4,749 research outputs found

    Multiobjective performance-based designs in fault estimation and isolation for discrete-time systems and its application to wind turbines

    Get PDF
    In this work, we develop a performance-based design of model-based observes and statistical-based decision mechanisms for achieving fault estimation and fault isolation in systems affected by unknown inputs and stochastic noises. First, through semidefinite programming, we design the observers considering different estimation performance indices as the covariance of the estimation errors, the fault tracking delays and the degree of decoupling from unknown inputs and from faults in other channels. Second, we perform a co-design of the observers and decision mechanisms for satisfying certain trade-off between different isolation performance indices: the false isolation rates, the isolation times and the minimum size of the isolable faults. Finally, we extend these results to a scheme based on a bank of observers for the case where multiple faults affect the system and isolability conditions are not verified. To show the effectiveness of the results, we apply these design strategies to a well-known benchmark of wind turbines which considers multiple faults and has explicit requirements over isolation times and false isolation rates

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Fault estimation algorithms: design and verification

    Get PDF
    The research in this thesis is undertaken by observing that modern systems are becoming more and more complex and safety-critical due to the increasing requirements on system smartness and autonomy, and as a result health monitoring system needs to be developed to meet the requirements on system safety and reliability. The state-of-the-art approaches to monitoring system status are model based Fault Diagnosis (FD) systems, which can fuse the advantages of system physical modelling and sensors' characteristics. A number of model based FD approaches have been proposed. The conventional residual based approaches by monitoring system output estimation errors, however, may have certain limitations such as complex diagnosis logic for fault isolation, less sensitiveness to system faults and high computation load. More importantly, little attention has been paid to the problem of fault diagnosis system verification which answers the question that under what condition (i.e., level of uncertainties) a fault diagnosis system is valid. To this end, this thesis investigates the design and verification of fault diagnosis algorithms. It first highlights the differences between two popular FD approaches (i.e., residual based and fault estimation based) through a case study. On this basis, a set of uncertainty estimation algorithms are proposed to generate fault estimates according to different specifications after interpreting the FD problem as an uncertainty estimation problem. Then FD algorithm verification and threshold selection are investigated considering that there are always some mismatches between the real plant and the mathematical model used for FD observer design. Reachability analysis is drawn to evaluate the effect of uncertainties and faults such that it can be quantitatively verified under what condition a FD algorithm is valid. First the proposed fault estimation algorithms in this thesis, on the one hand, extend the existing approaches by pooling the available prior information such that performance can be enhanced, and on the other hand relax the existence condition and reduce the computation load by exploiting the reduced order observer structure. Second, the proposed framework for fault diagnosis system verification bridges the gap between academia and industry since on the one hand a given FD algorithm can be verified under what condition it is effective, and on the other hand different FD algorithms can be compared and selected for different application scenarios. It should be highlighted that although the algorithm design and verification are for fault diagnosis systems, they can also be applied for other systems such as disturbance rejection control system among many others

    Filter for detecting and isolating faults for a nonlinear system

    Get PDF
    In the paper the problem of detecting and isolating multiple faults for nonlinear systems is considered. A strategy of state filtering is derived in order to detect and isolate multiple faults which appear simultaneously or sequentially in a discrete time nonlinear systems with unknown inputs. For the considered system for which a fault isolation condition is fulfilled the proposed method can isolate p simultaneous faults with at least p+q output measurements, where q is the number of unknown inputs or disturbances. A reduced output residual vector of dimension p+q is generated and the elements of this vector are decoupled in a way that each element of the vector is associated with only one fault or unmeasured input

    Trade-offs on fault estimation via proportional multiple-integral and multiple-resonant observers for discrete-time systems

    Get PDF
    The authors develop a fault estimation strategy which is based on a novel proportional multiple-integral (PMI) and multiple-resonant observer. This observer is an extension of the well-known PMI observer and it is able to estimate from low to high-frequency fault signals. The proposed estimation strategy is applied to discrete-time systems which are affected by faults and stochastic noises. We present a multi-objective design strategy of the observer that fixes the trade-offs between practical engineering parameters regarding the noise attenuation and the ability to track each kind of fault dynamics considered by the augmented observer. They study the influence of the order of the observer on the steady-state and transient performance of the estimation of different types of faults. Finally, a numerical example is given to illustrate the effectiveness of the proposed observer, design and characterisation

    Integration Techniques of Fault Detection and Isolation Using Interval Observers

    Get PDF
    An interval observer has been illustrated to be a suitable approach to detect and isolate faults affecting complex dynamical industrial systems. Concerning fault detection, interval observation is an appropriate passive robust strategy to generate an adaptive threshold to be used in residual evaluation when model uncertainty is located in parameters (interval model). In such approach, the observer gain is a key parameter since it determines the time evolution of the residual sensitivity to a fault and the minimum detectable fault. This thesis illustrates that the whole fault detection process is ruled by the dynamics of the fault residual sensitivity functions and by the time evolution of the adaptive threshold related to the interval observer. Besides, it must be taken into account that these two observer fault detection properties depend on the used observer gain. As a consequence, the observer gain becomes a tuning parameter which allows enhancing the observer fault detection performance while avoiding some drawbacks related to the analytical models, as the wrapping effect. In this thesis, the effect of the observer gain on fault detection and how this parameter can avoid some observer drawbacks (i.e. wrapping effect) are deeply analyzed. One of the results of this analysis is the determination of the minimum detectable fault function related to a given fault type. This function allows introducing a fault classification according to the fault detectability time evolution: permanently (strongly) detected, non-permanently (weakly) detected or just non-detected. In this fault detection part of this thesis, two examples have been used to illustrate the derived results: a mineral grinding-classification process and an industrial servo actuator. Concerning the interface between fault detection and fault isolation, this thesis shows that both modules can not be considered separately since the fault detection process has an important influence on the fault isolation result. This influence is not only due to the time evolution of the fault signals generated by the fault detection module but also to the fact that the fault residual sensitivity functions determines the faults which are affecting a given fault signal and the dynamics of this fault signal for each fault. This thesis illustrates this point suggesting that the interface between fault detection and fault isolation must consider a set of fault signals properties: binary property, sign property, fault residual sensitivity property, occurrence order property and occurrence time instant property. Moreover, as a result of the influence of the observer gain on the fault detection stage and on the fault residual sensitivity functions, this thesis demonstrates that the observer gain has also a key role in the fault isolation module which might allow enhancing its performance when this parameter is tuned properly (i.e. fault distinguishability may be increased). As a last point, this thesis analyzes the timed discrete-event nature of the fault signals generated by the fault detection module. As a consequence, it suggests using timed discrete-event models to model the fault isolation module. This thesis illustrates that this kind of models allow enhancing the fault isolation result. Moreover, as the monitored system is modelled using an interval observer, this thesis shows as this qualitative fault isolation model can be built up on the grounds of this system analytical model. Finally, the proposed fault isolation method is applied to detect and isolate faults of the Barcelona’s urban sewer system limnimeters. Keywords: Fault Detection, Fault Diagnosis, Robustness, Observers, Intervals, Discrete-event Systems.En la presente tesis se demuestra que el uso de observadores intervalares para detectar y aislar fallos en sistemas dinámicos complejos constituye una estrategia apropiada. En la etapa de detección del fallo, dicha estrategia permite determinar el umbral adaptativo usado en la evaluación del residuo (robustez pasiva). Dicha metodología, responde a la consideración de modelos con parámetros inciertos (modelos intervalares). En dicho enfoque, la ganancia del observador es un parámetro clave que permite determinar la evolución temporal de la sensibilidad del residuo a un fallo y el mínimo fallo detectable para un tipo de fallo determinado. Esta tesis establece que todo el proceso de detección de fallos viene determinado por la dinámica de las funciones sensibilidad del residuo a los diferentes fallos considerados y por la evolución temporal del umbral adaptativo asociado al observador intervalar. Además, se debe tener en cuenta que estas dos propiedades del observador respecto la detección de fallos dependen de la ganancia del observador. En consecuencia, la ganancia del observador se convierte en el parámetro de diseño que permite mejorar las prestaciones de dicho modelo respecto la detección de fallos mientras que permite evitar algunos defectos asociados al uso de modelos intervalares, como el efecto wrapping. Uno de los resultados obtenidos es la determinación de la función fallo mínimo detectable para un tipo de fallo dado. Esta función permite introducir una clasificación de los fallos en función de la evolución temporal de su detectabilidad: fallos permanentemente detectados, fallos no permanentemente detectados y fallos no detectados. En la primera parte de la tesis centrada en la detección de fallos se utilizan dos ejemplos para ilustrar los resultados obtenidos: un proceso de trituración y separación de minerales y un servoactuador industrial. Respecto a la interfaz entre la etapa de detección de fallos y el proceso de aislamiento, esta tesis muestra que ambos módulos no pueden considerarse separadamente dado que el proceso de detección tiene una importante influencia en el resultado de la etapa de aislamiento. Esta influencia no es debida sólo a la evolución temporal de las señales de fallo generados por el módulo de detección sino también porque las funciones sensibilidad del residuo a los diferentes posibles fallos determinan los fallos que afectan a un determinado señal de fallo y la dinámica de éste para cada uno de los fallos. Esta tesis ilustra este punto sugiriendo que el interfaz entre detección y aislamiento del fallo debe considerar un conjunto de propiedades de dichos señales: propiedad binaria, propiedad del signo, propiedad de la sensibilidad del residuo a un fallo dado, propiedad del orden de aparición de las señales causados por los fallos y la propiedad del tiempo de aparición de estos. Además, como resultado de la influencia de la ganancia del observador en la etapa de detección y en las funciones sensibilidad asociadas a los residuos, esta tesis ilustra que la ganancia del observador tiene también un papel crucial en el módulo de aislamiento, el cual podría permitir mejorar el comportamiento de dicho módulo diseñando éste parámetro del observador de forma adecuada (Ej. Incrementar la distinción de los fallos para su mejor aislamiento). Como último punto, esta tesis analiza la naturaleza temporal de eventos discretos asociada a las señales de fallo generados por el módulo de detección. A consecuencia, se sugiere usar modelos de eventos discretos temporales para modelizar el módulo de aislamiento del fallo. Esta tesis muestra que este tipo de modelos permite mejorar el resultado de aislamiento del fallo. Además, dado que el sistema monitorizado es modelado usando un observador intervalar, esta tesis muestra como este modelo cualitativo de aislamiento puede ser construido usando dicho modelo analítico del sistema. Finalmente, el método propuesto de aislamiento del fallo es aplicado para detectar y aislar fallos en los limnimetros del sistema de alcantarillado de Barcelona. Palabras clave: Detección de Fallos, Diagnosis de Fallos, Robusteza, Observadores, Intervalos, Sistemas de Eventos Discretos

    Model based fault diagnosis and prognosis of nonlinear systems

    Get PDF
    Rapid technological advances have led to more and more complex industrial systems with significantly higher risk of failures. Therefore, in this dissertation, a model-based fault diagnosis and prognosis framework has been developed for fast and reliable detection of faults and prediction of failures in nonlinear systems. In the first paper, a unified model-based fault diagnosis scheme capable of detecting both additive system faults and multiplicative actuator faults, as well as approximating the fault dynamics, performing fault type determination and time-to-failure determination, is designed. Stability of the observer and online approximator is guaranteed via an adaptive update law. Since outliers can degrade the performance of fault diagnostics, the second paper introduces an online neural network (NN) based outlier identification and removal scheme which is then combined with a fault detection scheme to enhance its performance. Outliers are detected based on the estimation error and a novel tuning law prevents the NN weights from being affected by outliers. In the third paper, in contrast to papers I and II, fault diagnosis of large-scale interconnected systems is investigated. A decentralized fault prognosis scheme is developed for such systems by using a network of local fault detectors (LFD) where each LFD only requires the local measurements. The online approximators in each LFD learn the unknown interconnection functions and the fault dynamics. Derivation of robust detection thresholds and detectability conditions are also included. The fourth paper extends the decentralized fault detection from paper III and develops an accommodation scheme for nonlinear continuous-time systems. By using both detection and accommodation online approximators, the control inputs are adjusted in order to minimize the fault effects. Finally in the fifth paper, the model-based fault diagnosis of distributed parameter systems (DPS) with parabolic PDE representation in continuous-time is discussed where a PDE-based observer is designed to perform fault detection as well as estimating the unavailable system states. An adaptive online approximator is incorporated in the observer to identify unknown fault parameters. Adaptive update law guarantees the convergence of estimations and allows determination of remaining useful life --Abstract, page iv
    corecore