
Graduate Theses, Dissertations, and Problem Reports

2019

Analyzing Satisfiability and Refutability in Selected Constraint Analyzing Satisfiability and Refutability in Selected Constraint

Systems Systems

Piotr Jerzy Wojciechowski
West Virginia University, pwojciec@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Wojciechowski, Piotr Jerzy, "Analyzing Satisfiability and Refutability in Selected Constraint Systems"
(2019). Graduate Theses, Dissertations, and Problem Reports. 3843.
https://researchrepository.wvu.edu/etd/3843

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230475855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F3843&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=researchrepository.wvu.edu%2Fetd%2F3843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/3843?utm_source=researchrepository.wvu.edu%2Fetd%2F3843&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Analyzing Satisfiability and Refutability in

Selected Constraint Systems

Piotr Jerzy Wojciechowski

Dissertation submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Science

K. Subramani, Ph.D., Chair
Elaine Eschen, Ph.D.

Frances VanScoy, Ph.D.
Hong-Jian Lai, Ph.D.

John Goldwasser, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2019

Keywords: Constraint Systems, CNF clauses, UTVPI Constraints, Horn Constraints,
Satisfiability, Refutability

Copyright 2019 Piotr Jerzy Wojciechowski

Abstract

Analyzing Satisfiability and Refutability in Selected Constraint Systems

Piotr Jerzy Wojciechowski

This dissertation is concerned with the satisfiability and refutability problems for several
constraint systems. We examine both boolean constraint systems, in which each variable
is limited to the values true and false, and polyhedral constraint systems, in which each
variable is limited to the set of real numbers R in the case of linear polyhedral systems
or the set of integers Z in the case of integer polyhedral systems. An important aspect of
our research is that we focus on providing certificates. That is, we provide satisfying as-
signments or easily checkable proofs of infeasibility depending on whether the instance is
feasible or not. Providing easily checkable certificates has become a much sought after fea-
ture in algorithms, especially in light of spectacular failures in the implementations of some
well-known algorithms. There exist a number of problems in the constraint-solving domain
for which efficient algorithms have been proposed, but which lack a certifying counterpart.
When examining boolean constraint systems, we specifically look at systems of 2-CNF
clauses and systems of Horn clauses. When examining polyhedral constraint systems, we
specifically look at systems of difference constraints, systems of UTVPI constraints, and
systems of Horn constraints.

For each examined system, we determine several properties of general refutations and
determine the complexity of finding restricted refutations. These restricted forms of refu-
tation include read-once refutations, in which each constraint can be used at most once;
literal-once refutations, in which for each literal at most one constraint containing that
literal can be used; and unit refutations, in which each step of the refutation must use a
constraint containing exactly one literal. The advantage of read-once refutations is that
they are guaranteed to be short. Thus, while not every constraint system has a read-once
refutation, the small size of the refutation guarantees easy checkability.

iii

Acknowledgments

First and foremost I would like to thank my adviser Dr. K. Subramani whose insights

and advice made this thesis possible. He has constantly supported me in my research

efforts and has introduced me to many interesting areas of study. He introduced me to this

are of study and his insights into these problems have made an invaluable contribution.

Throughout my time as his student he has taught me many of the proof techniques utilized

in the proofs contained within this dissertation. He has never hesitated in helping me correct

my mistakes and in teaching me how to avoid those types of errors in the future. His input

has made me better at both thoroughly examining the problem being researched and at

writing the results of that research.

I would also like to thank my family for being there to support me in my research

efforts. They have always been there for me during times of emotional hardship. They

have also given me the confidence to succeed when the stress of research work got too

much for me to handle by myself. This support and motivation has allowed me to keep

working despite several setbacks.

Additionally, I thank the people with whom I have collaborated. In particular I thank Dr.

Hans Kleine Büning, who has been a collaborator on several papers dealing with Boolean

constraints. His experience with such problems has expanded my knowledge of these con-

straint systems and his insights and contributions to our research made many of the results

in this dissertation possible. I would also like to thank Dr. Chandrasekaran with whom

ACKNOWLEDGMENTS iv

we have collaborated several times. He has contributed greatly to my understanding of

horn constraints and this understanding has made many of the results in this dissertation

possible.

West Virginia University has provided me with the education and reseach opportunities

that made this work possible. In particular the Lane Department of Computer Science and

Electrical Engineering, along with its chair Dr. Brian Woerner, have given me the knowl-

edge and funding to be able to perform the research which resulted in this dissertation.

I also thank Dr. Elaine Eschen, Dr. Frances VanScoy, Dr. Hong-Jian Lai, and Dr. John

Goldwasser for agreeing to be on my dissertation committee.

This research was supported in part by the National Science Foundation through

Award CCF-1305054, by NASA WV EPSCoR Grant #NNX15AK74A, and by the AFOSR

through grant FA9550-19-1-017.

v

Contents

Acknowledgments iii

List of Figures ix

List of Tables x

I Preliminaries 1

1 Introduction 2
1.1 Proofs and Refutations . 2
1.2 Constraint Systems . 4
1.3 Road Map . 7

2 Constraint Systems 9
2.1 Boolean Constraint Systems . 10

2.1.1 2-CNF clausal formulas . 11
2.1.2 Horn clausal formulas . 11

2.2 Polyhedral Constraint Systems . 12
2.2.1 Difference constraint systems . 13
2.2.2 UTVPI constraint systems . 15
2.2.3 Horn constraint systems . 20
2.2.4 Quantified linear constraint systems 20

3 Refutations 27
3.1 Refutations in Boolean Formulas . 27
3.2 Refutations in Linear Programs . 28
3.3 Refutations in Integer Programs . 30
3.4 Types of Refutations . 31

3.4.1 Literal-once refutation . 31
3.4.2 Read-once refutation . 32
3.4.3 Non-literal read-once refutation 34

CONTENTS vi

3.4.4 Tree-like refutations . 35
3.4.5 Dag-like refutations . 36

3.5 Theorems of the Alternative . 37

4 Statement of Problems 41
4.1 Satisfiability Problems . 41

4.1.1 CSPs with side constraints . 42
4.2 Refutability Problems . 43

4.2.1 Refutability of CSPs with side constraints 45
4.3 Closure Problems . 46

5 Proof Systems and Refutation Systems 47
5.1 Proof Systems . 47
5.2 Refutation Systems . 49
5.3 Soundness and Completeness . 50

II Boolean Constraints 52

6 2-CNF Clausal Formulas 53
6.1 Motivation and Related Work . 53
6.2 Refutability . 55

6.2.1 The ROR problem for resolution 55
6.2.2 The ROR problem for NAE-resolution 57
6.2.3 The OLRR problem for NAE-resolution 58
6.2.4 The ROR problem for unit-resolution 64

7 3-CNF Clausal Formulas 68
7.1 Motivation and Related Work . 68
7.2 Refutability . 70

7.2.1 The ROR problem for NAE-resolution 70

8 Horn Clausal Formulas 72
8.1 Motivation and Related Work . 72
8.2 Refutability . 74

8.2.1 The OLRR problem for resolution 74
8.2.2 The ROR problem for unit-resolution 75
8.2.3 The copy complexity of unit-resolution 79

III Polyhedral Constraints: Linear Satisfiability 82

9 Difference Constraint Systems 83
9.1 Motivation and Related Work . 83

CONTENTS vii

9.2 Refutability . 88
9.2.1 The OLRR problem (ADD rule) 88
9.2.2 The WOLRR problem (ADD rule) 99

10 UTVPI Constraint Systems 107
10.1 Motivation and Related Work . 107
10.2 Refutability . 109

10.2.1 The OLTR problem (ADD rule) 109
10.2.2 The WOLTR problem (ADD rule) 119
10.2.3 The LOR problem (ADD rule) . 131
10.2.4 The ROR problem (ADD rule) . 140
10.2.5 The NLROR problem (ADD rule) 152

11 Horn Constraint Systems 160
11.1 Motivation and Related Work . 160
11.2 Refutability . 161

11.2.1 The ROR problem (ADD rule) . 161

IV Polyhedral Constraints: Integer Satisfiability 167

12 UTVPI Constraint Systems 168
12.1 Motivation and Related Work . 168
12.2 Satisfiability . 170

12.2.1 Scaling algorithm . 170
12.3 Refutability . 179

12.3.1 Theorem of the alternative . 179
12.4 Closure . 188

12.4.1 The closure problem (ADD and DIV rules) 188

13 Horn Constraint Systems 199
13.1 Motivation and Related Work . 199
13.2 Refutability . 200

13.2.1 The ROR problem (ADD and DIV rules) 200

V Quantified Linear Constraints 210

14 Quantified Linear Programming 211
14.1 Motivation and Related Work . 211
14.2 Satisfiability . 214

14.2.1 Semantics . 214
14.2.2 Complexity of UQLP and PQLP 215

CONTENTS viii

15 Quantified Linear Implications 220
15.1 Motivation and Related Work . 220
15.2 Satisfiability . 222

15.2.1 Semantics . 222
15.2.2 Complexity of QLI . 226
15.2.3 Complexity of UQLI andd PQLI 229
15.2.4 QLI and the polynomial hierarchy 230
15.2.5 Complexity with bounded alternation 238

VI Conclusion 242

16 Summary of Results 243
16.1 Results for Boolean CSPs . 243
16.2 Results for Linear Polyhedral CSPs . 244
16.3 Results for Integer Polyhedral CSPs . 245
16.4 Results of Quantified Linear Systems . 246

17 Future Research Directions 247
17.1 Research in Boolean CSPs . 247
17.2 Research in Polyhedral CSPs . 248

18 List of Publications 250
18.1 Papers in Refereed Journals . 250
18.2 Papers in Refereed Conference Proceedings 252
18.3 Papers in Refereed Workshops . 255
18.4 Refereed Abstracts . 256

A Important Related Problems 257
A.1 The Disjoint Paths Problem . 257
A.2 The Minimum Weight Perfect Matching Problem 259

Bibliography 262

ix

List of Figures

2.1 Directed graph corresponding to System (2.1). 14
2.2 Example UCS with corresponding constraint network (without vertex x0) . 17
2.3 Example UCS with corresponding constraint network. 18
2.4 P1 is included in P2 for s1 = r1 = 0 (Example 2.2.4). 26

3.1 Read-once refutation of Formula (3.8) . 33
3.2 Tree-like refutation of Formula (3.8) . 36
3.3 DAG-like refutation of Formula (3.8) . 37
3.4 Directed graph corresponding to DCS (3.10) 40

6.1 Example of path p . 62
6.2 Undirected graph corresponding to Formula (6.1) 65

9.1 Directed Graph . 91

10.1 Undirected graph corresponding to UCS (10.3). 133
10.2 Undirected graph corresponding to UCS (10.7) 140
10.3 Undirected graph corresponding to UCS (10.7) 142
10.4 Directed graph corresponding to UCS (10.12). 157

12.1 Potential graph corresponding to System (12.1) 171
12.2 Constraint network corresponding to System (12.2) (without vertex x0) . . . 185

15.1 QLI and the Polynomial Hierarchy . 238
15.2 Complexity of ∃∀ classes of QLI. Arrows denote inclusions. 240
15.3 Complexity of ∀∃ classes of QLI. Arrows denote inclusions. 241

A.1 Directed graph with vertex-disjoint paths. 257
A.2 Undirected graph . 259
A.3 A matching in the graph in Figure A.2 . 260
A.4 A prefect matching in the graph in Figure A.2 260
A.5 A minimum weight perfect matching in the graph in Figure A.2 261

x

List of Tables

2.1 Valid Edge Reductions . 19

9.1 Bellman-Ford Sweep . 91
9.2 Minimum cost k-walks from x1 for k = 0 . . .3. 92

1

Part I

Preliminaries

2

Chapter 1

Introduction

Constraint satisfiability problems (CSPs) are a class of problem concerned with deter-

mining if there exists an assignment which satisfies a given set of constraints. CSPs come

in many forms, as a result they find applications in a large and diverse number of prob-

lem domains. These include but are not limited to program verification [LM05], abstract

interpretation [Min06, CC77], real-time scheduling [GPS95a] and operations research.

The research documented in this dissertation is primarily concerned with the satisfia-

bility and refutability problems for CSPs. We focus on Boolean CSPs, in which variables

can be assigned either true or false, integer polyhedral CSPs, in which variables can be

assigned any integer value, and linear polyhedral CSPs, in which variables can be assigned

any real value.

1.1 Proofs and Refutations

This dissertation focuses on certificates. This refers to both certificates of feasibility

provided by proof systems and refutations provided by refutation systems. For the CSPs

examined, a satisfying assignment constitutes a certificate of feasibility since it is easy to

check if the assignment satisfies all of the constraints in the CSP.

CHAPTER 1. INTRODUCTION 3

Creating certifying algorithms is important because it validates the results of already

implemented algorithms. Even if an algorithm has already been proven to give the cor-

rect result, it is still possible for the algorithm to have been implemented incorrectly. An

infamous example of such an incorrect implementation is an error in the implementation

of a planarity testing algorithm in the LEDA software [MN99]. Consequently, there is

widespread interest in the design and development of certifying algorithms, i.e., algorithms

which provide certificates that validate the answer that is provided.

Just as certificates of feasibility are used to prove the satisfiability of a CSP, refutations

are used to prove unsatisfiability. The refutations examined in this dissertation are more

varied than the certificates of feasibility and depend on both the CSP and the refutation

system being used. In general we are interested in refutations which are both provably

short and easy to verify.

The problem of finding short refutations is one of the principal problems in proof com-

plexity [BP98]. Research proceeds along the lines of finding lower bounds on the lengths

of refutations for propositional tautologies (actually, contradictions) in proof systems of

increasing complexity, with a view towards separating the complexity class NP from the

class coNP [Urq95].

For each CSP examined in this dissertation we determine several properties of general

refutations and determine the complexity of finding restricted refutations. These restricted

forms of refutation include read-once refutations, in which each constraint can be used at

most once; literal-once refutations, in which for each literal at most one constraint contain-

ing that literal can be used; and unit refutations, in which each step of the refutation must

use a constraint containing exactly one literal.

Fot the problem of finding read-once refutations, [IM95] showed that that checking if

a boolean CSP has a read-once refutaion is NP-complete. This result was strenghtened

in [KZ02]. This paper showed that it is NP-complete to check if a Boolean CSP has a

read-once unit-resolution. In [Sze01], it was shown that the problem of finding literal-

once resolution refutations for CNF formulas is NP-complete. An even stronger result was

CHAPTER 1. INTRODUCTION 4

obtained in [ABMP98]. This paper showed that is is not possible to linearly approximate

the shortest resolution proof of a Horn formula unless P = NP. This result is interesting

because it is easy to see that every unsatisfiable Horn formula has a resolution refutation

that is at most quadratic in the number of variables.

We also look at CSPs where there are restrictions on solutions that are not expressed

within the set of constraints C. Such constraints are known as side constraints and CSPs

with these additional constraints are known as CSPs with Side Constraints (CSPSCs).

In some cases side constraints can be expressed using the language of the original CSP.

In such cases, the CSPSC is equivalent to a CSP where the side constraints are incorporated

into the set of regular constraints.

Once such CSPSC is a constrained form of satisfiability of Boolean Constraint Systems

known as Not-All-Equal satisfiability (NAE-satisfiability). In NAE-satisfiability, the side

constraint is that no clause can have all of its literals assigned to the same value. This means

that each clause φ has at least one literal set to true and at least one literal set to false.

This is equivalent to requiring that the negation of at least one literal in φ is true. This

requirement can be incorporated by adding a new clause φ ′ consisting of the negations of

each of the literals in φ . Doing this for every clause in a CNF formula Φ generates a new

formula that is satisfiable if and only if the original formula is NAE-satisfiable.

There are also forms of CSPSCs where the side constraints cannot be expressed using

the language of the original CSP.

1.2 Constraint Systems

When examining Boolean CSPs, we specifically look at systems of where each clause

has 2 literals (2-CNF) and systems where each clause has at most one positive literal and

any number of negative literals (Horn). The satisfiability problem for both of these systems

is in P [CLRS01]. This is in contrast to general Boolean CSPs for which the satisfiability

problem is NP-complete [CLRS01]. The lower complexity of these problems yields inter-

CHAPTER 1. INTRODUCTION 5

esting results when examining the complexity of restricted forms of refutations as we do in

this dissertation.

For Boolean CSPs, this dissertation is only concerned with resolution (See Section

3.1). However other, more powerful refutation systems exist. These include Frege Proofs,

Sequent Calculus, the Davis-Putnam Procedure, and Extended Frege Proofs [Sab]. Since

Boolean CSPs are NP-complete if any of these refutation systems is guaranteed to generate

polynomially sized refutations, then NP = coNP.

Resolution is one of the weakest proof systems. However, despite the weakness of

resolution as a proof system it is still difficult to show that refutation length has an expo-

nential lower bound. The first non-trivial lower bound on the length of resolution proofs is

in [Hak85]. This paper showes that any resolution based proof of the pigeonhole principle

requires exponentially many steps, in the size of the input formula.

When examining polyhedral CSPs, we look at systems where the coefficient is in the set

{0,1,−1}. We then place further restrictions on how many variables with each coefficient

can be in any one constraint. Specifically we look at systems where each constraints has

at most one variable with coefficient 1 and at most one variable has coefficient −1 (differ-

ence constraints), systems where at most two variables have non-zero coefficients (UTVPI

constraints), and systems where at most one variable has coefficient 1 but any number of

variables can have coefficient −1 (Horn constraints). The satisfiability problems for these

systems are in P for both the linear and integer cases.

The certificates of integer infeasibility that we generate for UCSs are concise. This

means that the size of the refutation is polynomial in the size of the input. However, cer-

tificates of integer infeasibility for polyhedral CSPs in general are not concise. This is

because integer programming is NP-hard. Thus, integer polyhedral CSPs cannot have

concise refutations unless NP = coNP.

In polyhedral CSPs, refutations are closely related to theorems of the alternative. Typ-

ically, theorems of the alternative connect pairs of linear constraint systems and have the

following form: Given two linear systems A and B, exactly one of them is feasible. System

CHAPTER 1. INTRODUCTION 6

A is called the primal system and System B is called the dual system. It is not hard to

see that theorems of the alternative provide certificates of infeasibility. One famous theo-

rem of the alternative is Farkas’ Lemma [Sch87]. Observe that theorems of the alternative

provide natural certificates of infeasibility. For instance, if we are required to prove that a

difference constraint system is infeasible, then we can produce a negative cost cycle in the

corresponding constraint network [CLRS01].

In particular, Farkas’ lemma provides Farkas variables for a linear polyhedral CSP.

These correspond to a refutation of that CSP. There are no obvious certificates for integer

infeasibility in linear programs. When the constraint matrix of an integer program satisfies

certain structural properties then linear feasibility implies integer feasibility. For a discus-

sion on these specialized integer programs, see [Kan83, VD68, Cha81]. In these cases,

certificates of linear infeasibility also serve as certificates of integer infeasibility. How-

ever, when linear feasibility does not imply integer feasibility, the problem of providing

certificates of integer infeasibility becomes non-trivial. A few interesting structural charac-

terizations are described in [Las04] and [Cha15].

These theorems of the alternative are closely realted to the concept of game theory.

[Voh06] describes multiple applications of Farkas’ lemma. These applications include

game theory. [Dan51] describes the relationship between linear programming and two-

person zero-sum games. [LR57] and other papers show that the concept of strong duality

in linear programming is a corollary of a theorem in game theory known as the Minimax

Theorem. [Adl13] discusses this relationship in detail.

A lot of the work in finding short refutations focuses on discrete domains. However,

[Sub09] considers the problem of finding optimal length refutations for systems of dif-

ference constraints. In that paper it was shown that short refutations exist for difference

constraints and also that the optimal length refutations for systems of difference constraints

can be determined in polynomial time. The algorithm in [Sub09] is based runs in time

O(n3 · logn) on a DCS with n variables and utilizes dynamic programming. In [SWG13], a

time of O(m ·n · k), where m is the number of constraints and k is the length of the shortest

CHAPTER 1. INTRODUCTION 7

refutation was obtained utilizing a different dynamic programming technique. It is worth

noting that in DCSs, linear and integer feasibility coincide and therefore, the departure is

not strict. Furthermore, as pointed out in [Sub09], every minimal refutation (i.e., a refu-

tation without redundant constraints) is necessarily read-once and literal-once, since every

minimal refutation corresponds to a simple negative cost cycle in the corresponding con-

straint network [CLRS01]. In this paper though, we consider the problem of read-once

refutations in UCSs. Unlike DCSs, linear feasibility does not imply integer feasibility in

UCSs [SW17b]. UTVPI constraints occur in a number of problem domains. These do-

mains include program verification [LM05], abstract interpretation [Min06, CC77], real-

time scheduling [GPS95a] and operations research [HN94].

1.3 Road Map

The rest of Part I introduces the various constraint systems, refutations, and problems

covered in this dissertation. In Chapter 2 we define the constraint systems being examined.

Chapter 3 defines the types of refutations considered. In Chapter 4 we define the problems

covered in this dissertation. Chapter 5 examines general properties of proof systems and

refutation systems.

Part II covers our results for Boolean formulas. Chapter 6 covers our results for 2-CNF

formulas. In Chapter 7 we give our results for 3-CNF formulas. Chapter 8 covers our

results for Horn formulas.

Part III covers our results for linear polyhedral constraints. Chapter 9 covers our results

for difference constraints. In Chapter 10 we describe or results for UTVPI constraints.

Chapter 11 covers our results for Horn constraints.

Part IV covers our results for integer polyhedral constraints. In Chapter 12 we describe

or results for UTVPI constraints. Chapter 13 covers our results for Horn constraints.

Part V covers our results for quantified systems of linear constraints. In Chapter 14

we describe or results for quantified linear programs. Chapter 15 covers our results for

CHAPTER 1. INTRODUCTION 8

quantified linear implications.

Part VI summarizes our results and discusses avenues for future research. Chapter 16

contains a summary of our results. In Chapter 17 we mention possible ways the research in

this dissertation can be expanded upon in the future. Chapter 18 has a list of the publications

containing the work described in this dissertation.

9

Chapter 2

Constraint Systems

In this chapter we will describe the constraint systems studied within this dissertation.

We explore several types of Constraint Satisfaction Problems.

Definition 2.0.1. A Constraint Satisfaction Problem (CSP) is defined by the triplet

〈X,D,C〉, where:

1. X = {x1,x2, . . . ,xn} denotes a set of program variables.

2. D = {D1,D2, . . .Dn} denotes the set of their respective domains.

3. C = {C1,C2, . . . ,Cm} denotes a set of constraints over the program variables.

We examine three types of CSP. These are Boolean constraint systems, linear polyhe-

dral systems, and integer polyhedral systems.

Example 1:

• Boolean Systems: Find x ∈ {true, false}3 such that (x1∨ x3)∧ (¬x1∨ x2∨¬x3).

• Linear Polyhedral Systems: Find x ∈ R3 such that x1− x2 ≤ 3 and x2− x3 ≤−2.

• Integer Polyhedral Systems: Find x ∈ Z2 such that x1 + x2 ≤ 1 and −x1− x2 ≤ 0.

CHAPTER 2. CONSTRAINT SYSTEMS 10

For CSPs we are interested in two general types of problems satisfiability and refutabil-

ity.

Definition 2.0.2. A CSP is satisfiable if there exists an assignment x∗ such that

1. For each i = 1 . . .n, x∗i ∈ Di.

2. Assigning each xi = x∗i for i = 1 . . .n satisfies each constraint C j for j = 1 . . .m.

A satisfying assignment to a CSP is known as a certificate of feasibility.

Example 2: The Boolean formula (x1∨¬x2)∧ (¬x2∨ x3) is satisfiable. This can bee

shown by assigning x1 = true, x2 = false, and x3 = true.

Definition 2.0.3. A CSP is refutable if it is possible to derive a contradiction from the

constraints in C.

2.1 Boolean Constraint Systems

We now explicitly define boolean constraint systems and introduce the specific boolean

constraint systems examined in this dissertation.

First we need to define several terms used when discussing Boolean constraint systems.

Definition 2.1.1. A literal is a variable x or its complement ¬x. x is referred to as a positive

and ¬x is referred to as a negative literal.

Definition 2.1.2. A CNF clause is a disjunction of literals. The empty clause, which is

always false, is denoted as t.

Example 3: (x1∨¬x2∨ x3) is a CNF clause. This clause can be satisfied by setting x1

or x3 to true or by setting x2 to false.

We can now formally define Boolean constraint systems.

Definition 2.1.3. A Boolean constraint system is a CSP such that:

CHAPTER 2. CONSTRAINT SYSTEMS 11

1. For each variable xi, the corresponding domain Di = {true, false}.

2. Each constraint C j is a CNF clause.

Such a constraint system is also called a Boolean formula.

Example 4: The Boolean formula (x1 ∨ x2)∧ (¬x2 ∨ x3) is satisfiable. This can bee

shown by assigning x1 = true, x2 = true, and x3 = true. Note that each conjunction is

satisfied. Thus, this assignment constitutes a certificate of feasibility.

Instead of focusing on general Boolean formulas, we restrict out examination to

Boolean formulas in which the clauses have specific structure.

2.1.1 2-CNF clausal formulas

The first type of Boolean formulas we examine are 2-CNF formulas.

Definition 2.1.4. A 2-CNF clause is a CNF clause with at most 2 literals.

Example 5: The clause (x1∨¬x2) is a 2-CNF clause. However, (x1∨ x2∨¬x3) is not

since it has 3 literals.

Definition 2.1.5. A 2-CNF formula is a Boolean formula in which each clause is a 2-CNF

clause.

2.1.2 Horn clausal formulas

The second type of Boolean formulas we examine are Horn formulas.

Definition 2.1.6. A Horn clause is a CNF clause which contains at most one positive

literal.

Example 6: The clause (¬x1∨ x2∨¬x3∨¬x4) is a Horn clause. However, (x1∨ x2∨

¬x3) is not since it has 2 positive literals.

Definition 2.1.7. A Horn formula is a Boolean formula in which each clause is a Horn

clause.

CHAPTER 2. CONSTRAINT SYSTEMS 12

2.2 Polyhedral Constraint Systems

We now explicitly define polyhedral constraint systems and introduce the specific poly-

hedral constraint systems examined in this dissertation.

Definition 2.2.1. A polyhedral constraint system is a CSP in which each constraint in C

is an inequality of the form a j ·x≤ b j.

Note that C can be represented in matrix form as A ·x≤ b.

Depending on the domain assigned to each variable, a polyhedral constraint system can

be either a linear polyhedral system or an integer polyhedral system.

Definition 2.2.2. A linear polyhedral constraint system is a polyhedral constraint system

in which each variable xi, the corresponding domain Di = R.

Such a constraint system is known as a linear program (LP).

Example 7: Consider the LP

x1 + x2 ≤ 1 x1− x2 ≤ 0 x2− x1 ≤ 0

is feasible. This can bee shown by assigning x1 =
1
2 and x2 =

1
2 . Note that each constraint

is satisfied. Thus, this assignment constitutes a certificate of feasibility.

Definition 2.2.3. An integer polyhedral constraint system is a polyhedral constraint system

in which each variable xi, the corresponding domain Di = Z.

Such a constraint system is known as an integer program (IP).

Example 8: Consider the IP

x1 + x2 ≤ 2 x1− x2 ≤ 0 x2− x1 ≤ 0

is feasible. This can bee shown by assigning x1 = 1 and x2 = 1. Note that each constraint

is satisfied. Thus, this assignment constitutes a certificate of feasibility.

CHAPTER 2. CONSTRAINT SYSTEMS 13

Instead of focusing on general polyhedral constraint systems, we restrict out examina-

tion to polyhedral constraint systems in which the constraints have specific structure.

2.2.1 Difference constraint systems

The first type of polyhedral constraint systems examined are difference constraint sys-

tems. Difference constraint systems consist of absolute constraints and difference con-

straints.

Definition 2.2.4. A constraint of the form ai · xi ≤ bi is called an absolute constraint if

ai ∈ {1,−1}

Definition 2.2.5. A constraint of the form ai · xi + a j · x j ≤ bi j is called a difference con-

straint, if ai,a j ∈ {1,−1} and ai =−a j.

Example 9: The following are difference constraints:

• x1− x2 ≤ 3.

• x2− x4 ≤ 5.

Definition 2.2.6. A conjunction of difference constraints and absolute constraints is called

a Difference Constraint System (DCS).

A DCS can be represented using a directed graph.

From a DCS D, we can construct a directed graph G = 〈V,E,c〉 as follows:

1. For each variable xi add the vertex xi to V.

2. Add the vertex x0 to V.

3. For each constraint of the form xi− x j ≤ bi j, add the edge x j
bi j→ xi to E.

4. For each constraint of the form xi ≤ bi, add the edge x0
bi→ xi to E.

5. For each constraint of the form −xi ≤ bi, add the edge xi
bi→ x0 to E.

CHAPTER 2. CONSTRAINT SYSTEMS 14

Example 10: Consider the DCS represented by System (2.1).

x1− x2 ≤ 3 x1− x3 ≤ 5 x2− x3 ≤ 0

x3− x1 ≤ −1 −x1 ≤ 1 x3 ≤ −7
(2.1)

The corresponding directed graph is shown in Figure 2.1.

x1 x2

x3x0

3

5

0

−1

1

−7

Figure 2.1: Directed graph corresponding to System (2.1).

This representation is important because the infeasibility of a DCS can be determined

by identifying if the corresponding graph contains negative cycles. Every negative cycle in

the graph corresponds to a subset of constraints in the DCS that can be summed together to

form a contradiction of the form 0≤ b, where b < 0.

Example 11: The graph in Figure 2.1 has the negative cycle x0
−7→ x3

5→ x1
1→ x0.

This corresponds to the constraints x3 ≤ −7, x1− x3 ≤ 5, and −x1 ≤ 1. Summing these

constraints results in the constraint 0≤−1. This constraint is clearly unsatisfiable, thus the

DCS is infeasible.

CHAPTER 2. CONSTRAINT SYSTEMS 15

2.2.2 UTVPI constraint systems

The second type of polyhedral constraint systems examined are UTVPI constraint sys-

tems.

Definition 2.2.7. A constraint of the form ai · xi +a j · x j ≤ bi j where ai,a j ∈ {−1,0,1}, is

called a unit two variable per inequality (UTVPI) constraint.

Note that difference constraints and absolute constraints are also UTVPI constraints.

Example 12: The following are UTVPI constraints:

• x1− x2 ≤ 3.

• x2 + x4 ≤ 5.

• −x3− x4 ≤ 2.

Definition 2.2.8. A conjunction of UTVPI constraints is called a UTVPI Constraint Sys-

tem (UCS).

A UCS can have a linear solution but no integer solutions.

Example 13: Consider the UCS: x1− x2 ≤ 0, x1 + x2 ≤ 1, −x1− x2 ≤−1, x2− x1 ≤ 0.

The only solution to this system is x1 =
1
2 , x2 =

1
2 .

Just like DCSs, UCSs also have a graphical representation. However, this representation

is not a simple directed graph. Thus, the resultant structure is referred to as a constraint

network.

Given a UCS U, we construct the corresponding constraint network G = 〈V,E,c〉 as

follows:

1. For each variable xi, we add the vertex xi to V .

2. For each constraint in A ·x≤ c, we create an edge, as per the following rules:

(a) A constraint of the form xi− x j ≤ ci j, is represented by an undirected “gray”

edge (x j
ci j

xi). This edge can also be referred to as (xi
ci j

x j).

CHAPTER 2. CONSTRAINT SYSTEMS 16

(b) A constraint of the form −xi−x j ≤ ci j, is represented by an undirected “black”

edge (xi
ci j

x j).

(c) A constraint of the form xi + x j ≤ ci j, is represented by an undirected “white”

edge (xi
ci j

x j).

Definition 2.2.9. A k-path in G is a sequence of (k + 1) vertices, x1, x2, . . .xk+1, and k

edges e1, e2, . . .ek, such that ei is the edge corresponding to one of the constraints between

xi and xi+1 in the UCS U.

Definition 2.2.10. A k-path is considered valid if it has the following property:

For i = 2,3, . . .k, the coefficients of xi in the constraints corresponding to the edges ei and

ei−1 have opposite signs.

Example 14: The path defined by the sequence of vertices x1, x2, x3, x4 and the se-

quence of edges (x1
c1,2

x2), (x2
c2,3

x3), (x3
c3,4

x4) is (x1
c1,2

x2
c2,3

x3
c3,4

x4). However this

path is not valid because the coefficients of x2 in the constraints corresponding to the edges

(x1
c1,2

x2) and (x2
c2,3

x3) have the same sign; indeed, both of these constraints are of the

form −xi− x j ≤ ci j.

Definition 2.2.11. The weight of a path is the sum of the weights of the edges along that

path.

Example 15: Consider the path (x1
3

x2
1

x3
4

x4). The weight of this path is 8.

Definition 2.2.12. A closed walk is a valid k-path for which x1 = xk+1.

In this dissertation, we refer to closed walks as cycles. Note that a cycle, as defined

above can consist of edges and vertices that occur more than once. Thus, the notion of a

cycle in this paper differs from the notion of a cycle in a constraint network corresponding

to a difference constraint system.

The preceding concepts are illustrated in Example 2.2.2.

CHAPTER 2. CONSTRAINT SYSTEMS 17

x1− x2 ≤ −3
−x1 + x4 ≤ 1
−x1− x4 ≤ 1

x1− x5 ≤ 1
−x1 + x5 ≤ 0

x2 + x3 ≤ 1
x2− x3 ≤ 1

x1 x2 x3

x4

x5

−3

1

1

1

1

0

1

Figure 2.2: Example UCS with corresponding constraint network (without vertex x0)

Example 16: Consider the UCS in Figure 2.2 and the corresponding constraint net-

work.

Then, we have the following:

1. The path defined by the sequence of vertices x4, x1, x5 and the sequence of edges

(x4
1

x1), (x1
0

x5) is (x4
−1

x1
0

x5). However, this path is not valid because the co-

efficients of x1 in the constraints corresponding to the edges (x4
−1

x1) and (x1
−1

x5)

have the same sign.

2. The 3-path, (x1
−3

x2
1

x3
1

x2), has weight −1.

3. The 8-path

(x1
−3

x2
1

x3
1

x2
−3

x1
0

x5
1

x1
1

x4
1

x1)

forms a cycle even though the vertices x1 and x2 and the edge (x2
−3

x1) are used

multiple times.

At this juncture, it is important to point out that all three types of edges, viz., “white”,

“black” and “gray” are directionless, i.e., it may be necessary to traverse them in either

direction.

The construction of the constraint network G is completed as follows:

CHAPTER 2. CONSTRAINT SYSTEMS 18

1. We create a new vertex x0 and add it to V . The variable corresponding to this vertex

will be assigned 0 in our feasibility algorithm.

2. We add the edges (x0
(2·n+1)·C

xi), (x0
(2·n+1)·C

xi), (x0
(2·n+1)·C

xi), and (xi
(2·n+1)·C

x0)

to E, where C is the largest absolute weight of any edge in the network.

The addition of vertex x0 also permits the addition of absolute constraints:

1. A constraint of the form xi ≤ ci is replaced by the pair of constraints xi + x0 ≤ ci and

xi− x0 ≤ ci. The edges corresponding to the new constraints are added to E.

2. A constraint of the form: −xi ≤ ci is replaced by the pair of following constraints:

−xi− x0 ≤ ci and x0− xi ≤ ci. The edges corresponding to the new constraints are

added to E.

Example 17: Consider the UCS in Figure 2.3 and the corresponding constraint net-

work.

x1 + x3 ≤ 0
x2− x3 ≤ −7
x4− x2 ≤ 1
−x1− x4 ≤ 5

x1 ≤ 6 (2.2)

x1

x2 x3

x4

x0

63
63

6
6

63
63

63
63

63
63

63
63

63
63

63
63

0

5

1

−7

Figure 2.3: Example UCS with corresponding constraint network.

The weight of 63 on some of the edges from x0 to the other vertices is obtained as (2 ·

4+1) · |−7|. Also note that the edges (x0 x1) and (x0 x1) have weight 6, corresponding

to the constraint x1 ≤ 6.

CHAPTER 2. CONSTRAINT SYSTEMS 19

We also utilize the edge reductions from [SW17b].

Definition 2.2.13. An edge reduction is an operation which determines a single edge equiv-

alent to a two-edge path and represents the addition of the two UTVPI constraints which

correspond to the edges in question. If this addition results in a UTVPI constraint, the

reduction is said to be valid.

Table 2.1 lists all the valid edge reductions:

Constraints Path Reduction Result

x j− xi ≤ b ji, xk− x j ≤ bk j (xi
b ji

x j
bk j

xk) (xi
b ji+bk j

xk) xk− xi ≤ b ji +bk j

x j− xi ≤ b ji, −xk− x j ≤ bk j (xi
b ji

x j
bk j

xk) (xi
b ji+bk j

xk) −xk− xi ≤ b ji +bk j

x j + xi ≤ b ji, xk− x j ≤ bk j (xi
b ji

x j
bk j

xk) (xi
b ji+bk j

xk) xk + xi ≤ b ji +bk j

−x j− xi ≤ b ji, xk + x j ≤ bk j (xi
b ji

x j
bk j

xk) (xi
b ji+bk j

xk) xk− xi ≤ b ji +bk j

xi− x j ≤ bi j, x j− xk ≤ b jk (xi
bi j

x j
b jk

xk) (xi
bi j+b jk

xk) xi− xk ≤ bi j +b jk

−xi− x j ≤ bi j, x j− xk ≤ b jk (xi
bi j

x j
b jk

xk) (xi
bi j+b jk

xk) −xi− xk ≤ bi j +b jk

xi− x j ≤ bi j, x j + xk ≤ b jk (xi
bi j

x j
b jk

xk) (xi
bi j+b jk

xk) xi + xk ≤ bi j +b jk

xi + x j ≤ bi j, −x j− xk ≤ b jk (xi
bi j

x j
b jk

xk) (xi
bi j+b jk

xk) xi− xk ≤ bi j +b jk

Table 2.1: Valid Edge Reductions

We use definition 2.2.13 to define paths in the constraint network.

Definition 2.2.14. We say that a path has type t, if it can be reduced to a single edge of

type t, where t ∈ { , , , } by a series of valid edge reductions.

We now define the concept of a shortest path of each type.

Definition 2.2.15. A shortest path of type t, for t ∈ { , , , }, between xi and x j is a

path of type t between xi and x j with minimum weight.

In particular we are interested in paths from a vertex to itself that can be reduced to

a single gray edge of negative weight. Such paths are referred to as negative weight gray

cycles.

From [SW17b], we have the following result relating negative weight gray cycles in a

constraint network and the feasibility of the corresponding UCS.

CHAPTER 2. CONSTRAINT SYSTEMS 20

Theorem 2.2.1. A UCS U is linearly infeasible if and only if the corresponding constraint

network has a negative weight gray cycle.

Example 18: Consider the UCS and corresponding constraint network from Figure 2.3.

The constraint network contains the negative weight gray cycle (x1
0

x3
−7

x2
1

x4
5

x1).

This cycle corresponds to the constraints x1 + x3 ≤ 0, x2− x3 ≤−7, −x2 + x4 ≤ 1, and

−x1− x4 ≤ 5. Summing these constraints results in the constraint 0≤−1. This constraint

is clearly unsatisfiable, thus the UCS is infeasible.

2.2.3 Horn constraint systems

The third type of polyhedral constraint systems examined are Horn constraint systems.

Horn constraint systems consist of Horn constraints.

Definition 2.2.16. A constraint of the form ∑
n
i=1 ai · xi ≥ b j is called a Horn constraint, if

ai ∈ {1,0,−1} for i = 1 . . .n, and at most one ai = 1.

Example 19: The following are Horn constraints:

• x1− x2− x3− x4 ≥ 3.

• −x1 + x2− x5 ≥ 5.

Definition 2.2.17. A conjunction of Horn constraints is called a Horn Constraint System

(HCS).

2.2.4 Quantified linear constraint systems

We now extend linear systems to allow for quantified variables. We specifically look at

Quantified Linear Programs (QLPs) and Quantified Linear Implications (QLIs)

Quantified Linear Programming extends Linear Programming by allowing the variables

to be universally or existentially quantified over an interval. More specifically, we are

CHAPTER 2. CONSTRAINT SYSTEMS 21

interested in deciding the following query:

G : ∃x1 ∈ [a1,b1] ∀y1 ∈ [l1,u1] . . .∃xn ∈ [an,bn] ∀yn ∈ [ln,un]

A · [x y]T ≤ b, x≥ 0 (2.3)

where

• A is an m×2 ·n matrix called the constraint matrix,

• x is a n−vector, representing the control variables (these are existentially quantified),

• y is a n−vector, representing the variables that can assume values within a pre-

specified range; i.e., component yi has a lower bound of li and an upper bound of

ui (these are universally quantified),

• b is an m−vector,

• {ai,bi}, i = 1,2, . . . ,n are rational numbers bounding variable xi and {li,ui} are ra-

tional numbers bounding yi.

The pair (A,b) is called the Constraint System. Without loss of generality, we assume

that the quantifiers are strictly alternating, since we can always add dummy variables (and

constraints, if necessary) without affecting the correctness or complexity of the problem

[Pap94]. Let us say that an existentially quantified dummy variable xp is added to the

quantifier string. We can add the constraint xp = 0 to the constraint system. Note that

the value of xp is fixed and cannot depend on the values of other yi variables; further the

variable xp is not part of any constraint involving the original variables of the system.

The string ∃x1 ∈ [a1,b1] ∀y1 ∈ [l1,u1] ∃x2 ∈ [a2,b2] ∀y2 ∈ [l2,u2] . . .∃xn ∈ [an,bn] ∀yn ∈

[ln,un] is called the quantifier string of the given QLP and is denoted by Q(x,y). The length

of the quantifier string, is denoted by |Q(x,y)| and it is equal to the dimension of A. Note

that the range constraints on the existentially quantified variables can be included in the

CHAPTER 2. CONSTRAINT SYSTEMS 22

constraint matrix A (xi ∈ [ai,bi] can be written as ai ≤ xi, xi ≤ bi) and thus the generic QLP

can be represented as:

G :∃x1 ∀y1 ∈ [l1,u1] ∃x2 ∀y2 ∈ [l2,u2] . . .∃xn ∀yn ∈ [ln,un]

A · [x y]T ≤ b (2.4)

However, the range constraints on the yi variables cannot be moved into the constraint

system.

It follows that the QLP problem can be thought of as checking whether a polyhedron de-

scribed by a system of linear inequalities (A · [x y]T ≤ b) is non-empty vis-a-vis the spec-

ified quantifier string (say Q(x,y)). The pair < Q(x,y),(A, b) > is called a Parametric

Polytope. In other words, Quantified Linear Programming is concerned with checking the

non-emptiness of Parametric Polytopes, just as traditional linear programming is concerned

with checking the non-emptiness of simple polytopes. For the rest of this paper, we shall

assume that the generic QLP has the form described by System (2.4), so that the analysis is

simplified. Accordingly, we observe that in a QLP, the dimension of the constraint matrix

A and hence the length of the quantifier string is always even.

An example of a quantified linear program (QLP) is the following:

∃x1 ∈ [0,1] ∀y1 ∈ [1,4] ∃x2 ∈ [3,9] x1 + y1 + x2 ≥ 4

3x1−5y1 +7x2 ≤−5.

As with linear programs, the conjunction of inequalities is frequently written in matrix-

vector form. Note that the feasibility version of a linear program is a QLP with all quanti-

fiers existential.

Definition 2.2.18. A QLP is said to be feasible if it is true as a first-order sentence over the

real numbers, using the standard semantics for bounded quantifiers.

CHAPTER 2. CONSTRAINT SYSTEMS 23

When we are interested in computational complexity, we restrict QLPs to be defined

over the rational numbers.

There is an equivalent formula game definition of truth for QLPs. Player I (the ∃-player)

chooses the values for the existentially quantified variables and Player II (the ∀-player)

chooses the values for the universally quantified variables. The players must choose values

consistent with the bounds on the variables. The ∃-player wins precisely when the values

chosen constitute a feasible point for the matrix of the QLP. See [Sub07] for details.

In fact, we can place a further restriction on the values chosen be the ∀-player.

Lemma 2.2.1. [Sub07] Given a QLP φ , define the modified formula game of φ to be the

standard formula game with the added restriction that the ∀-player is restricted to choosing

from the endpoints of the intervals over which the universally quantified variables can

range. For example, if the universally quantified variable ei is quantified over the interval

[2,3], then the ∀-player may only choose 2 or 3 for the value of ei. Then the ∀-player has

a winning strategy for the modified formula game if and only if the ∀-player has a winning

strategy for the standard formula game.

Oftentimes we are interested in QLPs with a particular quantifier string.

Definition 2.2.19. Given a string of quantifiers S , a QLP whose quantifiers, when grouped

into blocks, are consistent with S is known as an S -QLP.

For example, an ordinary linear program (with arbitrarily many variables) is an ∃-QLP.

Note that ∀∃-QLPs are known as F-QLPs in [Sub07].

Definition 2.2.20. A generalized quantified linear program (GQLP) is a QLP where uni-

versal variables are bounded not by constants but by systems of linear constraints. i.e. ∀ui

such that ui ≤ a1v1+b1u1+ · · ·+ai−1vi−1+bi−1ui−1 where v1 through vi−1 and u1 though

ui−1 appear before ui in the quantifier string. If ui is bounded above by multiple constraints

it is bounded above by their minimum, similarly if it is bounded bellow by multiple con-

straints then it is bounded by their maximum. For example ∀v′1 such that v′1 ≤ 1, v′1 ≥ 0,

v′1 ≤ 2v1, and v′1 ≥ 2v1−1 can be expressed as ∀v1 ∈ [max(0,2v1−1),min(1,2v1)].

CHAPTER 2. CONSTRAINT SYSTEMS 24

An example of a generalized quantified linear program (GQLP) is the following:

∃x1 ∈ [0,1] ∀y1 ∈ [x1−1,3x1] ∃x2 ∈ [3,9] x1 + y1 + x2 ≥ 4

3x1−5y1 +7x2 ≤−5.

Note that Quantified Linear Programming is a generalization of the feasibility problem

of linear programming; we have not mentioned an objective function to optimize. Multi-

level games are a generalization of Linear Programming which do incorporate objective

functions. Briefly, a multi-level game involves multiple players choosing values for real-

valued variables. There is a common set of inequalities in these variables; each player must

ensure that her choices do not violate these inequalities. Moreover, each player has her own

objective function, which she seeks to optimize. It can be shown that games with (p+ 1)

players can capture the Σp and Πp levels of PH [Jer85].

We also examine the problem of implication in quantified linear programs.

Consider now two linear systems P1 : A · x ≤ b and P2 : C · x ≤ d. We say that P1 is

included in P2 if every solution of P1 is also a solution of P2. This holds if and only if the

logic formula ∀x [Ax ≤ b→ C · x ≤ d] is true in the domain of the reals. We extend the

notion of inclusion to arbitrary quantifiers by introducing Quantified Linear Implications

of two linear systems:

∃x1 ∀y1 . . .∃xn ∀yn [A ·x+N ·y≤ b→ C ·x+M ·y≤ d] (2.5)

where x1 . . .xn and y1 . . .yn are partitions of x and y respectively, and where x1 and/or yn

may be empty. We say that a QLI holds if it is true as a first-order formula over the domain

of the reals. The decision problem for a QLI consists of checking whether it holds or not.

Let Q(x,y) denote the quantifier string, namely ∃x1 ∀y1 . . .∃xn ∀yn in System (2.5).

We introduce a nomenclature to represent the different classes of QLIs that we will be

examining. Consider a triple 〈A,Q,R〉. Let A denote the number of quantifier alternations

CHAPTER 2. CONSTRAINT SYSTEMS 25

in the quantifier string Q(x,y) and Q the first quantifier of Q(x,y). Also, let R be an

(A+1)-character string, specifying for each quantified set of variables in Q(x,y) whether

they appear on the Left, on the Right, or on Both sides of the implication. For instance,

〈1,∃,LB〉 indicates a problem described by:

∃x ∀y [A ·x+N ·y≤ b→M ·y≤ d]

Example 20: Consider the following QLI of the class 〈2,∀,LRB〉:

∀s1 ∃r1 ∀x1 ∀x2

x1 ≥ 0−3r1

x1 ≤ 2−5r1

x2 ≥ 0+2r1

x2 ≤ 1+3r1


→



x1 + x2 ≥−1+3s1

x1 + x2 ≤ 1+4s1

x1− x2 ≥−1+5s1

x1−3x2 ≤ 3+7s1

Let P1 denote the left-hand side and P2 the right-hand side linear system of the implication.

Figure 2.4 presents P1 and P2 for specific values of s1 and r1, i.e., s1 = r1 = 0. Note that

for these values P1 is included in P2 (i.e., if both s1 and r1 were existentially quantified).

However, in order for the above QLI to hold, for all values of s1 there must exist a value of

r1 such that every solution x1,x2 of P1 is also a solution of P2.

CHAPTER 2. CONSTRAINT SYSTEMS 26

x1

x2

P1 for s1 = r1 = 0

P2 for s1 = 0

Figure 2.4: P1 is included in P2 for s1 = r1 = 0 (Example 2.2.4).

27

Chapter 3

Refutations

In this chapter, we discuss refutation systems and focus on the specific refutation sys-

tems examined in this dissertation.

3.1 Refutations in Boolean Formulas

First we examine refutations for Boolean formulas.

We focus solely on resolution refutations. A resolution refutation consists of a series of

resolution steps terminating in the empty clause t.

Definition 3.1.1. A resolution step derives a resolvent clause from two parent clauses. A

resolution step with parent clauses (α ∨x) and (¬x∨β) with resolvent (α ∨β), is denoted

as

(α ∨ x),(¬x∨β) | 1
Res (α ∨β).

The variable x is called the matching or resolution variable.

Example 21: Consider the Boolean clauses (x1∨¬x2∨ x3) and (¬x1∨ x3∨¬x4). Ap-

CHAPTER 3. REFUTATIONS 28

plying a resolution step with these clauses as parents results in:

(x1∨¬x2∨ x3),(¬x1∨ x3∨¬x4) | 1
Res (¬x2∨ x3∨¬x4).

Note that despite x3 appearing in both parent clauses, it occurs only once in the resol-

vent.

Definition 3.1.2. A resolution refutation of a Boolean formula Φ is a sequence of resolu-

tion steps such that

1. Each parent clause is either in Φ or is the resolvent of a previous resolution step.

2. The final resolvent is the empty clause, t.

A Boolean formula Φ is infeasible if and only if it has a resolution refutation. Such a

refutation is denoted as Φ | Res t.

3.2 Refutations in Linear Programs

Next we examine refutations in linear programs.

In linear programs, we use the following rule, which plays the role that resolution does

in Boolean formulas:

ADD :
∑

n
i=1 ai · xi ≤ b1 ∑

n
i=1 a′i · xi ≤ b2

∑
n
i=1(ai +a′i) · xi ≤ b1 +b2

(3.1)

We refer to Rule (3.1) as the ADD rule.

Example 22: Applying the ADD rule to the constraints x1−x2+x3≤ 4 and−x1+x3−

x4 ≤ −3 results in the constraint 2 · x3− x2− x4 ≤ −1. Note that, unlike in resolution, the

extra copy of x3 is not ignored.

CHAPTER 3. REFUTATIONS 29

It is easy to see that Rule (3.1) is sound in that any assignment satisfying the hypothe-

ses must satisfy the consequent. Furthermore, the rule is complete in that if the original

system is linear infeasible, then repeated application of Rule (3.1) will result in a contra-

diction of the form: 0 ≤ b, b < 0. The completeness of the ADD rule was established by

Farkas [Far02], in a lemma that is famously known as Farkas’ Lemma for systems of linear

inequalities [Sch87].

Farkas’ lemma along with the fact that linear programs must have basic feasible so-

lutions establishes that the linear programming problem is in the complexity class NP ∩

coNP. Farkas’ lemma is one of several lemmata that consider pairs of linear systems in

which exactly one element of the pair is feasible. These lemmas are collectively referred to

as “Theorems of the Alternative” [NW99]. The y variables are called the Farkas’ variables

corresponding to the system A ·x≤ b and they serve as a witness that certifies the linear

infeasibility of this system. In general, the Farkas variables can assume any real value for

a given constraint system.

Definition 3.2.1. A linear refutation is a sequence of applications of the ADD rule that

results in a contradiction of the form 0≤ b, b < 0.

In case of UTVPI constraints, Rule (3.1) can be restricted to the following rule:

ai · xi +a j · x j ≤ bi j −a j · x j +ak · xk ≤ b jk

ai · xi +ak · xk ≤ bi j +b jk
(3.2)

Rule (3.2) is known as the transitive inference rule. Although it is a restricted version

of the addition rule, it is both sound and complete for linear feasibility in UTPVI constraint

systems [LM05].

CHAPTER 3. REFUTATIONS 30

3.3 Refutations in Integer Programs

Next we examine refutations in integer programs.

When studying integer feasibility, we typically use an additional rule. This is referred

to as the DIV rule and is described as follows

DIV :
∑

n
i=1 ai j · xi ≤ b j k ∈ Z+ : ai j

k ∈ Z, i = 1 . . .n

∑
n
i=1

ai j
k · xi ≤

⌊
b j
k

⌋ (3.3)

Rule (3.3) corresponds to dividing a constraint by a common divisor of the left-hand co-

efficients and then rounding the right-hand side. Since each ai j
k is an integer this inference

preserves integer solutions but does necessarily preserve linear solutions. However, for sys-

tems of Horn constraints the DIV rule preserves linear feasibility, since in Horn polyhedra,

linear feasibility implies integer feasibility [CS13].

Example 23: Applying the DIV rule to the constraint 3 ·x1+6 ·x2≤ 4 with k = 3 results

in the constraint x1 +2 · x2 ≤ 1.

Definition 3.3.1. An integer refutation is a sequence of applications of the ADD and DIV

rules that results in a contradiction of the form 0≤ b, b < 0.

In case of UTVPI constraints, Rule (3.3) can be restricted to the following rule:

ai · xi +a j · x j ≤ bi j −a j · x j +ai · xi ≤ b ji

ai · xi ≤ b
bi j+b ji

2 c
(3.4)

Rule (3.4) is known as the tightening inference rule. Although it is a restricted version

of the division rule, it is both sound and complete for integer feasibility in UTPVI constraint

systems [LM05].

CHAPTER 3. REFUTATIONS 31

3.4 Types of Refutations

In this section we cover the types of refutations examined in this dissertation. These

refutation types restrict how many times a clause or constraint can be used by a resolution

step or inference rule. Note that these types of refutation will be defined in terms of clauses

and resolution, however they also apply to constraints and inference rules.

3.4.1 Literal-once refutation

The first, and most restrictive, type of refutation studied is literal-once refutation.

Note that, in polyhedral CSPs, a literal consists of a variable and the sign of its coeffi-

cient. Thus, +xi and −xi are distinct literals.

Definition 3.4.1. A refutation is said to be literal-once, if each literal is used at most once

in the derivation of a contradiction.

Example 24: Consider the following UCS:

l1 : x1− x2 ≤ −3 l2 : x2− x1 ≤ 1 (3.5)

Observe that UCS (3.5) has a refutation obtained by summing constraints l1 and l2. It

is easy to see that this refutation is literal once.

Example 25: Consider the following UCS:

l1 : x1− x2 ≤ −4 l2 : x1 + x2 ≤ 1

l1 : −x1− x3 ≤ 1 l2 : x3− x1 ≤ 1
(3.6)

Observe that UCS (3.6) has a refutation obtained by summing constraints l1, l2, l3, and l4.

It is easy to see that this refutation is read-once. However, the literal x1 (and −x1) is used

twice in the refutation. Thus it is not a literal once refutation.

We are interested in the problem of determining if a UCS has a literal-once refutation.

CHAPTER 3. REFUTATIONS 32

We can model the LOR problem for linear polyhedral CSPs as an integer program:

Let L+
i be the set of constraints where the variable xi has a positive coefficient, and let

L−i be the set of constraints where xi has a negative coefficient. Note that for a refutation

to be literal once, at most one constraint from each set can be used. Using Farkas’ Lemma,

the LOR problem can be modeled as the following integer program:

∃y y ·A = 0 (3.7)

y ·b ≤ −1

∑
l j∈L+

i

y j ≤ 1 i = 1 . . .n

∑
l j∈L−i

y j ≤ 1 i = 1 . . .n

y ∈ {0,1}m

3.4.2 Read-once refutation

The next type of refutation studied is Read-once refutation.

Definition 3.4.2. A Read-Once resolution refutation is a refutation in which each con-

straint, C, can be used in only one inference This applies to clauses present in the original

formula and those derived as a result of previous resolution steps.

Observe that every literal-once refutation is guaranteed to be read-once, but a read-

once refutation need not be a literal-once refutation.

More formally, a derivation C | C is read-once, if for all inferences C1 ∧C2 | 1 C,

we delete the constraints C1 and C2 from, and add the resolvent π to, the current set of

Constraints. In other words, if C is the current set of constraints, we obtain C = (C \

{C1,C2})∪{C}.

Example 26: We now apply read-once resolution refutation to generate a refutation of

CHAPTER 3. REFUTATIONS 33

the 2SAT instance specified by Formula (3.8).

(x1,x2) (¬x1,x3) (¬x1,x4)

(¬x2,x3) (¬x2,x4) (¬x3,x5) (3.8)

(¬x3,x6) (¬x4,¬x5) (¬x4,¬x6)

The application of this read-once resolution refutation to Formula (3.8) can be seen in

Figure 3.1.

(¬x3,x5)

(¬x4,¬x5)

(¬x1,x3)

(¬x1,x4)

(¬x3,x6)

(¬x4,¬x6)

(¬x2,x3)

(¬x2,x4)

(x1,x2)

(¬x3,¬x4)

(¬x3,¬x4)

(¬x1,¬x4)

(¬x2,¬x4)

(¬x1)

(¬x2)

(x1)

/0

Figure 3.1: Read-once refutation of Formula (3.8)

Note that the clause (¬x3,¬x4) is used twice. However, this is still a read-once refu-

tation since each time the clause (¬x3,¬x4) is derived different clauses from the original

formula are used.

It is important to note that Read-Once resolution is an incomplete refutation procedure.

CHAPTER 3. REFUTATIONS 34

Example 27: Consider the following 2CNF formula:

(x1,x2) (x3,x4) (¬x1,¬x3)

(¬x1,¬x4) (¬x2,¬x3) (¬x2,¬x4)

We now show that this formula does not have a read-once refutation.

To derive (x1) we need to derive (¬x2). Similarly, to derive (x2) we need to derive (x1).

However, the derivations of both (¬x1) and (¬x2) require the use of the clause (x3,x4).

To derive (x3) we need to derive (¬x4). Similarly, to derive (x4) we need to derive

(¬x3). However, the derivations of both (¬x3) and (¬x4) require the use of the clause

(x1,x2).

We now define the concept of copy complexity.

Definition 3.4.3. An unsatisfiable CSP 〈X,D,C〉 has copy complexity at most k, if there

exists a multi-set constraints, C′ such that:

1. Every constraint in C appears at most k times in C′.

2. Every constraint in C′ appears in C.

3. 〈X,D,C′〉 has a read-once unit resolution refutation.

3.4.3 Non-literal read-once refutation

We now define another variant of read-once refutation called non-literal read-once refu-

tation. Here we are looking for read-once refutations which do not contain a literal-once

refutation.

Definition 3.4.4. A refutation is said to be non-literal read-once, if it is a read-once refu-

tation and does not contain a literal-once refutation.

Example 28: Recall that UCS (3.6) has a read-once refutation obtained by summing

all four constraints. Constraint l1 is the only constraint with a negative coefficient. Thus, it

CHAPTER 3. REFUTATIONS 35

must be used in any refutation. To cancel the literal −x2, we must also use the constraint

l2. However, we have now used the literal x1 twice. Thus, the read-once refutation contains

no literal once refutation.

We are interested in the problem of determining if a UCS has a non-literal read-once

refutation.

3.4.4 Tree-like refutations

Next, we look at Tree-like refutations.

Definition 3.4.5. A Tree-Like resolution refutation is a refutation in which each derived

constraint can be used at most once.

Note that in tree-like refutations, the input constraints can be used multiple times and

thus any derived constraint can be derived multiple times as long as it is re-derived each

time it is used.

Definition 3.4.6. A derivation C | C is tree-like, if for all inferences C1,C2 | 1 C, we have

to delete the constraints C1,C2 from the current set of constraints only if they are the results

of previous inferences. Afterwards we add the resolvent C to the current set of constraints.

Example 29: The application of tree-like resolution refutation to Formula (3.8) can be

seen in Figure 3.2. Note that the clauses (¬x3,x5) and (¬x4,¬x5) are reused.

CHAPTER 3. REFUTATIONS 36

(¬x3,x5)

(¬x4,¬x5)

(¬x1,x3)

(¬x1,x4)

(¬x3,x5)

(¬x4,¬x5)

(¬x2,x3)

(¬x2,x4)

(x1,x2)

(¬x3,¬x4)

(¬x3,¬x4)

(¬x1,¬x4)

(¬x2,¬x4)

(¬x1)

(¬x2)

(x1)

/0

Figure 3.2: Tree-like refutation of Formula (3.8)

Tree-like refutation is a complete refutation procedure [BP96].

3.4.5 Dag-like refutations

Finally, we examine Dag-like refutations.

Definition 3.4.7. A Dag-Like resolution refutation is a refutation in which each constraint

can be used multiple times.

It follows that Dag-like refutations procedures are complete as well. Furthermore Dag-

like refutations p-simulate tree-like refutations [CR73].

Definition 3.4.8. Let C be a set of constraints and let C be a constraint. A derivation

C | C is Dag-like, if for all inferences C1,C2 | 1 C, we add the resolvent C to the current

set of constraints. In other words, if C′ is the current set of clauses, we obtain C′ :=

C′∪{C}.

CHAPTER 3. REFUTATIONS 37

Example 30: The application of dag-like resolution refutation to Formula (3.8) can be

seen in Figure 3.3.

(¬x1,x4)

(¬x1,x3)

(¬x3,x5)

(¬x4,¬x5)

(¬x2,x3)

(¬x2,x4)

(x1,x2)

(¬x3,¬x4)

(¬x1,¬x4)

(¬x2,¬x4)

(¬x1)

(¬x2)

(x1)

/0

Figure 3.3: DAG-like refutation of Formula (3.8)

3.5 Theorems of the Alternative

In this section we describe another way to establish the infeasibility of constraint sys-

tem. This method links the infeasibility of one constraint system to the feasibility of a

second.

Typically, theorems of the alternative connect pairs of linear constraint systems and

have the following form: Given two linear systems A and B, exactly one of them is feasible.

System A is called the primal system and System B is called the dual system. It is not hard

to see that theorems of the alternative provide certificates of infeasibility.

One famous theorem of the alternative is Farkas’ Lemma [Sch87].

Lemma 3.5.1. Let A denote an m×n matrix and let c denote an m-vector.

CHAPTER 3. REFUTATIONS 38

Then, either

I : ∃x ∈ Rn A ·x≤ c (3.9)

or (mutually exclusively)

II : ∃y ∈ Rm
+ yT ·A = 0,

yT · c < 0.

It is worth noting that there are several variants of Farkas’ lemma in the literature. A

formal proof of the above lemma along with a geometric interpretation can be found in

[Sch87]. Farkas’ lemma can be specialized to difference constraints through a constraint

network representation, as described in [CLRS01]. Essentially, the variables become nodes

and the constraints become directed edges in this setting. A consequence of Farkas’ Lemma

is that the difference constraint system is feasible if and only if the corresponding constraint

network does not have a negative cost cycle.

Farkas’ Lemma is not the only theorem of the alternative. There is Gordan’s Theorem

[Man69]:

Theorem 3.5.1. Let A denote an m×n matrix.

Then, either

I : ∃x ∈ Rn
+ A ·x = 0, x 6= 0

or (mutually exclusively)

II : ∃y ∈ Rm yT ·A > 0

There is also Stiemke’s Theorem [Man69]:

Theorem 3.5.2. Let A denote an m×n matrix.

CHAPTER 3. REFUTATIONS 39

Then, either

I : ∃x ∈ Rn A ·x = 0, x > 0

or (mutually exclusively)

II : ∃y ∈ Rm yT ·A≥ 0, yT ·A 6= 0

A graphical theorem of the alternative, on the other hand, relates infeasibility in a lin-

ear system to the existence of particular paths in an appropriately constructed constraint

network. Such theorems of the alternative are known to exist for selected classes of linear

programs. For instance, it is well-known that a system of difference constraints is infeasible

if and only if the corresponding constraint network contains a negative cost cycle [Sch87].

Example 31: Consider the DCS represented by System (3.10).

x1− x2 ≤ 3 x1− x3 ≤ 5 x2− x3 ≤ 0

x3− x1 ≤ −1 −x1 ≤ 1 x3 ≤ −7
(3.10)

The corresponding directed graph is shown in Figure 3.4.

CHAPTER 3. REFUTATIONS 40

x1 x2

x3x0

3

5

0

−1

1

−7

Figure 3.4: Directed graph corresponding to DCS (3.10)

The graph in Figure 3.4 has the negative cycle x0
−7→ x3

5→ x1
1→ x0. This corresponds

to the constraints x3 ≤−7, x1− x3 ≤ 5, and −x1 ≤ 1. Summing these constraints results in

the constraint 0≤−1. This constraint is clearly unsatisfiable, thus the DCS is infeasible.

Graphical theorems of the alternative for linear feasibility UTVPI constraints were de-

scribed in [LM05, SW17b]. In this dissertation, we provide a graphical theorem of the

alternative for integer feasibility in UTVPI constraints.

41

Chapter 4

Statement of Problems

In this chapter, we define the problems examined in this dissertation. These problems

are concerned with satisfiability, refutability, and closure problems for the CSPs described

in Chapter 2.

4.1 Satisfiability Problems

The first type of problems we look at are satisfiability problems. Recall that a constraint

system S is satisfiable if there exists an assignment to the variables in S that satisfies all

domains and all constraints in S.

However, it is not enough to simply say that a given constraint system is satisfiable.

We also need to provide proof that it is satisfiable. This proof is known as a certificate of

feasibility. In the case of a constraint system S, the certificate of feasibility is the assignment

x∗. Thus we can define the satisfiability problem as follows:

The Satisfiability problem: Given a constraint system S, find an assignment x∗ such

that x∗ satisfies S.

We can restrict the satisfiability problem by looking for assignments that have certain

properties or that satisfy the constraints in a certain way. In particular we are interested in

CHAPTER 4. STATEMENT OF PROBLEMS 42

assignments which NAE-satisfy the constraint system.

4.1.1 CSPs with side constraints

We now look at CSPs where there are restrictions on solutions that are not expressed

within the set of constraints C. Such constraints are known as side constraints and CSPs

with these additional constraints are known as CSPs with Side Constraints (CSPSCs).

In some cases side constraints can be expressed using the language of the original CSP.

In such cases, the CSPSC is equivalent to a CSP where the side constraints are incorporated

into the set of regular constraints.

Once such CSPSC is a constrained form of satisfiability of Boolean Constraint Systems

known as Not-All-Equal satisfiability (NAE-satisfiability). In NAE-satisfiability, the side

constraint is that no clause can have all of its literals assigned to the same value. This means

that each clause φ has at least one literal set to true and at least one literal set to false.

This is equivalent to requiring that the negation of at least one literal in φ is true. This

requirement can be incorporated by adding a new clause φ ′ consisting of the negations of

each of the literals in φ . Doing this for every clause in a CNF formula Φ generates a new

formula that is satisfiable if and only if the original formula is NAE-satisfiable.

There are also forms of CSPSCs where the side constraints cannot be expressed using

the language of the original CSP. Consider the case of a linear program L in which no two

variables can be assigned the same value. This can be accomplished by adding the side

constraint xi 6= x j for each pair of variables in L. However theses side constraints cannot be

expressed using the language of linear programming. Thus, there is not necessarily an LP

L′ equivalent to the CSPSC L.

In terms of CSPSCs, this dissertation focuses on the NAE-satisfiability problem which

we now formally define.

Definition 4.1.1. Given a CSP S, an assignment x∗ NAE-satisfies S if

1. x∗ satisfies S.

CHAPTER 4. STATEMENT OF PROBLEMS 43

2. For every constraint C j, there exist literals li and lk in C j such that, under assignment

x∗, li 6= lk.

Example 32: Consider the following Boolean formula (x1 ∨ x2)∧ (¬x2 ∨ x3). The

assignment x1,x2,x3 = true satisfies the formula. However, this assignment does not NAE-

satisfy the formula since both clauses have all of their literals assigned true.

The assignment x1 = true, x2 = false, x3 = true does NAE-satisfy the formula since

each clause has one literal set to true and one literal set to false.

Just like for regular satisfiability, the assignment to the variables serves as a certificate

of NAE-feasibility.Thus we can define the NAE-satisfiability problem as follows:

The NAE-satisfiability problem: Given a constraint system S, find an assignment x∗

such that x∗ NAE-satisfies S.

4.2 Refutability Problems

The second type of problems we look at are refutability problems.

As with the satisfiability problem, it is insufficient to simply state that a constraint

system S has a refutation. We also need to provide a refutation that proves that the constraint

system is infeasible. This refutation can be read-once tree-like or dag-like. This leads to

the following problems:

1. The Read-once Refutation (ROR) problem: Given a CSP S, find a read-once refu-

tation for S.

2. The Tree-like Refutation (TLR) problem: Given a CSP S, find a tree-like refutation

for S.

3. The Dag-like Refutation (DLR) problem: Given a CSP S, find a dag-like refutation

for S.

CHAPTER 4. STATEMENT OF PROBLEMS 44

For any refutation, we can define the length of that refutation.

Definition 4.2.1. The length of a refutation R of a CSP is the number of inferences made

in R.

Thus, for each type of refutation, we can look for the shortest refutation of that type.

This results in the following problems:

1. The Optimal Length Read-once Refutation (OLRR) problem: Given a CSP S, find

a read-once refutation for S of shortest length.

2. The Optimal Length Tree-like Refutation (OLTR) problem: Given a CSP S, find

a tree-like refutation for S of shortest length.

3. The Optimal Length Dag-like Refutation (OLDR) problem: Given a CSP S, find

a dag-like refutation for S of shortest length.

We can examine each of these refutation types for each constraint class being consid-

ered. However, results already exist for many of these combinations and others remain

open. In this dissertation, we examine the following instances of these problems:

1. The ROR problem for resolution refutations in 2-CNF formulas.

2. The ROR problem for unit-resolution refutations in Horn formulas.

3. The OLROR problem for resolution refutations in Horn formulas.

4. The ROR problem for refutations using the ADD rule in UCSs.

5. The OTLR problem for refutations using the ADD rule in UCSs.

6. the OLRR/OTLR/ODLR problem for refutations using the ADD rule in UCSs.

CHAPTER 4. STATEMENT OF PROBLEMS 45

4.2.1 Refutability of CSPs with side constraints

The addition of side constraints to a CSP changes the nature of the inference rules used

to prove infeasibility.

Consider the Boolean CSPSC of NAE-satisfiability. Since NAE-satisfying assignments

to a CSP S are also satisfying assignments to S, any refutation which prove that S is un-

satisfiable also proves that S is NAE-unsatisfiable. However, since S can be satisfiable

but not NAE-satisfiable it is possible for S to be NAE-unsatisfiable but have no refuta-

tion. Thus we need to include additional rules in the refutation process to be able to prove

NAE-unsatisfiability.

We are interested in the NAE-satisfiability and NAE-unsatisfiablity as it pertains to

Boolean formulas. Note that if a Boolean clause φ is NAE-satisfiable then so is the clause

constructed by negating all the literals in φ .

Example 33: Consider the Boolean clause (x1∨¬x2∨ x3). The assignment x1,x2,x3 =

true NAE-satisfies this clause. This assignment also NAE-satisfies the clause (¬x1∨ x2∨

¬x3).

This leads to the following additional resolution step used in finding NAE-refutations:

Definition 4.2.2. A NAE-resolution step derives a resolvent clause from one parent

clauses. A resolution step with parent clauses (L1∨ . . .∨Lt) and resolvent (¬L1∨ . . .∨¬Lt),

is denoted as

(L1∨ . . .∨Lt) | Nae-Res (¬L1∨ . . .∨¬Lt).

A refutation that uses both the resolution and NAE-resolution steps is called a NAE-

resolution refutation. The same refutability problems that apply to resolution refutations

also apply to NAE-resolution refutations.

In this dissertation, we focus on the CSPSC of NAE-satisfiability. In particular, we

examine the following problems:

1. The ROR problem for NAE-refutations in Boolean formulas.

CHAPTER 4. STATEMENT OF PROBLEMS 46

2. The ROR problem for NAE-refutations in 2-CNF formulas.

4.3 Closure Problems

In this section we described the problem of finding the closure of a constraint system.

The closure of a constraint system is defined in terms of the inference rules being used.

Thus for boolean formulas we can find the closure of a Boolean formula Φ with respect to

resolution. Meanwhile, for HCSs we can find the closure with respect to the ADD rule.

Before defining closure, we need to define what it means for a CSP to be closed with

respect to a set of inference rules.

Definition 4.3.1. A CSP S is closed with respect to a set of inference rules I if and only if

it satisfies the following condition. If a constraint Ci is derivable from the constraints in S

by any of the inference rules in I, then Ci is a constraint in S.

Thus, a CSP S is closed with respect to a set of inference rule if no additional constraints

can be derived from S using those inference rules.

We can now define the closure of a CSP.

Definition 4.3.2. The closure of a CSP S with respect to a set of inference rules I is the

CSP S∗ with the fewest constraint such that

1. S∗ is closed with respect to I.

2. S∗ ⊇ S

Alternatively, we can define the closure of a CSP as follows:

Definition 4.3.3. A CSP S∗ is the closure of a CSP S with respect to a set of inference rules

I if and only if it satisfies the following condition. If a constraint Ci is derivable from the

constraints in S by any of the inference rules in I, then Ci is a constraint in S∗.

In this dissertation, we are interested in the closure of UCSs with respect to the transitive

and tightening inference rules. This is known as the tightened transitive closure.

47

Chapter 5

Proof Systems and Refutation Systems

In this chapter we discuss proof systems and refutation systems.

For a given CSP P, let U denote the set of instances of that CSP. We can divide U into:

1. The set of satisfiable instances Us.

2. The set of unsatisfiable instances Uu.

We can now define proof systems and refutation systems for P in terms of the sets Us

and Uu.

5.1 Proof Systems

In this section, we discuss the concept of proof systems.

Proof systems are formally defined as follows in [Sab].

Definition 5.1.1. A proof system for a language L is a polynomial time algorithm V such

that for all inputs x, x ∈ L if and only if there exists a string Π such that V accepts the input

(x,Π).

In this definition, Π is referred to as the proof, and V is referred to as the verifier. The

verifier runs in time polynomial in the size of both the input x and the proof Π. Thus, the

CHAPTER 5. PROOF SYSTEMS AND REFUTATION SYSTEMS 48

complexity of a proof system depends not on the speed of the verifier but on the size of the

proof.

Note that this definition assumes that there is a proof for every input belonging to the

language and that there is no proof for inputs outside the language. Thus, under this defi-

nition, a proof system must be both sound and complete.

Definition 5.1.2. A proof system for a language L is sound if for all inputs x, x ∈ L only if

there exists a string Π such that V accepts the input (x,Π).

This means that a sound proof system will never generate certificates for infeasible

instances of a problem. Note that a proof system does not need to be sound.

Let P be a problem with a coRP algorithm. A coRP algorithm for P is a randomized

algorithm that:

1. Runs in polynomial time.

2. Always accepts satisfiable instances Is ∈Us.

3. Accepts unsatisfiable instances Iu ∈Uu with a probability of at most 50%.

Since a coRP algorithm has a chance of accepting unsatisfiable instances, it is an unsound

proof system. We now define the concept of completeness.

Definition 5.1.3. A proof system for a language L is complete if for all inputs x, x ∈ L if

there exists a string Π such that V accepts the input (x,Π).

This means that a complete proof system will always generate certificates for feasible

instances of a problem. Note that a proof system does not need to be complete.

Let P be a problem with an RP algorithm. An RP algorithm for P is a randomized

algorithm that:

1. Runs in polynomial time.

2. Always accepts satisfiable instances Is ∈Us with a probability of at least 50%.

CHAPTER 5. PROOF SYSTEMS AND REFUTATION SYSTEMS 49

3. Never accepts unsatisfiable instances Iu ∈Uu.

Since an RP algorithm has a chance of rejecting satisfiable instances, it is an incomplete

proof system.

We can adapt the defintion of a proof system to specifiacally reffer to CSPs. What we

refer to a a proof system in this dissertation follows the definition given in [Sab] with the

added assumption that the language L is the set of satisfiable instances Us. This gives us

the following definition:

Definition 5.1.4. A proof system for a CSP P is a polynomial time algorithm V such that

for all instances I, I ∈Us if and only if there exists a string Π such that V accepts the input

(I,Π).

We refer to Φ as a certificate of feasibility. For CSPs, a certificate of feasibility is an

assignment to the variables that satisfies all of the constraints. Thus, a proof system for a

CSP simply verifies that each constraint in C is satisfied by the assignment.

For a CSP, every instance Is ∈Us has a satisfying assignment, and no instance Iu ∈Uu

has a satisfying assignment. Thus, this constitutes a sound and complete proof system.

5.2 Refutation Systems

In this section, we discuss the concept of refutation systems.

For CSPs, we defined proof systems in terms of the set of satisfiable instances Us. A

refutation system is the same concept, but applied to the set of unsatisfiable instances Uu.

This gives us the following definition:

Definition 5.2.1. A refutation system for a CSP P is a polynomial time algorithm V such

that for all instances I, I ∈Uu only if there exists a string Ψ such that V accepts the input

(I,Ψ).

Note that, unlike our definition of a proof system, our definition of a refutation system

does not assume completeness. In this dissertation we explicitly deal with incomplete

CHAPTER 5. PROOF SYSTEMS AND REFUTATION SYSTEMS 50

refutation systems such as read-once refutation. Thus, we have loosened the definition of a

refutation system to account for this possibility.

For CSPs, the form of a refutation depends on the CSP and on the refutation system

used.

For Boolean CSPs, this dissertation is only concerned with resolution (See Section

3.1). However other, more powerful refutation systems exist. These include Frege Proofs,

Sequent Calculus, the Davis-Putnam Procedure, and Extended Frege Proofs [Sab]. Since

Boolean CSPs are NP-complete if any of these refutation systems is guaranteed to generate

polynomially sized refutations, then NP = coNP.

For Linear Polyhedral CSPs, this dissertation is focused on refutations using the ADD

inference rule (See Section 3.2). Likewise for Integer Polyhedral CSPs, we focus on refu-

tations using the ADD and DIV inference rules (See Section 3.3). However, any theorem

of the alternative corresponds to a refutation system.

5.3 Soundness and Completeness

In this section we look deeper into the soundness and completeness of proof systems

and refutation systems.

Let us consider a combination proof/refutation system S for a problem P. This means

that given an instance I of P, S either generates a certificate of feasibility or a refutation.

We can use S to examine the relationship between soundness and completeness of proof

systems and refutation systems.

Theorem 5.3.1. S is sound as a proof system for P if and only if it is complete as a refutation

system for P

Proof. First assume that S is a sound proof system for the problem P. Let Iu ∈ Uu be

an infeasible instance of P. Since S is sound as a proof system, it will not generate a

certificate of feasibility for Iu. Thus, S must generate a refutation for Iu. This is true for

CHAPTER 5. PROOF SYSTEMS AND REFUTATION SYSTEMS 51

every infeasible instance, thus S is a complete refutation system.

Now assume that S is a complete refutation system for the problem P. Let Iu ∈Uu be an

infeasible instance of P. Since S is complete as a proof system, it will generate a refutation

for Iu. Thus, S will not generate a certificate of feasibility for Iu. This is true for every

infeasible instance, thus S is a sound proof system.

Theorem 5.3.2. S is complete as a proof system for P if and only if it is sound as a refutation

system for P

Proof. First assume that S is a complete proof system for the problem P. Let Is ∈Us be a

feasible instance of P. Since S is complete as a proof system, it will generate a certificate of

feasibility for Is. Thus, S will not generate a refutation for Is. This is true for every feasible

instance, thus S is a sound refutation system.

Now assume that S is a sound refutation system for the problem P. Let Is ∈Us be a

feasible instance of P. Since S is sound as a proof system, it will not generate a refutation

for Is. Thus, S must generate a certificate of feasibility for Is. This is true for every feasible

instance, thus S is a complete proof system.

52

Part II

Boolean Constraints

53

Chapter 6

2-CNF Clausal Formulas

6.1 Motivation and Related Work

In this section, we briefly enumerate the motivation for our work and some related

approaches in the literature.

1. Monotone NAE-SAT is equivalent to Hyper-graph bicolorability (set splitting).

[PSSW14, GJ79, RS06]

2. Monotone NAE 2-SAT is equivalent to graph bicolorability (bipartite). The shortest

(weighted) ROR NAE-resolution refutation corresponds to the shortest proof that a

graph is not bipartite (the shortest (weighted) cycle with an odd number of edges)

[SG11].

3. Let F be a CNF formula. The dual formula D(F) is constructed by replacing all

disjunctions in f with conjunctions, and all conjunctions with disjunctions. The

resultant formula is clearly in disjunctive normal form.

We have that F is NAE unsatisfiable if and only if F |= D(F).

Let Fc be the CNF formula obtained by complementing each literal in F . We see that

D(F)≈ ¬Fc.

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 54

We have that F is NAE unsatisfiable if and only if F ∧Fc is unsatisfiable. This can

happen if and only if F |= ¬Fc which is equivalent to saying that F |= D(F).

Thus, the question of whether a CNF formula F entails its dual formula D(F) is

equivalent to the problem of NAE unsatisfiablity.

Resolution is a refutation procedure that was introduced in [Rob65] to establish the un-

satisfiability of clausal boolean formulas. Resolution is a sound and complete procedure,

although it is not efficient in general [Hak85]. Resolution is one among many proof systems

(refutation systems) that have been discussed in the literature [Urq95]; indeed it is among

the weaker proof systems [BP97] in that there exist propositional formulas for which short

proofs exist (in powerful proof systems) but resolution proofs of unsatisfiability are ex-

ponentially long. Resolution remains an attractive option for studying the complexity of

constraint classes on account of its simplicity and wide applicability; it is important to note

that resolution is the backbone of a range of automated theorem provers [BP96].

Resolution refutation techniques often arise in proof complexity. Research in proof

complexity is primarily concerned with the establishment of non-trivial lower bounds on

the proof lengths of propositional tautologies (alternatively refutation lengths of propo-

sitional contradictions). An essential aspect of establishing a lower bound is the proof

system used to establish the bound. For instance, super-polynomial bounds for tautologies

have been established for weak proof systems such as resolution [Hak85]. Establishing that

there exist short refutations for all contradictions in a given proof system causes the classes

NP and coNP to coincide [CR73].

There are a number of different types of resolution refutation that have been discussed in

the literature [RV01]. The most important types of resolution refutation are tree-like, dag-

like and read-once. Each type of resolution is characterized by a restriction on input clause

combination. One of the simplest types of resolution is Read-once Resolution (ROR). In an

ROR refutation, each input clause and each derived clause may be used at most once. There

are several reasons to prefer a ROR proof over a generalized resolution proof, not the least

of which is that ROR proofs must necessarily be of length polynomial (actually, linear) in

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 55

the size of the input. It follows that ROR cannot be a complete proof system unless NP

= coNP. That does not preclude the possibility that we could check in polynomial time

whether or not a given CNF formula has a ROR refutation. Iwama [IM95] showed that

even in case of 3CNF formulas, the problem of checking ROR existence (henceforth, ROR

decidability) is NP-complete.

It is well-known that 2CNF satisfiability is decidable in polynomial time. There are

several algorithms for 2CNF satisfiability, most of which convert the clausal formula into a

directed graph and then exploit the connection between the existence of labeled paths in the

digraph and the satisfiability of the input formula. A natural progression of this research is

to establish the ROR complexity of 2CNF formulas.

6.2 Refutability

6.2.1 The ROR problem for resolution

In this section, we show that the ROR problem for 2CNF formulas is NP-complete.

We will be reducing from the edge-disjoint cycle problem for directed graphs.

Definition 6.2.1. Given a directed graph G and two distinct vertexes s and t, the edge-

disjoint cycle problem (C-DEP) consists of finding a pair of edge-disjoint paths in G, one

from s to t and the other from t to s.

The problem is NP-complete. For two pairs of vertexes, the edge-disjoint path problem

is NP-complete [EIS76]. We can reduce the edge-disjoint path problem to C-DEP the same

way we reduced 2-DPP to C-DPP.

Theorem 6.2.1. The ROR problem for 2CNF formulas is NP-complete.

Proof. ROR is in NP for arbitrary formulas in CNF [IM95]. Thus, we only need to show

NP-hardness. That will be done by a reduction from C-DEP.

From G = (V,E), s, and t we construct a formula Φ in 2CNF as follows:

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 56

1. For each vertex vi ∈V −{s, t}, create the variable xi.

2. Create the variable x0.

3. Let vi,v j ∈V −{s, t}.

(a) If (s,vi) ∈ E add the clause (x0→ xi) to Φ.

(b) If (t,vi) ∈ E add the clause (¬x0→ xi) to Φ.

(c) If (vi,s) ∈ E add the clause (xi→ x0) to Φ.

(d) If (vi, t) ∈ E add the clause (xi→¬x0) to Φ.

(e) If (vi,v j) ∈ E add the clause (xi→ x j) to Φ.

Assume that G has two edge-disjoint paths,

w1 = s,vi1, . . . ,vi j , t and w2 = t,vi j+1, . . . ,vik ,s.

Thus, there exist 2CNF formulas Φ1 and Φ2 such that:

Φ1 = {(x0→ xi1),(xi1 → xi2), . . . ,(xi j →¬x0)}

Φ2 = {(¬x0→ xi j+1),(xi j+1 → xi j+2), . . . ,(xik → x0)}.

Obviously, Φ1 | RO-Res (¬x0) and Φ2 | RO-Res (x0). Note that x0 has not been used as a

matching variable. Since w1 and w2 are edge-disjoint, we have that Φ1 ∩Φ2 = /0. Thus,

Φ1∪Φ2 | RO-Res t. This means that Φ⊇Φ1∪Φ2 is in ROR.

Now assume that Φ is in ROR.

Let Φ′ ⊆ Φ be minimally ROR. We have that Φ′ contains clauses with x0 and ¬x0. Other-

wise, the formula would be satisfiable by setting each xi to true.

We proceed by induction on the number of clauses in Φ′.

The shortest formula is Φ′ = (x0 → ¬x0)∧ (¬x0 → x0). This Φ′ is generated when

(s, t),(t,s) ∈ E. These edges form the desired edge-disjoint paths.

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 57

Let (L→ K)∧ (K→ R) | 1
Res (L∨R) be a resolution step such that (L→ K) ∈ Φ′ and

(K→ R) ∈Φ′. Note that (L→ R) 6∈Φ′. Otherwise, Φ′ would not be minimally ROR.

In a read-once refutation, we remove the parent clauses from Φ and add the resolvent

(L→ R). This new formula has a read-once resolution refutation and can be considered as

obtained by a reduced graph without the edges L→ K,K → R but with the edge L→ R.

By the induction hypothesis, this new graph contains the desired edge-disjoint cycle. If we

replace the edge L→ R in this cycle with L→ K and K→ R, then we construct the desired

edge-disjoint cycle in G.

6.2.2 The ROR problem for NAE-resolution

In this section, we show that read-once NAE-resolution refutation is both sound and

complete for formulas in 2CNF. We also show that the problem of finding the shortest

read-once NAE-resolution refutation is in P.

Theorem 6.2.2. Let φ be a formula in 2CNF. We have φ 6∈ NAE-SAT if and only if φ ∈

ROR-NAE, and a refutation can be found in quadratic time.

Proof. Let φ be a 2CNF formula that is not in NAE-SAT. If φ contains a unit clause, say

(x), then {(x),(¬x)} ⊆ φ ∪φ c. We have that (x),(¬x) | 1
Res t. This is clearly a ROR-NAE-

SAT refutation. Thus, we assume that φ contains no unit clause.

From φ ∪φ c, we create an implication graph, G, as follows:

1. For every variable xi, we create the verticies xi and ¬xi.

2. For every clause (L∨K), we create the edges ¬L→ K and ¬K→ L.

G contains a strongly connected component, say G1, with a pair of complementary literals

if and only if φ ∪φ c is unsatisfiable. Moreover, the computation of the strongly connected

components and finding a complementary pair of literals can be performed in linear time.

A formula φ is not in NAE-SAT if and only if φ ∪φ c is unsatisfiable. Thus, there exists a

strongly connected component C in G that contains complementary literals.

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 58

Let ¬L0 → L1 → L2 . . .Lm → L0 be a shortest path in C between the complementary

pair of literals L0 and ¬L0. For i 6= j we have Li 6= L j and Li 6= ¬L j, otherwise there would

be a shorter path in C.

Thus, there is a read-once resolution derivation

(L0∨L1),(¬L1∨L2), . . . ,(¬Lm∨L0) | RO-Res L0.

Since we are dealing with φ ∪φ c, there are clauses (¬L0∨¬L1),(L1∨¬L2), . . . , (Lm∨

¬L0) in φ ∪φ c. These clauses form a read-once resolution of ¬L0. Moreover, the two sets

of clauses have no clause in common, because the literals Li for i 6= 0 are pairwise disjoint.

Finally, we can resolve L0 and ¬L0. Thus, we have a read-once resolution refutation for

φ ∪φ c. This corresponds to a ROR-NAE-SAT refutation of φ .

Since the computation of the strongly connected components includes deciding whether

a complementary pair of literals exists costs linear time and finding a complementary pair

with a shortest path costs for each variable again takes linear time, to construct a read-once

resolution proof requires no more than quadratic time.

6.2.3 The OLRR problem for NAE-resolution

Earlier in Section 2.1.1, we described an implication graph for checking the satisfia-

bility of 2CNF formulas. We can construct a similar implication graph for checking the

NAE-satisfiability of 2CNF formulas. We refer to this as the NAE-implication graph. The

NAE-implication graph of a formula φ is equivalent to the implication graph of φ ∪φ c.

Theorem 6.2.3. A CNF formula φ is not NAE-satisfiable if and only if the clause

φ | Nae-Res (xi) for some variable xi.

Proof. Assume that φ | Nae-Res (xi) for some variable xi. We know that any assignment, x,

that NAE-satisfies φ must NAE-satisfy (xi). However, the clause (xi) has only one literal.

Thus, it cannot be NAE-satisfied. This means that φ is not NAE-satisfiable.

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 59

Let φ be a CNF formula that is not NAE-satisfiable. We can construct the unsatisfiable

formula φ ′ = φ ∪φ c of CNF clauses.

Since φ ′ is unsatisfiable we can derive the clauses (xi) and (¬xi) for some variable xi.

Let (x j1, . . . ,x jm,xk)∧ (¬xk,xl1, . . . ,xlm) | 1
Res (x j1, . . . ,x jm,xl1, . . . ,xlm) be the first step

in the derivation of (xi) from the clauses in φ ′. We have four possibilities for the original

clauses in φ .

1. (x j1, . . . ,x jm,xk),(¬xk,xl1, . . . ,xlm) ∈ φ :

From the NAE-resolution rules we get:

(x j1, . . . ,x jm,xk),(¬xk,xl1, . . . ,xlm) | 1
Res (x j1, . . . ,x jm,xl1, . . . ,xlm).

2. (x j1, . . . ,x jm,xk),(xk,¬xl1, . . . ,¬xlm) ∈ φ :

From the NAE-resolution rules we get:

(xk,¬xl1, . . . ,¬xlm) | Nae-Res (¬xk,xl1, . . . ,xlm).

(x j1, . . . ,x jm,xk)∧ (¬xk,xl1, . . . ,xlm) | 1
Res (x j1, . . . ,x jm,xl1, . . . ,xlm).

3. (¬x j1, . . . ,¬x jm,¬xk),(¬xk,xl1, . . . ,xlm) ∈ φ :

From the NAE-resolution rules we get:

(¬x j1, . . . ,¬x jm,¬xk) | Nae-Res (x j1, . . . ,x jm,xk).

(x j1, . . . ,x jm,xk)∧ (¬xk,xl1, . . . ,xlm) | 1
Res (x j1, . . . ,x jm,xl1, . . . ,xlm).

4. (¬x j1, . . . ,¬x jm,¬xk),(xk,¬xl1, . . . ,¬xlm) ∈ φ :

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 60

From the NAE-resolution rules we get:

(xk,¬xl1, . . . ,¬xlm) | Nae-Res (¬xk,xl1, . . . ,xlm).

(¬x j1, . . . ,¬x jm,¬xk) | Nae-Res (x j1, . . . ,x jm,xk).

(x j1, . . . ,x jm,xk)∧ (¬xk,xl1, . . . ,xlm) | 1
Res (x j1, . . . ,x jm,xl1, . . . ,xlm).

In all four cases, φ | Nae-Res (x j1, . . . ,x jm,xl1, . . . ,xlm).

This same argument can be repeated for each subsequent derivation step. Thus,

φ | Nae-Res (xi).

Let φ be a CNF formula such that there is a read-once resolution refutation φ ∪

φ c | RO-Res t. Starting with φ , we apply the NAE-extension rule and generate φ ∪φ c. Next,

we apply the resolution rule according to the read-once resolution refutation for φ ∪φ c.

Now, suppose there is a derivation φ | Nae-Res t in which the resolution operation is

read-once and the extension rule is used at most once on either φ or φ c. We rearrange the

derivation such that we first apply the extension rule and then the resolution rule.

Let (α ∨x),(¬x∨β) | 1
Res (α ∨β) and (α ∨β) | Nae-Res (αc∨β c) be an instance where

the extension rule is used on a derived clause. We can replace these derivation steps with:

(α∨x) | Nae-Res (αc∨¬x), (¬x∨β) | Nae-Res (x∨β c), and (αc∨¬x)(x∨β c) | 1
Res (αc∨

β c).

This can be done repeatedly until the NAE-extension rule is applied to only the original

clauses of the formula. Since the desired refutation starts with φ ∪φ c, we can remove the

instances of the NAE-extension rule to generate a proof of φ ∪φ c | RO-Res t.

To prove NAE-infeasibility we need to derive the clause (xi).Thus, we need to find a

path from x̄i to xi in the NAE-implication graph. Note that we do not need to also find a

path from xi to x̄i. Thus, we have the following theorem.

Theorem 6.2.4. Let φ be a formula in 2-CNF without unit clauses. The following state-

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 61

ments are equivalent:

1. φ is not in NAE-SAT.

2. φ ∪{(¬L1,¬L2) : (L1,L2) ∈ φ} | Res L for some literal L, and there is a derivation in

which at most one of the clauses (L1,L2) or (¬L1,¬L2) occurs.

A decision procedure based on the representation as a graph solves the problem in linear

time.

We show that, in the case of NAE-infeasible 2CNF formulas, we always have a Read-

Once NAE-resolution refutation.

Theorem 6.2.5. If a 2CNF formula, φ , has a NAE-resolution derivation of (xi), then it has

a NAE-resolution derivation of (xi) using only one literal more than once.

Proof. Let G be the NAE-implication graph corresponding to φ . We know that

φ | Nae-Res (xi) if and only if there exists a path from x̄i to xi in G. Let p denote this path.

Let x j be the first variable such that both x j and x̄ j appear on p. We are guaranteed for this

x j to exist since both xi and x̄i appear on p. We can assume without loss of generality that

x j appears before x̄ j. Thus, we can break p up as follows:

1. a path, p1, from x̄i to x j,

2. a path, p2, from x j to x̄ j,

3. and a path, p3, from x̄k to xi.

This can be seen in Figure 6.1.

By our choice of x j, we know that for k 6= j, p1 and p2 together do not contain both

xk and x̄k. As a consequence of this no two edges in p1 or p2 correspond to the same

constraint. Thus, p2 corresponds to a a read-once NAE-resolution derivation of (¬x j) in

which only the literal ¬x j appears twice. We also have that p1 is a literal once NAE-

resolution derivation of (xi,x j) which has no literals in common with the NAE-resolution

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 62

xi

x̄ j

x j

x̄i

p1

p2

p3

Figure 6.1: Example of path p

derivation corresponding to p2. Combining these two yields a read-once NAE-resolution

derivation of (xi) in which only the literal ¬x j is used twice.

Note that, in this NAE-resolution derivation the subpath p2 from x j to x̄ j is a proof of

NAE-infeasibility by itself since it shows (¬x j) which already enough to force x j to be both

true and false. Thus, we have the following corollary.

Corollary 6.2.1. If a 2CNF formula, φ , has a NAE-resolution derivation of (xi), then, for

some x j, there is a NAE-resolution derivation of (x j) (or (¬x j)) using only the literal x j (or

¬x j) more than once.

Corollary 6.2.1 provides us with a polynomial time algorithm to find the shortest read-

once NAE-refutation of a 2CNF formula.

Algorithm 6.2.1 FIND-MIN-NAE-REFUTATION

Function FIND-MIN-NAE-REFUTATION (NAE-infeasible 2CNF formula φ)
1: From φ , construct the NAE-implication graph G.
2: for (Each i = 1 . . .n) do
3: Find the shortest path from x̄i to xi in G.
4: return (The shortest of the located paths.)

Note that, we do not need to consider the paths from xi to x̄i since the existence of such

a path means that there is a path of equal length from x̄i to xi.

This algorithm can be easily modified to solve the following problem:

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 63

Definition 6.2.2. In the minimum-weight read-once NAE-resolution refutation problem

each clause of φ is assigned a non-negative weight. The goal is to find a read-once NAE-

resolution refutation with minimum total weight.

To find the minimum-weight read-once NAE-resolution refutation for a 2CNF formula,

we construct a weighted NAE-implication graph. In the weighted graph each edge is as-

signed the same weight as the corresponding 2CNF clause. We then run a modified version

of Algorithm 6.2.1 on this weighted graph to find the the minimum-weight path from x̄i to

xi.

We now discuss the notion of minimal NAE-read-once in CNF formulas.

Definition 6.2.3. A CNF formula φ is minimal NAE-read-once, if φ has a read-once NAE-

resolution refutation, but no sub-formula of φ has a read-once NAE-resolution refutation.

Definition 6.2.3 lets us define the following problem:

Definition 6.2.4. The MNRR problem is the problem of determining if a CNF formula φ is

minimal NAE-read-once.

The computational complexity of the MNRR problem for general CNF formulas is

unknown. However, Algorithm 6.2.1 can be used to solve the MNRR problem for 2CNF

formulas in polynomial time.

Theorem 6.2.6. MNRR for 2CNF formulas is in P.

Proof. Let φ be a NAE-infeasible 2CNF formula, and let p be the path returned by run-

ning Algorithm 6.2.1 on φ . If φ is minimally NAE-read-once, then any read-once NAE-

resolution refutation of φ must use every clause in φ . Thus p must use every clause in

φ .

As described above, the path p produced by Algorithm 6.2.1 is the minimum read-

once NAE-resolution refutation of φ . Thus, if p uses all the clauses of φ , then any read-

once NAE-resolution refutation of φ must use all the clauses of φ . This means that φ is

minimally NAE-read-once.

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 64

Since Algorithm 6.2.1 runs in polynomial time, the MNRR problem for 2CNF formulas

is in P.

6.2.4 The ROR problem for unit-resolution

In this section, we show that the Unit ROR Problem for 2-CNF is still in P.

Let Φ be a 2-CNF formula with m clauses over n variables. We construct a weighted

undirected graph G = 〈V,E,b〉 as follows:

1. For each variable xi in Φ, add the vertices x+i , x′i
+, x−i , and x′i

− to V. Additionally,

add the edges x−i
0 x+i and x′i

− 0 x′i
+ to E.

2. Add the vertices x+0 and x−0 to V.

3. For each constraint φk of Φ, add the vertices φk and φ ′k to V and the edge φk
0

φ ′k to

E. Additionally:

(a) If φk is (xi∨ x j), add the edges x+i
−1

φk, x′i
+ −1

φk, x+j
−1

φ ′k, and x′j
+ −1

φ ′k

to E.

(b) If φk is (xi∨¬x j), add the edges x+i
−1

φk, x′i
+ −1

φk, x−j
−1

φ ′k, and x′j
− −1

φ ′k

to E.

(c) If φk is (¬xi∨ x j), add the edges x−i
−1

φk, x′i
− −1

φk, x+j
−1

φ ′k, and x′j
+ −1

φ ′k

to E′′.

(d) If φk is (¬xi∨¬x j), add the edges x−i
−1

φk, x′i
− −1

φk, x−j
−1

φ ′k, and x′j
− −1

φ ′k

to E.

(e) If φk is (xi), add the edges x+i
−1

φk, x′i
+ −1

φk, x+0
−1

φ ′k, and x−0
−1

φ ′k to E.

(f) If φk is (¬xi), add the edges x−i
−1

φk, x′i
− −1

φk, x+0
−1

φ ′k, and x−0
−1

φ ′k to E.

With this construction each variable is represented by a pair of 0-weight edges. Thus,

each variable can be used twice by a refutation. However, we only have one 0-weight edge

for each clause. This prevents the refutation from re-using clauses.

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 65

As per the above construction, G has O(m+n) vertices and O(m) edges. Example 34:

Consider the following 2-CNF formula.

φ1 : (x1) φ2 : (x2) φ3 : (¬x3)

φ4 : (¬x4) φ5 : (¬x1∨¬x2) φ6 : (x3∨ x4)
(6.1)

Formula (6.1) corresponds to the undirected graph in Figure 6.2.

x−0

x+0

φ ′1

φ1 x′1
+

x+1

x′1
−

x−1 φ ′5

φ5

x′2
−

x−2

x′2
+

x+2

φ2

φ ′2

φ ′3

φ3x′3
−

x−3

x′3
+

x+3φ ′6

φ6

x′4
+

x+4

x′4
−

x−4

φ4

φ ′4

0

0

0

0

0

0

0

0

0

0

0

0

00

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

Figure 6.2: Undirected graph corresponding to Formula (6.1)

Theorem 6.2.7. Φ has a read-once unit resolution refutation if and only if G has a negative

weight perfect matching.

Proof. First assume that Φ has a read-once unit resolution refutation R. We can construct

a negative weight perfect matching P of G as follows:

1. For each variable xi in Φ:

(a) If R does not use xi, add the edges x+i
0 x−i and x′i

+ 0 x′i
− to P.

(b) If R uses xi only once, add the edge x′i
+ 0 x′i

− to P.

2. For each clause φk in Φ:

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 66

(a) If φk 6∈ R, add the edge φk
0

φ ′k to P.

(b) If φk ∈ R is a two variable clause:

i. If φk is the first clause to use the literal xi, add the edge x+i
−1

φk (or

x+i
−1

φ ′k) to P. If it is the second, add the edge x′i
+ −1

φk (or x′i
+ −1

φ ′k)

instead.

ii. If φk is the first clause to use the literal ¬xi, add the edge x−i
−1

φk (or

x−i
−1

φ ′k) to P. If it is the second, add the edge x′i
− −1

φk (or x′i
− −1

φ ′k)

instead.

(c) If lk ∈ R is a unit clause:

i. If lk is the first clause to use the literal xi, add the edge x+i
−1

φk to P. If it

is the second, add the edge x′i
+ −1

φk instead.

ii. If lk is the first clause to use the literal −xi, add the edge x−i
−1

φk to P. If

it is the second, add the edge x′i
− −1

φk instead.

iii. If lk is the first unit clause, add the edge x+0
−1

φ ′k to P. If it is the second,

add the edge x−0
−1

φ ′k instead.

Every vertex in G is an endpoint of exactly one edge in P. Thus, P is a perfect matching.

Since ∑φk∈R−1 < 0, P has negative weight.

Now assume that G has a negative weight perfect matching P. We can construct a

read-once unit resolution refutation R as follows:

1. Since there is no edge between x+0 and x−0 , P must use the edge x+0
−1

φ ′k for some

unit clause φk. Thus, the edge φk
0

φ ′k is not in P. Note that φk is the clause (xi) or

(¬xi) for some xi.

2. Without loss of generality assume φk is the clause (xi). This means that the edge

x+i
−1

φk (or x′+i
−1

φk) must be in P. Thus, the edge x+i
0 x−i (or x′+i

0 x′−i)

is not in P. This means that for some clause φl , the edge x−i
−1

φl (or x′−i
−1

φl)

is in P. If φ j corresponds to the clause (¬xi ∨ x j) or (¬xi ∨¬x j) for some x j, then

CHAPTER 6. 2-CNF CLAUSAL FORMULAS 67

we add either (xi),(¬xi∨x j) | 1
Res (x j) or (xi),(¬xi∨¬x j) | 1

Res (¬x j) to R read-once

unit resolution. If φl corresponds to the clause (¬xi), then we add (xi),(¬xi) | 1
Res t

to R.

3. If φ j is a non-unit clause, then we can repeat step 2 from either x j or ¬x j. This

continues until a second unit clause is encountered, completing the refutation. By

construction, R is a read-once unit resolution refutation.

Observe that the minimum weight perfect matching of an undirected graph having n

vertices can be found in O(n2 · logn) time using the algorithm in [KV10]. Since in our case,

G has O(m+ n) vertices, it follows that we can detect the presence of a negative weight

perfect matching in O((m+ n)2 · log(m+ n)) time. Hence, using the above reduction, the

Unit ROR problems for 2-CNF formulas can be solved in O((m+n)2 · log(m+n)) time.

68

Chapter 7

3-CNF Clausal Formulas

7.1 Motivation and Related Work

This chapter is concerned with techniques for checking Not-All-Equal (NAE) satisfia-

bility of propositional formulas in Conjunctive Normal Form (CNF). Briefly, the NAE-SAT

problem is concerned with checking if a CNF formula has a satisfying assignment in which

each clause has at least one literal set to false. It is well-known that the NAE-satisfiability

problem for 3CNF formulas (also called NAE3SAT) is NP-complete [Sch78]. Indeed, the

problem remains NP-complete, even when all the literals in each clause are positive. The

problem can be solved in polynomial time, when there are at most two literals per clause

[MM11, Pap94].

It is not hard to see that the class of CNF formulas which are NAE-satisfiable is a

proper subset of CNF formulas which are satisfiable in the ordinary sense. Therefore,

proof systems for satisfiability may not be sound for checking NAE-satisfiability. Indeed,

this is the case with resolution refutation [Rob65], which is complete for NAE-satisfiability

but not sound. In other words, if a resolution refutation exists for a CNF formula, then the

formula is definitely NAE-unsatisfiable (since it is unsatisfiable). However, if a refutation

does not exist for a formula, then it may still be NAE-unsatisfiable. In this chapter, we

CHAPTER 7. 3-CNF CLAUSAL FORMULAS 69

design a new resolution scheme called NAE-resolution which is simultaneously sound and

complete for the problem of checking NAE-satisfiability in CNF formulas.

Propositional proof complexity is concerned with lengths of proofs (alternatively refu-

tations) in propositional logic [BP98]. In order to discuss lengths of proofs, it is vital that

we have a concrete proof system in mind [Urq95]. Several proof systems have been dis-

cussed in the literature including Frege Systems, Extended Frege Systems, Resolution and

so on. The notion of proof length in various proof systems is discussed in [Bus]. Observe

that if it can be established that the length of any proof (refutation) of a contradiction must

be exponential in the length of the input formula, then we have in fact separated the class

NP from the class coNP [CR74].

Even if we focus on a particular proof system there exist several variants with differ-

ent computational complexities. For instance, in case of resolution refutations, the com-

monly studied variants are tree-like proofs, dag-like proofs and read-once proofs [Har09].

Read-once refutations are the simplest from the conceptual perspective, since each clause

(original or derived) can be used exactly once.

One of the interesting avenues of research in proof theory is the investigation of incom-

plete proof systems, i.e., proof systems which are not guaranteed to provide a refutation,

even if the given formula is unsatisfiable. The idea behind the investigation of such weak

systems is the hope that we can find proofs of unsatisfiability more efficiently [IM95].

This chapter focuses on a weak proof system called read-once resolution. It is well-known

that read-once resolution is an incomplete proof system [IM95]. Furthermore, even ask-

ing if an arbitrary unsatisfiable CNF formula has a read-once refutation is NP-complete.

As discussed before, read-once refutation is not sound for the purpose of checking NAE-

satisfiability. We design a variant of read-once resolution called read-once NAE-resolution

which is sound but not complete.

The investigations of this chapter are concerned with properties of read-once NAE-

resolutions when applied to the problem of checking NAE-satisfiability in CNF formulas.

CHAPTER 7. 3-CNF CLAUSAL FORMULAS 70

7.2 Refutability

7.2.1 The ROR problem for NAE-resolution

Now we focus on applying NAE-resolution to formulas in 3CNF and show that the

problem whether for a formula φ the formula φ ∪φ c has a read-once resolution refutation

is NP-complete. Since ROR - the set of formulas in CNF for which a read-once resolution

exists - is NP-complete, we see that ROR-NAE-3SAT is in NP. Therefore, we only have

to show NP-hardness. This is done by a reduction to the problem whether a formula in

2CNF has a read-once resolution refutation (ROR-2CNF).

Theorem 7.2.1. ROR-NAE-3SAT is NP-complete.

Proof. Let φ be a 2CNF formula. We construct the 3CNF formula φ∗ as follows:

1. For each variable xi of φ , create the variable xi for φ∗.

2. Create the variable x0 for φ∗.

3. For each clause π ∈ φ , create the clause (π ∨ x0) ∈ φ∗.

We show that φ ∈ ROR-2CNF if and only if φ∗ ∈ ROR-NAE-3SAT.

Assume that φ ∈ ROR-2CNF. A read-once resolution refutation φ | RO-Res t can easily

be extended to the read-once NAE-resolution derivation φ∗ | RO-Res x0. Thus, by Theorem

6.2.3, φ∗ is in ROR-NAE-3SAT.

Now suppose that φ∗ is in ROR-NAE-3SAT. We must show that φ has a read-once

resolution refutation. We do this by showing that every resolution step done on the 3CNF

clauses corresponds to a valid derivation on the 2CNF clauses.

We have the following cases:

1. (xi,x j,x0) | Nae-Res (¬xi,¬x j,¬x0): Both of these clauses correspond to the 2CNF

clause (xi,x j). If (xi,x j) is satisfied, then both (xi,x j,x0) and (¬xi,¬x j,¬x0) are

NAE-satisfied by setting x0 to false.

CHAPTER 7. 3-CNF CLAUSAL FORMULAS 71

2. (xi,x j,x0),(¬xk,¬xl,¬x0) | 1
Res (xi,x j,¬xk,¬xl): This corresponds to the two CNF

clauses (xi,x j,¬xk,¬xl) and (¬xi,¬x j,xk,xl). However, these are made redundant by

the 2CNF clauses (xi,x j) and (xk,xl) which are already derivable from φ . Thus, no

NAE-resolution refutation of φ∗ performs a resolution step centered on x0.

3. (xi,x j,x0),(¬x j,¬xk,x0) | 1
Res (xi,¬xk,x0): This corresponds to the resolution step

(xi,x j),(¬x j,¬xk) | 1
Res (xi,¬xk). Since φ | Res (xi,x j) and φ | Res (¬x j,¬xk), this is

a valid derivation from φ .

Thus, all steps in the NAE-resolution refutation of the 3CNF formula correspond to

steps used in the resolution refutation of the original 2CNF formula. Thus, φ∗ has a read-

once NAE-resolution refutation if and only if φ the has a read-once resolution refutation.

72

Chapter 8

Horn Clausal Formulas

8.1 Motivation and Related Work

Propositional proof complexity is one of the most widely studied topics in computa-

tional complexity [Seg07]. It is primarily concerned with establishing the lengths of proofs

in propositional logic. In analyzing the proof complexity of propositions, there are two

parameters, which are important, viz., the type of proof system being considered and the

manner in which length of proofs is measured. Some of the more common proof sys-

tems from classical logic include truth tables, Gentzen proof systems, resolution, Frege

systems and Extended Frege systems [Urq95]. Additional proof systems with origins in

computational algebra and integer programming include the Nullstellensatz proof system

[BIK+94], the polynomial calculus [AR01] and cutting planes [Pud97]. Measures of length

include number of symbols used in a proof, number of resolution steps used in a proof, and

the total width of the clauses used in a proof [Bus]. One of the principal goals of proof

complexity is to separate the classes NP and coNP. Towards this end, it was shown in

[CR74, Rec75] that all propositional tautologies had short proofs if and only if NP=coNP.

Fairly comprehensive discussions on proof complexity can be found in [Urq95], [BP98],

and [Kra94].

CHAPTER 8. HORN CLAUSAL FORMULAS 73

The resolution proof system is one of the most widely investigated proof systems in

proof complexity, on account of its simplicity and ubiquity [BP98]. One of the first lower

bounds for resolution was provided by Tseitin [Tse68], where it was shown that a restricted

from of resolution had an exponential lower bound. This result was improved by Haken

[Hak85]; he established that even general resolution had exponential length. To accomplish

this, he showed that the lengths of resolution based proofs of the pigeonhole principle were

eponential in the size of the input. Additional lower bounds on the length of resolution

proofs are discussed in [BP98, Pud97].

In this chapter, we focus on a restriction of resolution called Read-Once resolution. The

first systematic study of the ROR proof system was conducted by Iwama and Miyano in

[IM95]. They argued that as proof systems become more powerful, the quest of finding

a proof becomes harder. Consequently, it becomes worthwhile to investigate “weakened”

proof systems such as ROR. One of their surprising results was that the problem of checking

if a 3CNF formula has a read-once refutation is NP-complete. They also introduced the

notion of copy complexity and showed that the problem of checking if a formula belongs

to the differential class R(k)−R(k−1) is DP− complete, where the class R(k) represents

the set of formulas which have a read-once refutation with k copies of any clause being

permitted. This result was generalized in [KZ02], where the authors discuss a number of

results related to read-once refutations and minimal unsatisfiable formulas. The application

of ROR to MAXSAT is detailed in [HM11], where the investigations are primarily from

an empirical perspective. Szeider [Sze01] has studied a variant of ROR called literal-once

resolution, which he shows is also NP-complete. In [KWS18], we showed that the problem

of checking whether a 2-CNF formulas has a read-once refutation is NP-complete.

CHAPTER 8. HORN CLAUSAL FORMULAS 74

8.2 Refutability

8.2.1 The OLRR problem for resolution

In this sections, we discuss the problem of finding the optimal read-once refutation of

a Horn formula.

Let α be an unsatisfiable Horn formula. From [Sze01] we know that α has a read-

once refutation. The question whether α has a read-once resolution of length less than k is

equivalent to the question whether α contains a minimal unsatisfiable formula consisting

of at most k clauses.

Theorem 8.2.1. Let R denote an OLROR of Φ and let ΦR ⊆ Φ be the set of clauses used

by R. R is also an optimal tree-like refutation of Φ and an optimal dag-like refutation of Φ.

Additionally, ΦR is a minimum unsatisfiable subset of Φ.

Proof. Sine R is a read-once refutation of Φ, R is also a tree-like and a dag-like refutation

of Φ.

Assume that T is a tree like refutation of Φ such that |T |< |R|. Let ΦT ⊆Φ be the set

of clauses used by T . It follows that |ΦT | ≤ |T |+1 < |R|+1

By [Sze01], ΦT must have a read-once refutation, RT . However, |RT | ≤ |ΦT |−1 < |R|.

This contradicts the fact that R is the optimal read-once refutation of Φ. Thus, R is also an

optimal tree-like refutation of R. Similarly, R is an optimal dag-like refutation of R.

Let Φ′ ⊆ Φ be an unsatisfiable Horn formula such that Φ′ < ΦR. By [Sze01], Φ′ must

have a read-once refutation, R′. However, |R′| ≤ |Φ′|−1 < |ΦR|−1 = |R|. This contradicts

the fact that R is the optimal read-once refutation of Φ. Thus, ΦR is a minimum unsatisfiable

subset of R.

We conclude, that for unsatisfiable Horn formulas the length of the shortest resolu-

tion refutation equals the length of the shortest read-once and the shortest tree resolution.

Moreover, let k be the number of clauses of a minimal unsatisfiable subformula with mini-

CHAPTER 8. HORN CLAUSAL FORMULAS 75

mal number of clauses. Then the shortest resolution (read-once resolution, tree resolution)

refutations is k−1. Note that this only applies to regular resolution refutations.

Let α be a definite Horn formula without unit clauses, x a variable, U a set of variables

(unit-clauses), and k ≥ 1.

Determining if there exists a subset K ⊆U of at most k variables such that K ∧α |= x is

NP-complete. The proof is based on a reduction to the vertex cover problem. Note that

this problem asks for the number of variables and not the number of clauses.

The following result is a corollary of Theorem 5.2 in [Lib08]. However, it is included

here for completeness.

Theorem 8.2.2. The problem of deciding whether a Horn formula contains an unsatisfiable

sub-formula with at most k clauses is NP-complete.

Proof. We show this by a reduction from Vertex Cover. Let G = (V,E) be an undirected

graph where V = {v1, . . . ,vn} and E = {e1, . . . ,em}. We associate with G the Horn formula:

v1∧ . . .∧ vn∧
∧

1≤i≤m,ei=(vi1 ,vi2)

(vi1 → ei)∧ (vi2 → ei)∧ (¬e1∨ . . .∨¬em)

Then there exists a subset V ′ ⊆V such that |V ′| ≤ r and V ′∩ ei is non-empty for every

1 ≤ i ≤ m if and only if the associated formula contains an unsatisfiable sub-formula with

at most (1+m+ r) clauses. (the negative clause, the clause (v→ ei) for each 1 ≤ i ≤ m,

and r unit clauses).

Since the problem of finding a vertex cover of size at most k is NP-complete, the

problem of finding a read-once resolution refutation of length at most k is NP-complete

for Horn formulas.

8.2.2 The ROR problem for unit-resolution

In this section, we explore the problem of finding read-once unit resolution refutations

for Horn formulas. If we restrict ourselves to unit resolution refutations then we are no

CHAPTER 8. HORN CLAUSAL FORMULAS 76

longer guaranteed read-once refutations.

Example 35: Consider the Horn formula

(x1)∧ (¬x1∨ x2)∧ (¬x1∨¬x2∨ x3)∧ (¬x3)

This formula has the following read-once refutation:

(¬x1∨ x2)∧ (¬x1∨¬x2∨ x3) | 1
Res (¬x1∨ x3)

(x1)∧ (¬x1∨ x3) | 1
Res (x3)

(x3)∧ (¬x3) | 1
Res t

However, we will now show that this formula does not have a read-once unit resolution

refutation.

There are three possibilities for the final resolution step.

1. The final resolution step is (x1)∧(¬x1) | 1
Res t: Note that in this case it is impossible

to generate the clause (¬x1) by unit resolution.

2. The final resolution step is (x2)∧ (¬x2) | 1
Res t: To generate the clause (x2) we need

to use the clause (x1). However, we also need to use this clause to generate (¬x2).

3. The final resolution step is (x3)∧(¬x3) | 1
Res t: To generate the clause (¬x3) via unit

resolution, we need to use the clause (x1) twice. Once to resolve with (¬x1∨x2) and

once to resolve with (¬x1,¬x2,x3).

Thus, It is not always possible to find a read-once unit refutation.

It was shown in [KZ03] that the UROR problem for Horn formulas is NP-complete.

We now provide an alternative proof that the unit ROR problem is NP-complete for Horn

formulas. This is done by a reduction from the set packing problem.

CHAPTER 8. HORN CLAUSAL FORMULAS 77

Definition 8.2.1. The set packing problem is the following: Given a set S, m subsets

S1, . . . ,Sm of S, and an integer k, does {S1, . . . ,Sm} contain k mutually disjoint sets.

This problem is known to be NP-complete [Kar72].

Theorem 8.2.3. The unit ROR problem for Horn formulas is NP-complete.

Proof. Let us consider an instance of the set packing problem. We construct the Horn

formula Φ as follows.

1. For each xi ∈ S, create the boolean variable xi and the clause (xi).

2. For j = 1 . . .k, create the boolean variable v j.

3. For each subset Sl , l = 1 . . .m create the clauses

(v j∨
∨

xi∈Sl

¬xi) j = 1 . . .k.

4. Finally create the variable w and the clauses (w∨¬v1∨ . . .∨¬vk) and (¬w).

We now show that Φ has a read-once unit resolution refutation if and only if

{S1, . . . ,Sm} contains k mutually disjoint sets.

Suppose that {S1, . . . ,Sm} does contain k mutually disjoint sets. Without loss of gener-

ality assume that these are the sets S1, . . . ,Sk.

Let us consider the sets of clauses

Φ j = {(v j∨
∨

xi∈S j

¬xi)}∪{(xi) |xi ∈ S j} j = 1 . . .k.

By the construction of Φ, Φ j ⊆ Φ for j = 1 . . .k. Since the sets S1, . . . ,Sk are mutually

disjoint, so are the sets Φ1, . . . ,Φk.

It it easy to see that the clause (v j) can be derived from the set Φ j by read-once unit

resolution. Sine this holds for every j = 1 . . .k and since the sets Φ1, . . . ,Φk are mutu-

CHAPTER 8. HORN CLAUSAL FORMULAS 78

ally disjoint, the set of clauses {(v1), . . . ,(vk)} can be derived from Φ by read-once unit

resolution.

Together with the clause (w∨¬v1∨ . . .∨¬vk), this set of clauses has a read-once unit

derivation of the clause (w). Thus, Φ has a read-once unit derivation of the clause (w).

Since Φ contains the clause (¬w), it follows that Φ has a read-once unit resolution refuta-

tion.

Now suppose that Φ has a read-once unit resolution refutation R. Note that Φ/{(¬w)}

can be satisfied by setting every variable to true. Thus, R must use the clause (¬w).

Let us consider the resolution step that involves the clause (¬w). By construction,

(¬w) must be resolved with the clause (w∨¬v1 ∨ . . .∨¬vk) or a clause derived from it.

We can assume without loss of generality that the clause resolved with (¬w) has the form

(w∨¬v1∨ . . .∨¬vk′) where k′ ≤ k. To derive this clause, the clauses (vk′+1), . . . ,(vk) must

have already been derived.

Thus,

(¬w)∧ (w∨¬v1∨ . . .∨¬vk′) | 1
Res (¬v1∨ . . .∨¬vk′).

To eliminate the clause (¬v1∨ . . .∨¬vk′), R must either derive the clauses (v1), . . . ,(vk′), or

reduce it to a unit clause and then resolve it with another clause. Without loss of generality

we can assume that this unit clause is (¬v1). In either case R must derive the clauses

(v2), . . . ,(vk′).

Thus, we must derive the clauses (v2), . . . ,(vk). Let us consider the clause (v j), 2≤ j≤

k. By the construction of Φ, this clause must be derived from one of the clauses

(v j∨
∨

xi∈Sl

¬xi) l = 1 . . .m.

To to this, we must use the set of clauses Ψl j = {(xi) |xi ∈ Sl j} for some l j ≤ m.

Since the refutation is read-once, the sets Ψl j for j = 2 . . .k are mutually disjoint. Thus,

the sets Sl j for j = 2 . . .k are also mutually disjoint.

CHAPTER 8. HORN CLAUSAL FORMULAS 79

If R derives the clause (v1), then, by the construction of Φ, this clause must be derived

from one of the clauses

(v1∨
∨

xi∈Sl

¬xi) l = 1 . . .m.

To do this, we must use the set of clauses Ψl1 = {(xi) |xi ∈ Sl j} for some l1 ≤ m.

If R reduces (¬v1∨ . . .∨¬vk′) to the clause (¬v1), then we must resolve (¬v1) with one

of the clauses

(v1∨
∨

xi∈Sl

¬xi) l = 1 . . .m.

This results in the clause (
∨

xi∈Sl1
¬xi) for some l1 ≤ m. To eliminate this clause, we must

use the set of clauses Ψl1 = {(xi) |xi ∈ Sl j}.

Since R is read-once, the set Ψl1 does not share any clauses with the sets Ψl j , j = 2 . . .k.

Thus, the sets Sl j for j = 1 . . .k are also mutually disjoint. This means that {S1, . . . ,Sm}

contains k mutually disjoint sets.

Thus, Φ has a read-once unit resolution refutation if and only if {S1, . . . ,Sm} contains

k mutually disjoint sets. As a result of this, the unit ROR problem for Horn formulas is

NP-complete.

Theorem 8.2.4. For a CNF formula Φ, the length of a read-once unit resolution refutation

is at most (m−1), where m is number of clauses in the formula.

Proof. Recall that a read-once resolution step is equivalent to removing the two parent

clauses from the formula and adding the resolvent. Thus, each read-once resolution step

effectively reduces the number of clauses in the formula by 1. Since Φ initially has m

clauses, there can be at most (m−1) such resolution steps.

8.2.3 The copy complexity of unit-resolution

We now examine the copy complexity of read-once unit resolution for Horn formulas.

Theorem 8.2.5. The copy complexity of Horn formulas is at most 2n−1 where n is the

CHAPTER 8. HORN CLAUSAL FORMULAS 80

number of variables.

Proof. Suppose Φ is an unsatisfiable Horn formula. Note that adding clauses to a system

cannot increase the copy complexity. Thus, we can assume without loss of generality that Φ

is minimal unsatisfiable. Let CC(n) denote the copy complexity of a minimal unsatisfiable

Horn formula with n variables. We will show that CC(n) ≤ 2n−1. For a clause φk of Φ let

Nc(φ j) be the number of copies of φ j needed for a read-once unit resolution refutation.

Let Φ be a minimal unsatisfiable Horn formula with n variables. Thus, Φ has (n+ 1)

clauses. If n = 1, then Φ has the form (x)∧ (¬x). This formula has a read-once unit

resolution refutation. Thus CC(1) = 1≤ 20. Also note that ∑φ j∈Φ Nc(φ j) = 2≤ 21.

Now assume that CC(k) ≤ 2k−1, and that for each minimal unsatisfiable formula Φ′

with k variables, ∑φ ′j∈Φ′Nc(φ
′
j) ≤ 2k. If n = k+ 1, then Φ has the form (x)∧ (¬x∨α1)∧

. . .∧ (¬x∨αt)∧σt+1 . . .∧σk+1. A read-once unit resolution refutation needs to use the

clause (x) to eliminate each instance of ¬x. Thus, we need a copy of the clause (x) for each

copy of (¬x∨αi) for i = 1 . . . t. Let Φ′ be the formula α1∧ . . .αt ∧σt+1 . . .∧σk+1. Note

that Φ′ is a minimal unsatisfiable formula with n−1 = k variables. Thus,

t

∑
j=1

Nc(αi)≤ ∑
φ ′j∈Φ′

Nc(φ
′
j)≤ 2k.

This means that we need at most 2k copies of the clause (x). Thus, CC(k+ 1) ≤ 2k and

∑φ j∈Φ Nc(φ j)≤ 2k +2k = 2k+1.

Theorem 8.2.6. There exists a Horn formula with copy complexity 2n−1 where n is the

number of variables.

Proof. Consider the following clauses:

(¬x1∨¬x2∨ . . .∨¬xn) (x1∨¬x2∨ . . .∨¬xn) (x2∨¬x3∨ . . .∨¬xn)

. . . (xn−1∨¬xn) (xn)

CHAPTER 8. HORN CLAUSAL FORMULAS 81

To eliminate ¬x2 from the clauses (¬x1∨¬x2∨ . . .∨¬xn) and

(x1∨¬x2∨ . . .∨¬xn) we need 2 copies of the clause (x2∨¬x3∨ . . .∨¬xn). How-

ever, we now have four instances of ¬x3 so we need to use four copies of the

clause (x3∨¬x4∨ . . .∨¬xn). In general we need to use 2i−1 copies of the clause

(xi∨¬xi+1∨ . . .∨¬xn). Thus, we need to use 2n−1 copies of the clause (xn).

From these two results, it is easy to see that the copy complexity of Horn formulas with

respect to read-once unit resolution refutation is 2n−1.

82

Part III

Polyhedral Constraints: Linear

Satisfiability

83

Chapter 9

Difference Constraint Systems

9.1 Motivation and Related Work

Every infeasible DCS has a refutation that verifies its infeasibility. For a DCS, the

refutation is a subset of the difference constraints such that its conjunction results in a

contradiction of the form 0 ≤ −b, b > 0. The length of a refutation is the number of

difference constraints in the subset that proves the infeasibility of the DCS.

For each DCS D, there exists a corresponding difference constraint network G. D is

infeasible if and only if G contains a simple, negative cost cycle. The length of a negative

cost cycle is the number of edges in the negative cost cycle. The shortest negative cost

cycle is defined as the negative cost cycle having the fewest number of edges. It follows

that the refutation in D with the fewest number of constraints corresponds to the length of

the shortest negative cost cycle in G.

If each difference constraint in a DCS has unit length, then the problem of determin-

ing the length of the refutation with the fewest number of constraints is called the opti-

mal length resolution refutation (OLRR) problem. The OLRR problem is motivated by a

number of applications, as discussed in [Sub09], including program verification [SLB03],

real-time scheduling [HL89], and incremental shortest paths in weighted networks [DI04].

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 84

The first polynomial time algorithm for this problem was proposed in [Sub09] and runs in

O(n3 · logK) time, where n is the number of vertices in G, and K is the OLRR. The current

fastest algorithm runs in O(m ·n ·K) time [SWG13], where m is the number of edges in G.

In this chapter, we are interested in a weighted DCS (WDCS), where a positive weight

is associated with each constraint. We represent the constraint network of a WDCS D as a

constraint network G, where each edge has both a cost and a positive, integral length. Note

that the term “weight” is used for a WDCS, while the term “length” is used for the differ-

ence constraint network. In the case of a WDCS, the weight of a refutation is defined as the

sum of the lengths of the edges in the corresponding negative cost cycle in G. The problem

of finding the minimum weight refutation in a WDCS is called the weighted optimal length

resolution refutation (WOLRR) problem. This problem is known to be NP-hard [Sub09].

Difference constraints occur in a wide variety of domains, including but not limited to

program verification [NO05, CAMN04], real-time scheduling [GPS95a] and image seg-

mentation [CRY96]. Similarly, UTVPI constraints are used extensively in array bounds

checking [LM05] and abstract interpretation [SS10].

In this chapter, we are concerned with short certificates of infeasibility in the form of

short resolution refutations. There are several reasons for desiring the shortest infeasibility

certificate:

1. In system design, it has been observed that infeasibility typically results from a small

subset of infeasible constraints [LTCA89]. When constraints in this subset are re-

laxed, the constraint system becomes feasible.

2. A significant section of research in Satisfiability (SAT) problems is concerned with

the identification of a Minimum Unsatisfiable Core (MUC) of an unsatisfiable CNF

formula. [LS04] describes both theoretical and practical milestones in this research.

In [Sub09], it was shown that the MUC of a DCS coincides with its OROR. In case

of UCS’s, the MUC coincides with the OTLR.

The problem of finding short refutations is one of the principal problems in proof com-

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 85

plexity [BP98]. Research proceeds along the lines of finding lower bounds on the lengths

of refutations for propositional tautologies (contradictions) in proof systems of increasing

complexity, with a view towards separating the complexity class NP from the class coNP

[Urq95]. Resolution is one of the weakest proof systems, but even in this proof system

it was difficult to obtain lower bounds on the length of proofs. The first non-trivial lower

bound on the length of resolution proofs is due to Haken [Hak85], who showed that any

resolution proof for the pigeonhole principle required exponentially many steps. [Iwa97]

showed that the problem of finding the shortest resolution proofs in arbitrary 3CNF for-

mulas is NP-complete. A stronger result was obtained in [ABMP98]; they showed that

the problem of finding the shortest resolution proof in Horn formulas is not linearly ap-

proximable, unless P=NP. This result is interesting because it is easy to see that every

unsatisfiable Horn formula has a resolution refutation that is quadratic in the number of

clauses. It is important to note that the problem of finding minimum witnesses of infeasi-

bility arises in other domains too. For instance see [AAHO98], which analyzes the problem

of finding minimum cardinality witnesses of minimum cost flow infeasibility.

On the read-once refutation side, [IM95] showed that the problem of checking if an ar-

bitrary CNF has an ROR is NP-complete. [KZ02] strengthened this result by showing that

the problem of checking whether a CNF formula has a read-once unit resolution refutation

is NP-complete.

As we can see, much of the work in finding short refutations focused on discrete do-

mains (CNF formulas). [Sub09] departed from existing work by considering difference

constraint systems from the perspective of determining the optimal length resolution refu-

tations. That paper, shows that short refutations exist for difference constraints and also that

the optimal length refutation can be determined in polynomial time. It is worth noting that

in DCS’s, linear and integer feasibility coincide and therefore, the departure is not strict.

Our work in this chapter is motivated by applications in a number of different domains:

1. Program verification - SMT (Satisfiability Modulo Theories) solvers are increasingly

being used in program verification procedures [dMOR+04, FS02]. These solvers

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 86

are also part of procedures for bounded model checking in infinite state systems and

test-case generation [DdM06]. An important subclass of SMT solvers are those de-

voted to difference logic (also called separation logic or difference constraint logic

(DCL)) [SLB03]. Broadly, quantifier-free difference logic refers to the satisfia-

bility of an arbitrary boolean combination of difference constraints. For instance,

(x1− x2 ≤ 7)∧ ((x3− x10 ≤ 4)∨ (x9− x4 ≤ 6)∨¬(x1− x9 ≤ 6)) is a proposition in

difference logic [CAMN04]. It is well-known that difference logic can be used to ex-

press bounded reachability for timed automata [ABK+97], existence of timing paths

in digital circuits with bounded delays [BS94] and other timing related problems,

such as Job Shop Scheduling [ABZ88].

It was shown in [Tse70] that the satisfiability problem in DCL is NP-complete and

that an arbitrary proposition of DCL can be converted into Conjunctive Normal Form

in polynomial time. [SB04] showed that the unsatisfiability of a proposition in DCL

is defined by a conjunction of difference constraints. In order to convince a user of

the unsatisfiability of a proposition, it is necessary to provide him with a certificate;

although any negative cost cycle serves as a certificate, in case of conjunctions of

difference constraints, it would be preferable to provide the certificate of shortest

length, i.e., the negative cost cycle having the least number of edges. We also note

that the task of providing certificates is not necessarily unique to SMT solvers; indeed

the field of certifying algorithms requires that certificates accompany all algorithmic

outputs [KMMS03, WB97].

2. Proof Theory - A secondary motivation for our work arises from proof theory. One of

the concerns in proof theory is the establishment of non-trivial lower bounds on the

proof lengths of propositional tautologies (alternatively refutation lengths of proposi-

tional contradictions). An essential aspect of establishing a lower bound is the proof

system used to establish the bound. For instance, super-polynomial bounds for tau-

tologies have been established for weak proof systems such as resolution [Hak85],

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 87

while the establishment of such a bound for Frege proof systems would separate the

complexity class NP from the complexity class coNP [BP98]. Likewise, establishing

that there exist short refutations for all contradictions in a given proof system causes

the classes NP and coNP to coincide [CR73]. The work on propositional proofs is

easily extensible to other finite, discrete domains such as integer arithmetic [Pud97].

However, FM elimination is not a valid proof system for a system of integer inequal-

ities; [Wil76] provides examples where FM is not sound. Proofs in integer arithmetic

usually use cutting plane theory [BE00].

The resolution technique for clausal formulas has a number of variants including tree-

like resolution, dag-like resolution, read-once resolution, linear resolution, and so on

[Bus98, RV01]. Tree-like resolution and dag-like resolution are complete procedures

in that if an input formula is unsatisfiable, then it must have a tree-like resolution

proof and dag-like resolution proof. On the other hand, neither linear resolution

nor read-once resolution are complete procedures; indeed the question of whether

an arbitrary formula has a read-once proof is NP-complete [IM95]. We shall

show later that in the case of difference constraint systems, tree-like proofs, dag-like

proofs, linear proofs and read-once proofs coincide.

Although the work in this chapter focuses on linear arithmetic, on account of the

total unimodularity property, it can be thought of as providing proofs for a subclass

of integer arithmetic propositions.

3. Real-Time Scheduling - Whereas traditional scheduling problems are concerned with

finding a sequence that optimizes a performance metric [Pin95a], real-time schedul-

ing problems are characterized by the presence of non-constant execution times and

complex timing relationships among jobs [Sub05b]. The timing relationships are cir-

cular in nature and hence cannot be captured through precedence graphs; indeed, in

most cases a constraint network is needed to represent timing relationships [HL89].

If the constraints are infeasible, then there must exist a negative cost cycle under

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 88

the appropriate type of clairvoyance [Sub05a]. Empirical evidence [LTCA89] seems

to suggest that infeasibility is usually the result of a small infeasible subset. When

constraints in this subset are relaxed, the constraint system becomes feasible.

Constraint-based scheduling problems also arise in placement [AB93] and job-shops

[BPN95]; if the constraints are unsatisfiable, the goal is to identify the smallest un-

satisfiable subset.

4. SAT Research - A significant section of research in Satisfiability (SAT) problems

is concerned with the identification of a Minimum Unsatisfiable core of an unsatis-

fiable CNF formula. [LS04] describes both theoretical and practical milestones in

this research. It is important to note that the Minimum Unsatisfiable core problem is

not the dual of the Maximum Satisfiable Subformula (MSS) problem. For instance,

eliminating the minimum unsatisfiable core need not result in a satisfiable subfor-

mula. The MSS problem is strongly NP-complete for boolean formulas in CNF

(MAXSAT) [GJ79]; what is surprising is that it is NP-complete for unsatisfiable

linear programs as well [JP78].

Our work also finds application in the design of incremental algorithms for shortest

paths in an arbitrarily weighted network [DI04].

9.2 Refutability

9.2.1 The OLRR problem (ADD rule)

In this section, we are concerned with finding the shortest read-once refutations of

difference constraint systems.

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 89

9.2.1.1 Extracting a negative cycle in a directed graph from closed walks

In this section, we describe an algorithm for extracting a negative cost cycle (NCC) in

a directed graph from closed walks.

A walk from a vertex xi to a vertex x j is a directed path commencing at xi and ending

at x j. Note that the path need not be simple, i.e., a walk is permitted to repeat nodes and

edges. If a walk commences and ends on the same vertex, it is said to be closed. A walk of

k or fewer edges is called a k-walk.

A Bellman-Ford variant can be used to find a minimum cost closed k-walk around x j in

O(m · k) time. If a closed walk W has negative cost, then W contains a negative cost cycle.

That is, W can be expressed as the union of cycles, such that at least one of the cycles has

a negative cost.

Some observations are in order:

1. Let d(k)
i (j) denote the cost of the minimum cost k-walk from vertex xi to vertex x j.

(We permit the case, where i = j.)

2. Using the principle of optimality, it is easy to see that

d(k+1)
i (j) = min

 d(k)
i (j)

d(k)
i (r)+ cr, j : (r, j) ∈ E

(9.1)

Given d(k)
i (j) for all j = 1,2, . . .n, we can compute d(k+1)

i in O(m) time.

3. Pick x j ∈ V. We initialize d(0)
j (i) as follows:

d(0)
i (j) =

 0, if i = j

∞, otherwise

A single Bellman-Ford sweep of all the edges in G, with x j as the source, gives the

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 90

minimum cost 1-walk from x j to every vertex in G (including x j). Using the principle

of optimality described above, it follows that if we have computed the minimum cost

k-walk from x j to each vertex in the graph, then a subsequent Bellman-Ford sweep

will detect the minimum cost (k+1)-walk from x j to all the vertices in G. It follows

that the minimum cost closed k-walk around x j can be computed in O(m · k) time.

4. We maintain a data structure predi called the predecessor array for each vertex xi.

The structure predi stores the predecessor tree of the single source shortest paths tree

from vertex xi. This data structure is updated during the Bellman-Ford sweep, so

that the pred[j] points to the parent of vertex x j in the shortest paths tree from vertex

xi. To detect a negative cost closed k-walk around xi, we check if d(k)
i (i) < 0. If

this is the case, then there must exist a simple negative cycle having at most k edges,

in this closed walk. Such a cycle can be recovered in linear time by tracing back

from vertex xi using the pred[] structure [AMO93]. Let Wj denote the minimum

cost closed walk from x j to itself. Then, the shortest negative cost cycle in G is the

shortest of the walks Wj, across all vertices x j ∈V .

A Bellman-Ford sweep, as described previously, is performed by Algorithm 9.2.1.

Algorithm 9.2.1 An algorithm for performing a Bellman-Ford sweep.
Function BFSWEEP(G = 〈V,E,c〉, x j, d, pred j)

1: Let dtemp be a copy of d.
2: for (each edge (xi1,xi2) ∈ E) do
3: if (dtemp[xi2]< d[xi1]+ ci1,i2) then
4: dtemp[xi2]← d[xi1]+ ci1,i2 .
5: pred j[xi2]← xi1 .

6: return (dtemp).

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 91

Example 36: Consider the graph G in Figure 9.1.

x1 x2

x3x4

3

5

0

−1

1

−7

Figure 9.1: Directed Graph

Table 9.1 shows how a single Bellman-Ford, as performed by Algorithm 9.2.1, sweep

can calculate d(1)
1 from d(0)

1 .

x1 x2 x3 x4

d(0)
1 0 ∞ ∞ ∞

edge d(0)
1 (1) d(0)

1 (2) d(0)
1 (3) d(0)

1 (4)
(x1,x3) 0 ∞ −1 ∞

(x1,x4) 0 ∞ −1 1
(x2,x1) 0 ∞ −1 1
(x3,x1) 0 ∞ −1 1
(x3,x2) 0 ∞ −1 1
(x4,x3) 0 ∞ −1 1

Table 9.1: Bellman-Ford Sweep

Using Algorithm 9.2.1, we can now present Algorithm 9.2.2.

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 92

Algorithm 9.2.2 An algorithm for finding an NCC
Function NCC(G = 〈V,E,c〉, x j, ρ)

1: Initialize d to be vector of minimum cost 0-walks from x j to each vertex in G.
2: Initialize pred j to a vector of vertices in G.
3: for (k = 1 to ρ) do
4: d← BFSWEEP(G, x j, d, pred j)
5: if (d[j]< 0) then . A negative cost cycle of length k has been found.
6: Find a negative cost simple cycle C in this closed walk.
7: return (C).

This algorithm determines if the vertex x j is part of a negative cost walk using at most

ρ edges. If x j is past of such a walk, then NCC() will return a negative cycle that is part of

that walk.

Example 37: Consider the graph G in Figure 9.1. Table 9.2 shows how successive

Bellman-Ford sweeps can detect the shortest negative cost cycle that uses x1.

x1 x2 x3 x4

d(0)
1 0 ∞ ∞ ∞

d(1)
1 0 ∞ −1 1

d(2)
1 0 −1 −6 1

d(3)
1 −1 −6 −6 1

Table 9.2: Minimum cost k-walks from x1 for k = 0 . . .3.

As can be seen from Table 9.2, d(3)
1 (1) < 0. Thus, there is a negative cost 3-cycle in

G that uses x1. This cycle consists of the edges (x1,x4), (x4,x3), and (x3,x1) and has total

cost −1.

Theorem 9.2.1. If x j is on a negative cost closed walk with at most ρ edges, then NCC(G,

x j, ρ) will return a negative cost cycle.

Proof. This follows from the observation that every closed negative walk consists of a

union of simple cycles, at least one of which has negative cost.

Corollary 9.2.1. Let C∗ be a shortest NCC of G. If x j is on C∗ and |C∗| ≤ ρ , then NCC(G,

x j, ρ) will return a shortest NCC of G.

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 93

Proof. The key observation is that in this case the first negative closed walk that is detected

is the simple negative cycle involving x j.

It is worth noting that because of Corollary 9.2.1, we do not need to rely on Theorem

9.2.1. However, if we were to discover a negative cost walk that is not a simple cycle, then

it is useful to discover the simple negative cost cycle as well.

9.2.1.2 A simple randomized algorithm for SNCC

In this section, we present the first of our two randomized algorithms for SNCC; Algo-

rithm 9.2.3 represents our strategy.

Algorithm 9.2.3 A randomized algorithm for SNCC
Function SHORTEST-NEGATIVE-CYCLE(G = 〈V,E,c〉)

1: Let σ be a randomly generated permutation of {1, . . . ,n}.
2: D← NCC(G, xσ(1), n).
3: if (D = /0) then
4: return (-1).
5: else
6: l← |D|.
7:
8: for (j = 2 to n) do . For each vertex x j do

9: ρ ←min{l,
⌈

n
j−1

⌉
}.

10: C← NCC(G, xσ(j), ρ).
11: if (C 6= /0) and (|C|< l) then
12: D←C.
13: l← |C|.
14: return (l).

Algorithm 9.2.3 initially permutes the vertices {x1, . . . ,xn} of the input network G uni-

formly and at random; that is, each of the n! permutations of the vertex indices is equally

likely. Observe that the algorithm requires Ω(logn!) = Ω(n logn) random bits.

The algorithm then checks if G has a negative cost cycle reachable from xσ(1) and exits

in the absence of such a cycle. If a negative cost cycle is found, then its length is recorded

in l.

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 94

Each vertex is processed in sequence. The algorithm proceeds by generating the mini-

mum cost k-walks from x j to itself, for all values of k in the set {1,2, . . . ,min{l,d n
j−1e}},

where l is the length of the shortest negative cycle found thus far. For instance, consider the

vertex x2. All minimum cost closed k-walks around x2 for each k ≤ min{l,n} are gener-

ated. Likewise, in the case of vertex x3, all minimum cost closed k-walks around x3 having

at most min{l,dn
2e} edges are generated and so on.

Algorithm 9.2.3 can be viewed as a true-biased Monte-Carlo algorithm. If it returns a

value of l for the length of a shortest NCC, then it guarantees that a shortest NCC of G has

no more than l edges. Furthermore, the probability that a shortest NCC has fewer edges is

bounded above by 1
e .

9.2.1.2.1 Running time analysis

Let T (n,m) denote the running time of Algorithm 9.2.3 on a network G with n vertices

and m edges. In this subsection, we show that T (n,m) = O(m ·n · logn).

For Step (1), we can use any of the Bellman-Ford variants described in [AMO93]. All

these variants run in O(m ·n) time.

The bottleneck operation is Step 6, which is run for each j = 1 to n. The running time

of NCC(G, xi, ρ) is at most q ·m ·ρ for some constant q > 0. The value of ρ in Step 20 is

set in Step 17 to ρ(j) = min{l,
⌈

n
j−1

⌉
}.

Therefore,

T (n,m) ≤
n

∑
j=1

q ·m ·min
{

l,
⌈

n
j−1

⌉}

≤ q ·m ·

(
n+

n

∑
j=2

⌈
n

j−1

⌉)
≤ 2 ·q ·m ·n ·Hn,

where Hn is the nth Harmonic number, and is at most (1+ lnn).

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 95

It follows that T (n,m) = O(m ·n · logn).

9.2.1.2.2 Space analysis

In order to store the input graph, we require Θ(m+n) space. The distance labels from a

given vertex require Θ(n) space and so does the predecessor structure.

Observe that once a vertex has been processed, we no longer need its distance labels.

Likewise, we need to maintain its predecessor structure, only if it holds the current shortest

negative cost cycle. If not, it can be discarded as well.

It follows that the algorithm requires at most O(n) additional space and O(m+n) space

overall. This is a significant improvement over the quadratic space requirements of all

known deterministic algorithms [Sub09, SWG13].

9.2.1.2.3 Analysis of error bounds

We now establish that Algorithm 9.2.3 returns a shortest NCC of G with probability at

least (1− 1
e).

We assume that G has at least one negative cost cycle. Otherwise, Algorithm 9.2.3

returns (−1). In this case, the error probability is 0.

Let C∗ be a shortest NCC of G.

Let us consider a vertex a ∈C∗.

We compute the probability that C∗ is not discovered when vertex a is examined.

Assume that the label of a is r under the randomized permutation.

First observe that if r = 2, then C∗ will clearly be discovered, since for the first vertex

we examine paths up to length l, where l is the number of edges in the current candidate

for the shortest negative cost cycle.

The only way in which C∗ is not discovered when a is processed, is if the paths gen-

erated from a are of length at most |C∗|− 1. In other words, we must have
⌈ n

r−1

⌉
< |C∗|,

which in turn implies that r >
⌈

n
|C∗|

⌉
. Since a was chosen arbitrarily, the above observation

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 96

holds for all vertices in C∗. Thus, for C∗ to go undiscovered in the for loop commencing

on Step 6, none of the first
⌈

n
|C∗|

⌉
vertices in the random permutation can belong to C∗.

The probability that none of the first α =
⌈

n
|C∗|

⌉
vertices belong to C∗ can be computed

as:

n−|C∗|
n

· n−|C
∗|−1

n−1
· . . . · n−|C

∗|−α +1
n−α +1

=
α

∏
k=1

n−|C∗|− k+1
n− k+1

≤
(

n−|C∗|
n

)α

≤
(

1− 1
α

)α

≤ 1
e

It follows that Algorithm 9.2.3 succeeds with probability at least (1− 1
e)> 0.63.

Clearly, we can boost the probability of success by running Algorithm 9.2.3 multiple

times and taking the negative cycle with the smallest number of edges. In particular, if we

run it p times, the error probability will drop to e−p, while the running time will increase

to O(m ·n · p · logn).

9.2.1.3 Reducing the number of random bits

In this section, we describe a new randomized algorithm for the SNCC problem with

the goal of reducing the number of random bits. We recall that the algorithm discussed in

previous section requires

Ω(logn!) = Ω(n · logn) bits.

Our ideas are similar to those used in the design of skip lists (see [Pug92]).

Instead of randomly permuting the vertices, we associate with each vertex v, a random

variable level(v). This variable is determined as follows:

1. For each vertex v, we choose random bits until a bit with value 1 is chosen.

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 97

2. Let level(v) represent the number of bits chosen this way.

For each vertex v we require, on average, 2 random bits. Thus, on average, we require O(n)

bits; in fact, the bound is O(l), where l is the length of the shortest negative cost cost cycle

found during the initialization phase (Step 3 of Algorithm 9.2.4). This is an improvement

over the Ω(n · logn) required by the previous algorithm.

From each vertex v, the new algorithm searches for negative cycles of length at most

p · 2level(v)+1. This approach is detailed in Algorithm 9.2.4. Note that Algorithm 9.2.4 is

parameterized by input parameter p in that the probability that it finds the shortest NCC in

the input graph G is at least (1− e−p).

Algorithm 9.2.4 A new randomized algorithm for SNCC
Function SHORTEST-NEGATIVE-CYCLE(G = 〈V,E,c〉, p)

1: D← NCC(G, x1, n).
2: if (D = /0) then
3: return (−1).
4: else
5: l← |D|.
6:
7: for (each vertex v ∈ V) do
8: t← level(v).
9: ρ ←min{l, p ·2t+1}.

10: C← NCC(G, v, ρ).
11: if (C 6= /0) and (|C|< l) then
12: D←C.
13: l← |C|.
14: return (l)

9.2.1.3.1 Running time and space analysis

In this subsection, we show that the expected running time of Algorithm 9.2.4 on a

network G with n vertices and m edges is O(m ·n · p · logn)

After initialization, we have a negative cycle of length l. Let Tv denote the random

variable that represents the time taken by Algorithm 9.2.4 to execute the for loop on Line

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 98

5 when processing vertex v. We are interested in computing E[Tv]. Let i = level(v). Algo-

rithm 9.2.4 finds walks of length p ·2i+1 or of length l from v, whichever is less (see Step

7). Let q ·m denote the time taken for a single Bellman-Ford sweep of G, where q > 0 is a

fixed constant.

Accordingly, we have,

E[Tv] ≤
dlog le−1

∑
i=1

q ·m · p ·2i+1 ·Pr[level(v) = i]+q ·m · l ·Pr[level(v) = dlog le](9.2)

≤ 2 ·q ·m · p · log l +q ·m · l · 1
l

(9.3)

≤ q′ ·m · p · log l, forsomeconstantq′ (9.4)

Summing over all the vertices in G, it follows that the expected running time of Algo-

rithm 9.2.4 is O(m ·n · p · log l), i.e., O(m ·n · p · logn).

It is not hard to see that Algorithm 9.2.4 can be implemented in O(m+n) space as well.

9.2.1.3.2 Analysis of error bounds

We now establish that Algorithm 9.2.4 returns a shortest NCC of G with probability at

least (1− e−p).

We assume that G has at least one negative cost cycle. Otherwise, Algorithm 9.2.4

returns (−1). In this case, the error probability is 0.

Let C∗ be a shortest NCC of G. For each vertex v, ρ ≥ 4 · p. Thus, if |C∗| ≤ 4 · p, then

Algorithm 9.2.4 is guaranteed to succeed in finding the shortest negative cost cycle.

Let us consider a vertex v ∈C∗.

We compute the probability that C∗ is not discovered when vertex v is examined.

This can only happen if p ·2level(v)+1 ≤ ρ < |C∗|.

Let β =
⌊

log |C
∗|

p

⌋
. We have that C∗ will not be discovered when v is examined only if

level(v)≤ β .

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 99

The probability of this occurring is (1−2β)≤ (1− p
|C∗|).

Thus, the probability of failing when checking each vertex v ∈C∗ can be computed as:

(
1− p
|C∗|

)|C∗|
≤ e−p

It follows that Algorithm 9.2.4 succeeds with probability at least (1− e−p).

9.2.2 The WOLRR problem (ADD rule)

In this section, we are concerned with weighted difference constraints. A constraint

C of the form xi− x j ≤ bi j is called a weighted difference constraint if C is associated

with a weight li j > 0, where l : E→ Z+ is the weight function. Observe that if E′ ⊆

E is a set of edges in G, then l(E′) = ∑ei j∈E′ li j is defined as the sum of the lengths of

all edges in E′. A conjunction of weighted difference constraints is called a weighted

difference constraint system (WDCS). Constructing the corresponding constraint network

of a WDCS G = 〈V,E,b, l〉 is similar to constructing the constraint network of a DCS. The

key difference is that for each constraint C : xi− x j ≤ bi j with weight li j, we add the edge

e ji = (v j,vi) with cost bi j and length l(C) = li j. We denote the length of a path Pi j from

vertex vi to vertex v j as l(Pi j). Note that for constraint networks, we use the term “length”

rather than “weight.”

We already know that if a DCS is unsatisfiable, then there must exist a simple negative

cost cycle in the corresponding constraint network [Sub09]. The same applies for a WDCS.

Therefore, the refutation with the smallest total weight corresponds to the negative cost

cycle (“no”-certificate) with the smallest total length. We call the length of such a negative

cost cycle the weighted optimal length resolution refutation (WOLRR).

Using the terminology above, we define the WOLRR problem as follows: Given a

WDCS D : A · x ≤ b, where the weight of each constraint is a positive integer, find the

weight of a refutation having the smallest total weight.

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 100

Alternatively, based on the equivalence between difference constraints and constraint

networks, we define the WOLRR problem as: Given a network G = 〈V,E,b, l〉, where b is

the set of real edge costs and l is the set of positive integral edge lengths, find the length of

a negative cost cycle having the smallest total length.

9.2.2.1 A Pseudo-Polynomial Time Algorithm

In this section, we present a pseudo-polynomial time algorithm for computing the

WOLRR in a WDCS. Recall that an algorithm runs in pseudo-polynomial time if the run-

ning time is bounded by both the size (i.e., number of bits) and magnitude (i.e., value) of

the input. Note that pseudo-polynomial time algorithms may run in exponential time in the

worst case scenario. However, they may run in polynomial time if the input is bounded by

a polynomial function.

Consider the difference constraint network G = 〈V,E,b, l〉. Our approach applies the

pseudo-polynomial time algorithm described in [GRKL01]. This algorithm computes the

shortest path from source vertex v1 to all other vertices v j ∈ V for networks with positive

integral edge costs and having a transition time at most T . Note that [GRKL01] denotes the

cost of an edge with li j, while we use bi j. Furthermore, [GRKL01] uses the term “delay”

(denoted as ti j), while we use the term “length” (denoted as li j) to define the same property.

Assume the vertices are enumerated from 1 to n, where v1 denotes the source vertex.

Let L(j, t) denote the cost of the shortest path from vertex v1 to vertex v j with length at

most t. We compute L(j, t) using the following dynamic program [GRKL01]:

L(j, t) =


0 j = 1 t = 0, . . . ,T

∞ j = 2, . . . ,n t = 0

min

{
L(j, t−1), min

k|tk j≤t,ek j∈E
{L(k, t− tk j)+bk j}

}
j = 2, . . . ,n t = 1, . . . ,T.

Our algorithm modifies the dynamic program for networks with real edge costs. We

use the notation D(j, t) rather than L(j, t). This is to differentiate our modified dynamic

program from the dynamic program in [GRKL01]. We initialize D(j, t) to 0 when j =

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 101

1. However, we compute D(j, t) = min
{

D(j, t−1),mink|tk j≤t,ek j∈E{D(k, t− tk j)+bk j}
}

when j = 1, . . .n. Note that our algorithm does not apply to networks where the edge

lengths may be zero. Otherwise, D(j, t) could be defined in terms of itself if tk j = 0.

After computing D(j, t) for all v j ∈ V and a single value of t, we check if D(1, t) < 0.

If this is true, then there exists a negative cost cycle from vertex v1 to itself with length t.

Otherwise, we repeat the computation for t +1, where t +1≤ T .

To compute the WOLRR, we apply the above dynamic program for all vertices. For

each source vertex vs, let Ds(j, t) be the shortest path from vs to v j with length t. We

compute Ds(j, t) for all values of s, j, and a single value of t. We then check if Ds(s, t)< 0

for any vs ∈V. If this is true, we immediately halt the algorithm and return t as the WOLRR.

Otherwise, we repeat the calculations for t + 1, where t + 1 ≤ T . If L denotes the largest

length of any edge in G, then we set T = n ·L, which is the largest possible length for any

negative cost cycle.

The above observations are summarized in Algorithm 9.2.5 and Algorithm 9.2.6. Ob-

serve that Algorithm 9.2.6 gives us only the weight of the shortest refutation. The actual

negative cost cycle can be obtained by using a predecessor subgraph.

Algorithm 9.2.5 Single Vertex WOLRR Algorithm
Function SINGLE-VERTEX-WOLRR(G,vs, t)

1: Enumerate the vertices such that vs is v1.
2: for (j = 1 to n) do
3: D1(j, t) = min

{
D1(j, t−1),mink|lk j≤t,ek j∈E{Dl(k, t− lk j)+bk j}

}
.

4: if (D1(1, t)< 0) then
5: return (True).
6: return (False).

9.2.2.1.1 Analysis

From [GRKL01], we know that Algorithm 9.2.5 takes O(m) time because we scan each

edge exactly once.

We now analyze the running time of Algorithm 9.2.6. The for loop at line 4 clearly has

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 102

Algorithm 9.2.6 Pseudo-Polynomial Time Algorithm for WOLRR
Function PSEUDO-WOLRR(G)

1: n = |V|.
2: L = maxvi,v j∈V{li j}.
3: T = n ·L.
4: for (each vertex s ∈ V) do
5: for (t = 0 to T) do
6: Ds(s, t) = 0.
7: for (v j ∈ V−{s}) do
8: Ds(j, t) = ∞.
9: for (t = 1 to T) do

10: for (each vertex vs ∈ V) do
11: SINGLE-VERTEX-WOLRR(G, vs, t).
12: if (SINGLE-VERTEX-WOLRR returned True) then
13: return (“The WOLRR is t”).

O(n) iterations. Observe that the for loop at line 5 takes O(T) = O(n ·L) time, where L

is the largest length among all edges. Furthermore, the for loop at line 7 takes O(n) time.

Therefore, the for loop at line 4 runs in O(n2 ·L) time.

To analyze the for loop at line 9, observe that line 11 takes O(m) time since this is

Algorithm 9.2.5. The for loop at line 10 has O(n) iterations, and the for loop at line 9

has O(T) = O(n · L) iterations. Therefore, the for loop at line 9 takes O(n · L · n ·m) =

O(m ·n2 ·L) = O(n4 ·L) time.

9.2.2.1.2 Correctness

We now prove the correctness of our pseudo-polynomial time algorithm. We first address

the correctness of the dynamic program. Observe that [GRKL01] proves that the dynamic

program correctly computes the shortest paths from vertex v j to all other vertices with

length t for j = 2, . . . ,n and t = 1, . . . ,T , where T = n · L. The key difference with our

algorithm is that we include j = 1 in the computation. Thus, it must be the case that the

dynamic program correctly computes the shortest paths from the source vertex v j = v1 to

all other vertices.

This implies that when we update the value of D(j, t) for j = 1, D(j, t) represents the

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 103

cost of the shortest cycle containing vertex v1 whose length is at most t. The smallest t, for

which Ds(s, t) < 0, represents the length of the shortest negative cost cycle C containing

vs. We need to show that C is a simple negative cost cycle.

Suppose C is not a simple negative cost cycle, and there exists a vertex v ∈ V that

appears in C more than once. Consider the path along C from v to itself. This path forms

a cycle, which we denote as C1. Furthermore, C\C1 forms a second cycle, denoted as C2.

Observe that the total cost of C is the sum of the costs of C1 and C2. Likewise, the total

length of C is the sum of the lengths of C1 and C2.

Since C has a negative cost, at least C1 or C2, or both, must also have a negative cost.

Without loss of generality, assume that C1 is the negative cost cycle. Since all edge lengths

are strictly positive, the total length of C1 is less than the total length of C. This contradicts

the fact that C is the negative cost cycle with the smallest length. Therefore, C must be a

simple negative cost cycle.

9.2.2.2 A Fully Polynomial-Time Approximation Scheme

In this section, we present a fully polynomial time approximation scheme (FPTAS) for

computing the WOLRR of a DCS.

9.2.2.2.1 Preprocessing phase

The first phase of our algorithm converts G into a simpler network by erasing a carefully

selected subset of edges. This phase preserves the WOLRR of G.

Algorithm 9.2.7 removes the edges of G one-by-one in descending order with respect

to the lengths until G does not have a negative cost cycle. Let euv be the last edge removed

in this manner. Observe that the length of any negative cost cycle in G is at least luv. This

is because any negative cost cycle has to contain at least one edge whose length is at least

luv. Therefore, luv is a lower bound for the WOLRR of G.

Consider the moment immediately before the algorithm removes euv from G. luv is an

upper bound for the lengths of the remaining edges in G at that time moment since the

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 104

Algorithm 9.2.7 Preprocessing Step
Function PRE-PROCESS(G)

1: Let A be a vector of edges initialized as A = /0.
2: while (G has a negative cost cycle) do
3: Let ei j denote the edge of G with the largest length.
4: Remove ei j from G.
5: Add ei j to A .

6: Let euv be the last edge added to A .
7: for (each edge est in A such that lst ≤ n · luv) do
8: Add est back to G.

algorithm removes the edges in descending order with respect to their lengths. Since G has

a negative cost cycle at that moment, and a simple cycle can have at most n edges, (n · luv) is

an upper bound for the WOLRR of G. In other words, if |OPT | is the length of the negative

cost cycle with the smallest length in G, then |OPT | ≤ n · luv.

Algorithm 9.2.7 then inserts the edges with length at most (n · luv) back into G. This

means that when the algorithm terminates, the only edges that are pruned are the ones

whose lengths are more than (n · luv). Note that the transformation made by Algorithm 9.2.7

on G preserves the WOLRR. Since one can check the existence of a negative cost cycle on

a constraint network in O(m · n) time, the running time of Algorithm 9.2.7 is O(m2 · n) =

O(n5).

9.2.2.2.2 An FPTAS for WOLRR

We next present the main part of our algorithm. Let G = 〈V,E,b, l〉 be the constraint

network after the preprocessing step, and let ε > 0. We let P = ε·luv
n , where ε > 0 is

arbitrarily chosen. For each edge ei j remaining in G, we set l′i j to be
⌈

li j
P

⌉
. We then apply

Algorithm 9.2.6 on G′ = 〈V,E,b, l′〉, and the resulting WOLRR is our approximation. The

above observations are summarized in Algorithm 9.2.8.

Let OPT denote the negative cost cycle with the smallest length in G. Let OPT ′ denote

the negative cost cycle with the smallest length after running Algorithm 9.2.8. Let |OPT |

and |OPT ′| denote the lengths of their respective negative cost cycles. Our algorithm re-

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 105

Algorithm 9.2.8 FPTAS for WOLRR
Function WOLRR-FPTAS(G)

1: PRE-PROCESS().
2: Let G be the resulting constraint network.
3: Let P = ε·luv

n .
4: for (each edge ei j ∈ E) do
5: l′i j =

⌈
li j
P

⌉
.

6: Define: G′ = 〈V,E,b, l′〉
7: Let OPT ′ denote the resulting negative cost cycle with the smallest length from running

PSEUDO-WOLRR(G′).
8: return (|OPT ′|).

turns |OPT ′| at termination. In order to prove that our algorithm is an FPTAS, we will show

that |OPT ′| ≤ (1+ 2 · ε) · |OPT |. Clearly, this will prove our claim since ε > 0 is chosen

arbitrarily and 2 is a constant.

Recall that for each edge ei j ∈ E, we have l′i j =
⌈

li j
P

⌉
<

li j
P + 1. We claim that li j <

P · l′i j +P. If li j ≥ P · l′i j +P, then li j
P ≥ l′i j + 1, and therefore, l′i j =

⌈
li j
P

⌉
≥ li j

P ≥ l′i j + 1,

which is a contradiction.

Let l′(C) = ∑ei j∈C l′i j be defined as the sum of the scaled and rounded lengths of the

edges in C. If we add the above inequalities for all edges ei j that lie in OPT ′, we have

l(OPT ′)< P · l′(OPT ′)+P ·n. Here we used the fact that OPT ′ contains at most n edges.

Now, observe that OPT ′ is a negative cost cycle with the smallest length in G′. Hence, it

must be the case that l′(OPT ′)≤ l′(OPT). Thus, we will have l(OPT ′)< P · l′(OPT)+P ·

n. Taking into account that l′i j <
li j
P +1 and ε · luv = n ·P, we get

|OPT ′| = l(OPT ′)< P · l′(OPT)+P ·n < P · (l(OPT)
P +n)+P ·n

= l(OPT)+2 ·P ·n = |OPT |+2 · ε · luv.

Recall that euv is the last edge added to G such that the absence of euv would result in G

having no negative cost cycles. This means that any negative cost cycle in G must include

an edge of length at least luv. Hence, the length of any negative cost cycle in G must be at

least luv. Therefore, luv≤ |OPT |. Thus, we have |OPT |+2 ·ε · luv≤ |OPT |+2 ·ε · |OPT |=

CHAPTER 9. DIFFERENCE CONSTRAINT SYSTEMS 106

(1+2 · ε) · |OPT |. Therefore, we can conclude that |OPT ′| ≤ (1+2 · ε) · |OPT |.

We now analyze the running time of Algorithm 9.2.8. As previously stated, Line 1

takes O(n5) time. The for loop at line 4 takes O(m) = O(n2) time. For line 7, recall

that Algorithm 9.2.6 takes O(n4 ·L) time, where L is the length of the largest edge length.

However, in this case, the pseudo-polynomial time algorithms takes O(n4 ·L′) time, where

L′ =
⌈L

P

⌉
. Hence, the total running time is O(n4 ·L′).

We distinguish two cases. In the first case, L
P < 1. This means that O

(
n4 ·
⌈L

P

⌉)
=

O
(
n4). In the second case, L

P ≥ 1. This implies that
⌈L

P

⌉
≤
⌊L

P

⌋
+ 1 ≤ L

P + 1 ≤ 2 · L
P .

Therefore,

O
(
n4 ·
⌈L

P

⌉)
≤ O

(
n4 · L

P

)
= O

(
n4 · n·L

ε·luv

)
= O

(
n4 ·n L

ε·luv

)
≤ O

(
n5 · n·luv

ε·luv

)
= O

(
n6 · 1

ε

)
Observe that if ε < 1, then O(n6 · 1

ε
) dominates the running time of our algorithm. Since

the running time is polynomial in both (1/ε) and the size of the input instance, the above

algorithm is an FPTAS.

107

Chapter 10

UTVPI Constraint Systems

10.1 Motivation and Related Work

Unit Two Variable Per Inequality (UTVPI) constraints arise in a number of problem

domains, including but not limited to, program verification [LM05], abstract interpretation

[Min06, CC77], real-time scheduling [GPS95a] and operations research.

The focus of this chapter is on proofs of linear infeasibility in UCSs. Such proofs

are very important from the perspective of designing certifying algorithms. In a certifying

algorithm, both positive and negative answers must be accompanied by “certificates” which

attest to the validity of the answer. For general linear programs, strong duality (Farkas’

lemma) enables us to derive proofs of infeasibility.

Proofs of infeasibility are also referred to as refutations. There exist a number of refu-

tation types, depending upon how the input constraints can be used in the construction

of a proof of infeasibility. Our focus is on a class of refutations called resolution refuta-

tions. In resolution refutations, there is only one inference rule, viz., the transitive inference

rule. The three major types of (resolution) refutations are read-once, tree-like and dag-

like [Iwa97, IM95]. As already established in the previous section, read-once proofs are

not complete for the purpose of refuting linear feasibility in UCSs. However, both tree-like

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 108

and dag-like proof systems are complete. We will focus exclusively on tree-like refutations.

Optimal length proofs (refutations) of various types and for various constraint systems

have been studied extensively in the literature. In [Sub04b], optimal-length tree-like proofs

were studied for 2CNF formulae. In [Sub09], it was established that read-once, tree-like,

and dag-like proofs coincide for difference constraints systems.

On the read-once refutation side, [IM95] showed that the problem of checking if an ar-

bitrary CNF has an ROR is NP-complete. This result was strengthened in [KZ02], where

it was shown that the problem of checking whether a CNF formula has a read-once unit

resolution refutation is NP-complete. In [Sze01], it was shown that the problem of find-

ing literal-once resolution refutations for CNF formulas is NP-complete. The problem of

finding read-once refutations in 2CNF formulas is discussed in [KWS18]; this problem

was shown to be NP-complete. In this chapter, we examine the read-once refutation and

literal-once refutation problems on continuous (as opposed to discrete) variables.

As we can see, much of the work in finding short refutations focused on discrete do-

mains (CNF formulas). In a departure from existing work, [Sub09] considered difference

constraint systems from the perspective of determining the optimal length resolution refuta-

tions. That paper showed that short refutations exist for difference constraints and also that

the optimal length refutation can be determined in polynomial time. The algorithm therein

is based on dynamic programming and runs in time O(n3 · logn) on a DCS with n variables.

In [SWG13], a different dynamic program was used to achieve a time of O(m ·n ·k), where

m is the number of constraints and k is the length of the shortest refutation. It is worth not-

ing that in DCSs, linear and integer feasibility coincide and therefore, the departure is not

strict. Furthermore, as pointed out in [Sub09], every minimal refutation (i.e., a refutation

without redundant constraints) is necessarily read-once and literal-once, since every mini-

mal refutation corresponds to a simple negative cost cycle in the corresponding constraint

network [CLRS01]. In this paper though, we consider the problem of read-once refuta-

tions in UCSs. Unlike DCSs, linear feasibility does not imply integer feasibility in UCSs

[SW17b]. UTVPI constraints occur in a number of problem domains including but not

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 109

limited to program verification [LM05], abstract interpretation [Min06, CC77], real-time

scheduling [GPS95a] and operations research [HN94].

10.2 Refutability

10.2.1 The OLTR problem (ADD rule)

In this section, we discuss the problem of finding the shortest tree-like refutation of a

system of UTVPI constraints.

10.2.1.1 A dynamic programming approach

In this section, we design a dynamic programming algorithm for the OTLR problem.

Let U be a system of UTVPI constraints, and let G be the corresponding constraint network

constructed as described in Section 2.2.2. We have that every negative cost gray cycle in

G corresponds to a tree-like refutation of U of the same length. Thus, a negative cost gray

cycle with the fewest edges in G corresponds to an OTLR of U.

The algorithm (Algorithm 10.2.1) utilizes a variant of matrix multiplication to construct

matrices, D(k), which store the costs of the shortest k-path from each node to itself. This is

done as follows:

1. Let D(k) be an n× n matrix of shortest paths of length at most k. Each element of

D(k) has four values (d(k,)
i j , d(k,)

i j , d(k,)
i j , and d(k,)

i j) where each value represents the

cost of the shortest k-path of the corresponding type from node xi to node x j.

2. Let D(1) be the distance matrix corresponding to G.

3. Using the edge reductions described in [SW17b], we can compute D(k+l) =D(k) ·D(l)

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 110

as follows,

d(k+l,)
i j = min

 d(k,)
ir +d(l,)

r j , r = 1 . . .n

d(k,)
ir +d(l,)

r j , r = 1 . . .n

d(k+l,)
i j = min

 d(k,)
ir +d(l,)

r j , r = 1 . . .n

d(k,)
ir +d(l,)

r j , r = 1 . . .n

d(k+l,)
i j = min

 d(k,)
ir +d(l,)

r j , r = 1 . . .n

d(k,)
ir +d(l,)

r j , r = 1 . . .n
(10.1)

d(k+l,)
i j = min

 d(k,)
ir +d(l,)

r j , r = 1 . . .n

d(k,)
ir +d(l,)

r j , r = 1 . . .n

4. G has a negative cost gray cycle of length k or less if and only if d(k,)
ii < 0 for any

i = 1 . . .n.

Algorithm 10.2.1 Dynamic Programming Algorithm for UTVPI Constraints
Function OTLR-DYNAMIC-PROGRAM(G = 〈V,E,c〉)

1: for (k = 2 to (2 ·n+2)) do
2: Compute D(k) from D(k−1) ·D(1) as described by System (10.1).
3: for (i = 1 to n) do
4: if (d(k,)

ii < 0) then
5: return (k).
6: return (−1). . No negative cost gray cycle was detected.

10.2.1.1.1 Resource analysis

We now analyze the running time of Algorithm 10.2.1. Line 2 takes (c1 ·n3) time, where

c1 is some constant. This is because it takes (c1 ·n3) time to compute D(k) = D(k−1) ·D(1).

Checking if d(k,)
ii < 0 takes constant time. This means that the for loop at line 3 takes

(c2 ·n) time, where c2 is some constant.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 111

We now need to address the for loop at line 1. Since the loop iterates up to 2n+ 2

times, it would appear that we have (c3 ·n) iterations, where c3 is some constant. However,

observe that the algorithm terminates at line 5 as soon as we find the OTLR. Since k is the

value of the OTLR, the for loop at line 1 actually has (c3 · k) iterations.

Therefore, the running time of Algorithm 10.2.1, denoted as T (n), is

T (n) ≤ (c3 · k) · ((c1 ·n3)+(c2 ·n))

= (c1 · c3) ·n3 · k+(c2 · c3) ·n · k

= O(n3 · k).

We now analyze the space requirements for our algorithm. The key observation is that

for each l < k, once we compute D(l+1), we no longer need D(l). This means that we only

need to keep D(l+1) and D(1). Therefore, Algorithm 10.2.1 requires O(n2) space.

10.2.1.1.2 Correctness

We now prove the correctness of Algorithm 10.2.1.

Theorem 10.2.1. Algorithm 10.2.1 always returns either an OTLR of a UCS U correspond-

ing to the input network G or −1 if U is feasible.

Proof. Suppose Algorithm 10.2.1 returns some value k 6=−1. This means that there exists

some node xi ∈V such that d(k,)
ii < 0. This also means that xi is part of a negative cost gray

cycle of length k. This means that U has a tree-like refutation of length k.

We also know that for all nodes x j ∈ V, d(l,)
j j ≥ 0 for all 0 < l < k. Otherwise, there

would exist a different negative cost gray cycle with a length smaller than k. This means

that U has no tree-like refutations of length less than k. Therefore, k is an OTLR of U.

Suppose Algorithm 10.2.1 returns −1. This happens only when d(k,)
ii ≥ 0 for all xi ∈V

and all k≤ n. In this case, there are no negative cost gray cycles in G. From [SW17b], this

implies that U is feasible.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 112

10.2.1.1.3 Improved dynamic programming algorithm

We now discuss how we can improve the running time of Algorithm 10.2.1. Instead of

computing each matrix D(1) through D(k), we can repeatedly square the matrices. In this

case, we would compute D(1), D(2), D(4), We continue using repeated squaring until

we compute a matrix that indicates the presence of a negative cost gray cycle. Let D(h) be

this matrix. Note that h is not necessarily the OTLR. However, we do know that the OTLR

is between h
2 and h. Thus, we can utilize the matrices constructed during the repeated

squaring procedure to find the length of the OTLR by performing a binary search.

Instead of constructing each of the matrices D(1) through D(k) we can instead repeatedly

square the matrix (constructing the matrices D(1), D(2), D(4), . . .) to reduce the number of

matrix multiplications required. This process of repeated squaring continues until a matrix

indicating the existence of negative cost gray cycle is found. Let D(h) be this matrix. Note

that h is not the length of the OTLR, however the length of the OTLR is between h
2 and

h. Thus, we can utilize the matrices constructed during the repeated squaring procedure to

find the length of the OTLR by performing a binary search on the interval
[h

2 +1,h
]
.

To perform this binary search we first construct the matrix D(3
4 ·h) from D(1

2 ·h) and

D(1
4 ·h). If this matrix indicates the existence of a negative cost gray cycle, then we repeat

this process on the interval [1
2 ·h+1, 3

4 ·h]. Otherwise, we repeat on the interval [3
4 ·h+1,h].

When we find a k such that the matrix D(k) indicates the existence of a negative cost gray

cycle but the matrix D(k−1) does not, then we know that k is the OTLR.

This approach is described in Algorithm 10.2.2.

Note that Algorithm 10.2.2 needs to store the intermediary distance matrices so that

they do not need to be recomputed during the binary search procedure. This increases

the space needed from O(n2) to O(n2 · logk). However, we now perform only O(logk)

matrix multiplications instead of O(k) matrix multiplications. Therefore, the running time

of Algorithm 10.2.2 is O(n3 · logk).

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 113

Algorithm 10.2.2 Dynamic Programming Algorithm for UTVPI Constraints
Function IMPROVED-OTLR-DYNAMIC-PROGRAM(G = 〈V,E,c〉)

1: for (k = 1 to dlog(2 ·n+2)e) do
2: Compute D(2k) from D(2k−1) ·D(2k−1) as described by System (10.1).
3: for (i = 1 to n) do
4: if (d(

2k,)
ii < 0) then

5: h← 2k.
6: l← 2k−1.
7: Break from for loop on line 1.
8: if (a negative cost gray cycle was detected) then
9: for (k = (log l)−1 to 0) do

10: Compute D(l+2k) from D(2k) ·D(l) as described by System (10.1).

11: if (for any i = 1 . . .n, d(
l+2k,)

ii < 0) then
12: h← l +2k.
13: else
14: l← l +2k.
15: return (h).
16: else
17: return (−1).

10.2.1.2 A path following approach

In this section, we exploit the observations in Section 2.2.2 to design a simple, path

following algorithm for the OTLR problem. A negative cost gray cycle in G corresponds

to a tree-like refutation of the original UCS. Thus, the shortest such cycle in G corresponds

to an OTLR of the original UCS. The following observations result in Algorithms 10.2.3

and 10.2.4.

1. Let d(k,t)
i (j) denote the length of the shortest path of type t from node xi to node x j

with at most k edges.

2. Let d(k)
i () contain d(k,t)

i (j) for all j = 1 . . .n and t ∈ { , , . }.

3. We initially set d(0,t)
i (i) = 0 and d(0,t)

i (j) = ∞ for each t ∈ { , , , } and j 6= i.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 114

4. From [SW17b], we have that,

d(k+1,)
i (j) = min

 d(k,)
i (r)+ c(xr x j), r is a neighbor of j

d(k,)
i (r)+ c(xr x j), r is a neighbor of j

d(k+1,)
i (j) = min

 d(k,)
i (r)+ c(xr x j), r is a neighbor of j

d(k,)
i (r)+ c(xr x j), r is a neighbor of j

d(k+1,)
i (j) = min

 d(k,)
i (r)+ c(xr x j), r is a neighbor of j

d(k,)
i (r)+ c(xr x j), r is a neighbor of j

(10.2)

d(k+1,)
i (j) = min

 d(k,)
i (r)+ c(xr x j), r is a neighbor of j

d(k,)
i (r)+ c(xr x j), r is a neighbor of j

5. If we have a negative cost gray cycle of length k centered around an arbitrary node

xi, then d(k,)
i (i) < 0. Observe that any path which reduces to the edge (xi

bi xi)

also reduces to the edge (xi
bi xi) since these are the same edge. This means that

d(k,)
i (i) = d(k,)

i (i). Thus, it is only necessary to check one of these values.

10.2.1.2.1 Resource analysis

We first analyze the running time of Algorithm 10.2.3.

Lemma 10.2.1. Given d(k−1)
i (), Algorithm 10.2.3 computes d(k)

i () in O(m′) time, where m′

is the number of edges in the constraint network.

Proof. Observe that Algorithm 10.2.3 implements the recurrence relation defined by Sys-

tem (10.2). Computing d(k,t)
i is accomplished by relaxing all of the edges in G. Relaxing an

edge takes O(1) time, and G has m′ edges. Therefore, the running time of Algorithm 10.2.3

is O(m′).

We now analyze the running time of Algorithm 10.2.4. Let T (n,m′) denote the running

time of Algorithm 10.2.4 on a network with (n+1) nodes and m′ edges. Also let q ∈ O(1)

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 115

Algorithm 10.2.3 Shortest Path Computation for UTVPI Constraints

Function SHORTEST-PATH-UTVPI(G = 〈V,E,c〉,d(k)
i (),d(k−1)

i ())
1: for (j = 0 to n) do
2: for (t ∈ { , , , }) do
3: d(k,t)

i (j)← ∞.

4: for (each edge (xr x j) ∈ E) do
5: d(k,)

i (j)←min{d(k,)
i (j),d(k−1,)

i (r)+ c(xr x j)}
6: d(k,)

i (j)←min{d(k,)
i (j),d(k−1,)

i (r)+ c(xr x j)}
7: for (each edge (xr x j) ∈ E) do
8: d(k,)

i (j)←min{d(k,)
i (j),d(k−1,)

i (r)+ c(xr x j)}
9: d(k,)

i (j)←min{d(k,)
i (j),d(k−1,)

i (r)+ c(xr x j)}
10: for (each edge (xr x j) ∈ E) do
11: d(k,)

i (j)←min{d(k,)
i (j),d(k−1,)

i (r)+ c(xr x j)}
12: d(k,)

i (j)←min{d(k,)
i (j),d(k−1,)

i (r)+ c(xr x j)}
13: for (each edge xr x j ∈ E) do
14: d(k,)

i (j)←min{d(k,)
i (j),d(k−1,)

i (r)+ c(xr x j)}
15: d(k,)

i (j)←min{d(k,)
i (j),d(k−1,)

i (r)+ c(xr x j)}

Algorithm 10.2.4 Deterministic Algorithm for UTVPI Constraints
Function SHORTEST-NEGATIVE-GRAY-CYCLE(G = 〈V,E,c〉)

1: for (k = 1 to (2 ·n+2)) do
2: for (i = 0 to n) do
3: SHORTEST-PATH-UTVPI(G,d(k)

i (),d(k−1)
i ()).

4: if (d(k,)
i (i)< 0) then

5: return (k).
6: return (−1). . No negative cost gray cycle was detected.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 116

denote the time for a single edge relaxation. Observe that the for loop in lines 2 to 5 has

O(n) iterations. From Lemma 10.2.1, we know that line 3 takes O(m′) time. Therefore, the

total running time is:

T (n,m′) ≤
k

∑
i=1

n

∑
j=0

q ·m′

= q ·m′ · (n+1) · k

∈ O(m′ ·n · k)

= O(m ·n · k)

10.2.1.2.2 Correctness

We now prove the correctness of Algorithm 10.2.4. First we need the following lemma

from [SW17b].

Lemma 10.2.2. If the UCS U is infeasible, then the corresponding constraint network G

has a negative cost gray cycle with at most (2 ·n+2) edges.

The proof of this lemma is found in [SW17b].

Theorem 10.2.2. Algorithm 10.2.4 always returns an OTLR of the UCS U corresponding

to the input network G or −1 if U is feasible.

Proof. We first address the correctness of Algorithm 10.2.3. As stated in Lemma 10.2.1,

the algorithm is an implementation of System (10.2). From [SW17b], System (10.2) cor-

rectly calculates d(k+1)
i () from d(k)

i ().

If Algorithm 10.2.4 returns k 6= −1, then for some node xi, d(k,)
i (i) < 0. This means

that xi is located on a negative cost gray cycle of length k. This means that U has a tree-like

refutation of length k.

We also know that for all nodes x j, d(l,)
j (j) ≥ 0 for all 0 < l < k. Thus, G has no

negative cost gray cycles of length less than k. This means that U has no tree-like refutation

of length less than k. Thus, k is the length of an OTLR of U.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 117

If Algorithm 10.2.4 returns −1, then for all nodes x j, d(l,)
j (j) ≥ 0 for all 0 < l ≤

(2 · n+ 2). Thus, G has no negative cost gray cycles with (2 · n+ 2) or fewer edges. By

Lemma 10.2.2, U must be feasible.

10.2.1.3 A randomized approach

In this section, we propose a randomized algorithm for an OTLR problem in UCSs.

This algorithm is a generalization of the randomized algorithm for finding shortest negative

cost cycles in a directed graph [OSW18].

In each iteration, the algorithm (Algorithm 10.2.5) processes a randomly chosen node.

Let vr denote the node chosen by the rth iteration of this process. The algorithm proceeds

by generating the shortest paths from vr to every node in the network G having at most⌈2·n+2
r

⌉
edges (see Lemma 10.2.2).

Algorithm 10.2.5 represents our strategy to find the shortest negative cost gray cycle in

a UTVPI constraint network with arbitrarily costed edges.

Algorithm 10.2.5 Randomized Algorithm for UTVPI Constraints
Function SHORTEST-NEGATIVE-GRAY-CYCLE(G = 〈V,E,c〉)

1: if (G has a negative cost gray cycle) then
2: Let l be the number of edges in the cycle.
3: else
4: return (−1).
5: for (r = 1 to (n+1)) do
6: Let xi be a node in V chosen uniformly and at random.
7: for (k = 1 to

⌈2·n+2
r

⌉
) do

8: SHORTEST-PATH-UTVPI(G,d(k)
i (),d(k−1)

i ()).

9: if (d(k,)
i (i)< 0) and (k < l) then

10: l← k.
11: return (l).

Resource Analysis: Let T (n,m′) denote the running time of Algorithm 10.2.5 on a

network with (n+ 1) nodes and m′ edges. Also let q1 ∈ O(1) denote the amount of time

taken by a single edge relaxation. The check on line 1 can be accomplished in O(m′ · n)

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 118

time [SW17b]. Indeed, some negative cost gray cycle (not necessarily the one having the

fewest number of edges) is returned by the linear feasibility algorithm in [SW17b]. Let

q2 ·m′ · (n+ 1) be the amount of time taken by this process. The for loop on lines 5 has

O(n) iterations. From Lemma 10.2.1, it follows that each iteration of the for loop on line 7

takes O(m′) time. Thus, we have that:

T (n,m′) ≤ q2 ·m′ · (n+1)+
n+1

∑
r=1

d 2·n+2
r e

∑
k=1

q1 ·m′

= q2 ·m′ · (n+1)+q1 ·m′ ·

n+1

∑
r=1

d 2·n+2
r e

∑
k=1

1


= q2 ·m′ · (n+1)+q1 ·m′ ·

(
n+1

∑
r=1

⌈
2 ·n+2

r

⌉)
≤ q2 ·m′ · (n+1)+q1 ·m′ ·2 · (n+1) · (Hn+1)

∈ O(m′ ·n · logn)

= O(m ·n · logn)

where Hn is the nth harmonic number.

10.2.1.3.1 Correctness

We now establish that Algorithm 10.2.5 returns an OTLR of G with high probability.

Theorem 10.2.3. Algorithm 10.2.5 returns the OTLR with probability at least (1− 1
e).

Proof. If G has no negative cost gray cycles, then Algorithm 10.2.5 returns −1. Thus,

Algorithm 10.2.5 always returns the correct answer in this case.

If G has a negative cost gray cycle, then let C denote an OTLR of G. Let NC be the

number of nodes in C and |C| be the length of C. Note that |C| ≤ 2 ·NC [SW17b].

Let us compute the probability that C is discovered during the rth iteration of the for

loop on line 3. Let xi be the vertex chosen this iteration. If r ≤
⌈

n+1
NC

⌉
, then r ≤

⌈
2·n+2
2·NC

⌉
≤⌈

2·n+2
|C|

⌉
. This means that |C| ≤

⌈2·n+2
r

⌉
. Thus, C will be discovered if xi lies on C. This

has a probability of NC
n+1 .

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 119

Let Er be the event that the rth node processed by the algorithm is not a node of C. Note

that these events are independent. We have that C not being discovered corresponds to the

event
⋂n

r=1 Er [MR95]. Thus, the probability that C is not discovered by Algorithm 10.2.5

is

P

(
n⋂

r=1

Er

)
≤ P


⌈

n+1
NC

⌉⋂
r=1

Er


=

⌈
n+1
NC

⌉
∏
r=1

P(Er)

≤
(

1− NC

n+1

)⌈ n+1
NC

⌉

≤ 1
e

It follows that Algorithm 10.2.5 succeeds with probability at least (1− 1
e) = 0.632.

Clearly, we can boost the probability of success by running the same procedure multiple

times. Indeed, the expected number of runs before finding an OTLR is 2.

10.2.2 The WOLTR problem (ADD rule)

In this section, we introduce the weighted optimal length tree-like refutation problem

(WOTLR). This problem is concerned with weighted UTVPI constraints, which are defined

below:

Definition 10.2.1. A UTVPI constraint of the form ai ·xi+a j ·x j ≤ bi j and ai,a j ∈ {1,−1}

is called a weighted UTVPI constraint if there exists a positive, integral weight li j > 0,

where l : E→N is the weight function.

Note that if E′ ⊆ E is a set of edges in G, then l(E) = ∑ei j ∈ Eli j. A conjunction of

weighted UTVPI constraints is called a weighted UTVPI constraint system (WUCS).

Constructing the corresponding constraint network of a WUCS is similar to construct-

ing the constraint network of a UCS. The key difference is we assign each edge ei j ∈ V

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 120

a length li j. Note that the term “length” is used for the constraint network rather than

“weight.” This is because the term “weight” is commonly used in networks to define the

cost of an edge. Thus, to prevent confusion, we use the term “length” for the constraint

network.

As previously described in [SW17b], if a UCS is unsatisfiable, then there must exist a

negative cost gray cycle in the corresponding constraint network. Clearly, this observation

holds for a WUCS. Therefore, the tree-like refutation with the smallest total weight corre-

sponds to the negative cost gray cycle with the smallest total length. We call the length of

such a negative cost gray cycle the weighted optimal length tree-like refutation (WOTLR).

Using the terminology above, we define the WOTLR problem as follows:

Given a WUCS U : A ·x ≤ b, where the weight of each constraint is a positive integer,

find the weight of a tree-like refutation having the smallest total weight.

Alternatively, we define the WOTLR problem as follows:

Given a network G = 〈V,E,c, l〉 with real edge costs and positive integral edge lengths,

find the length of the negative cost gray cycle having the smallest total length.

Note that every difference constraint is a UTVPI constraint. Thus, the WOLTR problem

for UTVPI constraints is a more general version of the WOLTR problem for difference

constraints. The WOLTR problem for difference constraints is NP-hard [Sub09]. Thus, so

is the WOLTR problem for UTVPI constraints.

10.2.2.1 A pseudo-polynomial time algorithm

In this section, we present a pseudo-polynomial time algorithm for computing the

WOTLR in a WUCS. This algorithm is a key subroutine for our FPTAS. Consider the

UTVPI constraint network G = 〈V,E,c, l〉. We apply the pseudo-polynomial time algo-

rithm in [GRKL01]. This algorithm computes the shortest path from a source node v1 to

all other nodes v∈V for networks with positive integral edge costs and having a transition

time at most T . Note that [GRKL01] uses the term “length” to define the cost of an edge

ei j, while we use the term “cost.” Additionally, [GRKL01] uses the term “delay” (denoted

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 121

as ti j), while we use the term “length” (denoted as li j) to define the same property.

Assume the vertices are enumerated from 1 to n, where v1 denotes the source node. Let

L(j, t) denote the cost of the shortest path from node v1 to node v j with length at most t.

For each j = 1 . . .n and T = 0 . . .T , we compute L(j, t) using the dynamic program from

[GRKL01]:

L(j, t) =



0 j = 1 t ≥ 0

∞ j ≥ 2 t = 0

min

{
L(j, t−1), min

k|tk j≤t,ek j∈E
{L(k, t− tk j)+bk j}

}
j ≥ 2 t ≥ 1

We modify the dynamic program for networks with real edge costs. We use the notation

D(j, t) rather than L(j, t). This is to differentiate our modified dynamic program from

the dynamic program in [GRKL01]. We apply the dynamic program for each edge type

in the WUCS. Let D()(j, t), D()(j, t), D()(j, t), and D()(j, t) denote the shortest

path from node x1 to x j with length at most t for the respective edge types. We initialize

D()(j, t), D()(j, t), D()(j, t), and D()(j, t) to 0 when j = 1. We let xr, instead of xk,

denote the neighboring node of x j. This is because k is already used to denote the value of

the WOTLR. Instead of computing min
{

L(j, t−1),mink|tk j≤t,ek j∈E{L(k, t− tk j)+bk j}
}

,

we apply the dynamic programs from System (10.2) in Section 10.2.1.2. We formally

define our dynamic programs below.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 122

D()(j, t) =



0 j = 1 t = 0

∞ j ≥ 2 t = 0

min


D()(j, t−1)

minr|lr j≤t

 D()(r, t− lr j)+ c(vr v j)

D()(r, t− lr j)+ c(vr v j)

j ≥ 1 t ≥ 1

D()(j, t) =



0 j = 1 t = 0

∞ j ≥ 2 t = 0

min


D()(j, t−1)

minr|lr j≤t

 D()(r, t− lr j)+ c(vr v j)

D()(r, t− lr j)+ c(vr v j)

j ≥ 1 t ≥ 1

D()(j, t) =



0 j = 1 t = 0

∞ j ≥ 2 t = 0

min


D()(j, t−1)

minr|lr j≤t

 D()(r, t− lr j)+ c(vr v j)

D()(r, t− lr j)+ c(vr v j)

j ≥ 1 t ≥ 1

D()(j, t) =



0 j = 1 t = 0

∞ j ≥ 2 t = 0

min


D()(j, t−1)

minr|lr j≤t

 D()(r, t− lr j)+ c(vr v j)

D()(r, t− lr j)+ c(vr v j)

j ≥ 1 t ≥ 1

After computing D(type)(j, t) for all j ∈ V, for all type ∈ { , , , }, and a single

value of t, we check if D()(1, t)< 0 (or D()(1, t)< 0). If this is true, then there exists

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 123

a negative cost gray cycle from node v1 to itself with length t. Otherwise, we repeat the

computation for (t +1)≤ T .

We apply the dynamic programs for all nodes. For each source node vs, D(type)
s (j, t)

is the shortest path from vs to v j with length t, where type ∈ { , , , }. We com-

pute D(type
s (j, t) for all values of vs, v j, type, and a single value of t. We then check if

D()
s (s, t) < 0 (or D()

s (s, t) < 0) for any vs ∈ V. If this is true, then t is the WOTLR.

Otherwise, we repeat the calculations for (t +1)≤ T . If L denotes the largest edge length

of any edge in G, then we set T = (2 ·n+2) ·L, which is the largest possible length for any

negative cost gray cycle.

The above observations are summarized in Algorithm 10.2.6 and Algorithm 10.2.7.

Algorithm 10.2.6 Single Node WOTLR Algorithm for UTVPI Constraints
Function SINGLE-NODE-WOTLR(G,vs, t)

1: Enumerate the nodes such that vs is v1.
2: for j = 1 to n do
3: for (type ∈ { , , , }) do
4: Compute D(type)

1 (j, t) as described above.

5: if (D()
1 (j, t)< 0) then

6: return (True).
7: return (False).

10.2.2.1.1 Resource analysis

From [GRKL01], we know that Algorithm 10.2.6 takes O(m) time because we scan each

edge exactly once.

We now analyze the running time of Algorithm 10.2.7. The for loop at line 4 has (c1 ·n)

iterations, where c1 is some constant. The for loop at line 5 takes (c2 ·T) = (c2 · (2 · n+

2) ·L) time, where L is the largest length among all edges and c2 is some constant. The for

loop at line 8 takes (c3 ·n) time, where c3 is some constant. Therefore, the running time of

the for loop at line 4, which we denote as T1(n), is

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 124

Algorithm 10.2.7 Pseudo-Polynomial Time WOTLR Algorithm
Function PSEUDO-WOTLR(G)

1: n = |V|.
2: L = maxvi,v j∈V{li j}.
3: T = (2 ·n+2) ·L.
4: for (each node vs ∈ V) do
5: for (t = 0 to T) do
6: for (type ∈ { , , , }) do
7: D(type)

s (s, t) = 0.
8: for (v j ∈ V−{vs}) do
9: D(type)

s (j, t) = ∞.
10: for (t = 1 to T) do
11: for (each node vs ∈ V) do
12: SINGLE-NODE-WOTLR(G, vs, t).
13: if (SINGLE-NODE-WOTLR returned True) then
14: return (“The WOTLR is t”).

T1(n) ≤ (c1 ·n) · (c2 · (2 ·n+2) ·L) · (c3 ·n)

= (c1 ·n) · (2 · c2 ·n ·L+2 · c2 ·L) · (c3 ·n)

= (2 · c1 · c2 · c3) ·n3 ·L+(2 · c1 · c2 · c3) ·n2 ·L

= O(n3 ·L).

We will now analyze the for loop at line 14. Observe that line 16 takes (c4 ·m) = O(m)

time, where c4 is a constant, since this is Algorithm 10.2.6. The for loop at line 15 has

(c5 · n) iterations, and the for loop at line 14 has (c6 ·T) = (c6 · (2 · n+ 2) ·L) iterations,

where c5 and c6 are constants. This means that the running of the for loop at line 14, which

we denote as T2(m,n), is

T2(m,n) ≤ (c6 · (2 ·n+2) ·L) · (c5 ·n) · (c4 ·m)

= (2 · c6 ·n ·L+2 · c6 ·L) · (c5 ·n) · (c4 ·m)

= (2 · c4 · c5 · c6) · (n ·n ·m ·L)+(2 · c4 · c5 · c6) · (n ·m ·L)

= O(n4 ·L).

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 125

Therefore, the running time of Algorithm 10.2.7, denoted as T (m,n), is

T (m,n) ≤ T1(n)+T2(m,n)

≤ d1 · (n3 ·L)+d2 · (n4 ·L)

≤ d3 · (n4 ·L)

= O(n4 ·L),

where d1, d2, and d3 are constants.

10.2.2.1.2 Correctness

We now prove the correctness of our pseudo-polynomial time algorithm. We first ad-

dress the correctness of the dynamic program in Algorithm 10.2.6. Consider the dynamic

program D()
s (j, t) for computing the shortest white path from vs to v j. Suppose 2≤ j≤ n

and 1≤ t ≤ T . This means that we compute the dynamic program:

D()
s (j, t) = min


D()

s (j, t−1)

minr|lr j≤t

 D()
s (r, t− lr j)+ c(vr v j)

D()
s (r, t− lr j)+ c(vr v j)

Observe that this dynamic program uses the same logic as the dynamic program from

[GRKL01]. We already know that [GRKL01] correctly computes shortest paths from vs to

v j with length t for j = 2, . . . ,n and t = 1, . . . ,T , where T = (2 · n+ 2) ·L. There are two

key differences with this dynamic program. First, we also find the shortest white path from

a node to itself. In other words, we include j = 1 in the computation. Second, we use Sys-

tem (10.2) for the second argument of our min operation. Section 10.2.1.2.2 already proves

that System (10.2) correctly computes the shortest paths of increasing length. Therefore,

it must be the case that the dynamic program correctly computes the shortest white paths

from vs to all other nodes v j. Similar arguments can be used to prove that D()
s (j, t),

D()
s (j, t), and Ds(j, t) correctly compute their respective shortest paths in a WUCS.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 126

This implies that when we update the values of D(type)
s (s, t) for type ∈ { , , , },

D()
s (s, t) represents the cost of the shortest gray cycle containing node vs whose length

is at most t. The smallest t, for which D()
s (s, t)< 0, represents the length of the shortest

negative cost gray cycle Cs containing vs. The smallest length among all Ci for all vi ∈ V

must give the WOTLR.

10.2.2.2 An FPTAS for the WOTLR problem

In this section, we present a fully polynomial time approximation scheme (FPTAS) for

computing the WOTLR of a WUCS.

Definition 10.2.2. An FPTAS is an algorithm that takes an instance of an optimization

problem and a parameter ε > 0 and produces a solution that is within a factor (1+ ε)

(or (1− ε) for maximization problems) of the optimal solution. The running time of the

algorithm is to be polynomial in both the problem size and (1/ε).

10.2.2.2.1 Preprocessing phase

We first need to convert G into a simpler network by erasing a carefully selected subset

of edges.

Algorithm 10.2.8 Preprocessing Step
Function PRE-PROCESS()

1: Let A be a vector of edges initialized as A = /0.
2: while (G has a negative cost gray cycle) do
3: Let ei j denote the edge of G with the largest length.
4: Remove ei j from G.
5: Add ei j to A .

6: Let euv be the last edge added to A .
7: for (each edge est in A such that lst ≤ (2 ·n+2) · luv) do
8: Add est back to G.

Algorithm 10.2.8 removes the edges of G one-by-one in descending order with respect

to the lengths until G does not have a negative cost gray cycle. Let euv be the last edge

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 127

removed. Observe that the length of any negative cost gray cycle in G is at least luv. This

is because any negative cost gray cycle has to contain at least one edge whose length is at

least luv. Therefore, luv is a lower bound for the WOTLR of G.

Consider the moment immediately before the algorithm removes euv from G. luv is an

upper bound for the lengths of the remaining edges in G at that moment since the algo-

rithm removes the edges in descending order with respect to their lengths. Since G has a

negative cost gray cycle at that moment, and a gray cycle can have at most (2 ·n+2) edges,

((2 ·n+2) · luv) is an upper bound for the WOTLR of G. In other words, if |OPT | is the

length of the negative cost gray cycle with the smallest length in G, then

|OPT | ≤ (2 ·n+2) · luv.

Algorithm 10.2.8 then inserts the edges with length at most ((2 ·n+2) · luv) back into

G. This means that when the algorithm terminates, the only edges that are removed are the

ones whose lengths are more than ((2 ·n+2) · luv). Observe that the transformation made

by Algorithm 10.2.8 on G preserves the WOTLR. We can check the existence of a negative

cost gray cycle on a constraint network in (c1 ·m ·n) = O(m ·n) time [SW17b], where c1 is

some constant. Furthermore, observe that lines 3 to 5 takes (c2 ·m) time, and the for loop

at line 8 takes (c3 ·m) time, where c2 and c3 are constants. Therefore, the running time of

Algorithm 10.2.8, denoted as T1(m,n), is

T1(m,n) ≤ (c1 ·m ·n) · (c2 ·m)+(c3 ·m)

= (c1 · c2) · (m2 ·n)+(c3 ·m)

≤ (c1 · c2) · (n4 ·n)+(c3 ·m)

= (c1 · c2) ·n5 +(c3 ·m)

= O(n5).

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 128

10.2.2.2.2 A description of our FPTAS

We next present the main part of our algorithm. For simplicity purposes, let G =

〈V,E,c, l〉 be the constraint network after the preprocessing step, and let ε > 0.

We let P = ε·luv
2·n+2 , where ε > 0 is arbitrarily chosen. For each edge ei j remaining in

G, we set l′i j to be
⌈

li j
P

⌉
. We then apply Algorithm 10.2.7 on G′ = 〈V,E,c, l′〉, and the

resulting WOTRR is our approximation. The above observations are summarized in Algo-

rithm 10.2.9.

Algorithm 10.2.9 FPTAS for WOLRR
Function WOTLR-FPTAS()

1: PRE-PROCESS().
2: Let G be the resulting constraint network.
3: Let P = ε·luv

2·n+2 .
4: for (each edge ei j ∈ E) do
5: l′i j =

⌈
li j
P

⌉
.

6: Define: G′ = 〈V,E,c, l′〉
7: Let OPT ′ denote the resulting negative cost gray cycle with the smallest length from

running PSEUDO-WOTLR(G′).
8: return (|OPT ′|).

Let OPT denote the negative cost gray cycle with the smallest length in G. Let OPT ′

denote the negative cost gray cycle with the smallest length after running Algorithm 10.2.9.

Let |OPT | and |OPT ′| denote the lengths of their respective negative cost gray cycles. Our

algorithm returns |OPT ′| at termination. In order to prove that our algorithm is an FPTAS,

we will show that |OPT ′| ≤ (1+2 ·ε) · |OPT |. Clearly, this will prove our claim since ε > 0

is chosen arbitrarily and 2 is a constant.

Recall that for each edge ei j ∈ E, we have l′i j =
⌈

li j
P

⌉
<

li j
P +1. We claim that

l(ei j)< P · l′i j +P.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 129

If l(ei j)≥ P · l′i j +P, then l(ei j)
P ≥ l′i j +1, and therefore

l′i j =

⌈
li j

P

⌉
≥

l(ei j)

P
≥ l′i j +1

which is a contradiction.

Let l′(C) = ∑ei j∈C l′i j be defined as the sum of the scaled and rounded lengths of the

edges in C. If we add the above inequalities for all edges ei j that lie in OPT ′, we have

l(OPT ′)< P · l′(OPT ′)+P · (2 ·n+2).

Here we used the fact that OPT ′ contains at most (2 ·n+2) edges. Now, observe that OPT ′

is a negative cost gray cycle with the smallest length in G′. Hence, it must be the case that

l′(OPT ′)≤ l′(OPT). Thus, we have

l(OPT ′)< P · l′(OPT)+P · (2 ·n+2).

Taking into account that l′i j <
li j
P +1 and ε · luv = (2 ·n+2) ·P, we get

|OPT ′| = l(OPT ′)

< P · l′(OPT)+P · (2 ·n+2)

< P ·
(

l(OPT)
P

+(2 ·n+2)
)
+P · (2 ·n+2)

= l(OPT)+2 ·P · (2 ·n+2)

= |OPT |+2 · ε · luv

Recall that euv is the last edge added to G such that the absence of euv would result in

G having no negative cost gray cycles. This means that any negative cost gray cycle in

G must include an edge of length at least luv. Hence, the length of any negative cost gray

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 130

cycle in G must be at least luv. Therefore,

luv ≤ |OPT |.

Thus, we have

|OPT |+2 · ε · luv ≤ |OPT |+2 · ε · |OPT |

= (1+2 · ε) · |OPT |

Therefore, we can conclude that |OPT ′| ≤ (1+2 · ε) · |OPT |.

We now analyze the running time of Algorithm 10.2.9. Let T (n) denote the running

time of Algorithm 10.2.9. As previously stated, line 1 takes O(n5) time. The for loop from

lines 4 to 6 takes (c ·m)≤ (c ·n2) = O(n2) time, where c is some constant. For line 8, recall

that Algorithm 10.2.7 takes O(n4 ·L) time, where L is the length of the largest edge length.

However, in this case the pseudo-polynomial time algorithm takes O(n4 ·L′) time, where

L′ =
⌈L

P

⌉
. Hence, the total running time is O(n4 ·L′). We distinguish two cases.

Case 1: L
P < 1. In this case,

T (n) ≤ (d1 ·n5)+(c ·n2)+d2 · (n4 ·L′)

= (d1 ·n5)+(c ·n2)+d2 ·
(

n4 ·
⌈

L
P

⌉)
≤ (d3 ·n5)

= O
(
n5) ,

where d1, d2, and d3 are constants.

Case 2: L
P ≥ 1. Then, ⌈

L
P

⌉
≤

⌊
L
P

⌋
+1

≤ L
P
+1

≤ 2 · L
P
.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 131

Therefore, the running time of our FPTAS is

T (n) ≤ (d1 ·n5)+(c ·n2)+d2 · (n4 ·L′)

= (d1 ·n5)+(c ·n2)+d2 ·
(

n4 ·
⌈

L
P

⌉)
≤ (d1 ·n5)+(c ·n2)+d2 ·

(
n4 ·2 · L

P

)
= (d1 ·n5)+(c ·n2)+2 ·d2 ·

(
n4 · (2 ·n+2) ·L

ε · luv

)
= (d1 ·n5)+(c ·n2)+2 ·d2 ·

(
n4 · (2 ·n+2) · L

ε · luv

)
≤ (d1 ·n5)+(c ·n2)+2 ·d2 ·

(
d3 ·n5 · L

ε · luv

)
≤ (d1 ·n5)+(c ·n2)+2 ·d2 ·

(
d3 ·n5 · (2 ·n+2) · luv

ε · luv

)
≤ (d1 ·n5)+(c ·n2)+2 ·d2 ·

(
d3 ·d4 ·n6 · 1

ε

)
≤ d5 ·

(
n6 · 1

ε

)
= O

(
n6 · 1

ε

)
,

where d1, d2, d3, d4, and d5 are constants.

Observe that if ε < 1, then O(n6 · 1
ε
) dominates the running time of our algorithm. Since

the running time is polynomial in both (1/ε) and the size of the input, the above algorithm

is an FPTAS.

10.2.3 The LOR problem (ADD rule)

In this section, we investigate the LOR problem in UTVPI constraints. Recall that in

a literal-once refutation (LOR), no literal can be used more than once. We shall show that

such refutations, if they exist, can be identified in polynomial time via a reduction to the

MWPM problem.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 132

10.2.3.1 Construction

Assume that we are given a UCS U : A ·x≤ b with n variables and m constraints.

We construct the undirected graph G = 〈V,E,c〉 as follows:

1. For each variable xi in U, add the vertices x+i and x−i to V. Additionally, add the edge

x−i
0 x+i to E.

2. Add the vertices x+0 and x−0 to V. Additionally, add the edge x−0
0 x+0 to E.

3. For each constraint lk of U, add the vertices lk and l′k to V, and the edge lk
0 l′k to E.

Additionally:

(a) If lk is of the form xi + x j ≤ bk, add the edges x+i
bk
2 lk and x+j

bk
2 l′k to E.

(b) If lk is of the form xi− x j ≤ bk, add the edges x+i
bk
2 lk and x−j

bk
2 l′k to E.

(c) If lk is of the form −xi + x j ≤ bk, add the edges x−i
bk
2 lk and x+j

bk
2 l′k to E.

(d) If lk is of the form −xi− x j ≤ bk, add the edges x−i
bk
2 lk and x−j

bk
2 l′k to E.

(e) If lk is of the form xi ≤ bk, add the edges x+i
bk
2 lk, x+0

bk
2 l′k, and x−0

bk
2 l′k to E.

(f) If lk is of the form −xi ≤ bk, add the edges x−i
bk
2 lk, x+0

bk
2 l′k, and x−0

bk
2 l′k to

E.

4. The weights on the edges in the above construction constitute the cost function c of

G.

Note that if U has m constraints over n variables, then G has (2 ·n+2 ·m+2) vertices

and (n+3 ·m+Na +1) edges where Na is the number of absolute constraints in U. Since

Na ≤ m, we can conclude that |V| ≤ c1 · (m + n), for some constant c1 ≥ 1 and |E| ≤

c2 · (m+n) for some constant c2 ≥ 1.

Example 38: Let us consider UCS (10.3).

l1 : −x1 + x2 ≤ −2 l2 : x1 + x3 ≤ −2 l3 : −x2− x3 ≤ 2 (10.3)

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 133

x+0x−0

x+1x−1

x+2

x−2 x+3

x−3

l1

l′1

l2

l′2

l3 l′3

0

0

0 0
0

00

1
1

−1

−1

−1

−1

Figure 10.1: Undirected graph corresponding to UCS (10.3).

Applying the construction discussed above to UCS (10.3), we get the undirected graph

in Figure 10.1.

It can be shown that the minimum weight perfect matching in this graph is x+1
−1 l2,

l′2
−1 x+3 , x−3

1 l′3, l3
1 x−2 , x+2

−1 l′1, and l1
−1 x−1 . This matching has weight −2 and

corresponds to the literal-once refutation obtained by summing constraints l1, l2, and l3 (see

Theorem 10.2.4).

10.2.3.2 Correctness

We will now complete the reduction, by establishing the correctness of the above con-

struction.

Observe that x0 is represented by only two nodes (viz., x+0 and x−0), although there

could be more than two absolute constraints in the system. We argue that these two nodes

are sufficient from the perspective of preserving literal-once refutations.

Lemma 10.2.3. Let U : A ·x≤ b denote a UCS. If U has a read-once refutation using abso-

lute constraints, then U has a read-once refutation using zero or two absolute constraints.

Proof. Let R be a read-once refutation of U with the minimum number of absolute con-

straints, and let |R|a represent the number of absolute constraints in R.

If R has an odd number of absolute constraints, then the total number of literals in R

would also be odd. Thus, summing the constraints in R would not result in a constraint of

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 134

the form 0≤ b where b < 0, which is a requirement of a read-once refutation. Thus, R must

have an even number of absolute constraints.

Assume that |R|a > 2. Let l0 : ai · xi ≤ b0 be an absolute constraint in R. Since R is a

read-once refutation, there must be a constraint l1 with the term −ai · xi.

If l1 is an absolute constraint, then the sum of l0 and l1 is a constraint of the form 0≤ b.

If b < 0, then the constraints l0 and l1 form a refutation using fewer absolute constraints

than R. If b ≥ 0, then the remaining constraints form a read-once refutation using fewer

absolute constraints than R. Both cases contradict the assumption that R is a read-once

refutation with the fewest absolute constraints.

If l1 is not an absolute constraint, then the sum of l0 and l1 is a constraint of the form

a j · x j ≤ b. Thus, we can continue this process, always eliminating the only variable in the

derived constraint, until either:

1. No constraints remaining in R can eliminate the variable. In this case, the sum of the

constraints in R is not of the form 0≤ b < 0. Thus, R is not a read-once refutation.

2. The variable can be eliminated by an absolute constraint. In this case we again derive

a constraint of the form 0≤ b. As before, this contradicts the assumption that R is a

read-once refutation with the fewest absolute constraints.

All possible cases lead to a contradiction, thus we must have that |R|a ≤ 2. Since |R|a
is even, this means that |R|a ∈ {0,2}.

Note that the proof of Lemma 10.2.3 applies to both read-once and literal-once refuta-

tions, since every literal-once refutation is a read-once refutation.

Theorem 10.2.4 relates literal-once refutations to negative weight perfect matchings.

Theorem 10.2.4. Let U : A ·x≤ b denote a UCS and let G = 〈V,E,c〉 denote the graph

constructed from U, as described in subsection 10.2.3.1.

Then, U has a literal-once refutation if and only if G has a negative weight perfect

matching.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 135

Proof. First assume that U has a literal-once refutation L. Without loss of generality (see

Lemma 10.2.3), we can assume that L has 0 or 2 absolute constraints. Since L is a literal-

once refutation, it is also a read-once refutation. Therefore, if we sum up the constraints in

L, we get 0≤ b, where b < 0.

We can construct a negative weight perfect matching P of G as follows:

1. For each variable xi in U, if L does not use xi add the edge x+i
0 x−i to P.

2. For each two variable constraint lk in U:

(a) If lk 6∈ L, add the edge lk
0 l′k to P.

(b) If lk ∈ L is of the form xi + x j ≤ bk, add the edges x+i
bk
2 lk and x+j

bk
2 l′k to P.

(c) If lk ∈ L is of the form xi− x j ≤ bk, add the edges x+i
bk
2 lk and x−j

bk
2 l′k to P.

(d) If lk ∈ L is of the form −xi +x j ≤ bk, add the edges x−i
bk
2 lk and x+j

bk
2 l′k to P.

(e) If lk ∈ L is of the form −xi−x j ≤ bk, add the edges x−i
bk
2 lk and x−j

bk
2 l′k to P.

3. If L has no absolute constraints, add the edge x+0
0 x−0 to P.

4. If L has absolute constraints, as per Lemma 10.2.3, it must have exactly two of them,

say lk and lr, k < r.

We first process lk:

(a) If lk is of the form xi ≤ bk, add the edge x+i
bk
2 lk to P.

(b) If lk is of the form −xi ≤ bk, add the edge x−i
bk
2 lk to P.

Add the edge x+0

bk
2 l′k to P.

We then process lr:

(a) If lr is of the form xi ≤ br, add the edge x+i
br
2 lr to P.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 136

(b) If lr is of the form −xi ≤ br, add the edge x−i
br
2 lr to P.

Add the edge x−0
br
2 l′r to P.

We first establish that P is a perfect matching by showing that each vertex in G is

incident upon exactly one edge in P. Observe that:

1. If there are no absolute constraints in L, then the only edge in P to use x+0 and x−0 is

x+0
0 x−0 .

2. If there are two absolute constraints in L, then let lk and lr denote these constraints,

with k < r. Thus, the only edge in P to use x+0 is x+0

bk
2 l′k and the only edge in P to

use x−0 is x−0
br
2 l′r.

3. For each variable xi:

(a) If xi is not used by L, then the only edge in P to use x+i and x−i is x+i
0 x−i .

(b) If xi is used by L, then there exists exactly one constraint lk ∈ L which uses the

literal xi and exactly one constraint lr ∈ L which uses the literal −xi. Thus, the

only edge in P to use x+i is x+i
bk
2 lk (or x+i

bk
2 l′k), depending on whether xi is

the first variable or second variable respectively, in the constraint lk. Likewise,

the only edge in P to use x−i is x−i
br
2 lr (or x−i

br
2 l′r), depending on whether xi

is the first variable or second variable respectively, in the constraint lr.

4. For each constraint lk:

(a) If lk 6∈ L, then the only edge in P to use lk and l′k is lk
0 l′k.

(b) If lk ∈ L, then

i. If lk is of the form ai ·xi+a j ·x j ≤ bk, where ai,a j ∈ {1,−1}, then the only

edge in P to use lk is x+i
bk
2 lk (if ai = 1) or x−i

bk
2 lk (if ai =−1). Likewise,

the only edge in P to use l′k is x+j
bk
2 l′k (if a j = 1) or x−j

bk
2 l′k (if a j =−1).

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 137

ii. If lk is of the form ai · xi ≤ bk, where ai ∈ {1,−1}, then the only edge in

P to use lk is x+i
bk
2 lk (if ai = 1) or x−i

bk
2 lk (if ai = −1). Likewise, the

only edge in P to use l′k is x+0

bk
2 l′k, if lk is the first absolute constraint or

x−0

bk
2 l′k, if lk is the second absolute constraint.

This means that every vertex in G is an endpoint of exactly one edge in P and P is a perfect

matching.

Observe that only constraints in L contribute non-zero weight edges to the matching P.

Furthermore, each constraint in lk in L contributes exactly (bk
2 + bk

2) = bk to the weight of

the matching. It therefore follows that

∑
e∈P

c(e) = ∑
lk∈L

(
bk

2
+

bk

2
) = ∑

lk∈L
bk < 0.

The negativity of the sum of the weights follows from the fact that L is a literal-once

refutation. It follows that P is a negative weight perfect matching.

Now assume that G has a negative weight perfect matching P. We construct a literal-

once refutation L as follows:

For each constraint lk in U, if P does not use the edge lk
0 l′k, then add the constraint

lk to L.

We make the following observations:

1. If the literal xi appears in a constraint in L, then so does the literal −xi - Let lk ∈ L

and let literal xi appear in lk. The edge lk
0 l′k is clearly not part of the matching P,

since lk would not be in L otherwise. It follows that either x+i
bk
2 lk is in P or x+i

bk
2 l′k

is in P depending on whether xi is the first or second variable in lk. Then, it must be

the case that the edge x+i
0 x−i is not in P. This forces one of the edges x−i

br
2 lr or

x−i
br
2 l′r to be in P, for some r. This means that the edge lr

0 l′r is not part of the

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 138

matching either. It follows that the constraint lr ∈ L, which forces the literal −xi to

be in L.

2. If the literal −xi appears in a constraint in L, then so does the literal xi - Let lk ∈ L

and let literal−xi appear in lk. The edge lk
0 l′k is clearly not part of the matching P,

since lk would not be in L otherwise. It follows that either x−i
bk
2 lk is in P or x−i

bk
2 l′k

is in P depending on whether xi is the first or second variable in lk. Then, it must be

the case that the edge x+i
0 x−i is not in P. This forces one of the edges x+i

br
2 lr or

x+i
br
2 l′r to be in P, for some r. This means that the edge lr

0 l′r is not part of the

matching either. It follows that the constraint lr ∈ L, which forces the literal xi to be

in L.

3. Each literal can appear in at most one constraint in L - Assume the contrary and let

the literal xi appear in two distinct constraints lk and lr in L. As argued above, since

xi appears in lk, then either x+i
bk
2 lk is in P or x+i

bk
2 l′k is in P depending on if xi is

the first or second variable in lk. Likewise, since xi appears in lr, either x+i
br
2 lr is in

P or x+i
br
2 l′r is in P. In either case, xi is matched to two distinct vertices in P, which

is not possible. An identical argument establishes that the literal −xi cannot appear

in two distinct constraints in L.

4. Summing all the constraints in L results in a contradiction of the form 0 ≤ b, b < 0

- Based on the discussion above, we know that if a literal xi appears in a constraint

in L, then so does the literal −xi. Furthermore, each literal can appear in at most one

constraint in L. It follows that if we sum the constraints, we get 0 on the left hand

side, since each literal is canceled by it counterpart.

If a constraint lk ∈ L, then the edge lk
0 l′k is not in P. Thus, P must contain one

edge from lk and one edge from l′k, which are distinct. By construction, these edges

have weight bk
2 .

Conversely, if the constraint lk 6∈ L, then the edge lk
0 l′k is in P. Thus, none of the

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 139

edges of weight bk
2 from lk and l′k are in P.

By construction, the remaining edges in P have weight 0. This means that

∑
lk∈L

bk = ∑
lk∈L

(
bk

2
+

bk

2
) (10.4)

= ∑
e∈P

c(e) (10.5)

< 0 (10.6)

Note that Equation (10.4) follows from the fact that constraint lk ∈ L contributes

two edges to the matching P. One of these edges is from vertex lk and the other

edge is from vertex l′k. Furthermore, both these edges have weight bk
2 . Equation

(10.5) follows from the fact all edges in P which did not result in the corresponding

constraint being included in L have weight 0. Finally, relation (10.6) follows from

the fact that P is a negative weight perfect matching. We thus have, 0 ≤ ∑lk∈L bk =

∑e∈P c(e) < 0, since summing the constraints in L results in a sum of 0 on the left

hand side.

Based on the four observations above, it is clear that L is a literal-once refutation of

U.

Note that this method cannot be used to identify read-once refutations that reuse literals.

Example 39: Consider the UCS described by System (10.7).

l1 : x1 + x2 ≤−2 l2 : x1 + x3 ≤−2 l3 : −x1− x4 ≤−2

l4 : −x1− x5 ≤−2 l5 : −x2− x3 ≤ 2 l6 : x4 + x5 ≤ 2
(10.7)

This corresponds to the undirected graph in Figure 10.2.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 140

x+0x−0

x+1

l1

l′1

x+2

x−2

l5

l′5

x−3

x+3

l′2

l2

x−1

l3

l′3

x−4

x+4

l6

l′6

x+5

x−5

l′4

l4

0

0

0

00

0

0

0

0

0

00

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

Figure 10.2: Undirected graph corresponding to UCS (10.7)

It is not hard to see that the minimum weight perfect matching in this graph is x+1
0 x−1 ,

x+2
0 x−2 , x+3

0 x−3 , x+4
0 x−4 , x+5

0 x−5 , l′1
0 l′′1 , l′2

0 l′′2 , l′3
0 l′′3 , l′4

0 l′′4 , l′5
0 l′′5 ,

and l′6
0 l′′6 . This matching has weight 0 and indicates that UCS (10.7) has no literal-once

refutation.

However, UCS (10.7) still has a read-once refutation obtained by summing all six con-

straints.

10.2.3.3 Resource analysis

To construct G, we need to process each variable and each constraint in U. Each vari-

able and each constraint can be processed in constant time. Thus, the reduction can be

performed in O(m+ n) time. The minimum weight perfect matching of G can be found

in O(|E| · |V|+ |V|2 · log |V|) time [Gab90]. As discussed in Subsection 10.2.3.1, G has

O(m+ n) vertices and O(m+ n) edges. Thus, by using this reduction, the LOR problem

for UTVPI constraints can be solved in O((m+n)2 · log(m+n)) time.

10.2.4 The ROR problem (ADD rule)

In this section, we show that read-once refutations in systems of UTVPI constraints (if

they exist) can be found in polynomial time.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 141

To find these refutations, we modify the undirected graph construction described in

Section 10.2.3. The undirected graph construction in Section 10.2.3 does not allow for the

reuse of variables. However, as demonstrated in Example 10.2.3.2, a read-once refutation

may need to use a variable more than once. In our new construction, we increase the

number of vertices representing each variable.

10.2.4.1 Construction

We convert the UCS U : A ·x≤ b into an undirected graph G′ = 〈V′,E′,c′〉 as follows:

1. For each variable xi in U, add the vertices x+i , x′i
+, x−i , and x′i

− to V′. Additionally,

add the edges x−i
0 x+i and x′i

− 0 x′i
+ to E′.

2. Add the vertices x+0 and x−0 to V′. Additionally, add the edge x−0
0 x+0 to E′.

3. For each constraint lk of U, add the vertices lk and l′k to V′ and the edge lk
0 l′k to

E′. Additionally:

(a) If lk is of the form xi+x j ≤ bk, add the edges x+i
bk
2 lk, x′i

+
bk
2 lk, x+j

bk
2 l′k, and

x′j
+

bk
2 l′k to E′.

(b) If lk is of the form xi−x j ≤ bk, add the edges x+i
bk
2 lk, x′i

+
bk
2 lk, x−j

bk
2 l′k, and

x′j
−

bk
2 l′k to E′.

(c) If lk is of the form −xi + x j ≤ bk, add the edges x−i
bk
2 lk, x′i

−
bk
2 lk, x+j

bk
2 l′k,

and x′j
+

bk
2 l′k to E′.

(d) If lk is of the form −xi− x j ≤ bk, add the edges x−i
bk
2 lk, x′i

−
bk
2 lk, x−j

bk
2 l′k,

and x′j
−

bk
2 l′k to E′.

(e) If lk is of the form xi ≤ bk, add the edges x+i
bk
2 lk, x′i

+
bk
2 lk, x+0

bk
2 l′k, and

x−0

bk
2 l′k to E′.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 142

(f) If lk is of the form −xi ≤ bk, add the edges x−i
bk
2 lk, x′i

−
bk
2 lk, x+0

bk
2 l′k, and

x−0

bk
2 l′k to E′.

In this (new) construction, each variable is represented by a pair of 0-weight edges. As

we shall see, this permits each vertex to be used twice by a read-once refutation. How-

ever, we still only have one 0-weight edge for each constraint, which prevents a read-once

refutation from reusing edges.

Note that if U has m constraints over n variables, then G′ has (4 ·n+2 ·m+2) vertices

and (2 ·n+5 ·m+1) edges. In other words, G′ has O(m+n) vertices and O(m+n) edges.

Example 40: Let us return to UCS represented by System (10.7). As shown in Section

10.2.3, UCS (10.7) does not have a literal-once refutation. However, it does have a read-

once refutation. The new undirected graph corresponding to UCS (10.7) is shown in Figure

10.3.

x+0x−0

x+1

x′1
+

l1

l′1 x+2

x′2
+

x−2

x′2
− l5

l′5

x−3

x′3
−

x+3

x′3
+

l′2

l2

x−1

x′1
−

l3

l′3x−4

x′4
−

x+4

x′4
+l6

l′6

x+5

x′5
+

x−5

x′5
−

l′4

l4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

1

1

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

Figure 10.3: Undirected graph corresponding to UCS (10.7)

It can be shown that the minimum weight perfect matching in this graph is x+1
−1 l2,

l′2
−1 x+3 , x−3

1 l′5, l5
1 x−2 , x+2

−1 l′1, l1
−1 x′1

+, x′1
− −1 l3, l′3

−1 x−4 , x+4
1 l6, l′6

1 x+5 ,

x−5
−1 l′4, l4

−1 x−1 , x′2
+ 0 x′2

−, x′3
+ 0 x′3

−, x′4
+ 0 x′4

−, and x′5
+ 0 x′5

−. This matching

has weight −4 and corresponds to the read-once refutation obtained by summing all six

constraints (see Theorem 10.2.5).

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 143

10.2.4.2 Correctness

We now proceed to argue the correctness of the above construction.

We first establish a structural property of certain read-once refutations in a UCS (see

Lemma 10.2.5). This property will be used in Theorem 10.2.5.

Let R be a read-once refutation of U which uses the fewest number of constraints, i.e.,

a shortest read-once refutation. Let xi be a variable used by R. Let |R|i be the number of

constraints in R that use the literal xi. Since R is a read-once refutation, |R|i is also the

number of constraints that use the literal −xi.

Assume that |R|i ≥ 3. By Lemma 10.2.3, we can assume without loss of generality that

R has at most 2 absolute constraints. Thus R must have a non-absolute constraint that uses

xi. Let l0 : xi+a j ·x j ≤ bi j be one such non-absolute constraint in R. l0 is called the current

constraint. In what follows, we will proceed through a sequence of stages eliminating

the non-xi variable in the current constraint, until eventually xi itself is eliminated or a

contradiction results.

Algorithm 10.2.10 represents our approach.

Lemma 10.2.4. PROCESS-REFUTATION(R, l0) cannot return any value.

Proof. Recall that R is a shortest read-once refutation of U and that |R|i ≥ 3. Assume that

PROCESS-REFUTATION(R, l0) returns a value of u. We will show that every value of u

results in a contradiction.

1. u = −1 - In this case, there is a non-xi literal that cannot be canceled by any of the

the remaining constraints in R. Thus, the sum of the constraints in R is not of the

form 0≤ b < 0. It follows that R is not a read-once refutation.

2. u = −2 - Note that every time a constraint ls is added to sum it cancels the non-xi

variable in ∑lh∈sum lh. Thus, ∑lh∈sum lh is always a UTVPI constraint of the form

ai · xi +a j · x j ≤ b, ai,a j ∈ {1,−1}, where x j is the non-canceled variable in ls. The

only exception to this is if ls is an absolute constraint. However, in this case lines

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 144

Algorithm 10.2.10 Shortest refutation property
Function PROCESS-REFUTATIONR, l0

1: sum := {l0}. . The set of constraints processed thus far.
2: numi := 1.
3: R′ := R\{l0}.
4: while (R′ 6= /0) do
5: Let ls ∈ R′ be a constraint which cancels the non-xi variable in ∑lh∈sum lh.
6: if (ls does not exist) then
7: return(−1).
8: R′ := R′ \{ls}.
9: sum := sum∪{ls}.

10: if (ls is an absolute constraint) then
11: Let l′s be the remaining absolute constraint in R.
12: R′ := R′ \{l′s}. ls = l′s.
13: sum := sum∪{ls}.
14: if (ls uses the literal −xi) then
15: if (numi = 1) then
16: return(−2).
17: else
18: return(−3).
19: if (ls uses the literal xi) then
20: if (numi = 1) then
21: numi := 2.
22: Let l′s ∈ R be a non-absolute constraint with the literal −xi.
23: R′ := R′ \{l′s}. ls = l′s.
24: sum′ := sum.
25: sum := {ls}.
26: else
27: return(−2).
28: return(−4).

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 145

13 though 15 are executed and the other absolute constraint in R (viz., l′s) is added to

sum. This returns ∑lh∈sum lh to the desired form.

Algorithm 10.2.10 can return −2 from either line 19 or line 32. Thus, we need to

consider the following cases:

(a) Line 19 was executed - In this case, numi = 1 and the condition in the if state-

ment on line 17 was satisfied by a constraint ls which uses the literal−xi. Since

numi = 1, lines 26 through 30 have not been executed. Thus, the first constraint

added to sum is l0 which contains the literal xi (cf. line 30). The non-canceled

literal in ls is −xi. Thus, ∑lh∈sum lh is a constraint of the form xi− xi ≤ b. Note

that the literal xi is used only once by the constraints in sum. Hence, sum ⊂ R.

If b < 0, then the constraints in sum form a read-once refutation of U. If b≥ 0,

then the constraints in R\ sum form a read-once refutation of U. It follows that

R is not the shortest read-once refutation of U.

(b) Line 32 was executed - In this case, numi = 2 and the condition in the if state-

ment on line 24 was satisfied by a constraint ls which uses the literal xi. Since

numi = 2, lines 26 through 30 have been executed. Thus, the first constraint

added to sum is the constraint l′s found on line 27 which contains the literal

−xi. l′s is guaranteed to exist because there are at least three constraints in R

that use the literal −xi and at most two of them can be absolute constraints.

The non-canceled literal in ls is xi. Thus, ∑lh∈sum lh is a constraint of the form

−xi+xi ≤ b. Note that the literal xi is used only once by the constraints in sum.

Thus, sum⊂ R. If b < 0, then the constraints in sum form a read-once refutation

of U. If b≥ 0, then the constraints in R\ sum form a read-once refutation of U.

It follows that R is not the shortest read-once refutation of U.

3. u = −3 - In this case, numi = 2 and the condition in the if statement on line 17

was satisfied by a constraint ls which uses the literal −xi. Since numi = 2, some

constraint lk satisfied the condition in the if statement on line 24. Furthermore, lines

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 146

26 through 30 have been executed. Let lk′ be the constraint found on line 27. Thus,

sum contains the constraints l′k and ls both of which use the literal −xi. As argued

previously, all other literals have been canceled. Thus, ∑lh∈sum lh is a constraint of

the form−xi−xi ≤ b. Similarly, sum′ contains the constraints l0 and lk both of which

use the literal xi. Thus, ∑lh∈sum′ lh is a constraint of the form xi + xi ≤ b′. This means

that ∑lh∈sum∪sum′ lh is a constraint of the form 0≤ b+b′.

Note that sum contains no constraints that use xi and that sum′ contains two con-

straints that use xi. Thus, sum∪ sum′ ⊂ R, since as per the hypothesis R has three

constraints which use the literal xi. If b < 0, then the constraints in sum∪ sum′ form

a read-once refutation of U. If b≥ 0, then the constraints in R\ (sum∪ sum′) form a

read-once refutation of U. It follows that R is not the shortest read-once refutation of

U.

4. u =−4 - In this case, we have processed every constraint in R. In partuclar, we have

processed every constraint in R that uses the literal xi. Let l1, l2 ∈ R be the first two

such constraints processed, i.e., both l1 and l2 use the literal xi and are processed

before any other constraint in R that also uses literal xi. Assume that l1 is processed

before l2. Since |R|i ≥ 3, the constraints l1 and l2 are guaranteed to exist.

Since both l1 and l2 use the literal xi, Algorithm 10.2.10 will execute the portion

between lines 25 and 34. When processing l1, it must be the case that numi = 1 and

hence, Algorithm 10.2.10 sets numi to 2. Now, when constraint l2 is processed, numi

is already 2 and hence line 32 is executed and a value of −2 is returned.

Lemma 10.2.5. Let U : A ·x≤ b denote an infeasible UCS. If U has a read-once refutation,

then it has a read-once refutation, in which each literal is used at most twice.

Proof. Let R be the shortest read-once refutation of U. Assume that |R|i ≥ 3, for some

literal xi, where |R|i is the number of constraints in R that use the literal xi (as discussed

before). Recall that R must have a non-absolute constraint l0 of the form xi−a j · x j ≤ bi j.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 147

From Lemma 10.2.4, PROCESS-REFUTATION(R, l0) cannot return any value. However,

R is finite. Thus, PROCESS-REFUTATION(R, l0) must eventually halt and return a value.

This is a contradiction. It follows that we must have |R|i ≤ 2, for every literal xi.

Theorem 10.2.5. Let U : A ·x≤ b denote a UCS and let G′ = 〈V′,E′,c′〉 denote the graph

constructed from U, as described in subsection 10.2.4.1.

Then, U has a read-once refutation if and only if G′ has a negative weight perfect

matching.

Proof. First assume that U has a read-once refutation R. As argued in Lemma 10.2.5, we

can assume that each literal in U occurs in R at most twice.

We construct a negative weight perfect matching P of G′ as follows:

1. For each variable xi in U:

(a) If R does not use the literal xi, add the edges x+i
0 x−i and x′i

+ 0 x′i
− to P.

(b) If R uses the literal xi only once, add the edge x′i
+ 0 x′i

− to P.

(c) If R uses the literal xi twice, do not add any edges to P.

2. Assume that the constraints in U are assigned an arbitrary order. For constraint lk in

U:

(a) If lk 6∈ R, add the edge lk
0 l′k to P.

(b) If lk ∈ R is of the form ai · xi +a j · x j ≤ bk such that ai,a j ∈ {1,−1}:

i. If lk is the first edge to use the literal xi, add the edge x+i
bk
2 lk to P. If it is

the second, add the edge x′i
+

bk
2 lk.

ii. If lk is the first edge to use the literal −xi, add the edge x−i
bk
2 lk to P. If it

is the second, add the edge x′i
−

bk
2 lk.

iii. If lk is the first edge to use the literal x j, add the edge x+j
bk
2 l′k to P. If it is

the second, add the edge x′j
+

bk
2 l′k.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 148

iv. If lk is the first edge to use the literal −x j, add the edge x−j
bk
2 l′k to P. If it

is the second, add the edge x′j
+

bk
2 l′k.

(c) If lk ∈ R is of the form ai · xi ≤ bk, such that aI ∈ {1,−1}:

i. If lk is the first edge to use the literal xi, add the edge x+i
bk
2 lk to P. If it is

the second, add the edge x′i
+

bk
2 lk.

ii. If lk is the first edge to use the literal −xi, add the edge x−i
bk
2 lk to P. If it

is the second, add the edge x′i
−

bk
2 lk.

iii. If lk is the first absolute constraint, then add the edge x+0

bk
2 l′k to P.

iv. If lk is the second absolute constraint, then add the edge x−0

bk
2 l′k to P.

From Lemma 10.2.3, we can assume without loss of generality that there are at

most two absolute constraints in R.

(d) If R has no absolute constraints, then add the edge x+0
0 x−0 to P.

We make the following observations:

1. For each variable xi:

(a) Assume that the literal xi is not used by R. Since R is a read-once refutation, the

literal −xi cannot be used by R either. In this case, the only edge in P to use the

vertices x+i and x−i is x+i
0 x−i . Similarly, the only edge in P to use the vertices

x′i
+ and x′i

− is x′i
+ 0 x′i

−.

(b) Assume that the literal xi is used by a single constraint, say lk ∈ R. It follows

that the literal −xi is also used by a single constraint, say lr ∈ R, since R is a

read-once refutation. Thus, the only edge in P to use the vertex x+i is x+i
bk
2 lk,

the only edge in P to use the vertex x−i is x−i
br
2 lr, and the only edge in P to

use the vertices x′i
+ and x′i

− is x′i
+ 0 x′i

−.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 149

(c) Assume that the literal xi is used in two constraints, say lk1, lk2 ∈ R with k1 <

k2. As argued above, the literal −xi must also be used by two constraints,

say lr1, lr2 ∈ R with r1 < r2. Thus, the only edge in P to use the vertex x+i is

x+i

bk1
2 lk1 , the only edge in P to use the vertex x−i is x−i

br1
2 lr1 , the only edge in

P to use the vertex x′i
+ is x′i

+
bk2

2 lk2 , and the only edge in P to use the vertex x′i
−

is x′i
−

br2
2 lr2 .

2. For each constraint lk:

(a) If lk ∈ R, then, by construction, P contains two edges of weight bk
2 . One of

these edges is between lk and a vertex representing a literal and the other edge

is between l′k and a vertex representing a literal. Additionally, P does not contain

the edge lk
0 l′k. It follows that both lk and l′k are the endpoints of exactly one

edge in P.

(b) If lk 6∈ R, then, by construction, P contains the edge lk
0 l′k and none of the

weight bk
2 edges from either lk or l′k. Thus both lk and l′k are the endpoints of

exactly one edge in P.

3. By Lemma 10.2.3, we can assume without loss of generality that R contains 0 or 2

absolute constraints. Thus:

(a) If R contains no absolute constraints, then the only edge in P to use the vertices

x+0 and x−0 is x+0
0 x−0 .

(b) If R contains two absolute constraints lk1 and lk2 with k1 < k2, then the only

edge in P to use the vertex x+0 is x+0

bk1
2 l′k1

and the only edge in P to use the

vertex x−0 is x−0

bk2
2 l′k2

.

Thus, every vertex in G′ is an endpoint of exactly one edge in P. It follows that P is

a perfect matching. Additionally, for each constraint lk ∈ R, P has two edges of weight bk
2

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 150

and all other edge in P have weight 0. Thus,

∑
e∈P

c′(e) = ∑
lk∈R

(
bk

2
+

bk

2

)
(10.8)

= ∑
lk∈R

bk (10.9)

< 0 (10.10)

Equation (10.8) follows from the fact that the edges of G′ in P, which do not correspond

to constraints in R have zero weight. Relation (10.10) follows from the fact that R is a read-

once refutation.

It follows that P has negative weight.

Now assume that G′ has a negative weight perfect matching P. Construct the set R

as follows: For each constraint lk in U, if P does not use the edge lk
0 l′k, then add the

constraint lk to R.

In order to show that R is a read-once refutation, we need to establish that each con-

straint in U is used at most once and that the summation of the constraints in R results in a

contradiction of the form 0≤ b, b < 0.

From the construction of R, it is clear that each constraint in U occurs in R at most once.

In order to establish that the summation of the constraints in R results in a contradiction,

we show that the number of times a literal (say xi) appears in R is equal to the number of

times its complement (−xi) appears in R.

P is a perfect matching. Thus, for each variable xi, we have the following:

1. If a constraint lk ∈ R uses the literal xi, then either:

(a) One of the edges x+i
bk
2 lk or x+i

bk
2 l′k is in P. Thus, the edge x+i

0 x−i is not

in P. This means that for some r, one of the edges x−i
br
2 lr or x−i

br
2 l′r is in P.

Thus, the edge lr
0 l′r is not in P. It follows that lr is a constraint R that uses

the literal −xi.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 151

(b) One of the edges x′i
+

bk
2 lk or x′i

+
bk
2 l′k is in P. Thus, the edge x′i

+ 0 x′i
− is

not in P. This means that for some r, one of the edges x′i
−

br
2 lr or x′i

−
br
2 l′r is

in P. Thus, the edge lr
0 l′r is not in P. It follows that lr is a constraint R that

uses the literal −xi.

Note that if there are two constraints in R that use the literal xi, then, since P is a

perfect matching, one constraint corresponds to an edge in P that uses x+i and the

other constraint corresponds to an edge in P that uses x′i
+. Thus, one constraint

corresponds to case (a) above and the other corresponds to case (b). This means

that each constraint that uses xi corresponds to a distinct constraint in R that uses the

literal −xi.

If an additional (third) constraint in R used the literal xi, then this constraint would

correspond to another edge in P that uses x+i or x′i
+. Thus, either two edges in P

use x+i or two edges in P use x′i
+. However, this cannot happen since P is a perfect

matching. It follows that the literal xi is used by at most two constraints in R.

2. Arguing in similar fashion, we can show that if one or two constraints in R use the

literal −xi, then the same number of constraints in R use the literal xi.

Thus, the number of constraints in which the literal xi appears in R is equal to the

number of constraints in R in which the literal −xi appears.

If a constraint lk ∈ R, then the edge lk
0 l′k is not in P. Thus, P contains two edges

of weight bk
2 one with end point lk and one with endpoint l′k. Conversely, if the constraint

lk 6∈ R, then the edge lk
0 l′k is in P. It follows that none of the edges of weight bk

2 from lk

and l′k are in P. Thus, for each constraint lk ∈ R, P has two edges of weight bk
2 and all other

edge in P have weight 0

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 152

Thus, summing the constraints in R yields

0 ≤ ∑
lk∈R

bk

= ∑
lk∈R

(
bk

2
+

bk

2

)
= ∑

e∈P
c′(e)

< 0, since P is a negative weight matching.

As discussed before, each constraint appears at most once in R. Thus, R is a read-once

refutation of U.

10.2.4.3 Resource analysis

To construct G′, we need to process each variable and each constraint in U. Each

variable and each constraint can be processed in constant time. Thus, the reduction can be

performed in O(m+ n) time. The minimum weight perfect matching of G′ can be found

in O(|E′| · |V′|+ |V′|2 · log |V′|) time [Gab90]. As discussed in Subsection 10.2.4.1, G′ has

O(m+ n) vertices and O(m+ n) edges. Thus, by using this reduction, the ROR problem

for UTVPI constraints can be solved in O((m+n)2 · log(m+n)) time.

10.2.5 The NLROR problem (ADD rule)

In this section, we study a variant of read-once refutation called non-literal read-once

refutation (NLROR). Recall that an NLROR is a read-once refutation that does not contain

a literal-once refutation (see subsection 3.4.3).

By definition, an NLROR must reuse one or more literals. However, the mere fact that

a read-once refutation reuses a literal does not imply that it is an NLROR.

Example 41: Consider the UCS in System (10.11).

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 153

l1 : x1 + x2 ≤ −1 l2 : −x2− x3 ≤ 0 l3 : x3− x1 ≤ −1

l4 : x1 + x4 ≤ 1 l5 : −x4− x5 ≤ −1 l6 : x5− x1 ≤ 1
(10.11)

Summing all 6 constraints in UCS (10.11) results in the constraint 0≤−1. Thus, all 6

constraints form a read-once refutation that reuses the literal x1.

However, summing the constraints l1, l2, and l3 results in the constraint 0≤−2. Thus,

these 3 constraints form a literal-once refutation contained within the original read-once

refutation. This means that the original refutation is not an NLROR despite reusing a

literal.

We show that the problem of checking if a UCS has an NLROR is NP-complete.

We first show that the NLROR problem for UCSs is in NP.

Lemma 10.2.6. The NLROR problem for UCSs is in NP.

Proof. Let U be a UCS with m constraints over n variables, and let R be a read-once refu-

tation of U that does not contain a literal-once refutation. We show that this property of R

can be verified in polynomial time.

Since R is a read-once refutation, it has at most m constraints. Thus, it is polynomially

sized in terms of U. To show that R is a read-once refutation of U, we need to show that

no constraint is used twice. Thus, for each constraint li, we verify that li ∈ U and that li

does not occur among the remaining constraints in R. We then sum the constraints in R to

verify that the result is a contradiction of the form 0≤ b, b < 0. This can be accomplished

in O(m2) time.

From Section 10.2.3, we know that checking if R contains a literal-once refutation can

be accomplished in polynomial time. Thus, the entire process of checking if R is a non-

literal read-once refutation can be accomplished in polynomial time. This means that the

NLROR problem for UCSs is in NP.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 154

Before proving the NP-hardness of the NLROR problem, we prove the following result

on the structure of non-literal read-once refutations.

Lemma 10.2.7. Let U be a UCS A ·x≤ b . If U has an NLROR, then for some variable xi,

U has an NLROR R that can be partitioned into sets R1 and R2 such that:

1. R1 can be used to derive the constraint 2 · xi ≤ b1.

2. R2 can be used to derive the constraint −2 · xi ≤ b2.

3. There exists no variable x j other than xi, such that x j is used in R1 and R2.

Proof. Let R be an NLROR of U with the fewest constraints. If there exists a read-once

refutation R′ ⊂ R, then R′ must also be an NLROR. Thus, R is a minimal read-once refuta-

tion of U.

Since R is not a literal-once refutation, there must exist a literal xi or −xi reused by R.

Since R is a read-once refutation, the literals xi and −xi occur the same number of times in

R.

We can assume without loss of generality that the literal xi is reused by R. By Lemma

10.2.5, the literal xi is used at most twice by R. Since xi is reused, it must be the case that

xi is used twice by R. Thus, there are four constraints in R that use the variable xi (two

which use the literal xi and two which use the literal −xi). By Lemma 10.2.3, R has at

most 2 absolute constraints. Thus, at least one of the four constraints which use xi is not

an absolute constraint. Let l0 denote a non-absolute constraint with variable xi. Assume

without loss of generality that l0 uses the literal xi.

We run PROCESS-REFUTATION(R, l0) (Algorithm 10.2.10). Observe that the return

statements in Algorithm 10.2.10 are in the following places:

1. inside the if statement on line 7 (line 8),

2. inside the if statement on line 17 (line 19 and line 20),

3. inside the if statement on line 24 (line 32), and

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 155

4. outside the while loop (line 36).

Since R is a read-once refutation. we can always find a ls on line 6 of Algorithm 10.2.10

and hence line 8 is never executed. This means that either ls is assigned to be a constraint

which satisfies the condition in one of the if statements on line 17 or line 24 or every

constraint in R\{l0} is processed by the algorithm.

R \ {l0} contains at least one constraint with the literal xi and at least one constraint

with the literal−xi. Thus, PROCESS-REFUTATION(R, l0) will eventually assign ls to be one

of these constraints. This will satisfy the condition in either the if statement on line 17 (ls

contains the literal−xi) or the condition in the if statement on line 24 (ls contains the literal

xi).

If the condition in the if statement on line 17 is satisfied, then summing the constraints

in sum results in a constraint of the form xi−xi ≤ b1. Likewise, we can sum the constraints

in R\ sum to obtain a constraint of the form xi− xi ≤ b2.

If the condition in the if statement on line 24 is satisfied, then summing the constraints

in sum results in a constraint of the form 2 · xi ≤ b1. Likewise, we can sum the constraints

in R\ sum to obtain a constraint of the form −2 · xi ≤ b2.

Thus, we can partition R into sets R1 and R2 such that either:

1. R1 can be used to derive the constraint xi− xi ≤ b1 and R2 can be used to derive the

constraint xi− xi ≤ b2.

2. R1 can be used to derive the constraint 2 · xi ≤ b1 and R2 can be used to derive the

constraint −2 · xi ≤ b2.

In the first case, either b1 < 0 or b2 < 0, since (b1 + b2) < 0. Thus, either R1 or R2 is

a read-once refutation of U. This contradicts the minimality of R. Thus, the second case

must hold.

If R1 and R2 share a variable x j 6= xi, then we can decompose R1 into the sets R+
1 and

R−1 such that the constraints in R+
1 sum to produce the constraint xi + x j ≤ b+1 and the

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 156

constraints in R−1 sum to produce the constraint xi− x j ≤ b−1 . This follows from previous

reasoning about the functioning of Algorithm 10.2.10 and Lemma 6 in [SW17b].

We can similarly decompose R2 into the sets R+
2 and R−2 such that the constraints in R+

2

sum to produce the constraint −xi + x j ≤ b+2 and the constraints in R−2 sum to produce the

constraint −xi− x j ≤ b−2 .

Together, the constraints in the sets R+
1 and R−2 sum to produce the constraint 0 ≤

b+1 + b−2 . Similarly, the constraints in the sets R−1 and R+
2 sum to produce the constraint

0 ≤ b−1 + b+2 . Since b+1 + b−1 + b+2 + b−2 = b1 + b2 < 0, we must have that b+1 + b−2 < 0

or b−1 + b+2 < 0. Thus, either R+
1 ∪R−2 or R−1 ∪R+

2 is a read-once refutation of U. This

contradicts the minimality of R. Thus, R1 and R2 cannot share any variable, except for

xi.

The NP-hardness of the NLROR problem is established via a reduction from the

vertex-disjoint path problem.

Definition 10.2.3. Given a directed graph G and four distinct vertices s1, t1, s2, and t2,

the vertex-disjoint path problem consists of determining if G has a pair of vertex-disjoint

paths, one from s1 to t1 and the other from s2 to t2.

The problem is known to be NP-complete [FHW80].

Theorem 10.2.6. The NLROR problem for UCSs is NP-complete.

Proof. Let G = 〈V,E〉 be a directed graph with source vertices s1 and s2 and destination

vertices t1 and t2. We construct the UCS U as follows:

1. For each vertex xi ∈ V, add the variable xi to U.

2. Add the variable x0 to U.

3. For each edge (xi,x j) ∈ E, add the constraint x j− xi ≤ 0 to U.

4. Add the constraints x0 + s1 ≤−1, x0− t1 ≤−1, −x0 + s2 ≤−1, and −x0− t2 ≤−1

to U.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 157

Consider the directed graph in Figure 10.4.

s1 x1 x2 t1

s2 x3 x4 t2

Figure 10.4: Directed graph corresponding to UCS (10.12).

The graph in Figure 10.4 corresponds to the UCS in System (10.12).

l1 : x1− s1 ≤ 0 l2 : x4− x1 ≤ 0 l3 : t1− x4 ≤ 0

l4 : t2− x4 ≤ 0 l5 : x3− s2 ≤ 0 l6 : x2− x3 ≤ 0

l7 : t2− x2 ≤ 0 l8 : x0 + s1 ≤−1 l9 : x0− t1 ≤−1

l10 : −x0 + s2 ≤−1 l11 : −x0− t2 ≤−1

(10.12)

The graph in Figure 10.4 has the following vertex-disjoint paths:

p1 : s1→ x1→ x4→ t1

p2 : s2→ x3→ x2→ t2

These paths correspond to an NLROR of UCS (10.12) consisting of the constraints l1,

l2, l3, l5, l6, l7, l8, l9, l10, and l11.

Assume that G has a pair of vertex-disjoint paths from s1 to t1 and from s2 to t2. We

will show that U has a refutation of the desired type.

Let p1 be the path from s1 to t1 in G. By construction, p1 corresponds to a set of

constraints that sum together to produce t1− s1 ≤ 0. When summed together with the

constraints x0 + s1 ≤−1 and x0− t1 ≤−1, we get the constraint 2 · x0 ≤−2. Let R1 be the

set of constraints used in this derivation.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 158

Let p2 be the path from s2 to t2 in G. By construction, p2 corresponds to a set of

constraints that sum together to produce t2− s2 ≤ 0. When summed together with the

constraints −x0 + s2 ≤ −1 and −x0− t2 ≤ −1,we get the constraint −2 · x0 ≤ −2. Let R2

be the set of constraints used in this derivation.

The paths p1 and p2 are vertex-disjoint. This means that the only variable common to

both R1 and in R2 is x0. Let R = R1 ∪R2. Summing the constraints in R, results in the

constraint 0 ≤ −4. Thus, R is a read-once refutation of U. Note that if we remove any

constraint from R1, then we can no longer derive 2 · x0 ≤ −2. Similarly, if we remove

any constraint from R2, then we can no longer derive −2 · x0 ≤ −2. Thus, R is a minimal

read-once refutation. This means that R does not contain a literal-once refutation.

Now assume that U contains an NLROR. By Lemma 10.2.7, U has an NLROR R that

can be partitioned into sets R1 and R2 such that for some variable xi:

1. R1 can be used to derive the constraint 2 · xi ≤ b1.

2. R2 can be used to derive the constraint −2 · xi ≤ b2.

3. There exists no variable x j other than xi, such that x j is used in R1 and R2.

Note that R1 must contain a constraint with two positive literals. By construction, the

only constraint with two positive literals in U is x0+s1≤−1. Thus, the constraint x0+s1≤

−1 is in R1.

Similarly, R2 must contain a constraint with two negative literals. By construction,

the only constraint with two negative literals in U is −x0− t2 ≤ −1. Thus, the constraint

−x0− t2 ≤−1 is in R2. This means that x0 must be used by constraints in both R2 and R2.

Thus, xi = x0.

This means that R1 can be decomposed into:

1. The constraint x0 + s1 ≤−1.

2. A set of constraints which sum together to produce the constraint t1− s1 ≤ 0. This

corresponds to a path p1 from s1 to t1 in G.

CHAPTER 10. UTVPI CONSTRAINT SYSTEMS 159

3. The constraint x0− t1 ≤−1.

Similarly, R2 can be decomposed into:

1. The constraint −x0 + s2 ≤−1.

2. A set of constraints which sum together to produce the constraint t2− s2 ≤ 0. This

corresponds to a path p2 from s2 to t2 in G.

3. The constraint −x0− t2 ≤−1

Since the sets R1 and R2 do not share any variables other than x0, the paths p1 and p2

in G are vertex-disjoint.

160

Chapter 11

Horn Constraint Systems

11.1 Motivation and Related Work

Horn constraint systems define a class of polyhedra that find applications in a number

of disparate domains [Tru03, CS13]. A refutation of an unsatisfiable constraint system

(not necessarily Horn) is a negative certificate that attests to the infeasibility of the system.

When an algorithm produces a certificate to accompany the output, it is called a certifying

algorithm [MMNS11]. The literature is replete with certifying algorithms for a number

of problems in combinatorial optimization, especially as they relate to graphical structures

[KMMS03, DFK+03, KN09]. Likewise, there exist a number of combinatorial algorithms

for Horn constraint systems that do not produce negative certificates [CS13, SW15b]. This

chapter discusses negative certificates for Horn constraint systems in a number of interest-

ing proof systems.

The focus of this chapter is on read-once refutations in various proof systems. In a

read-once refutation, each constraint defining the polyhedron can be used at most once in

an inference step of the proof system. The advantage of read-once refutations is that they

are short by definition [IM95]. In general, read-once proof systems are not complete in

that there could exist unsatisfiable constraint systems for which read-once refutations do

CHAPTER 11. HORN CONSTRAINT SYSTEMS 161

not exist. A variant of read-once refutation called input refutation is discussed in [Hoo89].

There are many different types of refutation techniques. These include cutting planes

and resolution. Resolution refutations can be further divided into linear, tree-style, dag-

style, and read once. Each of these has different rules regarding how clauses can be used in

the refutations. For example, in a read-once refutation each clause can be used only once.

In this chapter we will be looking at read-once resolution refutations for several different

problems.

For a given problem, P, two refutation systems are P-equivalent if for any instance of P

a refutation under one system can be transformed into a refutation under the other system

with at most a polynomial increase in size.

11.2 Refutability

11.2.1 The ROR problem (ADD rule)

In this section we study systems of Horn constraints. Note that not every system of

Horn constraints has a read-once refutation.

Example 42: Consider the system of Horn constraints

l1 : x1 ≥ 1

l2 : −x1 + x2 ≥ 1

l3 : −x1− x2 + x3 ≥ 1

l4 : −x1− x2− x3 + x4 ≥ 1

l5 : −x1− x2− x3− x4 ≥ −14

The constraint l5 is necessary for any refutation. To cancel each xi, i = 1 . . .4, the

constraint li, i = 1 . . .4 must also be used in the refutation. Thus, all five constraints need

to be used in any refutation.

CHAPTER 11. HORN CONSTRAINT SYSTEMS 162

However to get a positive number on the right-hand side of the resultant constraint we

need to use some of the constraints l1 through l4 more than once. Thus, this system does

not have a read-once linear refutation.

We now show that ROR(ADD) is NP-complete for HCSs. This is done by a reduction

from the set packing problem.

Definition 11.2.1. The set packing problem is the following: Given a set S, m subsets

S1, . . . ,Sm of S, and an integer k, does {S1, . . . ,Sm} contain k mutually disjoint sets.

This problem is known to be NP-complete [Kar72].

Theorem 11.2.1. ROR(ADD) for Horn constraints is NP-hard.

Proof. Let us consider an instance of the set packing problem. We construct the system of

Horn constraints H as follows.

1. For each xi ∈ S, create the variable xi and the constraint xi ≥ 1.

2. For j = 1 . . .k, create the variable v j.

3. For each subset Sl , l = 1 . . .m create the constraints

v j− ∑
xi∈Sl

xi ≥ 1−|Sl| j = 1 . . .k.

4. Finally create the variable w and the constraints w−v1− . . .−vk ≥ 1−k and−w≥ 0.

We now show that H is in ROR(ADD) if and only if {S1, . . . ,Sm} contains k mutually

disjoint sets.

Suppose that {S1, . . . ,Sm} does contain k mutually disjoint sets. Without loss of gener-

ality assume that these are the sets S1, . . . ,Sk.

Let us consider the sets of clauses

H j = {v j− ∑
xi∈S j

xi ≥ 1−|S j|}∪{xi ≥ 1 |xi ∈ S j} j = 1 . . .k.

CHAPTER 11. HORN CONSTRAINT SYSTEMS 163

By the construction of H, we have that H j ⊆H for j = 1 . . .k. Since the sets S1, . . . ,Sk

are mutually disjoint, so are the sets H1, . . . ,Hk.

It it easy to see that the constraint v j ≥ 1 can be derived by summing all of the con-

straints in H j. Sine this holds for every j = 1 . . .k and since the sets H1, . . . ,Hk are mutually

disjoint, we have that the set of constraints {v1 ≥ 1, . . . ,vk ≥ 1} can be derived from H by

read-once linear resolution.

Together with the constraint w− v1− . . .− vk ≥ 1− k, this set of constraints sums to-

gether to derive the constraint w ≥ 1. Thus, H has a read-once linear derivation of the

constraint w ≥ 1. Since H contains the clause −w ≥ 0, it follows that H has a read-once

linear refutation.

Now suppose that H has a read-once linear refutation R. Note that H/{−w ≥ 0} can

be satisfied by setting every variable to 1. Thus, R must use the constraint −w≥ 0.

By construction, to cancel −w we must use the constraint w−v1− . . .−vk ≥ 1−k. We

must now cancel −v1, . . . ,−vk. Let us consider −v j, 1≤ j ≤ k. By the construction of H,

to cancel this term we must use one of the constraints

v j− ∑
xi∈Sl

xi ≥ 1−|Sl| l = 1 . . .m.

To cancel the −xi terms introduced by this constraint, we must use the set of constraints

Fl j = {xi ≥ 1 |xi ∈ Sl j} for some l j ≤ m.

Since the refutation is read-once we must have that the sets Fl j for j = 1 . . .k are mu-

tually disjoint. Thus, the sets Sl j for j = 1 . . .k are also mutually disjoint. This means that

{S1, . . . ,Sm} contains k mutually disjoint sets.

Thus, H is in ROR(ADD) if and only if {S1, . . . ,Sm} contains k mutually disjoint sets.

As a result of this, the linear ROR problem for systems of Horn constraints is NP-hard.

CHAPTER 11. HORN CONSTRAINT SYSTEMS 164

11.2.1.1 An exact exponential algorithm

In this section we describe an exact exponential time algorithm for the problem of fining

a read-once ADD refutation for a system of Horn constraints.

Let H be a system of horn constraints. Let k be the maximum number of constraints

that use any literal and let C be the largest absolute value of any defining constant of a

constraint in H.

Thus, any constraint derivable from summing a subset of the constraints in H can be

represented by an (n+1) tuple (a1,a2, . . . ,an,b) where:

1. −k ≤ ai ≤ k, is the coefficient of xi in the derived constraint.

2. −m ·C ≤ b≤ m ·C, is the defining constant of the derived constraint.

This results in 2 ·C ·m ·(2 ·k+1)n possible derived constraints. Note that any constraint

that proves infeasibility, 0≥ b > 0, corresponds to a tuple (0,0, . . . ,0,b), where b > 0.

Thus, we have the following algorithm for determining if H has a read-once refutation

using only the ADD rule.

Algorithm 11.2.1 Algorithm for ROR(ADD).
Function ROR-ADD (HCS H)

1: Let D be an m×2 ·C ·m · (2 · k+1)n boolean array which stores if a constraint can be
derived from the first i constraints of H.

2: Set every value in D to false.
3: D(1, l1) := true.
4: for (i = 2 to m) do
5: D(i, li) := true.
6: for (each possible derived constraint l) do
7: D(i, l) := D(i−1, l)∨D(i−1, l− li).
8: if (D(i, l) = true and l is of the form 0≥ b, b > 0) then
9: return (true)

10: return (false)

11.2.1.1.1 Correctness

We now show that Algorithm 11.2.1 correctly determines if an HCS H has a read-once

CHAPTER 11. HORN CONSTRAINT SYSTEMS 165

refutation using only the ADD rule.

Theorem 11.2.2. ROR-ADD(H) returns true if and only if H has a read-once refutation

using only the ADD rule.

Proof. If H has a read-once refutation using only the add rule, then we can derive a con-

tradiction by summing a subset H′ of the constraints in H. Let j be the last constraint in H′

reached by Algorithm 11.2.1. We have that D(j,∑l∈H′ l) = true. Thus, Algorithm 11.2.1

returns true.

If Algorithm 11.2.1 returns true, then for some j and constraint l of the form 0 ≥ b,

b > 0, we have D(j, l) = true. Note that l is derived by summing a subset of the constraints

in H. Thus H has a read-once refutation using only the ADD rule.

11.2.1.1.2 Resource analysis

The array D has O(C ·m2 · (2 · k+1)n) entries, thus initialization takes O(C ·m2 · (2 · k+

1)n) time. Each iteration of the for loop on line 6 takes constant time. Thus, all iterations

of this for loop take a total of O(C ·m · (2 · k+1)n) time. Since this for loop is run (m−1)

times, we have that the total running time of Algorithm 11.2.1 is O(C ·m2 · (2 · k+1)n).

11.2.1.2 Horn clausal constraint systems

We now examine the complexity of determining if an HClCS has a read-once refutation

using only the ADD rule.

Lemma 11.2.1. If Φ is an unsatisfiable system of Horn clauses, then the HClCS S(Φ) ∈

CP(ADD).

Proof. We do this by showing that a linear refutation can simulate positive unit resolution.

Consider a single resolution step. Let (x) and (¬x∨¬x1∨ . . .∨¬xs∨y) be two clauses. The

resolvent is (¬x1∨ . . .∨¬xs∨ y).

CHAPTER 11. HORN CONSTRAINT SYSTEMS 166

The constraints corresponding to the original clauses are x≥ 1 and −x−x1− . . .−xs+

y ≥ 1− s. Summing these inequalities results in −x1− . . .− xs + y ≥ 1− (s− 1). This is

the inequality corresponding to the resolvent.

Lemma 11.2.2. If Φ has a read-once unit resolution refutation, then the HClCS S(Φ) ∈

CP-RO(ADD) Moreover, S(Φ) has a read-once unit refutation under the ADD rule.

This is a direct consequence of Lemma 11.2.1.

From [KZ03], we know that determining if a Horn formula has a read-once unit reso-

lution refutation is NP-complete. Thus we have the following result.

Corollary 11.2.1. The CP-RO(ADD) problem for HClCSes is NP-complete.

167

Part IV

Polyhedral Constraints: Integer

Satisfiability

168

Chapter 12

UTVPI Constraint Systems

12.1 Motivation and Related Work

In this section, we briefly review some of the important milestones in the design of

algorithms for checking integer feasibility in UTVPI constraint systems.

The first known decision procedure for checking the integer feasibility of a system of

UTVPI constraints is detailed in [JMSY94]. This algorithm processes a set of UTVPI

constraints with the goal of finding its transitive and tightening closure. Such a closure

is essentially a finite representation of all possible UTVPI constraints that can be inferred

from the input set of constraints (also see [BHZ09]). In other words, it finds all possible

deductions from the initial set of constraints, including rounded constraints which can be

forced into integral solutions. It then checks to see if the system of constraints thus gener-

ated, is feasible by virtue of having no contradictions. The algorithm runs in O(m ·n2) time

and uses O(n2) space. Furthermore, it is not certifying. [HS97] improves on the approach

in [JMSY94] from an ease-of-implementation standpoint, by combining the transitive and

tightening closures into a single step. However, the additional wrinkle does not improve

the asymptotic complexity of the algorithm in [JMSY94]; nor does it provide certificates.

A rather different approach was used in [Sub04a] to decide integer feasibility in UTVPI

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 169

systems, while also producing a model. This algorithm uses Fourier-Motzkin elimination

[DE73] to project the polyhedral representation of a system of UTVPI constraints to a sin-

gle variable in a solution-preserving manner, thereby determining bounds for that variable.

The algorithm then works in reverse order to assign values to the rest of the variables. The

algorithm takes O(n3) time and O(n2) space.

The algorithm in [LM05] (henceforth, the Lahiri algorithm) is the fastest known algo-

rithm to date, for deciding integer feasibility in UTVPI systems. We will elaborate on their

method, in order to provide the proper background to contrast our procedures.

The Lahiri algorithm begins by converting each constraint into a pair of difference

constraints with positive and negative versions of each involved variable. For instance, a

sum constraint, say, xi + x j ≤ ci j is converted into the following difference constraint pair:

x+i − x−j ≤ ci j and x+j − x−i ≤ ci j. Once all constraints are thus converted, the converted

constraint system is represented by a constraint network as detailed in [CLRS01]. For

instance, the constraint x−j − x−i ≤ ci j results in an edge x−j
ci j

x−i . The resulting edges

are then tightened by converting edges of the form xi
cii xi, where cii is odd to xi

cii−1
xi,

in order to ensure integral solutions. A negative cycle detection subroutine (such as the

Bellman-Ford algorithm) then determines whether the system is satisfiable.

We note that in order for the Lahiri algorithm to produce a model, it must compute the

transitive and tightening closure of the original constraint system, even when such a set

of constraints is known to be satisfiable. Indeed, it uses a procedure similar to the one in

[JMSY94] and [HS97] to find bounds for all variables and assign values to them. A naive

implementation of this algorithm runs in O(n3) time and uses O(n2) space. Utilizing John-

son’s algorithm for implementing the transitive closure [CLRS01], the time complexity can

be improved to O(m ·n+n2 · logn), while maintaining O(n2) space complexity. However,

even the improved algorithm is more expensive (asymptotically) to the ideal O(m ·n) time

and O(m+n) space complexity of the non-model generating decision algorithm.

Recently, there has been some work on incremental satisfiability of UTVPI constraints.

For instance, [SS10] describes an algorithm for incremental (integer) satisfiability check-

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 170

ing in UTVPI constraints. Their algorithm adds a single constraint to a set of UTVPI

constraints in O(m+n · logn) time. Incremental algorithms are extremely important from

the perspective of SAT Modulo Theories [NOT04].

12.2 Satisfiability

12.2.1 Scaling algorithm

In this section, we provide a bit-scaling algorithm for UTVPI constraints.

Our algorithm requires the transformation of the input UCS into a constraint network

as described in [LM05].

This transformation is handled by Algorithm 12.2.1.

Algorithm 12.2.1 MAKE-GRAPH

Function MAKE-GRAPH (System of UTVPI constraints S)

1: Let G be a constraint network.
2: for i = 1 . . .n do
3: Add the vertices x+i and x−i to G.

4: for Every constraint e in S do
5: if e is of the form xi + x j ≤ ck then
6: Add the edge x−i → x+j to G with

weight ck.
7: Add the edge x−j → x+i to G with

weight ck.
8: if e is of the form xi− x j ≤ ck then
9: Add the edge x−i → x−j to G with

weight ck.
10: Add the edge x+j → x+i to G with

weight ck.
11: if e is of the form−xi+x j ≤ ck then

12: Add the edge x+i → x+j to G with
weight ck.

13: Add the edge x−j → x−i to G with
weight ck.

14: if e is of the form−xi−x j ≤ ck then
15: Add the edge x+i → x−j to G with

weight ck.
16: Add the edge x+j → x−i to G with

weight ck.
17: if e is of the form xi ≤ ck then
18: Add the edge x−i → xi to G with

weight 2 · ck.
19: if e is of the form −xi ≤ ck then
20: Add the edge x+i → x−i to G with

weight 2 · ck.
21: return G as a constraint network.

[LM05] transforms the input UTVPI system into a constraint network as follows:

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 171

Consider the following constraint system.

x1 + x3 ≤ 0 x2− x3 ≤ −7 x4− x2 ≤ 3

−x1− x4 ≤ 5 x1 ≤ 6
(12.1)

For each variable, two vertices (a positive version and a negative version) are added

to the constraint network. For instance, corresponding to the variable xi, we create the

vertices x+i and x−i . Each constraint is replaced by a pair of equivalent constraints. For

instance, a difference constraint xi− x j ≤ c is replaced by the two constraints x+i − x+j ≤

c and x−j − x−i ≤ c. The exception is for absolute constraints, each of which is simply

converted to a single equivalent constraint. For instance, xi ≤ c yields x+i − x−i ≤ 2 · c.

Once all the equivalent constraints have been determined, they are represented in a directed

graph, as discussed in [CLRS01]. It is thus seen that the constraint network constructed as

per [LM05] has 2 ·n vertices (assuming n variables in the constraint system) and up to 2 ·m

edges (assuming m constraints in the original constraint system). The resultant constraint

network is called the potential graph. Figure 12.1 shows the potential graph, corresponding

to System (12.1).

x+1

x−1

x−2

x+2

x−3

x+3

x−4

x+4

5

5

−7

−7

003 3

12

Figure 12.1: Potential graph corresponding to System (12.1)

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 172

We are now ready to present our bit-scaling algorithm.

Algorithm 12.2.2 UTVPI-SCALING

Function UTVPI-SCALING (System of UTVPI constraints S)

1: Let d denote a linear solution to S.
2: Let y denote an integer solution to S.
3: G← MAKE-GRAPH(S).
4: f← GOLDBERG(G).
5: if f is a feasible price function for G

then
6: for i = 1 . . .n do
7: di← f2·i−1− f2·i

2 .

8: else
9: return S is not linear feasible. .

Thus, S is not integer feasible.
10: Φ← MAKE-2CNF(S, d).

11: if Φ is satisfiable then
12: v← satisfying assignment to Φ.
13: else
14: return S is not integer feasible.
15: for i = 1 . . .n do
16: if di ∈ Z then
17: yi← di
18: else if vi is true then
19: yi← di +

1
2

20: else
21: yi← di− 1

2

22: return y as an integer solution to S.

Algorithm 12.2.2 divides the process of obtaining an integer solution to a system of

UTVPI constraints into several steps.

First the system of UTVPI constraints, A ·x≤ c, is converted into a constraint network.

This is the same process used in [LM05] and is described in greater detail in Algorithm

12.2.1. Note that G has two vertices, x+i and x−i , corresponding to each variable. Thus, f

will have 2 ·n values with f2·i−1 as the price of vertex x+i and f2·i as the price of vertex x−i .

Linear feasibility is then determined using Goldberg’s Bit-Scaling Algorithm. This is

the same process used in [Gol95]. We refer to this algorithm as GOLDBERG(G). If A ·x≤ c

is not linearly feasible, then it is not integer feasible and it is returned as such. However, if

it is linearly feasible, then we can construct a linear solution d. Note that every element of

d is an integer multiple of 1
2 , thus d is a half-integral solution.

A ·x≤ c is then transformed into a system of 2CNF clauses, Φ(v). This process is done

by Algorithm 12.2.3.

From the original system and half-integral solution d, we can construct a new system

of UTVPI constraints, A ·x≤ c′, as follows:

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 173

Algorithm 12.2.3 MAKE-2CNF
Function MAKE-2CNF (System of UTVPI constraints S, feasible half-integer solution d)

1: Let Φ denote the 2CNF formula corresponding to S.
2: for Every constraint e ∈ S do
3: if e is of the form xi + x j ≤ ck then
4: if (di 6∈ Z∧d j 6∈ Z∧ ck = di +d j) then
5: . This becomes xi + x j ≤ 0 in A′ ·x′ ≤ 0.
6: Add the clause (¬vi∨¬v j) to Φ.

7: if e is of the form xi− x j ≤ ck then
8: if (di 6∈ Z∧d j 6∈ Z∧ ck = di−d j) then
9: . This becomes xi− x j ≤ 0 in A′ ·x′ ≤ 0.

10: Add the clause (¬vi∨ v j) to Φ.

11: if e is of the form −xi + x j ≤ ck then
12: if (di 6∈ Z∧d j 6∈ Z∧ ck =−di +d j) then
13: . This becomes −xi + x j ≤ 0 in A′ ·x′ ≤ 0.
14: Add the clause (vi∨¬v j) to Φ.

15: if e is of the form −xi− x j ≤ ck then
16: if (di 6∈ Z∧d j 6∈ Z∧ ck =−di−d j) then
17: . This becomes −xi− x j ≤ 0 in A′ ·x′ ≤ 0.
18: Add the clause (vi∨ v j) to Φ.

19: return Φ as a system of 2CNF clauses.

1. Replace each constraint xi + x j ≤ ck with xi + x j ≤ ck− (di +d j).

2. Replace each constraint xi− x j ≤ ck with xi− x j ≤ ck− (di−d j).

3. Replace each constraint −xi + x j ≤ ck with −xi + x j ≤ ck− (−di +d j).

4. Replace each constraint −xi− x j ≤ ck with −xi− x j ≤ ck− (−di−d j).

Note that, by construction, c′ = c−A ·d≥ 0. This corresponds to the process of re-

weighting difference constraints with a potential function.

We can now reduce the number of constraints by focusing on the constraints of the

form ±xi ± x j ≤ 0 in A ·x≤ c′ such that di,d j 6∈ Z. Let A′ ·x′ ≤ 0 be the system of these

constraints.

From A′ ·x′ ≤ 0, we can construct a system, Φ(v), of 2CNF clauses which is satisfiable

if and only if A ·x≤ c is integer feasible. Φ(v) also has the property that any proof of

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 174

unsatisfiability for Φ(v) can be easily converted into a proof of integer infeasibility of the

same length for A ·x≤ c and vice-versa.

Note that, A ·x≤ c′ and A′ ·x′ ≤ 0 are not actually constructed by Algorithm 12.2.3.

However, these systems are used to prove the correctness of the algorithms.

In Φ(v), each vi corresponds to an xi which assumes a non-integer value in the linear

solution d. vi being true corresponds to xi being rounded up, while false corresponds to xi

being rounded down. This action is performed by the final step of Algorithm 12.2.2.

If Φ(v) is feasible, then the values of each vi correspond to a rounding needed to make

an integral solution to the original system A ·x≤ c. Similarly, if Φ(v) infeasible, then no

such rounding is possible and A ·x≤ c is integer infeasible.

12.2.1.1 Resource analysis

Algorithm 12.2.2 can be broken up into several parts. The complexity of each part can

be considered independently.

1. First, Algorithm 12.2.2 finds a linear solution. This is accomplished by running

Goldberg’s Bit-Scaling Algorithm on the constraint network construction in [LM05].

This takes O(
√

n ·m · logC) time [Gol95].

2. Then, Algorithm 12.2.3 converts the system into a system of 2CNF clauses. This

consists of checking each constraint in the system and performing a series of constant

time operations to generate the 2CNF clause. Thus, this takes O(m) time.

3. Then, Algorithm 12.2.2 generates a feasible solution to the 2-SAT system or declares

the system infeasible. This can be done in O(n+m) time [BA79].

4. Finally, Algorithm 12.2.2 generates a feasible integer solution to the UTVPI sys-

tem or declares the system not integer feasible. This is done by utilizing the 2-SAT

solution and initial linear solution and runs in O(n) time.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 175

Thus, Algorithm 12.2.2 generates a feasible integer solution to the UTVPI system or de-

clares the system not integer feasible in O(
√

n ·m · logC) time.

12.2.1.2 Proof of correctness

We now establish the correctness of the reduction from linearly feasible UTVPI to 2-

SAT.

We first show that the limitations on the constraints used in the reduction do not elim-

inate any proofs of integer infeasibility. Note that all proof in this section apply only to

linearly feasible systems of UTVPI constraints.

Theorem 12.2.1. If A ·x≤ c has a proof of integer infeasibility, then the constraints form-

ing that proof correspond to constraints of the form ±xi ± x j ≤ 0 in A ·x≤ c′.

Proof. Let d be a half-integral solution to A ·x≤ c, and let xi be a variable such that di 6∈Z.

Since A ·x≤ c is not integer feasible there exist no solutions with xi = ddie or xi = bdic.

Thus, we can derive the constraints xi + xi ≤ 2 ·di and −xi− xi ≤−2 ·di.

Consider the constraints in A ·x≤ c added together to obtain xi + xi ≤ 2 ·di. When we

add the corresponding constraints in A ·x≤ c′ we obtain

xi + xi ≤ 2 ·di− (di +di) = 0.

All constraints in A ·x≤ c′ have c′k≥ 0. Thus, every constraint involved in this new sum

must have c′k = 0. The same holds true for the constraints used to derive −xi−xi ≤−2 ·di.

Thus, the constraints used to establish the integer infeasibility of A ·x≤ c correspond to

constraints in A ·x≤ c′ such that c′k = 0.

Theorem 12.2.2. If A ·x≤ c has a proof of integer infeasibility, then the constraints in that

proof involve only variables x j such that d j 6∈ Z.

Proof. From Theorem 12.2.1, we have that every constraint involved in the proof of integer

infeasibility must correspond to a constraint with c′k = 0 in A ·x≤ c′.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 176

For any constraint x j + xl ≤ 0 in A ·x≤ c′, d j and dl must both be integral or both be

non-integral. Otherwise,

c′k = ck ± d j ± dl 6∈ Z.

A proof of integer infeasibility for A ·x≤ c consists of establishing bounds on a variable

xi with di 6∈ Z. Thus, all constraints in that proof must involve only variables x j such that

d j 6∈ Z.

Together these two theorems imply that to find a proof of integer infeasibility we only

need to focus on constraints in A ·x≤ c′ such that c′k = 0 and involving variables xi for

which di is non-integral.

Theorem 12.2.3. A 2CNF clause can be resolved from Φ(v) if and only if the corresponding

UTVPI constraint can be derived from A′ ·x′ ≤ 0.

Proof. The inference rule used in the resolution of 2CNF clauses is

(li∨ l j) (¬l j∨ lk)
(li∨ lk)

for literals li, l j and lk.

Let us consider the case where li = vi, l j = v j, and lk = v j. If we look at the correspond-

ing constraints in A′ ·x′ ≤ 0, then we see that, in this case, the clauses correspond to the

constraints −xi− x j ≤ 0 and x j− xk ≤ 0 yielding −xi− xk ≤ 0. This is exactly what would

be obtained from applying the transitive inference rule. It is easy to see that the reverse also

holds.

The cases corresponding to the other possible assignments to the literals li, l j, and lk

are handled similarly.

We can now establish the correctness of the reduction.

Theorem 12.2.4. Φ(v) is satisfiable if and only if A ·x≤ c has an integer solution.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 177

Proof. Assume that Φ(v) is unsatisfiable. Thus, we can derive the clauses (vi) and (¬vi) for

some variable vi. These clauses correspond to the constraints xi + xi ≤ 0 and −xi− xi ≤ 0.

Thus, from Theorem 12.2.3, these constraints are derivable from A′ ·x′ ≤ 0. Since di is an

odd multiple of 1
2 , these correspond to the constraints

xi + xi ≤ 2 ·di = 2 · bdic+1 and − xi− xi ≤−2 ·di =−2 · bdic−1.

These constraints are derivable from A ·x≤ c.

When we tighten these constraints, we get xi ≤ bdic and −xi ≤ −bdic− 1. Summing

these two constraints yields 0≤−1. Thus, showing that A ·x≤ c is infeasible.

Now assume that Φ(v) is satisfiable. Let v′ be a boolean vector such that Φ(v′) is true.

From v′ and d, we can construct the vector r as follows:

1. If di ∈ Z, then set ri = 0.

2. If di 6∈ Z and v′i is true, then set ri =
1
2 .

3. If di 6∈ Z and v′i is false, then set ri =−1
2 .

We now show that A · r≤ c′. Let ±xi ± x j ≤ c′k be a constraint in A ·x≤ c′. Let us

examine all possible cases:

1. c′k ≥ 1: We have that ±ri ± r j ≤ 1
2 +

1
2 = 1≤ c′k. Thus, the constraint is satisfied by

r.

2. c′k = 0 and di ∈ Z: From the proof of Theorem 12.2.2, we know that d j ∈ Z. Thus,

ri = r j = 0 and ±ri ± r j = 0 = c′k. Thus, the constraint is satisfied by r.

3. c′k = 0 and di 6∈ Z: From the proof of Theorem 12.2.2, we know that d j 6∈ Z. In this

case, we look at each possible constraint individually.

(a) xi + x j ≤ 0: By construction, the clause (¬vi∨¬v j) is in Φ(v). Thus, v′i or v′j

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 178

must be false. This means that ri =−1
2 or r j =−1

2 . In either case, we have that

ri + r j ≤−
1
2
+

1
2
= 0 = c′k.

Thus, the constraint is satisfied by r.

(b) xi− x j ≤ 0: By construction, the clause (¬vi∨ v j) is in Φ(v). Thus, v′i must be

false or v′j must be true. This means that ri =−1
2 or r j =

1
2 . In either case, we

have that

ri− r j ≤−
1
2
+

1
2
= 0 = c′k.

Thus, the constraint is satisfied by r.

(c) −xi + x j ≤ 0: By construction, the clause (vi∨¬v j) is in Φ(v). Thus, v′i must

be true or v′j must be false. This means that ri =
1
2 or r j =−1

2 . In either case,

we have that

−ri + r j ≤−
1
2
+

1
2
= 0 = c′k.

Thus, the constraint is satisfied by r.

(d) −xi− x j ≤ 0: By construction, the clause (vi ∨ v j) is in Φ(v). Thus, v′i or v′j

must be true. This means that ri =
1
2 or r j =

1
2 . In either case, we have that

−ri− r j ≤−
1
2
+

1
2
= 0 = c′k.

Thus, the constraint is satisfied by r.

By the construction of r, we have d+ r ∈ Zn. We also have that c′ = c−A ·d. Thus,

A · (d+ r) = A ·d+A · r≤ A ·d+ c′ = c.

This means that (d+ r) is a valid integer solution to A ·x≤ c.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 179

12.3 Refutability

12.3.1 Theorem of the alternative

In this section, we present a theorem of the alternative for integer infeasibility in UTVPI

constraints.

As before, let U : A ·x≤ c denote a UCS and let G= 〈V,E,c〉 denote the corresponding

constraint network.

Let U′ denote the UCS constructed by adding selected absolute constraints of the form

xi ≤ ci and −xi ≤ ci, to U.

Initially, U′ = U. The constraint xi ≤ ci, ci ∈ Z is added to U′ if, there exist constraints

in U, which can be summed to produce xi + xi ≤ (2 · ci +1).

The constraint −xi ≤ ci where ci ∈ Z, is added to U′ if, there exist two constraints in U,

which can be summed to produce −xi− xi ≤ (2 · ci +1).

Let X′ denote the set of feasible solutions to U′. Let G′ = 〈V ′,E ′〉 denote the constraint

network representation of U′.

We first prove a number of lemmata.

Lemma 12.3.1. If u is an integer point in X, then u is an integer point in X′ as well.

Proof. Observe that every constraint in U′ is either a constraint in U or an absolute con-

straint of the form xi≤ ci or−xi≤ ci, which was added as per the discussion above. For our

purposes, it suffices to show that any integer point satisfying the constraints in U, satisfies

all the absolute constraints that are in U′, but not in U.

Let the constraint l1 : x j ≤ c j, denote one such constraint, i.e., l1 is in U′, but not in U.

As per the construction of U′, l1 was added to U′, because the constraint x j+x j ≤ (2 ·c j+1)

is deducible from the constraints in U. Thus, every integer point in X, must also satisfy the

constraint x j + x j ≤ (2 · c j + 1). It follows that every integer point in X, also satisfies the

constraint x j ≤ b
2·c j+1

2 c= c j.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 180

Since the constraint l1 was picked arbitrarily, the same argument applies for every con-

straint of the form xi ≤ ci, which is present in U′. but not in U. Furthermore, the above

argument can easily be generalized to the case where the absolute constraint in question

has the form −xi ≤ ci by changing the sign on all of the variables.

Based on the above discussion, it follows that the integer points in X satisfy all the

constraints in U′, i.e., they satisfy all the constraints in U and the additional absolute con-

straints that define U′. It follows that every integer point in X is also an integer point in

X′.

Observe that the converse of Lemma 12.3.1 is trivially true since U′ is constructed by

adding constraints to U, and thus, every integer point in X′ is also in X.

Lemma 12.3.2. If G′ has a negative weight gray cycle, then X contains no integer points.

Proof. From [SW17b], we know that if G′ contains a negative weight gray cycle, then X′ is

empty. It follows that X′ does not contain any integer points. By Lemma 12.3.1, it follows

that X cannot contain any integer points either.

We have now shown that if G′ contains a path from a vertex xi to itself that can be

reduced to a single gray edge of negative weight, then the constraint system U does not

enclose an integer point. The following lemmata will help us establish the converse.

We need the following definition from [JMSY94].

Definition 12.3.1. The tightened transitive closure U∗ of a UCS U, is the set of all UTVPI

constraints (including absolute constraints) that are derivable from U by the transitive and

tightening inference rules.

We make the following observations regarding the tightened transitive closure, U∗:

1. The set of constraints in U is a subset of the set of constraints in U∗.

2. Every constraint in U∗ is either a constraint in U, or obtained by the application of

either the tightening rule or the transitive rule to constraints in U∗.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 181

3. U∗ is closed under the transitive and tightening inference rules. This means that

application of either the tightening rule or the transitive rule to constraints in U∗ will

not result in a UTVPI constraint that is not already in U∗.

4. U has no integral solution, if and only if U∗ contains a contradiction, i..e, a constraint

of the form 0≤ a, where a < 0 [JMSY94].

Lemma 12.3.3. If X contains no integer points, then X′ is empty, i.e., X′ is linearly infea-

sible.

Proof. In this proof, we will establish that the set X′ of solutions to the constraint system

U′ (constructed as per the discussion prior to Theorem 12.3.1) is a subset of X∗, where X∗

is the set of all solutions to U∗, the tightened transitive closure of U. The lemma follows.

We first observe that every constraint in U∗ is obtained by applications of the transitive

and tightening inference rules detailed above. As stated previously, applications of the

transitive inference rule correspond to edge reductions and so the constraints added in this

fashion to U∗, do not affect its linear feasibility. Thus, we are only concerned with the

constraints added through application of the tightening inference rule. We will now show

that each constraint added to U∗, as a result of applying the tightening inference rule is also

added to U′.

We note that only absolute constraints are added to U∗ through the application of the

tightening inference rule. Assume that the constraint xi≤ ci is added to U∗ by the tightening

rule. It follows that either xi +xi ≤ 2 ·ci +1 or xi +xi ≤ 2 ·ci is deducible from the original

set of constraints, U. In the first case, the constraint xi ≤ ci is, by definition, in U′. In the

second case, the constraint xi ≤ c is equivalent to the constraint xi + xi ≤ 2 · ci. Thus, this

constraint does not remove any solutions from X.

Likewise, assume that the constraint −xi ≤ ci is added to U∗ by the tightening rule. It

follows that−xi−xi≤ 2 ·ci+1 or−xi−xi≤ 2 ·ci is deducible from the original constraints,

U. In the first case, the constraint −xi ≤ c is, by definition, in U′. In the second case, the

constraint−xi ≤ c is equivalent to the constraint−xi−xi ≤ 2 ·ci. Thus, this constraint does

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 182

not remove any solutions from X.

We can thus conclude that every constraint added to U∗ that removes solutions from

X is also added to U′. It follows that any vector u that satisfies U′, also satisfies U∗, i.e.,

X′ ⊆ X∗. Finally, we note that if X contains no integer points, then X∗ is empty [JMSY94].

Inasmuch as X′ ⊆ X∗, X′ is also empty.

Lemma 12.3.4. If X contains no integer points, then G′ contains a path from a vertex xi to

itself that can be reduced to a single gray edge of negative weight.

Proof. By Lemma 12.3.3, if X contains no integer points, then X′ is empty. Thus, G′

contains a negative weight gray cycle from a vertex xi to itself. However, such a cycle can

be reduced to a single gray edge of negative weight. The lemma follows.

Having established the preceding lemmata, we now prove the following result.

Theorem 12.3.1. Either the constraint system U encloses an integer point or (mutually

exclusively), G′ contains a path from a vertex xi to itself that can be reduced to a single

gray edge of negative weight.

Proof. As shown in Lemma 12.3.2, if G′ contains a path from a vertex xi to itself that can

be reduced to a single gray edge of negative weight, then X and hence U do not contain

any integer points. Likewise, as per Lemma 12.3.4, if X contains no integer points, then G′

contains precisely such a path.

Next we express this result in terms of the original constraint network G. Note that a

negative weight gray cycle in G means that X is empty [SW17b]. Thus, X trivially contains

no integer points. As a result, in the following lemma we assume that G has no negative

weight gray cycles.

Lemma 12.3.5. X contains no integer points if and only if U′ \U contains the constraints

xi ≤ ci and −xi ≤−ci−1 for some xi.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 183

Proof. The two constraints sum to produce the constraint 0≤−1. This is clearly a contra-

diction. Thus, if U′ \U has the desired constraints, then X has no integer points.

If X contains no integer points, then by Lemma 12.3.4, G′ contains a negative weight

gray cycle. If G′ has a negative weight gray cycle that uses only edges corresponding

to constraints in U, then G has the same negative weight gray cycle. Thus, any negative

weight gray cycle cycle in G′ must use edges corresponding to constraints in U′ \U.

All the constraints in U′ \U are absolute constraints. Thus, any negative weight gray

cycle in G′ must use x0. Since at least two edges of such a cycle must use x0, any negative

weight gray cycle in G′ must use at least two edges corresponding to absolute constraints.

Let p be the negative weight gray cycle in G′ with the fewest edges. Assume without

loss of generality that p contains an edge corresponding to the constraint xi ≤ ci ∈ U′ \U

for some xi. If p has an edge that does not correspond to an absolute constraint, then

p must have an edge corresponding to a constraint of the form −xi + a j · x j ≤ ci j where

a j ∈ {−1,1}.

The constraint xi ≤ ci is in U′ \U. Thus, the constraint xi + xi ≤ 2 · ci + 1 is derivable

from U by the transitive inference rule. Since the constraint −xi +a j · x j ≤ ci j is in U, the

constraint a j · x j +a j · x j ≤ 2 · (ci j + ci)+1 is derivable from U by the transitive inference

rule. Thus the constraint a j · x j ≤ ci j + ci is in U′. Thus, we can construct a new negative

weight gray cycle by replacing the edges in p corresponding to the constraints xi ≤ ci and

−xi +a j · x j ≤ ci j with the edge corresponding to the constraint a j · x j ≤ ci j + ci.

However, this means that there is a negative weight gray cycle in G′ with fewer edges

than p. Thus, p cannot have any edges corresponding to non-absolute constraints. This

means that the edges in p correspond to the constraints xi ≤ ci1 and −xi ≤ ci2 where ci1 +

ci2 < 0 for some xi. Without loss of generality assume that xi ≤ ci1 ∈ U′ \U.

Thus, the constraint xi + xi ≤ 2 · ci j + 1 is derivable from U by the transitive inference

rule. If the constraint −xi ≤ ci2 ∈ U, then the constraint

0 = xi + xi−2 · xi ≤ 2 · ci j +1+2 · ci2 = 2 · (ci j + ci2)+1≤−2+1 =−1

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 184

is derivable from U by the transitive inference rule. However, this means that U is infeasible

and that G has a negative weight gray cycle [SW17b]. Thus, we must have that−xi ≤ ci2 ∈

U′ \U. Thus, −xi− xi ≤ −2 · ci2 + 1 is derivable from U by the transitive inference rule.

Since U is feasible, we must have that 0≤−ci1−ci2+1. Thus, we have that ci1+ci2 =−1

as desired.

Theorem 12.3.2. Either the constraint system U encloses an integer point or (mutually

exclusively),

1. G contains a path from a vertex xi to itself that can be reduced to a single gray edge

of negative weight or

2. G contains a white path of odd weight from xi to itself and a black path of odd weight

from xi to itself with total weight 0.

Proof. If G contains a path of type (a), then U contains no rational points and thus no

integer points [SW17b].

If G contains a path of type (b), then for some ci the constraints xi + xi ≤ 2 · ci +1 and

−xi−xi ≤−2 ·ci−1 are derivable from U by the transitive inference rule [SW17b]. Thus,

the constraints xi≤ ci and−xi≤−ci−1 are in U′. This means that U′ (and thus U) contains

no integer points.

If U does not contain an integer point, then there are two cases, either U contains no

rational points or it contains rational, but no integer points.

If U contains no rational points, then G must have a path of type (a) [SW17b].

If U contains rational but no integer points, then by Lemma 12.3.5, U′ \U contains the

constraints xi≤ ci and−xi≤−ci−1 for some xi. Thus, the constraints xi+xi≤ 2 ·ci+1 and

−xi− xi ≤−2 · ci−1 are derivable from U by the transitive inference rule. The constraints

used to derive xi + xi ≤ 2 · ci + 1 correspond to a white path of weight (2 · ci + 1) from

xi to itself [SW17b]. Note that this path has odd weight. The constraints used to derive

−xi− xi ≤ −2 · ci− 1 correspond to a black path of weight (−2 · ci− 1) from xi to itself

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 185

[SW17b]. Note that this path also has odd weight The total weight of these paths is 0. Thus,

G has a path of type (b).

Note that our graphical theorem of the alternative differs from the one in [LM05] in the

following ways:

1. Our theorem of the alternative utilizes the constraint network from [SW17b], not the

constraint network in [Min06].

2. Our theorem of the alternative is based on the constraint network corresponding to the

original system without the need for constraints derived from the tightening inference

rule. While the algorithm in [LM05] does use the unmodified graph, this is not

explicitly given as a theorem of the alternative.

Our graphical theorem of the alternative cannot be used to find the proof of integer

infeasibility with the fewest inferences.

Example 43: Consider the following system of UTVPI constraints:

x1 + x2 ≤ −1 x1− x2 ≤ 0 −x1− x3 ≤ 0 x3− x4 ≤ 0

x4− x5 ≤ 1 x4 + x5 ≤ 0 x5− x6 ≤ 0 x6− x1 ≤ 0
(12.2)

The constraint network corresponding to System (12.2) can be seen in Figure 12.2.

x3 x1 x2x4

x5 x6

−1

0

00

1

0

0

0

Figure 12.2: Constraint network corresponding to System (12.2) (without vertex x0)

The shortest pair of cycles is the white cycle (x1
−1

x2
0

x1) and the black cycle

(x1
0

x3
0

x4
1

x5
0

x6
0

x1). There are 7 edges in total. This corresponds to the following

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 186

proof of infeasibility

1.
x1 + x2 ≤−1 x1− x2 ≤ 0

x1 ≤−1

2.
−x1− x3 ≤ 0 x3− x4 ≤ 0

−x1− x4 ≤ 0

3.
−x1− x4 ≤ 0 x4− x5 ≤ 1

−x1− x5 ≤ 1

4.
−x1− x5 ≤ 1 x5− x6 ≤ 0

−x1− x6 ≤ 1

5.
−x1− x6 ≤ 1 x6− x1 ≤ 0

−x1 ≤ 0

6.
−x1 ≤ 0 x1 ≤−1

0≤−1

This proof of infeasibility consists of 6 inferences.

However, we can look at the white cycle (x1
−1

x2
0

x1) and the black cycle

(x1
0

x3
0

x4
1

x5
0

x4
0

x3
0

x1). There are 8 edges in total. This corresponds to the

following proof of infeasibility

1.
x1 + x2 ≤−1 x1− x2 ≤ 0

x1 ≤−1

2.
x4− x5 ≤ 1 x4 + x5 ≤ 0

x4 ≤ 0

3.
x3− x4 ≤ 0 x4 ≤ 0

x3 ≤ 0

4.
−x1− x3 ≤ 0 x3 ≤ 0

−x1 ≤ 0

5.
−x1 ≤ 0 x1 ≤−1

0≤−1

This proof of infeasibility consists of only 5 inferences.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 187

12.3.1.1 Integer feasibility algorithm

In this section, we convert the insights of the previous section into an algorithm for

deciding integer feasibility in UTVPI constraints. This algorithm complements existing

integer feasibility algorithms for UTVPI constraints [Min06, LM05, SW17a].

Let U be a UCS and let G be the corresponding constraint network. First the algorithm

checks to see if G has a negative weight gray cycle (path of type (a)). This can be done in

O(m ·n) time by the algorithm described in [SW17b]. Note that this algorithm will return

either a path of type (a) or a feasible linear solution r.

If G has a path of type (a) we declare the system infeasible and return path as proof of

infeasibility. If G does not have a path of type (a), then we use the linear solution returned

by the algorithm to construct a re-weighted graph G′ from G as follows:

1. Each edge of the form xi
ci j

x j becomes xi
ci j−ri−r j

x j.

2. Each edge of the form xi
ci j

x j becomes xi
ci j+ri−r j

x j.

3. Each edge of the form xi
ci j

x j becomes xi
ci j−ri+r j

x j.

4. Each edge of the form xi
ci j

x j becomes xi
ci j+ri+r j

x j.

Since r is a feasible solution to U, the weight of each edge in G′ is non-negative. Since

any path of type (b) has total weight 0, the corresponding path in G′ must also have total

weight 0. Thus, every edge in that path in G′ has weight 0.

If the white sub-path of the path of type (b) has total weight (2 · ci +1), then this sub-

path corresponds to a constraint of the form xi+xi ≤ 2 ·ci+1. Additionally, the black sub-

path must have total weight (−2 · ci−1) and the this sub-path corresponds to a constraint

of the form −xi− xi ≤ −2 · ci− 1. Together these constraints force xi = ci +
1
2 . Thus, we

have that ri = ci +
1
2 6∈ Z.

Thus, to find a path of type (b) in G, we need to find an xi such that:

1. ri 6∈ Z

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 188

2. xi is reachable from itself in G′ by a white path using only 0 weight edges.

3. xi is reachable from itself in G′ by a black path using only 0 weight edges.

For each xi, a reachability algorithm can be used to determine if the desired white and

black paths exist. Thus, it takes O(m+ n) time to check if a single xi satisfies all of these

conditions. Thus, the total running time of this part of the algorithm is O(m ·n).

Thus, integer feasibility can be established, with proof of infeasibility, in O(m ·n) time.

Note that unlike the algorithm in [SW17a], this algorithm does not return an integral solu-

tion if U is integer feasible.

12.4 Closure

12.4.1 The closure problem (ADD and DIV rules)

In this section, we describe an algorithm for finding the integer closure of certain sys-

tems of UTVPI constraints.

We first describe a modified version of Dijkstra’s shortest path algorithm, adapted to

handle the network construction introduced in [SW17b]. Dijkstra’s shortest path algorithm

is a well-known method for solving the single source shortest path problem in graphs with

non-negative edge weights. It runs in O(m+n · logn) time [CLRS01].

In Algorithm 12.4.1 we utilize the weight function c(e) defined in Section 2.2.2.

Algorithm 12.4.1 operates on the same basic principles as Dijkstra’s shortest path algo-

rithm. However, it has been adapted to utilize the graph construction described in Section

2.2.2. We use it to find the shortest white, black, and gray paths from xi to every vertex x j

in G. This gives us max(xi + x j), max(−xi− x j), max(xi− x j), max(−xi + x j), max(2 · xi),

and max(−2 · xi). See Section 12.4.1.1 for a proof of this statement.

If a finite upper bound cannot be established on one of these values, then it is given the

default value of ∞. Just like Dijkstra’s shortest path algorithm, Algorithm 12.4.1 assumes

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 189

Algorithm 12.4.1 UTVPI-DIJKSTRA

Function UTVPI-DIJKSTRA (network G, start vertex xi)
1: Create array D[x j, t] of distance labels for t ∈ { , , , }. . Note that D[x j, t] is the

length of a shortest path of type t between xi and x j.
2: Create queue of unvisited vertex label pairs Q.
3: for (each x j) do
4: D[x j, t]← ∞ for t ∈ { , , , }.
5: Add (x j, t) to Q for t ∈ { , , , }.
6: D[xi, t]← 0 for t ∈ { , }.
7: while (Q 6= /0) do
8: (y, t)← argmin(x,t)∈Q(D[x, t]).
9: for (each neighbor x of y) do

10: if (t =) then
11: . Perform all valid edge reductions that start with a white edge.
12: . A table of these reductions can be found in [SW15a].
13: if (D[x,]> D[y,]+ c(y x)) then . Reduce xi y x to xi x.
14: D[x,]← D[y,]+ c(y x).
15: if (D[x,]> D[y,]+ c(y x)) then . Reduce xi y x to xi x.
16: D[x,]← D[y,]+ c(y x).
17: t ∈ { , , } are handled according to the rules in [SW15a].
18: Remove (y, t) from Q.
19: return Distance labels D.

that all edge weights are non-negative.

If we are given a system of pure difference constraints, then we cannot derive max(xi+

x j), max(−xi−x j), max(xi), or max(−xi) for any xi, x j. Thus, for these bounds, Algorithm

12.4.1 returns a value of ∞.

We find the integer closure of a system of UTVPI constraints by converting the system

into an equivalent one in each constraint has a non-negative right hand side. We also re-

quire that each constraint derivable from the tightening inference rule is included. We run

Algorithm 12.4.2 on the modified graph to obtain the integer closure of the original system.

This graph conversion is described in Section 12.4.1.1.

The constraints derived by the tightening rule need to be included. Otherwise, the

bounds generated only apply to linear solutions, with integer solutions possibly requiring

tighter bounds.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 190

Example 44: Let us consider the system, x1 + x2 ≤ 1, x1− x2 ≤ 0, and x2− x1 ≤ 0.

Without tightening constraints, the best upper bound on (x1 + x2) that we can obtain by

simply adding constraints is x1+x2≤ 1. However, this bound is only satisfied with equality

when x1 = x2 =
1
2 . Since no integer solution satisfies this bound with equality, this is not

the tightest bound we can obtain.

Instead, if we add the constraints derived by the tightening inference rule, then we see

that the two constraints x1 ≤ 0 and x2 ≤ 0 would be added. This would make the new best

upper bound on (x1 + x2), x1 + x2 ≤ 0. This bound can be satisfied with equality when

x1 = x2 = 0, which is an integer solution to the original system.

Once we get the system into this form we run Algorithm 12.4.2. From this, we obtain

the tightest bounds on each possible UTVPI constraint.

Algorithm 12.4.2 UTVPI-JOHNSON

Function UTVPI-JOHNSON (set U of UTVPI constraints)
1: Construct constraint network G from U according to the rules in Section 2.2.2.
2: Create array B[xi,x j, t] of bounds. . Note

that B[xi,x j,0] represents max(xi + x j), B[xi,x j,1] represents max(xi− x j), B[xi,x j,2]
represents min(xi + x j), and B[xi,x j,3] represents min(xi− x j).

3: Create array D[xi] of distance labels.
4: for (each x j) do
5: D←UTVPI-DIJKSTRA(G,xi). . Run Algorithm 12.4.1 from every vertex.
6: for (each xi) do . Store the results in B.
7: B[xi,x j,0]← D[xi,].
8: B[xi,x j,1]← D[xi,].
9: B[xi,x j,2]←−D[xi,]. . Convert max(−xi− x j) to min(xi + x j).

10: B[xi,x j,3]←−D[xi,]. . Convert max(−xi + x j) to min(xi− x j).

11: return Array of bounds B.

12.4.1.1 The new algorithm

Algorithm 12.4.2 provides a method for obtaining the integer closure when all con-

straints have non-negative constants, and all results of the tightening inference rule have

been found.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 191

To get all constraints to have non-negative constants, it suffices to find an integer solu-

tion d to the system, and to adjust the constraints accordingly.

That is if the values for xi and x j are di and d j, then the adjusted version of the constraint

xi + x j ≤ ci j would be xi + x j ≤ ci j− (di +d j). Since di +d j ≤ ci j we have that ci j− (di +

d j)≥ 0.

Similarly, xi− x j ≤ ci j would become xi− x j ≤ ci j− (di− d j), −xi + x j ≤ ci j would

become −xi + x j ≤ ci j− (−di + d j), and −xi− x j ≤ ci j would become −xi− x j ≤ ci j−

(−di−d j).

Example 45: Consider the UTVPI constraint x1 + x2 ≤ −5. We have that the vector

(x1,x2) = (−3,−3) satisfies this constraint. If this is used as the initial valid solution, then

this constraint would become x1 + x2 ≤ 1 in the new system.

To account for all constraints generated by the tightening inference rule, we need to

find the tightest bounds on (xi + xi) and (−xi− xi) for each xi.

Once these are found, if the tightest bound on (xi + xi) corresponds to a constraint

xi + xi ≤ 2 ·a+1 for some integer a, then the constraint xi ≤ a can be added to the system

as a result of the tightening inference rule.

To make this process easier, finding these bounds can be performed on the adjusted

graph where each constraint has non-negative constant. The proof of this is in Section

12.4.1.1.

We need to reduce an arbitrary system of UTVPI constraints to a system in which each

constraint has non-negative constant, and all constraints added by the tightening rule are

included. This is done in Algorithm 12.4.3.

Analysis of Running Time

Algorithm 12.4.3 consists of two portions. The first converts a general system of UTVPI

constraints into one that can be accepted by Algorithm 12.4.2. Then Algorithm 12.4.2 is

run on this modified graph. We shall analyze these two portions separately.

Converting the graph into the form required by our fast integer closure algorithm con-

sists of

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 192

Algorithm 12.4.3 UTVPI-CLOSURE

Function UTVPI-CLOSURE (set U of UTVPI constraints)
1: Find an integer solution d to U.
2: Create system of UTVPI constraints U′.
3: Create array B[xi,x j, t] of bounds. . Note

that B[xi,x j,0] represents max(xi + x j), B[xi,x j,1] represents max(xi− x j), B[xi,x j,2]
represents min(xi + x j), and B[xi,x j,3] represents min(xi− x j).

4: Create array D[xi] of distance labels.
5: for (each constraint e in U) do
6: if (e is of the form (xi + x j)≤ ci j) then
7: Add the constraint (xi + x j)≤ (ci j−di−d j) to U′.
8: if (e is of the form (xi− x j)≤ ci j) then
9: Add the constraint (xi− x j)≤ (ci j−di +d j) to U′.

10: if (e is of the form (−xi + x j)≤ ci j) then
11: Add the constraint (−xi + x j)≤ (ci j +di−d j) to U′.
12: if (e is of the form (−xi− x j)≤ ci j) then
13: Add the constraint (−xi− x j)≤ (ci j +di +d j) to U′.
14: Construct constraint network G from U′ according to the rules in Section 2.2.2.
15: for (each xi) do
16: D←UTVPI-DIJKSTRA(G,xi).
17: if (D[xi,] is odd) then . max(2 · xi) is odd.
18: Add the constraint xi ≤ bD[xi,]

2 c to U′.
19: if (D[xi,] is odd) then . max(−2 · xi) is odd.
20: Add the constraint −xi ≤ bD[xi,]

2 c to U′.
21: B← UTVPI-JOHNSON(U′).
22: for (each xi) do
23: for (each x j) do
24: B[xi,x j,0]← B[xi,x j,0]+di +d j.
25: B[xi,x j,1]← B[xi,x j,1]+di−d j.
26: B[xi,x j,2]← B[xi,x j,2]+di +d j.
27: B[xi,x j,3]← B[xi,x j,3]+di−d j.

28: return Array of bounds B.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 193

• Finding an integer solution: Using the algorithm described in [LM05] this can be

done in O(m ·n+n2 · logn) time.

• Re-weighting the graph: since every edge needs to be re-weighted this portion runs

in O(m) time.

• Determining which edges need to be tightened: This consists of n runs of UTVPI-

DIJKSTRA(), and so takes O(m ·n+n2 · logn) time.

• Adding tightened edges: for each xi we add at most 2 new edges, and so this portion

runs in O(n) time.

Thus, the graph conversion procedure runs in O(m ·n+n2 · logn) time.

Algorithm 12.4.2 which computes the integer closure for certain types of UTVPI sys-

tems consists of

• Creating the graph: since each edge and vertex of the graph need to be created, this

process takes O(m+n) time.

• Computing the transitive closure of the tightened graph: This consists of n runs of

Algorithm 12.4.1, and so takes O(m ·n+n2 · logn) time.

• Determining min(xi− x j), max(xi− x j), max(xi + x j), min(xi + x j), max(xi), and

min(xi) for each xi and x j: There are O(n2) bounds that need to be determined, so

this portion of the algorithm runs in O(n2) time.

Thus, Algorithm 12.4.2 and the entire integer closure procedure run in O(m ·n+n2 · logn)

time.

Correctness

We first show that Algorithm 12.4.2 generates the correct bounds on integer solutions to

U. This is done by showing that each of the desired bounds can be obtained from applying

the transitive and tightening inference rules.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 194

Lemma 12.4.1. The bound xi− x j ≥min(xi− x j) can be obtained through repeated appli-

cations of the transitive and tightening inference rules.

Proof. Let ci j = min(xi− x j). Thus, there exists a valid solution to U, say x′, such that

x′i− x′j ≤ ci j. However, for any c < ci j there is no such value of x. This means that U∪

{x′i− x′j ≤ ci j} is feasible but U∪{x′i− x′j ≤ ci j−1} is infeasible.

Since this second system is infeasible, repeated applications of the transitive and tight-

ening inference rules are able to produce the constraint 0≤ b < 0 [JMSY94].

Note that this proof of infeasibility must use the constraint x′i− x′j ≤ ci j − 1. Thus,

removing x′i− x′j ≤ ci j − 1 from the proof of infeasibility, results in a derivation of the

constraint xi− x j ≥ c′i j such that ci j − 1 < c′i j ≤ ci j. Since c′i j and ci j are both integers,

c′i j = ci j.

Thus, through repeated applications of the transitive and tightening inference rules we

are able to derive the constraint xi− x j ≥min(xi− x j).

The ability to construct the remaining bounds is shown without proof since they are

analogous to the proof of Lemma 12.4.1.

The distance labels, D[x j, t], in Algorithm 12.4.1 are computed by adding edge weights.

This corresponds to applications of the transitive inference rule. Thus, we have that Algo-

rithm 12.4.1 always generates valid bounds.

Lemma 12.4.2. After running Algorithm 12.4.1 from xi, we have the following:

(1) max(xi + x j) = D[x j,].

(2) max(xi− x j) = D[x j,].

(3) min(xi + x j) =−D[x j,].

(4) min(xi− x j) =−D[x j,].

(5) max(xi) = bD[xi,]
2 c.

(6) min(xi) =−bD[xi,]
2 c.

Proof. The first four cases are handled similarly.

We have that D[x j,], is the length of the shortest gray path from xi to x j in U′. This

means that the constraint −xi + x j ≤ D[x j,] is derivable from U′ but no constraint of the

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 195

form −xi + x j ≤ bi j < D[x j,] is derivable from U′.

Thus, the constraint xi− x j ≥ −D[x j,] is derivable from U′ but no constraint of the

form xi−x j ≥ bi j > D[x j,] is derivable from U′. From Lemma 12.4.1, we must have that

min(xi− x j) =−D[x j,]. The remaining cases are handled similarly.

Thus, we must have that

max(xi) = b
max(xi + xi)

2
c= bD[xi,]

2
c,

and

min(xi) = d
min(xi + xi)

2
e= d−D[xi,]

2
e=−bD[xi,]

2
c.

As a direct result of Lemma 12.4.2, we have the following.

Corollary 12.4.1. After running Algorithm 12.4.2, we have the following:

(1) B[xi,x j,0] = max(xi + x j).

(2) B[xi,x j,1] = max(xi− x j).

(3) B[xi,x j,2] = min(xi + x j).

(4) B[xi,x j,3] = min(xi− x j).

Lemma 12.4.3. All bounds generated by Algorithm 12.4.2 can be satisfied with equality by

valid integer assignments to the variables.

Proof. Suppose otherwise, thus there exists a system of constraints U such that the al-

gorithm generates a bound, say xi + x j ≤ c, that can only be satisfied with equality by

a non-integer solution to the original system of equations. Because the relaxation steps

of DIJKSTRA correspond to the addition of constraints, the constraint xi + x j ≤ c can be

derived from the original system.

If no such constraint can be derived, then no upper bound on (xi+x j) can be generated.

Thus, there is no white path between xi and x j in the constraint network. In this case, the

algorithm correctly gives the upper bound as ∞.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 196

Consider the system U∪{−xi−x j ≤−c}. This system is linear feasible, but not integer

feasible. Thus, through repeated applications of the transitive and tightening inference

rules a contradiction can be generated. However, by construction, U already contains all

constraints generated by the tightening inference rule. This means that the contradiction

can be obtained by only applying the transitive inference rule.

This would mean that U∪{−x1−xi≤−c} is also linearly infeasible. Thus, U∪{−x1−

xi ≤ −c} must be integer feasible, and so the constraint x1 + xi ≤ c can be satisfied with

equality by an integer solution.

A similar proof applies to constraints of type x1− xi ≤ c, −x1 + xi ≤ c, and −x1− xi ≤

c.

Theorem 12.4.1. Algorithm 12.4.2 correctly computes the integer closure U.

Proof. From Lemma 12.4.1, and the corresponding results for the other constraint types,

we know that all bounds generated by Algorithm 12.4.2 are derivable from U. Thus, these

bounds are satisfied by all integer solutions to U.

From Lemma 12.4.3, every bound generated by Algorithm 12.4.2 is satisfied with

equality by some integer solution of U. Thus, these bounds are tight, and Algorithm 12.4.2

correctly computes the integer closure of U.

We now show that the graph conversion procedure in Algorithm 12.4.3 generates all

constraints derivable from the tightening inference rule.

Lemma 12.4.4. Re-weighting the graph does not change the parity of the bounds on (xi +

xi) and (−xi− xi).

Proof. When the constraints are re-weighted, the change to the bound on both (xi+xi) and

(−xi− xi) only depends on the value of di. We have that di is an integer, so the bound

changes by ±2 · di. Consequently, the parity of the weight remains unchanged. Thus,

re-weighting the graph does not change where the tightening rule is applied.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 197

Now, we show that only one pass of tightening is required. We do this by showing that

adding a constraint generated by the tightening rule does not result in additional applica-

tions of the tightening rule.

Lemma 12.4.5. Adding a constraint generated by the tightening rule does not necessitate

adding any additional constraints as a result of the tightening inference rule.

Proof. Suppose that adding the new constraint xi + xi ≤ 2 · ci results in an odd tightest

bound for (x j + x j).

The path p responsible for this bound must use the constraint xi + xi ≤ 2 · ci. Thus, the

path consists of a path p1 from x j to xi, the newly added edge, and a path p2 from xi to x j.

We have that p1 corresponds to a constraint of the form x j− xi ≤ w1, and that the path

p2 corresponds to a constraint of the form −xi + x j ≤ w2.

Since p is of odd weight, we have that (2 ·ci +w1 +w2) is odd. Thus, (w1 +w2) is also

odd. This means that, since w1 and w2 are both integers, either w1 < w2 or w2 < w1.

If w1 < w2, then we can construct the bound x j + x j = xi + xi + 2 · (x j− xi) ≤ 2 · (ci +

w1)< 2 ·ci+w1+w2. This contradicts the assumption that (2 ·ci+w1+w2) is the tightest

bound on (x j + x j)

If w2 < w1, then we can construct the bound x j +x j = xi +xi +2 · (−xi +x j)≤ 2 · (ci +

w2)< 2 ·ci+w1+w2. This contradicts the assumption that (2 ·ci+w1+w2) is the tightest

bound on (x j + x j)

A similar proof applies when the edge added is −xi−xi ≤ 2 ·ci, or when the odd bound

is created for (−x j− x j).

Theorem 12.4.2. Algorithm 12.4.3 computes all constraints derivable by the tightening

inference rule.

Proof. From Lemma 12.4.4, re-weighting the graph does not change where the tightening

rule is applied. Thus, all tightenings performed on U′ correspond to tightenings that can be

performed on U. The re-weighting is performed on lines 5 to 18 of Algorithm 12.4.3.

CHAPTER 12. UTVPI CONSTRAINT SYSTEMS 198

By Lemma 12.4.2, running Algorithm 12.4.1 from xi is enough to compute max(xi)

and min(xi). Thus, running Algorithm 12.4.1 from xi allows us to determine if we need to

apply the tightening rule to xi. This is handled by lines 20 to 30 of Algorithm 12.4.3.

By Lemma 12.4.5, one round of tightening, after transitive closure is computed, is

sufficient to generate all tightening constraints. Once these constraints are added to the

re-weighted system, we have that the system is in the form required by Algorithm 12.4.2.

From Corollary 12.4.1, we have that Algorithm 12.4.2 generates the correct bounds for

each pair of variables. All that is left to do is to change the bounds so that they apply to the

regular graph. This is done on lines 32 to 39 of Algorithm 12.4.3.

199

Chapter 13

Horn Constraint Systems

13.1 Motivation and Related Work

Since the integer feasibility problem is NP-hard for general polyhedra (A ·x≥ c) a fair

amount of research has been devoted towards the design of polynomial time algorithms for

various special cases, restricting the structure of A.

It is well-known that, if the constraint matrix A is Totally Unimodular (TUM) and the

vector b is integral, then the system A ·x≥ c has integral extreme point solutions [Sch87].

Note that a matrix A is totally unimodular if the determinant of every square sub-matrix of

A is 0, 1, or −1. Difference constraint systems are a sub-class of TUM systems, in which

each constraint has at most one positive entry and one negative entry, with the positive entry

being 1 and the negative entry being−1. This problem is the dual of the problem of finding

single source shortest paths in directed, real-weighted networks [CLRS01].

A related constraint system is the Unit Two Variables per Inequality (UTVPI) system

in which both sum and difference relationships can be expressed. The IF feasibility prob-

lem for this class was shown to be in P [JMSY94]. Unlike DCSs though, in a UTVPI

system the answers to the LF and IF problems do not coincide in that such a system

could be linear feasible but not integer feasible. UTVPI systems find applications in a host

CHAPTER 13. HORN CONSTRAINT SYSTEMS 200

of verification-related problems such as abstract interpretation and array-bounds checking

[LM05, BHZ09].

Horn Constraint Systems generalize difference constraints in that multiple negative

unity entries are permitted in a row. It is easy to see that Horn systems are not TUM.

However, a Horn constraint system always has a least element (if it is feasible) and the

least element of a Horn system is always integral. It follows that the LF and IF problems

coincide in case of Horn Constraint systems [CS13]. Veinott [VL92, Vei89] has a non-

polynomial algorithm for the LF problem of Horn type programs where the positive and

negative elements can take any value.

Our work is closely related to Lattice programming. Lattice programming is concerned

with predicting the direction of change in global optima and equilibria resulting from

changing conditions based on problem structure alone without data gathering or computa-

tion. Rooted in the theory of lattices, this work is also useful for characterizing the form of

optimal and equilibrium policies, improving the efficiency of computation and suggesting

desirable properties of heuristics. Applications range widely over dynamic programming,

statistical decision-making, cooperative and noncooperative games, economics, network

flows, Leontief substitution systems, production and inventory management, project plan-

ning, scheduling, marketing, and reliability and maintenance [VW62].

13.2 Refutability

13.2.1 The ROR problem (ADD and DIV rules)

In this section we study refutations of systems of Horn clause constraints that use both

the ADD rule and the DIV rule.

With the addition of the DIV rule, additional constraint systems have read-once refuta-

tions.

Lemma 13.2.1. There is a formula Φ such that S(Φ) ∈ CP-RO(ADD,DIV) and S(Φ) 6∈

CHAPTER 13. HORN CONSTRAINT SYSTEMS 201

CP-RO(ADD).

Proof. Let Φ = (x1)∧ (¬x1∨ x2)∧ (¬x1∨¬x2∨ x3)∧ (¬x1∨¬x2∨¬x3).

This corresponds to the HClCS

l1 : −x1− x2 + x3 ≥ −1

l2 : −x1 + x2 ≥ 0

l3 : x1 ≥ 1

l4 : −x1− x2− x3 ≥ −2

This system has the following read-once integer refutation.

First sum the constraints l1 and l4 to get the constraint−2 ·x1−2 ·x2 ≥−3. Then apply

the division rule (DIV) with d = 2 to get the constraint −x1− x2 ≥ −1. Now sum this

constraint with the constraint l2. This results in the constraint −2 · x1 ≥ −1. Then apply

the division rule. with d = 2 to get the constraint −x1 ≥ 0. Finally, we sum this constraint

with constraint l3 to obtain the contradiction 0≥ 1.

However S(Φ) does not have a read-once linear refutation. The formula is minimal

unsatisfiable. Therefore we need to use all four constraints. However summing all four

constraints results in the constraint −2 · x1 − x2 ≥ −2. Thus, to derive a contradiction

we need to use the constraint l2 an additional time and the constraint l3 an additional 3

times.

Theorem 13.2.1. There is an unsatisfiable Horn formula Φ such that S(Φ) 6∈ CP-

RO(ADD,DIV)

Proof. Let Φ = (y1)∧ (y2)∧ (¬y1∨ x1)∧ (¬y1∨¬y2∨¬x1∨ x2)∧ (¬y1∨¬y2∨¬x2).

This corresponds to the HClCS:

CHAPTER 13. HORN CONSTRAINT SYSTEMS 202

l1 : y1 ≥ 1

l2 : y2 ≥ 1

l3 : −y1 +x1 ≥ 0

l4 : −y1 −y2 −x1 +x2 ≥ −2

l5 : −y1 −y2 −x2 ≥ −2
Note that −y1 and −y2 each appear in multiple constraints. Thus, the first applications

of the ADD rule cannot use either constraint l1 or l2. This means that the first application

of the ADD rule must be to either constraints l3 and l4, constraints l3 and l5, or constraints

l4 and l5.

1. If we apply the ADD rule to constraints l3 and l4, then this results in the constraint

−2 ·y1−y2+x2≥−2. We cannot apply the DIV rule to this constraint. Additionally,

−y1 and −y2 still occur in multiple constraints. Thus, l1 and l2 cannot be used in the

next application of the ADD rule. This means that the next application of the ADD

rule involves the new constraint and l5. This results in the constraint−3 ·y1−2 ·y2 ≥

−4.

2. If we apply the ADD rule to constraints l3 and l5, then this results in the constraint

−2 · y1− y2 + x1− x2 ≥−2. We cannot apply the DIV rule to this constraint. Addi-

tionally, −y1 and −y2 still occur in multiple constraints. Thus, l1 and l2 cannot be

used in the next application of the ADD rule. This means that the next application

of the ADD rule involves the new constraint and l4. This results in the constraint

−3 · y1−2 · y2 ≥−4.

3. If we apply the ADD rule to constraints l4 and l5, then this results in the constraint

−2 ·y1−2 ·y2−x1 ≥−4. We cannot apply the DIV rule to this constraint. Addition-

ally, −y1 still occurs in multiple constraints and y2 has a coefficient of 2 in the new

constraint. Thus, l1 and l2 cannot be used in the next application of the ADD rule.

This means that the next application of the ADD rule involves the new constraint and

l3. This results in the constraint −3 · y1−2 · y2 ≥−4.

CHAPTER 13. HORN CONSTRAINT SYSTEMS 203

Note that if the first step is applying the add rule to the constraints l1 and l2 the resultant

constraint y1 + y2 ≥ 2 encounters the same issues as constraints l1 and l2 in the preceding

cases.

In all three cases we obtain the constraint −3 · y1− 2 · y2 ≥ −4. However, we cannot

apply the DIV rule to this constraint. Since both−y1 and−y2 have coefficients greater than

1, we cannot use constraints l1 and l2 to completely eliminate either of these literals. Thus,

the system is not in CP−RO(ADD,DIV).

We now show that even with the addition of the DIV rule, the problem of determining

if an HClCS has a read-once refutation remains NP-complete. This is done by a reduction

from the set packing problem.

Theorem 13.2.2. CP-RO(ADD,DIV) is NP-complete for HClCSs.

Proof. Consider a system of Horn constraints Φ with m constraints over n variables. Note

that each application of the ADD rule effectively reduces the number of constraints by 1.

Thus, we can apply the ADD rule at most (m− 1) times. For each constraint, either in

Φ or derived from the ADD rule, we can apply the DIV rule. We can assume without

loss of generality that we never apply the DIV rule to a constraint derived from the DIV

rule. Thus, we apply the DIV at most (2 ·m−1) times. Since each intermediate constraint

is polynomially sized in terms of the sized of the original system and we have at most

(3 ·m−2) intermediate constraints, any read-once refutation using the ADD and DIV rules

must be polynomially sized. Thus CP-RO(ADD,DIV) is in NP for Horn constraints. We

now need to show NP-hardness.

Let us consider an instance of the set packing problem. For each instance k ≥ 1 and

S = {S1, . . . ,Sm} where Si ⊆ {x1, . . . ,xn} we construct the associated HClCS H.

1. Let p(m) be the first prime larger than m. Note that p(m) ≤ 2 ·m and p(m) can be

found in time polynomial in m.

2. Create the variable u and the constraint u ≥ 1. This constraint corresponds to the

clause (u).

CHAPTER 13. HORN CONSTRAINT SYSTEMS 204

3. For each i = 1 . . . p(m) create the variable ui and the constraint ui− u ≥ 0. This

constraint corresponds to the clause (ui∨¬u).

4. For each xi create the constraint xi≥ 1. This constraint corresponds to the clause (xi).

5. For j = 1 . . .k, create the variable v j.

6. For each j = 1 . . .k, l = 1 . . .m, and i = 1 . . . p(m) create the variable w j,l,i.

7. For each subset Sl , l = 1 . . .m create the constraints

v j− ∑
xi∈Sl

xi−w j,l,1− . . .−w j,l,p(m) ≥ 1−|Sl|− p(m) j = 1 . . .k.

This constraint corresponds to the clause

(
v j∨

∨
xi∈Sl

¬xi∨¬w j,l,1∨ . . .∨¬w j,l,p(m)

)

8. For each j = 1 . . .k and l = 1 . . .m create the variable z j,l and the constraint z j,l ≥ 1.

This constraint corresponds to the clause (z j,l).

9. For each j = 1 . . .k, l = 1 . . .m, and i= 1 . . . p(m) create the constraint w j,l,i−z j,l ≥ 0.

This constraint corresponds to the clause (w j,l,i∨¬z j,l).

10. Finally create the constraint −u1− . . .− up(m)− v1− . . .− vk ≥ 1− k− p(m). This

constraint corresponds to the clause (¬u1∨ . . .∨¬up(m)∨¬v1∨ . . .∨¬vk).

11. The resultant HClCS is H.

We now show that H is in CP−RO(ADD,DIV) if and only if {S1, . . . ,Sm} contains k

mutually disjoint sets.

Suppose that {S1, . . . ,Sm} does contain k mutually disjoint sets. Without loss of gener-

ality assume that these are the sets S1, . . . ,Sk.

CHAPTER 13. HORN CONSTRAINT SYSTEMS 205

Initially, we use the constraint−u1− . . .−up(m)−v1− . . .−vk ≥ 1−k− p(m) together

with the constraints ui− u ≥ 0 for i = 1 . . . p(m) to derive the constraint −p(m) · u− v1−

. . .− vk ≥ 1− k− p(m).

Now, let us consider the sets of constraints

H j = {v j− ∑
xi∈S j

xi−w j, j,1− . . .−w j, j,p(m) ≥ 1−|S j|− p(m)}

∪ {xi ≥ 1 |xi ∈ S j}

∪ {w j, j,i− z j, j ≥ 0 | i = 1 . . . p(m)} j = 1 . . .k.

By the construction of H, we have that H j ⊆H for j = 1 . . .k. Since the sets S1, . . . ,Sk

are mutually disjoint, so are the sets H1, . . . ,Hk.

It it easy to see that the constraint v j− p(m) · z j, j ≥ 1− p(m) can be derived by sum-

ming all of the constraints in H j. Since this holds for every j = 1 . . .k and since the sets

H1, . . . ,Hk are mutually disjoint, we have that the set of constraints {v1− p(m) · z1,1 ≥

1− p(m), . . . ,vk− p(m) · zk,k ≥ 1} can be derived from H by read-once applications of the

ADD rule.

Together with the constraint −p(m) · u− v1− . . .− vk ≥ 1− k− p(m), this set of con-

straints sums together to derive the constraint −p(m) · u− p(m) · z1,1− . . .− p(m) · zk,k ≥

1− (k+1) · p(m)

Applying the DIV rule results in the constraint −u− z1,1− . . .− zk,k ≥−k

Together with the constraints u ≥ 1, z1,1 ≥ 1, . . ., zk,k ≥ 1 we obtain the contradiction

0≥ 1. This is a read once refutation using the ADD and DIV rules.

Now suppose that H is in CP−RO(ADD,DIV). We have to use the constraint −u1−

. . .−up(m)−v1− . . .−vk ≥ 1−k− p(m), because without this constraint the system would

be satisfied by setting every variable to 1. Let h0 denote this constraint. Note that to cancel

each −ui from h0, we must use the constraint ui−u≥ 0. This introduces multiple copes of

−u into the derived constraint. Thus, we cannot derive a contradiction or use the constraint

u≥ 1 until after the DIV rule is used with divisor d 6= 1.

CHAPTER 13. HORN CONSTRAINT SYSTEMS 206

We first look at the case where the DIV rule is used on a constraint derived without

using h0. Let H ′ ⊆H \{h0}, be a set of horn constraints such that summing the constraints

in H ′ results in a constraint C that can have the DIV rule applied with divisor d 6= 1.

H ′ must have the following properties:

1. H ′ cannot contain any constraint ui−u≥ 0 for i = 1 . . . p(m) – By construction, this

is the only constraint in h \ {h0} to use the variable ui. Thus, if ui− u ≥ 0 is in H ′

then the variable ui is in C with coefficient 1. This means that the DIV rule can only

be applied to C with d = 1.

2. H ′ cannot contain the constraint u≥ 1 – We already know that H ′ cannot contain any

of the ui−u≥ 0 constraints. By construction, u≥ 0 is the only other constraint in H

to use the variable u. Thus, if u≥ 1 is in H ′ then the variable u is in C with coefficient

1. This means that the DIV rule can only be applied to C with d = 1.

3. If H ′ contains the constraint

v j− ∑
xi∈Sl

xi−w j,l,1− . . .−w j,l,p(m) ≥ 1−|Sl|− p(m)

for any j = 1 . . .k and l = 1 . . .m, then H ′ must contain the constraints w j,l,1−z j,l ≥ 0,

. . ., w j,l,p(m)− z j,l ≥ 0 – Assume that for some 1 ≤ i ≤ p(m) the constraint w j,l,i−

z j,l ≥ 0 is not in H ′. Thus, by construction, the only constraint in H ′ to use the

variable w j,l,i is

v j− ∑
xi∈Sl

xi−w j,l,1− . . .−w j,l,p(m) ≥ 1−|Sl|− p(m).

Thus, the variable w j,l,i is in C with coefficient−1. This means that the DIV rule can

only be applied to C with d = 1.

4. Similarly, if H ′ contains the constraint w j,l,i− z j,l ≥ 0 for any j = 1 . . .k, l = 1 . . .m,

CHAPTER 13. HORN CONSTRAINT SYSTEMS 207

and i = 1 . . . p(m), then H ′ must contain the constraint

v j− ∑
xi∈Sl

xi−w j,l,1− . . .−w j,l,p(m) ≥ 1−|Sl|− p(m).

5. H ′ cannot contain the constraint z j,l ≥ 1 for any j = 1 . . .k and l = 1 . . .m – Assume

that h’ contains this constraint. If H ′ does not contain the constraint w j,l,i− z j,l ≥ 0

for any i = 1 . . . p(m), then z j,l ≥ 1 is the only constraint in H ′ to use the variable z j,l .

Thus, the variable z j,l is in C with coefficient 1. This means that the DIV rule can

only be applied to C with d = 1.

However, if H ′ does contain the constraint w j,l,i− z j,l ≥ 0 for some i = 1 . . . p(m),

then, from the points above, it must contain all p(m) of those constraints. This means

that H ′ contains all of the constraints in H which use the variable z j,l . However, C

still contains the variable z j,l with no way to cancel it as part of a read-once refutation.

6. H ′ cannot contain the constraint

v j− ∑
xi∈Sl

xi−w j,l,1− . . .−w j,l,p(m) ≥ 1−|Sl|− p(m)

for any j = 1 . . .k and l = 1 . . .m – If H ′ contains this constraint, then it must contain

the constraint w j,l,i− z j,l ≥ 0 for each i = 1 . . . p(m). Since H ′ does not contain

the constraint z j,l ≥ 1, the variable z j,l is in C with coefficient −p(m). Since p(m)

is prime, for the DIV rule to be applied to C with d 6= 1, it must be the case that

d = p(m). However, the variable v j appears in at most m constraints in H ′ and it has

coefficient 1 in each of those constraints. Thus, the v j must have coefficient a such

that 1 ≤ a ≤ m < p(m) in C. This means that the DIV rule cannot be applied to C

with d = p(m).

From the previous points, this also means that H ′ cannot contain any of the con-

straints of the form w j,l,i− z j,l ≥ 0.

CHAPTER 13. HORN CONSTRAINT SYSTEMS 208

7. H ′ cannot contain any constraint xi ≥ 1 for any i = 1 . . .n – If the constraint xi ≥ 1

is in H ′, then, from the previous point, we know that this is the only constraint in H ′

that uses the variable xi. Thus, the variable xi is in C with coefficient 1. This means

that the DIV rule can only be applied to C with d = 1.

We have shown that no constraint can be in the set H ′ thus we cannot use the DIV rule

with d 6= 1 on a constraint not derived using h0.

Let h be a constraint derived by summing h0 with a subset of the constraints in H \

{h0, u≥ 1}. h has the following properties:

1. If h contains the variable ui for any i = 1 . . . p(m), then the DIV rule has no effect on

h – The only way for this to happen is if h contains the term −ui from l0. Since the

coefficient of this term is −1, the DIV rule has no effect.

2. If h contains no variable ui for any i = 1 . . . p(m), then h contains the term −p(m) ·u

– The only constraint which cancels the term −ui from h0 is ui− u ≥ 0. Including

this constraint in the summation introduces a −u term to h. Doing this for every

i = 1 . . . p(m) results in the desired term.

3. If the DIV rule can be applied to h with d 6= 1, then h is a constraint of the form

−p(m) ·u− p(m) ·z1,l1− . . .− p(m) ·zk,lk ≥ 1−(k+1) · p(m) – As shown previously,

for the DIV rule to be applied to h with d 6= 1 h must contain the term−p(m) ·u. Since

p(m) is prime, d = p(m). Thus, all variables in h must have coefficients divisible

by p(m). The only variables which are used at least p(m) constraints in H are the

variables z j,l for j = 1 . . .k, l = 1 . . .m.

For the variable z j,l to have coefficient −p(m) in h, each constraint w j,l,i− z j,l ≥ 0

for i = 1 . . . p(m) must be included in the summation. The only constraint in H which

can cancel each w j,l,i introduced by the constraints is

v j− ∑
xi∈Sl

xi−w j,l,1− . . .−w j,l,p(m) ≥ 1−|Sl|− p(m).

CHAPTER 13. HORN CONSTRAINT SYSTEMS 209

Thus, this constraint must also be in the summation. This constraint cancels the −v j

term in h0. Since h0 has k such terms, h must contain k terms of the form−p(m) ·z j,l .

Thus h must have the desired form.

4. If h is of the form−p(m) ·u− p(m) · z1,l1− . . .− p(m) · zk,lk ≥ 1− (k+1) · p(m), then

{S1, . . . ,Sm} contains k mutually disjoint sets – To derive this constraint from h0, we

must do the following:

(a) For each i = 1 . . . p(m), cancel the term −ui with the constraint ui−u≥ 0.

(b) For each j = 1 . . .k, cancel the term −v j with the constraint v j −∑xi∈Sl
xi ≥

1−|Sl| for some l = 1 . . .m.

(c) For each w j,l,i introduced by a constraint of the form v j −∑xi∈Sl
xi−w j,l,1−

. . .−w j,l,p(m) ≥ 1− |Sl| − p(m), cancel the term −w j,l,i with the constraint

w j,l,i− z j,l ≥ 0.

(d) For each xi introduced by a constraint of the form v j−∑xi∈Sl
xi−w j,l,1− . . .−

w j,l,p(m) ≥ 1−|Sl|− p(m), cancel the term −x j with the constraint xi ≥ 1.

To do the last step each xi can be used by at most one of the constraints of the form

v j −∑xi∈Sl
xi ≥ 1− |Sl|, otherwise we would not be able to cancel it by using the

constraint xi ≥ 1 only once. Thus, as in the proof of Theorem 11.2.1, {S1, . . . ,Sm}

contains k mutually disjoint sets.

Thus, H is in CP− RO(ADD,DIV) if and only if {S1, . . . ,Sm} contains k mutually

disjoint sets. As a result of this, CP−RO(ADD,DIV) is NP-complete for HClCS.

210

Part V

Quantified Linear Constraints

211

Chapter 14

Quantified Linear Programming

14.1 Motivation and Related Work

Modeling uncertainty is one of the principal application areas of QLP. Many applica-

tion models incorporate the assumption of constancy in data which is neither realistic nor

accurate. In scheduling problems [Pin95b], for instance, the execution time of a job is usu-

ally considered fixed and known in advance. This simplifying assumption leads to elegant

models; however in real-time systems [GPS95b, CA00] such an assumption may lead to

dire consequences [SSRB98].

A application field where uncertainty plays a crucial role is reactive systems [HP85]. A

system is called reactive if its role is to maintain an ongoing interaction with its environ-

ment. A reactive system is an event driven system reacting endlessly to external stimuli.

For instance, a communications’ protocol is a system that must respond to each stimulus,

even to a fragment of input, such as a disrupted received message. In several real-world

important applications [KSSVS99, KCH01, PW00, PW01, Hal02, Har04], reactive sys-

tems handle input that is immense. Reactive systems are widely used to control critical

procedures. Air and road traffic control systems, programs navigating robotic devices (e.g.,

trains, planes) and systems controlling nuclear reactors or chemical plants processes are

CHAPTER 14. QUANTIFIED LINEAR PROGRAMMING 212

typical examples of such applications.

Most importantly, the domain of possible environmental inputs for reactive systems

is usually not fixed and thus unpredictable; it changes continuously due to the interplay

between the environmental stimuli and the responses of the system, i.e., as a result of

events that are initiated by the environment and given as input to the system, and as a result

of the responses of the system to this input. Hence, the primary goal of reactive systems is

to provide an offline guarantee that the input constraints will be met at run-time, regardless

of the actual input that may be given at any time to the system. This constitutes reliability

(i.e., failure-free system operation over a specified time in a given environment and for a

given purpose) to be of the utmost importance for such systems. Failure may result into

loss of critical data (e.g., in communication networks), high economic losses, catastrophic

environmental damages (e.g., systems controlling chemical or nuclear plants), injury or

even loss of life (e.g., traffic control systems), depending on the system’s purpose.

In the attempt to design and implement reliable reactive systems, system developers

and software engineers confront two major issues, namely parameter variability and the

existence of complex relationships between the input and the reactions of the system. This

makes the analysis and design of dependable reactive system an elaborate and crucial task

[Cla97, KSSVS99, Mut77, Dru06]. Thus, it highlights the need for modeling tools that

are appropriate for incorporating and handling such issues in the specification of reactive

systems. In that regard, modeling reactive systems as 2-person games enables the utiliza-

tion of powerful mathematical and algorithmic tools that can be developed for such games.

QLPs provide a unified framework, whose expressive power is ideal for modeling reactive

systems as 2-person games. That is, reactive systems can be modeled as QLPs where the

environmental input is represented by the values of the universally quantified variables,

while the system’s response is represented by the values of the existentially quantified vari-

ables. Hence, checking feasibility of a QLP (i.e., checking whether a linear polyhedron

specified by a linear system of inequalities is nonempty with respect to a specified quanti-

fier string) is equivalent to ‘playing out’ the corresponding 2-person game and determining

CHAPTER 14. QUANTIFIED LINEAR PROGRAMMING 213

whether the corresponding reactive system will fail or not.

QLPs can also be utilized in software verification [BM07]. For critical systems, it

is of paramount importance to make sure that the corresponding software implements its

intended purpose. Testing is not sufficient to avoid communication network collapses, huge

commercial losses or catastrophic accidents. Software verification is a formal approach to

verifying the correctness of the implementation. It is a rigorous technique which analyzes

mathematical models that represent the software. The software is formulated in a language

with well-defined semantics, pre- and postcondition are formulated in some formal system,

and the proof of correctness is carried out in this formal system.

Constraint programming techniques have been explored for software verification

[CRV04, CR06, CAS08]. These techniques formulate software as Constraint Satisfac-

tion Problems (CSPs). They derive constraint systems from the program and consider their

conjunction with the negation of the specifications. Typically, their aim is to prove that

the CSP is unsolvable. This would mean that the software is consistent with its specifica-

tions. Although this approach is intuitive and straightforward, it may become impractical

because of the high number of constraints that are generated. A CSP approach to program

verification has also been attempted for rule-based programming [BL08]. Rule-based pro-

gramming has gained interest in the software industry over the past years, because of the

growing use of Business Rules Management Systems. Hence, a demand for verification

of rule programs has emerged. Also, in [GSV08] it is shown how the constraint-based ap-

proach can be used to model a wide spectrum of program analysis using disjunctions and

conjunctions of linear inequalities. Linear programs have also been used as a finer (than

Boolean programs) grained abstraction for sequential programs offering an effective model

checking procedure [ACM04].

Furthermore, software verification has been studied in the context of reactive systems

[BB91]. A minor investigation in the area (and especially of real-time control systems)

was done in [BGM90], in which a theorem-prover was used to prove that a simple program

keeps a vehicle ‘on course’ in a varying cross wind. A major problem in the verification

CHAPTER 14. QUANTIFIED LINEAR PROGRAMMING 214

of reactive systems is the specification of the non-digital world with which such programs

interact. A related area of concern is hardware verification, where timing and interrupt

handling are major problems. An initial investigation was conducted in [Wag77], who

proved properties of circuits for such basic tasks as counting and multiplying. Formalisms

used for specification and verification of reactive systems, and in particular, results on m-

calculus, w-automata, and temporal logics, are presented in [Sch04].

Software verification is enormously effort intensive [Cla93], while the verification of

complex algorithms written in popular programming languages such as C, C++ or Java is

still far beyond the state-of-the-art. However, existing polynomial procedures for QLPs

[Sub07] can accommodate the utilization of linear constraints in software verification pro-

cedures, leading to the design of polynomial-time software verification methods for special

types of programs.

14.2 Satisfiability

14.2.1 Semantics

In this section, we interpret QLP decidability as a 2-person game. Such a game includes

an existential player X, who chooses values for the existentially quantified variables, and

a universal player Y, who chooses values for the universally quantified variables. Our

analysis focuses on QLPs in general form [Sub07], but also holds for the partially bounded

and unbounded variants, discussed in this dissertation.

Consider the generic form of QLP (i.e., QLP (2.4)) and assume, without loss of gen-

erality, that x1 and yn are not empty (dummy variables can be added, if necessary). The

initial board configuration of the game is:

A ·x+N ·y≤ b (14.1)

CHAPTER 14. QUANTIFIED LINEAR PROGRAMMING 215

The game is played in a sequence of 2 ·n rounds. Let i = 1, . . . ,n. In round (2 · i−1),

X makes his ith move (by choosing values for the variables in the set xi). Then, Y makes

his ith move (by choosing values for the variables in the set yi) in round 2 · i. Hence, X and

Y make their moves by selecting values for their respective variable sets. The moves are

strictly alternating: X makes his ith move, which is followed by Y’s ith move, after which

X makes his (i+ 1)th move and so on. After all the moves have been made in the order

specified by the quantifier string, if A ·x+N ·y ≤ b holds, we say that X wins the game;

otherwise, we say that Y wins the game.

14.2.2 Complexity of UQLP and PQLP

In this section, we examine the computational complexities of PQLP and UQLP. We

commence our analysis by showing that PQLP decidability is in P.

Theorem 14.2.1. PQLP decidability is in P.

Proof. Let L be the following PQLP:

∃xn ∀yn ∈ [0,+∞) ∃xn−1 ∀yn−1 ∈ [0,+∞) . . . ∃x1

∀y1 ∈ [0,+∞) ∃x0 A ·x+B ·y≤ c (14.2)

Let A = (an,an−1, . . . ,a0), B = (bn,bn−1, . . . ,b1), x = (xn,xn−1, . . . ,x0)
T , and y =

(yn,yn−1, . . . ,y1)
T . Note that any PQLP can be reduced to the form specified by PQLP

(14.2) through the addition of dummy variables. Enforcing this strict alternation of quanti-

fiers will at most double the total number of program variables.

Consider the linear program:

LPn : A ·x≤ c, (14.3)

CHAPTER 14. QUANTIFIED LINEAR PROGRAMMING 216

and, for i = 1, . . . ,n consider the linear program:

LPi−1 : A ·x+bi ≤ 0

xi, . . . ,xn = 0. (14.4)

We will show that PQLP (14.2) is feasible if and only if LPn is feasible, and LPi−1 is feasible

for all i = 1 . . .n.

Assume that the linear program represented by System (14.3) and the linear programs

represented by System (14.4) are feasible.

Let x̂n denote a solution to LPn. Furthermore, let x̂i−1 denote a solution to LPi−1 for

i = 1, . . . ,n.

Let xs denote the strategy of the existential player X and, let ys denote the strategy of

the universal player Y.

Consider the assignment

xs = x̂n +
n

∑
i=1

yi · x̂i−1 (14.5)

Note that in LPi−1, the constraints xi, . . . ,xn = 0 ensure that xn through xi do not depend

on the values of yi through y1. Hence, the moves made by X depend only on the moves

previously made by Y, i.e., System (14.5) is a strategy for X.

As per the 2-person game semantics of QLPs, the game corresponding to System (14.2)

will be played as follows:

1. X chooses xn = xs
n = x̂n

n.

2. Y chooses yn = ys
n ∈ [0,∞); X chooses xn−1 = xs

n−1 = x̂n
n−1 + yn · x̂n−1

n−1.
...

3. Y chooses yi+1 = ys
i+1 ∈ [0,∞); X chooses xi = xs

i = x̂n
i +∑

n−1
j=i y j+1 · x̂ j

i .
...

CHAPTER 14. QUANTIFIED LINEAR PROGRAMMING 217

4. Y chooses y1 = ys
1 ∈ [0,∞); X chooses x0 = xs

0 = x̂n
0 +∑

n−1
j=0 y j+1 · x̂ j

0.

Observe that all the xs
i , i= 0, . . . ,n and the ys

i , i= 0, . . . ,n are numeric vectors. Let xT be

the numeric vector assigned to x by the strategy xs. It follows that xT = x̂n +∑
n
i=1 ys

i · x̂i−1.

Likewise, let yT = (ys
n,y

s
n−1, . . . ,y

s
1). Accordingly, the outcome of the play can be evaluated

as:

A ·xT +B ·yT = A ·

(
x̂n +

n

∑
i=1

ys
i · x̂i−1

)
+

n

∑
i=1

bi · ys
i

= A · x̂n +
n

∑
i=1

ys
i · (A · x̂i−1 +bi)

≤ c+
n

∑
i=1

ys
i ·0

= c

Since Y’s strategy was chosen arbitrarily, at the end of any play, X’s strategy forces

A ·x+B ·y≤ c. Thus, PQLP (14.2) is feasible, proving our claim.

Now assume that PQLP (14.2) is feasible. Thus, X has a winning strategy xs.

Consider the case when Y plays according to the strategy ys = 0. Let x∗ be the numeric

vector assigned to x by the strategy xs in this situation. It is clear that x∗ satisfies LPn.

Let us focus on a specific value of i. Let ȳ be an arbitrary non-negative vector, and

consider the case when Y plays according to the strategy ȳ. Let x̄ be the numeric vector

assigned to x by the strategy xs in this situation.

Let ȳi = (0,0, . . . ,1, . . . ,0)T . Note that ȳi
i = 1 is the only non-zero element of ȳi. Let

M ∈ Z+ denote an arbitrary integer constant. Consider the case when Y plays according to

the strategy ȳ+M · ȳi. Let x′ be the numeric vector assigned to x by the strategy xs in this

situation. Let x̄i be the numeric vector such that x′ = (x̄+M · x̄i). Thus x̄i represents the

change in X’s response when Y’s play changes by ȳi.

Until yi is assigned a value, Y’s plays (viz., ȳ and ȳ+M · ȳi) are indistinguishable. Thus,

X’s response cannot change until after yi is assigned a value. This means that x̄i
i, . . . , x̄

i
n = 0.

CHAPTER 14. QUANTIFIED LINEAR PROGRAMMING 218

We have A · x̄+B · ȳ≤ c and A · (x̄+M · x̄i)+B · (ȳ+M · ȳi)≤ c. Since M was chosen

arbitrarily, we have:

(∀M) (A · x̄+B · ȳ)+M · (A · x̄i +B · ȳi)≤ c. (14.6)

However, System (14.6) forces A · x̄i +B · ȳi ≤ 0. Otherwise, System (14.6) would not

be satisfied. Thus, x̄i must satisfy LPi−1. Since i was chosen arbitrarily, we have that this is

true for every i = 1 . . .n.

Thus, we have successfully reduced the problem of deciding the feasibility of PQLP

(14.2) to the problem of deciding the feasibility of LPn and the feasibility of LPi−1 for

i = 1 . . .n. Since the problem of deciding LP feasibility is in P [Kha79], it follows that the

problem of deciding PQLP feasibility is also in P.

We now show that UQLP decidability is in P.

Theorem 14.2.2. UQLP decidability is in P.

Proof. Consider the following UQLP:

∃xn ∀yn ∃xn−1 ∀yn−1 . . . ∃x1 ∀y1 ∃x0 A ·x+B ·y≤ c (14.7)

To show that UQLP (14.7) can be solved in polynomial time, we reduce it to a PQLP.

Consider the following PQLP:

∃xn ∀y′n ∈ [0,+∞) ∀y′′n ∈ [0,+∞) ∃yn ∃xn−1

∀y′n−1 ∈ [0,+∞) ∀y′′n−1 ∈ [0,+∞) ∃yn−1 . . .

∃x1 ∀y′1 ∈ [0,+∞) ∀y′′1 ∈ [0,+∞) ∃y1 ∃x0

A ·x+B ·y ≤ c (14.8)

yi = y′i−y′′i , i = 1,2, . . .n.

CHAPTER 14. QUANTIFIED LINEAR PROGRAMMING 219

In PQLP (14.8), y1
′, . . . ,yn

′ is a partition of y′ and y1
′′, . . . ,yn

′′ is a partition of y′′, such

that |y′i|= |y′′i |= |yi|, for i = 1 . . .n.

The key observation is that the universal player can win System (14.7) if and only if he

can win System (14.8). To see this, note that the value of yi in System (14.8) is completely

determined by the universal player’s choices for y′i and y′′i . Since y′i ∈ [0,+∞) and y′′i ∈

[0,+∞), y can take any value in the interval (−∞,+∞). Thus, the quantifier sequence ∀yi

in System (14.7) i = 1,2, . . . ,n, can be replaced respectively by the quantifier sequence

∀y′i ∈ [0,+∞) ∀y′′i ∈ [0,+∞) ∃yi to get System (14.8), without affecting its feasibility. In

other words, UQLP (14.7) is feasible if and only is PQLP (14.8) is feasible. From Theorem

14.2.1, it follows that UQLP decidability is in P.

By proving that UQLP is in P, we have essentially shown the following: The computa-

tional complexity of deciding a formula in TLA depends on both the number of alternations

in the quantifier specification and the syntactic restriction. Observe that in the absence of

any syntactic restriction, and in the presence of unbounded alternation, the TLA decidabil-

ity problem is in 2-EXPTIME [FR75, Son85] and EXPTIME-hard [BM07]. However,

the conjunctive fragment of TLA, even with unbounded alternation is decidable in polyno-

mial time.

220

Chapter 15

Quantified Linear Implications

15.1 Motivation and Related Work

Quantified Linear Programming represents a rich language that is ideal for express-

ing schedulability specifications in real-time scheduling [GPS95b, CA00]. In a real-time

scheduling instance, a dispatcher typically determines whether a set of ordered, non-

preemptive jobs can be scheduled within given time frames. Associated with each job

is a start time and an execution time. The execution time of a job is a range-bound variable.

There exist timing constraints that constrain the execution of jobs.

Now, consider the case where the dispatcher has already obtained a schedule (solution).

If new constraints are added to the specification, then the dispatcher may have to recompute

the schedule. Alternatively, if it can be concluded that the current schedule does not cause

violation of the newly added constraints, then the dispatcher can use the existing schedule.

Quantified Linear Implications (QLIs) can be utilized to model the above decision problem.

QLIs can be used to model reactive systems. A system is called reactive, if it maintains

an ongoing interaction with its environment. A reactive system changes its actions, outputs,

and status in response to the input it receives from the environment. Reactive systems are

used in several real-world important applications and in various fields (see e.g., [KSSVS99,

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 221

PW00, PW01, KCH01, Hal02, Har04]). QLI is an important modeling tool for the design

and implementation of reactive systems. The universally quantified variables can be used to

represent the environmental input, while the existentially quantified variables can be used

to represent the system’s response.

A decision procedure for the full elementary theory of real closed fields with addition

(+), multiplication (·) and order (<, =) was established in [Tar48]. Several quantifier elimi-

nation methods [DSW98b, Wei88] and efficient-in-practice approaches have been proposed

since then [CH91, Bro03, DSW98a, DS97, Rat06, Rat11]. The complexity of these quan-

tifier elimination procedures is, in the worst case, doubly exponential in the number of

quantifier alternations and exponential in the number of variables [Wei88, DH88].

Real numbers cannot be fully axiomatized by a first-order theory. Tarski’s axiomatiza-

tion of the reals requires a non-first-order axiom to express the Dedekind completeness of

the real numbers (i.e., the property that asks all bounded subsets of real numbers to have

a real least upper bound and a real greatest lower bound). The axiom in question involves

universal quantification over subsets of the real numbers, which cannot be expressed in

first-order logic.

Any field that satisfies all the same first-order properties as the real numbers is called

a real closed field. Note that although the real algebraic numbers comprise a real closed

field, they are not Dedekind complete. It is possible to construct a set of algebraic rational

numbers, that has π , which is transcendental, as a supremum.

Several sub-classes of the full elementary theory of the reals have been studied.

The existential theory of the reals is obtained by restricting allowable expressions to

existentially quantified formulas ∃x F(x) where F(x) is a quantifier-free formula. There

exists a decision procedure for this problem that is singly exponential in the number of

quantified variables [BPR06]. From the complexity perspective, it is known that this prob-

lem is NP-hard [Sho91] and in PSPACE [Can88].

The theory of reals with addition and order (TLA) is obtained by restricting the set of

function symbols to {+}. A quantifier elimination procedure for sentences in this theory

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 222

that is singly exponential in space and doubly exponential in time is presented in [FR75].

An exponential time lower bound is shown in [Ber80], where the time and space complex-

ities at various levels of quantifier alternations are also determined.

Consider a formula in the theory of reals with addition and order in prenex normal form

with (k−1) quantifier alternations

∃x1 ∀x2 . . .Qxk F(x1, . . . ,xk)

where Q is ∃ for k odd and ∀ for k even, while F(x1, . . . ,xk) is a quantifier-free formula.

This class of formulas has been proven to be log-space complete for kP [Son85].

15.2 Satisfiability

15.2.1 Semantics

In this section, we interpret a quantified linear implication problem as a 2-person game.

Such a game includes an existential player X, who chooses values for the existentially quan-

tified variables, and a universal player Y, who chooses values for the universally quantified

variables. Consider the generic form of QLI (System (2.5)), and assume, without loss of

generality, that x1 and yn are not empty (dummy variables can be added, if necessary). Let

the following be the initial board configuration of the game:

[A ·x+N ·y≤ b → C ·x+M ·y≤ d] (15.1)

The game is played in a sequence of 2 ·n rounds. Let i = 1, . . . ,n. In round 2 · i−1, X

makes his ith move (by choosing values for variables in xi). Then, Y makes his ith move (by

choosing values for yi) in round 2 · i. Hence, X and Y make their moves by selecting values

for their respective variables: xi,yi ∈ℜ, i = 1, . . . ,n. The moves are strictly alternating: X

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 223

will make his ith move, which will be followed by Y’s ith move, after which X will make

his (i+1)th move and so on.

Every move that X or Y make changes the board configuration of the game by replacing

variables (existentially quantified or universally quantified, depending on the round of the

game) with their given values. For instance, in the first round, say that the existential player

X chooses to give to a single variable x1 the value x′1 ∈ ℜ, i.e., X sets x1 = x′1. Then, the

board configuration will change from its initial state (see (15.1)) to the following:

[A′ ·x′+N ·y≤ b− x′1a1 →

C′ ·x′+M ·y≤ d− x′1c1] (15.2)

After X’s first move, (15.2) is the current board configuration of the game. In this con-

figuration, A′ and C′ are derived from A and C respectively by removing the first col-

umn (corresponding to x1). Vector x′ is derived from x by removing variable x1, that is,

x′ = [x2, . . . ,xm]
T). Note also that x′1a1 and x′1c1 are subtracted from b and d from the Left-

Hand Side (LHS) and the Right-Hand Side (RHS) of the implication respectively. Vectors

a1 and c1 denote the first column of A and C respectively, while recall that x′1 is a constant

(since it represents X’s choice for his first move).

Each move made by X or Y depends on the current board configuration and on the

previous moves made by the opponent. Hence, the ith move made by X, namely xi, may

depend on the first (i−1) moves made by Y and the board configuration after round 2 · i−2.

Similarly, yi may depend on the first i moves made by X and the board configuration after

round 2 · i−1.

In any game of this form, the goals of the players are the following: X selects the

values of the existentially quantified variables so as to violate the constraints in the LHS or

to satisfy the constraints in the RHS of the implication. On the other hand, Y selects the

values of the universally quantified variables so as to satisfy the constraints of the LHS and

on the same time to violate the constraints of the RHS of the implication. We say that X

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 224

wins the game if at the end of the game (i.e., after the 2 ·n rounds) the board configuration

is such that its LHS is false (as a conjunction of inequalities) or its RHS is true. Otherwise,

we say that Y wins the game (i.e., if the LHS is satisfied and the RHS is falsified).

It is important to note that the game as described above is non-deterministic in nature,

in that we have not specified how X and Y make their moves. We say that X has a winning

strategy if it is possible for X to win the game, i.e., if there is a sequence of moves such

that X wins the game. Otherwise, we say that Y has a winning strategy. The QLI holds

precisely when player X has a winning strategy.

Remark 15.2.1. A QLI holds if and only if the existential player has a winning strategy.

Let us now show that the proposed game is a conservative extension of the game se-

mantics of QLP problems [Sub07]. There, an existential player X and a universal player Y

also choose their moves according to the order of the variables in the corresponding quan-

tifier string. If, at the end, the instantiated linear system in the QLP is true, then X wins the

game (and we say that X has a winning strategy). Otherwise, Y wins the game. Based on

these semantics, we explore the relation between QLPs and QLIs. Consider a generic QLP

as described by the following system:

∃x1 ∀y1 ∈ [l1,u1] . . .∃xn ∀yn ∈ [ln,un]

A ·x+N ·y≤ b (15.3)

Now consider the following QLI:

∃x1 ∀y1 . . .∃xn ∀yn

l1 ≤ y1 ≤ u1

. . .

ln ≤ yn ≤ un

→ A ·x+N ·y≤ b (15.4)

where l1, . . . , ln and u1, . . . ,un are partitions of l and u and correspond to the lower and

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 225

upper bounds respectively on the variables in y1, . . . ,yn of y that appear in the quantifier

string of System (15.3).

Theorem 15.2.1. The existential player has a winning strategy in System (15.4) if and only

if the existential player has a winning strategy in System (15.3).

Proof. Note that the interval constraints on the universal variables that are in the quantifier

string of the QLP (see System (15.3)) have been placed within the LHS of (15.4). These

bounds are restrictive for the universal player in System (15.4) as well, although they are

not within the quantifier string. Recall that the universal player Y wants the implication

not to hold in order to win the game. Therefore, Y must choose values for the universally

quantified variables so that the LHS is satisfied (otherwise, the existential player X trivially

wins the game). Hence, we can safely assume that Y will satisfy the interval constraints in

the LHS (while also trying to falsify A ·x+N ·y≤ b).

If part. Assume that X has a winning strategy for System (15.3). Hence, there exists

some x0 such that for any value y0 ∈ [l,u] of y, A ·x0 +N ·y0 ≤ b is true. But then, since

the universally quantified variables are restricted by y ∈ [l,u] due to the interval constraints

in the LHS of (15.4), the existential player can choose the exact same values x0 and satisfy

the RHS of the implication, i.e., making System (15.4) hold and hence winning the game.

Only-if part. Assume that X has a winning strategy for System (15.4) with x instantiated

to x0. Since the universal player wants to satisfy the LHS in order to win, this means that y

is instantiated to y0 such that the LHS necessarily holds (i.e., y0 ∈ [l,u]). Hence, the same

vectors x0, y0 can be then used to make X win System (15.3).

Note that the quantifier string of QLPs restricts the possible moves of the universal

player through lower and upper bounds. The absence of such bounds in the quantifier

string of QLIs follows from the fact that the universal player wants to satisfy the LHS of

the implication. Hence, it is the satisfaction of the LHS that restricts the moves of the

universal player in QLIs. If explicit interval constraints exist for the universal variables,

these can also be placed within the LHS of the implication.

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 226

15.2.2 Complexity of QLI

In this section, we examine first the computational complexity of the generic class of

QLIs with an arbitrary number of quantifier alternations. These problems are described by

System (2.5).

Theorem 15.2.2. Problem (2.5) is PSPACE-hard.

Proof. We will reduce the Q3SAT problem, which is PSPACE-complete, to an instance

described by (2.5). Consider a Q3SAT instance Q(x,y) φ(x,y), where Q(x,y) represents

the quantifier string, x is the set of existentially quantified variables, y is the set of univer-

sally quantified variables, and φ is a conjunction of 3-literals clauses. We want to produce

a corresponding QLI which will hold if and only if Q(x,y) φ(x,y) is satisfiable. Let E

represent the set of constraints on the LHS of the implication and F the set of constraints

on the RHS of the constructed implication.

For each existentially quantified variable xi in the instance of Q3SAT, we add an ex-

istentially quantified variable xi and a universally quantified variable ri. We also add the

constraints ri ≤ xi and ri ≤ 1− xi to E and the constraints ri ≤ 0 to F . Note that these

constraints are equivalent to ri ≤min(xi,1− xi)→ ri ≤ 0. Moreover, we add 0≤ xi ≤ 1 to

F .

For each universally quantified variable yi in the instance of Q3SAT, we add an ex-

istentially quantified variable si and a universally quantified variable yi. We also add the

constraints 0 ≤ yi ≤ 1 to E and the constraints 0 ≤ si ≤ 1, 2yi− 1 ≤ si, and si ≤ 2yi to F .

Note that these are the only constraints that use yi variables, since the clause constraints

will only use xi and si variables.

For each clause φ j in the instance of Q3SAT, we add the universally quantified variable

z j and the constraint z j ≥ 1 to F . Then, depending on the form of the clause φ j, we do one

of the following:

1. If φ j = (xi,yk,xl), we add the constraint z j ≥ xi + sk + xl to E.

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 227

2. If φ j = (xi,yk, x̄l), we add the constraint z j ≥ xi + sk +(1− xl) to E.

3. If φ j = (xi, ȳk, x̄l), we add the constraint z j ≥ xi +(1− sk)+(1− xl) to E.

4. If φ j = (x̄i, ȳk, x̄l), we add the constraint z j ≥ (1− xi)+(1− sk)+(1− xl) to E.

We create the quantifier string of the implication according to Q(x,y): for ∃xi in Q(x,y),

we introduce ∃xi∀ri; for ∀yi in Q(x,y), we introduce ∀yi∃si; finally, we introduce ∀z.

It is obvious that the resultant implication is a QLI described by System (2.5). Called

Q̂ the alternation of quantifiers in Q(x,y), we have that the alternation of quantifiers in

the implication is Q̂∀ if Q̂ ends with an existential quantifier, and Q̂∃∀ if Q̂ ends with a

universal quantifier.

Now consider the semantics introduced in Section 15.2.1, and specifically the goals

of the existential player X. We can safely assume that X will only choose xi from the set

{0,1}. This is because if xi 6∈ [0,1], then at least one of the constraints in F would be

violated. But then the implication would not hold (hence the universal player Y would win

the game), since X cannot cause any constraint in E to be violated. On the other hand,

if xi ∈ (0,1), then Y could choose to set ri = min(xi,1− xi) > 0, which would cause the

implication not to hold (causing the existential player to lose the game). To sum up, any

choice of xi 6∈ {0,1} would cause the existential player to lose the game.

Assume also that Y only chooses yi from the set {0,1}. We will show why this as-

sumption is not restrictive. Suppose that Y can win by choosing yi 6∈ [0,1]. Then at least

one constraint of E is violated (i.e., 0 ≤ yi ≤ 1) and the implication holds (i.e., a contra-

diction). Suppose now that Y can win by choosing yi ∈ (0,1). If yi ∈ (0, 1
2], then we have

that si ∈ [0,2yi]. However, if instead Y had chosen yi = 0, then si ∈ {0} ⊆ [0,2yi], thus

restricting the possible responses of X. Since yi only appears in the constraints described

above, we have that this is a strictly better move for Y. Similarly, choosing yi = 1 is strictly

better for Y than choosing yi ∈ [1
2 ,1). To sum up, we can safely assume that the universal

player would only choose yi ∈ {0,1}.

Since yi is in the set {0,1}, we have that the existential player is forced to set si =

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 228

yi. Any other choice of si would violate at least one constraint of F , causing (again) the

existential player to lose the game. Hence, si variables are also restricted in the set {0,1}.

Let us show that for the QLI obtained from a Q3SAT instance of the form

Q(x,y) φ(x,y), the existential player has a winning strategy for the QLI if and only if

Q(x,y) φ(x,y) is satisfiable.

Only-if part. Assume the existential player has a winning strategy U for the constructed

QLI. This means that for every sequence of moves V made by the universal player, the

implication holds. Consider the constraints constructed from the jth clause of φ(x,y),

i.e., φ j, and assume without loss of generality that φ j is of the form (xi,yk,xl). Since the

implication holds (for strategy U), we must have that z j ≥ xi + sk + xl → z j ≥ 1. But this

means that xi + sk + xl ≥ 1. Recall now that xi, sk, and xl are restricted to the set {0,1}.

Therefore, at least one of these variables must be 1. Thus, at least one of the literals in the

original clause is true causing φ j to be true as well. The same can be argued for all clauses

of φ(x,y). Hence, Q(x,y) φ(x,y) is satisfiable.

If part. Assume that Q(x,y) φ(x,y) is satisfiable. Then there exist values x′ for x such

that

x′ = [c1, f1(y1), f2(y1,y2), . . . , fn−1(y1,y2, . . . ,yn−1]
T

and for any values y′ = [y1,y2, . . . ,yn]
T given to y, the Q3SAT expression is satisfied. Note

that fi() are Skolem functions and are used to represent that the values of the elements

of x′ depend on the values of the corresponding elements of y′. Consider the constraints

constructed from the jth clause of φ(x,y), i.e., φ j, and assume without loss of generality

that φ j is of the form (xi,yk,xl). Since the Q3SAT expression is satisfied (for x = x′), we

must have that at least one of xi,yk,xl is true. This means that at least one of xi,sk,xl is 1.

Thus, we have that xi + sk + xl ≥ 1, and so z j ≥ xi + sk + xl → z j ≥ 1 holds. The same can

be safely argued for all constraints corresponding to clauses. Since the xi and yi variables

can be restricted to the set {0,1} and since we can then restrict si = yi, we have that for

each i, ri ≤ xi and ri ≤ 1−xi imply that ri ≤ 0 (thus satisfying the corresponding constraint

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 229

of F). For the same reason, we have that for each i the constraints 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1,

0 ≤ si ≤ 1, 2yi− 1 ≤ si, and si ≤ 2yi are all satisfied. Thus E → F and so the existential

player has a winning strategy for the corresponding QLI.

15.2.3 Complexity of UQLI andd PQLI

We utilize the results of Section 14.2.2 to show that PQLI and UQLI are solvable in

polynomial time.

Corollary 15.2.1. PQLI decidability is in P.

Proof. Consider the following PQLI:

∃x1 ∀y1 . . . ∃xn ∀yn [A ·x≤ b, y≥ 0→ C ·x+D ·y≤ f] (15.5)

We will focus on the following two cases:

1. There exists a point z, such that A · z 6≤ b - It follows that ∀x (A ·x≤ b) does not hold.

In this case, the PQLI is trivially satisfied, since the existential player can guess z and

cause the left hand side of the implication to be falsified.

2. There is no point z such that A · z 6≤ b - In this case, the PQLI (15.5) reduces to the

following PQLI.

∃x1 ∀y1 . . . ∃xn ∀yn [y≥ 0→ C ·x+D ·y≤ f] (15.6)

PQLI (15.6) can in turn be written as:

∃x1 ∀y1 ∈ [0,+∞) . . . ∃xn ∀yn ∈ [0,+∞) C ·x+D ·y≤ f (15.7)

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 230

However, System (15.7) is a PQLP, and hence can be decided in polynomial time by

Theorem 14.2.1.

Corollary 15.2.2. UQLI decidability is in P.

Proof. Consider the following UQLI:

∃x1 ∀y1 . . . ∃xn ∀yn [A ·x≤ b→ C ·x+D ·y≤ f] (15.8)

As argued in the proof of Corollary 15.2.1, if ∀x (A ·x≤ b) does not hold, then UQLI

(15.8) is trivially satisfied.

Otherwise, UQLI (15.8) is equivalent to:

∃x1 ∀y1 . . . ∃xn ∀yn C ·x+D ·y≤ f

which is a UQLP, and hence can be decided in polynomial time by Theorem 14.2.2.

15.2.4 QLI and the polynomial hierarchy

In this section, we prove that for each class of the PH, there exists a class of QLI

decidability that is complete for that class. This is interesting, since QLIs are comprised

of continuous variables, as opposed to the discrete variables comprising QBFs. Hence, we

provide a continuous analogue to the results in [Sto77], where the PH is generated using

QBFs.

Let Bk+1 denote a string of (k+1) Bs.

Theorem 15.2.3. 〈k,∃,Bk+1〉 with k odd, is ΣkP-hard.

Proof. Consider the class of Q3SAT formulas with k quantifiers starting with an existential

one, i.e., with the quantifier string of the form ∃∀ . . .∃. Such a class is ΣkP-complete (the

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 231

assumption that k is odd is essential) [Sto77, Theorem 4.1]. The proof of Theorem 15.2.2

reduces such a class to a QLI with a quantifier string obtained by adding a universal quan-

tifier at the end, namely to a 〈k,∃,Bk+1〉 formula. Hence, the result.

Theorem 15.2.4. 〈k,∀,Bk+1〉 with k even, is ΠkP-hard.

Proof. Consider the class of Q3SAT formulas with k quantifiers starting with a universal

one, i.e., with the quantifier string of the form ∀∃ . . .∃. Such a class is ΠkP-complete (the

assumption that k is even is essential) [Sto77, Theorem 4.1]. The proof of Theorem 15.2.2

reduces such a class to a QLI with a quantifier string obtained by adding a universal quan-

tifier at the end, namely to a 〈k,∀,Bk+1〉 formula. Hence, the result.

To establish the computational complexities of 〈k,∃,Bk+1〉 when k is even, and

〈k,∀,Bk+1〉 when k is odd, we first provide a reduction from Q3DNF to QLI.

15.2.4.1 Reduction from Q3DNF to QLI

Consider a Q3DNF instance Φ : Q(x,y)φ(x,y), where Q(x,y) represents the quanti-

fier string, x is the set of existentially quantified variables, and y is the set of universally

quantified variables. Note that φ(x,y) = φ1 ∧ φ2 ∧ . . .∧ φm where each φi is a disjunctive

clause. Without loss of generality, we can assume that the innermost quantifier of Q(x,y) is

∀, since if the innermost quantifier is ∃, then this variable can be eliminated in polynomial

time.

We will produce a QLI I : Q′(x,r,y,r,w) E → F , such that the existential player has

a winning strategy for I if and only if the existential player has a winning strategy for Φ.

Note that E represent the set of constraints on the LHS of the constructed implication, and

F the set of constraints on the RHS of the implication.

For each existentially quantified variable xi in Φ, we add an existentially quantified

variable xi and a universally quantified variable ri to I. We also add the constraints ri ≤ xi

and ri≤ 1−xi to E, and the constraint ri≤ 0 to F . Note that these constraints are equivalent

to ri ≤min(xi,1− xi)→ ri ≤ 0. Finally, we add the constraint 0≤ xi ≤ 1 to F .

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 232

For each universally quantified variable yi in Φ, we add an existentially quantified vari-

able si and a universally quantified variable yi to I. We also add the constraints 0≤ yi ≤ 1

to E, and the constraints 0 ≤ si ≤ 1, 2 · yi− 1 ≤ si, and si ≤ 2 · yi to F . Note that these

are the only constraints that use yi variables, since the clause constraints use only xi and si

variables.

For each clause φ j in φ(x,y), we add the existentially quantified variable w j to I, and

3 constraints to F . These constraints ensure that w j is less than or equal to the existential

variables corresponding to the literals in φ j. Note that these constraints contain only exis-

tential variables. Even in the case of a universal variable yi in φ j, the constraint contains

the existential variable si of the QLI.

For example, if φ j = (xi,yk, x̄l), we add w j ≤ xi, w j ≤ sk, and w j ≤ 1− xl to F , while if

φ j = (xi, ȳk, x̄l), we add w j ≤ xi, w j ≤ 1− sk, and w j ≤ 1− xl to F .

Finally, we add the linear constraint w1 +w2 + · · ·+wm ≥ 1 to F .

We inductively create the quantifier string Q′(x,r,y,s,w) of I based on Q(x,y):

Q′(x,r,y,s,w) of I is initialized to ε (the empty string). For each i = 1,2, . . . ,n,

1. If the ith quantifier of Q(x,y) is ∃xi, then we append ∃xi∀ri to the end of

Q′(x,r,y,s,w).

2. If the ith quantifier of Q(x,y) is ∀yi, then we append ∀yi∃si to the end of

Q′(x,r,y,s,w).

Finally, we add ∃w to the end of Q′(x,r,y,r,w).

Since the final quantifier of Q(x,y) is ∀, the number of quantifier alternations in

Q′(x,r,y,s,w) is one more than the number of quantifier alternations in Q(x,y).

Note that the final quantifier of Q′(x,r,y,r,w) is ∃.

Example 46: Let us consider the Q3DNF instance

Φ= ∃x1 ∀y1 ∃x2 ∀y2 (x1, ȳ1,y2)︸ ︷︷ ︸
φ1

∨(x̄1,x2,y2)︸ ︷︷ ︸
φ2

.

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 233

Under the above construction, Φ becomes an instance of 〈4,∃,BBBBR〉 with the quantifier

string

∃x1 ∀r1 ∀y1 ∃s1 ∃x2 ∀r2 ∀y2 ∃s2 ∃w1 ∃w2.

Note that this is also an instance of 〈4,∃,BBBBB〉.

The LHS of the implication (E) consists of the following set of constraints:

r1 ≤ x1, r1 ≤ 1− x1,

r2 ≤ x2, r2 ≤ 1− x2,

0≤ y1 ≤ 1, 0≤ y2 ≤ 1,

The RHS of the implication (F) consists of the following set of constraints:

r1 ≤ 0, 0≤ x1 ≤ 1,

r2 ≤ 0, 0≤ x2 ≤ 1,

0≤ s1 ≤ 1, 0≤ s2 ≤ 1,

2 · y1−1≤ s1, s1 ≤ 2 · y1,

2 · y2−1≤ s2, s2 ≤ 2 · y2,

φ1


w1 ≤ x1,

w1 ≤ 1− s1,

w1 ≤ s2,

w2 ≤ 1− x1,

w2 ≤ x2,

w2 ≤ s2,

φ2

w1 +w2 ≥ 1.

We now establish that all the variables in I can be restricted to {0,1} without affecting

its feasibility. To do so, we utilize the game semantics discussed in Section 15.2.1.

Lemma 15.2.1. The existential player X has a winning strategy, if and only if he has a

winning strategy, when each xi is chosen from {0,1}.

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 234

Proof. The if part is obvious.

Accordingly, we focus on proving the only if part. Assume that the existential player X

has a winning strategy. First, observe that is if xi 6∈ [0,1], then at least one of the constraints

in F is violated. In particular, the constraint 0 ≤ xi ≤ 1 is violated. Now focus on the

constraint ri ≤ xi in E. Since, ri is chosen by the universal player Y after the existential

player chooses xi, this constraint can be violated by Y. In other words, the implication does

not hold and X does not have a winning strategy.

We now consider the case xi ∈ (0,1). In this case, Y could choose ri = min(xi,1−xi)0.

Note that both xi and ri are positive with ri ≤ xi and ri ≤ 1− xi. Thus the universal player

Y wins the game, since the constraints involving xi and ri in E, viz., ri ≤ xi and ri ≤ 1− xi

are satisfied and the constraint ri ≤ 0 in F is violated.

To sum up, any choice of xi 6∈ {0,1} would cause X to lose the game.

It follows that if X has a winning strategy, then he has a winning strategy when each xi

is chosen from {0,1}.

Lemma 15.2.2. The universal player Y has a winning strategy, if and only if he has a

winning strategy, when each yi is chosen from {0,1}.

Proof. The if part if obvious. Accordingly, we focus on proving the only-if part. It is clear

that in order to win, the universal player Y must choose yi ∈ [0,1]. Otherwise, the constraint

0≤ yi ≤ 1 in the LHS E of the implication is violated and the existential player X wins the

game.

Suppose now that Y can win by choosing yi ∈ (0,1). As per the construction of subsec-

tion 15.2.4.1, the only constraints involving si and yi are given by System (15.9).

0≤ si ≤ 1,2 · yi−1≤ si,si ≤ 2 · yi (15.9)

If yi ∈ (0, 1
2], then from System (15.9) it follows that si ∈ [0,1. However, if instead Y

had chosen yi = 0, then si ∈ {0}. It follows that if Y can win by choosing yi ∈ (0, 1
2], then

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 235

Y can win by choosing yi = 0. Similarly, if Y can win by choosing yi ∈ [1
2 ,1), then Y can

win by choosing yi = 1.

To sum up, we can safely assume that the universal player only chooses yi ∈ {0,1}.

It follows that if Y has a winning strategy, then he has a winning strategy when each yi

is chosen from {0,1}.

The import of Lemma 15.2.1 and Lemma 15.2.2 is that we can confine our analyses to

games in which the existential player X and universal player Y make moves in {0,1} for

the xi and yi variables respectively. An interesting observation is that if yi is restricted to

{0,1}, then so is si.

The constraints involving si and yi in the RHS F of the implication are described by

System (15.9). If yi = 0, the constraints in System (15.9) force si to be 0; likewise, if

yi = 1, they force si to be 1. In other words, X is forced to set si = yi. Any other choice

of si would violate at least one constraint of F , causing X to lose the game. Hence, the si

variables are also restricted in the set {0,1}.

Theorem 15.2.5. I is feasible if and only if Φ is feasible.

Proof. We show that the existential player X has a winning strategy for I if and only if he

has a winning strategy for Φ.

Only if part: Assume that the existential player X has a winning strategy for I. Consider

a play of the game, in which X chooses values for the existentially quantified variables and

Y chooses values for the universally quantified variables. After X chooses a value for xi,

Y can choose ri, such that the constraints ri ≤ xi and ri ≤ 1− xi are both satisfied. By our

2-person game semantics, the universal player Y will ensure that all the constraints in the

LHS are satisfied. In order for X to win the game, he has to ensure that all the constraints

in the RHS are satisfied as well. In particular, the constraint w1 +w2 + · · ·+wm ≥ 1 in the

RHS of the implication must be satisfied. Consequently, w j > 0, for at least one j. This w j

corresponds to the clause φ j of Φ. Assume that φ j has the form (xi,yk,xl). Since the xis and

sis are restricted to the set {0,1} (see Lemma 15.2.1 and Lemma 15.2.2), the constraints

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 236

w j ≤ xi, w j ≤ sk, and w j ≤ xl force each variable (xi, sk and xl) to be 1. It follows that φ j is

satisfied in this play. Similar arguments can be made for other forms of φ j. Since the play

was chosen arbitrarily, the same argument applies for all plays, i.e., at least one clause of

φ(x,y) is satisfied in every play. Hence, Φ is feasible.

If part: Assume that the existential player X has a winning strategy for Φ.

At the end of any play, φ(x,y) is satisfied. Thus, at least one clause, say φ j, must be

satisfied. Assume that φ j is of the form (xi,yk,xl). Consider the constraints constructed

from φ j, viz., w j ≤ xi, w j ≤ sk, and w j ≤ xl . Since φ j is satisfied, xi,yk,xl are all true.

Assume that X sets the variables xi, sk, xl and w j to 1 and the w variables associated with

other clauses to 0. It is clear that the constraints corresponding to the other clauses are

trivially satisfied. Likewise, the the aggregate constraint w1 +w2 + · · ·+wm ≥ 1 is also

satisfied. Similar arguments can be made for other forms of φ j.

From Lemma 15.2.1 and Lemma 15.2.2 and the subsequent discussion, xi and yi can be

restricted to the set {0,1} Furthermore, the existential player must choose si = yi. Observe

that for each i, ri ≤ xi and ri ≤ 1− xi imply that ri ≤ 0 (thus satisfying the corresponding

constraint in F). Similarly, for any i, the constraints 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1, 0 ≤ si ≤ 1,

2 · yi−1 ≤ si, and si ≤ 2 · yi are all satisfied, under this assignment. Hence, E → F holds.

Since the play was chosen arbitrarily, the same argument applies for all player, i.e., X has

a winning strategy for I and I is feasible.

Theorem (15.2.5) allows us to obtain the following two results.

Corollary 15.2.3. 〈k,∃,Bk+1〉 with k even, is ΣkP-hard.

Proof. Let Φ denote a Q3DNF formula having k (k even) quantifiers ((k− 1) quantifier

alternations) starting with ∃, i.e., with a quantifier string of the form ∃∀ . . .∃∀. Deciding

the feasibility of Φ is ΣkP-complete. This is because this problem is the complement of

the problem ∀∃ . . .∀∃ φ(x,y), where φ(x,y) is a 3CNF formula, which is ΠkP-complete

[Pap94] (the assumption that k is even is essential). By Theorem 15.2.5, we can reduce Φ

to a QLI, I. Note that the quantifier string of I has k quantifier alternations, and that the

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 237

first and last quantifiers are ∃. Thus, I is a 〈k,∃,BkR〉 QLI. This can be trivially reduced to

a 〈k,∃,Bk+1〉 QLI. Hence, the result follows.

Corollary 15.2.4. 〈k,∀,Bk+1〉 with k odd, is ΠkP-hard.

Proof. Let Φ denote a Q3DNF formula having k (k odd) quantifiers ((k− 1) quantifier

alternations) starting with ∀, i.e., with a quantifier string of the form ∀∃ . . .∃∀. Deciding the

feasibility Φ belongs to is ΠkP-complete. This is because this problem is the complement

of ∃∀ . . .∃ φ(x,y), where φ(x,y) is a 3CNF formula, which is ΠkP-complete [Pap94] (the

assumption that k is odd is essential). By Theorem 15.2.5, we can reduce Φ to a QLI, I.

Note that the quantifier string of I has k quantifier alternations, and that the last quantifiers

is ∃. Thus, I is a 〈k,∀,BkR〉QLI. This can be trivially reduced to a 〈k,∀,Bk+1〉QLI. Hence,

the result follows.

Theorem 15.2.6. 〈k,∃,Bk+1〉 is ΣkP-complete, 〈k,∀,Bk+1〉 is ΠkP-complete.

Proof. Given Theorems 15.2.3-15.2.4 and Corollaries 15.2.3-15.2.4, it suffices to show that

that each of these problems is also contained within the corresponding complexity class of

the polynomial hierarchy. Let P denote the problem of deciding an arbitrary boolean com-

bination of linear constraints under a quantifier string with a limited number of alternations.

Sontag [Son85] showed that problem P can be solved by an alternating algorithm in which

the guesses made by both the ∀ player and the ∃ player are rational and at most polynomial

in the size of the input. QLIs with a finite number of quantifier alternations are clearly

sub-problems of P, since they can be rewritten as a quantified disjunction of the RHS con-

straints and the negation of the LHS constraints. It follows that the feasibility of QLIs with

a finite number of alternations is preserved, even if every variable is restricted to values that

are polynomially-sized with respect to the input. Consider the problem 〈k,∃,Bk+1〉. After

k rounds in which the ∃ player and ∀ player alternate and guess polynomially-sized values,

the QLI reduces to either 〈0,∃,B〉 or 〈0,∀,B〉 (depending on whether k is even or odd re-

spectively), both of which are in P. Thus, 〈k,∃,Bk+1〉 is in ΣkP. Likewise, 〈k,∀,Bk+1〉 is

in ΠkP.

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 238

For example, QLIs of the form 〈3,∀,BBBB〉 are in Π3P.

The various forms of QLI cover the polynomial hierarchy as shown in Figure 15.1.

We make the following observations on the basis of the theorems derived above:

1. In case of QLPs, if the innermost variable is universally quantified, it can be removed

using quantifier elimination techniques, in polynomial time. In case of QLIs, the

complexity class to which the problem belongs, does in fact depend upon whether

the innermost variable is existentially or universally quantified (see Figure 15.1).

2. There exists a class of QLI that is complete for each class in the PH. This is not true,

if the underlying formula is in CNF form. For instance, there is no QCNF formula,

which is complete for the class coNP.

P
〈0,∃,B〉
〈0,∀,B〉

NP
〈1,∃,BB〉

coNP
〈1,∀,BB〉

Σ2P
〈2,∃,BBB〉

Π2P
〈2,∀,BBB〉

...

PH

Figure 15.1: QLI and the Polynomial Hierarchy

15.2.5 Complexity with bounded alternation

In this section, we examine the computational complexities of various classes of QLI

with one quantifier alternation.

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 239

Lemma 15.2.3. 〈1,∀,RB〉, i.e., deciding whether ∀y ∃x [M ·x≤ n→A ·x+B ·y≤ c] holds,

is in P.

Proof. We will focus on the following two cases:

1. There exists a point z, such that M · z 6≤ n - It follows that ∀x (M ·x≤ n) does not

hold. In this case, the QLI is trivially satisfied, since the existential player can guess

z and cause the left hand side of the implication to be falsified.

2. There is no point z such that M · z 6≤ n - In this case, the QLI reduces to ∀y ∃x A ·

x+B · y ≤ c, which is a UQLP and hence can be decided in polynomial time by

Theorem 14.2.2.

The decision problem for formula ∃x ∀y [A ·x+B ·y≤ c→M ·y≤ n] is NP-complete.

However, if there are no universally quantified variables on the RHS, the problem becomes

tractable.

Lemma 15.2.4. 〈1,∃,BL〉, i.e., deciding whether ∃x ∀y [A ·x+B ·y≤ c→M ·x≤ n] holds,

is in P.

Proof. First, we check whether ∃x M ·x≤ n holds, which can be done in polynomial time

[Kha79]. If ∃x M ·x≤ n holds, then ∃x ∀y [A ·x+B ·y≤ c→M ·x≤ n] trivially holds. If

∃x M ·x≤ n does not hold, then the only way in which ∃x ∀y [A ·x+B ·y≤ c→M ·x≤ n]

can hold is if ∃x ∀y A ·x+B ·y≤ c does not hold. However, the latter formula is a UQLP

and hence it can be checked to hold in polynomial time by Theorem 14.2.2.

Let us turn our attention to the class 〈1,∀,BR〉 and its super-class 〈1,∀,BB〉. Both

these classes were shown to be coNP-hard. Note that these classes are also in coNP by

Theorem 15.2.6.

Lemma 15.2.3 and Lemma 15.2.4 settle some open problems on the computational

complexities of QLIs with one quantifier alternation.

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 240

A complete representation of all classes with one quantifier alternation QLIs is given in

Figure 15.2 (starting with an existential quantifier) and Figure 15.3 (starting with a universal

quantifier).

6

� 6

�

PP
PP

PP
PP

PP
PP

PP
PP

PPPi

�
�
�
�
�
�
�� 6

J
J
J
J
J
J
J]

�
�
�
�
�
�
�
�
��>

�

J
J
J
J
J
J
J]

Z
Z

Z
Z

Z
Z
Z

Z
ZZ}

〈1,∃,LL〉
(P)

〈1,∃,LR〉
(P)

〈1,∃,RL〉
(P)

〈1,∃,RR〉
(P)

〈1,∃,BL〉
(P)

〈1,∃,LB〉
(NP-complete)

〈1,∃,BR〉
(P)

〈1,∃,RB〉
(P)

〈1,∃,BB〉
(NP-complete)

Figure 15.2: Complexity of ∃∀ classes of QLI. Arrows denote inclusions.

CHAPTER 15. QUANTIFIED LINEAR IMPLICATIONS 241

6

� 6

�

PP
PP

PP
PP

PP
PP

PP
PP

PPPi

�
�
�
�
�
�
�� 6

J
J
J
J
J
J
J]

�
�
�
�
�
�
�
�
��>

�

J
J
J
J
J
J
J]

Z
Z

Z
Z

Z
Z
Z

Z
ZZ}

〈1,∀,LL〉
(P)

〈1,∀,LR〉
(P)

〈1,∀,RL〉
(P)

〈1,∀,RR〉
(P)

〈1,∀,BL〉
(P)

〈1,∀,LB〉
(P)

〈1,∀,BR〉
(coNP-complete)

〈1,∀,RB〉
(P)

〈1,∀,BB〉
(coNP-complete)

Figure 15.3: Complexity of ∀∃ classes of QLI. Arrows denote inclusions.

242

Part VI

Conclusion

243

Chapter 16

Summary of Results

In this chapter we summarize the results in this dissertation.

16.1 Results for Boolean CSPs

First we list out results pertaining to Boolean formulas. This includes results for 2CNF

formulas, 3 CNF formulas, and Horn formulas. For 2 CNF formulas, we have the following

results:

1. The problem of identifying if a 2CNF formula has a read-once resolution refutation

is NP-complete.

2. The problem of identifying if a 2CNF formula has a read-once NAE-resolution refu-

tation is in P.

3. The problem of finding the shortest NAE-refutation of a 2CNF formula is in P.

4. The problem of finding a read-once unit resolution refutation for a 2CNF formula is

in P.

For 3CNF formulas, we showed that the problem of identifying if a 3 CNF formula has

a read-once NAE-resolution refutation is NP-complete.

CHAPTER 16. SUMMARY OF RESULTS 244

For Horn formulas, we have the following results:

1. The problem of finding the shortest read-once resolution refutation of a Horn formula

is NP-hard.

2. The problem of identifying if a Horn formula has a read-once unit resolution refuta-

tion is NP-complete.

3. The copy complexity of Horn formulas with respect to unit resolution is 2n−1 where

n is the number of variables in the formula.

16.2 Results for Linear Polyhedral CSPs

In this section, we list our results for linear programs. This includes results for dif-

ference constraints, UTVPI constraints, and Horn constraints. For systems of difference

constraints, we have developed an FPTAS for the problem of finding the shortest weighted

read-once refutation.

For systems of Difference constraints, we have the following results:

1. Developing a polynomial time randomized algorithm for finding the shortest read-

once linear refutation of a system of difference constraints.

2. Developing a pseudo-polynomial time algorithm for finding the shortest weighted

read-once linear refutation of a system of difference constraints.

3. Developing an FPTAS for the problem of finding the shortest weighted read-once

refutation of a system of difference constraints.

For systems of UTVPI constraints, we have the following results:

1. Developing several polynomial time algorithms for finding the shortest tree-like lin-

ear refutation of a system of UTVPI constraints.

CHAPTER 16. SUMMARY OF RESULTS 245

2. Developing a pseudo-polynomial time algorithm for finding the shortest weighted

read-once linear refutation of a system of UTVPI constraints.

3. Developing an FPTAS for the problem of finding the shortest weighted tree-like refu-

tation of a system of UTVPI constraints.

4. The problem of identifying if a system of UTVPI constraints has a literal-once linear

refutation is in P.

5. The problem of identifying if a system of UTVPI constraints has a read-once linear

refutation is in P.

6. The problem of identifying if a system of UTVPI constraints has a non-literal read-

once linear refutation is NP-complete.

For systems of Horn constraints, we have the following results:

1. The problem of identifying if a system of Horn constraints has a read-once refutation

using the ADD rule is NP-complete.

2. The problem of identifying if a system of Horn clausal constraints has a read-once

refutation using the ADD rule is NP-complete.

3. Developing an exact exponential time algorithm for finding a read-once refutation

using the ADD rule for a system of Horn constraints.

16.3 Results for Integer Polyhedral CSPs

In this section, we list our results for integer programs. This includes results for UTVPI

constraints and Horn constraints.

For systems of UTVPI constraints, we have the following results:

1. Developing a bit-scaling algorithm for finding an integer refutation of a system of

UTVPI constraints.

CHAPTER 16. SUMMARY OF RESULTS 246

2. Developing a graphical theorem of the alternative for integer feasibility of UTVPI

constraints.

3. Developing a polynomial time algorithm for finding the integer closure of a system

of UTVPI constraints.

For systems of Horn constraints, we have the following results:

1. The problem of identifying if a system of Horn constraints has a read-once refutation

using the ADD and DIV rules is NP-complete.

2. The problem of identifying if a system of Horn clausal constraints has a read-once

refutation using the ADD and DIV rules is NP-complete.

16.4 Results of Quantified Linear Systems

In this section, we list our results for quantified linear programs and quantified linear

implications.

For quantified linear programs we have the following results:

1. The feasibility problem for unbounded quantified linear programs is in P.

2. The feasibility problem for partially bounded quantified linear programs is in P.

For quantified linear implications we have the following results:

1. The feasibility problem for quantified linear implications is PSPACE-hard.

2. The feasibility problem for unbounded quantified linear implications is in P.

3. The feasibility problem for partially bounded quantified linear implications is in P.

4. There is a variant of quantified linear implication that is complete for every level of

the polynomial hierarchy.

247

Chapter 17

Future Research Directions

In this chapter we discuss possible avenues of future research.

17.1 Research in Boolean CSPs

From the perspective of future research into boolean CSPs, the following avenues ap-

pear promising:

1. Minimal unsatisfiability problem for Horn formulas - The Minimal unsatisfiability

problem is defined as follows: Given a CNF formula Φ, is Φ unsatisfiable and is

every sub-formula of Φ satisfiable. It is well-known that the Minimal unsatisfiability

problem is DP− complete for 3CNF formulas. This problem is easily seen to be in

P for Horn formulas, since there exists a satisfiability oracle for Horn formulas that

runs in polynomial (in fact, linear) time [DG84]. However, the obvious algorithm of

iteratively removing clauses from an unsatisfiable subset of clauses is arguably not

very efficient. We plan to investigate hyper-graph based approaches for this problem.

2. Cutting plane proof system - Cutting planes were introduced in [Gom58], as a tech-

nique to solve integer programs by repeatedly solving linear programming relax-

ations. It was shown in [Chv73] that the technique in [Gom58] is complete (with

CHAPTER 17. FUTURE RESEARCH DIRECTIONS 248

some modifications). In [CCT87], cutting planes are formally studied under the aus-

pices of a proof system. Exponential lower bounds on proof lengths for various

restrictions on cutting planes have been obtained in [Pud97, BPR97, IPU94]. We are

currently exploring upper and lower bounds on cutting plane proofs for Horn clausal

formulas.

17.2 Research in Polyhedral CSPs

From the perspective of future research into polyhedral CSPs, the following avenues

appear promising:

1. The OLRR problem for linear feasibility of systems of UTVPI constraints - The al-

gorithms for UCSs in this dissertation include algorithm for the ROR and OLTR

problems. However, none of the algorithms provide a read-once refutation, using

the fewest number of constraints, i.e., the shortest read-once refutation. Establish-

ing bounds on the lengths of the shortest proofs of infeasibility is an integral part of

research in proof complexity [BP98]. We are therefore interested in this problem.

Likewise, we are also interested in the problems of finding the shortest literal-once

refutation and finding the shortest dag-like refutation in a system of UTVPI con-

straints.

2. The ROR problem for integer feasibility of systems of UTVPI constraints - When

looking at restricted refutations of UTVPI constraints, this dissertation focused on

refutations of linear feasibility. However, these same problems exist for integer fea-

sibility. Of the polyhedral CSPs looked at in this paper, only systems of UTVPI con-

straints distinguish between linear and integer feasibility. Thus, a possible avenue for

future research is applying the same restrictions on refutations of linear feasibility to

refutations of integer feasibility.

3. The ROR problem for general linear systems - As discussed before, an infeasible

CHAPTER 17. FUTURE RESEARCH DIRECTIONS 249

difference constraint system must have an ROR and an LOR. This paper investigated

read-once and literal-once refutations in UTVPI constraint systems. The natural

question is: What is the computational complexity of checking whether an arbitrary

linear program has a read-once refutation?

4. Minimal refutations - A refutation is said to be minimal, if no proper subset con-

tains a refutation. The algorithms discussed in this paper do not produce minimal

refutations. However, it is not difficult to obtain minimal refutations (literal-once or

read-once), using the algorithms presented here as oracles. Doing so, would add an

O(m) factor to the running time. It would be interesting to see if a more efficient

approach can be designed.

5. Implementation - We are currently implementing the algorithm for linear feasibility

in UTVPI constraints detailed in [SW17b]. However, the refutations returned by this

algorithm are not restricted in any of the ways described in this dissertation. Thus, it

would be interesting to implement the algorithms described in this dissertation and

check their performances against existing similar algorithms on data connected to

actual program verification problems.

250

Chapter 18

List of Publications

18.1 Papers in Refereed Journals

J1: K. Subramani and Piotr Wojciechowski. Read-once certificates of linear infeasibility

in UTVPI constraints Algorithmica. (Accepted, In Press).

J2: Hans Kleine Buning, Piotr Wojciechowski and K. Subramani. Finding read-once

resolution refutations in systems of 2CNF clauses. Theoretical Computer Science

(TCS), 729, pp. 42-56, Elsevier Science Publishers, 2018.

J3: K. Subramani and Piotr Wojciechoski. A certifying algorithm for lattice point fea-

sibility in a system of UTVPI constraints. Journal of Combinatorial Optimization

(JCO), 35(2), pp. 389-408, Springer Science Publishers, 2018.

J4: James B. Orlin, K. Subramani and Piotr Wojciechowski. Randomized algorithms for

finding the shortest negative cost cycle in networks. Discrete Applied Mathematics

(DAM), 236, pp. 387-394, Elsevier Science Publishers, 2018.

J5: K. Subramani and Piotr Wojciechowski. A combinatorial certifying algorithm for

linear feasibility in UTVPI constraints. Algorithmica, 78(1), pp. 166-208, Springer

Science Publishers, 2017.

CHAPTER 18. LIST OF PUBLICATIONS 251

J6: Piotr Wojciechowki, Pavlos Eirinakis and K. Subramani. Analyzing restricted frag-

ments of the theory of linear arithmetic. Annals of Mathematics and Artificial Intel-

ligence (AMAI), 79(1-3), pp. 245-266, Springer Science Publishers, 2017.

J7: Pavlos Eirinakis, Salvatore Ruggieri, K. Subramani and Piotr Wojciechowski. On

Quantified Linear Implication. Annals of Mathematics and Artificial Intelligence

(AMAI), 71(4), pp. 301-325, Springer Science Publishers, 2014.

J8: Salvatore Ruggieri, Pavlos Eirinakis, K. Subramanic and Piotr Wojciechowski. On

the Complexity of Quantified Linear Systems. Theoretical Computer Science (TCS),

518 , pp. 128-134, Elsevier Science Publishers, 2014.

J9: Pavlos Eirinakis, Salvatore Ruggieri, K. Subramani and Piotr Wojciechowski. A

Complexity Perspective on Entailment of Parameterized Linear Constraints. Con-

straints, 17 (4), pp. 461-487, Springer Science Publishers, 2012.

CHAPTER 18. LIST OF PUBLICATIONS 252

18.2 Papers in Refereed Conference Proceedings

C1: K. Subramani and Piotr Wojciechowski. Read-Once Certification of Linear Infea-

sibility in UTVPI Constraints. Proceedings of the 15th Annual Conference on the

Theory and Applications of Models of Computation (TAMC), pp. 578-593, (Eds.) T.

V. Gopal, et. al., Springer-Verlag, Lecture Notes in Computer Science, vol. 11436,

Kitakyushu (Japan), April 2019.

C2: K. Subramani, Piotr Wojciechowski, Zachary Santer and Matthew Anderson. An

Empirical Analysis of Feasibility Checking Algorithms for UTVPI Constraints. Pro-

ceedings of the 12th International Conference on Algorithmic Aspects of Information

Management (AAIM), pp. 111–123, (Eds.) Shaojie Tang, Ding-Zhu Du, et. al.,

Springer-Verlag, Lecture Notes in Computer Science, vol. 11343, Dallas (Texas),

December 2018.

C3: Bugra Caskurlu, Matthew Williamson, K. Subramani, Vahan Mkrtchyan and Piotr

Wojciechowski.

A Fully Polynomial Time Approximation Scheme for Refutations in Weighted Dif-

ference Constraint Systems. Proceedings of the 4th Annual Conference on Algo-

rithms and Discrete Applied Mathematics (CALDAM),

pp. 45-58, (Eds.) Partha P. Goswami and Bhawani S. Panda, Springer-Verlag, Lec-

ture Notes in Computer Science, vol. 10743, Guwahati (India), February 2018.

C4: K. Subramani and Piotr J. Wojciechowski, Analyzing lattice point feasibility in

UTVPI constraints.

Proceedings of the 23rd International Conference on the Principles and Practice of

Constraint

Programming (CP), pp. 615-629, (Ed.) Christopher Beck, Springer-Verlag, Lecture

Notes in Computer Science, vol. 10416, Melbourne (Australia), August 2017.

C5: Piotr J. Wojciechowski, R. Chandrasekaran and K. Subramani. On a Generalization

CHAPTER 18. LIST OF PUBLICATIONS 253

of Horn Constraint Systems. Proceedings of the 12th International Computer Science

Symposium in Russia (CSR) on Computer Science - Theory and Applications, pp.

323-336, (Ed.) Pascal Weil, Springer-Verlag, Lecture Notes in Computer Science,

vol. 10304, Kazan (Russia), June 2017.

C6: Hans Kleine Büning, Piotr J. Wojciechowski and K. Subramani. On the Computa-

tional Complexity of Read once Resolution Decidability in 2CNF Formulas. Pro-

ceedings of the 14th Annual Conference on the Theory and Applications of Models

of Computation (TAMC), pp. 362-372, (Eds.) T. V. Gopal, et. al., Springer-Verlag,

Lecture Notes in Computer Science, vol. 10185, Berne (Switzerland), April 2017.

C7: Hans Kleine Büning, Piotr J. Wojciechowski and K. Subramani. The Complexity

of Finding Read-Once NAE-Resolution Refutations. Proceedings of the 7th Indian

Conference on Logic and Its Applications (ICLA),

pp. 64-76, (Eds.) Sujata Ghosh and Sanjiva Prasad, Springer-Verlag, Lecture Notes

in Computer Science,

vol. 10119, Kanpur (India), January 2017.

C8: Alvaro Velasquez, Piotr Wojciechowski, K. Subramani, Steven L. Drager and Sumit

Kumar Jha. The cardinality-constrained paths problem: Multicast data routing in

heterogeneous communication networks. Proceedings of the 15th IEEE International

Symposium on Network Computing and Applications (NCA), pp. 126-130, (Eds.)

Alessandro Pellegrini, et. al., IEEE Computer Society, Boston, October 2016.

C9: Vahid Hashemi, Holger Hermanns, Lei Song, K. Subramani, Andrea Turrini and Pi-

otr J. Wojciechowski. Compositional Bisimulation Minimization for Interval Markov

Decision Processes. Proceedings of the 10th International Conference on Language

and Automata Theory and Applications (LATA), pp. 114-126, (Eds.) Adrian-Horia

Dediu, et. al., Springer-Verlag, Lecture Notes in Computer Science, vol. 9618,

Prague (Czech Republic), March 2016.

CHAPTER 18. LIST OF PUBLICATIONS 254

C10: K. Subramani and Piotr Wojciechowski. A Graphical Theorem of the Alternative

for UTVPI Constraints. Proceedings of the 12th International Colloquium on Theo-

retical Aspects of Computer Science (ICTAC), pp. 328-345, (Eds.) Martin Leucker,

Camilo Rueda and Frank Valencia, Springer-Verlag, Lecture Notes in Computer Sci-

ence, vol. 9399 Cali (Colombia), October 2015.

C11: Piotr Wojciechowski, Pavlos Eirinakis and K. Subramani. Variants of Quantified

Linear Programming and Quantified Linear Implication. Proceedings of the 12th

International Symposium on Artificial Intelligence and Mathematics (ISAIM), pp. −,

(Eds.) Lisa Hellerstein and Gyorgy Turan, Fort Lauderdale (Florida), January 2014.

C12: Pavlos Eirinakis, Salvatore Ruggieri, K. Subramani and Piotr Wojciechowski. Com-

putational complexity of inclusion queries over polyhedral sets. Proceedings of the

11th International Symposium on Artificial Intelligence and Mathematics (ISAIM),

pp. −, (Eds.) Robert H. Sloan, Fort Lauderdale (Florida), January 2012.

CHAPTER 18. LIST OF PUBLICATIONS 255

18.3 Papers in Refereed Workshops

W1: Hans Kleine Büning, Piotr Wojciechowski and K. Subramani. Read-Once Resolu-

tions in Horn Formulas Proceedings of the 13th International Frontiers of Algorith-

mics Workshop (FAW), pp. 100-110, (Eds.) Yijia Chen, Xiaotie Deng, and Mei Lu,

Spring-Verlag, Lecture Notes in Computer Science, vol. 11458, Sanya (China), May

2019.

W2: Piotr Wojciechowski, K. Subramani and Matthew Williamson. Optimal length tree-

like refutations of linear feasibility in UTVPI constraints Proceedings of the 12th

International Frontiers of Algorithmics Workshop (FAW), pp. 300-314, (Eds.) Jianer

Chen and Pinyan Lu, Spring-Verlag, Lecture Notes in Computer Science, vol. 10823,

Guangzhou (China), May 2018.

W3: K. Subramani and Piotr Wojciechowski. A Bit-Scaling Algorithm for Integer Fea-

sibility in UTVPI Constraints. Proceedings of the 27th International Workshop on

Combinatorial Algorithms (IWOCA), pp. 321 - 333, (Eds.) Veli Mäkinen, Simon J.

Puglisi and Leena Salmela, Spring-Verlag, Lecture Notes in Computer Science,

vol. 9843, Helsinki (Finland), May 2016.

W4: K.Subramani and Piotr Wojciechowski. An optimal algorithm for computing the in-

teger closure of UTVPI constraints. Proceedings of the 10th International Workshop

on Algorithms and Computation (WALCOM), pp. 154 - 165, (Eds.) Mohammad

Kaykobad and Rossella Petreschi, Spring-Verlag, Lecture Notes in Computer Sci-

ence, vol. 9627, Kathmandu (Nepal), March 2016.

W5: Pavlos Eirinakis, Salvatore Ruggieri, K. Subramani and Piotr Wojciechowski. On the

conjunctive fragments of theory of linear arithmetic. Proceedings of the Third Work-

shop on Automated Deduction: Decidability, Complexity, Tractability (ADDCT), pp.

51-53, Lake Placid, New York, June 2013.

CHAPTER 18. LIST OF PUBLICATIONS 256

18.4 Refereed Abstracts

RA1: Piotr Wojciechowski, Pavlos Eirinakis and K. Subramani. Quantifying Linear Pro-

gramming and Implications. 22nd International Symposium on Mathematical Pro-

gramming (ISMP), Pittsburgh, Pennsylvania, May 2015.

RA2: Pavlos Eirinakis, Salvatore Ruggieri, K. Subramani and Piotr Wojciechowski. Quan-

tified Linear Programming and Quantified Linear Implications. Proceedings of the

8th Scandinavian Logic Symposium (SLS), page 26, (Eds.) Patrick Blackburn, Klaus

Frovin Jorgensen, Neil Jones, Erik Palmgren, Roskilde University, Denmark, August

2012.

257

Appendix A

Important Related Problems

A.1 The Disjoint Paths Problem

In this section, we briefly discuss the vertex-disjoint path problem for directed graphs.

Definition A.1.1. Given a directed graph G and pairwise distinct vertexes s1, t1, s2, and

t2, the vertex-disjoint path problem (2-DPP) consists of finding a pair of vertex-disjoint

paths in G, one from s1 to t1 and the other from s2 to t2.

The problem is known to be NP-complete [FHW80].

Example 47: Consider the directed graph in Figure A.1.

s1 x1 x2 t1

s2 x3 x4 t2

Figure A.1: Directed graph with vertex-disjoint paths.

APPENDIX A. IMPORTANT RELATED PROBLEMS 258

This graph has the following vertex-disjoint paths.

p1 : s1→ x1→ x4→ t1

p2 : s2→ x3→ x2→ t2

Now we modify the problem as follows.

Definition A.1.2. Given a directed graph G and two distinct vertexes s and t, the vertex-

disjoint cycle problem (C-DPP) consists of finding a pair of vertex-disjoint paths in G,

one from s to t and the other from t to s.

Note that the paths are vertex-disjoint, if the inner vertexes of the path from s to t are

disjoint from the inner vertexes of the path from t to s.

Lemma A.1.1. C-DPP is NP-complete.

Proof. Obviously, the problem is in NP. We will show NP-hardness by a reduction from

2-DPP.

From G = (V,E), s1, t1, s2, and t2 we construct the new graph

G′ = (V ∪{s, t},E ∪{(s,s1),(t2,s),(t1, t),(t,s2)}).

Assume that G has two vertex-disjoint paths, w1 from s1 to t1, and w2 from s2 to t2.

Thus, the paths (s,s1),w1,(t1, t) and (t,s2),w2,(t2,s) in G′ are vertex-disjoint. Note that

s1,s2, t1, t2 are pairwise distinct. Thus, G′ has the desired vertex-disjoint cycle.

Now assume that G′ has two vertex-disjoint paths, w1 from s to t, and w2 from t to s. By

construction, w1 must contain a path from s1 to t1. Similarly, w2 must contain a path from

s2 to t2. Since w1 and w2 are vertex-disjoint these new paths must also be vertex-disjoint.

Thus, G has the desired vertex-disjoint paths.

We also mention the edge-disjoint cycle problem for directed graphs.

APPENDIX A. IMPORTANT RELATED PROBLEMS 259

Definition A.1.3. Given a directed graph G and two distinct vertexes s and t, the edge-

disjoint cycle problem (C-DEP) consists of finding a pair of edge-disjoint paths in G, one

from s to t and the other from t to s.

The problem is NP-complete. For two pairs of vertexes, the edge-disjoint path problem

is NP-complete [EIS76]. We can reduce the edge-disjoint path problem to C-DEP the same

way we reduced 2-DPP to C-DPP.

A.2 The Minimum Weight Perfect Matching Problem

In this section, we briefly discuss the problem of finding the minimum weight perfect

matching (MWPM) in an undirected, weighted graph. This digression is necessitated by the

fact that both Section 10.2.3 and Section 10.2.4 involve reduction to the MWPM problem.

Let G = 〈V,E,c〉 denote an undirected graph, with vertex set V, edge set E and edge

cost function c. Let n = |V| and let m = |E|. A matching is any collection of vertex-disjoint

edges. A perfect matching is a matching in which each vertex v ∈ V is matched. With-

out loss of generality, we assume that n is even, since G cannot have a perfect matching,

otherwise.

Example 48: Consider the undirected graph in Figure A.2.

x+1x−1

x+2

x−2 x+3

x−3

l1

l′1

l2

l′2

l3 l′3

0

0 0
0

00

1
1

−1

−1

−1

−1

Figure A.2: Undirected graph

APPENDIX A. IMPORTANT RELATED PROBLEMS 260

The graph in Figure A.2 has a matching of weight 0. This can be seen in Figure A.3.

x+1x−1

x+2

x−2 x+3

x−3

l1

l′1

l2

l′2

l3 l′3

0

0 0
0

00

1
1

−1

−1

−1

−1

Figure A.3: A matching in the graph in Figure A.2

The graph in Figure A.2 has a perfect matching of weight 0. This can be seen in Figure

A.4.

x+1x−1

x+2

x−2 x+3

x−3

l1

l′1

l2

l′2

l3 l′3

0

0 0
0

00

1
1

−1

−1

−1

−1

Figure A.4: A prefect matching in the graph in Figure A.2

The graph in Figure A.2 has a minimum weight perfect matching of weight −2. This

can be seen in Figure A.5.

The MWPM problem is one of the classical problems in combinatorial optimization

[KV10]. Over the years, there has been a steady stream of papers documenting improve-

ments in algorithms for this problem [Edm67, Gab76, DPS18].

APPENDIX A. IMPORTANT RELATED PROBLEMS 261

x+1x−1

x+2

x−2 x+3

x−3

l1

l′1

l2

l′2

l3 l′3

0

0 0
0

00

1
1

−1

−1

−1

−1

Figure A.5: A minimum weight perfect matching in the graph in Figure A.2

The fastest combinatorial algorithm for the MWPM problem runs in time O(m ·n+n2 ·

logn) [Gab90]. It is this bound that we shall be using in our paper.

262

Bibliography

[AAHO98] Charu C. Aggarwal, Ravindra K. Ahuja, Jianxiu Hao, and James B. Orlin. Di-
agnosing infeasibilities in network flow problems. Math. Program., 81:263–
280, 1998.

[AB93] A Aggoun and N. Beldiceanu. Extending chip to solve complex scheduling
and placement problems. Journal of Mathematical and Computer Modelling,
17(7):57–73, 1993.

[ABK+97] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. Data
structures for verification of timed automata. In Proceedings of the Hybrid
and Real-Time Systems, 1997.

[ABMP98] M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum propositional
proof length is NP-hard to linearly approximate. In Mathematical Founda-
tions of Computer Science (MFCS), pages 176–184. Springer-Verlag, 1998.
Lecture Notes in Computer Science.

[ABZ88] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for
job shop scheduling. Management Science, 34:391–401, 1988.

[ACM04] A. Armando, C. Castellini, and J. Mantovani. Software model checking using
linear constraints. In Lecture Notes in Computer Sciente, volume 3308, pages
209–223. Springer, 2004.

[Adl13] Ilan Adler. The equivalence of linear programs and zero-sum games. Int. J.
Game Theory, 42(1):165–177, 2013.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algo-
rithms and Applications. Prentice-Hall, 1993.

[AR01] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for poly-
nomial calculus: Non-binomial case. In 42nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA, pages 190–199, 2001.

BIBLIOGRAPHY 263

[BA79] R. E. Tarjan B. Aspvall, M. F. Plass. A linear time algorithm for testing the
truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and real-
time systems. In Proceedings of the 1991 IEEE, volume 79, pages 1270 –
1282, 1991.

[BE00] Alexander Bockmayr and Friedrich Eisenbrand. Combining logic and opti-
mization in cutting plane theory. In FroCos, pages 1–17, 2000.

[Ber80] L. Berman. The complexitiy of logical theories. Theoretical Computer Sci-
ence, 11:71–77, 1980.

[BGM90] R.S. Boyer, M.W. Green, and J.S. Moore. The Use of a Formal Simulator to
Verify a Simple Real Time Control Program. Springer, New York, NY, 1990.

[BHZ09] R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for nu-
meric abstractions: Improved algorithms and proofs of correctness. Formal
Methods in System Design, 35(3):279–323, 2009.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Krajı́cek, Toniann Pitassi, and Pavel
Pudlák. Lower bound on hilbert’s nullstellensatz and propositional proofs.
In 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994, pages 794–806, 1994.

[BL08] B. Berstel and M. Leconte. Using constraints to verify properties of rule
programs. In Proceedings of the 2010 Int. Conf. on Software Testing, Verifi-
cation, and Validation Workshops, pages 349–354, 2008.

[BM07] A. R. Bradley and Z. Manna. The calculus of computation - decision proce-
dures with applications to verification. Springer, 1st edition, 2007.

[BP96] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower
bounds. In 37th Annual Symposium on Foundations of Computer Science,
pages 274–282, Burlington, Vermont, 14–16 October 1996. IEEE.

[BP97] Buss and Pitassi. Resolution and the weak pigeonhole principle. In CSL:
11th Workshop on Computer Science Logic. LNCS, Springer-Verlag, 1997.

[BP98] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past,
present, future. Bulletin of the EATCS, 65:66–89, June 1998.

[BPN95] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based optimization and
approximation for job-shop scheduling. In AAAI-SIGMAN Workshop on In-
telligent Manufacturing Systems, 1995.

BIBLIOGRAPHY 264

[BPR97] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting
planes proofs with small coefficients. J. Symb. Log., 62(3):708–728, 1997.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Existential Theory
of the Reals, volume 10 of Algorithms and Computation in Mathematics.
Springer Berlin Heidelberg, 2006.

[Bro03] C. W. Brown. QEPCAD B: A program for computing with semi-algebraic
sets using CADs. ACM SIGSAM Bullettin, 37(4):97–108, 2003.

[BS94] J. A. Brzowski and C-J.H. Seger. Asynchronous Circuits. Springer, 1994.

[Bus] Samuel R. Buss. Propositional proof complexity: An introduction.
http://www.math.ucsd.edu/˜sbuss/ResearchWeb/
marktoberdorf97/paper.pdf.

[Bus98] S. R. Buss, editor. Handbook of Proof Theory. Elsevier Science Pub., 1998.

[CA00] S. Choi and A. Agrawala. Dynamic dispatching of cyclic real-time tasks with
relative timing constraints. Real-Time Systems, 19(1):5–40, 2000.

[CAMN04] Scott Cotton, Eugene Asarin, Oded Maler, and Peter Niebert. Some progress
in satisfiability checking for difference logic. In FORMATS/FTRTFT, pages
263–276, 2004.

[Can88] J. Canny. Some algebraic and geometric computations in pspace. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pages 460–467, 1988.

[CAS08] M. Ceberio, C. Acosta, and C. Servin. A constraint-based approach to verifi-
cation of programs with floating-point numbers. In Proceedings of the 2008
Int. Conf. of Software Engineering Research and Practice, pages 225–230,
2008.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In POPL, pages 238–252, 1977.

[CCT87] W. Cook, C. R. Coullard, and Gy. Turan. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18:25–38, 1987.

[CH91] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for
quantifier elimination. Journal of Symbolic Computation, 12(3):299–328,
1991.

[Cha81] R. Chandrasekaran. Polynomial algorithms for totally dual integral systems
and extensions. Annals of Discrete Mathematics, 11:39–52, 1981.

http://www.math.ucsd.edu/~sbuss/ResearchWeb/marktoberdorf97/paper.pdf
http://www.math.ucsd.edu/~sbuss/ResearchWeb/marktoberdorf97/paper.pdf

BIBLIOGRAPHY 265

[Cha15] R. Chandrasekaran. Integer farkas lemma. International Game Theory Re-
view, 17(1), 2015.

[Chv73] V. Chvatal. Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics, 4(10-11):886–904, 1973.

[Cla93] E.M. Clarke. Automatic verification of sequential circuit designs. In Pro-
ceedings of the 1993 International Conference on Computer Hardware De-
scription Languages and their Applications, volume 32 of IFIP Transactions
A: Computer Science and Technology, page 163166, 1993.

[Cla97] E.M. Clarke. Model checking. In FSTTCS, volume 1346 of Lecture Notes in
Computer Science, pages 54–56. Springer, 1997.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

[CR73] Stephen A. Cook and Robert A. Reckhow. Time bounded random access
machines. Journal of Computer and System Sciences, 7(4):354–375, August
1973.

[CR74] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the
propositional calculus (preliminary version). In Proceedings of the 6th An-
nual ACM Symposium on Theory of Computing, April 30 - May 2, 1974,
Seattle, Washington, USA, pages 135–148, 1974.

[CR06] H. Collavizza and M. Reuher. Exploration of the capabilities of constraint
programming for software verification. In Proceedings of the 2006 Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems, 2006.

[CRV04] H. Collavizza, M. Reuher, and P. Van Hentenryck. Cpbpv:a constraint-
programming framework for bounded program verification. In Proceedings
of the 2008 Int. Conf. on Principles and Practices of Constraint Program-
ming, volume 5202 of Lecture Notes in Computer Science. Springer, 2004.

[CRY96] I.J. Cox, S.B. Rao, and Y.Zhong. Ratio regions: A technique for image
segmentation. In Proceedings of the International Conference on Pattern
Recognition, pages 557–564. IEEE, August 1996.

[CS13] R. Chandrasekaran and K. Subramani. A combinatorial algorithm for horn
programs. Discrete Optimization, 10:85–101, 2013.

[Dan51] G. B. Dantzig. A proof of the equivalence of the programming problem and
the game problem. In T. C. Koopmans, editor, Activity Analysis of Production
and Allocation, pages 330–335. John Wiley & Sons, New York, 1951.

BIBLIOGRAPHY 266

[DdM06] Bruno Duterre and Leonardo de Moura. The yices smt solver. Technical
report, SRI International, 2006.

[DE73] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin Elimination and its Dual.
Journal of Combinatorial Theory (A), 14:288–297, 1973.

[DFK+03] Marcel Dhiflaoui, Stefan Funke, Carsten Kwappik, Kurt Mehlhorn, Michael
Seel, Elmar Schömer, Ralph Schulte, and Dennis Weber. Certifying and
repairing solutions to large lps how good are lp-solvers? In SODA, pages
255–256, 2003.

[DG84] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulae. J. Log. Program., 1(3):267–
284, 1984.

[DH88] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly expo-
nential. Journal of Symbolic Computation, 5(1-2):29–35, 1988.

[DI04] Camil Demtrescu and Giuseppe F. Italiano. A new approach to dynamic all
pairs shortest paths. Journal of the ACM, 51(6):968–992, 2004.

[dMOR+04] Leonardo de Moura, Sam Owre, Harald Ruess, John M. Rushby, and Natara-
jan Shankar. The ICS decision procedures for embedded deduction. In IJ-
CAR, pages 218–222, 2004.

[DPS18] Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for weighted
matching in general graphs. ACM Trans. Algorithms, 14(1):8:1–8:35, 2018.

[Dru06] D. Drusinsky. Modeling and verification using UML statecharts: a work-
ing guide to reactive systems design, runtime modeling and execution-based
model checking. Newnes, Burlington, MA, 2006.

[DS97] A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets computer
logic. ACM SIGSAM Bullettin, 31(2):2–9, 1997.

[DSW98a] A. Dolzmann, T. Sturm, and V. Weispfenning. A new approach for auto-
matic theorem proving in real geometry. Journal of Automated Reasoning,
21(3):357–380, 1998.

[DSW98b] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in
practice. In B. H. Matzat, G.-M. Greuel, and G. Hiss, editors, Algorithmic
Algebra and Number Theory, pages 221–248. Springer, 1998.

[Edm67] Jack Edmonds. An introduction to matching, 1967. Mimeographed notes.
Engineering Summer Conference, University of Michigan, Ann Arbor, MI.

BIBLIOGRAPHY 267

[EIS76] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable
and multicommodity flow problems. SIAM J. Comput., 5(4):691–703, 1976.

[Far02] Gyula Farkas. Über die Theorie der Einfachen Ungleichungen. Journal für
die Reine und Angewandte Mathematik, 124(124):1–27, 1902.

[FHW80] Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph
homeomorphism problem. Theor. Comput. Sci., 10:111–121, 1980.

[FR75] J. Ferrante and C. Rackoff. A decision procedure for the first order theory of
real addition with order. SIAM Journal on Computing, 4(1):69–76, 1975.

[FS02] Jonathan Ford and Natarajan Shankar. Formal verification of a combination
decision procedure. In CADE, pages 347–362, 2002.

[Gab76] Harold N. Gabow. An efficient implementation of Edmonds’ algorithm for
maximum matching on graphs. Journal of the ACM, 23(2):221–234, April
1976.

[Gab90] Harold N. Gabow. Data structures for weighted matching and nearest com-
mon ancestors with linking. In David Johnson, editor, Proceedings of the 1st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’90), pages
434–443, San Francisco, CA, USA, January 1990. SIAM.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman Company, San Francisco,
1979.

[Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem.
SIAM Journal on Computing, 24(3):494–504, June 1995.

[Gom58] R. E. Gomory. Outline of an algorithm for integer solutions to linear pro-
grams. Bulletin of the American Mathematical Society, 64:275–278, 1958.

[GPS95a] R. Gerber, W. Pugh, and M. Saksena. Parametric dispatching of hard real-
time tasks. IEEE Transactions on Computers, 44(3):471–479, 1995.

[GPS95b] R. Gerber, W. Pugh, and M. Saksena. Parametric dispatching of hard real-
time tasks. IEEE Transactions on Computing, 44(3):471–479, 1995.

[GRKL01] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis. Efficient com-
putation of delay-sensitive routes from one source to all destinations. In Pro-
ceedings IEEE INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and Communica-
tions Society (Cat. No.01CH37213), volume 2, pages 854–858 vol.2, 2001.

BIBLIOGRAPHY 268

[GSV08] S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint
solving. In Proceedings of the 2008 ACM SIGPLAN Conf. on Programming
language design and implementation, New York, NY, 2008. ACM.

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[Hal02] R.J. Hall. Specification, validation, and synthesis of email agent controllers:
A case study in function rich reactive system design. Automated Software
Engineering, 9(3):233–261, 2002.

[Har04] D. Harel. A grand challenge for computing: Towards full reactive model-
ing of a multi-cellular animal. Verification, Model Checking, and Abstract
Interpretation, 2937:39–60, 2004.

[Har09] John Harrison. Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, 1s edition, 2009.

[HL89] C. C. Han and K. J. Lin. Job scheduling with temporal distance constraints.
Technical Report UIUCDCS-R-89-1560, University of Illinois at Urbana-
Champaign, Department of Computer Science, 1989.

[HM11] Federico Heras and João Marques-Silva. Read-once resolution for
unsatisfiability-based max-sat algorithms. In IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 572–577, 2011.

[HN94] Dorit S. Hochbaum and Joseph (Seffi) Naor. Simple and fast algorithms for
linear and integer programs with two variables per inequality. SIAM Journal
on Computing, 23(6):1179–1192, December 1994.

[Hoo89] John N. Hooker. Input proofs and rank one cutting planes. INFORMS Journal
on Computing, 1(3):137–145, 1989.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. Springer,
New York, NY, 1985.

[HS97] W. Harvey and P. J. Stuckey. A unit two variable per inequality integer con-
straint solver for constraint logic programming. In Proceedings of the 20th
Australasian Computer Science Conference, pages 102–111, 1997.

[IM95] K. Iwama and E. Miyano. Intractability of read-once resolution. In Pro-
ceedings of the 10th Annual Conference on Structure in Complexity Theory
(SCTC ’95), pages 29–36, Los Alamitos, CA, USA, June 1995. IEEE Com-
puter Society Press.

BIBLIOGRAPHY 269

[IPU94] Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and
lower bounds for tree-like cutting planes proofs. In Proceedings of the Ninth
Annual Symposium on Logic in Computer Science (LICS ’94), Paris, France,
July 4-7, 1994, pages 220–228, 1994.

[Iwa97] K. Iwama. Complexity of finding short resolution proofs. Lecture Notes in
Computer Science, 1295:309–319, 1997.

[Jer85] Robert G. Jeroslow. The polynomial hierarchy and a simple model for
competitive analysis. Mathematical Programming, 32:146–164, 1985.
10.1007/BF01586088.

[JMSY94] J. Jaffar, M. J. Maher, P. J. Stuckey, and H. C. Yap. Beyond Finite Do-
mains. In Proceedings of the Second International Workshop on Principles
and Practice of Constraint Programming, 1994.

[JP78] D. S. Johnson and F. P. Preparata. The densest hemisphere problem. Theo-
retical Computer Science, 6(1):93–107, February 1978.

[Kan83] R. Kannan. Polynomial time aggregation of integer programming. Journal
of the ACM, 30(1):133–145, 1983.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103, New York, 1972. Plenum Press.

[KCH01] N. Kam, I.R. Cohen, and D. Harel. The immune system as a reactive sys-
tem: modeling t cell activation with statecharts. In Proceedings of the
2001 IEEE Symposia on Human-Centric Computing Languages and Envi-
ronments, pages 15 – 22, 2001.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady
Akademiia Nauk SSSR, 224:1093–1096, 1979. English Translation: Soviet
Mathematics Doklady, Volume 20, pp. 1093–1096.

[KMMS03] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy Spin-
rad. Certifying algorithms for recognizing interval graphs and permutation
graphs. In SODA, pages 158–167, 2003.

[KN09] Haim Kaplan and Yahav Nussbaum. Certifying algorithms for recognizing
proper circular-arc graphs and unit circular-arc graphs. Discrete Applied
Mathematics, 157(15):3216–3230, 2009.

[Kra94] Jan Krajı́cek. Lower bounds to the size of constant-depth propositional
proofs. J. Symb. Log., 59(1):73–86, 1994.

BIBLIOGRAPHY 270

[KSSVS99] T.J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry. A formal
approach to reactive system design: unmanned aerial vehicle flight manage-
ment system design example. In Proceedings of the 1999 IEEE International
Symposium on Computer Aided Control System Design, pages 522 – 527,
1999.

[KV10] B. Korte and J. Vygen. Combinatorial Optimization. Number 21 in Algo-
rithms and Combinatorics. Springer-Verlag, New York, 4th edition, 2010.

[KWS18] Hans Kleine Büning, Piotr J. Wojciechowski, and K. Subramani. Finding
read-once resolution refutations in systems of 2cnf clauses. Theor. Comput.
Sci., 729:42–56, 2018.

[KZ02] Hans Kleine Büning and Xishun Zhao. The complexity of read-once resolu-
tion. Ann. Math. Artif. Intell., 36(4):419–435, 2002.

[KZ03] Hans Kleine Büning and Xishun Zhao. Read-once unit resolution. In The-
ory and Applications of Satisfiability Testing, 6th International Conference,
SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, pages 356–369, 2003.

[Las04] Jean B. Lasserre. A discrete farkas lemma. Discrete Optimization, 1(1):67–
75, 2004.

[Lib08] Paolo Liberatore. Redundancy in logic ii: 2cnf and horn propositional for-
mulae. Artificial Intelligence, 172(2):265 – 299, 2008.

[LM05] S. K. Lahiri and M. Musuvathi. An Efficient Decision Procedure for UTVPI
Constraints. In Proceedings of the 5th International Workshop on the Fron-
tiers of Combining Systems, September 19-21, Vienna, Austria, pages 168–
183, New York, 2005. Springer.

[LR57] R. D. Luce and H. Raiffa. Games and Decisions: Introduction and critical
survey. John Wiley & Sons, New York, 1st edition, 1957.

[LS04] Inês Lynce and João P. Marques Silva. On computing minimum unsatisfiable
cores. In SAT, 2004.

[LTCA89] S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala. The Maruti
Hard Real-Time Operating System. ACM Special Interest Group on Operat-
ing Systems, 23(3):90–106, July 1989.

[Man69] O. Mangasarian. Nonlinear Programming, McGraw-Hill, New York, 1969.

[Min06] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

BIBLIOGRAPHY 271

[MM11] Cristopher Moore and Stephen Mertens. The Nature of Computation. Oxford
University Press, 1st edition, 2011.

[MMNS11] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying
algorithms. Computer Science Review, 5(2):119–161, 2011.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geo-
metric Computing. Cambridge University Press, Cambridge, 1999.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, Cambridge, England, June 1995.

[Mut77] D. Muthiayen. Real-time reactive system development : a formal approach
based on UML and PVS. Ph.D. Thesis, Concordia University, 1977.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Dpll(t) with exhaustive theory
propagation and its application to difference logic. In CAV, pages 321–334,
2005.

[NOT04] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract dpll and
abstract dpll modulo theories. In LPAR, pages 36–50, 2004.

[NW99] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1999.

[OSW18] James B. Orlin, K. Subramani, and Piotr Wojciechowski. Randomized al-
gorithms for finding the shortest negative cost cycle in networks. Discrete
Applied Mathematics, 236(1):387–394, 2018.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
New York, 1994.

[Pin95a] M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice-Hall,
Englewood Cliffs, 1995.

[Pin95b] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall,
Englewood Cliffs, NJ, 1995.

[PSSW14] Stefan Porschen, Tatjana Schmidt, Ewald Speckenmeyer, and Andreas Wot-
zlaw. XSAT and NAE-SAT of linear CNF classes. Discrete Applied Mathe-
matics, 167:1–14, 2014.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symb. Log., 62(3):981–998, 1997.

[Pug92] W. Pugh. The omega test: A fast and practical integer programming algo-
rithm for dependence analysis. Comm. of the ACM, 35(8):102–114, August
1992.

BIBLIOGRAPHY 272

[PW00] B. Pfitzmann and M. Waidner. Composition and integrity preservation of
secure reactive systems. In Proceedings of the 2000 ACM Conference on
Computer Communications Security, pages 245–254, 2000.

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In Proceedings of the
2001 IEEE Symposium on Security and Privacy, pages 184 – 200, 2001.

[Rat06] Stefan Ratschan. Efficient solving of quantified inequality constraints over
the real numbers. ACM Transactions on Computational Logic, 7(4):723–748,
2006.

[Rat11] Stefan Ratschan. RSOLVER, 2011. http://rsolver.sourceforge.net.

[Rec75] Robert A. Reckhow. On the lengths of proofs in the propositional calculus.
PhD thesis, University of Toronto, Ontario, Canada, 1975.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution prin-
ciple. J. ACM, 12(1):23–41, 1965.

[RS06] Vojtech Rödl and Mark H. Siggers. Color critical hypergraphs with many
edges. Journal of Graph Theory, 53(1):56–74, 2006.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier, 2001.

[Sab] Ashish Sabharwal. Lecture notes in proof complexity.

[SB04] Sanjit A. Seshia and Randal E. Bryant. Deciding quantifier-free presburger
formulas using parameterized solution bounds. In LICS, pages 100–109,
2004.

[Sch78] T.J. Schaefer. The complexity of satisfiability problems. In Alfred Aho,
editor, Proceedings of the 10th Annual ACM Symposium on Theory of Com-
puting, pages 216–226, New York City, NY, 1978. ACM Press.

[Sch87] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and
Sons, New York, 1987.

[Sch04] K. Schneider. Verification of reactive systems. Formal Methods and Al-
gorithms, Texts in Theoretical Computer Science. Springer, New York, NY,
2004.

[Seg07] Nathan Segerlind. The complexity of propositional proofs. Bulletin of Sym-
bolic Logic, 13(4):417–481, 2007.

http://rsolver.sourceforge.net

BIBLIOGRAPHY 273

[SG11] K. Subramani and Xiaofeng Gu. Absorbing random walks and the NAE2SAT
problem. Int. J. Comput. Math., 88(3):452–467, 2011.

[Sho91] P. W. Shor. Stretchability of pseudolines is np-hard. DIMACS, 4:531–534,
1991.

[SLB03] Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A hybrid sat-
based decision procedure for separation logic with uninterpreted functions.
In DAC, pages 425–430, 2003.

[Son85] Eduardo D. Sontag. Real addition and the polynomial hierarchy. Inf. Process.
Lett., 20(3):115–120, 1985.

[SS10] Andreas Schutt and Peter J. Stuckey. Incremental satisfiability and implica-
tion for utvpi constraints. INFORMS Journal on Computing, 22(4):514–527,
2010.

[SSRB98] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo. Deadline
Scheduling for Real-Time Systems. Kluwer Academic, Dordrecht, 1998.

[Sto77] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1–22, 1977.

[Sub04a] K. Subramani. On deciding the non-emptiness of 2SAT polytopes with re-
spect to first order queries. Mathematical Logic Quarterly, 50(3):281–292,
2004.

[Sub04b] K. Subramani. Optimal length tree-like resolution refutations for 2sat formu-
las. ACM Transactions on Computational Logic, 5(2):316–320, 2004.

[Sub05a] K. Subramani. An analysis of totally clairvoyant scheduling. Journal of
Scheduling, 8(2):113–133, 2005.

[Sub05b] K. Subramani. A comprehensive framework for specifying clairvoyance,
constraints and periodicty in real-time scheduling. The Computer Journal,
48(3):259–272, 2005.

[Sub07] K. Subramani. On a decision procedure for quantified linear programs. An-
nals of Mathematics and Artificial Intelligence, 51(1):55–77, 2007.

[Sub09] K. Subramani. Optimal length resolution refutations of difference constraint
systems. Journal of Automated Reasoning (JAR), 43(2):121–137, 2009.

[SW15a] K. Subramani and Piotr J. Wojciechowski. A graphical theorem of the alter-
native for UTVPI constraints. In Theoretical Aspects of Computing - ICTAC
2015 - 12th International Colloquium Cali, Colombia, October 29-31, 2015,
Proceedings, pages 328–345, 2015.

BIBLIOGRAPHY 274

[SW15b] K. Subramani and James Worthington. Feasibility checking in horn con-
straint systems through a reduction based approach. Theor. Comput. Sci.,
576:1–17, 2015.

[SW17a] K. Subramani and Piotr J. Wojciechowski. Analyzing lattice point feasibility
in UTVPI constraints. In Principles and Practice of Constraint Program-
ming - 23rd International Conference, CP 2017, Melbourne, VIC, Australia,
August 28 - September 1, 2017, Proceedings, pages 615–629, 2017.

[SW17b] K. Subramani and Piotr J. Wojciechowski. A combinatorial certifying algo-
rithm for linear feasibility in UTVPI constraints. Algorithmica, 78(1):166–
208, 2017.

[SWG13] K. Subramani, Matthew Williamson, and Xiaofeng Gu. Improved algorithms
for optimal length resolution refutation in difference constraint systems. For-
mal Aspects of Computing, 25(2):319–341, 2013.

[Sze01] Stefan Szeider. Np-completeness of refutability by literal-once resolution.
In Automated Reasoning, First International Joint Conference, IJCAR 2001,
Siena, Italy, June 18-23, 2001, Proceedings, pages 168–181, 2001.

[Tar48] A. Tarski. A decision method for elementary algebra and geometry. Technical
Report R-109, Rand Corporation, 1948.

[Tru03] Klaus Truemper. Personal communication, 2003.

[Tse68] G. S. Tseitin. On the complexity of derivation in the propositional calculus,
1968.

[Tse70] G. Tseitin. On the complexity of derivation in propositional calculus. In
Studies in Constructive Mathematics and Mathematical Logic, pages 115–
125, 1970.

[Urq95] Alasdair Urquhart. The complexity of propositional proofs. The Bulletin of
Symbolic Logic, 1(4):425–467, December 1995.

[VD68] A.F. Veinott and G.B. Dantzig. Integral extreme points. SIAM Review,
10:371–372, 1968.

[Vei89] Arthur F. Veinott. Representation of general and polyhedral subsemilat-
tices and sublattices of product spaces. Linear Algebra and its Applications,
114/115:681–704, 1989.

[VL92] Arthur F. Veinott and Marco LiCalzi. Subextremal functions and lattice pro-
gramming, July 1992. Unpublished Manuscript.

BIBLIOGRAPHY 275

[Voh06] Rakesh V. Vohra. The ubiquitous farkas’ lemma. In Perspectives in Opera-
tions Research, volume 36 of Operations Research/Computer Science Inter-
faces Series, pages 199–210. Springer-Verlag, New York, 2006.

[VW62] A. F. Veinott and H. M. Wagner. Optimal capacity scheduing: Parts i and ii.
Operations Research, 10:518–547, 1962.

[Wag77] T.J. Wagner. Hardware Verification. Ph.D. Thesis, Stanford University, 1977.

[WB97] Hal Wasserman and Manuel Blum. Software reliability via run-time result-
checking. J. ACM, 44(6):826–849, 1997.

[Wei88] V. Weispfenning. The complexity of linear problems in fields. Journal of
Symbolic Computation, 4(1-2):3–27, 1988.

[Wil76] H. P. Williams. Fourier-Motzkin elimination extension to integer program-
ming. J. Combinatorial Theory, 21:118–123, 1976.

	Analyzing Satisfiability and Refutability in Selected Constraint Systems
	Recommended Citation

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	I Preliminaries
	Introduction
	Proofs and Refutations
	Constraint Systems
	Road Map

	Constraint Systems
	Boolean Constraint Systems
	2-CNF clausal formulas
	Horn clausal formulas

	Polyhedral Constraint Systems
	Difference constraint systems
	UTVPI constraint systems
	Horn constraint systems
	Quantified linear constraint systems

	Refutations
	Refutations in Boolean Formulas
	Refutations in Linear Programs
	Refutations in Integer Programs
	Types of Refutations
	Literal-once refutation
	Read-once refutation
	Non-literal read-once refutation
	Tree-like refutations
	Dag-like refutations

	Theorems of the Alternative

	Statement of Problems
	Satisfiability Problems
	CSPs with side constraints

	Refutability Problems
	Refutability of CSPs with side constraints

	Closure Problems

	Proof Systems and Refutation Systems
	Proof Systems
	Refutation Systems
	Soundness and Completeness

	II Boolean Constraints
	2-CNF Clausal Formulas
	Motivation and Related Work
	Refutability
	The ROR problem for resolution
	The ROR problem for NAE-resolution
	The OLRR problem for NAE-resolution
	The ROR problem for unit-resolution

	3-CNF Clausal Formulas
	Motivation and Related Work
	Refutability
	The ROR problem for NAE-resolution

	Horn Clausal Formulas
	Motivation and Related Work
	Refutability
	The OLRR problem for resolution
	The ROR problem for unit-resolution
	The copy complexity of unit-resolution

	III Polyhedral Constraints: Linear Satisfiability
	Difference Constraint Systems
	Motivation and Related Work
	Refutability
	The OLRR problem (ADD rule)
	The WOLRR problem (ADD rule)

	UTVPI Constraint Systems
	Motivation and Related Work
	Refutability
	The OLTR problem (ADD rule)
	The WOLTR problem (ADD rule)
	The LOR problem (ADD rule)
	The ROR problem (ADD rule)
	The NLROR problem (ADD rule)

	Horn Constraint Systems
	Motivation and Related Work
	Refutability
	The ROR problem (ADD rule)

	IV Polyhedral Constraints: Integer Satisfiability
	UTVPI Constraint Systems
	Motivation and Related Work
	Satisfiability
	Scaling algorithm

	Refutability
	Theorem of the alternative

	Closure
	The closure problem (ADD and DIV rules)

	Horn Constraint Systems
	Motivation and Related Work
	Refutability
	The ROR problem (ADD and DIV rules)

	V Quantified Linear Constraints
	Quantified Linear Programming
	Motivation and Related Work
	Satisfiability
	Semantics
	Complexity of UQLP and PQLP

	Quantified Linear Implications
	Motivation and Related Work
	Satisfiability
	Semantics
	Complexity of QLI
	Complexity of UQLI andd PQLI
	QLI and the polynomial hierarchy
	Complexity with bounded alternation

	VI Conclusion
	Summary of Results
	Results for Boolean CSPs
	Results for Linear Polyhedral CSPs
	Results for Integer Polyhedral CSPs
	Results of Quantified Linear Systems

	Future Research Directions
	Research in Boolean CSPs
	Research in Polyhedral CSPs

	List of Publications
	Papers in Refereed Journals
	Papers in Refereed Conference Proceedings
	Papers in Refereed Workshops
	Refereed Abstracts

	Important Related Problems
	The Disjoint Paths Problem
	The Minimum Weight Perfect Matching Problem

	Bibliography

