features when the labeled

data are limited and expensive.

In the second work (Biclustering approach), we have developed a novel supervised subgroup

detection method called SUBIC based on convex optimization. We used the idea of convex biclus-

tering approach [27] and proposed a new supervised biclutering approach which overcomes the

limitation of previous works when we have a target variable. Biclustering methods in the literature

do not exploit a target variable on subgroup detection and risk factor selection. As a result, the

detected biclusters do not link to target variables of interest. Hence, it is unable to predict the tar-

get variable for future input variables. Clearly, the target variable such as LVMI provides a critical

guidance for detection and selection of the meaningful biclusters (patient subgroups).

SUBIC is a predictive model that combines the strength of biclustering and tree-based methods.

We introduced a new elastic-net penalty term in our model and defined two new weights in our

objective function to enable the supervised training under the guidance of a clinically relevant

target variable in detecting biclusters. The choice of elastic-net penalty term can overcome the

lasso limitations. While the l1-norm can generates a sparse model, the quadratic part of the penalty

term encourages grouping effect and stabilizes the l1-norm regularization path. Also the elastic-

net regularization term performs very suitable for high dimensional data with correlated input
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variables and would be a better model when p � n specially in the case of gene expression data

and precision medicine problems [126].

In the last chapter we discussed about two specific challenges existed in survival analysis from

EHRs: 1) Clinical data are usually high dimensional, sparse and time-dependent where apply-

ing traditional survival approaches do not perform well enough to estimate the risk of a medical

event of interest accurately, 2) In many health survival applications, labeled data (time-to-event

instances) are small, time-consuming and expensive to collect. In this situation, it is hard to learn

a survival model based on traditional approaches which able to predict the relative risk of patients

precisely. To overcome these challenges, first, we proposed a novel survival analysis approach us-

ing deep learning and active learning termed DASA. Our model is capable to learn more accurate

survival model using high dimensional and small size EHRs in comparison with some baseline

survival models. Second, we introduced a treatment recommendation approach based on our sur-

vival analysis model which can compare the relative risk (or survival time) associate with different

treatment plans and assign better one.

Based on our experimental study, empirically we showed that deep learning has greater effect

on survival performance improvement in the case that we have larger pool of unlabeled data and

active learning effect is higher when we deal with smaller training sample size. We showed that Our

approach is flexible enough to capture any survival analysis model and improve its performance.

We discussed that our model can be applied on different areas especially in the case of testing and

comparing the risk (impact) of new treatment (e.g. in healthcare) or new technology (e.g. in the

manufacturing process) where the amount of labeled instances are small and labeling is expensive.
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5.2 Future Steps

In this research we focus to develop a data driven framework for precision/personalized medicine.

As explained in the previous chapters, we developed three novel analytics approaches for predic-

tive modeling, subgroup detection and survival analysis which can be applied for various precision

medicine problems. Our results show that all methods have a competitive performance based on

specific measures in comparison with baseline models. In spite of our significant contributions in

each chapter, there exist several opportunities to extent each work as future extension. Remarkable

current and future works have been described as follows:

1- Medical Data: In this study, we implemented our developed approaches on different med-

ical data sets including cardiovascular disease data related to the subgroup of African-Americans,

e-ICU collaborative research datasets and SEER-Medicare prostate cancer data. As a further di-

rection, we can use different datasets in each method and evaluate their performance. For example

using microarray (gene-expression) data and various cancer databases have high potential for our

method’s evaluation.

2- Predictive Modeling: In chapter 2, we presented a new predictive approach using deep

learning. For future works, 1) we need to apply more deep architectures like as stacked denoising

autoencoders and adversarial autoencoders for representation learning, 2) we can employ differ-

ent machine learning tasks in the last step of our approach. For instance, we can apply clustering

instead of supervised learning to discover treatment schemes among high-dimensional EHRs and

finally 3) we can work on deep features interpretations. The key issue in using deep feature rep-

resentation is difficulties in naturally interpretation of main features. Since many deep learning

approaches use several hidden layers for multiple non-linear transformation on input features, they
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often known as black boxes where only the input and output of framework is meaningful and there

is lack of enough transparency in the model. Therefore, beside of our predictive approach, we can

develop feature selection algorithms for interpreting of the main features through deep prediction.

3- Subgroup Analysis: In chapter 3, we developed a novel biclustering approach using convex

optimization. We believe that our method is the first supervised biclustering approach which can

take the benefit of target variable’s guidance to find biclusters. The proposed prediction approach

is a simple yet effective approach and needed to be improved in the future work. Also the similarity

weights defined in our model play a key role in the final biclusters, hence there is a remarkable

opportunity to redefine them based on linear and non-linear relationship between covariates and

target variable. Finally, it is necessary to reformulate the proposed model for the case that we have

multiple target variables or the response variable is categorical.

4- Survival analysis model with treatment recommendation: In the last chapter of this dis-

sertation, we introduced a new survival analysis model for accurate risk prediction and treatment

recommendation. There exist needs to improve the sampling strategy in active learning frame-

work. On the other side we need to implement our approach using different deep architectures as

well. Another direction for the future work can be transforming of the treatment recommendation

approach to a personalized framework.

Figure 20 shows the summary of the current works and future works in this research:
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Figure 20: Current works and Future works in this research

5.3 Novelties and Contributions

According to what discussed in the chapter 1, 2, 3 and 4; This research develops and applies

data-driven methods for healthcare informatics and precision medicine. In this path it contributes

to a number of fields as follows:

1. Developing a new predictive model using deep learning for high dimensional data which can

predict the target of interest better than baseline models.

2. Providing a predictive framework which is highly useful for exploiting a large amount of un-

labeled medical records for extracting high level representation of labeled data for supervised

learning tasks.

3. Providing new insights about choice of deep architectures for feature representation among

small and large datasets.
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4. Developing a novel subgroup detection approach using biclustering and convex optimization

which can be applied on different precision medicine problem.

5. Developing a solution for proposed sparse supervised biclustering approach based on split

bregman method.

6. Developing prediction approach based on supervised biclustering framework using general-

ized additive model.

7. Developing a new survival analysis framework using deep learning and active learning for

patient risk prediction or survival time estimation.

8. Proposing a new sampling strategy in active learning framework for survival analysis based

on model performance improvement which can select the most informative candidate from

the unlabeled pool according to concordance index.

9. Introducing a new approach for discovering of treatment pattern among high-dimensional

medical data based on our proposed survival approach.

10. Providing new insights about deep learning and active learning effects on proposed survival

model performance based on small/large unlabeled pool set and size of training set respec-

tively.

11. Discovering new medical insights by applying our proposed methods on specific precision

medicine problems such as cardiovascular disease and prostate cancer.
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Massive amount of electronic medical records (EMRs) accumulating from patients and popu-

lations motivates clinicians and data scientists to collaborate for the advanced analytics to create

essential knowledge for providing personalized insights. Learning from large and complicated

data is using extensively in marketing and commercial enterprises to generate personalized rec-

ommendations. Recently the medical research community focuses to take the benefits of big data

analytic approaches and moves to personalized (precision) medicine. So, it is a significant period

in healthcare and medicine for transferring to a new paradigm. There is a noticeable opportunity to

implement a data-driven healthcare system to make better medical decisions, better personalized

predictions; and more precise discovering of risk factors and their interactions. In this research we

focus on data-driven approaches for personalized healthcare. We propose a research framework

which emphasizes on three main phases: 1) Predictive modeling, 2) Patient subgroup analysis and

3) Treatment recommendation. Our goal is to develop novel methods for each phase and apply

them in real-world applications.

In the first phase, we develop a new predictive approach based on feature representation using

deep feature learning and word embedding techniques. Our method uses different deep architec-

tures (Stacked autoencoders, Deep belief network and Variational autoencoders) for feature rep-

resentation in higher-level abstractions to obtain effective and more robust features from EMRs,
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and then builds prediction models on the top of them. Our approach is particularly useful when

the unlabeled data is abundant whereas labeled one is scarce. We investigate the performance of

representation learning through a supervised approach. We perform our method on different small

and large datasets. Finally we provide a comparative study and show that our predictive approach

leads to better results in comparison with others.

In the second phase, we propose a novel patient subgroup detection method, called Supervised

Biclustring (SUBIC) using convex optimization and apply our approach to detect patient sub-

groups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup

(African-Americans). Our approach not only finds patient subgroups with guidance of a clinically

relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the

input variables and encouraging similarity among the input variables and between the input and

target variables. Also, we introduce a predictive approach based on generalized additive model

(GAM) to predict the target variable based on supervised biclustering framework.

Finally, in the third phase, we introduce a new survival analysis framework using deep learning

and active learning with a novel sampling strategy. First, our approach provides better repre-

sentation with lower dimensions from clinical features using labeled (time-to-event) and unlabeled

(censored) instances and then actively trains the survival model by labeling the censored data using

an oracle. As a clinical assistive tool, we propose a simple yet effective treatment recommenda-

tion approach based on our survival model. In the experimental study, we apply our approach on

SEER-Medicare data related to prostate cancer among African-Americans and white patients. The

results indicate that our approach outperforms significantly than baseline models.

The insights and results provided in each step of this study could be applied by data scientists,

medical researchers and health policy makers to carry out precision medicine and personalized

healthcare in different diseases.
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