10 research outputs found

    Analyzing Satisfiability and Refutability in Selected Constraint Systems

    Get PDF
    This dissertation is concerned with the satisfiability and refutability problems for several constraint systems. We examine both Boolean constraint systems, in which each variable is limited to the values true and false, and polyhedral constraint systems, in which each variable is limited to the set of real numbers R in the case of linear polyhedral systems or the set of integers Z in the case of integer polyhedral systems. An important aspect of our research is that we focus on providing certificates. That is, we provide satisfying assignments or easily checkable proofs of infeasibility depending on whether the instance is feasible or not. Providing easily checkable certificates has become a much sought after feature in algorithms, especially in light of spectacular failures in the implementations of some well-known algorithms. There exist a number of problems in the constraint-solving domain for which efficient algorithms have been proposed, but which lack a certifying counterpart. When examining Boolean constraint systems, we specifically look at systems of 2-CNF clauses and systems of Horn clauses. When examining polyhedral constraint systems, we specifically look at systems of difference constraints, systems of UTVPI constraints, and systems of Horn constraints. For each examined system, we determine several properties of general refutations and determine the complexity of finding restricted refutations. These restricted forms of refutation include read-once refutations, in which each constraint can be used at most once; literal-once refutations, in which for each literal at most one constraint containing that literal can be used; and unit refutations, in which each step of the refutation must use a constraint containing exactly one literal. The advantage of read-once refutations is that they are guaranteed to be short. Thus, while not every constraint system has a read-once refutation, the small size of the refutation guarantees easy checkability

    Achieving while maintaining:A logic of knowing how with intermediate constraints

    Get PDF
    In this paper, we propose a ternary knowing how operator to express that the agent knows how to achieve ϕ\phi given ψ\psi while maintaining χ\chi in-between. It generalizes the logic of goal-directed knowing how proposed by Yanjing Wang 2015 'A logic of knowing how'. We give a sound and complete axiomatization of this logic.Comment: appear in Proceedings of ICLA 201

    Rank Lower Bounds in Propositional Proof Systems Based on Integer Linear Programming Methods

    Get PDF
    The work of this thesis is in the area of proof complexity, an area which looks to uncover the limitations of proof systems. In this thesis we investigate the rank complexity of tautologies for several of the most important proof systems based on integer linear programming methods. The three main contributions of this thesis are as follows: Firstly we develop the first rank lower bounds for the proof system based on the Sherali-Adams operator and show that both the Pigeonhole and Least Number Principles require linear rank in this system. We also demonstrate a link between the complexity measures of Sherali-Adams rank and Resolution width. Secondly we present a novel method for deriving rank lower bounds in the well-studied Cutting Planes proof system. We use this technique to show that the Cutting Plane rank of the Pigeonhole Principle is logarithmic. Finally we separate the complexity measures of Resolution width and Sherali-Adams rank from the complexity measures of Lovasz and Schrijver rank and Cutting Planes rank

    Exploiting Structure In Combinatorial Problems With Applications In Computational Sustainability

    Full text link
    Combinatorial decision and optimization problems are at the core of many tasks with practical importance in areas as diverse as planning and scheduling, supply chain management, hardware and software verification, electronic commerce, and computational biology. Another important source of combinatorial problems is the newly emerging field of computational sustainability, which addresses decision-making aimed at balancing social, economic and environmental needs to guarantee the long-term prosperity of life on our planet. This dissertation studies different forms of problem structure that can be exploited in developing scalable algorithmic techniques capable of addressing large real-world combinatorial problems. There are three major contributions in this work: 1) We study a form of hidden problem structure called a backdoor, a set of key decision variables that captures the combinatorics of the problem, and reveal that many real-world problems encoded as Boolean satisfiability or mixed-integer linear programs contain small backdoors. We study backdoors both theoretically and empirically and characterize important tradeoffs between the computational complexity of finding backdoors and their effectiveness in capturing problem structure succinctly. 2) We contribute several domain-specific mathematical formulations and algorithmic techniques that exploit specific aspects of problem structure arising in budget-constrained conservation planning for wildlife habitat connectivity. Our solution approaches scale to real-world conservation settings and provide important decision-support tools for cost-benefit analysis. 3) We propose a new survey-planning methodology to assist in the construction of accurate predictive models, which are especially relevant in sustainability areas such as species- distribution prediction and climate-change impact studies. In particular, we design a technique that takes advantage of submodularity, a structural property of the function to be optimized, and results in a polynomial-time procedure with approximation guarantees

    The Incremental Satisfiability Problem for a Two Conjunctive Normal Form

    Get PDF
    We propose a novel method to review K ⊢ φ when K and φ are both in Conjunctive Normal Forms (CF). We extend our method to solve the incremental satisfiablity problem (ISAT), and we present different cases where ISAT can be solved in polynomial time. Especially, we present an algorithm for 2-ISAT. Our last algorithm allow us to establish an upper bound for the time-complexity of 2-ISAT, as well as to establish some tractable cases for the 2-ISAT problem

    The combinatorics of minimal unsatisfiability: connecting to graph theory

    Get PDF
    Minimally Unsatisfiable CNFs (MUs) are unsatisfiable CNFs where removing any clause destroys unsatisfiability. MUs are the building blocks of unsatisfia-bility, and our understanding of them can be very helpful in answering various algorithmic and structural questions relating to unsatisfiability. In this thesis we study MUs from a combinatorial point of view, with the aim of extending the understanding of the structure of MUs. We show that some important classes of MUs are very closely related to known classes of digraphs, and using arguments from logic and graph theory we characterise these MUs.Two main concepts in this thesis are isomorphism of CNFs and the implica-tion digraph of 2-CNFs (at most two literals per disjunction). Isomorphism of CNFs involves renaming the variables, and flipping the literals. The implication digraph of a 2-CNF F has both arcs (¬a → b) and (¬b → a) for every binary clause (a ∨ b) in F .In the first part we introduce a novel connection between MUs and Minimal Strong Digraphs (MSDs), strongly connected digraphs, where removing any arc destroys the strong connectedness. We introduce the new class DFM of special MUs, which are in close correspondence to MSDs. The known relation between 2-CNFs and implication digraphs is used, but in a simpler and more direct way, namely that we have a canonical choice of one of the two arcs. As an application of this new framework we provide short and intuitive new proofs for two im-portant but isolated characterisations for nonsingular MUs (every literal occurs at least twice), both with ingenious but complicated proofs: Characterising 2-MUs (minimally unsatisfiable 2-CNFs), and characterising MUs with deficiency 2 (two more clauses than variables).In the second part, we provide a fundamental addition to the study of 2-CNFs which have efficient algorithms for many interesting problems, namely that we provide a full classification of 2-MUs and a polytime isomorphism de-cision of this class. We show that implication digraphs of 2-MUs are “Weak Double Cycles” (WDCs), big cycles of small cycles (with possible overlaps). Combining logical and graph-theoretical methods, we prove that WDCs have at most one skew-symmetry (a self-inverse fixed-point free anti-symmetry, re-versing the direction of arcs). It follows that the isomorphisms between 2-MUs are exactly the isomorphisms between their implication digraphs (since digraphs with given skew-symmetry are the same as 2-CNFs). This reduces the classifi-cation of 2-MUs to the classification of a nice class of digraphs.Finally in the outlook we discuss further applications, including an alter-native framework for enumerating some special Minimally Unsatisfiable Sub-clause-sets (MUSs)
    corecore