56 research outputs found

    The modular multilevel DC converters for MVDC and HVDC applications

    Get PDF
    A dc structure for an electrical power system is seen to have important advantages over an ac structure for the purpose of renewable energy integration and for expansion of transmission and distribution networks. There is also much interest and strong motivation to interconnect the existing point-to-point dc links to form multi-terminal and multi-voltage dc networks, which can make full use of the benefits of a dc scheme across various voltage levels and also increase the flexibility and ease the integration of both centralized and distributed renewable energy. This thesis investigates both high step-ratio dc-dc conversion to interface dc systems with different voltage levels and low step-ratio dc-dc conversion to interconnect dc systems with similar but not identical voltages (still within the same voltage level). The research work explores the possibility of combining the relatively recent modular multilevel converter (MMC) technology with the classic dc-dc circuits and from this proposes several modular multilevel dc converters, and their associated modulation methods and control schemes to operate them, which inherit the major advantages of both MMC technologies and classic dc-dc circuits. They facilitate low-cost, high-compactness, high-efficiency and high-reliability conversion for the medium voltage level and high voltage level dc network interconnection. For medium voltage level cases, this thesis extends the classic LLC dc-dc circuit by introducing MMC-like stack of sub-modules (SMs) in place of the half-bridge or full-bridge inverter in the original configuration. Two families of resonant modular multilevel dc converters (RMMCs) are proposed covering high step-ratio and low step-ratio conversion respectively. A phase-shift modulation scheme is further proposed for these RMMCs that creates an inherent feature of balancing SM capacitor voltages, provides a high effective operating frequency for reducing system footprint and offers a wide operating range for flexible conversion. For high voltage level cases requiring a high step-ratio conversion, a modular multilevel dc-ac-dc converter based on the single-active-bridge or dual-active-bridge structure is explored. The operating mode developed for this converter employs a near-square-wave ac current in order to decrease both the volt-ampere rating requirement for semiconductor devices and the energy storage requirement for SM capacitors. For low step-ratio cases, a single-stage modular multilevel dc-dc converter based on a buck-boost structure is examined, and an analysis method is created to support the choice of the circulating current frequency for minimum current stresses and reactive power losses. Theoretical analysis of and operating principles for all of these proposed modular multilevel dc converters, together with their associated modulation methods and control schemes, are verified by both time-domain simulation at full-scale and experimental tests on down-scaled prototypes. The results demonstrate that these medium voltage and high voltage dc-dc converters are good candidates for the interconnection of dc links at different voltages and thereby make a contribution to future multi-terminal and multi-voltage dc networks.Open Acces

    Control Strategies for Improving Reliability and Efficiency in Modular Power Converters

    Get PDF
    The significance of modular power converters has escalated drastically in various applications such as electrical energy distribution, industrial motor drives and More Electric Aircraft (MEA) owing to the benefits such as scalability, design flexibility, higher degree of fault tolerance and better maintenance. One of the main advantages of modular systems is the ability to replace the faulty converter cells during maintenance instead of the entire system. However, such maintenance cycles can result in a system of converter cells with different aging. A system with cells having different aging arises the threats of multiple maintenance, lower reliability and availability, and high maintenance costs. For controlling the thermal-stress based aging of modular power converters, power routing strategy was proposed. The thesis focuses on the different implementation strategies of power routing for modular converters. Power semiconductors are one of the most reliability critical components in power converters, and thermal-stress has been identified as the main cause of their failure. This thesis work concentrates on the power semiconductor reliability improvement algorithms. For improving system lifetime, virtual resistor based power routing algorithms for single stage and multi-stage modular architectures have been investigated through simulations and validated with experiment. A unified framework for routing the power in complex modular converter architectures is defined based on graph theory. Popular converter architectures for Smart Transformer (ST) and MEA applications are modeled as graphs to serve as the basis for developing power flow optimization. The effectiveness of graph theory for optimizing the power flow in modular systems is demonstrated with the help of proposed algorithms

    A New MMC Topology Which Decreases the Sub Module Voltage Fluctuations at Lower Switching Frequencies and Improves Converter Efficiency

    Get PDF
    Modular Multi-level inverters (MMCs) are becoming more common because of their suitability for applications in smart grids and multi-terminal HVDC transmission networks. The comparative study between the two classic topologies of MMC (AC side cascaded and DC side cascaded topologies) indicates some disadvantages which can affect their performance. The sub module voltage ripple and switching losses are one of the main issues and the reason for the appearance of the circulating current is sub module capacitor voltage ripple. Hence, the sub module capacitor needs to be large enough to constrain the voltage ripple when operating at lower switching frequencies. However, this is prohibitively uneconomical for the high voltage applications. There is always a trade off in MMC design between the switching frequency and sub module voltage ripple

    DC/DC converter for offshore DC collection network

    Get PDF
    Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes.Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes

    Interconnected Modular Multilevel Converter (IMMC) Using Wide Band Gap Devices for Multiple Applications

    Get PDF
    This dissertation proposes a high-power density Interconnected Modular Multilevel Converter (IMMC) with sinusoidal output voltage for multiple applications. The proposed converter utilizes wide band gap devices at a high switching frequency to achieve compact size/weight/volume. The proposed converter is modular in construction, employs high frequency L-C components and can be stacked for voltage sharing. The IMMC is proposed for motor drives applications due to the following advantages: sinusoidal output with adjustable voltage and frequency (v/f), no acoustic noise, low EMI and absence of dv/dt related issues due to long motor leads. Two design examples for low voltage drives using Gallium Nitride (GaN) devices and medium voltage drives using Silicon Carbide (SiC) are discussed in this dissertation. The proposed converter is also evaluated for solar micro-inverter applications due to its compact size and the high-quality output. The proposed system connects the inverter to the PV solar panel through a flyback converter for stepping up the voltage to the grid level, isolation and Maximum Power Point Tracking (MPPT). The proposed inverter eliminates the need for a bulky grid-tie inductor or complex LCL filter. The power can be injected to the grid using a small iron-core inductor due to the sinusoidal nature of the output voltage. A grid-tie control using Fictive Axis Emulation (FAE) is implemented on the converter to optimize the power injected to the grid. Moreover, a DC-AC IMMC to integrate two PV power plants through medium voltage DC collection grid (MVDC) system is proposed. The sinusoidal output of the IMMC facilitates the integration of the solar plants. The inductance required to connect the inverter to the grid is less due to the sinusoidal nature of the output of the IMMC

    Isolated Single-stage Power Electronic Building Blocks Using Medium Voltage Series-stacked Wide-bandgap Switches

    Get PDF
    The demand for efficient power conversion systems that can process the energy at high power and voltage levels is increasing every day. These systems are to be used in microgrid applications. Wide-bandgap semiconductor devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) are very promising candidates due to their lower conduction and switching losses compared to the state-of-the-art Silicon (Si) devices. The main challenge for these devices is that their breakdown voltages are relatively lower compared to their Si counterpart. In addition, the high frequency operation of the wide-bandgap devices are impeded in many cases by the magnetic core losses of the magnetic coupling components (i.e. coupled inductors and/or high frequency transformers) utilized in the power converter circuit. Six new dc-dc converter topologies are propose. The converters have reduced voltage stresses on the switches. Three of them are unidirectional step-up converters with universal input voltage which make them excellent candidates for photovoltaic and fuel cell applications. The other three converters are bidirectional dc-dc converters with wide voltage conversion ratios. These converters are very good candidates for the applications that require bidirectional power flow capability. In addition, the wide voltage conversion ratios of these converters can be utilized for applications such as energy storage systems with wide voltage swings

    Power Electronic Topologies with High Density Power Conversion and Galvanic Isolation for Utility Interface

    Get PDF
    The past decade has seen a significant increase in the number of applications where power electronic converters play a major role. Renewable energy systems such as wind turbines, solar photovoltaics, etc. employ power converters to interface with the utility grid. More and more power converters are being used in transportation sector such as in electric vehicles, locomotives, aircrafts, ships and submarines. Advancements in power converter topologies and devices have constantly pushed the limits and standards applicable in different markets towards better efficiency, lower cost and higher power density. Especially for large power systems such as wind turbine generators, adjustable speed drives, locomotives, etc., achieving smaller footprint at low cost and high efficiency has become a major challenge. These factors generate the major impetus towards the research undertaken in this dissertation. In applications that require integration with the utility grid, the bulkiest components are usually the transformers, inductors and DC electrolytic capacitors. Instead of using a line frequency transformer to interface any power electronic system with the utility grid directly, it is possible to use a power converter to transform the line frequency AC into a higher frequency AC that can be fed to a medium or high frequency transformer. These transformers are much smaller and lighter compared to line frequency transformers. This dissertation elucidates these concepts in detail in the first section as well as at the beginning of each subsequent section, along with a summary of such techniques already proposed in the literature. The sections in this dissertation propose and discuss several architectures (approaches) adhering to the earlier stated concepts that enable higher power density energy conversion for applications such as wind turbines, adjustable speed drives, data centers, energy storage systems, etc. Detailed operational analysis, design example, control strategy, simulation results and experimental results are shown for each concept or topology. The advantages and drawbacks are also discussed. Finally in this dissertation, the medium or high frequency transformers that can be used in the proposed approaches are analyzed in detail using ANSYS Maxwell software in terms of material, saturation, loss and size. Further, these numbers are used to estimate the relative size advantage and efficiency that can be achieved using higher frequency transformer compared to a line frequency transformer for utility interface applications. It will be shown that for many high power applications, medium frequency transformer based circuit designs can be more efficient and simpler alternatives for high frequency transformer based approaches. The specific contributions along with future research opportunities of the proposed concepts are summarized at the end

    Efficient, High Power Density, Modular Wide Band-gap Based Converters for Medium Voltage Application

    Get PDF
    Recent advances in semiconductor technology have accelerated developments in medium-voltage direct-current (MVDC) power system transmission and distribution. A DC-DC converter is widely considered to be the most important technology for future DC networks. Wide band-gap (WBG) power devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) have paved the way for improving the efficiency and power density of power converters by means of higher switching frequencies with lower conduction and switching losses compared to their Silicon (Si) counterparts. However, due to rapid variation of the voltage and current, di/dt and dv/dt, to fully utilize the advantages of the Wide-bandgap semiconductors, more focus is needed to design the printed circuit boards (PCB) in terms of minimizing the parasitic components, which impacts efficiency. The aim of this dissertation is to study the technical challenges associated with the implementation of WBG devices and propose different power converter topologies for MVDC applications. Ship power system with MVDC distribution is attracting widespread interest due to higher reliability and reduced fuel consumption. Also, since the charging time is a barrier for adopting the electric vehicles, increasing the voltage level of the dc bus to achieve the fast charging is considered to be the most important solution to address this concern. Moreover, raising the voltage level reduces the size and cost of cables in the car. Employing MVDC system in the power grid offers secure, flexible and efficient power flow. It is shown that to reach optimal performance in terms of low package inductance and high slew rate of switches, designing a PCB with low common source inductance, power loop inductance, and gate-driver loop are essential. Compared with traditional power converters, the proposed circuits can reduce the voltage stress on switches and diodes, as well as the input current ripple. A lower voltage stress allows the designer to employ the switches and diodes with lower on-resistance RDS(ON) and forward voltage drop, respectively. Consequently, more efficient power conversion system can be achieved. Moreover, the proposed converters offer a high voltage gain that helps the power switches with smaller duty-cycle, which leads to lower current and voltage stress across them. To verify the proposed concept and prove the correctness of the theoretical analysis, the laboratory prototype of the converters using WBG devices were implemented. The proposed converters can provide energy conversion with an efficiency of 97% feeding the nominal load, which is 2% more than the efficiency of the-state-of-the-art converters. Besides the efficiency, shrinking the current ripple leads to 50% size reduction of the input filter inductors

    Optimal Power Conversion System Architectures for Utility-Scale Solar-Plus-Storage Farms

    Get PDF
    For utility-scale photovoltaic (PV) projects, solar-plus-storage (SPS) has become an increasingly favored configuration owing to significantly reduced PV and battery storage costs, improved energy dispatchability, and grid-support services with added storage. However, the state-of-the-art power conversion system (PCS) architectures based on central and string inverters feature a low-voltage direct-current (DC)/alternating-current (AC) distribution with underground cables inside solar farms, inducing significant copper losses and costs. Furthermore, these two approaches require additional converters to integrate the paired battery storage, resulting in extra investment and maintenance effort. These factors result in an increased Levelized Cost of Electricity (LCOE) of utility-scale SPS farms and thus dampen the continued proliferation of solar energy. The objective of this research is to propose three new medium-voltage AC (MVAC) PCS architectures to reduce the LCOE of utility-scale SPS farms and thus accelerate the deployment of dispatchable and low-cost solar energy. These three proposed approaches, namely tri-port medium-voltage string inverter (TMVSI), multi-port DC transformer (MDCT), and massively distributed micro-multiport converter (µMC), enable localized DC-coupled battery storage, an MVAC distribution network using standard and low-cost overhead lines, and distributed layout of power conditioning units across the plant with scalable SPS farm building block design. Throughout this dissertation, a 300 kVA/4 kVac TMVSI has been designed, built, and tested to validate its effectiveness and viability, with a focus on the medium-frequency transformer design and control optimization. In addition, enhanced energy dispatchability and grid-support services of a 20 MW/80 MWh TMVSI-based SPS farm have been demonstrated. Finally, a framework for system-level LCOE analysis has been established to validate the advantages of the proposed MVAC architectures in reducing system LCOE of utility-scale SPS farms over a wide range of inverter-loading-ratios.Ph.D

    Special Power Electronics Converters and Machine Drives with Wide Band-Gap Devices

    Get PDF
    Power electronic converters play a key role in power generation, storage, and consumption. The major portion of power losses in the converters is dissipated in the semiconductor switching devices. In recent years, new power semiconductors based on wide band-gap (WBG) devices have been increasingly developed and employed in terms of promising merits including the lower on-state resistance, lower turn-on/off energy, higher capable switching frequency, higher temperature tolerance than conventional Si devices. However, WBG devices also brought new challenges including lower fault tolerance, higher system cost, gate driver challenges, and high dv/dt and resulting increased bearing current in electric machines. This work first proposed a hybrid Si IGBTs + SiC MOSFETs five-level transistor clamped H-bridge (TCHB) inverter which required significantly fewer number of semiconductor switches and fewer isolated DC sources than the conventional cascaded H-bridge inverter. As a result, system cost was largely reduced considering the high price of WBG devices in the present market. The semiconductor switches operated at carrier frequency were configured as Silicon Carbide (SiC) devices to improve the inverter efficiency, while the switches operated at fundamental output frequency (i.e., grid frequency) were constituted by Silicon (Si) IGBT devices. Different modulation strategies and control methods were developed and compared. In other words, this proposed SiC+Si hybrid TCHB inverter provided a solution to ride through a load short-circuit fault. Another special power electronic, multiport converter, was designed for EV charging station integrated with PV power generation and battery energy storage system. The control scheme for different charging modes was carefully developed to improve stabilization including power gap balancing, peak shaving, and valley filling, and voltage sag compensation. As a result, the influence on the power grid was reduced due to the matching between daily charging demand and adequate daytime PV generation. For special machine drives, such as slotless and coreless machines with low inductance, low core losses, typical drive implementations using conventional silicon-based devices are performance limited and also produce large current and torque ripples. In this research, WBG devices were employed to increase inverter switching frequency, reduce current ripple, reduce filter size, and as a result reduce drive system cost. Two inverter drive configurations were proposed and implemented with WBG devices in order to mitigate such issues for 2-phase very low inductance machines. Two inverter topologies, i.e., a dual H-bridge inverter with maximum redundancy and survivability and a 3-leg inverter for reduced cost, were considered. Simulation and experimental results validated the drive configurations in this dissertation. An integrated AC/AC converter was developed for 2-phase motor drives. Additionally, the proposed integrated AC/AC converter was systematically compared with commonly used topologies including AC/DC/AC converter and matrix converters, in terms of the output voltage/current capability, total harmonics distortion (THD), and system cost. Furthermore, closed-loop speed controllers were developed for the three topologies, and the maximum operating range and output phase currents were investigated. The proposed integrated AC/AC converter with a single-phase input and a 2-phase output reduced the switch count to six and resulting in minimized system cost and size for low power applications. In contrast, AC/DC/AC pulse width modulation (PWM) converters contained twelve active power semiconductor switches and a common DC link. Furthermore, a modulation scheme and filters for the proposed converter were developed and modeled in detail. For the significantly increased bearing current caused by the transition from Si devices to WBG devices, advanced modeling and analysis approach was proposed by using coupled field-circuit electromagnetic finite element analysis (FEA) to model bearing voltage and current in electric machines, which took into account the influence of distributed winding conductors and frequency-dependent winding RL parameters. Possible bearing current issues in axial-flux machines, and possibilities of computation time reduction, were also discussed. Two experimental validation approaches were proposed: the time-domain analysis approach to accurately capture the time transient, the stationary testing approach to measure bearing capacitance without complex control development or loading condition limitations. In addition, two types of motors were employed for experimental validation: an inside-out N-type PMSM was used for rotating testing and stationary testing, and an N-type BLDC was used for stationary testing. Possible solutions for the increased CMV and bearing currents caused by the implementation of WGB devices were discussed and developed in simulation validation, including multi-carrier SPWM modulation and H-8 converter topology
    • …
    corecore