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In this paper an approach for reconstructing an unknown input for multiple-input multiple-output systems is
presented. It is assumed that the system is affected by process noise, whereas the available system inputs are
contaminated by measurement noise. The novel approach is based on a parity equations concept and forms an
extension of the idea developed previously by the authors. A modification of the algorithm is also provided,
which allows the approach to deal with systems whose zero is close to unity. The order of the parity space can
be treated as a tuning parameter allowing for a trade-off between the smoothness of the reconstructed unknown
input and a phase lag. An analytical solution of the overall problem is obtained by making use of a Lagrange
multiplier method. The utility of the scheme is demonstrated when applied to a practical hydrological system.

Keywords: filtering; parity equations; unknown input reconstruction

1 Introduction

In the literature the problem of the unknown (unmeasurable) input estimation is solved either
by a system inversion or by a joint state and input estimation. Early contributions to the
inversion of multiple-input multiple-output (MIMO) deterministic systems have been presented
by Dorato (1969) and Sain and Massey (1969); however, their approaches do not ensure stability
of the inverted systems. Moylan (1977) provided a stable inversion algorithm for minimum-phase
systems, whilst Antsaklis (1978) developed a straightforward state feedback-based method, which
allows the poles of the inverted system to be assigned. This latter method is, however, limited
to systems with stable zeros.

Over the last decade a geometric approach to the unknown input reconstruction problem has
gained interest, see e.g. Kirtikar et al. (2009) where an unknown input reconstruction scheme for
minimum phase systems is proposed. An exhaustive solution to the unknown-state, unknown-
input reconstruction problem for both minimum-phase and nonminimum-phase systems has
relatively recently been developed by Marro and Zattoni (2010). Nevertheless, this approach
does not consider the effects of measurement noise.

Another approach to the unknown input estimation problem for deterministic systems is based
on the well-known state observer. The Luenberger state observer, see Luenberger (1964), has
been extended to the class of systems with both known and unknown system inputs, see, for
example Hou and Müller (1992), Darouach and Zasadzinski (1997). The work of Fernando and
Trinh (2006) presents a joint input and state observer based on a descriptor approach.

∗Corresponding author. Email: sumislam@uni.coventry.ac.uk

ISSN: 0020-7179 print/ISSN 1366-5820 online
c© 200x Taylor & Francis
DOI: 10.1080/0020717YYxxxxxxxx
http://www.informaworld.com



August 20, 2013 17:24 International Journal of Control Main˙text

2 Sumis lawska M., Larkowski T., and Burnham, K.J.

When dealing with stochastic systems Kalman filter-based approaches have gained wide in-
terest, see, for example, Hsieh (2000), Floquet and Barbot (2006). Gillijns and De Moor (2007a)
combined the state observer proposed by Darouach and Zasadzinski (1997) and the unknown in-
put estimator of Hsieh (2000) creating a joint state and unknown input observer, which is optimal
in the minimum variance sense. This approach has subsequently been extended to the case of a
linear system with a direct feedthrough term in Gillijns and De Moor (2007b). Palanthandalam-
Madapusi and Bernstein (2007) introduced a concept of state and input observability, i.e. they
provided a scheme, which allows one to determine if both unknown input and state can be de-
rived from the output measurements. Keller and Sauter (2010) proposed a variable geometric
Kalman filter, where the statistical effect of each unknown input is tested before deriving the
state estimate. In the recent work of Ghahremani and Kamwa (2011) an extended Kalman filter
with unknown inputs has been developed and applied to the state estimation of a synchronous
machine in a power system.

The area where the unknown input reconstruction is commonly used is fault detection and
diagnosis. A fault, which can be modelled as an additional input to the system, needs to be
firstly detected and then isolated and reconstructed (identified). Modelling of uncertainties for
robust fault diagnosis is described in Patton et al. (1992). Hou and Patton (1998) discussed
input observability and reconstruction using a matrix pencil approach. Edwards et al. (2000)
propose sliding mode observers as a powerful tool for fault diagnosis.

In this paper a novel approach for the unknown input reconstruction of MIMO discrete-time
stochastic systems is described. The parity equation-based unknown input observer (PE-UIO)
utilises a parity equation (PE) concept for disturbance-decoupled unknown input reconstruc-
tion. The design freedom is used to optimise the filter parameters in order to minimise the
effect of stochastic disturbances on the unknown input estimate. For this purpose a Lagrange
multiplier method is utilised. The use of the Lagrange multiplier method produces an analytical
solution to the optimisation problem, which, unlike heuristic approaches, see, for example, Chen
et al. (1996), provides the optimal filter parameters in a relatively short time. The proposed
method is suitable for both minimum and nonminimum-phase systems, which is an important
result, because unstable zeros may result from the discretisation of a continuous-time system.
The PE-UIO was originally developed for single-input single-output (SISO) output error (OE)
systems in Sumis lawska et al. (2010a). The algorithm has been subsequently extended to the
errors-in-variables (EIV) framework in Sumis lawska et al. (2010b). In Sumis lawska et al. (2011)
the analysis of the PE-UIO in the frequency domain has been provided and it has been demon-
strated that, unlike the Kalman filter-based approaches, see, for example, Gillijns and De Moor
(2007b), Hou and Patton (1998), one can reduce the filter bandwidth by increasing the parity
space order. This leads to attenuation of the impact of noise on the unknown input estimate;
however, the accompanying phase lag causes an estimation delay to be increased at the same
time. In Sumis lawska et al. (2010) the scheme has been extended to the MIMO case. In this
paper the PE-UIO is extended to the case where the process noise is coloured. A generalised
form of the algorithm is provided, where the output is subjected to coloured noise (accounting
for measurement and process noise), whilst the input is affected by white measurement noise.
Furthermore, this paper also provides an extension of the PE-UIO algorithm for the cases when
a system zero is close or equal to unity, see Sumis lawska (2013).

The paper is organised as follows: in Section 2 the proposed approach is presented. Then, in
Section 3, a limitation of the scheme in the case when a system has a zero close or equal to
unity is discussed and an extension which deals with this problem is provided. The applicability
of the scheme is demonstrated on a practical example of a hydrological system in Section 4.
Conclusions are provided in Section 5.
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2 Description of approach

In this section the PE-UIO algorithm is presented. Firstly, for completeness in Subsection 2.1, a
definition of a general linear system representation according to the stochastic properties of the
noise is provided. Then, in Subsection 2.2, the concept of PE is explained, and, in Subsection 2.3,
the design of the PE-UIO is presented. An extension of the scheme is presented in Subsection 2.4
which is developed to allow for disturbance decoupling.

2.1 Linear system representation

A linear dynamic discrete-time time-invariant MIMO system is defined as:

y(t) =
Bu(z−1)

A(z−1)
u0(t) +

Bv(z−1)

A(z−1)
v(t) + ξ(t)

u(t) = u0(t) + ũ(t)

(1)

where u(t) ∈ Rp and y(t) ∈ Rm denote, respectively, measured input and output vectors,
whereas v(t) denotes the scalar unknown (unmeasurable) input. The term u0(t) ∈ Rp denotes
the noise-free input to the system, whilst ũ(t) ∈ Rp denotes a vector of white zero-mean noise
sequences representing the input measurement noise. The terms A(z−1), Bu(z−1), and Bv(z−1)
are polynomial matrices in the backward shift operator z−1.

The term ξ(t) ∈ Rm denotes a vector of coloured random sequences which represent both the
process and measurement noise. A widely used representation for coloured noise is the following
autoregressive moving average process, see, for example, Young (2011) and Box and Jenkins
(1976)

ξ(t) =
C(z−1)

D(z−1)
e(t) (2)

where e(t) ∈ Rm is a vector of zero-mean, white Gaussian, independent and identically dis-
tributed (i.i.d.) random sequences uncorrelated with u0(t). Terms C(z−1) and D(z−1) are poly-
nomial matrices which describe properties of the coloured noise ξ(t). Equation (2) is suitable for
a wide range of real-world applications where the process noise is strongly correlated, see, Young
(2011), Box and Jenkins (1976). The scheme presented in this paper minimises the impact of
ũ(t) and ξ(t) on the unknown input estimate taking into consideration the properties of the
coloured noise ξ(t). The following state-space representation of the system (1) is adopted

x(t+ 1) = Ax(t) + Bu0(t) + Gv(t) + Πe(t)

y(t) = Cx(t) + Du0(t) + Hv(t) + Ωe(t)

u(t) = u0(t) + ũ(t)

(3)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p, G ∈ Rn×1, H ∈ Rm×1, Π ∈ Rn×m,
Ω ∈ Rm×m. Equation (3) is a generalised representation of a linear system and can be simplified
to provide more specific cases, some of which and their relations to Equation (2) are given below.
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2.1.1 Auto-regressive with moving average and exogenous input model

A MIMO auto-regressive with moving average and exogenous input (ARMAX) model is given
by, see Ljung (1999), Yiua and Wang (2007):

y(t) =

na∑
i=1

aiy(t− i) +

nb∑
j=0

bju0(t− j) +

nc∑
k=0

cke(t− k) (4)

where u0(t) and y(t) are, respectively, input and output vectors of the system and e(t) is a
vector of white, zero-mean, i.i.d. Gaussian noise sequences. The terms na, nb, nc, with na ≥ nb
and na ≥ nc, are the orders of the auto-regressive, exogenous and moving average polynomials
(including the number of coefficient matrices), respectively, and ai, bj and ck are the respective
coefficient matrices. The third term of the right-hand side of (4) refers to the moving average
(coloured) process noise, noting that the noise ξ(t) in the ARMAX case is defined by the following
polynomials, cf. (2)

C(z−1) = c0 + c1z
−1 + · · ·+ cnc

D(z−1) = a0 + a1z
−1 + · · ·+ ana

(5)

The state space system matrices (3) for the ARMAX model (4) in the observable canonical
form are given by:

A =


−a1 Im 0 · · · 0
−a2 0 Im · · · 0

...
...

...
. . .

...
−ana−1 0 0 · · · Im
−ana

0 0 · · · 0

 B =



b1 − a1b0

b2 − a2b0
...

bnb
− anb

b0

−anb+1b0
...

−ana
b0


Π =



c1 − a1c0

c2 − a2c0
...

cnc
− anc

c0

−anc+1c0
...

−ana
c0


C =

[
Im 0 · · · 0

]
D = b0 Ω = c0

(6)

where Im is an identity matrix of dimension m. Matrices G and H are constructed by replacing
bi in, respectively, matrices B and D with exogenous matrix parameters related to the unknown
input v(t). Note that the ARMAX model assumes that the input is known exactly (there is no
noise present on the input variable), hence ũ(t) = 0. An autoregressive model with exogenous
input (ARX) is obtained from the ARMAX model by setting ci, i = 1, · · · , nc, to zero.

2.1.2 Output error model

An OE model assumes, that there is no process noise present in the system, however, the noise-
free output, denoted y0(t), is subjected to a zero-mean, white, Gaussian, i.i.d. measurement noise
e(t), see Ljung (1999):

y0(t) =

na∑
i=1

aiy0(t− i) +

nb∑
j=0

bju0(t− j)

y(t) = y0(t) + e(t)

(7)

This case can be modelled by the system representation (3), where matrices A, B, C, D and
also G and H are all given as in the ARMAX case. The matrix Π is null, and Ω is diagonal.
(Note that different values of diagonal elements of matrix Ω assume that the variances of the
measurement noise sequences affecting different outputs are in general also different, which is
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often the case in practice.) Also there is no noise present on the input variable, hence ũ(t) = 0.
Note that the OE model assumes that ξ(t) = e(t), cf. (2). The PE-UIO algorithm for a SISO
OE case has been developed in Sumis lawska et al. (2010a).

2.1.3 Errors-in-variables framework

In the EIV framework, see, for example, Söderström (2007), all measured variables, i.e. inputs
and outputs of the system, are affected by zero-mean, white, Gaussian, i.i.d. measurement noise
sequences. This can be represented by (3), where ũ(t) 6= 0, Π is null, and Ω is diagonal. The
PE-UIO algorithm for a SISO EIV case has been presented in Sumis lawska et al. (2010b, 2011).

2.2 Parity equations

PE are widely used for the purpose of fault detection and isolation, see, for example, Chow and
Willsky (1984), Gertler and Singer (1990), Li and Shah (2002). The approach described in this
paper utilises the PE to design an unknown input reconstructor.

The stacked vector of the system output y(t) is considered:

Y =
[
yT(t− s) yT(t− s+ 1) · · · yT(t)

]T ∈ R(s+1)m (8)

where the term s denotes the order of the parity space. Analogously, one can construct stacked
vectors of v(t), u(t), u0(t), ũ(t) and e(t) which are denoted, respectively, as V , U , U0, Ũ and
E. Using this notation the system defined by (3) can be expressed in the form:

Y = Γx(t− s) + QU0 + TV + ΞE (9)

where Γ is an extended observability matrix:

Γ =


C

CA
...

CAs

 ∈ R(s+1)m×n (10)

and Q is the following block Toeplitz matrix:

Q =


D 0 · · · 0

CB D · · · 0
CAB CB · · · 0

...
...

. . .
...

CAs−1B CAs−2B · · · D

 ∈ R(s+1)m×(s+1)p (11)

Analogously, one can construct the matrix T ∈ R(s+1)m×(s+1) by replacing B and D in Q by,
respectively, G and H, and the matrix Ξ ∈ R(s+1)m×(s+1)m is obtained by replacing B and
D, respectively, by Π and Ω. To eliminate the unknown state vector from (9), a row vector
wT ∈ R1×(s+1)m is defined, which belongs to the left nullspace of Γ, i.e.

wTΓ = 0 (12)

Note that the row vectorwT can always be found by choosing s to be sufficiently large. Therefore,
(9) can be reformulated as:

wTY = wTQU −wTQŨ +wTTV +wTΞE (13)
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By rearranging the measured (known) variables to the right-hand side of (13) and the unknowns
to the left-hand side, the following PE is obtained, cf. Li and Shah (2002):

wTTV +wTΞE −wTQŨ = wTY −wTQU (14)

In the following subsection the PE is used to derive a novel algorithm for the unknown input
estimation.

2.3 Proposed input estimation procedure

Denote the matrix spanning the left nullspace of Γ as Γ⊥. Consequently, the row vector wT is
a linear combination of rows of Γ⊥. In the disturbance free case, i.e. when U = U0 and E = 0,
the following equation holds (cf. (14)):

Γ⊥TV = b (15)

where b is a column vector given by:

b = Γ⊥Y − Γ⊥QU (16)

Selection of a sufficiently large s would result in (15) being a set of equations with an explicit
solution or an overdetermined set of equations. Nevertheless, in practice, precision of the solution
to (15) can still be seriously affected by noise. The algorithm proposed here provides an on-line
approximation of the unknown input, simultaneously minimising the unwanted effects of noise.

It is proposed to calculate the value of the unknown input as:

v̂(t− τ) = wTY −wTQU (17)

where v̂(t) denotes the estimate of v(t). The term τ is an estimation lag (estimation delay)
and it accounts for the fact that the unknown input may not be reconstructed instantaneously.
Therefore, at the time instance t the estimate of v(t− τ) is obtained. The estimation delay τ is
defined further in this section. In the noise-free case, v̂(t− τ) is simply:

v̂(t− τ) = wTTV (18)

Therefore, based on the assumption that the unknown input is varying relatively slowly (see
Subsection 3.1), it can be estimated as a linear combination of the sequence v(t− s), v(t− s+
1), · · · , v(t), i.e.

v̂(t− τ) = α0v(t) + α1v(t− 1) + · · ·+ αsv(t− s) (19)

where the αi parameters are dependent on the choice of the vector wT, such that:

wTT =
[
αs αs−1 · · · α0

]
(20)

One can note that (19) represents a moving average finite impulse response filter with the gain
being given by the sum of the αi parameters, i.e. the sum of elements of the vector wTT. Thus,
it is suggested that wT should be selected in such a way, that the sum of the elements of the
vector wTT is equal unity. Furthermore, it is anticipated that the choice of both, i.e. the order of
the parity space s, as well as the vector wT, influences the estimation lag τ in the estimate of the
unknown input (due to the moving average filtering property of the unknown input estimator).
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The estimation lag is defined as the centre of gravity of the moving average filter rounded to the
nearest natural number and is calculated via:

τ = round

(∑
i αii∑
i αi

)
(21)

In the following subsection an algorithm for the selection of the optimal row vector wT is
derived based on the Lagrange multiplier method.

2.3.1 Selection of optimal row vector wT

In the case of noisy input and output measurements, equation (18) becomes:

v̂(t− τ) = wTTV +wTΞE −wTQŨ (22)

which can be expanded to give:

v̂(t− τ) = α0v(t) + α1v(t− 1) + · · ·+ αsv(t− s) +wξs+1
e(t) +wξse(t− 1) + · · ·+

wξ1e(t− s)−wqs+1
ũ(t)−wqsũ(t− 1)− · · · −wq1ũ(t− s)

(23)

where the vector coefficients wξi and wqi are constructed from the appropriate elements of the
vectors wTΞ and wTQ, respectively. (In the case when p = m = 1, i.e. u(t) and y(t) are scalars,
wξi and wqi refer to the ith elements of the vectors wTΞ and wTQ, respectively.) Note, that in
(23) the estimate of the unknown input is affected by two coloured noise sequences. However, by
a careful choice of wT, the degrading effect of these disturbances can be minimised. Furthermore,
the influence of measurement noise on the unknown input estimate can be reduced by minimising
the variance of the term wTΞE −wTQŨ , i.e.:

E{(wTΞE −wTQŨ)(wTΞE −wTQŨ)T} =

= wTΞΣeΞ
Tw +wTQΣũQ

Tw −wTΞΣũe
TQTw −wTQΣũeΞ

Tw
(24)

where Σũ = E{ŨŨT}, Σe = E{EET}, and Σũe = E{ŨET} = 0. Consequently, the vector wT

should be selected to minimise the cost function f(wT):

f(wT) = wTΞΣeΞ
Tw +wTQΣũQ

Tw (25)

subject to the following constraints:

(1) Sum of elements of wTT is equal to 1.
(2) wTΓ = 0.

Note that constraint (1) is sufficient to ensure unity gain, because E{e(t)} = 0 and E{ũ(t)} = 0.
The cost function (25) can be minimised by making use of the Lagrange multiplier method,

see, for example, Bertsekas (1982). Denote the rows of Γ⊥ by γT
1 , γT

2 , ..., γT
k :

Γ⊥ =
[
γ1 γ2 · · · γk

]T
(26)

The vector wT is a linear combination of the rows of Γ⊥, which ensures that constraint (2) is
satisfied, i.e.

wT =

k∑
i=1

piγ
T
i (27)
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Hence, the cost function (25) can be reformulated as a function of the parameter vector P =[
p1 p2 · · · pk

]T
:

f(P ) =

(
k∑
i=1

piγ
T
i

)
Σ

 k∑
j=1

pjγj

 (28)

where

Σ = ΞΣeΞ
T + QΣũQ

T (29)

The cost function f(P ) is required to be minimised subject to the constraint:

g(P ) = sumrow(wTT)− 1 = 0 (30)

where the operator sumrow(A) denotes a column vector whose elements are sums of the appro-
priate rows of an arbitrary matrix A. (In the case of a row vector q, the term sumrow(q) is simply
a scalar being sum of elements of the vector q, whilst, if q is a column vector, sumrow(q) = q.)
The solution to the Lagrange minimisation problem is given by, see Bertsekas (1982):

∇f(P ) = λ∇g(P ) (31)

which, after some manipulations, may be reformulated as (for details see Appendix A.):

SP = λψ (32)

where

S = Γ⊥Σ(Γ⊥)T + (Γ⊥Σ(Γ⊥)T)T (33)

and

ψ = sumrow(Γ⊥T) (34)

Therefore, the parameter vector P is given by:

P = λS−1ψ (35)

where the Lagrange multiplier λ is calculated via:

λ =
((

S−1ψ
)T
ψ
)−1

(36)

The algorithm for calculating the optimal row vector wT is summarised as follows:

Algorithm 1:

(1) Select the order of the parity space s and construct matrices Γ, Q, T, and Ξ.
(2) Obtain Γ⊥.
(3) Compute Σ using (29).
(4) Calculate the column vector S and the matrix ψ by making use of (33) and (34), respec-

tively.
(5) Obtain the Lagrange multiplier λ using (36).
(6) Calculate the parameter vector P by (35).
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(7) Compute the vector wT using (27).
(8) Calculate estimation delay τ using (20) and (21).
(9) Use designed estimator to calculate v(t− τ) as in equation (17).

2.4 Robust unknown input reconstruction

Nonlinearities in system dynamics, parameter variations, linearisation and model order reduction
errors etc., cause model mis-match which can seriously affect the input reconstruction process.
It has been presented in Patton et al. (1992), Patton and Chen (1992) that these discrepancies
can be modelled as an additional input to the system, denoted d(t) ∈ Rr.

x(t+ 1) = Ax(t) + Bu0(t) + Gv(t) + Rxd(t) + Πe(t)

y(t) = Cx(t) + Du0(t) + Hv(t) + Ryd(t) + Ωe(t)

u(t) = u0(t) + ũ(t)

(37)

where Rx ∈ Rn×r and Ry ∈ Rm×r are disturbance distribution matrices. Methods for determin-
ing the structure of matrices Rx and Ry are presented in Patton and Chen (1992) and Chen and
Patton (1999). The scheme proposed in this paper can be easily exended to facilitate disturbance
decoupling. For this purpose define matrix O ∈ R(s+1)m×(s+1)r by replacing B and D in Q by
Rx and Ry, respectively. Then (9) can be reformulated as

Y = Γx(t− s) + QU0 + TV + OK + ΞE (38)

where K is the stacked vector of disturbances d(t), cf. (8). In order to eliminate both the
unknown state vector and the disturbance vector from (38), the vector wT should fulfil the
constraint

wT
[
Γ O

]
= 0 (39)

Thus the matrix Γ⊥ should be selected is such a way that it spans the left nullspace of the
matrix

[
Γ O

]
∈ R(s+1)m×(n+(s+1)r). Disturbance decoupling is possible if

(s+ 1)m > rank
[
Γ O

]
(40)

It has been shown in Massoumnia (1986) that disturbance decoupling is possible for system (37)
if r < m. Note that if this condition is satisfied then the matrix Γ⊥ and therefore the row vector
wT can always be found by choosing s to be sufficiently large.

3 Extension to systems with zero close to unity

The scheme described in Section 2 cannot be applied to single output systems, whose transfer
function between the unknown input and the output contains a derivative term. Furthermore,
performance of the PE-UIO is seriously impaired when the system zero lies close to unity. The
background of this problem is explained in Subsection 3.1. Furthermore, in Subsection 3.2 a
modified version of the PE-UIO is proposed, where this limitation is alleviated.

3.1 Zero assignment filter

Consider the system (3) where p = m = 1. The two relationships between each of the system
inputs (both known and unknown) and the output can be described by discrete-time transfer
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functions in the z-domain of the following form, cf. (3):

Gu(z) =
Y0(z)

U0(z)
= C(zI−A)−1B + D

Gv(z) =
Y0(z)

V (z)
= C(zI−A)−1G + H

(41)

where the terms Y0(z), U0(z), and V (z) denote, respectively, y0(t), u0(t), and v(t) in the z-
domain. Equation (13) in the noise-free case can be reformulated as the following relation:

W (z)Y0(z) = WQ(z)U0(z) +WT (z)V (z) (42)

where terms W (z), WQ(z) and WT (z) are polynomials in the z-variable with parameters defined
by vectors wT, wTQ, and wTT, respectively. The transfer functions corresponding to u0(t) and
v(t) are given, respectively, by:

Gu(z) =
WQ(z)

W (z)

Gv(z) =
WT (z)

W (z)

(43)

where Gu(z) defines the relationship between U0(z) and the output Y0(z), whereas Gv(z) de-
scribes the relationship between the unknown input V (z) and Y0(z), cf. (41). In the case when
s = n, the left nullspace of Γ is a row vector Γ⊥ = wT (it is assumed here that the system (3)
is observable) and the order of the polynomial W (z) is equal to the order of the system. Hence,
one can deduce from (43) that the roots of the polynomial W (z) are eigenvalues of the matrix A
(i.e. poles of both Gv(z) and Gu(z)). Denote the set of poles and zeros of Gv(z) by Pv and Zv,
respectively. Analogously, denote Pu and Zu as, respectively, poles and zeros of Gu(z). Then, it is
true that the roots of W (z) are Pv ∪Pu, the roots of WQ(z) are defined by the set Zu ∪ (Pv\Pu),
whilst roots of WT (z) are Zv ∪ (Pu\Pv).

If the order of the parity space is higher than that of the system, i.e. s > n, then the set of
equations (43) must still be fulfilled. This means, that W (z), WQ(z) and WT (z) have common

s−n roots (a zero-pole cancellation occurs, hence both WQ(z)
W (z) and WT (z)

W (z) remain unaltered). The

choice of those additional s− n zeros influences the properties of the noise filtration of the filter
(22). Hence, the problem of finding the optimal row vector wT can be reformulated as a filter
zeros assignment problem. The unknown input reconstruction is possible when the bandwidth
of the unknown input is narrower than that of WT (z), whilst the ability of the PE-UIO to filter
ũ(t) and e(t) depends on the frequency response of both, i.e. WQ(z) and W (z). Note that the
relationship between the unknown input and its estimate in the z-domain is given by, cf. (19)
and (20):

V̂ (z) = WT (z)V (z) (44)

This also explains, why the PE-UIO cannot be used when Gv(z) contains a derivative term, i.e.
a zero equal to unity. In such a case the polynomial WT (z) also contains the derivative term and
its steady state gain is zero. Therefore, use of the standard PE-UIO for the purpose of unknown
input estimation is infeasible. Furthermore, if Gv(z) contains a zero close to unity, the step
response of WT (z) is characterised by a large overshoot (characteristic of systems whose zero
lies close to unity), hence the unknown input estimation problem becomes seriously affected.
The overshoot of WT (z) can be minimised by a significant increase of the order of parity space,
however, this results in a reduction of the filter bandwidth. Therefore, a modification of the
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PE-UIO is required, and this is provided in the next subsection. Note that this problem will
occur also for multiple input systems as long as the system has a single output. Thus, during the
derivation of the modified PE-UIO filter in Subsection 3.2 it is assumed that the single output
system may have an arbitrary number of measured inputs, i.e. m = 1 and p ∈ N. The algorithm
developed in the following subsection is applicable to systems, whose ‘problematic’ zero lies on
the real axis and is less than or equal unity. However, this result can also be extended to cases
with multiple zeros which lie on or within the unit circle and that are relatively close to unity.

3.2 Two stage filter design

Consider a single output system, whose transfer function between the unknown input and the
output, denoted as Gv(z), contains a zero, denoted z0, which is close or equal to unity. Such a
transfer function can be represented by:

Gv(z) = G′v(z)
z − z0

z
(45)

Therefore, the input-output relationship in the z-domain can be represented as:

Y (z) = Gv(z)V (z) +Gu(z)U0(z) = G′v(z)
z − z0

z
V (z) +Gu(z)U0(z) =

= G′v(z)V
′(z) +Gu(z)U0(z)

(46)

where V ′(z) = z−z0
z V (z) is the z-domain representation of the variable v′(t), whose relation with

the unknown input is defined as:

v′(t) = v(t)− z0v(t− 1) (47)

The transfer function G′v(z) can by represented by:

G′v(z) = C(zI−A)−1G′ + H′ (48)

where H′ and G′ are the appropriately modified matrices H and G, respectively. Define the
matrix T′ by replacing G and H in T by, respectively, G′ and H′. Subsequently the PE (14)
can be reformulated as:

wTT′V ′ +wTΞE −wTQŨ = wTY −wTQU (49)

Analogously to the algorithm described in Section 2, it is proposed to estimate the variable
v′(t− τ) as:

v̂′(t− τ) = wTY −wTQU (50)

which, in the noise-free case, is equal to:

v̂′(t− τ) = wTT′V ′ (51)

Subsequently, the unknown input estimate can be calculated via, cf. (47):

v̂(t) = z0v̂(t− 1) + v̂′(t) (52)

Note that this scheme is applicable only to systems with |z0| ≤ 1. Otherwise, (52) becomes
unstable.
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In the noisy case the term v̂′(t− τ) is given by:

v̂′(t− τ) = wTT′V ′ + ε(t) (53)

where ε(t) represents the disturbance introduced by e(t) and ũ(t), i.e.:

ε(t) = wTΞE −wTQŨ (54)

Hence, it follows from equations (52) and (53), that the estimate of v(t − τ) is affected by the
error term ε∗(t), whose relation to ε(t) is given by:

ε∗(t) = ε(t) + z0ε
∗(t− 1) (55)

For convenience, the following notation is introduced:

ũ∗(t) = ũ(t) + z0ũ
∗(t− 1)

e∗(t) = e(t) + z0e
∗(t− 1)

(56)

Thus, the term ε∗(t) is given by:

ε∗(t) = wTΞE∗ −wTQŨ∗ (57)

where E∗ and Ũ∗ are constructed from the current and previous values of e∗(t) and ũ∗(t),
respectively, cf. (8). It is now required to minimise the variance of the term ε∗(t), which is given
by, cf. (24):

E{(wTΞE∗ −wTQŨ∗)(wTΞE∗ −wTQŨ∗)T} =

= wTΞΣe∗Ξ
Tw +wTQΣũ∗QTw −wTΞ (Σũ∗e∗)T QTw −wTQΣũ∗e∗Ξ

Tw
(58)

where Σũ∗ = E{Ũ∗Ũ∗T}, Σe∗ = E{E∗E∗T} and Σũ∗e∗ = E{Ũ∗E∗T} = 0. Hence, the function
to be minimised is given by:

f(wT) = wTΞΣe∗Ξ
Tw +wTQΣũ∗QTw (59)

In order to calculate (59), first, the terms Σe∗ and Σũ∗ are required. The signal e∗(t) can be
described by a function of its previous values, cf. (56):

e∗(t) = e(t) + z0e(t− 1) + z2
0e(t− 2) + · · · (60)

Therefore, by recalling that e(t) is assumed to be white, the expected value of e∗(t)e∗(t− i) is
calculated as:

E{e∗(t)e∗(t− i)} = E{zi0e2(t− i) + zi+2
0 e2(t− i− 1) + zi+4

0 e2(t− i− 2) + · · · }

= E{e2(t)}zi0
(
1 + z2

0 + z4
0 + · · ·

) (61)

which is a sum of a geometric series and, in the case when |z0| < 1, can be simplified to:

E{e∗(t)e∗(t− i)} = E{e2(t)} zi0
1− z2

0

(62)
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Analogously, by recalling that ũ(t) is assumed to be white, the expected value of ũ∗(t)ũ∗(t− i)
can be derived as:

E{ũ∗(t)(ũ∗(t− i))T} = E{ũ(t)ũT(t)} zi0
1− z2

0

(63)

In the cases when z = 1 the sum of the geometric series (61) is infinite. Therefore, to cope with
such a case it is proposed to replace z0 in (62) and (63) by a value smaller than unity in order
to indicate that e(t) and ũ′(t) are not white.

The matrices Σe∗ and Σũ∗ are constructed by making use of appropriate values of, respectively,
E{e∗(t)e∗(t− i)} and E{ũ∗(t)ũ∗(t− i)}. For convenience, a new term is introduced, cf. (29):

Σ∗ = ΞΣe∗Ξ
T + QΣũ∗QT (64)

Hence the cost function (59) becomes:

f(P ) =

(
k∑
i=1

piγ
T
i

)
Σ∗

 k∑
j=1

pjγj

 (65)

which is required to be minimised subject to the constraint:

g(P ) = sumrow(wTT′)− 1 = 0 (66)

Consequently, the algorithm for calculating the unknown input is summarised as follows:

Algorithm 2:

(1) Select the order of the parity space s and construct matrices Γ, Q, T′, and Ξ.
(2) Obtain Γ⊥ .
(3) Calculate Σe∗ and Σũ∗ using (62) and (63), respectively.
(4) Compute Σ∗ using (64).
(5) Calculate the matrix S by:

S = Γ⊥Σ∗(Γ⊥)T + (Γ⊥Σ∗(Γ⊥)T)T (67)

(6) Calculate the column vector ψ via:

ψ = sumrow(Γ⊥T′) (68)

(7) Obtain the Lagrange multiplier λ using (36).
(8) Calculate the parameter vector P by (35).
(9) Compute the vector wT, cf. (27), as:

wT = PTΓ⊥ (69)

(10) Calculate estimation delay τ using (20) and (21).
(11) Use the designed estimator to calculate v̂′(t− τ) via (51).
(12) Obtain the estimate of v(t− τ) using (52).

Note that the above algorithm can be extended to facilitate disturbance decoupling. This can
be achieved by selecting such matrix Γ⊥ that it spans the left nullspace of the matrix

[
Γ O

]
,

where O is defined in Subsection 2.4.
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4 Application to hydrological system

This example is based on the data collected during a potassium bromide (KBr) tracer exper-
iment carried out in a wetland area by Martinez and Wise (2003). A schematic illustration of
the experiment is depicted in Figure 1. A tracer has been poured into the river at the point (1).
Two tracer concentration sensors have been placed downstream, at points (2) and (3), whose
readings are denoted, respectively, as v(t) and y(t), see Figure 2. The data used for this experi-
ment are available on http://captaintoolbox.co.uk/Data Sets.html. A linear model of the relation
between the input, denoted v(t), and the output, denoted y(t) has been developed in Young and
Sumis lawska (2012) and is given by

Gv(z) =
0.017591(z + 4.302)(z − 0.9735)

(z − 0.9764)(z − 0.8916)
(70)

The aim is to use the PE-UIO scheme to estimate the input v(t) based on the output mea-
surements and knowledge of the system model (70). Is should be noted that the model is
nonminimum-phase, thus naive inversion is not feasible. Although the PE-UIO can cope with
the zero at −4.302, the zero at 0.9735 requires the two stage PE-UIO, i.e Algorithm 2, to be
used. Hence, after removing the zero at 0.9735 from Gv(z), the transfer function G′v(z) is given
by, cf. (45)

G′v(z) =
0.017591(z + 4.302)

(z − 0.9764)(z − 0.8916)
(71)

and corresponding state space matrices are

A =

[
1.8680 1
−0.8706 0

]
G′ =

[
0.0176
0.0757

]
C =

[
1 0
]

H′ = 0 (72)

It has been assumed that the measurements are affected by white zero-mean noise (Π is null,
Π = 1). Algorithm 2 has been used to generate the input reconstruction scheme. The parity
space order has been set to 12, which leads to τ = 5 samples.

v̂′(t− 5) = 0.4202y(t)− 0.0281y(t− 1)− 0.0337y(t− 2)− 0.0400y(t− 3)− 0.0470y(t− 4)

− 0.0548y(t− 5)− 0.0636y(t− 6)− 0.0734y(t− 7)− 0.0845y(t− 8)

− 0.0968y(t− 9)− 0.1106y(t− 10)− 0.1261y(t− 11) + 0.3658y(t− 12)

v̂(t) = 0.9735v̂(t− 1) + v̂′(t)

(73)

The result of the unknown input estimation is compared with the original input in Figure 3,
which indicates a satisfactory performance.

It is believed that the input reconstruction discrepancies are caused mainly by the modelling
inaccuracy presumably due to unmodelled system nonlinearities. This hypothesis is supported
in Figure 4, which compares the measured output with the model output.

5 Conclusions

A new approach to the unknown input reconstruction problem has been proposed. The scheme is
applicable to multiple-input multiple-output systems with a single unmeasurable input, whereas
the number of outputs and known inputs may be arbitrary. The method allows for disturbance
decoupling which is often found to be requirement encountered in practice.
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The main advantage of this new parity equations-based unknown input observer (PE-UIO) is
its simplicity; the filter parameters are calculated once at the beginning of the reconstruction
process. The method is fast as it utilises two moving average filters. The only tuning parameter
of the PE-UIO is the order of the parity space. By changing this, the bandwidth of the input
reconstruction filter is shaped. This property allows the designer to tune the algorithm for
different levels of noise. It should be noted, however, that reduction of the filter bandwidth
(hence improvement of the noise filtering properties of the scheme) introduces an estimation lag
into the scheme. Furthermore, the PE-UIO is applicable for non-minimum phase systems.

Potential practical application of the proposed scheme has also been demonstrated. The two
stage PE-UIO has successfully estimated the tracer concentration in a hydrological system which
exhibited non-minimum phase behaviour and had a zero close to unity.

Further work is aimed towards an extension of the developed algorithms to systems with
multiple unmeasurable inputs. Although the proposed algorithms are generally applicable for
nonminimum-phase systems, a solution for systems, whose nonmiminum-phase zero is close to
unity, still remains an open question. Other applications of the PE-UIO of an engineering nature
are on-going, with promising results being obtained from a simulated model of a hot finishing
steel rolling mill.

Acknowledgements

The authors would like to thank Prof. Peter Young for fruitful discussions and providing the
model of the tracer experiment and the data used in Section 4.

References

Antsaklis, P. (1978), “Stable Proper nth-order Inverses,” IEEE Transactions on Automatic Con-
trol, 23, 1104–1106.

Bertsekas, D.P., Constrained Optimisation and Lagrange Multiplier Methods, London: Academic
press, Inc. (1982).

Box, G., and Jenkins, G., Time Series Analysis - Forecasting and Control, Oakland, CA, USA:
Holden-Day (1976).

Chen, J., Patton, R., and Liu, G. (1996), “Optimal Residual Design for Fault Diagnosis Us-
ing Multiobjective Optimisation and Genetic Algorithms,” International Journal of Systems
Science, 27, 567–576.

Chen, J., and Patton, R.J., Robust Model-Based Fault Diagnosis for Dynamic Systems, Boston:
Kluver Academic Publishers (1999).

Chow, E., and Willsky, A. (1984), “Analytical Redundancy and the Design of Robust Failure
Detection Systems,” IEEE Transactions on Automatic Control, 29, 603–614.

Darouach, M., and Zasadzinski, M. (1997), “Unbiased Minimum Variance Estimation for Systems
with Unknown Exogenous Inputs,” Automatica, 33, 717–719.

Dorato, P. (1969), “On the Inverse of Linear Dynamical Systems,” IEEE Transactions on Sys-
tems Science and Cybernetics, 5, 43–48.

Edwards, C., Spurgeon, S.K., and Patton, R. (2000), “Sliding Model Observers for Fault Detec-
tion and Isolation,” Automatica, 36, 541–553.

Fernando, T., and Trinh, H. (2006), “Design of Reduced-order State/Unknown Input Observers:
A Descriptor System Approach,” in Proceedings of the 2006 IEEE International Conference
on Control Applications, 0ctober 4–6, Munich, Germany.

Floquet, T., and Barbot, J. (2006), “State and Unknown Input Estimation for Linear Discrete-
time Systems,” Automatica, 42, 1883–1889.

Gertler, J., and Singer, D. (1990), “A New Structurel Framework for Parity Equation-based
Failure Detection and Isolation,” Automatica, 26, 381–388.



August 20, 2013 17:24 International Journal of Control Main˙text

16 REFERENCES

Ghahremani, E., and Kamwa, I. (2011), “Simultaneous State and Input Estimation of a Syn-
chronous Machine Using the Extended Kalman Filter with Unknown Inputs,” in Proceedings
of the 2011 IEEE International Electric Machines & Drives Conference (IEMDC), 15–18 May,
pp. 1468– 473.

Gillijns, S., and De Moor, B. (2007a), “Unbiased Minimum Variance Input and State Estimation
for Linear Discrete-time Systems,” Automatica, 43, 111–116.

Gillijns, S., and De Moor, B. (2007b), “Unbiased Minimum Variance Input and State Estimation
for Linear Discrete-time Systems with Direct Feedthrough,” Automatica, 43, 934–937.

Hou, M., and Müller, P. (1992), “Design of Observers for Linear Systems with Unknown Inputs,”
IEEE Transactions on Automatic Control, 37, 871–875.

Hou, M., and Patton, R. (1998), “Input Observability and Input Reconstruction,” Automatica,
34, 789–794.

Hou, M., and Patton, R. (1998), “Optimal Filtering for Systems with Unknown Inputs,” IEEE
Transactions on Automatic Control, AC-43, 445–449.

Hsieh, C. (2000), “Robust Two-stage Kalman Filters for Systems with Unknown Inputs,” IEEE
Transactions on Automatic Control, 45, 2374–2378.

Keller, J., and Sauter, D. (2010), “A Variable Geometric State Filtering for Stochastic Lin-
ear Systems Subject to Intermittent Unknown Inputs,” in Proceedings of the Conference on
Control and Fault-Tolerant Systems (SysTol), 6–8 October, pp. 558–563.

Kirtikar, S., Palanthandalam-Madapusi, H., Zattoni, E., and Bernstein, D.S. (2009), “l -Delay In-
put Recontruction for Discrete-Time Linear Systems,” in Proc. of the Conference on Decision
and Control, Shanghai, China, pp. 1848–1853.

Li, W., and Shah, S. (2002), “Structured Residual Vector-based Approach to Sensor Fault De-
tection and Isolation,” Journal of Process Control, 12, 429–443.

Ljung, L., System Identification - Theory for the User, 2nd ed., PTR Prentice Hall Information
and System Sciences Series, New Jersey: Prentice Hall (1999).

Luenberger, D.G. (1964), “Observing the State of Linear Systems,” IEEE Trans. Mil. Electr.,
MIL-8, 70–80.

Marro, G., and Zattoni, E. (2010), “Unknown-state, Unknown-input Reconstruction in Discrete-
time Nonminimum-phase Systems: Geometric Approach,” Automatica, 46, 815–822.

Martinez, C.J., and Wise, W.R. (2003), “Analysis of Constructed Treatment Wetland Hydraulics
with the Transient Storage Model OTIS,” Ecological Engineering, 20, 211–222.

Massoumnia, M.A. (1986), “A Geometric Approach to the Synthesis of Failure Detection Filters,”
IEEE Transaction on Automatic Control, AC-31, 839–846.

Moylan, P. (1977), “Stable Inversion of Linear Systems,” IEEE Transactions on Automatic
Control, 22, 74–78.

Palanthandalam-Madapusi, H., and Bernstein, D. (2007), “Unbiased Minimum-variance Filtering
for Input Reconstruction,” in Proceedings of the American Control Conference (ACC’07), 9–13
July, pp. New York City, USA.

Patton, R., Zhang, H.Y., and Chen, J. (1992), “Modelling of Uncertainties for Robust Fault
Diagnosis,” in Proceedings of the 31st Conference on Decision and Control, Tuscon, AR, USA,
pp. 921–926.

Patton, R.J., and Chen, J. (1992), “Robust Fault Detection of Jet Engine Sensor Systems Using
Eigenstructure Assignment,” Journal of Guidance, Control, and Dynamics, 15, 1491–1497.

Sain, M., and Massey, J. (1969), “Invertibility of Linear Time-Invariant Dynamical Systems,”
IEEE Transactions on Automatic Control, 14, 141–149.
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Appendix A: Derivation of Algorithm 1.

The solution to the Lagrange optimisation problem is calculated via:

∇f(P ) = λ∇g(P ) (A1)

The cost function f(P ) is given by:

f(P ) =

(
k∑
i=1

piγi

)
Σ

(
k∑
i=1

piγ
T
i

)
(A2)

where k = s− n+ 1, and can be expanded as:

f(P ) = p2
1γ1Σγ

T
1 + p1p2γ1Σγ

T
2 + · · ·+ p1pkγ1Σγ

T
k +

p1p2γ2Σγ
T
1 + p2

2γ2Σγ
T
2 + · · ·+ p2pkγ2Σγ

T
k +

...

p1pkγkΣγ
T
1 + p2pkγkΣγ

T
2 + · · ·+ p2

kγkΣγ
T
k

(A3)

Hence, the partial derivative of f(P ) with respect to the ith element of the P vector (denoted
as pi) is given by:

∂f(P )

∂pi
= p1γiΣγ

T
1 + p2γiΣγ

T
2 + · · ·+ piγiΣγ

T
i + · · ·+ pkγiΣγ

T
k +

p1γ1Σγ
T
i + p2γ2Σγ

T
i + · · ·+ piγiΣγ

T
i + · · ·+ pkγkΣγ

T
i

(A4)
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Consequently, the gradient of f(P ) can be written as:
∂f(P )
∂p1

∂f(P )
∂p2
...

∂f(P )
∂pk

 =


γ1Σγ

T
1 γ1Σγ

T
2 · · · γ1Σγ

T
k

γ2Σγ
T
1 γ2Σγ

T
2 · · · γ2Σγ

T
k

...
...

. . .
...

γkΣγ
T
1 γkΣγ

T
2 · · · γkΣγT

k

P +


γ1Σγ

T
1 γ2Σγ

T
1 · · · γkΣγT

1

γ1Σγ
T
2 γ2Σγ

T
2 · · · γkΣγT

2
...

...
. . .

...
γ1Σγ

T
k γ2Σγ

T
k · · · γkΣγT

k

P
= (∇f (P ))T

(A5)

Thus, recalling that Σ is symmetric, expression (A5) can be reformulated as:

(∇f(P ))T =

(
Γ⊥Σ(Γ⊥)T +

(
Γ⊥Σ

(
Γ⊥
)T
)T
)
P (A6)

The constraint function g(P ) is:

g(P ) = sumrow

(
wTT

)
− 1 =

k∑
i=1

sumrow (piγiT)− 1 (A7)

Hence the partial derivative of g(P ) with respect to pi is calculated via:

∂g(P )

∂pi
= sumrow (γiT) (A8)

Thus, the gradient of g(P ) can be reformulated as:

(∇g(P ))T = sumrow

(
Γ⊥T

)
(A9)

Using the notation:

S = Γ⊥Σ(Γ⊥)T +

(
Γ⊥Σ

(
Γ⊥
)T
)T

(A10)

and

ψ = sumrow

(
Γ⊥T

)
(A11)

the solution to the Lagrange optimisation problem (A1) can be rewritten as:

SP = λψ (A12)

Hence, the optimal parameter vector P is given by:

P = λS−1ψ (A13)

The constraint function g(P ) = 0 can be rewritten as:

PTψ − 1 = 0 (A14)
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Incorporating (A13) into (A14) yields:

λ
(
S−1ψ

)T
ψ − 1 = 0 (A15)

Finally, the Lagrange multiplier is given by:

λ =
((

S−1ψ
)T
ψ
)−1

(A16)

Figure captions

Figure 1. Schematic illustration of tracer experiment.
Figure 2. Input and output signals in tracer experiment.
Figure 3. Result of unknown input estimation.
Figure 4. Model output vs. measured output.


	cover1
	Main_text

