
The Incremental Satisfiability Problem for a
Two Conjunctive Normal Form

Guillermo De Ita Luna1

Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla

Puebla, México

J. Raymundo Marcial-Romero2 José A. Hernández3

Facultad de Ingenieŕıa
Universidad Autónoma del Estado de México

Toluca, México

Abstract

We propose a novel method to review K � φ when K and φ are both in Conjunctive Normal Forms (CF).
We extend our method to solve the incremental satisfiablity problem (ISAT), and we present different cases
where ISAT can be solved in polynomial time.
Especially, we present an algorithm for 2-ISAT. Our last algorithm allow us to establish an upper bound
for the time-complexity of 2-ISAT, as well as to establish some tractable cases for the 2-ISAT problem.

Keywords: Satisfiability Problem, Incremental Satisfiability Problem, 2-SAT, Entail Propositional
Problem, Efficient Satisfiability Instances.

1 Introduction

The primary goal of complexity theory is to classify computational problems ac-

cording to their inherent computational complexity. A central issue in determin-

ing these frontiers has been the satisfiability problem (SAT) in the propositional

calculus. The case 2-SAT, to determine the satisfiability of propositional two Con-

junctive Normal Forms (2-CF), is an important tractable case of SAT (see e.g. [2]

for polynomial-time algorithms for 2-SAT). And variations of the 2-SAT problem,

e.g. in the optimization and counting area, have been key for establishing frontiers

between tractable and intractable problems.

1 Email:deita@cs.buap.mx
2 Email:jrmarcialr@uaemex.mx
3 Email:xoseahernandez@uaemex.mx

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 328 (2016) 31–45

1571-0661/© 2016 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.11.004

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad Autónoma del Estado de...

https://core.ac.uk/display/154795433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailito:deita@cs.buap.mx
mailito:jrmarcialr@uaemex.mx
mailito:xoseahernandez@uaemex.mx
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.11.004
http://dx.doi.org/10.1016/j.entcs.2016.11.004
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

Since automatic reasoning is one of the purer forms of human, intellectual

thought, the automation of such reasoning by means of computers is a basic and

challenging scientific problem [17]. One of the fundamental problems in automatic

reasoning is the propositional entail problem. This last problem is a relevant task

in many other issues such as estimating the degree of belief, to review or update

beliefs, the abductive explanation, logical diagnosis, and many other procedures in

Artificial Intelligence (AI) applications.

It is known that logic entail problem is a hard challenge in automatic reasoning

due to it is co-NP-Hard even in the propositional case [12]. However, some fragments

of propositional logic allow efficient reasoning methods [4]. One of the most relevant

cases of efficient reasoning is the fragment of Horn Formulas. We present a novel

method to solve the entail problem between conjunctive forms and we show how

to apply this method for solving the incremental satisfiability problem (ISAT) that

consists in deciding if an initial knowledge Base K keeps its satisfiability anytime a

conjuntion of new clauses is added.

Hooker [10] presented an algorithm for the ISAT problem, in which the main

contribution was the speed-up for solving a single formula by solving a growing

subset of its constraints. Whittemore et al. [18] defined the incremental satisfiability

problem as the solving of each formula in a finite sequence of subformulas. Solvers,

which use a variant of Whittemore’s approach, are ZCHAFF [14] and SMT-LIB [1].

Eén et al. [7] presented a simple interface for ISAT solvers which was first used by

the solver MINISAT [6]. Wieringa [19] presented an incremental satisfiability solver

and some of its applications. Finally, Nadel [16] presented a variation of ISAT

problem under assumptions that are modeled as first decision variables; all inferred

clauses that depend on some of the assumptions include their negation.

We present here an algorithm for solving the 2-ISAT problem, and we establish

an upper bound for the time-complexity of 2-ISAT, as well as, we show some efficient

cases for the ISAT and the 2-ISAT problems.

2 Preliminaries

Let X = {x1, . . . , xn} be a set of n Boolean variables. A literal is either a variable

xi or a negated variable xi. As usual, for each x ∈ X, x0 = x and x1 = x.

A clause is a disjunction of different and non-complementary literals. Notice

that we discard the case of tautological clauses. For k ∈ IN , a k-clause is a clause

consisting of exactly k literals, and a (≤ k)-clause is a clause with at most k literals.

A phrase is a conjunction of literals, a k-phrase is a phrase with exactly k literals.

A conjunctive normal form (CNF, or CF) F is a conjunction of clauses. We say

that F is a monotone positive CF if all of its variables appear in unnegated form. A

k-CF is a CF containing only k-clauses. (≤ k)-CF denotes a CF containing clauses

with at most k literals. A 2-CF formula F is said to be strict only if each clause

of F consists of two literals. A disjunctive normal form (DF) is a disjunction of

phrases, and a k-DF is a DF containing only k-phrases.

A variable x ∈ X appears in a formula F if either x or x is an element of F .

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–4532

We use υ(X) to represent the variables involved in the object X; where X can be a

literal, a clause, or a CF. For instance, for the clause c = {x1, x2}, υ(c) = {x1, x2}.
Lit(F) is the set of literals involved in F , i.e. if X = υ(F), then Lit(F) = X ∪X =

{x1, x1, ..., xn, xn}. Also we used ¬Y as the negation operator on the object Y . We

denote {1, 2, ..., n} by [[n]], and the cardinality of a set A by |A|.
An assignment s for a formula F is a function s : υ(F) → {0, 1}. An assignment

s can also be considered as a set of literals without a complementary pair of literals,

e.g., if l ∈ s, then l �∈ s, in other words s turns l true and l false or viceversa. Let c

be a clause and s an assignment, c is satisfied by s if and only if c ∩ s �= ∅. On the

other hand, if for all l ∈ c, l ∈ s, then s falsifies c.

Let F be a CF, F is satisfied by an assignment s if each clause in F is satisfied

by s. F is contradicted by s if any clause in F is falsified by s. A model of F is an

assignment for υ(F) that satisfies F . A falsifying assignment of F is an assignment

for υ(F) that contradicts F . A DF F is satisfied by s if any phrase is satisfied by

s. F is contradicted by s if all of its phrases are contradicted by s.

If n = |υ(F)|, then there are 2n possible assignments defined over υ(F). Let

S(F) be the set of 2n assignments defined over υ(F). s 	 F denotes that the

assignment s is a model of F . s �	 F denotes that s is a falsifying assignment of

F . If F1 ⊂ F is a formula consisting of some clauses from F , and υ(F1) ⊂ υ(F),

an assignment over υ(F1) is a partial assignment over υ(F). If s has logical values

determined for each variable in F then s is a total assignment of F .

The SAT problem consists on determining whether F has a model. SAT(F)

denotes the set of models of F , then SAT(F) ⊆ S(F). The set FAL(F) = S(F) \
SAT (F) consists of the assignments from S(F) that falsify F .

Clearly, for any propositional formula F , S(F) = SAT (F) ∪ FAL(F). The

#SAT problem (or #SAT(F)) consists of counting the number of models of F

defined over υ(F), while #FAL(F) denotes the number of falsifying assignments of

F . If n = |υ(F)| then #FAL(F) = 2n- #SAT(F). #2SAT denotes #SAT for 2-CF

formulas.

A Knowledge Base (KB) is a set K of formulas. Given a KB K and a propo-

sitional formula φ, we say that K implies φ, and we write K 	 φ, if φ is satisfied

for each model of K, i.e., if SAT (K) ⊆ SAT (φ). This last problem is known as the

propositional entail problem. The incremental satisfiability problem (ISAT) con-

sists in deciding if an initial knowledge Base K keeps its satisfiability anytime a

conjunction of new clauses φ is added.

3 Computing falsifying assignments of CF’s

Assume a KB K in CF, K =
∧m

i=1Ci, where each Ci is a clause, i ∈ [[m]]. For each

clause Ci, i ∈ [[m]], the assignment s(Ci) = 1 contains at least one literal in Ci. It

is easy to build FAL(K) since each clause Ci ∈ K determines a subset of falsifying

assignments of K. The following lemma expresses how to form the falsifying set of

assignments of a CF.

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–45 33

Lemma 1 Given a CF K =
∧m

i=1Ci, it holds that

FAL(K) =

m⋃
i=1

{σ ∈ S(K) | FAL(Ci) ⊆ σ}

Lemma 2 If a CF K is satisfiable, then ∀K ′ ⊆ K, K ′ is a satisfiable CF.

Proof. If K is satisfiable, then FAL(K) =
⋃

Ci∈K FAL(Ci) ⊂ S(K). Clearly, if

we discard some clauses from K, forming K ′, then FAL(K ′) =
⋃

Ci∈K′ FAL(Ci)

⊆ ⋃
Ci∈K FAL(Ci) ⊂ S(F). Thus, K ′ is satisfiable. �

Corollary 3.1 If a CF K is unsatisfiable, then ∀ CF K ′ such that K ⊆ K ′, K ′

remains unsatisfiable.

Proof. An unsatisfiable CF K holds that FAL(K) =
⋃

Ci∈K FAL(Ci) = S(F).

Then, if we add new clauses to K forming K ′, then FAL(K) =
⋃

Ci∈K FAL(Ci) ⊆⋃
Ci∈K′ FAL(Ci) = S(F). Thus, K ′ is also unsatisfiable. �

Now, let us consider the propositional entail problem: K 	 φ, where K and φ

are CF’s. The decision problem K 	 φ is a classical Co-NP-Complete problem for

CF’s in general, since this problem is logically equivalent to the tautology problem

for any DF, which is a classic co-NP-complete problem.

On the other hand, K 	 φ iff SAT (K) ⊆ SAT (φ), and this last goal is equivalent

to prove FAL(φ) ⊆ FAL(K), due to basic properties on sets that are closed under

complementation.

Lemma 3 FAL(φ) ⊆ FAL(K) if and only if K 	 φ.

The best known case of an efficient method for the inference K 	 φ between

CF’s is when both K and φ are Horn formulas. In this case, the application of

SLD-resolution leads to a linear-time process for deciding K 	 φ. The application

of SLD-resolution has been the mechanism most commonly used in the development

of logic programming languages [8].

However, including 2-CF’s as extensions of a Horn formula and continue ap-

plying SLDS-resolution method as the inference engine, gives an exponential-time

complexity process on the number of Horn inferences to perform.

For example, let K∪H be a formula where K is a Horn formula and H is a 2-CF

formula, let φ be a Horn formula, if we want to decide K ∪H 	 φ, then we could

apply the distributive property on each monotone positive binary clause (x∨y) ∈ H

and the Horn part K, then K∧(x∨y) 	 φ if and only if (¬(K∧(x∨y))∨φ) is valid,

and it holds iff ((¬K ∨ (¬x∧¬y))∨φ) ≡ (((¬K ∨¬x)∧ (¬K ∨¬y))∨φ) ≡ ((¬(K ∧
x)∧¬(K∧y))∨φ) ≡ (¬(K∧x)∨φ)∧(¬(K∧y)∨φ) ≡ ((K∧x) 	 φ)∧((K∧y) 	 φ).

Thus, for each positive monotone binary clause, we duplicate the number of

Horn inferences to perform. If we consider the existence of two monotone binary

clauses in H, that is (K ∧ (x1, y1) ∧ (x2, y2)) 	 φ, and we apply the above process

distributing the literals of the monotone clauses in every process of inference, then

we obtain four Horn inferences given as: ((K ∧ x1 ∧ x2) 	 φ), ((K ∧ x1 ∧ y2) 	 φ),

((K ∧ y1 ∧ x2) 	 φ) and ((K ∧ y1 ∧ y2) 	 φ).

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–4534

If there are m positive monotone binary clauses (xi ∨ yi), 1 ≤ i ≤ m in H,

we have under the above reduction a total of 2m Horn inferences, which leads

to an exponential-time complexity process on the number of Horn inferences to

perform. Despite of the refutation methods commonly used in the Horn inference,

we consider here another method to determine whether K 	 φ. When K =
∧m

i=1Ci

and φ =
∧k

i=1 ϕi, our method focuses on checking that FAL(φ) ⊆ FAL(K) in order

to prove K 	 φ.

Each set FAL(Ci) can be represented in a succinct way via a string Ai of length

n = |υ(K)|. Given a clause Ci = (xi1 ∨ . . . ∨ xik), the value at each position from

i1-th to ik-th of the string Ai is fixed with the truth value falsifying each literal

of Ci. E.g., if xij ∈ Ci, the ij-th element of Ai is set to 0. On the other hand, if

xij ∈ Ci, then the ij-th element is set to 1.

The variables in υ(K) which do not appear in Ci are represented by the symbol

’*’ meaning that they could take any logical value in the set {0, 1}. In this way,

the string Ai of length n = |υ(K)| represents the set of assignments falsifying the

clause Ci. E.g. if K = {C1, . . . , Cm} is a 2-CF, C1 = (x1 ∨ x2) and C2 = (x2 ∨ x3),

the assignments of FAL(C1) can be represented by the string 00 ∗ ∗ . . . ∗ and the

assignments of FAL(C2) are represented by ∗01 ∗ . . . ∗.
We call falsifying string to the string Ai representing the set of falsifying as-

signments of a clause Ci. We denote by Fal String(Ci), the string (with n sym-

bols), that is the falsifying string for the clause Ci. As K and φ are CF’s, the

falsifying strings of their clauses allow us to denote FAL(φ) and FAL(K). If

K �	 φ ≡ FAL(φ) �⊂ FAL(K) implies that there exists a set of assignments S such

that S ⊆ FAL(φ) and S �⊂ FAL(K). A reviewing procedure for K 	 φ consists on

taking each falsifying string representing FAL(φ) and reviewing if it is a subset of

FAL(K).

∀i ∈ [[k]] :

⎛
⎝FAL(ϕi) ⊆

m⋃
j=1

FAL(Cj)

⎞
⎠ where K =

m∧
i=1

Ci, φ =

k∧
i=1

ϕi (1)

4 An exact algorithm for K 	 φ, when K and φ are CF’s

We present a method for checking K 	 φ, with K and φ CF’s. Applying the

independence property introduced by Dubois [5], we have designed a procedure to

compute FAL(φ)− FAL(K), with K and φ CF’s.

Definition 1 Given two clauses C1 and C2, if they have at least one complemen-

tary literal, it is said that they have the independence property. Otherwise, we say

that the clauses are dependent.

Notice that falsifying strings for independent clauses have complementary values

(0 and 1) in at least one of their fixed values.

Definition 2 Let F = {C1, C2, · · · , Cm} be a CF. F is called independent if each

pair of clauses Ci, Cj ∈ F, i �= j, have the independence property, otherwise F is

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–45 35

called dependent.

Let F = {C1, C2, · · · , Cm} be a CF, n = |υ(F)|. Let Ci, i ∈ [[m]] be a clause in

F and x ∈ υ(F) \ υ(Ci) be any variable, we have that

Ci ≡ (Ci ∨ ¬x) ∧ (Ci ∨ x) (2)

Definition 3 Given a pair of dependent clauses C1 and C2, if Lit(C1) ⊆ Lit(C2)

we say that C2 is subsumed by C1.

If C1 subsumes C2 then FAL(C2) ⊆ FAL(C1). On the other hand, if C2 is not

subsumed by C1 and they are dependents, there is a set of indices I = {1, . . . , p} ⊆
{1, . . . , n} such that for each i ∈ I, xi ∈ C1 but xi �∈ C2. There exists a reduction

to transform C2 to become independent from C1, we call this transformation as

the independent reduction between two clauses that works as follows: let C1 and

C2 be two dependent clauses. Let {x1, x2, . . . , xp} = Lit(C1) \ Lit(C2). By (2) we

can write: C1 ∧ C2 ≡ C1 ∧ (C2 ∨ ¬x1) ∧ (C2 ∨ x1). Now C1 and (C2 ∨ ¬x1) are

independent. Applying (2) to (C2 ∨ x1):

C1 ∧ C2 ≡ C1 ∧ (C2 ∨ ¬x1) ∧ (C2 ∨ x1 ∨ ¬x2) ∧ (C2 ∨ x1 ∨ x2)

The first three clauses are independent. Repeating the process of making the

last clause independent with the previous ones, until xp is considered; we have that

C1 ∧ C2 can be written as:

C1∧(C2∨¬x1)∧(C2∨x1∨¬x2)∧. . .∧(C2∨x1∨x2∨...∨¬xp)∧(C2∨x1∨x2∨...∨xp).
The last clause contains all literals of C1, so it is subsumed by C1, and then

C1 ∧ C2 ≡ C1 ∧ (C2 ∨ ¬x1) ∧ (C2 ∨ x1 ∨ ¬x2) ∧ . . . ∧ (C2 ∨ x1 ∨ x2 ∨ ... ∨ ¬xp) (3)

We obtain on the right hand side of (3) an independent set of p+1 clauses which

we denote as indep reduction(C1, C2). We use the independent reduction between

two clauses C and ϕ (or between their respective falsifying strings) to define:

Ind(C,ϕ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ if ϕ and C are independent

∅ if Lit(C) \ Lit(ϕ) = ∅
indep reduction(C,ϕ)− C Otherwise

It is straightforward to redefine the operator Ind in terms of the falsifying strings

representing FAL(C) and FAL(ϕ). The operation Ind(C,ϕ) forms a conjunction

of clauses whose falsifying assignments are exactly FAL(ϕ)− FAL(C).

Theorem 1 If ϕ and C are two clauses, then FAL(Ind(C,ϕ)) = FAL(ϕ) −
FAL(C)

Proof. If Ind(C,ϕ) = ∅ then FAL(ϕ) ⊆ FAL(C), so FAL(ϕ) \ FAL(C) =

∅. Now, we assume that Ind(C,ϕ) �= ∅. Let s be an assignment such that

s ∈ FAL(Ind(C,ϕ)). We will show that s ∈ FAL(ϕ) and s /∈ FAL(C). If

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–4536

s ∈ FAL(Ind(C,ϕ)) then s falsifies ϕ because each clause in Ind(C,ϕ) has the

form (ϕ ∨ R), where R is a disjunctive set of literals (possibly R is empty). If s

falsifies (ϕ ∨ R) then s has to falsify ϕ and thus s ∈ FAL(ϕ). On the other hand,

each clause (ϕ∨R) ∈ Ind(C,ϕ) is independent to C by construction of the operator

Ind; therefore, FAL(C) ∩ FAL(Ind(C,ϕ)) = ∅. Furthermore, s /∈ FAL(C). � �

Let K =
∧m

j=1Cj be a CF and ϕ be a clause. If we apply the Ind operator

between each Cj ∈ K and ϕ, we get as a result a set S such that S ⊆ FAL(ϕ) and

S �⊂ FAL(K).

In order to generate a mimimun set of independent clauses as a result of Ind(K,ϕ),

it is crucial to sort the clauses Cj ∈ K according to the length |Sj | = |Lit(Cj) \
Lit(ϕ)| in ascending order, because the number of literals in Cj , different to the

literals in ϕ, determines the number of independent clauses to be generated.

The operator Ind applied on the clause ϕ and on each one of the clauses Cj ∈ K,

allow us to build the space FAL(ϕ) − FAL(K). Thus, the following recurrence is

defined as: A1 = ϕ, Aj+1 = Ind(Cj , Aj)), j = 1, . . . ,m. The algorithm (1) performs

the computation of this last recurrence, while it checks if any Aj+1 is empty, in

whose case K 	 ϕ will hold.

In order to perform Ind(Cj , Aj), the remaining clauses in Cl ∈ K, l = j +

1, . . . ,m, those which are not reducted independently with Aj , are sorted again

in ascendent order according to the number of common literals with the literals

represented by Aj . This process can be extended to each ϕi ∈ φ, i = 1, . . . , k, as:

Ai,1 = ϕi

Ai,j+1 = Ind(Cj , Ai,j), j = 1, . . . ,m, and i = 1, . . . , k

being so constructed clauses Ai,m+1 such that
⋃k

i=1(Ai,m+1) = FAL(φ)−FAL(K).

These strings Ai,j , i = 1, . . . , k, j = 1, . . . ,m form a matrix of strings, as it is

illustrated in Table 1. Notice that if Ai,j = ∅ then Ai,l = ∅, for l = j + 1, . . . ,m.

Example: letK be an initial KB,K = {(x1, x2), (x1, x7), (¬x1, x7), (¬x2, x3), (x3,
¬x4), (x4,¬x5), (x5,¬x6), (x6, x7)} and φ = {(¬x3, x6), (x2,¬x6, x7), (x1, x4, x5)}.
In each cell of the Table 1, the result of Ind(Cj , Ai,j) is shown, until determin-

ing if K 	 ϕi, i = 1, . . . , 3.

�����ϕ1

K
01* *10**** ****01* *****00 1*****0 0*****0 00***** ***01**

10* **1**0* **1**0* **1**0* **1**01 **1**01 **1**01 K � ϕ1
�����ϕ2

K
*****00 00***** 0*****0 1*****0 ****01* *10**** **01*** ***01**

*0***10 *0***10 10***10 10***10 K � ϕ2
�����ϕ3

K
01** **01 1*****0 00***** 0*****0 *10**** ****01* *****00

0**00** 0**00** 0**00** 0**00** 01*00** 01*00*1 01100*1 0110001 0110001

Table 1
Computing Ind(K,φ)

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–45 37

Algorithm 1 Procedure InferenceCFCF(K,ϕ)

Input: K: A knowledge base in CF, ϕ: a clause that is a new knowledge

Output: True or False according to K 	 ϕ or K �	 ϕ

Push(ϕ, Stack); Fs = ∅;
for all Cj ∈ K do

while (Stack �= ∅) do
ϕ = Pop(Stack); {test next ϕ that has been previously computed}
Fs = Fs− ϕ; A = Ind(Cj , ϕ);

if (A �= ∅) then
Fs = Fs ∪A; {Only if there are new clause to be aggregated}

end if

end while

if (Fs = ∅) then
Returns(true);

end if

Stack = Fs; {new set of clauses to be considered in the next iteration}
end for

Returns(False) {K � ϕ}

5 The Transitive Closure of a 2-CF

The fact that in a 2-CF formula a clause is equivalent to a pair of implications can

be straightforward established as follows: if {x, y} ∈ F then {x, y} is equivalent to

both x → y and y → x. The arrow → has the usual meaning of implication in

classical logic. By abuse of notation, the arrow → will be also used to denote a

relation between literals as established in definition 4.

Definition 4 Let F be a 2-CF and L its set of literals. The relation →R⊂ L× L

is defined as follows: x →R y if and only if x → y.

Definition 5 Let F be a 2-CF, a partial assignment s of F is a feasible model for

F , if s does not falsify any clause in F .

In principle, the relation above is too general to work with so it will be taken

the transitive closure of →R, denoted by ”⇒”, instead. The new relation ⇒ can

always be constructed inductively from →R. For any feasible model s of F where

x and y occur in F ; if x ⇒ y and x is true in s then it is straightforward to show

that y is true in s. Under these circumstances, it is said that y is forced to be true

by x. Let T (x) be the set of literals forced to be true by x, that is

T (x) = {x} ∪ {y : x ⇒ y} (4)

It is clear that, if x is a literal occurring in a formula F , and if x̄ ∈ T (x) then x

cannot be set to true in any model of F . Analogously, if x ∈ T (x̄) then x cannot

be set to false in any model of F .

Given formulas X and Y , it is said that X ≡ Y (or X is equivalent to Y)

whenever X ↔ Y in classical logic. It is straightforward to show that x → y ≡ y →
x. Hence, if y ∈ T (x) then x ∈ T (y).

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–4538

For any literal x in a 2-CF F , T (x) can be classified as consistent or inconsistent.

Formally,

Definition 6 Let F be a 2-CF, for any literal x ∈ F , it is said that T (x) is incon-

sistent if x ∈ T (x) or ⊥ ∈ T (x), otherwise T (x) is said to be consistent.

Unit clauses in 2-CF can be expressed as implications, that is, if F has unit

clauses {u} then u ≡ u ∨ ⊥ hence ⊥ ∈ T (u). As a consequence, in formulas with

unit clause {u} follows that T (u) is inconsistent. Let F be a 2-CF with n variables

and m clauses, it has been shown that for any literal x ∈ F , T (x) and T (x) are

computed in polynomial time over |F |, in fact, for all l ∈ Lit(F), T (l) is computed

with time complexity O(n ·m) [9].

For any literal x in a 2-CF, the sets T (x) and T (x) allow to determine which

variables have a fixed logical values in every model of F , that is to say, the variables

that are true in every model of F and the variables that are false in every model of

F . The properties of the sets T (x) and T (x) will be established as a lemma.

Lemma 5.1 Let F be a 2-CF and x a variable in F .

(i) If T (x) is inconsistent and T (x) is consistent then x is true in every model of

F .

(ii) If T (x) is inconsistent and T (x) is consistent then x is true in every model of

F .

(iii) If both T (x) and T (x) are inconsistent then F does not have models and F is

unsatisifiable.

(iv) If both T (x) and T (x) are consistent then x does not have a fixed valued in

each model of F .

Proof.

(i) Suppose x is false in a model of F , so x should be true in that model of F ,

however, T (x) is inconsistent so x ⇒ x and x cannot be true in the model of

F contradicting the assumption. Hence, any model of F has to assign false to

x and true to x. The other cases are proved similarly.

�

From properties (1) and (2) of lemma 5.1 we formulate the following definition

Definition 7 A base for the set of models of a 2-CF F , denoted as S(F), is a

partial assignment s of F which consists of the variables with a fixed truth value.

We denote by Transitive Closure(F) to the procedure which computes the sets

T (x) and T (x̄) for each x ∈ υ(F). The transitive procedure applied on a 2-CF

F allows to build bases for the set of models of F . If a base S(F) is such that

|S(F)| = |υ(F)| then each variable of F has a fixed truth value in every model of F ,

so there is just one model. Similarly, if #SAT(F) = 0, Transitive Closure(F) finds

at least a variable x ∈ υ(F) such that T (x) and T (x) are inconsistent. So, when

#SAT (F) ≤ 1 such value is computed in polynomial time by Transitive Closure(F).

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–45 39

Definition 8 Let F be a 2-CF and x a literal of F . The reduction of F by x,

also called forcing x and denoted by F [x], is the formula generated from F by the

following two rules

a) removing from F the clauses containing x (subsumption rule),

b) removing x from the remaining clauses (unit resolution rule).

A reduction is also sometimes called a unit reduction. The reduction by a set of

literals can be inductively established as follows: let s = {l1, l2, . . . , lk} be a partial

assignment of υ(F). The reduction of F by s is defined by successively applying

definition 8 for li, i = 1, . . . , k. That is reduction of F by l1 gives the formula F [l1],

following a reduction of F [l1] by l2, giving as a result the formula F [l1, l2] and so

on. The process continues until F [s] = F [l1, ..., lk] is reached. In case that s = ∅
then F [s] = F .

Example 5.2 Let F = {{x1, x2}, {x1, x2}, {x1, x3}, {x1, x3}, {x2, x4}, {x2, x4}, {x2,
x5}, {x3, x5}}. If s = {x2, x3}, F [x2] = {{x1}, {x1, x3}, {x1, x3}, {x4}, {x4}, {x3,
x5}}, and F [s] = {{x1}, {x1}, {x1}, {x4}, {x4}, {x5}}.

Let F be a 2-CF formula and s a partial assignment of F . If a pair of contradic-

tory unitary clauses is obtained while F [s] is being computed then #SAT (F [s]) = 0.

Because under no circumstances, a pair of complementary unit clauses can be set

to true at the same time. Thus, F [s] does not have models.

Furthermore, during the computation of F [s] new unitary clauses can be gen-

erated. Thus, the partial assignment s is extended by adding the unitary clauses

found, that is, s = s ∪ {u} where {u} is a unitary clause. So, F [s] can be again

reduced using the new unitary clauses. The above mentioned iterative process is

generalized, and we call to this iterative process Unit Propagation(F, s). For sim-

plicity, we will abbreviate Unit Propagation(F, s) as UP (F, s), where F is a CF

and s is the set of literals belonging to unit clauses of F .

6 Incremental Satisfiability Problem

The incremental satisfiability problem (ISAT) involves checking whether satisfia-

bility is maintained when new clauses are added to an initial satisfiable knowledge

base K. ISAT is considered as a generalization of SAT since it allows changes of

the input formula over the time, and also, it can be considered as a prototypical

Dynamic Constraint Satisfaction Problem (DCSP) [13].

Different methods have been applied to solve ISAT, among them, branch and

bounds procedures as variants of the classical Davis-Putnam-Loveland (DPL) method,

denoted as IDPL methods. In IDPL procedures, when adding new clauses, those

procedures maintain the search tree generated previously for the set of clauses K.

IDPL performs substantially faster than DPL for a large set of SAT problems [10].

As a generalization of SAT, ISAT has been considered as an NP Problem, al-

though until now, we have not seen complexity theory studies about the complexity-

time differences between SAT and ISAT. For example, it is known that 2-SAT is

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–4540

in the complexity class P, however it is not known the computational complexity

of 2-ISAT. It is clear that a set of changes over a satisfiable KB K in 2-CF could

change K into a general CF, in whose case, it turns in a general CF K ′, K ⊂ K ′,
and where the SAT problem on K ′ is a classic NP-complete problem.

Rather than solving related formulas separately, modern solvers attempt to solve

them incrementally since many practical applications require solving a sequence of

related SAT formulas [3,6]. For example, in [16] Clause-Sharing CS marks all

the conflict clauses that depend on assumptions and discards them before the next

incremental step. Consequently, the generated proof obligations are solved by an

incremental SAT-based SMT solver. We present in this section, an study about the

threshold for the 2-ISAT problem that could be relevant to understand the border

between P and NP complexity classes.

Assuming an initial KB K, and a new CF φ to be added, both are satisfiables

CF’s, let us consider some cases where ISAT can be determined directly.

(i) If K and φ are 2-CF’s then (K ∧ φ) is a 2-CF that is the input of ISAT,

and in this case, 2-ISAT is solvable in linear-time by appying the well known

algorithms for 2-SAT [9,2]

(ii) If φ consists of exactly one clause and we have the satisfiability tree of K, we

only have to review which satisfiable branches of the tree falsify φ, and this

can be done in linear time on the number of satisfiable branches of the tree.

(iii) For monotone formulas, ISAT keeps satisfiable formulas. If each variable main-

tains an unique sign in both K and φ then (K ∧ φ) is always satisfiable.

Let us consider now that K is a 2-CF and φ is a general CF, both of them

different from the previous cases. We present Algorithm 2 which takes as inputs a

satisfiable 2-CF formula F and a satisfiable CF formula φ and it determines whether

(K ∧ φ) is satisfiable.

By the results presented in Section 4, each ϕi ∈ φ such that K 	 ϕi is removed

from φ, so we assume that φ = (φ−ϕi). It means, we will consider only the clauses

in φ which decrease effectively the set of models of K. Assume that the computation

of both T (x) and Bi = FAL(ϕi) have been computed for each x ∈ Lit(K) and each

ϕi ∈ φ, respectively.

Algorithm (2) proposed for reviewing the satisfactibility of (K ∧ φ) is based on

the following properties:

(i) Given the partial assignments A1, A2 which they are part of any model (if

there exists) of K. Those partial assignments may be extended in a way that

they do not falsify any ϕi ∈ φ, which is verified by Ind(Aj , ϕi), j = 1, 2. If it

is possible, then a model for (K ∧ φ) is built.

(ii) Otherwise, Ind(Aj , ϕi) = ∅, j = 1, 2 and any model of K will be part of any

falsifying assignment of φ. Thus, (K ∧ φ) is unsatisfiable.

The first property establishes that a partial assignment s which is part of any

model of SAT (K) has been built and also it is not part of any falsifying string

of ϕi, ∀ϕi ∈ φ. Thus, s satisfies (K ∧ φ). The second property establishes the

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–45 41

Algorithm 2 Procedure that determines whether (K ∧ φ) is satisfiable. Inputs a

2-CF formula F and a CF φ

1: for each x ∈ Lit(F) and ϕi ∈ φ do

2: computes T (x) and Bi = FAL(ϕi)

3: end for

4: Add ⊥ to each consistent T (x) only if Bi ⊆ T (x) for some Bi {That means,

makes inconsistent any partial assignment which falsifies some ϕi ∈ φ}
5: A = ∅
6: for each inconsistent T (x) do

7: A = A ∪ T (¬x){That means the maximum partial assignment satisfying K}
8: end for

9: if A is inconsistent or there is an x ∈ Lit(K), such that T (x) and T (¬x) are

inconsistent then

10: (K ∧ φ) is unsatisfiable

11: else

12: φ = UP (φ,A){That means, any satisfying clause for the partial assignment

A is deleted from φ.}
13: end if

14: if φ = ∅ then

15: (K ∧ φ) is satisfiable

16: else

17: let (l ∈ Lit(K) such that both T (l) and T (¬l) are consistent)

18: A1 = A ∪ T (l)

19: A2 = A ∪ T (¬l)
20: for ϕi ∈ φ do

21: A′ = Ind(A1, ϕi)

22: A′′ = Ind(A2, ϕi)

23: end for

24: end if

25: if A′ = ∅ and A′′ = ∅ then

26: (K ∧ φ) is unsatisfiable

27: else

28: (K ∧ φ) is satisfiable

29: end if

unsatisfiability of (K ∧ φ).

In algorithm (2), when the operation A′ = Ind(A1, ϕi) is reached (step 21), a

new literal x will be joined to a superstring of A1. In fact, we consider to join T (x)

instead of x. For example, if A1 = ∗01 ∗ ∗ ∗ 1∗ and ϕ1 = ∗0 ∗ 010 ∗ ∗, Ind(A1, ϕi)

gives as a result ∗011∗∗1∗, ∗0100∗1∗ and ∗010101∗. However, in this case it means

to build the following three parcial assignments: A1∪T (x4), A1∪T (¬x4)∪T (¬x5),
and A1 ∪ T (¬x4)∪ T (x5)∪ T (¬x6). If any of those strings is inconsistent then such

string is substituted by ∅.
Let us analyze the growth on the number of possible partial assignments of the

operation: Ind(A1, ϕi), ∀ϕi ∈ φ. Firstly, the number of partial assignments for

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–4542

a fixed ϕi is |S| = |υ(ϕi) − υ(A1)|. Moreover, each partial assignment si ∈ S is

independent to the other assignments in S, because they are different in at least

one literal, and each of them hold |si+1| ≥ |si|+ 1, ∀si ∈ S.

Although Ind(A,ϕi) is computed in linear time on the size of both strings, the

computational complexity of the algorithm (2) depends on the number of strings

generated by Ind(A,ϕi), ∀ϕi ∈ φ.

In some cases, Ind(A,ϕi) may generate empty sets. However, in the worst

case, the time complexity depends on the cardinality of the sets Li = {x1, . . . , xp}
= lit(ϕi)− lit(A), i = 1, . . . , k.

In order to improve the time complexity of our procedure, it is convenient to

sort the clauses ϕi ∈ φ according to the cardinality of the sets Li, i = 1, . . . , k from

the smallest to the biggest and removing the clauses that are independent with A.

Once the clauses are sorted in φ with respect to their cardinalities Li, the operation

Ind(Ind(....Ind(Ind(A,ϕ1), ϕ2), . . . , ϕk) is applied, determining so the succession:

S0 = v(A)

S1 = v(ϕ1)− v(A)

S2 = v(ϕ2)− (v(ϕ1) ∪ v(A))

. . .

Sk = v(ϕk)− (v(ϕk−1) ∪ . . . ∪ v(ϕ1) ∪ v(A))

Then, the number of new clauses in the worst case is given by:

| Ind(A, φ) |≤
k∏

i=1

| Si |=| S1 | ∗ | S2 | ∗ . . . ∗ | Sik | . (5)

It is clear that the number of strings in |Ind(A, φ)| is not bigger than the number

of assignments in SAT (K)−FAL(φ) since the falsifying assignments of ϕi ∈ φ are

removed from the partial assignment denoted by the string A. That means |S1| ∗
|S2| ∗ . . . ∗ |Sk|∈ O(|SAT (K) − FAL(φ)|). From this last upper bound, we can

infer some tractable cases for ISAT, as the following theorem establishes.

Theorem 6.1 Let K be a 2-CF formula and φ a CF formula. The following holds:

(i) If |SAT (K)| ≤ poly(n) then ISAT is solved in polynomial time. In fact, we

can have the set of models S explicitly and each model s ∈ S can be checked:

φ[s].

(ii) If |SAT (K)− FAL(φ)| ≤ poly(n) then the number of strings in |Ind(A, φ)| is
upper bounded by |SAT (K)− FAL(φ)| ≤ poly(n).

(iii) When φ[T (x)] is false for all consistent T (x), algorithm (2) finds the unsatisfi-

ability of (K ∧φ) in polynomial time on the set of literals of K and the number

of clauses of φ. Consequently, this determines a tractable case for the 2-ISAT

problem.

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–45 43

Conclusions

We proposed a novel method to reviewK 	 φ whenK and φ are both in Conjunctive

Normal Forms. This initial method is extended to consider the incremental satis-

fiability (ISAT) problem. We have shown different cases where the ISAT problem

can be solved in polynomial time.

Especially, we have designed an algorithm for solving the 2-ISAT problem that

allows us to detemine an upper bound for the time-complexity of this problem.

Furthermore, we have established some tractable cases for the 2-ISAT problem.

References

[1] Barrett, C., Stump, A., Tinelli C., The SMT-LIB standard version 2.0, 2010. Available from:
http://www.smtlib.org.

[2] Buresh-Oppenheim J., Mitchell D., Minimum 2CNF resolution refutations in polynomial time, Proc.
SAT’07 - 10th int. Conf. on Theory and applications of satisfiability testing, (2007), pp.300-313.

[3] Cabodi G., Lavagno L., Murciano M., Kondratyev A., Watanabe Y., Speeding-up heuristic allocation,
scheduling and binding with SAT-based abstraction/refinement techniques, ACM Trans. Design Autom.
Electr. Syst., 15(2), (2010).

[4] Creignou N., Papini O., Pichler R., Woltran S., Belief Revision within fragments of propositional logic,
DBAI Tech. Report DBAI-TR-2012-75, (2012).

[5] Dubois O., Counting the number of solutions for instances of satisfiability, Theor. Comp. Sc. 81, (1991),
pp.49-64.

[6] Eén N., S orensson K., An Extensible SAT-solver, In Enrico Giunchiglia and Armando Tacchella, editors,
Selected Revised Papers of 6th International Conference on Theory and Applicationsof Satisfiability
Testing (SAT), Santa Margherita Ligure, Italy, LNCS Vol. 2919, (2003), pp. 502-518.

[7] Eén N., S orensson K., Temporal induction by incremental SAT solving, In Procs. of First Int. Workshop
on Bounded Model Checking (BMC), volume 89 of Electronic Notes in Theoretical Computer Science,
(2003), pp. 543-560.

[8] Gallier J., Logic for Computer Science: Foundations of Automatic Theorem Proving (chapter 9), (2003),
online revision (free to download).

[9] Gusfield, D., Pitt, L., A Bounded Approximation for the Minimum Cost 2-Sat Problem, Algorithmica
8, (1992), pp. 103-117.

[10] Hooker J.N., Solving the incremental satisfiability problem. Journal of Logic Programming 15, (1993),
pp.177-186.

[11] Katsuno, H. & Mendelzon, A. O., On the difference between updating a knowledge base and revising it,
KR’91 Cambridge, MA. USA, (1991), pp. 387–394.

[12] Khardon R., Roth D.: Reasoning with Models, Artificial Intelligence 87, No.1, (1996), pp. 187-213.

[13] Gutierrez J., Mali A., Local search for incremental Satisfiability, Proc. Int. Conf. on AI (IC-AI’02), Las
Vegas, (2002), pp. 986-991.

[14] Mahajan Y S., Zhaohui F., Sharad M. ZChaff2004: An Efficient SAT Solver, In Holger H. Hoos and
David G. Mitchell, editors, Revised Selected Papers of 7th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT), Vancouver, Canada, LNCS Vol. 3542, (2004), pp. 360-375.

[15] Marchi J., Bittencourt G., Perrusssel L., Prime forms and minimal change in propositional belief bases,
Ann. Math. Artif. Intelligence 59(1),(2010), pp.1–45.

[16] Nadel A., Ryvchin V., Strichman O., Ultimately Incremental SAT, Proc. SAT 2014, LNCS Vol. 8561,
(2014), pp. 206218.

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–4544

[17] Shankar N., Mathamathematics, Machines, and Godels Proof, Cambridge Tracks in Theoretical
Computer Science No. 38, Cambridge University Press, (1997).

[18] Whittemore J., Joonyoung K., Sakallah K.A. SATIRE: A New Incremental Satisfiability Engine, In
Proceedings of the 38th Design Automation Conference (DAC)- ACM, Las Vegas - USA, (2001), pp.
542-545.

[19] Wieringa S., Incremental Satisfbiability Solving and its Applications, PhD thesis, Department of
Computer Science and Engineering, Aalto University Pub., (2014).

G. De Ita Luna et al. / Electronic Notes in Theoretical Computer Science 328 (2016) 31–45 45

	Introduction
	Preliminaries
	Computing falsifying assignments of CF's
	An exact algorithm for K , when K and are CF's
	The Transitive Closure of a 2-CF
	Incremental Satisfiability Problem
	References

