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Abstract

Minimally Unsatisfiable CNFs (MUs) are unsatisfiable CNFs where removing
any clause destroys unsatisfiability. MUs are the building blocks of unsatisfia-
bility, and our understanding of them can be very helpful in answering various
algorithmic and structural questions relating to unsatisfiability. In this thesis
we study MUs from a combinatorial point of view, with the aim of extending the
understanding of the structure of MUs. We show that some important classes of
MUs are very closely related to known classes of digraphs, and using arguments
from logic and graph theory we characterise these MUs.

Two main concepts in this thesis are isomorphism of CNFs and the implica-
tion digraph of 2-CNFs (at most two literals per disjunction). Isomorphism of
CNFs involves renaming the variables, and flipping the literals. The implication
digraph of a 2-CNF F has both arcs (¬a → b) and (¬b → a) for every binary
clause (a ∨ b) in F .

In the first part we introduce a novel connection between MUs and Minimal
Strong Digraphs (MSDs), strongly connected digraphs, where removing any arc
destroys the strong connectedness. We introduce the new class DFM of special
MUs, which are in close correspondence to MSDs. The known relation between
2-CNFs and implication digraphs is used, but in a simpler and more direct way,
namely that we have a canonical choice of one of the two arcs. As an application
of this new framework we provide short and intuitive new proofs for two im-
portant but isolated characterisations for nonsingular MUs (every literal occurs
at least twice), both with ingenious but complicated proofs: Characterising 2-
MUs (minimally unsatisfiable 2-CNFs), and characterising MUs with deficiency
2 (two more clauses than variables).

In the second part, we provide a fundamental addition to the study of 2-
CNFs which have efficient algorithms for many interesting problems, namely
that we provide a full classification of 2-MUs and a polytime isomorphism de-
cision of this class. We show that implication digraphs of 2-MUs are “Weak
Double Cycles” (WDCs), big cycles of small cycles (with possible overlaps).
Combining logical and graph-theoretical methods, we prove that WDCs have
at most one skew-symmetry (a self-inverse fixed-point free anti-symmetry, re-
versing the direction of arcs). It follows that the isomorphisms between 2-MUs
are exactly the isomorphisms between their implication digraphs (since digraphs
with given skew-symmetry are the same as 2-CNFs). This reduces the classifi-
cation of 2-MUs to the classification of a nice class of digraphs.

Finally in the outlook we discuss further applications, including an alter-
native framework for enumerating some special Minimally Unsatisfiable Sub-
clause-sets (MUSs).
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Chapter 1

Introduction

1.1 The satisfiability problem

The propositional satisfiability problem (SAT) is the problem of determining
whether for a propositional formula there exists an assignment to boolean vari-
ables such that the formula evaluates to true. SAT is known to be NP-complete
(independently proved by Cook [36] and Levin [113]), and so all problems in the
complexity class NP can be transformed into SAT and solved with a SAT solver.
There is no known algorithm that solves each SAT instance in polynomial time
in the size of the instance description, and it is unlikely that such algorithm
exists (unless P=NP). However over the past two decades SAT and SAT solving
have been studied extensively, and due to the development of many successful
SAT solvers, SAT has now various applications in hardware and software design
and verification, artificial intelligence, cryptography, database systems, machine
vision, and VLSI design and testing. For overviews of SAT solvers see [99] and
the Handbook chapters [39] and [75], while a general overview of SAT is the
Handbook chapter [55].

For satisfiable problems SAT solvers can provide a short proof (that is, a
satisfying assignment), while for unsatisfiable problems a (complete) solver will
have to certify that there is no satisfying assignment. Establishing unsatisfiabil-
ity is generally done using some kind of proof system (such as resolution). For
a recent overview of the proof systems underlying current approaches to SAT
solving see [30].

1.2 Minimal unsatisfiability

While SAT solvers can decide the satisfiability of propositional formulas, in the
case of unsatisfiable formulas typically no explanation of the causes of unsat-
isfiability (that is, small unsatisfiable sub-formulas) is given. Explanation of
“unsatisfiability” (also called “inconsistency” and “infeasibility”) is often valu-
able and has a wide range of practical applications. For example, formulation
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of a typical design task as an instance of SAT falls into two categories: One,
a propositional formula is formed such that a feasible design is obtained when
the formula is satisfiable. In such case, unsatisfiability in the design context
implies a negative result, and needs further analysis of the causes of unsatisfia-
bility to obtain a feasible design. The other, a propositional formula is formed
such that unsatisfiability is the desired result. This often happens when we
want to modify the system, e.g., to reduce its cost. In this scenario, under-
standing causes of unsatisfiability helps to identify which part of the system
should not be changed, and which one can be modified (or possibly removed).
Other applications include SAT-based model checking ([34], [21], [124]), FPGAs
routing ([126], [128]), artificial intelligence ([147], [26], [65]), operations research
([9], [5]), unsatisfiability-based MaxSAT algorithms ([122], [56]) and constraint
programming ([31], [73]).

Consider a propositional formula F in Conjunctive Normal Form (CNF),
that is, a conjunction of disjunctions of literals. Then F is minimally unsatis-
fiable if F is unsatisfiable and any of its sub-formulas is satisfiable. Minimally
Unsatisfiable CNFs (MUs), are considered as providing a single cause of un-
satisfiability. In general a CNF contains many MUs, then called Minimally
Unsatisfiable Sub-formulas (MUSs), so contains many causes of unsatisfiabil-
ity. Finding some reasonable MUSs or enumerating all of them has been the
topic of several researches. The earliest work on finding MUSs mainly focused
on identification of a single MUS or a small set of MUSs. With improvements
in the scalability of MUS identification techniques, finding all MUSs has found
practical applications ([119], [120], [117], [12]). However, since there can be
up to exponentially many MUSs with respect to the size of the formula, their
complete enumeration might be intractable. Therefore, several “online” MUS
enumeration algorithms have been proposed which identify MUSs gradually, one
by one, and thus identify at least some MUSs even in the intractable cases ([11],
[118], [16], [127], [15]). Another approach is to compute the union of all MUSs,
as it summarizes all the causes of unsatisfiability for a given formula ([125]). For
an overview of existing algorithms for computing MUSs and their applications
see [123], [14], [17].

1.3 Motivation

The main motivation of this work is to provide a deeper understanding of the
structure of minimally unsatisfiable CNFs as they are building blocks for un-
derstanding MUSs, and they are also interesting in their own right, as the hard-
est unsatisfiable formulas. Another motivation of this thesis is the fascinating
relations of minimal unsatisfiability and combinatorics. There are strong con-
nections in both directions between minimal unsatisfiability and combinatorics.
Overviews on various connections between MUs and combinatorics and their
applications can be found in [79] and in the Introduction of [109].

In this thesis we consider minimal unsatisfiability from a combinatorial point
of view, and we will show that one can understand many subclasses of MUs
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directly (and actually characterise them precisely) via their connections with
combinatorics. For example a collection of minimal strong digraphs (strongly
connected digraphs where removing any arcs destroys this property), shown
below, plays an important role in characterising two basic subclasses of MUs.
When considering vertices as variables, and arcs as implications between these
variables (e.g., a → b), it is easy to see that in the following digraphs and
their corresponding 2-CNFs (at most two literals per disjunction) all variables
are equivalent (for the corresponding 2-CNF of the left and right digraphs see
Examples 5.2.4 and 5.2.16, respectively). Then the equivalences of variables to-
gether with the requirement that these variables do not have the same value in
the left digraph (cycle), and the equivalence of the starting point and the negated
end point in the right digraph (dipath), yield unsatisfiable CNFs. Furthermore
since removing any arc destroys this property, these CNFs are minimally unsat-
isfiable.

// //
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A different class of graphs, called weak-double-cycles (Definition 6.5.1), cor-
responds to minimally unsatisfiable 2-CNFs, yielding their complete character-
isation. Below are some examples of weak-double-cycles (see Section 6.1 for the
corresponding 2-CNFs). In the above digraphs we only considered positive im-
plications, while in the following digraphs we have both implications (i.e., a→ b
and ¬b→ ¬a).
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1.4 Overview of the literature on MUs

With respect to complexity, it is shown in [130] that the decision problem
whether a CNF is minimally unsatisfiable is DP -complete. The complexity
class DP , introduced in [131], is defined as the set of problems which can be
described as the difference of two NP-problems. Therefore it is of interest which
natural subclasses of MUs have an easier decision problem. The main complex-
ity measure for MUs is the “deficiency”, the difference of the number of clauses
and the number of variables, where the classes of MUs with fixed deficiency
have polytime recognition (independently proved by [91] and [52]). While the
classification of MUs with fixed deficiency is a main theme for this thesis, in
Sections 1.4.1, 1.4.2, 1.4.3 we will give an overview of this line of research.
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Another important class of MUs with polytime decision is that of 2-CNF
cases. The class of 2-CNFs has a linear algorithm for satisfiability testing, first
shown in [50] and [8]. 2-CNFs are interesting and worthy of investigation for
many reasons. For examples there are two-way connections between 2-CNFs and
graph theory, and many significant combinatorial problems can be reduced to
2-SAT. A fundamental overview of 2-CNFs, their underlying boolean function
and their applications is given in [38, Chapter 5]. In Section 1.4.4 we will
review basic results regarding 2-CNFs mainly focusing on researches related to
unsatisfiable and minimally unsatisfiable 2-CNFs, while a main contribution of
this thesis is to provide a full classification of minimally unsatisfiable 2-CNFs
in Chapter 6.

Other examples of polytime classes of MUs are Horn formulas (each disjunc-
tion has at most one positive literal) and hitting CNFs (every two disjunctions
have a clash). Horn formulas are the basis of logic programming ([86]), and
have various applications in expert systems, deductive databases, artificial in-
telligence and machine learning. The minimal unsatisfiability problem for Horn
CNFs can be solved in quadratic time as the satisfiability is decidable in linear
time, first proved in [47] using unit-resolution (the resolution rule where at least
one of the clauses involved is a unit-clause). A generalisation of Horn formulas
is renamable Horn CNFs, meaning that a change in the sign of some variables
results in an equivalent Horn CNF. It is shown in [7] that the satisfiability prob-
lem for renamable Horn CNFs is solvable in linear time. An overview of Horn
CNFs, their applications can be found in the Handbook chapter [55], while Horn
functions and their applications are reviewed in [38, Chapter 6]. In Section 4.6.3
we will discuss the class of renamable Horn MUs and their characterisation.

Hitting CNFs as DNFs (Disjunctive Normal Form, disjunction of conjunc-
tions of literals) are known as “orthogonal” or “disjoint” DNFs (referring to the
fact that no two of conjunctions can take value 1 simultaneously). Unlike for
2-CNFs and Horn formulas, the polytime satisfiability (and so minimal unsatis-
fiability) of hitting CNFs is not related to the resolution calculus but purely to
counting the number of falsifying total assignments of the given formula ([72]).
Hitting CNFs and their DNF representation have been playing an important
role for boolean functions and a detailed overview of their applications is given
in [38, Chapter 7]. In Chapter 4 we will discuss some characterisations of hitting
MUs.

Before continuing with the overview, we introduce a few basic notations.
We consider CNFs as clause-sets, finite sets of clauses, where a clause is a finite
and clash-free set of literals, and a literal is either a variable or a negated/-
complemented variable. We use ⊥ to denote the empty clause. The class of
MUs as clause-sets is formally denoted by MU , while “MU” is used in text in
a substantival role. MU ′ ⊂ MU is the set of “nonsingular” MUs, that is, the
set of F ∈ MU such that every literal occurs at least twice. The number of
clauses of a clause-set F is c(F ), the number of (occurring) variables is n(F ),
and the deficiency is δ(F ) := c(F ) − n(F ) ∈ Z (Definition 2.1.3). The class of
MUs with fixed deficiency δ = k is denoted by MUδ=k. DP-reduction (Defini-
tion 2.6.1, also known as “variable elimination”) of a clause-set F on a variable
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v replaces all clauses in F containing v by their (non-tautological) resolvents
on v. Finally, like in the DIMACS file format for clause-sets, we use natural
numbers for variables and non-zero integers for literals. So the clause {−1, 2}
stands for the usual clause {v1, v2}, where we just got rid off the superfluous
variable-symbol “v”. In propositional calculus, this would mean ¬v1 ∨ v2, or,
equivalently, v1 → v2.

1.4.1 Minimal unsatisfiability and deficiency

The basic notion for investigations on the combinatorics of minimally unsatisfi-
able clause-sets (MUs) F is the deficiency δ(F ) (Definition 2.1.3). The notion of
“deficiency” for clause-sets was introduced in [54], while the concept had been
used in [137]. The basic fact that for MUs F we have δ(F ) ≥ 1 was shown in
[4] (as “Tarsi’s Lemma”), and later in [18].

Study of the decision complexity for classes MUδ=k with fixed deficiency
k ≥ 1, started in [45] where it was shown that the class of MUs with deficiency
1 is polytime decidable (quadratic time). In [146] some subclasses of MUs
with deficiency 3 and 4 were shown to be polytime decidable. Later in [78] it
was shown that the decision whether “F ∈ MUδ=k?” is in NP, based on the
upper bound 2k−1 · n(F )2 for minimal resolution refutations for F ∈ MUδ=k
obtained in [77] (n(F ) is the number of variables in F ). Furthermore the author
conjectured that the classes MUδ=k have polytime decision. In [78] the class
of MUs with deficiency 2 was shown to be polytime decidable. Finally the
conjecture that the classesMUδ=k are polytime decidable was proved true in [91]
(based on searching for a resolution refutation), and independently in [52] (based
on the fact that the search for a satisfying truth assignment can be restricted
to certain assignments which correspond to matchings in bipartite graphs), and
then improved proofs from [52] were presented in [51]. Furthermore it was
shown in [142] that whether F ∈MUδ=k can be decided in time O(2k · n(F )4).
Therefore the class MUδ=k is fixed-parameter tractable in the parameter k in
the sense of [48].

“Classification” of MUs is concerned with determining all the “isomorphism
types” of MUs with fixed deficiency k ≥ 1, that is, an easily accessible cata-
logue of the essentially different elements of MUδ=k. The starting point of the
investigation into the structure of MUδ=k is the basic fact, shown in [91], that
F ∈MU with n(F ) ≥ 1 contains a variable occurring positively and negatively
each at most δ(F ) times, that is, a variable of degree (the number of variable
occurrences) at most 2δ(F ). So the minimum variable degree (Definition 2.1.5)
is at most 2δ(F ) (sharper bounds are obtained in [109]). A major use of the
variables of minimum degree is in proofs of properties of MUs, where we use
“splitting” (instantiating a variable by both truth values 0, 1; Definition 4.4.1).
We want to split on a variable occurring as few times as possible so that we
have control over the changes imposed by the substitution. In Section 4.4 we
will discuss some applications of such variables for investigating the structure
of MUs.

The most basic MUs are those with deficiency 1, i.e., F ∈ MUδ=1. The
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structure of the classMUδ=1 is very well-known, and the earliest result regard-
ing this class is the characterisation of its “saturated” elements in [4] (called
“strongly minimal unsatisfiable formulas” there). The class of saturated MUs,
denoted by SMU ⊂ MU (Definition 4.1.4), is the class of MUs where adding
any literal to any clause yields a satisfiable clause-set (this terminology was
introduced in [53]; also called “maximal” in [85]). Later in [45] it was shown
that an MU F has deficiency 1 iff DP-reduction (Definition 2.6.1) for variables
of degree 2 yields the empty clause ⊥. Therefore this whole class is explained
by the expansion rule, which is the reverse of such DP-reduction. Furthermore
in [45] this class was characterised via matrices (based on the so-called “basic
matrices” from [44]).

In [91] the structure of clause-sets F ∈ MUδ=1 was characterised as bi-
nary trees. Also a nice characterisation of the class of saturated F ∈ MUδ=1

(SMUδ=1) via (full) binary trees was obtained in [91, Lemma C.5], where it
was shown that these MUs are exactly the clause-sets introduced in [37]. These
two characterisations were then generalised in [102]. An important subclass of
MUδ=1 is the class of minimally unsatisfiable renamable Horn clause-set. It is
well-known that for an element F of this subclass there exists an input-resolution
tree yielding the empty clause ([70]), and in [45] the fact that δ(F ) = 1 was first
established (Section 4.6.3 for a detailed overview).

For deficiencies k ≥ 2 the classes MUδ=k contain singular (MUs with a
variable occurring exactly once positively or exactly once negatively) and non-
singular MUs. However so far only classification of the nonsingular cases has
been investigated in the literature (see the Handbook chapter [79] for a general
overview). The nonsingular elements of MUδ=2 have been characterised in the
literature and we will give a detailed overview in Section 1.4.3, while a main
contribution of this thesis is to provide a new short proof via a novel connec-
tion to graph theory in Chapter 5. In [110] a subclass of MUδ=3 has been
characterised, and for k ≥ 4 the structure of classes MUδ=k is unknown.

We conclude this section by a short overview of the class of unsatisfiable hit-
ting clause-sets (every pair of clauses has a clash). In [94] it is shown that unsat-
isfiable hitting clause-sets are MUs, while by [94] they are saturated. Therefore
the set of unsatisfiable hitting clause-sets of fixed deficiency k ≥ 1 is a subset
of SMUδ=k ⊂ MUδ=k. In [91] the case of k = 1 has been shown to be ex-
actly the class SMUδ=1, and in [78] and [110] unsatisfiable hitting clause-sets
of deficiency 2 and 3 have been characterised.

1.4.2 The program of “classifying MUs”

As already mentioned, the main goal of this work is to develop a deeper under-
standing of minimal unsatisfiability. In general it is a very complicated problem
to determine what is the “classification” of a collection of objects. In the case
of MUs we approach this problem as follows: we classify a subclass C ⊆ MU
“fully” if we have a full grasp on its elements, which includes a complete un-
derstanding of the isomorphism types involved. An isomorphism between two
clause-sets is a renaming of variables and potentially flipping some literals (see
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Section 2.4). The study of the “isomorphism problem” for some polytime sub-
classes C ⊆ MU (that is, for given F, F ′ ∈ C decide whether F is isomorphic to
F ′) has been carried out in [78, 81, 108, 102, 110, 82, 91] and in the Handbook
chapter [79].

A reasonable approach for classifying MUs is to consider three basic levels of
understanding of isomorphism types. The hardest level with respect to under-
standing is “GI-completeness”, that is, the class is as complex as the class of all
(undirected) graphs via ordinary graph isomorphism. The graph isomorphism
problem (GI) is known to be in NP, while it is an open problem whether GI is
NP-complete (see Section 3.2 for definition and details).

The next complexity level is to assume that a class C should have at least
“polytime isomorphism decision” in order to be understandable, i.e., there exists
a polytime algorithm which for inputs F, F ′ ∈ C decides whether F is isomorphic
to F ′. However this level might not provide full understanding if C has super-
polynomially many isomorphism types. The third level, which is the easiest
case and yields full understanding of the isomorphism types, is to have “efficient
isomorphism type determination” (EID). We will discuss the precise formulation
of EID in Section 7.3, but intuitively it means that the isomorphism types of C
can be efficiently enumerated (without repetitions), and for any given F ∈ C its
isomorphism type can be determined in polynomial time.

It is shown in [81] that the isomorphism problem for MUs with fixed defi-
ciency k ≥ 1 is GI-complete, and that even the class of minimally unsatisfiable
Horn clause-sets (which is a subset of MUδ=1) is still GI-complete. Therefore
in order to understand their isomorphism types, a reduction is needed for the
general classes MUδ=k, or we consider some restricted classes of MUs (e.g.,
2-CNF MUs or hitting cases). Furthermore, reductions are an important tool
for understanding MUs: first we concentrate on understanding (only) reduced
cases, and then we extend to other cases.

The main conjecture regarding MUs layered by deficiency is the “Finite-
Patterns Conjecture” ([109]), stating that for fixed deficiency k ≥ 1 there are
only finitely many “patterns” in MUδ=k, given a certain basic reduction. This
implies that an MU F in general might not present the “reason of unsatisfia-
bility” clearly, as there might be some “trivial details”, and some reduction is
essential to remove these trivialities. According to the formulation of the Finite-
Patterns Conjecture in [109], singular variables (variables occurring in one sign
only once, Definition 4.3.1) are the trivial details, and complete reduction with
respect to singular variables is fundamental to see the basic patterns. The study
of “singular DP-reduction” (DP-reduction for singular variables) for MU is the
topic of [108], containing results related to “confluence” (that is, the result of
the reduction is independent of the choices made during the nondeterministic
reduction and the result is always unique). Singular DP-reduction for MUs
maintains minimal unsatisfiability and deficiency, and a main result, shown in
[108], is that in general the number of variables in the result is unique. In Sec-
tion 4.5 we will go through the basic results regarding singular DP-reduction of
MUs, and in Section 7.3 we will discuss some variations of the Finite-Patterns
Conjecture and the related results.
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So far the Finite-Patterns Conjecture has been shown for deficiencies k ≤ 2.
For deficiency k = 1, singular DP-reduction is confluent to {⊥} ([45]) and so we
consider the reasons for unsatisfiability as given by the elements of this class as
“pure trivialities”. For deficiency 2 it is shown that singular DP-reduction for
the elements of MUδ=2 is confluent modulo isomorphism to a single pattern,
namely cycle digraphs over some variables where the parameter is the length
of cycles ([78], [108]). So F ∈ MUδ=2 contains a unique (and possibly hidden)
reason of unsatisfiability. We have already seen an example of these cycle di-
graphs in Section 1.3. In Chapter 5 we will see more on that type of patterns,
which are minimal strong digraphs (MSDs), and in this way we explore what
“pattern” means. However for k ≥ 3 the Finite-Patterns Conjecture is an open
question and even the precise meaning of pattern is not known.

A special case of singular DP-reduction is “1-singular DP-reduction”, the
DP-reduction for “1-singular variables”, variables occurring positively and neg-
atively exactly once. By [108, Section 5] 1-singular DP-reduction for an MU is
confluent, yielding a unique “normalform”, while the importance of this reduc-
tion for understanding the isomorphism types of MUs has not been considered
in the literature. In Chapter 6 we will show that 1-singular DP-reduction for 2-
CNF MUs is closely related to the homeomorphism of their implication graphs.
Furthermore we obtain full understanding of these homeomorphism types (and
so normalforms), namely that they correspond to the class of binary strings
called “bracelets”, or “turnover necklaces” ([61], [25]; see Definition 6.5.8).

For the general classes MUδ=k with k ≥ 3, a question is that which level
of reduction is right to establish finitely many patterns. Singular DP-reduction
could be too weak or too strong. For example for 2-CNF MUs (short as 2-
MUs), singular DP-reduction is confluent modulo isomorphism to precisely one
basic pattern, namely dipaths ([82]) and the parameter is the length of dipaths
(see Section 3.3 for definition of dipaths). However by a weaker reduction, 1-
singular DP-reduction, we obtain another pattern, namely the homeomorphism
types which correspond to binary bracelets.

In Chapter 6 we obtain a polytime isomorphism decision together with a
complete classification for the class of 2-MUs with fixed deficiency. Further-
more we show that the class of 2-MUs of deficiency m without 1-singular vari-
ables corresponds to the class of binary bracelets with m strings, which has
super-polynomially many isomorphism types. Known examples of such class
are SMUδ=1 and the set of marginal elements ofMUδ=1 (MUs where removing
any literal occurrences yields a satisfiable clause-sets, Definition 4.2.2), denoted
by MMUδ=1 (recall that we need these restriction as the general complexity
is GI-complete). The special case of SMUδ=1 can be naturally identified with
the class of all full binary trees ([91]) which has a polytime isomorphism de-
cision, and for given number of vertices n we have super-polynomially many
isomorphism types. By [103] the isomorphism types of F ∈ MMUδ=1 corre-
spond exactly to the isomorphism types of trees, where the class of trees has a
polytime isomorphism decision. All these three classes seem to have similar ex-
ponential growth rate for asymptotic complexity, and their isomorphism types
can be presented by well-known classes of graphs. Furthermore they all have
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polytime isomorphism decision for singular cases under restriction.
For classes SMUδ=1 and MMUδ=1, given their nature, their classification

is recursive (see Section 4.6 for more details); while different from them is the 2-
MU cases which we show that the isomorphism types are not recursive. Another
difference is that for SMUδ=1 andMMUδ=1 singular DP-reduction collapse ev-
erything. But for 2-MUs we show that the one main pattern in abstract way is
WDCs, and intermediate cases obtained by 1-singular DP-reduction (normal-
forms) correspond to binary bracelets while still having finitely many isomor-
phism types given the important concept of deficiency (the length of the string),
and the nonsingular cases have a unique isomorphism type for fixed deficiency.

Finally, Table 1.1 shows an overview of main classes of MUs where the
isomorphism types are already known, or will be characterised in this thesis.

1.4.3 The two fundamental characterisations

As already mentioned, the most basic class of MUs is MUδ=1, where singular
DP-reduction is confluent to {⊥}, and so in a sense only “trivial” reasoning
takes place for the elements of this class (as in general removing all singular
variables in an MU can be done in polytime). Also somewhat surprisingly, this
class covers all minimally unsatisfiable renamable Horn clause-sets. The “real”
reasoning starts at the next level, where there are two classes, namely MUs of
deficiency 2 (i.e., MUδ=2), and minimally unsatisfiable 2-CNFs, short 2-MUs.

The central family of MUs with deficiency 2 is the following MUs which have
been introduced in [78] (see Section 5.2.1 for more details on these formulas):

Fn := (v1 → v2) ∧ (v2 → v3) ∧ . . . ∧ (vn−1 → vn) ∧ (vn → v1)

∧ (v1 ∨ · · · ∨ vn) ∧ (¬v1 ∨ · · · ∨ ¬vn).

When using natural numbers as variables (e.g., using {−1, 2} instead of {v1, v2}
to get rid of the superfluous variable-symbol v), the MUs Fn take the following
form as clause-sets for n ∈ N, n ≥ 2:

Fn := {{−1, 2}, {−2, 3}, . . . , {−(n− 1), n}, {−n, 1},
{1, . . . , n}, {−1, . . . ,−n}} ∈ MUδ=2.

As shown in the seminal paper [78], the nonsingular elements of MUδ=2 are
exactly (up to isomorphism, of course) the MUs Fn. The elimination of singular
variables by singular DP-reduction is not confluent in general for MUs. However
in [108] it is shown, that we have confluence up to isomorphism for deficiency 2.

2-MUs have been also studied in the literature and we give an overview in
Section 1.4.4, while here we only focus on the nonsingular cases. In the report
[82], as in [112] (called “F (2)”), the following 2-MUs have been introduced (recall
that a↔ b is (a→ b) ∧ (b→ a)).

Bn := v1 ↔ v2 ↔ v3 ↔ . . .↔ vn−1 ↔ vn ↔ ¬v1.

14



Table 1.1: An overview of main characterisations of MUs, from the top to down complexity
increases. MU ′ is the set of nonsingular MUs andMU+ is the set of MUs with no 1-singular
variables. SMU andMMU are the sets of saturated and marginal MUs, respectively. RHO
is the set of renamable Horn clause-sets, 2–MU is the set of 2-CNF MUs, while 2–MU ′ =
2–MU∩MU ′. Also, DFM is the set of MUs consisting of two full positive and negative clauses
plus mixed binary clauses. For the definition of efficient isomorphism type determination
(EID) see Section 7.3.

Classes Complexity Isomorphism types Connection to graph the-
ory

RHO ∩ SMU EID Full binary trees with the
Horton-Strahler number ≤ 1
(Lemma 4.6.22)

The structure tree
(Lemma 4.6.3)

MU ′δ=2 EID Cycle digraphs (Corollary
5.3.2)

The positive implication
digraph (Definition 5.2.3)

2–MU ′ EID Dipaths (Corollary 5.4.8) The positive implication
digraph

2–MU∩MU+ Polytime
(Corollary
6.7.1)

Binary bracelets (nonlin-
ear weak-double-cycles,
Corollary 6.7.5 and Lemma
6.5.11)

The implication digraph
(Definition 6.2.1)

SMUδ=1 Polytime
(Corollary
4.6.9)

Full binary trees (Lemma
4.6.3)

The structure tree

MMUδ=1 Polytime
(Corollary
4.6.39)

Trees (Lemma 4.6.38) The conflict graph (Defi-
nition 4.6.31)

2–MU Polytime
(Corollary
6.7.3)

Weak-double-cycles (Corol-
lary 6.7.1)

The implication digraph

DFM GI-complete Minimal strong digraphs
(Theorem 5.2.9)

The positive implication
digraph
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And as clause-sets (using natural numbers as variables) MUs Bn have the fol-
lowing form for n ∈ N, n ≥ 2 (see Section 5.2.2 for more details):

Bn = {{−1, 2}, {1,−2}, . . . , {−(n− 1), n}, {n− 1,−n}, {−1,−n}, {1, n}}

In the technical report [82] it is shown that the nonsingular 2-MUs are exactly
the 2-MUs Bn (up to isomorphism). By [108] it follows again that we have
confluence modulo isomorphism for singular DP-reduction on 2-MUs.

In Chapter 5 we will provide new proofs for these two characterisations which
reveal their underlying common structure.

1.4.4 2-CNFs and minimal unsatisfiability

Restrictions to the lengths of the clauses resp. the “terms” (in DNFs the conjunc-
tions) were studied especially with the advent of automated theorem proving in
the middle of the 20th century. 2-CNFs were also called “Krom formulas” in the
context of first-order logic. The first explicit proof of a polytime SAT decision
for 2-CNFs (via resolution closure, in the context of first-order logic) seems to
be in [87]. Another proof for propositional logic was pointed out in the semi-
nal paper [36] using the Davis-Putnam algorithm in [43]. Later the bound was
improved by the linear time algorithms of [50] and [8] (the latter even for quan-
tified 2-CNFs). For an overview on the dual form of (general) 2-DNFs and their
underlying boolean functions, called “quadratic functions” (which are constant
zero for unsatisfiable 2-CNFs resp. constant one for tautological 2-DNFs), see
[38, Chapter 5]. Irredundant 2-CNFs (no clause can be removed without chang-
ing the underlying boolean function) are studied in [116], mostly concentrating
on satisfiable cases.

A classical connection of SAT to combinatorics is random satisfiability. For
random 2-CNFs with c clauses and n variables, the satisfiability threshold was
proven for the critical density c

n = 1 by [35] and independently by [63]. That is,
a random 2-CNF F with c

n > 1 is unsatisfiable with high probability, while F
with c

n < 1 is satisfiable with high probability. A more precise picture of phase
transition and its scaling window for random 2-CNFs was achieved in [24], and
an overview is given in [46].

2-CNFs are close to renamable Horn formulas in the following sense: It is
well-known that satisfiable 2-CNFs are renamable Horn formulas. Regarding
unsatisfiable cases, [70] established the basic fact that every unsatisfiable for-
mula is renamable Horn iff it is refutable by unit-resolution, and thus we see
that an unsatisfiable 2-CNF without a unit-clause is not renamable Horn. Be-
low we look at the case with a unit-clause, which in the MU-case is renamable
Horn.

We now turn to unsatisfiable 2-CNFs. The concept of the “implication
digraph” (Definition 6.2.1) was introduced in [8], and an overview is given in
[38, Section 5.4.3]). For a 2-CNF F with variables v1, . . . , vn, which does not
contain the empty clause, the vertices of the implication digraph are the literals
v1, . . . , vn, v1, . . . , vn of F . A clause {x, y} in F yields the two arcs x → y,
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y → x in the implication digraph; these arcs become one in case x = y. [8]
showed that a 2-CNF F is unsatisfiable iff the implication digraph of F has a
strongly connected component containing a literal and its complement. Every
unsatisfiable 2-CNF has a variable v such that via input-resolution one can
derive v and v ([90, Lemma 5.6]), where the length of each chain of resolution
steps is at most the number of variables. Considering resolution complexity,
[28] obtained a polytime algorithms for finding a smallest tree-like resolution
refutation for 2-CNFs, while [29] provided a polytime algorithm for finding a
smallest general resolution refutation, both using implication digraphs of 2-
CNFs. Study of some incomplete refinements of resolution has been carried out
in [27], namely so-called “read-once” resolution refutation and its variations,
and the authors have investigated the complexity of finding such resolution
refutations.

A different study of graphs related to 2-CNFs is the recent [74] which is
mainly interested in distinguishing satisfiability and unsatisfiability. For a 2-
CNF F they obtain a graph by first applying some form of preprocessing of F
which destroys information on isomorphism types, but the obtained graph can
distinguish satisfiable and unsatisfiable F . In this thesis we are only interested
in 2-MUs. Before considering the literature here, we mention that MUSs of
2-CNFs have been studied in [28], showing how to compute shortest MUSs in
polytime.

Running through all clauses and testing their irredundancy, the minimal
unsatisfiability problem for 2-CNFs can be decided in quadratic time. Just
expressing the above special form of resolution refutations for 2-CNFs, [116,
Lemma 19] states a general pattern of 2-MUs. We have already mentioned that
2-MUs Bn have been used in the report [82] and also in [112]. Regarding the
number of clauses c(F ) for a 2-MU F , [116], [40] and [112] provide some bounds,
while we will give the sharp bound c(F ) ≤ 4n(F ) − 2, attained exactly for the
Bn, in Chapter 5.

A 2-MU F with a unit-clause has a unit-resolution refutation, since otherwise
unit-clause propagation would yield a non-trivial autarky (a partial assignment
satisfying some clauses and not touching the others). Thus as mentioned before
F is renamable Horn, and so δ(F ) = 1. In [27] the isomorphism types of 2-MUs
with a unit-clause are determined, leaving open the determination of (singular)
2-MUs of deficiency 1 without unit-clauses. 2-MUs of higher deficiencies are
all 2-uniform, and only the nonsingular cases have been characterised in the
literature, which were discussed in the previous section.

1.5 Contributions

1.5.1 Understanding MUs via connection to MSDs

The proofs of the characterisation of nonsingular elements of MUδ=2 in [78],
and characterisation of nonsingular 2-MUs in [82] are both an impressive feat. A
main contribution of this thesis, presented in Chapter 5, is to introduce a new
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unifying reasoning scheme for these two important but isolated results based
on graph theory. This reasoning scheme considers MUs with two parts. The
clauses of the “core” represent AllEqual, that is, all variables are equal. The
two “full monotone clauses” (a clause over all positive literals and a clause over
all negative literals) represent the negation of AllEqual. This is the new class
FM (“full monotone”) of MUs, which still is as complex as all of MU. So we
demand that the reasoning for AllEqual is graph theoretical, arriving at the new
class DFM (“D” for digraph).

Establishing AllEqual on the variables happens via strong digraphs (SDs),
where between any two vertices there is a path. For minimal reasoning we
use minimal strong digraphs (MSDs), where every arc is necessary. Then, just
demanding to have an MU with two full monotone clauses, while the rest are
binary clauses, is enough to establish precisely MSDs. The two most funda-
mental classes of MSDs are the cycle digraphs (those strong digraphs where
every vertex is linear) and the dipaths (i.e., the directed versions of the path
graphs where every undirected edge is replaced by two directed arcs, for both
directions). The cycle digraphs are at the heart of MUs with deficiency 2, while
the dipaths are at the heart of 2-MUs.

After this general overview, we now gain a deeper understanding of how the
characterisations nonsingular F ∈MUδ=2 and nonsingular 2-MUs work:

(I) For a nonsingular F ∈MUδ=2 the main step is to make the connection to
the class DFM. We show that, up to flipping of signs, it actually already
holds that F is DFM. Then using graph-theoretical reasoning we show
that the MSDs of minimal deficiency (the difference of the number of arcs
and the number of vertices) 0 are the cycles which correspond to DFMs
Fn(F ), up to isomorphism:

1 // 2 // 3

��
n

OO

n− 1oo n− 3oo

(II) For a nonsingular 2-MU F the main step is to show that there must exist
exactly one positive and one negative clause and these can be saturated
to full positive resp. full negative clauses, and so F ′ is DFM. Then via
graph-theoretical reasoning we show that the only MSDs G such that the
corresponding DFMs can be obtained as partial saturations of nonsingular
2-MUs are the dipaths, since we can only have two linear vertices in G
(i.e., vertices of in- and out-degree 1). That is, nonsingular 2-MUs are
Bn(F ) up to isomorphism.

1
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Finally an overview on the main results of Chapter 5 is given in Figure 1.1.
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Figure 1.1: Cycle digraphs at the heart of MUδ=2 (MUs of deficiency 2), and dipaths at the
heart of 2–MU (2-MUs). MU ′ is the set of nonsingular MUs, FM is the set of MUs with
full monotone clauses. DFM is the subset of FM where every clause other than the full
monotone clauses is a mixed binary clause. For definitions of Fn,Bn see Section 1.4.3.

1.5.2 The Splitting Ansatz

A main method for analysing F ∈MU is splitting (Definition 4.4.1): choose an
appropriate variable v in F ∈MU , set v to 0, 1 and obtain F0, F1, analyse them,
and lift the information obtained back to F (see Section 4.4 for more details). An
essential point here is to have F0, F1 ∈MU , but in general this is not the case.
The approach of [83, Section 3] is to remove clauses appropriately in F0, F1

and study various conditions in order to obtain some minimally unsatisfiable
sub-formulas F ′0 ⊆ F0 and F ′1 ⊆ F1 and to characterise them.

Our method (used for characterising nonsingular F ∈ MUδ=2 and nonsin-
gular 2-MUs) is based on the observation, that if a clause say in F0 became
redundant, then v can be added to this clause in F , while still remaining MU,
and so the assignment v → 0 then takes care of the removal. This is the essence
of saturation, with the advantage that we are dealing again with MUs. A satu-
rated MU is characterised by the property, that for any variable, splitting yields
two MUs ([102]). For classes like 2-MUs, which are not stable under satura-
tion, we introduce “local saturation” (Definition 4.1.7), which only saturates
the variable we want to split on. In our application for characterising nonsin-
gular 2-MUs, the local saturation uses all clauses, and this is equivalent to a
“disjunctive splitting” as surveyed in [27, Definition 8]. On the other hand, for
deficiency 2 the method of saturation is more powerful, since we have stability
under saturation, and the existence of a variable occurring twice positively and
twice negatively holds after saturation. Splitting needs to be done on nonsingu-
lar variables (Definition 4.3.1), so that the deficiency becomes strictly smaller
in F0, F1, as we want these instances to be “easy”, to know them well. In both
of our cases we obtain renamable Horn clause-sets. For deficiency 2 we exploit,
that the splitting involves the minimal number of clauses, while for 2-MUs we
exploit that the splitting involves the maximal number of clauses after local
saturation. In order to get say F0 “easy”, while F is “not easy”, the part which
gets removed, which is related to F1, must have special properties.

19



1.5.3 Classification of 2-MUs

As already mentioned, it is known that the isomorphism problem for classes
MUδ=k and even for the class of minimally unsatisfiable renamable Horn clause-
sets (which is a subset ofMUδ=1) are GI-complete. In Chapter 6 we give the first
example of a class of restricted but still rich MUs, namely 2-MUs, with polytime
isomorphism decision. More importantly, we obtain a very precise overview of
their structure. The simplest variables in any MU are 1-singular variables. The
subclass of 2-MUs without 1-singular variables corresponds exactly to the class
of binary bracelets. This shows that there are exponentially many isomorphism
types of 2-MUs (in dependency on the number of variables).

The starting point of our investigations in Chapter 6 are the most basic
2-MUs, the nonsingular 2-MUs. As already discussed, a nonsingular 2-MU F
with n ≥ 2 variables is isomorphic to Bn (recall Section 1.4.3). For general MUs
holds, that removing singular variables via DP-reduction preserves minimal un-
satisfiability and deficiency (see Section 4.5). Thus the above says, that singular
DP-reduction for a 2-MU of deficiency k ≥ 2 yields some 2-MU isomorphic to
Bk. To refine this, 1-singular DP-reduction for an MU F is confluent ([108]),
yielding the “non-1-singular normalform” of F . So we obtain a generation pro-
cess for all 2-MUs of deficiency k: start with Bk, first reverse non-1-singular
DP-reductions, and then reverse 1-singular DP-reductions. Now how do the
clause-sets generated in this way look?

As it turns out, they correspond closely to a nice class of digraphs, called
“weak-double-cycles” (WDCs; studied in [136]). For this, the concept of the
implication digraph of a 2-CNF F is needed. A basic observation is that the
reversal of singular DP-reduction for 2-MUs corresponds to the following two
graph-theoretical operations:

• “Splitting a vertex” replaces a vertex x by two new vertices u, v and adds
the arc from u to v: u collects the ingoing arcs of x, and v collects the
outgoing arcs.

• “Splitting an arc” adds a midpoint (a new vertex) to an arc.

Performing reverse non-1-singular DP-reduction for a 2-MU F corresponds to
splitting vertices, while the reverse of 1-singular DP-reduction corresponds to
splitting arcs (see Section 6.6 for details). WDCs are obtained from “double
m-cycles” (undirected cycles of length m converted to digraphs, which are the
implication digraphs of Bm

2
for even m) by splitting some (possibly zero) vertices

and arcs. For example the implication digraph of B4, shown below, is a double
8-cycle. We have already seen some other examples of WDCs in the first section
of the Introduction.
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Not all WDCs correspond to clause-sets (at all), and digraphs in general do
not allow negation (complementation), and this further ingredient is needed.
The corresponding concept indeed exists in the literature on digraphs under the
name “skew-symmetry” (a self-inverse fixed-point free anti-symmetry, reversing
the direction of arcs, Definition 6.2.4).

The implication digraph of a 2-CNF F , in its exact form, with the literals as
vertices, allows exact reconstruction of F , since the arcs faithfully encode the
clauses, while the vertices-as-literals reveal full information on the complement-
relation between vertices. The complement-relation between vertices is provided
explicitly by a skew-symmetry. Digraphs might have no skew-symmetry (then
they do not correspond to 2-CNFs at all), or they might have many (then
they correspond to several 2-CNFs). Digraphs with given skew-symmetry are
basically the same as 2-CNFs. We show that WDCs have at most one skew-
symmetry. That is, there is at most one way to add complementation of the
vertices to a WDC and obtain a 2-CNF. The main result of Chapter 6 follows
easily: The isomorphisms between 2-MUs are exactly the isomorphisms between
their implication digraphs. So we reduce determining isomorphisms/automor-
phisms (the self-isomorphisms) of 2-MUs to a purely graph-theoretical problem
between (nice) digraphs. It follows that the automorphisms of a 2-MU F with
deficiency k ≥ 2 form a subgroup of the Dihedral group with 4k elements (the
group of symmetries of a regular polygon with 2k-sides, which includes 2k ro-
tations and 2k reflections), and this allows efficient enumeration and counting
of isomorphism types of 2-MUs.

1.6 Summary and publications

The fundamental new definitions and concepts introduced in Chapter 5, as well
as associated theorems and applications are:

1. Definitions 5.1.1 introduces the basic new class FM ⊂ MU , which con-
sists of all F ∈MU containing the full positive clause and the full negative
clause.

2. Theorem 5.1.9 demonstrates the DP -completeness of this new class.

3. Theorem 5.1.8 characterises FM as the set of clause-sets F with two full
complementary clauses where the core (other clauses) is a CNF-realisation
of the AllEqual boolean function on the variables of F and is irredundant.

4. Definition 5.2.1 introduces the most important new class of this chapter
DFM ⊂ FM, which consists of all F ∈ FM such that the clauses of the
core are binary. Then Definition 5.2.3 defines the “positive implication
digraph” (only the implications between positive literals) for F ∈ DFM
where the mixed binary clauses of the core are exactly the arcs of the
corresponding positive implication digraph.
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5. Theorem 5.2.9 is a main contribution of this chapter which shows that
there is a bijection between DFM and the set of MSDs via two forma-
tions given in this theorem. The correspondence between DFMs and the
powerful world of MSDs enables us to use the strength of graph-theoretical
reasoning once we connect a class of MUs to DFMs.

6. As the first applications of these new classes and their connection to graph
theory, we give unifying and insightful proofs for two fundamental results:

• Theorem 5.3.1 and Corollary 5.3.2 characterise the nonsingular el-
ements of MUδ=2 by showing that these MUs are precisely the el-
ements of DFM (up to isomorphism) with deficiency 2, and then
connection to cycle digraphs is established by graph-theoretical rea-
soning.

• Theorems 5.4.5, 5.4.7 together with corollary 5.4.8 characterise the
nonsingular 2-MUs by showing that these MUs can be locally satu-
rated to those elements of DFM (up to isomorphism) whose corre-
sponding MSDs are dipaths.

7. Another (conceptual) contribution of this chapter, used in the proof of the
above characterisations, is the strengthening of the Splitting Ansatz by
saturation, in two forms, full saturation for MUδ=2, and local saturation
(Definition 4.1.7 and Lemma 4.4.4), which is introduced for the first time,
for 2-MU.

8. Corollary 5.4.9 gives the sharp bound for the number of clauses in 2-MUs,
attained exactly for the Bn.

In Chapter 6 we study all 2-MUs, and the key contributions are as follows:

1. Theorem 6.3.10 provides full classification of the isomorphism types of 2-
MUs with a unit-clause which were implicitly handled in [27], and also the
2-uniform cases of deficiency 1 which is new. Then Theorem 6.3.11 states
the exact number of isomorphism types of 2-MUs with deficiency 1.

2. Lemma 6.4.7 shows that the smoothing process for digraphs is strongly
related to 1-singular DP-reduction for 2-MUs. The concept of smoothing
is known in graph theory, but we exploit it in more details, showing new
connections between graph theory and propositional logic.

3. Lemma 6.5.3 states a polytime isomorphism decision for WDCs.

4. Lemma 6.5.11 shows that the isomorphism types of WDCs with no linear
vertices, and so the homeomorphism types of WDCs (obtained by the
smoothing process) corresponds exactly to binary bracelets.

5. Theorem 6.6.4 states that the implication digraphs of 2-MUs with defi-
ciency k ≥ 2 are WDCs with 2k small cycles.
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6. Theorem 6.6.9 is a main result of this chapter and shows the uniqueness of
skew-symmetry for WDCs by combining arguments from logic and graph
theory, where both fields contribute significantly to the proof.

7. Theorem 6.6.10 is the second major result of this chapter, showing that
for 2-MUs F, F ′ the set of isomorphisms between F, F ′ is equal to the set
of isomorphisms between their implication digraphs. That is, we reduced
determining isomorphisms of 2-MUs to a purely graph-theoretical problem
between simple digraphs.

8. Then we obtain a variety of applications in Section 6.7:

• Corollary 6.7.2 characterises the automorphism groups of WDCs with
2k small cycles and so F ∈ MUδ=k as subgroups of the Dihedral
group with 4k elements. Therefore the isomorphism problem for 2-
MUs of deficiency k is polytime decidable in k (Corollary 6.7.3.

• Corollary 6.7.4 states that the number of isomorphism types of F ∈
2–MUδ=k with n variables is Θ(n3k−1).

• Corollary 6.7.5 shows that the smoothing of skew-symmetric WDCs
corresponds exactly to the canonical normalform of 2-MUs F , and
so the isomorphism types of these normalforms are in one-to-one
correspondence with binary bracelets of length k.

In the outlook (Chapter 7) we discuss how the understanding of the structure
of MUs may be utilised to obtain an alternative framework for enumeration
of MUSs. As an application, in Theorem 7.1.4 we show that for a 2-CNF
plus two full complementary clauses, all contained MUSs can be enumerated in
incremental polynomial time.

The publications related to this thesis are as follows:

• The content of Chapter 5 was published as a conference paper ([1]) at
SAT 2018.

• The initial results concerning classification of 2-MUs (Chapter 6) first
appeared in the technical report [2].

• Another paper featuring all the content of Chapter 6 is in preparation.

Furthermore this work has been presented by the author at the BCTCS 2018.
We conclude this section by an overview of this thesis. Preliminaries such

as notations and basic concepts are introduced in Chapters 2 (propositional
logic) and 3 (graph theory). Chapter 4 describes the main techniques and
tools for systematic investigation of the structure of MUs, which have been
used for the main results in the later sections. Chapter 5 introduces a deep
connection between a class of MUs and MSDs which yields characterisation of
two important classes of MUs. Chapter 6 covers 2-MUs and their classification
via connection to graph theory. Finally in Chapter 7 the contributions of the
thesis are summarised, and remaining conjectures and open questions, as well
as some applications concerning enumeration MUSs of are discussed.
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Chapter 2

Preparations on logic

The aim of this chapter is to establish basic terminologies and notations on
clause-sets used in this thesis. We start off with definition of boolean variables,
clauses and clause-sets, and their basic notations in Section 2.1, and then present
the definition of partial assignments, satisfiability and unsatisfiability in Section
2.2. In Section 2.3 irredundancy and minimal unsatisfiability of clause-sets
are discussed. Isomorphism and automorphism of clause-sets are considered in
Section 2.4. Finally the last sections 2.5 and 2.6 provide the definition of the
resolution operation and DP-reduction.

2.1 From variables to clause-sets

The infinite set of variables is denoted by VA. For every variable v ∈ VA
its domain is a finite and non-empty set, denoted by Dv 6= ∅. A boolean
variable v has domain Dv = {0, 1}. Literals are boolean variables v ∈ VA and
their complementations v; and the underlying variable of a literal x is denoted
by var(x) ∈ VA. The set of all literals is LIT . For a set L of literals, L :=
{x : x ∈ L} is the elementwise complementation, var(L) := {var(x) : x ∈ L} is
the set of variables of L and lit(L) := {x ∈ LIT : var(x) ∈ var(L)} is the set
of all possible literals over var(L).

Example 2.1.1 For L1 = {a, b, c} ⊂ LIT and L2 = {a, a, b, c} ⊂ LIT we
have lit(L1) = lit(L2) = {a, a, b, b, c, c}.

Literals x, y ∈ LIT clash (or “have a conflict”) if x = y. For a set of literals
L ⊆ LIT we say that L is clash-free if there are no x, y ∈ L which clash. A
clause is defined as a finite and clash-free (i.e., non-tautological) set of literals.
The set of variables occurring in a clause C is var(C).

A clause-set is a finite set of clauses, and we use CLS for the set of all
clause-sets. The empty clause-set is denoted by > := ∅ ∈ CLS and the empty
clause by ⊥ := ∅. Clause-sets are interpreted as propositional formulas in
Conjunctive Normal Forms (CNFs), conjunctions of disjunctions of literals.
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Example 2.1.2 A CNF representation of a clause-set F := {{a, b}, {c, d}} ∈
CLS is F = (a∨b)∧(¬c∨d); and a CNF F ′ := a∧(¬b∨c)∧(c∨¬b)∧(¬a∨b∨¬c)
as a clause-set is F ′ = {{a}, {b, c}, {a, b, c}} ∈ CLS.

We use the notation “A ·∪ B” to denote disjoint union, i.e., A ·∪ B = A ∪ B
when A∩B = ∅. By N = {1, 2, . . .} we denote the set of natural numbers, while
N0 := N ·∪ {0}. We use natural numbers N as variables (i.e., N ⊆ VA) as in
the DIMACS format. This makes creating certain examples easier, since we can
use integers different from zero as literals, and complementation is represented
as negation (i.e., v = −v). For example the clause {−1, 2} stands for the usual
clause {v1, v2} (in propositional calculus, ¬v1 ∨ v2, or, equivalently, v1 → v2).

Definition 2.1.3 For a clause-se F ∈ CLS:

1. var(F ) :=
⋃
C∈F var(C) ⊂ VA (the set of variables occurring in F ).

2. lit(F ) := var(F )∪var(F ) (the set of all possible literals over the variables
in F ).

3. n(F ) := |var(F )| ∈ N0 (the number of variables in F ).

4. c(F ) := |F | ∈ N0 (the number of clauses in F ).

5. `(F ) :=
∑
C∈F |C| ∈ N0 (the number of literal occurrences in F ).

6. δ(F ) := c(F )− n(F ) ∈ Z is the deficiency of F .

Example 2.1.4 The only clause-sets with no variables are >, {⊥}. For F :=
{⊥} we have c(F ) = 1 and so δ(F ) = 1− 0 = 1, while δ(>) = 0− 0 = 0. Now
consider another clause-set F ′ := {{x}, {x, y}} ∈ CLS (as a CNF, x ∧ (¬x∨y)).
We have var(F ′) = {x, y}, lit(F ′) = {x, x, y, y}, `(F ′) = 3 and n(F ′) = c(F ′) =
2, and so δ(F ′) = 2− 2 = 0.

For a literal x, the literal-degree ldF (x) := |{C ∈ F : x ∈ C}| ∈ N0 is the
number of clauses of F containing x, while the variable-degree of a variable v
is vdF (v) := ldF (v) + ldF (v) ∈ N0. A literal x is pure (also called “monotone
literal”) for F if ldF (x) = 0.

Definition 2.1.5 The minimum variable degree (or min-var-degree) is de-
fined as the minimum of the variable degrees over all variables in F ∈ CLS
and is denoted by µvd(F ) := minv∈var(F ) vdF (V ) ∈ N for n(F ) > 0, while
µvd(F ) := +∞ in case of n(F ) = 0. Also, the set of variables of minimum
variable degree in F is denoted by varµvd(F ).

In Lemma 4.4.5 we will see an application of variables of minimum degree as
a general tool for study of MUs, while in Chapters 5 and 6 we will use such
variables for characterising various subclasses of MUs.
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Example 2.1.6 Consider a clause-set F := {{1}, {1,−2}, {−1,−2, 3}} ∈ CLS
(as a CNF, v1 ∧ (v1∨¬v2) ∧ (¬v1∨¬v2∨v3)). We have ldF (1) = 2, ldF (−1) = 1,
ldF (2) = 0, ldF (−2) = 2, ldF (3) = 1 and ldF (−3) = 0 (so −2, 3 are pure literals
for F ). Also µvd(F ) = 1 with varµvd(F ) = {3}.

A clause C is positive if C ⊂ VA, while C is negative if C ⊂ VA, and
C is mixed otherwise; a non-mixed clause is called monotone. A clause-set
F is uniform resp. k-uniform, if all clauses of F have the same length resp.
length k. By 2–CLS we denote the set of clause-sets F ∈ CLS such that for
all clauses C ∈ F holds |C| ≤ 2. A full clause of a clause-set F is some
C ∈ F with var(C) = var(F ). A full clause-set is an F ∈ CLS where all
C ∈ F are full. In Example 2.1.6, the clause {−1,−2, 3} is the only full clause
in F . By An we denote the full clause-set consisting of the 2n full clauses
over variables 1, . . . , n for n ∈ N0. So A0 = {⊥}, A1 = {{−1}, {1}}, and
A2 = {{−1,−2}, {1, 2}, {−1, 2}, {1,−2}}.

2.2 Partial assignments and unsatisfiability

Definition 2.2.1 A partial assignment is a map ϕ : V → {0, 1} for some
finite V ⊂ VA. We use var(ϕ) := V for the set of variables in ϕ and lit(ϕ) :=
lit(var(ϕ)) for the set of all possible literals over var(ϕ). The set of all partial
assignments is PASS.

For a fixed set of variables V , a partial assignment ϕ with var(ϕ) = V is
called a total assignment over V .

A partial assignment ϕ satisfies a clause C iff ϕ satisfies at least one literal x
in C (i.e., ϕ(x) = 1), and ϕ satisfies a clause-set F iff ϕ satisfies all clauses in
F (recall that clause-sets are interpreted as CNFs, where a clause is considered
as a disjunction of literals and a clause-set is considered as a conjunction of
its clauses). We use for example 〈x → 1, y → 0, z → 0〉 to denote a partial
assignment that sets variables x to 1 and y, z to 0.

The application of partial assignments ϕ to F ∈ CLS, denoted by ϕ ∗ F ,
yields the clause-set obtained from F by removing all clauses satisfied by ϕ, and
then removing all falsified literals x from the remaining clauses (i.e., all literals
x with ϕ(x) = 0 are removed). A partial assignment ϕ can be considered as a
clause containing the set of falsified literals in lit(ϕ). For example for a variable
x the partial assignment 〈x → 0〉 as a clause is {x}, while 〈x → 1〉 as a clause
is {x}. Then we say that a partial assignment ϕ (as a clause) satisfies a clause
C if ϕ and C clash in a variable. Now we can define the operation of partial
assignments on clause-sets as follows:

Definition 2.2.2 For ϕ ∈ PASS and F ∈ CLS:

ϕ ∗ F := {C \ ϕ : C ∈ F and C ∩ ϕ = ∅} ∈ CLS.

A contraction of a clause-set means that some previously unequal clauses be-
come equal as a result of some operation, and so the number of clauses drops
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since we are dealing with clause-sets. We note that when applying partial as-
signment contractions can occur, and so more clauses might disappear than
expected. Also more variables than just those in ϕ might disappear, since we
consider only occurring variables. For more details on partial assignments and
their operations see [79].

Remarks:

1. Simple properties of partial assignments:

(a) ϕ ∗ (F ∪G) = ϕ ∗ F ∪ ϕ ∗G.

(b) ⊥ ∈ F ⇒ ⊥ ∈ ϕ ∗ F .

(c) ϕ ∗ > = >.

(d) ϕ ∗ {C} = {⊥} iff C ⊆ ϕ.

(e) ϕ ∗ {C} = > iff C ∩ ϕ 6= ∅.
(f) ϕ = {x ∈ LIT : ϕ ∗ {x} = {⊥}}.
(g) ϕ ∗ F = > ⇔ ∀C ∈ F : C ∩ ϕ 6= ∅.
(h) ⊥ ∈ ϕ ∗ F ⇔ ∃C ∈ F : C ⊆ ϕ.

Example 2.2.3 Consider F := {{a, b}, {a, c}, {a, b, d}, {c, b}} ∈ CLS.

• ϕ := 〈c→ 0, d→ 0〉 as clause is {c, d} and we obtain ϕ∗F = {{a, b}, {a}} ∈
CLS.

• We have 〈a→ 0, b→ 0, c→ 1〉 ∗ F = {a, b, c} ∗ F = {⊥, {d}} ∈ CLS.

• And 〈a→ 0, b→ 1, c→ 0〉 ∗ F = {a, b, c} ∗ F = > ∈ CLS.

Definition 2.2.4 A clause-set F is satisfiable if there is a partial assignment
ϕ with ϕ ∗ F = >, otherwise F is unsatisfiable. We use SAT := {F ∈
CLS | ∃ϕ ∈ PASS : ϕ ∗ F = >} for the set of all satisfiable clause-sets and
USAT := CLS \ SAT for the set of all unsatisfiable clause-sets. A partial
assignment ϕ ∈ PASS with ϕ ∗ F = > is called a satisfying assignment for
F ∈ CLS.

Remarks:

1. > ∈ SAT and {⊥} ∈ USAT .

2. If ⊥ ∈ F , then F ∈ USAT .

3. If F ∈ USAT , the ϕ ∗ F ∈ USAT .

4. If F ∈ SAT and F ′ ⊆ F , then also F ′ ∈ SAT .
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2.3 Irredundancy and minimal unsatisfiability

Definition 2.3.1 For F, F ′ ∈ CLS the implication-relation is defined as
F |= F ′ ⇔ ∀ϕ ∈ PASS : ϕ ∗ F = > ⇒ ϕ ∗ F ′ = > (F ′ is called a logical
consequence of F ). Two clause-sets F,G ∈ CLS are logically equivalent if
F |= G and G |= F .

For a clause C we write F |= C if F |= {C}, and we have F ∈ USAT iff
F |= ⊥. A clause-set F is redundant if there exists a clause C ∈ F with
F \C |= C, while otherwise F is irredundant (also called “clause minimal” in
[84]). In other words, F ∈ CLS is irredundant iff for every C ∈ F there exists
a total assignment ϕ which satisfies F \ {C} while falsifying C. See [84] and
[115] for a detailed studies of irredundant clause-sets. A clause-set F is called
subsumption-free if F has no clauses like C,D ∈ F where C subsumes D, i.e.,
C ⊂ D ([98]). It is easy to see that irredundant clause-sets are subsumption-free.

Example 2.3.2 The clause-set F in Example 2.2.3 is satisfiable and redundant
(as {a, b} ∈ F subsumes {a, b, d} ∈ F ).

And examples of unsatisfiable clause-sets are the full clause-sets An, n ∈ N0

which are also irredundant as removing any clause in An yields a satisfiable
clause-set (note that for A0 = {⊥} ∈ USAT removing the empty clause yields
the empty clause-set > ∈ SAT ).

A minimally unsatisfiable clause-set (MU), also called “minimal unsat-
isfiable clause-set/formulas”, is some F ∈ USAT where removing any clause
renders it satisfiable. That is, F is minimally unsatisfiable iff F is unsatisfiable
and irredundant ([84]). It is well-known that for MUs F we have δ(F ) ≥ 1,
first shown in [4] (“Tarsi’s Lemma”). We useMU to denote the set of all un-
satisfiable clause-sets, andMUδ=k for the set of all MUs with fixed deficiency
k ≥ 1. Also 2–MU :=MU ∩ 2–CLS is the set of 2-CNF MUs (short 2-MUs),
while 2–MUδ=k := 2–MU ∩MUδ=k denotes the set of 2-MUs with fixed defi-
ciency k ≥ 1. In Chapter 4 we will provide a fundamental review of minimally
unsatisfiable clause-sets, while in Chapters 5 and 6 we will characterise some
important subclasses of MUs.

Example 2.3.3 For all full clause-sets An, n ∈ N0 we have An ∈ MU (see
Example 2.3.2).

2.4 Isomorphism of clause-sets

An isomorphism between two clause-sets (also called “boolean congruence” in
[3] and “literal renaming” in [81]) is a permutation (or renaming) of variables
and potentially flipping some literals. More precisely:
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Definition 2.4.1 An isomorphism from F ∈ CLS to G ∈ CLS, denoted by
α : lit(F ) → lit(G), is a bijection such that ∀x ∈ lit(F ) : α(x) = α(x) and the
clauses of F are precisely mapped to the clauses of G, that is, α(F ) = {α(C) :
C ∈ F} = G.

Clause-sets F,G ∈ CLS are called isomorphic, denoted by F ∼= G, if there
exists an isomorphism from F to G.

Example 2.4.2 The only minimally unsatisfiable clause-set with no variable is
A0 = {⊥}, while any MU F with n(F ) = 1 is isomorphic to A1 = {{1}, {−1}} ∈
MUδ=1. In Section 5.3 we will show that for any F ∈ MUδ=2 with precisely
two variables we have F ∼= A2 = {{−1,−2}, {1, 2}, {−1, 2}, {1,−2}} ∈ MUδ=2.
And it is easy to see that for any full clause-set F we have F ∼= An(F ).

Definition 2.4.3 The automorphisms of F ∈ CLS are the isomorphisms
from F to itself, also called symmetries.

Example 2.4.4 The trivial automorphism for any clause-set F is the identity
map on lit(F ). For A1 = {{1}, {−1}} the only non-trivial automorphism is
flipping the literals. And for A2 = {{−1,−2}, {1, 2}, {−1, 2}, {1,−2}} flipping a
literal, swapping the variables, or any combination of these is an automorphism.

2.5 Resolution

The resolution operation, introduced in [132], is to replace two clauses containing
complementary literals with a new clause implied by these clauses.

Definition 2.5.1 Two clauses C,D are resolvable if they clash in exactly one
variable v, i.e., |C∩D| = 1. Then v is called the resolution variable. For two
resolvable clauses C,D the resolvent C �D := (C∪D)\{v, v} for C∩D = {v}
is the union of the two clauses minus the two clashing literals v, v.

Unit-resolution is the resolution rule where at least one of the clauses involved
is a unit-clause. A resolution refutation of an unsatisfiable clause-set F ∈
USAT is to derive the empty clause ⊥ from F by repeated applications of the
resolution rule, and a resolution tree is an ordered rooted tree (see Section
3.3) formed by resolution operations. More precisely:

Definition 2.5.2 A resolution tree is an ordered rooted tree, where every inner
vertex has exactly two children, and every vertex is labelled with a clause such
that the label of an inner vertex is the resolvent of the labels of its two parents.
We write T : F ` C if T is a resolution tree such that the root of T is labelled
by C, while each clause labelling a leaf of T is element of F .

A resolution tree is called regular if along every path from the root to some
leaf no resolution variable occurs more than once.
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Example 2.5.3 For F = {{a, b}, {a, b}, {a, b}, {a, b}} ∼= A2 ∈ MUδ=1, a (reg-
ular) resolution tree T : F ` ⊥ is shown below.

{a, b} {a, b} {a, c} {a, c}

{a} {a}

⊥
For an overview on resolution and its complexity see Sections 1.15 and 1.16 in
[55].

2.6 DP-reduction

An important reduction for investigation of minimally unsatisfiable clause-sets is
the DP-reduction (also called “Davis-Putnam resolution/reduction” and “vari-
able elimination”), which was first introduced in [43] by Davis and Putnam.
The DP-reduction of a clause-set F on a variable v is to remove all clauses in
F containing v and replace them with all resolvents on v. More formally:

Definition 2.6.1 The DP-reduction of F ∈ CLS on v ∈ VA is defined as:

DPv(F ) := {C ∈ F : v /∈ var(C)}∪{C �D : C,D ∈ F and C∩D = {v}} ∈ CLS

Remarks:

1. We have var(DPv(F )) ⊆ var(F ) \ {v}.

2. If two clauses C,D in F clash in more than one variables then when per-
forming DP-reduction on one of these variables both clauses are removed.
For example for F := {{u, v}, {u, v}} we have DPu(F ) = DPv(F ) = >.

3. It is well-known that DPv(F ) is logically equivalent to the existential quan-
tification of v in F , i.e., DPv(F ) is satisfiable iff F is satisfiable ([108]).

DP-reduction is commutative ([104]), and in general does not maintain min-
imal unsatisfiability. In Section 4.5 we discuss an special case of DP-reduction
which was first called “singular DP-reduction” in [97]. This reduction is the
most harmless reduction for MUs and is used for understanding the underly-
ing structure of MUs. See [108] for a full overview on DP-reduction and its
applications in the search for MUSs and in practical SAT-algorithms.

Example 2.6.2 For F := {{v}, {v}} we have DPv(F ) = {⊥} and so F is
unsatisfiable. Now consider the following examples:

• For F ′ := {{x, y}, {x, y}, {y}} we obtain DPy(F ′) = {{x}, {x}} ∼= F ∈
USAT . Thus F ′ ∈ USAT .

• For F ′′ := {{u,w, z}, {u, z}, {u}, {u,w}} the DP-reduction on u yields
DPu(F ′′) = {{w, z}, {z}, {w}} where no further resolution is possible. So
F ′′ is satisfiable.
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Chapter 3

Preparations on graph
theory

This chapter provides basic terminologies and notations on graph theory. Sec-
tion 3.1 contains the essential definitions for graphs, digraphs and multigraphs.
Also strong connectivity of digraphs is defined in this section. Isomorphism
and automorphism of digraphs and multigraphs are considered in Section 3.2.
Finally, some basic examples of graphs and digraphs which will be used in this
thesis are presented in Section 3.3.

3.1 Basic definitions

Definition 3.1.1 A (finite) graph resp. digraph G is a pair (V,E), where
V (G) := V is a finite set of vertices and E(G) := E is the set of edges resp.
arcs defined as two-element subsets {a, b} ⊆ V resp. pairs (a, b) ∈ V 2 with a 6= b.

Note that we do not allow (self-)loops, and that there are no parallel edges resp.
arcs (though there might be antiparallel arcs). A (di)graph G is a sub(di)graph
of another (di)graph G′ if V (G) ⊆ V (G′) and E(G) ⊆ E(G′).

A graph G is promoted to a digraph by dg(G) := (V (G), {(a, b), (b, a) :
{a, b} ∈ E(G)}), converting every edge {a, b} into two arcs (a, b), (b, a). The
conversion of a digraph G to its underlying graph (forgetting directions, and
contracting antiparallel arcs into one edge) is denoted by ug(G).

Definition 3.1.2 For a finite (di)graph G the deficiency is δ(G) := |E(G)|−
|V (G)| ∈ Z.

The in-degree of a vertex v ∈ V (G) of a digraph G is the number of arcs
going into v, the out-degree is the number of outgoing arcs, and the degree
of v is the sum of in- and out-degree. If G is a graph, then the degree of v is the
number of vertices w adjacent to v (that is |{w ∈ V (G) : {v, w} ∈ E(G)}| ∈ N0).
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Definition 3.1.3 For a set V and m ∈ N0, let
(
V
m

)
:= {S ⊆ V : |S| = m} be

the set of m–element subsets of V . A multigraph is a pair (V,E) where V is
a set and E :

(
V
1

)
∪
(
V
2

)
→ N0.

A sub-multigraph G′ of a multigraph G has V (G′) ⊆ V (G) and ∀ {u, v} ∈
(
V ′

1

)
∪(

V ′

2

)
: E(G′)({u, v}) ≤ E(G)({u, v}). A graph G is promoted to a multigraph

mg(G) by using the same vertex-set V (G), and using the characteristic function
of E(G) ⊆

(
V
2

)
, while the underlying graph ug(G) of a multigraph just forgets

the multiplicities of edges and discards loops. A digraph G is converted to
a multigraph mg(G) by forgetting the direction of arcs, while not contracting
edges.

The degree of a vertex v ∈ V (G) in a multigraph G, denoted by degG(v),
is the number of adjacent edges, that is,

degG(v) :=
∑

w∈V (G)

E(G)({v, w}) ∈ N0.

The set of neighbours of a vertex v in a multigraph G is NG(v) := {w ∈ V (G) :
E(G)({v, w}) 6= 0} ⊆ V (G).

Example 3.1.4 Consider a graph G := ({a, b, c}, {{a, b}, {b, c}, {a, c}}). The
digraph dg(G) and the multigraph mg(dg(G)) are obtained as follows:

G = 1

3 2

dg(G) = 1

��yy
3

99

)) 2ii

SS mg(dg(G)) = 1

3 2

And we have δ(G) = 3− 3 = 0 while δ(dg(G)) = 6− 3 = 3.

Definition 3.1.5 A linear vertex in a (multi)graph G is a vertex v ∈ G of
degree 2, while a linear vertex in a digraph is a vertex of in- and out-degree 1.

A digraph G is a Strong Digraph (SD), if G is strongly connected, i.e.,
for every two vertices a, b ∈ V (G) there is a path from a to b. In an SD G
with |V (G)| ≥ 2 the in-degree and out-degree of the vertices are at least 1. A
Minimal Strong Digraph (MSD) is an SDG, such that for every arc e ∈ E(G)
holds that (V (G), E(G) \ {e}) is not strongly connected. Every digraph G with
|V (G)| ≤ 1 is an MSD. Every MSD with |V (G)| ≥ 2 has at least two linear
vertices ([59]). For a recent overview of MSDs see [58]. In Example 3.1.4 the
digraph dg(G) is an SD but not an MSD. A main contribution of Chapter 5
is to show the strong correspondence between an important class of MUs and
MSDs, which yields some fundamental characterisations of MUs.

3.2 Isomorphisms

Definition 3.2.1 For two digraphs G1, G2, an isomorphism from G1 to G2

is a bijection f : V (G1) → V (G2) such that f(E(G1)) = {(f(a), f(b)) : (a, b) ∈
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E(G1)} = E(G2); if G1, G2 are graphs, then the condition is that f(E(G1)) =
{{f(a), f(b)} : {a, b} ∈ E(G1)} = E(G2). If there is an isomorphism between
G1 and G2, then we write G1

∼= G2.
An automorphism (also called symmetry) of a (di)graph G is an isomor-

phism from G to itself.

A map f is an isomorphism from graph G to graph G′ iff f is an isomorphism
from dg(G) to dg(G′). Every isomorphism f from a digraph G to a digraph G′

is also an isomorphism from ug(G) to ug(G′) (but not vice versa).
The graph isomorphism problem (GI) is the computational problem of

determining whether two finite graphs are isomorphic. This problem is in the
complexity class NP, but it is neither known to be NP-complete nor known to
be polynomial time. Therefore a new complexity class GI has been defined as
the set of problems with a polynomial time reduction to the graph isomorphism
problem. Over time, increasingly strong conjectural evidence has been found
that the graph isomorphism problem is not NP-complete, and in a recent break-
through it was proved that this problem is solvable in quasi-polynomial time
([10]). So if the graph isomorphism problem is solvable in polynomial time, GI
would equal P; and if the problem is NP-complete, GI would equal NP and
all problems in NP would be solvable in quasi-polynomial time. Isomorphism
of clause-sets can be naturally reduced in polytime to graph isomorphism, and
GI-completeness of such isomorphism problem means additionally that also
the graph isomorphism problem can be reduced to it. Other examples of GI-
complete problems are hypergraph isomorphism and 2-CNF isomorphism.

Definition 3.2.2 An isomorphism from a multigraph G to a multigraph G′ is
a bijection f : V (G) → V (G′) with ∀ v, w ∈ V (G) : E(G′)({f(v), f(w)}) =
E(G)({v, w}).

Every isomorphism f : G → G′ between multigraphs is also an isomorphism
f : ug(G)→ ug(G′) between the underlying graphs (but not vice versa). A map
f is an isomorphism from a graph G to a graph G′ iff f is an isomorphism from
mg(G) to mg(G′). Every isomorphism f : G→ G′ between digraphs is also an
isomorphism f : mg(G)→ mg(G′) (but not vice versa).

3.3 Basic examples

A cycle graph is a connected graph, where every vertex is linear (so it has at
least 3 vertices). The standardised cycle graph CGn for n ≥ 3 is defined as
follows:

V (CGn) := {1, . . . , n},
E(CGn) := {{i, i+ 1} : i ∈ {1, . . . , n− 1}} ·∪ {{1, n}}.

A double cycle is a digraph isomorphic to dg(CGn) (see Section 6.5 for prop-
erties of double cycles). A cycle multigraph allows additionally for length
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2 (two vertices and two parallel edges) and length 1 cycle (one vertex with a
loop). A cycle in a (multi)graph G is a (sub)multigraph which is isomorphic to
some cycle (multi)graph.

A cycle digraph is a strong digraph, where every vertex is linear (so it has
at least two vertices). Cycle digraphs have deficiency zero, and some of their
properties are studied in Chapter 5 (Section 5.2.1). A cycle in a digraph is a
sub-digraph which is isomorphic to some cycle digraph. The standardised cycle
digraph CDn for n ≥ 2 is as follows:

V (CDn) := {1, . . . , n},
E(CDn) := {(i, i+ 1) : i ∈ {1, . . . , n− 1}} ∪ {(n, 1)}.

Example 3.3.1 The cycle graph CG4, the double cycle dg(CG4) and the cycle
digraph CD4 are as follows:

CG4 = 1 2

4 3

dg(CG4) = 1
((

		

2

		

hh
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((
3hh

HH CD4 = 1 // 2

��
4

OO

3oo

A tree is a finite connected graph with at least one vertex and no cycle (i.e.,
acyclic). A leaf in a tree G is a vertex of degree 1 (i.e., there is exactly one
edge e ∈ E(G) with v ∈ e). The directed version dg(G) of trees G are called
“directed trees” in [59], and we use ditree here. In Chapter 5 we study ditrees
and their properties in order to characterise an important class of MUs.

A path graph is a tree with n ∈ N vertices, where at most two vertices have
degree 1 (i.e., there are at most two leaves) and the other vertices are of degree 2.
The standardised path graph is PGn := ({1, . . . , n}, {{1, 2}, . . . , {n−1, n}}). A
dipath is a digraph isomorphic to dg(PGn). A path digraph is some digraph
isomorphic to the standardised path digraph

PDn := ({1, . . . , n}, {(1, 2), . . . , (n− 1, n)}).

Example 3.3.2 The path graph PG4 and the path digraph PD4 are:

PG4 = 1 2 3 4 PD4 = 1 // 2 // 3 // 4

and the dipath dg(PG4) is as follows:

dg(PG4) = 1
((
2

((
hh 3

((
hh 4hh

Definition 3.3.3 A rooted tree T is a pair T = (T0, r), where T0 is a finite
tree and r ∈ V (T0), the root.

A directed rooted tree is a finite acyclic digraph with exactly one source (a
vertex of in-degree zero), where the in-degree of every vertex other than the
source is precisely one. Various notions for rooted trees:
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Definition 3.3.4 Consider a rooted tree T with root r.

1. Any vertex y on the unique path from r to a vertex x is called an ancestor
of x in case y 6= x. So if r 6= x, then r is the first ancestor of x.

2. If y is the first ancestor of x (that is there is no other vertex between x,y),
then y is the parent of x, and x is a child of y.

3. A vertex with no children is a leaf, and a non-leaf vertex is a inner
(internal) vertex.

4. A near-leaf is a vertex with at least one child being a leave.

5. T is called trivial if it has no inner vertex (such rooted trees are the only
cases where the root is a leaf).

6. The height of x is the length of the longest path from x to a leaf, and the
height of T is the height of its root.

A binary tree is a rooted tree in which each vertex has at most two children.
In the latter case, the first child is also called left child, the second child right
child. For a binary tree T , the number of leaves is denoted by #lvs(T ).
Full binary trees are rooted trees, where every vertex has either zero or two
children.
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Chapter 4

Basics of minimal
unsatisfiability

In this chapter we study minimal unsatisfiability, and the main focus is to
present basic methods and results used for investigating the structure of MUs
and their isomorphism types. Furthermore characterisations of the most basic
class of MUs (i.e., MUδ=1) and its two important subclasses with polytime
isomorphism decision are discussed.

The outline of this section is as follows. In Sections 4.1 and 4.2 saturation
and its dual notion, marginalisation, are discussed. Singularity and singular
MUs are defined in Section 4.3, and an upper bound for minimum variable
degree of MUs is given in this section. Sections 4.4 and 4.5 review the main
tools for investigating the structure of MUs, namely splitting and singular DP-
reduction. Section 4.6 is devoted to the class MUδ=1 which covers the class of
minimally unsatisfiable renamable Horn clause-sets and the class of unsatisfiable
hitting clause-sets with deficiency 1. Finally, Subsections 4.6.2 and 4.6.4 review
characterisations of marginal and saturated elements of MUδ=1 via connecting
them to graph theory, from which the polytime isomorphism decision of these
subclasses follows.

4.1 Saturation

In this section we discuss the process of “saturation” for MUs as introduced in
[53]. First we define a special notation from [107] and [108] which is to add a
literal to a clause C in a clause-set, under the restrictions that we obtain a new
clause C ′ 6= C, and do not introduce a new variable (recall that “ ·∪” denotes
disjoint union, and lit(C) is the set of all possible literals over var(C)):

Definition 4.1.1 For F ∈ CLS, C ∈ F and x ∈ lit(F ) \ lit(C), such that
C ∪ {x} /∈ F , we define

S(F,C, x) := (F \ {C}) ·∪ (C ·∪ {x}) ∈ CLS.

36



For F ∈MU a one-step saturation (on C) is the transition F ; S(F,C, x)
such that S(F,C, x) ∈MU (note that the usage of the term “S(F,C, x)” implies
that it is defined, i.e., all assumptions are fulfilled).

Remarks:

1. Compared to [108, Definition 1] and [109, Definition 3.5], here the case
C ∪ {x} ∈ F is disallowed, since it does not seem to be useful.

2. By definition for F ′ := S(F,C, x) we have:

(a) var(F ′) = var(F ), and so n(F ′) = n(F ).

(b) c(F ′) = c(F ), and therefore δ(F ′) = δ(F ).

(c) `(F ′) = `(F ) + 1.

(d) F |= F ′; and if F is irredundant, then so is F ′.

3. By definition, for F ′ := S(F,C, x) there is a bijection f : F → F ′ with
C ⊆ f(C) ∈ F ′ for all C ∈ F .

Lemma 4.1.2 ([109]) Consider F, F ′ ∈ CLS with F ′ := S(F,C, x).

1. If F ′ ∈ USAT , then F ∈ USAT .

2. If F ∈MU and F ′ ∈ USAT , then F ′ ∈MU .

Proof: For Part 1 note that from ϕ ∗ F = > follows ϕ ∗ F ′ = >. For Part 2,
by definition if F ′ is redundant then F would also be redundant, contradicting
minimally of F . �
For more details on one-step saturation see [109, Lemma 3.9, Lemma 6.5].

Example 4.1.3 Consider F := {{a, b}, {a}, {b}} ∈ MUδ=1. Using Definition
4.1.1 we can only perform one-step saturation on {a} ∈ F or {b} ∈ F as follows
(to obtain an MU):

F ′ := S(F, {a}, b) = {{a, b}, {a, b}, {b}} ∈ MUδ=1,

F ′′ := S(F, {b}, a) = {{a, b}, {a}, {a, b}} ∈ MUδ=1.

An MU F is called saturated if adding any literal occurrences to a clause in
F yields a satisfiable clause-set.

Definition 4.1.4 ([108]) A clause-set F ∈MU is called saturated if no one-
step saturation is possible, and the set of all saturated minimally unsatisfiable
clause-sets is denoted by SMU := {F ∈ MU | ¬∃C, x : S(F,C, x) ∈ MU}.
We also use SMUδ=k := SMU ∩MUδ=k to denote the set of all saturated
(minimally unsatisfiable) clause-sets with fixed deficiency k ≥ 1.
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By Lemma 4.1.2 every F ∈ MU can be saturated (also noted in [53], [98]),
that is, either F is saturated or there exist some F ′ ∈ MU such that F ′ is
a saturation of F . Note that in general F might have many saturations. In
Section 4.6.2 we will discuss characterisation of the class SMUδ=1, while the
nonsingular elements of SMUδ=2 are characterised in Section 5.3.

Considering the decision complexity, in [85, Theorem 1] it is shown that the
decision problem whether F ∈ CLS is saturated minimally unsatisfiable is DP -
complete, where the complexity class DP is the set of problems which can be
defined as the difference of two NP-problems. For the case of SMUδ=1, a nice
characterisation has been provided in [4] (called “strongly minimal unsatisfiable”
there), yielding a polytime decision for this class. In general classes SMUδ=k
for fixed deficiency k ≥ 1 are polytime decidable as classes MUδ=k have been
shown to be polytime decidable ([91], [52]).

Example 4.1.5 MUs F ′, F ′′ in Example 4.1.3 are saturated. By definition,
A0 = {⊥} ∈ MUδ=1 is saturated; and as A1 is saturated, for any F ∈ SMU
with n(F ) = 1 holds F ∼= A1 ∈ SMUδ=1 (see Example 2.4.2). In fact all full
clause-sets An are saturated as all clauses in An are full (see Section 2.1).

Definition 4.1.6 ([108]) For F ∈ MU , a partial saturation is some G ∈
MU which can be obtained from F by a series (possibly zero) of one-step satu-
rations according to Definition 4.1.1, while we have a saturation if G ∈ SMU .

Remarks:

1. For every saturation G of an MU F we have var(G) = var(F ) and δ(G) =
δ(F ).

2. Partial saturations of F ∈ MU are obtained by repeated applications of
the transition F ; S(F,C, x), such that we always stay within MU . We
have a (complete) saturation if and only if the sequence is maximal (can
not be extended).

For two clause-sets F,G ∈ MUδ=k, k ≥ 1, Definitions 4.1.1 and 4.1.6 imply
that G is a partial saturation of F iff var(G) = var(F ) and there is a bijection
f : F → G such that for all clauses C ∈ F we have C ⊆ f(C). Furthermore, G
is a saturation of F iff G ∈ SMU and G is a partial saturation of F .

We can also localise saturation:

Definition 4.1.7 For F ∈ MU and a variable v ∈ var(F ), we define local
saturation as the process of adding literals v, v to some clauses in F (not
already containing v, v), until adding any additional v or v yields a satisfiable
clause-set. Then the result is locally saturated on v.

See Lemma 4.4.4 for an application of local saturation. We will use this method
in Section 5.4 where we characterise the nonsingular elements of MUδ=2.
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Example 4.1.8 Consider the following 2-MU

F := {{−1, 2}, {1,−2}, {−2, 3}, {2,−3}, {1, 3}, {−1,−3}} ∈ MUδ=3.

The result of locally saturating F on variable 3 is as follows:

F ′ := {{−1, 2, 3}, {1,−2,−3}, {−2, 3}, {2,−3}, {1, 3}, {−1,−3}} ∈ MUδ=3.

Finally we consider an important subclass of MUs, namely unsatisfiable hit-
ting clause-sets. In a hitting clause-set F ∈ CLS all clauses C,D ∈ F , C 6= D,
have a clash, i.e., C ∩ D 6= ∅ holds. By definition it follows that F ∈ CLS is
hitting iff every C ∈ F , as partial assignment, is a satisfying assignment for
F \ {C} (see Section 2.2). Therefore unsatisfiable hitting clause-sets are in a
sense the most extreme case of irredundant clause-sets as clauses have no com-
mon falsifying assignment ([102]). We use UHIT ⊂ USAT to denote the set
of unsatisfiable hitting clause-sets, while UHITδ=k is the set all F ∈ UHIT
with deficiency k. Furthermore UHIT ′δ=k := UHITδ=k ∩MU ′. Example of
unsatisfiable hitting clause-sets are the full clause-sets An ∈ UHIT . By defini-
tion, F ∈ UHIT implies that F ∈ MU ([94]). Furthermore as for F ∈ UHIT
and any partial assignment ϕ ∈ PASS we have ϕ ∗ F ∈ UHIT ⊂ MU ([94]),
the elements of this class are actually saturated (see Lemma 4.4.5 Part 3):

Lemma 4.1.9 ([108]) UHIT ⊂ SMU .

Therefore we have UHITδ=k ⊆ SMUδ=k ⊂MUδ=k, and so unsatisfiable hitting
clause-sets have deficiency at least one. See Section 4.6.2 for the full character-
isation of UHITδ=1, and Section 7.3 for the discussion on characterising classes
UHITδ=k.

4.2 Marginalisation

In the previous section we discussed saturated MUs, that is, those F ∈ MU
where adding any literal occurrence to any clause destroys minimal unsatisfia-
bility. Here we study “marginal”MUs, that is, those F ∈ MU where removing
any literal occurrence from any clause destroys the property of being minimally
unsatisfiable. We use the following notation to remove a literal from a clause-
set, under the restrictions that we obtain a new clause and do not eliminate a
variable altogether:

Definition 4.2.1 For F ∈ CLS, C ∈ F and x ∈ C, such that C \ {x} /∈ F and
var(x) ∈ var(F \ {C}, we define

M(F,C, x) := (F \ {C}) ·∪ (C \ {x}) ∈ CLS.

For F ∈ MU a one-step marginalisation is the transition F ; M(F,C, x)
such that M(F,C, x) ∈MU .

Remarks:
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1. By definition we have for F ′ := M(F,C, x):

(a) var(F ′) = var(F ), and so n(F ′) = n(F ).

(b) c(F ′) = c(F ), and so δ(F ′) = δ(F ).

(c) `(F ′) = `(F )− 1.

(d) F ′ |= F , so if F ∈ USAT , then also F ′ ∈ USAT .

(e) And if F ′ is irredundant, then so is F .

(f) So if F ∈MU , then F ′ ∈MU iff F ′ is irredundant.

2. Consider F ∈ MU . The question about S(F,C, x) is whether (still)
S(F,C, x) ∈ USAT (then we get S(F,C, x) ∈ MU), while for M(F,C, x)
we always have M(F,C, x) ∈ USAT , and the question is whether M(F,C, x)
is (still) irredundant (then we get M(F,C, x) ∈MU).

Definition 4.2.2 A clause-set F ∈ MU is called marginal if no one-step
marginalisation is possible. The set of all marginal minimally unsatisfiable
clause-sets is denoted by MMU := {F ∈ MU | ¬∃C, x : M(F,C, x) ∈ MU},
and the set of all marginal (minimally unsatisfiable) clause-sets with fixed defi-
ciency k ≥ 1 is denoted by MMUδ=k :=MMU ∩MUδ=k.

As characterised in [83, Theorem 8] MUs that are both saturated and marginal
are the full clause-sets F ∼= An(F ):

Lemma 4.2.3 ([83]) For F ∈MU holds F ∈ SMU ∩MMU iff F ∼= An(F ).

From Lemma 4.2.3 follows that if for a clause-set F ∈ SMU we have F 6∼= An(F )

then F is not marginal and there is at least one literal occurrence in F which
can be removed without destroying minimal unsatisfiability. Therefore there is
some MU F ′ 6= F where F is a saturation of F ′ ([109, Corollary 3.11]).

Definition 4.2.4 For F ∈MU a partial marginalisation is some G ∈MU
which can be obtained from F by a series (possibly zero) of one-step marginal-
isations according to Definition 4.2.1, while we have a marginalisation if
G ∈MMU .

Remarks:

1. Partial marginalisations of F ∈ MU are obtained by repeated applica-
tions of the transition F ; M(F,C, x), such that we always stay within
MU . We have a (complete) marginalisation if and only if the sequence is
maximal (can not be extended).

2. For F,G ∈MU the following properties are equivalent:

(a) F is a partial marginalisation of G.

(b) G is a partial saturation of F .
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3. An overview of marginal MUs and partial marginalisation can be found
in [85] and [109].

By Definitions 4.2.1 and 4.2.4, a marginalisation G for F ∈ MU is some
marginal G ∈ MU with var(G) = var(F ) such that there is a bijection α :
F → G with ∀C ∈ F : C ⊇ α(C). Similar to saturation, every MU can be
marginalised, and so an MU F is either marginal or there is some G ∈ MU
which is a marginalisation of F .

4.3 Singularity

A singular variable for a clause-set F is a variable occurring in one sign only
once.

Definition 4.3.1 A variable v ∈ VA is a singular variable for F ∈ CLS if

min(ldF (v), ldF (v)) = 1,

while otherwise is nonsingular. If a clause-set F does not have any singular
variable, it is called nonsingular. An m-singular variable is a singular
variable with vdF (v) = m+ 1 (m ∈ N).

We use the following notations from [108]. For F ∈ CLS, vars(F ) ⊆ var(F ) is
the set of singular variables. The set of nonsingular MUs is denoted byMU ′ ⊂
MU , while MU ′δ=k := MU ′ ∩ MUδ=k is the set of nonsingular MUs with
fixed deficiency k ∈ N. By SMU ′ ⊂ SMU we denote the set of nonsingular
saturated MUs, while SMU ′δ=k := SMU ′ ∩ SMUδ=k. Furthermore we use
2–MU ′ ⊂ 2–MU for the set of nonsingular 2-MUs.

Example 4.3.2 For F := {{x}, {y}, {x, y, z}, {y, z}, {y, z}} ∈ CLS, variables
x, z are singular variables for F , while y is a nonsingular variable. So vars(F ) =
{x, z}. Also x is a 1-singular variable, while z is a 2-singular variable for F .

We recall that MUs have no pure literal, and that any variable occurring in
a unit-clause in an MU is a singular variable, since otherwise the unit-clause
would subsume another clause ([78], [108, Lemma 14]).

Lemma 4.3.3 If an MU F has a unit-clause {x} ∈ F , then var(x) ∈ vars(F ).

Proof: If there would be C ∈ F \{{x}} with x ∈ C, then {x} ⊂ C contradicting
minimal unsatisfiability of F . So ldF (x) = 1. �

As shown in [91, Lemma C.2], F ∈ MU with n(F ) > 0 has a variable
v ∈ var(F ) with at most δ(F ) positive and at most δ(F ) negative occurrences.
The special case of δ(F ) = 1 had been proved in [45, Theorem 12] (i.e., for
F ∈MUδ=1 there exist a 1-singular variable).
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Lemma 4.3.4 ([91]) For F ∈ MUδ=k, k ∈ N and F 6= {⊥}, there exists a
variable v ∈ var(F ) with ldF (v), ldF (v) ≤ k.

Corollary 4.3.5 ([45]) Every clause-set F ∈MUδ=1 \{{⊥}} has a 1-singular
variable (i.e., µvd(F ) = 2).

By Lemma 4.3.4 for F ∈MUδ=k \ {⊥} and k ∈ N, it is obvious that µvd(F ) ≤
2k. However a sharper upper bound is given for µvd(F ) in [109, Theorem 8.6].
For deficiency 2, Lemma 4.3.4 implies that F ∈MU ′δ=2 has a variable occurring
precisely twice positively and twice negatively, and so µvd(F ) ≤ 4. We will use
this fact in Section 5.3 to characterise the isomorphism types of F ∈ MU ′δ=2.
In Section 4.5 we study how to eliminate singular variables without destroying
minimal unsatisfiability, and when this process is confluent.

4.4 Splitting

A fundamental tool for understanding the structure of MUs is “splitting”, which
is to obtain two new clause-sets from a clause-set F by setting an appropriate
variable in F to both truth values 0, 1, and then analyse them and lift the
information obtained back to F . An early use is in [42] where the “splitting
rule” was used instead of the “rule for eliminating atomic formulas” to improve
the implementation of the algorithm in [43].

Definition 4.4.1 Splitting of a clause-set F is the process of assigning the
truth values to a variable v ∈ var(F ), that is, obtaining two clause-sets F0 :=
〈v → 0〉 ∗ F and F1 := 〈v → 1〉 ∗ F .

Splitting of a clause-set F ∈ CLS is disjoint (also called “disjunctive splitting”
in [27, Definition 8]) if there is no clause C ∈ F that belongs to both F0, F1.

Example 4.4.2 Consider F, F ′ ∈ MUδ=3 in Example 4.1.8. Splitting F =
{{−1, 2}, {1,−2}, {−2, 3}, {2,−3}, {1, 3}, {−1,−3}} on variable 3 yields clause-
sets F0, F1 as follows:

F0 := 〈3→ 0〉 ∗ F = {{−1, 2}, {1,−2}, {−2}, {1}},

F1 := 〈3→ 1〉 ∗ F = {{−1, 2}, {1,−2}, {2}, {−1}}.

F0, F1 are both unsatisfiable. However they are not MU as F0 \ {{1,−2}} and
F1 \{{−1, 2}} are still unsatisfiable. Now consider F ′, which is locally saturated
on 3. Splitting F ′ on 3 is disjoint and yields two MUs F ′0, F

′
1 as follows:

F ′0 = {{−1, 2}, {−2}, {1}} ∈ MUδ=1, F ′1 = {{1,−2}, {2}, {−1}} ∈ MUδ=1.

Clause-sets are closed under splitting (recall Definition 2.2.2), and it is clear
that a clause-set F is unsatisfiable iff the results of splitting on a variable v ∈
var(F ) are unsatisfiable ([42]). For an MU F splitting on any variable yields two
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unsatisfiable clause-sets which are inMU or have some sub-clause-sets inMU .
So in order to guarantee that minimal unsatisfiability is maintained by splitting
a further condition is required. The approach of Kleine Büning and Zhao, as
outlined in [83, Section 3], is to remove clauses appropriately in F0, F1, and
study various conditions. In [53] it is shown that for F ∈ SMU and any literal
x ∈ lit(F ) we have 〈x→ 1〉∗F ∈MU . Then the reverse direction was proved in
[102, Corollary 5.3], obtaining an important characterisation of saturated MUs,
namely that a clause-set F is saturated iff splitting on any variable in F yields
two MUs. This characterisation has been generalised in [109, Lemma 3.15] as
follows:

Lemma 4.4.3 ([109]) Consider a subsumption-free clause-set F ∈ CLS (that
is, F does not contain any clauses C,D ∈ F with C ⊂ D and |C|+ 1 = |D|).

1. If there is a variable v ∈ var(F ) with 〈v → 0〉∗F, 〈v → 1〉∗F ∈MU , then
F ∈MU .

2. If there is a variable v ∈ var(F ) with 〈v → 0〉 ∗ F, 〈v → 1〉 ∗ F ∈ SMU ,
then F ∈ SMU .

3. F ∈ SMU iff F 6= > and ∀ v ∈ var(F ) ∀ ε ∈ {0, 1} : 〈v → ε〉 ∗ F ∈MU .

Now the proof of Lemma 4.4.3 (in [109]) yields in fact, that even for a locally
saturated F ∈ MU on a variable v (Definition 4.1.7), splitting on v maintains
minimal unsatisfiability:

Lemma 4.4.4 Consider F ∈MU and a variable v ∈ var(F ). If for each C ∈ F
a one-step saturation with v or v is not possible (that is, F is locally saturated
on v), then we have 〈v → ε〉 ∗ F ∈MU for both ε ∈ {0, 1}.

We will use Lemmas 4.4.3 and 4.4.4 to characterise the nonsingular elements of
MUδ=2 and 2–MU in Chapter 6. More details about splitting and its applica-
tions could be found in [77], [83], [85], [106] and [109].

After establishing the criteria to maintain minimal unsatisfiability, the next
step is to predict how exactly the deficiency changes via splitting. In general the
deficiency may increase or decrease by splitting, as after removing the satisfied
clauses one or more variables could be eliminated. By [92, Corollary 7.10] for
F ∈ MUδ=k and any variable v ∈ var(F ), we obtain F0 := 〈v → 0〉 ∗ F and
F1 := 〈v → 1〉 ∗ F with δ(F0), δ(F1) ≤ k. It is shown in [78, Theorem 2] that
if all variables in F occur at least twice positively and negatively (i.e., F is
nonsingular) then the deficiency is strictly decreased for both splitting results
(i.e., δ(F0), δ(F1) < k). Also as observed in [91, Lemma 3.10] for k ≥ 2 and any
F ∈MUδ=k there is a variable v ∈ var(F ) such that splitting yields F0, F1 with
δ(F0), δ(F1) < k. Finally it was shown in [109, Lemma 8.2] that in order to have
control over the changes on the deficiency, splitting should be performed on a
variable v with minimal degree since no variable can have all its occurrences
only in clauses containing v resp. v and no further variable can be lost in F0, F1.
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Lemma 4.4.5 ([109]) For F ∈ CLS and a non-pure variable v ∈ varµvd(F ),
let m0 := ldF (v) and m1 := ldF (v). Consider ε ∈ {0, 1}.

1. var(〈v → ε〉 ∗ F ) = var(F ) \ {v} (thus n(〈v → ε〉 ∗ F ) = n(F )− 1).

2. If F is subsumption-free, then δ(〈v → ε〉 ∗ F ) = δ(F ) − mε + 1, where
δ(F )−mε + 1 < δ(F ) if and only if mε ≥ 2.

3. If F ∈ SMUδ=k for k ∈ N, then 〈v → ε〉 ∗ F ∈ MUδ=k−mε+1, where
mε ≤ k.

Example 4.4.6 Consider Lemma 4.4.5, Part 2. We show that the condition
v ∈ varµvd(F ) is not enough to guarantee δ(〈v → ε〉∗F ) = δ(F )−mε+1 iff mε ≥
2. Consider F := {{1, 2}, {1, 2, 3}, {−1, 2,−3}, {1,−2,−3}, {−1,−2, 3}} ∈ CLS\
MU , where δ(F ) = 2 and varµvd(F ) = {3} with ldF (3) = ldF (−3) = 2. We
have F0 := 〈3→ 0〉 ∗ F = {{1, 2}, {−1,−2}} with δ(F0) = 0 < δ(F )− ldF (3) +
1 = 1.

However for F ∈MU the condition v ∈ varµvd(F ) guarantees the assertion
since there are no clauses C,D ∈ F with C ⊂ D.

MUs are subsumption-free and so by Lemma 4.4.5, Part 2 we obtain:

Corollary 4.4.7 ([78]) For F ∈ MU ′δ=k, k ≥ 2 and F0 := 〈v → 0〉 ∗ F ,
F1 := 〈v → 1〉 ∗ F we have δ(F0), δ(F1) < k.

4.5 Singular DP-reduction/extension

Another major tool for the analysis of MUs is “singular DP-reduction”, that is,
to reduce F ∈MU to DPv(F ) for some singular variable v ∈ var(F ) (see Defini-
tions 2.6.1 and 4.3.1). The study of special cases of DP-reduction and singular
DP-reduction started in [89], [104], [105], while some early papers concerning
the following application of DP-reduction for MUs are [91] and [142], under the
name “Davis-Putnam resolution”, and also [101] (see [108] for a full overview).
In this thesis use the terminology “singular DP-reduction” which was first used
in [97], and we follow the notations from [108].

Definition 4.5.1 ([108]) For F, F ′ ∈ CLS the relation F
sDP−−→ F ′ holds if

there is v ∈ vars(F ) with F ′ = DPv(F ) (singular DP-reduction).

For F ∈ MU , sDP(F ) := {F ′ ∈ MU ′ : F
sDP−−−→∗ F ′} ∈ Pf(MU ′) is the set

of all clause-sets obtained by “complete” singular DP-reduction of F .

An m-singular DP-reduction is a singular DP-reduction for an m-singular
variable, e.g., 1-singular DP-reduction is a DP-reduction for a 1-singular
variable.

As explained in Section 2.6, DPv(F ) is satisfiability-equivalent to F . But
application of the DP-reduction to an MU F may or may not yield another
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MU. A positive example for n ∈ N and v ∈ {1, . . . , n} is DPv(An) ∼= An−1. It
is shown that if v is a singular variable then minimal unsatisfiability of DPv(F )
is guaranteed ([91, Appendix B], [101, Lemma 6.1]). Also by [108, Lemma
9] singular DP-reduction for an MU F does not yield tautological resolvents,
and neither between the resolvents nor between resolvents and old clauses a
contraction happens. Therefore for any F ′ ∈ sDP(F ) we have δ(F ′) = δ(F ),
and so the class of MUs with fixed deficiency k ≥ 1 is stable under singular DP-
reduction. Since 2–CLS is stable under resolution, also the classes 2–MUδ=k
are stable under singular DP-reduction (we will characterise these classes in
Chapter 6). Furthermore by [108, Lemma 12] singular DP-reduction preserves
saturatedness of MUs (i.e., the class SMU is also stable).

Lemma 4.5.2 ([108]) Consider F, F ′ ∈ CLS with F
sDP−−−→∗ F ′ (i.e., F ′ is

obtained by complete singular DP-reduction of F ).

1. F ∈MU iff δ(F ′) = δ(F ) and F ′ ∈MU .

2. If F ∈ SMU then F ′ ∈ SMU .

3. If F ∈ UHIT then F ′ ∈ UHIT .

Corollary 4.5.3 ([108]) The classesMUδ=k, SMUδ=k and UHITδ=k for k ≥
1 are stable under singular DP-reduction.

Another fundamental result concerning singular DP-reduction of an MU F ,
shown in [108], is that the elements of sDP(F ) all have the same number of
variables (while in general they are non-isomorphic). The proof idea is to show
that all complete singular DP-reductions for F must have the same length, and
this can be established by utilising the commutativity properties of 1-singular
variables, so that induction on the number of singular variables removed by
complete singular DP-reduction can be used.

Theorem 4.5.4 ([108]) For F ∈MU and any F ′, F ′′ ∈ sDP(F ) holds n(F ′) =
n(F ′′).

So for F ∈MU we can define the nonsingularity type nst(F ) := n(F ′) ∈ N0

via any F ′ ∈ sDP(F ) (first introduced in [108]). We have 0 ≤ nst(F ) ≤ n(F ),
with nst(F ) = 0 iff δ(F ) = 1, and nst(F ) = n(F ) iff F is nonsingular. The
nonsingularity type nst(F ) provides basic information about the isomorphism
type of MUs after (complete) singular DP-reduction, and suffices for deficiency
2 and 2-MUs (which will be shown in Chapter 5).

A (complete) singular DP-reduction for an MU F is called confluent if
|sDP(F )| = 1 (i.e., the result of removing all singular variables by DP-reduction
is always unique and does not depend on the order of the variables removed);
while we have confluence modulo isomorphism if all elements of sDP(F ) are
pairwise isomorphic (i.e., for all F ′, F ′′ ∈ sDP(F ) we have F ′ ∼= F ′′). In general
elimination of singular variables by singular DP-reduction is not confluent for
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MUs. Corollary 4.3.5 implies that complete singular DP-reduction on MUδ=1

must yield {⊥} (i.e., MU ′δ=1 = {⊥}), and so MUδ=1 is confluent. Also the
confluence of saturated MUs under singular DP-reduction is shown in [108,
Theorem 23], which implies the confluence of UHIT (recall Lemma 4.1.9). By
[108] we have confluence modulo isomorphism for MUs with deficiency 2; while
for higher deficiencies there are non-isomorphic elements in sDP(F ).

Lemma 4.5.5 ([108]) For F ∈MU holds:

1. If δ(F ) = 1 then sDP(F ) = {{⊥}}.

2. If δ(F ) = 2 then the elements of sDP(F ) are pairwise isomorphic.

3. If δ(F ) ≥ 3 then sDP(F ) has some non-isomorphic clause-sets.

4. If F ∈ SMU then |sDP(F )| = 1.

In Section 6.4.1 we will discuss a special case of singular DP-reduction where
we always have confluence.

We now consider the reverse direction of the singular DP-reduction, i.e.,
“singular DP-extension”. This process was first introduced in [108, Examples
15,19,54] (called “inverse singular DP-reduction” there). We use the following
definition from [109]:

Definition 4.5.6 For F ∈ CLS, m ∈ N and v ∈ VA \ var(F ), a singular
m-extension G ∈ CLS of F with v is obtained by the following steps:

1. Choose m different clauses Di ∈ F for i ∈ {1, . . . ,m}.

2. Choose a subset C ⊆
⋂m
i=1Di.

3. Choose clauses D′i for i ∈ {1, . . . ,m} such that (Di \ C) ⊆ D′i ⊆ Di.

4. For x ∈ lit({v}) let C ′ := C ·∪ {x} and D′′i := D′i ·∪ {x} for i ∈ {1, . . . ,m}.

5. G := (F \ {D1, . . . , Dm}) ·∪ {C ′, D′′1 , . . . , D′′m}.

By definition, for a singular m-extension F ′ of F ∈ CLS (m ∈ N) we have
n(F ′) = n(F ) + 1 and c(F ′) = c(F ) + 1, and so δ(F ′) = δ(F ) (note that the D′i
are pairwise different). As shown in [109, Lemma 5.8] for F, F ′ ∈ CLS, m ∈ N
and v ∈ var(F ), the relation F

sDP−−→ F ′ holds for a singular DP-reduction on
an m-singular variable v with c(F ′) = c(F ) − 1 iff F is obtained by a singular
m-extension of F ′. Therefore by Lemma 4.5.2, Part 1 minimal unsatisfiability
is maintained by singular DP-extension (noted in [109, Lemma 5.9]).

Lemma 4.5.7 ([109]) For F ∈ CLS, m ∈ N and a singular m-extension F ′ of
F holds: F ∈MU ⇔ F ′ ∈MU .
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4.6 MUs of deficiency one

This section is about understanding the most basic class of minimally unsat-
isfiable clause-sets, i.e., MUs with deficiency 1 (recall that for F ∈ MU holds
δ(F ) ≥ 1). First in Section 4.6.1 we discuss a generation process to produce all
elements of this class. Then in Section 4.6.2 the saturated elements of MUδ=1

are characterised via full binary trees, from which we obtain non-saturated el-
ements of MUδ=1 via partial marginalisation. Also Lemma 4.6.12 gives an
easy criterion for partial marginalisation of any F ∈ MUδ=1. In Section 4.6.3
we review minimally unsatisfiable renamable Horn clause-set. Finally in Sec-
tion 4.6.4 the notion of conflict graph is defined and used to characterise the
marginal elements of MUδ=1.

4.6.1 Creation

The starting point of the investigation into the class MUδ=1 is the basic fact
that any F ∈MUδ=1 has a 1-singular variable (Corollary 4.3.5), i.e., a variable
of degree 2. This fact was used in [45] to characterise MUδ=1 as follows:

Lemma 4.6.1 ([45]) For F ∈MU the following properties are equivalent:

1. δ(F ) = 1.

2. sDP(F ) = {{⊥}}.

3. Repeated applications of 1-singular DP-reduction yield {⊥}.

Lemma 4.6.1 implies that the decision whether “F ∈ MUδ=1?” is polytime
decidable (actually quadratic time, as shown in [45, Theorem 14]), while [4] had
already shown polytime-decision of the class of saturated elements of MUδ=1.
Furthermore Lemma 4.6.1 yields the characterisation of the nonsingular MUs
of deficiency 1, namely MU ′δ=1 = SMU ′δ=1 = {{⊥}}. Now using Part 3 of this
lemma, we can produce all F ∈ MUδ=1 by the reverse direction of 1-singular
DP-reduction (i.e., singular 1-extension), starting from {⊥}, as follows:

Theorem 4.6.2 ([45]) The following process creates exactly the elements of
MUδ=1:

1. Start with {⊥} ∈ MUδ=1.

2. For every F ∈MUδ=1 already obtained, choose C ∈ F and a new variable
v /∈ var(F ), choose C1, C2 ⊆ C with C1 ∪ C2 = C, and replace C by
C1 ∪ {v}, C2 ∪ {v}.

Proof: Given an element of MUδ=1, a singular DP-extension preserves mini-
mal unsatisfiability and deficiency (Lemma 4.5.7). So all clause-sets created by
this process are in MUδ=1.

Now we show that any F ∈ MUδ=1 with n := n(F ) ≥ 1 can be produced
via this process by induction on n. We know that n = 1 iff F ∼= A1, where A1
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is obtained from {⊥} by this process. Assume n ≥ 2. By Lemma 4.3.4 F has a
singular variable v ∈ var(F ) with vdF (v) = 2. Let F ′ = DPv(F ), where we have
F ′ ∈MUδ=1 with n(F ′) = n−1. By induction hypothesis F ′ can be created by
this process. Consider any C ∈ F ′ and a new variable v /∈ var(F ′) and choose
C1, C2 ⊆ C with C1∪C2 = C. Let F := (F ′ \C) ·∪{C1∪{v}, C2∪{v}}. Clearly
F can be constructed by this process. �

As noted in [91, Lemma C.4] the saturated elements, F ∈ SMUδ=1, are
produced by the creation process in Theorem 4.6.2 if in each step the condition
C1 = C2 = C holds (i.e., the produced clauses are as large as possible). Now
for F ∈ SMUδ=1, n(F ) ≥ 1 created by this process, the variable v ∈ var(F )
added in the first step is called a full variable for F as for all clauses C ∈ F
we have v ∈ var(C). Also to create the marginal elements, MMUδ=1, the
condition C1 ∩ C2 = ∅ should be applied in each step. In Section 6.3 we will
discuss another special case of this creation process which yields the elements
of 2–MUδ=1.

4.6.2 The structure tree and saturated cases

In Section 4.6.1 we explained a creation process to produce the elements of
MUδ=1. In this section we first characterise saturated MUs of deficiency 1,
i.e. F ∈ SMUδ=1, and we show that the isomorphism problem for this class is
polytime decidable. Furthermore we describe the class of unsatisfiable hitting
clause-sets of deficiency 1 (recall Lemma 4.1.9). Then we show that all non-
saturated elements of MUδ=1 are obtained from the saturated cases via literal
elimination in a way that no pure literal is created.

In [91, Lemma C.5] the structure of classes SMUδ=1 and MUδ=1 are de-
scribed as a binary tree. These characterisations (which later were generalised
in [102, Section 5.2]) just describe the expansion process in Theorem 4.6.2, and
are basically the same as a resolution tree refuting F ∈ MUδ=1 (the tree is
not unique). Since the variables in the tree are all unique (the creation pro-
cess in Theorem 4.6.2 does not reuse variables), any two clauses in F clash in
at most one variable. Using the version of Theorem 4.6.2 for saturated cases
we characterise the “structure tree” of F ∈ SMUδ=1 as follows (recall that
F ∈ SMUδ=1 \ {{⊥}} has a unique full variable):

Lemma 4.6.3 For F ∈ SMUδ=1 let T (F ) be the structure tree, a finite full
binary tree where each inner vertex is labelled with a unique variable of F as
follows:

1. If F = {⊥}, then T (F ) is the trivial tree. So assume F 6= {⊥}.

2. The root of T (F ) is labelled with the (unique) full variable v of F .

3. The left and right subtree of T (F ) is T (〈v → 0〉 ∗F ) resp. T (〈v → 1〉 ∗F ).

On the other hand, for a full binary tree T , such that every inner vertex is
labelled with a distinct variable, the clause-set F (T ) ∈ SMUδ=1 is obtained by
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associating with every leaf of T a clause, namely the clause collecting the literals
along the path from the root to the leaf, with a left child meaning the positive
literal of the variable at the vertex, and a right child the negative literal. We
also write F (T ) = {Cw : w leaf of T (F )}.

Remarks:

1. For a structure tree T (F ) of F ∈ SMUδ=1 holds #lvs(T (F )) = c(F ).

2. For a structure tree T (F ) of F ∈ SMUδ=1 we can extend the labelling of
leaves to all vertices, that is, the label Cv of a vertex v ∈ V (T (F ) is the
set of all literals in the path from v to the root of T (F )). Thus, the root
is labelled by ⊥. Now, for any inner vertex Cv with children C1, C2, holds
C1 �C2 = Cv. So, T (F ) can also be interpreted as a resolution refutation
for F (where T (F ) : F ` ⊥ is a regular resolution tree).

3. The maps F 7→ T (F ) and T 7→ F (T ) are inverse bijections from SMUδ=1

to the set of full binary trees, where inner vertices are labelled by distinct
variables.

Example 4.6.4 Consider F := {{v}, {v, w, z}, {v, w, z}, {v, w, x}, {v, w, x}} ∈
SMUδ=1. The structure tree T (F ) is as follows, where v is the root of T (F )
(the full variable in F ) and v, z, x are near-leaves of T (F ) (see Definition 3.3.4).

{v, w, z} {v, w, z} {v, w, x} {v, w, x}

z x

{v} w

v

By Lemma 4.6.3 we immediately obtain:

Corollary 4.6.5 Consider F ∈ SMUδ=1.

1. Any two clauses in F clash in exactly one variable;

2. For any clause C ∈ F as a partial assignment (see Section 2.2) we have
C ∗ (F \ {C}) = >;

3. The singular variables of F correspond one-to-one to the near-leaves of
the structure tree T (F ) (Definition 3.3.4);

4. 1-singular variables of F correspond one-to-one to those near-leaves of
T (F ) with both children being leaves.
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A perfect full binary tree is a binary tree in which all inner vertices have
two children and all leaves have the same length (or same level). It is easy to see
that the perfect structure trees correspond to those saturated MUs of deficiency
1 where all clauses have the same size.

Lemma 4.6.6 Clause-sets F ∈ SMUδ=1 are uniform iff they have a perfect
structure tree T (F ).

Proof: Consider a p-uniform F ∈ SMUδ=1 (i.e., for all C ∈ F holds |C| = p
and p ∈ N0). By Lemma 4.6.3 for a leaf in T (F ), labelled by C, |C| is equal to
the length of the path from that leaf to the root of T (F ). Thus, the length of
all paths from leaves to the root is p (that is T (F ) is perfect). Also for a perfect
structure tree T (F ) of F ∈ SMUδ=1, all paths from leaves to the root of T (F )
have the same length. Thus, all clauses in F have the same length. �

Example 4.6.7 The only 1-uniform element of SMUδ=1 and also MUδ=1 is,
up to isomorphism, A1. Also any 2-uniform clause-set in SMUδ=1 is isomor-
phic to F := {{a, b}, {a, b}, {a, c}, {a, c}} ∈ SMUδ=1 where T (F ) is as follows:

{a, b} {a, b} {a, c} {a, c}

b c

a

We will characterise the isomorphism types of 2-uniform MUs with deficiency
1 in Lemma 6.3.8.

We now come to the main characterisation of SMUδ=1. Lemma 4.6.3 implies
that the structure tree is a complete isomorphism invariant for the elements of
SMUδ=1, and so follows the polytime isomorphism decision of this class (note
that trees have polytime isomorphism decision).

Lemma 4.6.8 Consider two clause-sets F1, F2 ∈ SMUδ=1. Then F1
∼= F2 if

and only if T (F1) and T (F2) are isomorphic.

Corollary 4.6.9 ([81]) The class SMUδ=1 has polytime isomorphism deci-
sion.

The number of full binary trees with n vertices is asymptotically equal to
Cρ−nn−3/2 where ρ = 0.4026975 and C = 0.3188 ([111]). Furthermore nu-
merical data on the number of isomorphism types of full binary trees with m
leaves (and so the number of isomorphism types of F ∈ SMUδ=1 with c(F ) =
m) is given in the OEIS ([139, Sequence A001190]), called the Wedderburn-
Etherington number, and starts as follows:

1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, . . .
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Illustration of the initial cases can be found in [138].
As already shown, the set of unsatisfiable hitting clause-sets fulfils UHIT ⊂

SMU (Lemma 4.1.9). By characterising saturated elements ofMUδ=1 as struc-
ture trees it is easy to see that all F ∈ SMUδ=1 are hitting clause-sets, i.e.,
SMUδ=1 ⊂ UHITδ=1. Therefore the elements of UHITδ=1 are precisely the
saturated MUs of deficiency 1 and have a structure tree:

Corollary 4.6.10 ([91]) UHITδ=1 = SMUδ=1, and UHIT ′δ=1 = SMU ′δ=1 =
MU ′δ=1 = {{⊥}}.

Obviously every F ′ ∈MU is obtained by partial marginalisation from some
F ∈ SMUδ=δ(F ′) (see Section 4.2). Any near-leaf of the structure tree T (F )
of F ∈ SMUδ=1 is labelled with a singular variable in F (Corollary 4.6.5),
i.e., every clause C ∈ F has a literal x with ldF (x) = 1. Literal x can not be
eliminated by partial marginalisation (otherwise there would be a pure literal),
and so every clause in an MU with deficiency 1 has a literal of degree 1:

Corollary 4.6.11 ([91]) Consider F ∈MUδ=1. For every clause C ∈ F there
exists a literal x ∈ C with ldF (x) = 1.

In general, partial marginalisations of F ∈MU are hard to determine (see [109,
Subsection 3.3]), however for MUδ=1 we have a very easy criterion which is
followed from Remarks of Definition 4.2.1 and Lemma 4.6.3, namely that we
can remove any literal occurrence except where we create a pure variable:

Lemma 4.6.12 ([91]) For F ∈MUδ=1, C ∈ F and x ∈ C we have M(F,C, x) ∈
MU iff ldF (x) ≥ 2.

Therefore by Definition 4.2.1 and Lemma 4.6.12, F ∈MMUδ=1 is marginal iff
all variables v ∈ var(F ) are 1-singular.

Lemma 4.6.13 The class of marginal MUs of deficiency 1, MMUδ=1, is ex-
actly the class of all F ∈MUδ=1 where all variables are 1-singular.

So for F ∈ MUδ=1 we obtain all marginalisation G of F by choosing for each
x ∈ lit(F ) one Cx ∈ F with x ∈ Cx, and removing x from all other clauses of F .
In Lemma 4.6.28 we show that in fact all elements of MMUδ=1 are renamable
Horn, while in Section 4.6.4 we fully characterise this class via trees.

Finally by Lemmas 4.6.3 and 4.6.12 we obtain:

Corollary 4.6.14 ([91]) Consider F ∈ MUδ=1. For all clauses C,D ∈ F
holds |C ∩D| ≤ 1, i.e., clauses C,D have at most one clash.
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4.6.3 Minimally unsatisfiable renamable Horn clause-sets

A clause-set F ∈ CLS is a Horn clause-set if any clause in F has at most one
positive literal, i.e., ∀C ∈ F : |C ∩ var(C)| ≤ 1. HO is the set of Horn clause-
sets, whileRHO is the set of renamable Horn clause-sets (this terminology
was first used in [114]; also called “hidden” Horn clause-sets in the literature),
i.e., clause-sets isomorphic to some F ∈ HO. A well-known simple fact about
unsatisfiable renamable Horn clause-sets is that they have a unit-clause:

Lemma 4.6.15 For F ∈ RHO ∩ USAT there is C ∈ F with |C| ≤ 1.

Proof: W.l.o.g. F ∈ HO. Assume ∀C ∈ F : |C| ≥ 2. Then the partial
assignment setting all variables of F to 0 would be a satisfying assignment for
F . �

In this section we study minimally unsatisfiable renamable Horn clause-set
(short RHO-MUs). Horn clause-sets can be solved by unit-resolution in linear
time ([47]), and the irredundancy of them can be decided in quadratic time
([84]). On the other hand as shown in [7] the problem whether a clause-set F is
a renamable Horn clause-set is solvable in linear time. Therefore for a clause-set
F the decision whether F is an RHO-MU can be solved in quadratic time. It is
well-known (and we will show in Lemma 4.6.20) that RHO-MUs have deficiency
1, first noted in [45, Corollary 10]. In order to provide deeper understanding of
the structure of RHO-MUs, we first discuss a complexity measure for resolution
proofs, and then we use it to characterise clause-sets F ∈ RHO ∩MU .

In general there are various resolution complexity measures (the amount
of effort needed to discover unsatisfiability) investigated in the literature for
unsatisfiable clause-sets (see [20] and [19] for an overview). Here we consider
the “tree-hardness” or just “hardness” hd : USAT → N0, as a measure for
understanding the complexity of resolution proofs. The notion of hardness was
introduced in [90] for both satisfiable and unsatisfiable clause-sets, and in [49]
only for unsatisfiable cases (called “space complexity of tree-like resolution”).
The hardness was generalised to constraint satisfaction problems in [96]. In [6,
Definition 8] we find a different extension of hardness to satisfiable clause-sets,
while a more general form of hardness is investigated in [68] and [69]. Additional
characterisations and the relation of tree-hardness to other resolution complexity
measures are studied in [20] and [19].

The “Horton-Strahler number” of a tree T (also called “Strahler number” in
[6], “levelled height” in [90] and “dc(T )” in [49]) is a measure of its branching
complexity, and is originally introduced by Horton [71] and Strahler [140] in the
area of geology to study the morphology of rivers. The definition is re-invented
in the literature and here we use the definition from [6].

Definition 4.6.16 For a full binary tree T , the Horton-Strahler number,
denoted by hs(T ) ∈ N0, is defined as follows:

1. For a trivial T , hs(T ) := 0.
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2. For a non-trivial T , there are two subtrees T1, T2 and we define

hs(T ) :=

{
max(hs(T1),hs(T2)) hs(T1) 6= hs(T2)

hs(T1) + 1 hs(T1) = hs(T2)
.

The hardness of an unsatisfiable clause-set is the minimum of the Horton-
Strahler numbers of all the resolution trees driving the empty clause.

Definition 4.6.17 ([20]) The hardness of F ∈ USAT , denoted by hd(F ) ∈
N0, is defined as the minimum of hs(T ) over all resolution trees T : F ` ⊥.

The Horton-Strahler number of the structure trees is useful for the general
understanding ofMUδ=1. Also for the special case of SMUδ=1 by the remarks
of Lemma 4.6.3 we have (also shown in [67, Lemma 5.21]):

Lemma 4.6.18 For F ∈ SMUδ=1 and its structure tree T (F ) holds hd(F ) =
hs(T (F )).

Example 4.6.19 For A0 we have hd(A0) = hs(T (A0)) = 0. Also A1 =
{{1}, {−1}} ∈ SMUδ=1 has the hardness hd(A1) = hs(T (A1)) = 1. For F
in Example 4.6.4 we obtain hd(F ) = hs(T (F )) = 2 as follows:

0 0 0 0

1 1

0 2

2

And for the uniform F in Example 4.6.7 we also have hd(F ) = hs(T (F )) = 2:

0 0 0 0

1 1

2

An input-resolution of a clause-set F is a resolution tree T : F ` C
with hs(T ) ≤ 1, that is, every vertex in T is either a leaf or has a leaf as
a child. So by Definition 4.6.17 an unsatisfiable clause-set F has an input-
resolution tree T : F ` ⊥ iff hd(F ) ≤ 1 ([90]). The following lemma states some
characterisations of RHO-MUs from the literature, including that the elements
of RHO ∩MU are precisely MUs F with hardness hd(F ) ≤ 1.

Lemma 4.6.20 For F ∈MU the following properties are equivalent:

1. F ∈ RHO.

2. hd(F ) ≤ 1, (i.e., F has an input-resolution refutation).
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3. δ(F ) = 1, and there exists G ∈ SMUδ=1 obtained by saturation of F with
hs(T (G)) ≤ 1.

Proof: By [33] it is known that refutation by unit-resolution is equivalent to
refutation by input-resolution (i.e., hardness less-or-equal 1); this is also proved,
in a more general context, in [96, Lemma 6.9]. While [70] showed that for
F ∈ MU holds that F ∈ RHO if and only if F is refutable by unit-resolution.
Thus the equivalence of Parts 1, 2 follows (also proved in [6, Lemma 4]).

[45, Corollary 10] noted first that for F ∈ HO∩MU we have δ(F ) = 1. Also
for F ∈ RHO we consider a regularised input-resolution: the number of leaves is
one more than the number of resolution variables, where due to regularisation
the number of leaves is c(F ) and the number of resolution variables is n(F ).
The hitting clause-set obtained from the tree is a saturation of F (again using
regularity, which implies that no clause can be used twice as an axiom), with
that tree yielding its structure tree (recall Corollary 4.6.10). Therefore Part 3
follows from Parts 1, 2.

It remains to show that Part 3 implies Parts 1 and 2. By Lemma 4.6.18 we
have hd(G) = hs(T (G)) ≤ 1. And as F is obtained by partial marginalisation
of G, we get hd(F ) ≤ hd(G). �

As already mentioned, the isomorphism problem for RHO-MUs is GI-complete
(Section 1.4.2). However here we characterise the saturated RHO-MUs up to
isomorphism, and in Section 4.6.4 we show that the marginal elements ofMUδ=1

and so the marginal RHO-MUs have polytime isomorphism decision.
An example of saturated MUs inHO from the literature is MUs Sn (occurred

in [98], [102] and [67]), defined as follows:

Definition 4.6.21 For n ∈ N0 we define

Sn :=
{
{1}, {−1, 2}, . . . , {−1, . . . ,−(n−1), n}, {−1, . . . ,−n}

}
∈ SMUδ=1∩HO.

Initial cases of Sn are S0 = A0, S1 = A1, S2 = {{1}, {−1, 2}, {−1,−2}} and
S3 = {{1}, {−1, 2}, {−1,−2, 3}, {−1,−2,−3}}. All variables in Sn are singular
(i.e., var(Sn) = vars(Sn)), while the only 1-singular variable in Sn is n. Also Sn
for n ≥ 1 has precisely two full clauses. The structure tree T (Sn), shown below,
has the Horton-Strahler number hs(T (Sn)) = 1 for n ≥ 1, and so hd(Sn) = 1.

{−1, . . . ,−n+ 1, n} {−1, . . . ,−n}

. . . n

{−1, 2} . . .

{1} 2

1
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It is mentioned in [67, Example 6.10]) and we show that elements of RHO ∩
SMU are precisely MUs Sn, up to isomorphism.

Lemma 4.6.22 ([67]) For F ∈ RHO ∩ SMUδ=1 holds F ∼= Sn(F ).

Proof: By Lemma 4.6.20 F has hardness hd(F ) ≤ 1 and so the structure tree
T (F ) has the Horton-Strahler number hs(T (F )) ≤ 1. Binary trees with n + 1
leaves and the Horton-Strahler number less-or-equal one are isomorphic to the
structure tree T (Sn), from which by Lemma 4.6.8 the assertion follows. �
This characterisation shows that clause-sets F ∈ SMUδ=1 with a full clause
have hs(T (F )) ≤ 1 and so are precisely MUs Sn (up to isomorphism). Therefore
from Lemma 4.6.20 we get:

Lemma 4.6.23 For F ∈MUδ=1 holds:

1. If F has a full clause then F ∈ RHO.

2. For a full clause C ∈ F and x ∈ C holds ldF (x) = 1.

3. If F has precisely two full clauses, then the (unique) clashing literal be-
tween these two full clauses must be 1-singular.

Proof: For Part 1 we show that F has a saturation G ∈ SMUδ=1 with the
Horton-Strahler number hs(T (G)) ≤ 1, from which by Lemma 4.6.20 follows the
assertion. As F has a full clause, by definition any saturation G of F has a full
clause. Assume hs(T (G)) ≥ 2. Then there would be two 1-singular variables (a
vertex whose children are leaves) which do not occur in a same clause and so G
would not have any full clause.

Finally for Parts 2 and 3 we note that the vertices yielding a full clause in
the structure tree T (G) (which has hs(T (G)) ≤ 1) must be at the base of the
structure tree (the two vertices with the largest depth). �

Indeed Corollary 4.6.5 together with Lemma 4.6.12 imply that all variables
in an RHO-MU are singular:

Corollary 4.6.24 For F ∈ RHO ∩MU holds var(F ) = vars(F ).

Example 4.6.25 The reverse of Corollary 4.6.24 does not hold, even if we
require F ∈MUδ=1. Consider

F := {{1, 2, 3}, {1, 2,−3}, {1,−2, 4}, {1,−2,−4},
{−1, 5}, {−1,−5}} ∈ SMUδ=1

with hs(T (F )) = 2. We can obtain

G := {{1, 3}, {2,−3}, {−2, 4}, {−2,−4}, {−1, 5}, {−1,−5}} ∈ MUδ=1

by partial marginalisation of F (Lemma 4.6.12), where all variables are singular.
However as G has no unit-clause we have F 6∈ RHO (Lemma 4.6.15).
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Some further observations concerning RHO-MUs (which will be used in Sec-
tion 5.3 to characterise the clause-sets obtained by splitting nonsingular elements
of 2–MUδ=2) are as follows.

Lemma 4.6.26 For F ∈ SMU holds: F ∈ RHO iff var(F ) = vars(F ).

Proof: The direction from left to right follows with Corollary 4.6.24 (also from
the characterisation of saturated RHO-MUs in Lemma 4.6.22). So consider
the reverse direction. Singular DP-reduction maintains saturatedness (Lemma
4.5.2, Part 2) and also can not increase literal degrees ([108, Corollary 26]).
Therefore we obtain sDP(F ) = {{⊥}}, from which by Lemma 4.6.1 follows
δ(F ) = 1. Using the structure tree T (F ), we see that the singular variables of
F are precisely the near-leaves in T (F ) (Corollary 4.6.5) and so T (F ) has the
Horton-Strahler number hs(T (F )) ≤ 1. That is, hd(F ) = hs(T (F ) ≤ 1 (Lemma
4.6.18), and so by Lemma 4.6.20 follows the assertion. �

Lemma 4.6.27 For F ∈ MUδ=1 with precisely one 1-singular variable holds
F ∈ RHO.

Proof: Assume F /∈ RHO. Thus by Lemma 4.6.20 for any saturation G ∈
SMUδ=1 of F we have hs(T ) ≥ 2. The structure trees with the Horton-Strahler
number greater than 1 by Corollary 4.6.5 have at least two 1-singular variables,
and thus obviously F has more than one 1-singular variables as well. �

We conclude this section by a basic result noted in [81], namely that all
marginal elements of MUδ=1 are renamable Horn clause-sets, and so have a
unit-clause:

Lemma 4.6.28 ([81]) MMUδ=1 ⊂ RHO.

Example 4.6.29 We show that MMUδ=1 6⊂ HO. For a clause-set F :=
{{1, 2}, {1,−2}, {−1, 3}, {−1,−3}} ∈ UHITδ=1, we can obtain a marginalisa-
tion G := {{1, 2}, {−2}, {3}, {−1,−3}} of F , where G /∈ HO, while G ∈ RHO.

Lemma 4.6.30 F ∈MMUδ=1 \ {{⊥}} has at least two unit-clauses.

Proof: All elements of F ∈ MMUδ=1 \ {{⊥}} are in RHO (Lemmas 4.6.28)
and so have a unit-clause (4.6.15). Let C ∈ F be a unit-clause. All variables in F
are 1-singular (Lemma 4.6.13). So there are precisely 2n(F ) literal occurrences
in F , and 2n(F ) − 1 literal occurrences in F \ {C} with c(F \ {C}) = n(F )
clauses. Therefore F \ {C} must contain at least one unit-clause. �
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4.6.4 The conflict graph and marginal cases

In Section 4.6.2 we discussed a full classification of SMUδ=1 = UHITδ=1 as
full binary trees using the structure tree. In this section we review another
connection of clause-sets to graph theory which yields a full classification for
the class MMUδ=1, namely that the isomorphism types of F ∈ MMUδ=1 are
precisely the finite trees. This connection is established via the “conflict graph”,
where the conflict graph of a clause-set F has the clauses of F as vertices, with
an edge joining two vertices iff they have at least one conflict.

The conflict graph and conflict “multigraphs” (allowing parallel edges) have
been studied in the literature as a way of relating the conflict patterns of clause-
sets to combinatorics and graph theory in both directions. A study of the
“combinatorics of conflicts” for clause-sets has been initiated with [94] (with
underlying report [93]) and continued with [57], [95], [98], [102] (the latter gen-
eralises the basic results from linear algebra applied to clause-sets regarding the
conflict structure of clauses). In [94] the notion of “symmetric conflict matrix”
was introduced (in the context of biclique partitions of multigraphs), which has
an entry for each pair of clauses counting the number of conflicts between them.
The conflict matrix interpreted as a graph, yields the conflict graph.

Conflict patterns of MUs have been also investigated in the literature. In
[135] a lower bound on the number of edges in the conflict (multi)graph of a
k-uniform MU F is provided, which is the same as number of clashes in F .
This bound was later improved in [134]. The conflict-structure of clauses for
unsatisfiable hitting clause-sets (which are saturated MUs) is studied in [94], and
the class of conflict graphs for the elements of MUδ=1 has been characterised
in [103]. Here we follow the notation from [98].

Definition 4.6.31 ([98]) The conflict graph of F ∈ CLS, denoted by cg(F ),
is the graph where the set of vertices is F , and there is an edge between C,D ∈ F
if C ∩D 6= ∅. That is,

V (cg(F )) = F,

E(cg(F )) = {{C,D} : C,D ∈ F and C ∩D 6= ∅}.

Example 4.6.32 The conflict graph cg(A0) is the trivial tree, and cg(A1) is
a path graph of length one. Consider F := {{1}, {2}, {3}, {−1,−2,−3}} ∈
MMUδ=1, and also G ∈ SMUδ=1 in Example 4.6.7. We have:

cg(F ) = {2}

{1} {−1,−2,−3} {3}

cg(G) = {a, b} {a, b}

{a, c} {a, c}

In general we have:

Lemma 4.6.33 For F,G ∈ CLS holds: F ∼= G⇒ cg(F ) ∼= cg(G).
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Proof: Any isomorphism from F to G is a complement-preserving bijection
α : lit(F )→ lit(G) which induces a bijection from the clauses of F to the clauses
of G, i.e., α(F ) = {α(C) : C ∈ F} = G (Definition 2.4.1). By Definition 4.6.31
we have the same bijection α : V (cg(F )) → V (cg(G)). Furthermore for any
C,D ∈ F with C ∩ D 6= ∅, we have α(C) ∩ α(D) 6= ∅. That is, for any two
adjacent vertices C,D ∈ V (cg(F )), also vertices α(C) and α(D) are adjacent in
cg(G). So we obtain cg(F ) ∼= cg(G) (recall Section 3.2). �
The reverse direction of Lemma 4.6.33 does not hold in general as the following
example shows:

Example 4.6.34 Consider F := {{1, 2}, {1,−2}, {−1, 3}, {−1,−3}} ∈ SMUδ=1

and G := {{1, 2, 3}, {1, 2,−3}, {1,−2}, {−1}} ∈ SMUδ=1. The conflict graphs
of these clause-sets are isomorphic to the complete graph (a graph where every
pair of distinct vertices are connected with an edge) with four vertices, and so
cg(F ) ∼= cg(G); while clearly F � G.

The conflict graph of any MU is connected (due to irredundancy). If there are
multiple conflicts between clauses, the conflict-graph has only one edge between
them. For F ∈ MUδ=1, this is fully sufficient, since between two clauses there
is at most one clash (see Corollary 4.6.14). Therefore the number of edges in
cg(F ) is the number of conflicts in F ∈MUδ=1.

Lemma 4.6.35 Consider F ∈MUδ=1. If C ∈ F is a leaf of cg(F ) (has degree
1), then |C| = 1.

Proof: Assume |C| ≥ 2 (note that C 6= ⊥). That is, there exist at least
two different variables v, w ∈ var(C). W.l.o.g. assume v, w ∈ C. All variables in
var(F ) are non-pure. So there exist clauses D1, D2 ∈ F with v ∈ D1 and w ∈ D2

and so C ∩ D1 6= ∅ and C ∩ D2 6= ∅. We have D1 6= D2 since otherwise we
would have |C ∩D1| ≥ 2, which contradicts that C,D1 have at most one clash
(a basic property ofMUδ=1 in Corollary 4.6.14). Thus by Definition 4.6.31 the
vertex C has at least two incident edges, contradicting that C is a leaf. �

Lemma 4.6.36 Consider F ∈ MMUδ=1 and C ∈ F . Then |C| = 1 if and
only if C is a leaf in cg(F ).

Proof: First assume C is a unit-clause in F . By Lemma 4.6.13 any variable
v ∈ var(F ) is 1-singular. So there exists exactly one clause D ∈ F such that
C ∩D 6= ∅. Thus by Definition 4.6.31, vertex C has exactly one incident edge.
The reverse direction follows by Lemma 4.6.35. �

There are two extreme cases for conflict graphs of F ∈MUδ=1, namely con-
flict graphs of saturated and marginal elements. For F ∈ SMUδ=1 = UHITδ=1

every two different clauses clash (Corollary 4.6.5), and so the conflict graph is
a complete graph (also noticed in [102], [103]):
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Lemma 4.6.37 ([102]) For F ∈MUδ=1 the conflict graph cg(F ) is a complete
graph iff F is saturated.

Proof: Consider the direction from left to right. If cg(F ) is complete, then
there is an edge between any two vertices C,D ∈ V (cg(F )) and by Definition
4.6.31, there is a conflict between any C,D ∈ F . Thus F is a hitting clause set
and since F ∈MUδ=1, we have F ∈ UHITδ=1 = SMUδ=1.

Now consider the reverse direction. For F ∈ SMUδ=1 = UHITδ=1, there
exists a conflict between any C,D ∈ F . Since by Definition 4.6.31 V (cg(F )) =
{C : C ∈ F} and there is an edge between any C,D ∈ F if and only if |C∩D| 6=
∅, each vertex C in cg(F ) is connected to all vertices in V \{C}. That is, cg(F )
is complete. �

We now come to the main characterisation of the class MMUδ=1. We
already showed that F ∈MUδ=1 is marginal iff every literal in F occurs exactly
once (Lemma 4.6.13), that is, if there are altogether exactly n(F ) conflicts. It
follows that F is marginal iff the number of edges in the conflict graph of F is
n(F ), and since the conflict graph of F is connected and has c(F ) = n(F ) + 1
many nodes, we obtain that F is marginal iff the conflict graph of F is a tree.
Furthermore it is shown in [103] that the isomorphism types of F ∈ MMUδ=1

correspond exactly to the isomorphism types of finite trees.

Lemma 4.6.38 ([103]) For F ∈ MUδ=1 the conflict graph cg(F ) is a tree if
and only if F is marginal, and in case F is marginal, every tree can be realised
in this way, and the isomorphism type of F is completely determined by cg(F ).

In [129] it is shown that the number of different trees with n vertices is asymp-
totically equal to Dα−nn−5/2 where α = 0.3383219 and D = 0.5349485. Fur-
thermore, numerical data on the number of isomorphism types of trees with
m vertices (and so the number of isomorphism types of F ∈ MMUδ=1 with
c(F ) = m) is given in the OEIS ([139, Sequence A000055]), which starts as
follows:

1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, . . .

Indeed the class MMUδ=1 has polytime isomorphism decision (as finite trees
have polytime isomorphism decision).

Corollary 4.6.39 ([81]) The class MMUδ=1 has polytime isomorphism deci-
sion.

Finally we characterise F ∈MUδ=1 with the simplest case of conflict graphs,
namely those MUs of deficiency 1 whose conflict graph is a path graph.

Lemma 4.6.40 For n ∈ N0 consider

F := {{1}, {−1, 2}, . . . , {−(n− 1), n}, {−n}} ∈ MMUδ=1.

For G ∈MUδ=1 holds: G ∼= F iff cg(G) is a path graph of length n+ 1.
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Proof: The conflict graph cg(F ) is a path graph with n+ 1 vertices as follows:

cg(F ) = {1} {−1, 2} . . . {−(n− 1), n} {−n}

So we just need to show that cg(G) being a path graph implies that G is
marginal, and then the assertion follows from Lemma 4.6.38. cg(G) has two
leaves and so G has precisely two unit-clauses (Lemma 4.6.35); while every
other clause in G is binary as non-leaf vertices of cg(G) have degree 2 (recall
Corollary 4.6.14). Therefore G has precisely 2(n+1)−2 = 2n literal occurrences
and so by Lemma 4.6.13 we have G ∈MMUδ=1. �
In Lemma 5.4.3 we will show that clause-sets F ∈MUδ=1 with cg(F ) isomorphic
to a path graph are precisely 2-MUs with two unit-clauses, while in Section 6.3
we provide an alternative proof together with full classification of 2-MUs of
deficiency 1.
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Chapter 5

Minimal unsatisfiability and
minimal strong digraphs

In Section 4.6 we discussed the most basic MUs which are those with deficiency
1, i.e., F ∈ MUδ=1. And this whole class was explained by the expansion
rule, which replaces a single clause C by two clauses C ′ ∪ {v}, C ′′ ∪ {v} for
C ′ ∪ C ′′ = C and a new variable v, starting with the empty clause (Theorem
4.6.2). Also this class covers all RHO-MUs (Lemma 4.6.20). At the next level,
there are two classes, namely MUδ=2, and 2–MU . As mentioned in Section
1.5.1, characterisations have been provided in the seminal paper [78] for the
former class, and in the technical report [82] for the latter. We introduce in
this chapter a new reasoning scheme based on graph theory, together with the
first application, giving unifying and intuitive proofs for these two fundamental
results.

In Section 5.1 the basic new class FM ⊂ MU is introduced, and then
the complexity of this class and its relation to the AllEqual boolean function
are discussed. Section 5.2 introduces the most important new class of this
chapter DFM ⊂ FM, which has a central place in FM due to its strong
connection to graph theory (Theorem 5.2.9). Finally in Sections 5.3 and 5.4 the
framework of DFM/FM is used to characterise classes MU ′δ=2 and 2–MU ′ via
graph-theoretical reasoning.

5.1 MU with Full Monotone clauses (FM)

We first introduce formally the main classes of this chapter, FM ⊂MU (Def-
inition 5.1.1) and DFM ⊂ FM (Definition 5.2.1). Examples for these classes
showed up in the literature, but these natural classes have not been studied yet.

Definition 5.1.1 Let FM be the set of F ∈ MU such that there is a full
positive clause P ∈ F and a full negative clause N ∈ F (that is, var(P ) =
var(N) = var(F ), P ⊂ VA, N ⊂ VA). Using “monotone clauses” for positive
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and negative clauses, “FM” denotes “full monotone”. More generally, let FC
(denotes “full complementary”) be the set of F ∈ MU such that there are full
clauses C,D ∈ F with D = C.

Example 5.1.2 Examples of clause-sets in FM are the MUs An and Fn.

As mentioned before MUs are subsumption-free, and so in an FM every clause
other than the full positive and negative clauses must be mixed (contains at
least one positive and at least one negative literal). No element ofMUδ=1 with
at least two variables can be in FC, since clauses in any MUδ=1 have at most
one clash. Obviously an F ∈ FC contains a unit-clause iff n(F ) = 1. Both
classes FM and FC are stable under partial saturation and under such partial
marginalisations which do not touch the full monotone clauses resp. some pair
of complementary full clauses.

The closure of FM under isomorphism is FC. In the other direction, for
any F ∈ FC and any pair C,D ∈ F of full clauses with D = C (note that in
general such a pair is not unique), flip the signs so that C becomes a positive
clause (and so D becomes a negative clause), and we obtain an element of FM.

As usual we call the subsets of nonsingular elements FM′ resp. FC′.
The trivial elements of FM and FC are the MUs with at most one variable:
FMn≤1 = FMδ=1 = FCn≤1 = FCδ=1 = {{⊥}} ∪ {{v}, {v} : v ∈ VA}. The
singular cases in FM and FC are just these cases with only one variable:

Lemma 5.1.3 FM′ = FMn 6=1 = FMδ≥2 ∪ {{⊥}}, FC′ = FCn 6=1 = FCδ≥2 ∪
{{⊥}}.

Proof: Assume that there is a singular F ∈ FC with n(F ) ≥ 2. Let C,D be full
complementary clauses in F . W.l.o.g. we can assume that there is x ∈ C (so x ∈
D) such that literal x only occurs in C. Consider now some y ∈ D \ {x} (exists
due to n(F ) ≥ 2). There exists a satisfying assignment ϕ for F ′ := F \{D}, and
it must hold ϕ(x) = 1 and ϕ(y) = 0 (otherwise F would be satisfiable). Obtain
ϕ′ by flipping the value of x. Now ϕ′ still satisfies F ′, since the only occurrence
of literal x is C, and this clause contains y, but now ϕ′ satisfies F . �

So the study of FM is about studying special nonsingular MUs. In general
we prefer to study FM over FC, as we can define the “core” as a sub-clause-set:

Definition 5.1.4 For F ∈ FM there is exactly one positive clause P ∈ F , and
exactly one negative clause N ∈ F (otherwise there would be subsumptions in
F ), and we call F \ {P,N} the core of F .

We note that cores consist only of mixed clauses, and in general any mixed
clause-set (consisting only of mixed clauses) has always at least two satisfying
assignments, the all-0 and the all-1 assignments. By Lemma 5.1.3 we get:
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Corollary 5.1.5 Consider F ∈ FM and its core F ′. Then we have F ′ = > iff
n(F ) ≤ 1, while for n(F ) ≥ 2 holds var(F ′) = var(F ).

By definition, FC and FM are stable under (partial) saturation. Moreover
they are stable under applications of DP-reduction in the following sense:

Lemma 5.1.6 Consider F ∈ MU , v ∈ var(F ) and F ′ ∈ MU with F ′ ⊆
DPv(F ). Then we have F ∈ FC ⇒ F ′ ∈ FC, and F ∈ FM⇒ F ′ ∈ FM.

Proof: The resolvent of a full clause C with any other clause is C ′ := C\{v, v},
which is a full clause in DPv(F ); if this clause would become superfluous, then
it would have been superfluous originally. �

5.1.1 The AllEqual function

We now turn to the semantics of the core:

Definition 5.1.7 For a finite V ⊂ VA the AllEqual function on V is the
boolean function which is true for a total assignment of V if all variables are
assigned the same value, and false otherwise.

A CNF-realisation of AllEqual on V is a clause-set F with var(F ) ⊆ V ,
which is as a boolean function the AllEqual function on V .

Obviously for |V | ≤ 1 the only CNF-realisation of AllEqual on V is >, while
for |V | ≥ 2 any realisation F must have var(F ) = V . The core of every FM F
realises AllEqual on var(F ) irredundantly, and this characterises FM as follows:

Theorem 5.1.8 Consider F ∈ CLS with a full positive clause P ∈ F and a
full negative clause N ∈ F , and let F ′ := F \ {P,N}. Then F ∈ FM if and
only if F ′ realises AllEqual on var(F ), and F ′ is irredundant.

Proof: First assume F ∈ FM (so F ′ is the core of F ). Clearly F ′ is irredun-
dant (as a subset). And since F is MU, F ′ as a boolean function must have
exactly the satisfying assignments as forbidden by P,N in F , that is, F ′ realises
AllEqual on var(F ). Now assume that F ′ realises AllEqual on var(F ), and F ′ is
irredundant. We show F ∈ MU , i.e., F is irredundant and unsatisfiable. The
latter follows from the presence of P,N in F . While the irredundancy follows
from the fact, that the set of falsifying assignments of clauses P,N are disjoint
from each other and from the sets of falsifying assignments of the clauses of F ′.
�

So we can create exactly all FMs F by considering all irredundant clause-sets
F ′ realising AllEqual, and letting F := F ′ ∪ {var(F ), var(F )}.
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5.1.2 The decision complexity

The decision complexity of FM is the same as that of MU (which is the same
as MU ′), which has been determined in [130, Theorem 1] as complete for the
class DP (whose elements are differences of NP-problems):

Theorem 5.1.9 For F ∈ CLS, the decision whether “F ∈ FM ?” is DP -
complete.

Proof: The decision problem is in DP , since F ∈ FM iff F is irredundant with
full monotone clauses and F /∈ SAT (by [130] the decision problem whether a
clause-set is irredundant is NP-complete).

To show hardness we reduce MU to FM by constructing a polytime func-
tion t : CLS → CLS such that for all F ∈ CLS holds t(F ) ∈ FM if and
only if F ∈ MU . For an input clause-set F with n := n(F ) we consider
any MU with full monotone clauses, e.g. Fn, and w.l.o.g. we assume var(F ) =
{1, . . . , n}. We define F ′ as the disjunction of two clause-sets obtained by
adding a new variable n + 1 positively to every C ∈ Fn and negatively to
every C ∈ F . So F ′ has a full positive clause, and it is easy to see that
〈(n+ 1)→ 0〉 ∗ F ′, 〈(n+ 1)→ 1〉 ∗ F ′ ∈ MU . So by Lemma 4.4.4 and Lemma
4.4.3, Part 1 we have F ∈MU ⇐⇒ F ′ ∈MU .

Now to create a full negative clause, we define F ′′ as the disjunction of the
two clause-sets obtained by adding a new variable positively to every clause in
F ′ and negatively to every clause in Fn+1. Again we have F ′ ∈MU ⇐⇒ F ′′ ∈
MU , and so F ∈MU ⇐⇒ F ′′ ∈MU . Since performing these operations can
be done in linear time, we can reduce MU to FM with a polytime reduction,
and therefore the decision of FM is DP -complete. �

The use of Fn in the proof of Theorem 5.1.9 could be replaced by any
scalable family in FM. The reduction ofMU to FM in the proof of Theorem
5.1.9 shows a “spreading” of deficiencies, namely δ(F ′′) = c(F ) + n + 3, and
thus motivates our belief that classifying the levels FMδ=k is a useful stepping
stone towards the classification of MU ′δ=k.

Corollary 5.1.10 The decision “F ∈ FC ?” is DP -complete.

5.2 FM with binary clauses (DFM)

Definition 5.2.1 DFM is the subset of FM where the core (Definition 5.1.4)
is in 2–CLS, while DFC is the set of F ∈ FC, such that there are full comple-
mentary clauses C,D ∈ F with F \ {C,D} ∈ 2–CLS.

The core of DFMs consists of clauses of length exactly 2. Examples in DFM
are the Fn. DFC is the closure of DFM under isomorphism. We will show a
strong connection between these new classes and a class of digraphs in Theorem
5.2.9, and so “D” in DFM (and DFC) denotes “digraph”. For DFC and DFM
we have stability under applications of DP:
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Lemma 5.2.2 Consider F ∈ MU , v ∈ var(F ) and F ′ ∈ MU with F ′ ⊆
DPv(F ). Then we have F ∈ DFC ⇒ F ′ ∈ DFC, and F ∈ DFM ⇒ F ′ ∈
DFM.

Proof: By Lemma 5.1.6 we know F ′ ∈ FC. The resolution of two clauses of
length at most two yields a clause of length at most 2, while the resolvent of a
full (positive/negative) clause is a full (positive/negative) clause. �

Definition 5.2.3 For F ∈ DFM the positive implication digraph pdg(F )
is obtained as follows:

1. The vertex set is var(F ), i.e., V (pdg(F )) := var(F ).

2. The arcs are the implications on the variables as given by the core F ′ of
F , i.e., E(pdg(F )) := {(a, b) : {a, b} ∈ F ′, a, b ∈ var(F )}.

This can also be applied to any mixed binary clause-set F (note that the core F ′

is such a mixed binary clause-set).

Example 5.2.4 The positive implication digraph of

F6 = {{1, 2, 3, 4, 5, 6}, {−1,−2,−3,−4,−5,−6},
{−1, 2}, {−2, 3}, {−3, 4}, {−4, 5}, {−5, 6}, {−6, 1}} ∈ DFM

is a cycle digraph as follows:

pdg(F6) = 1 // 2 // 3

��
6

OO

5oo 4oo

Note that the empty clause-set > yields the empty digraph (which is MSD).
The essential feature of mixed clause-sets F ∈ 2–CLS is that for a clause
{v, w} ∈ F we only need to consider the “positive interpretation” v → w,
not the “negative interpretation” w → v, since the positive literals and the neg-
ative literals do not interact. So we do not need the (full) implication digraph
(which we will discuss in Chapter 6). Via the positive implication digraphs we
can understand when a mixed clause-set realises AllEqual.

Recall that every digraph G with |V (G)| ≤ 1 is a minimal strong digraph
(Section 3.1). Now we are ready to formulate the following lemma:

Lemma 5.2.5 For a mixed binary clause-set F holds:

1. F is a CNF-realisation of AllEqual iff pdg(F ) is a strong digraph (SD).

2. F is an irredundant CNF-realisation of AllEqual iff pdg(F ) is a minimal
strong digraph (MSD).
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Proof: The main point here is that the resolution operation for mixed binary
clauses {a, b}, {b, c}, resulting in {a, c}, corresponds exactly to the formation of
transitive arcs, i.e., from (a, b), (b, c) we obtain (a, c). So the two statements
of the lemma are just easier variations on the standard treatment of logical
reasoning for 2-CNFs via “path reasoning”. �

Example 5.2.6 Consider F1 := {{−1, 2}, {−2, 3}, {−3, 1}, {−3, 2}} ∈ 2–CLS,
which is a (redundant) CNF-realisation of AllEqual on variables 1, 2, 3. Then
pdg(F1), as shown below, is an SD with the set of vertices {1, 2, 3} and the
number of arcs the same as the number of clauses in F (so δ(pdg(F1)) = δ(F1)).
It is clear that the result of removing the clause {−3, 2} is still an SD (i.e.,
pdg(F1) is not MSD).

Now let F2 be the clause-set obtained by removing the clause {−3, 2} from
F1. It is easy to see that F2 = {{−1, 2}, {−2, 3}, {−3, 1}} is irredundant and
AllEqual on the same variables. Then pdg(F2) is a cycle digraph, shown below,
which is MSD.

pdg(F1) = 1 // 2

ww3

^^ 77 pdg(F2) = 1 // 2

��
3

^^

As explained before, F 7→ pdg(F ) converts mixed binary clause-sets with
full monotone clauses to a digraph. Also the reverse direction is easy:

Definition 5.2.7 Consider a finite digraph G with V (G) ⊂ VA. Then the
clause-set mcs(G) ∈ CLS (“m” like “monotone”) is obtained by interpreting
the arcs (a, b) ∈ E(G) as binary clauses {a, b} ∈ mcs(G), and adding the two
full monotone clauses {V (G), V (G)} ⊆ mcs(G). That is,

mcs(G) := {{a, b} : (a, b) ∈ E(G)} ∪ {V (G), V (G)} ∈ CLS.

Example 5.2.8 Consider a digraph G = (E, V ) with V (G) = {1, 2, 3} and
E(G) = {(1, 2), (2, 1), (2, 3), (3, 2)}. In the formation of mcs(G), an arc from
vertex 1 to vertex 2 becomes the logical implication 1 → 2, represented by
(−1 ∨ 2) (or as a set, {−1, 2}). So by adding the full monotone clauses over
V (G), we obtain

mcs(G) = {{−1, 2}, {−2, 1}, {−2, 3}, {−3, 2}, {1, 2, 3}, {−1,−2,−3}} ∈ CLS

with var(mcs(G)) = V (G) = {1, 2, 3} and c(mcs(G)) = |E(G)| + 2 (and so
δ(mcs(G)) = δ(G) + 2).

We now show that DFMs and MSDs are basically the “same thing”, only
using different languages, which is now formulated as follows:
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Theorem 5.2.9 The two formations F 7→ pdg(F ) and G 7→ mcs(G) are in-
verse to each other, that is,

1. mcs(pdg(F )) = F for all F ∈ DFM,

2. and pdg(mcs(G)) = G for all MSDs G with V (G) ⊂ VA.

For every F ∈ DFM the digraph pdg(F ) is an MSD, and for every MSD G
with V (G) ⊂ VA we have mcs(G) ∈ DFM.

Proof: For the map G 7→ mcs(G), we use the vertices of G as the variables of
mcs(G) (Definition 5.2.7). An arc (a, b) naturally becomes a mixed binary clause
{a, b}, and we obtain the set F ′ of mixed binary clauses, where by definition
we have pdg(F ′) = G (see Definition 5.2.3). That is, pdg(mcs(G)) = G, and
similarly we obtain mcs(pdg(F ′)) = F ′. This yields a bijection between the set
of finite digraphs G with V (G) ⊂ VA and the set of mixed binary clause-sets.
By Lemma 5.2.5 Part 2, minimal strong connectivity of G is equivalent to F ′

being an irredundant AllEqual-representation. So there is a bijection between
MSDs and the set of mixed binary clause-sets which are irredundant AllEqual-
representation. We “complete” the AllEqual-representations to MUs, by adding
the full monotone clauses, and we get the DFM mcs(G) (recall Theorem 5.1.8).
�

Theorem 5.2.9 can be considerably strengthened, by including other close
relations, but here we formulated only what we need. For a DFM F 6= {⊥} and
an MSD G 6= (∅, ∅) we obtain δ(pdg(F )) = δ(F )− 2 and δ(mcs(G)) = δ(G) + 2,
where δ(G) is the deficiency of G (Definition 3.1.2). Concerning isomorphisms
there is a small difference between the two domains, since the notion of clause-
set isomorphism includes flipping of variables, which for DFMs can be done
all at once (flipping “positive” and “negative”) — this corresponds in pdg(F )
to the reversal of the direction of all arcs. For our two main examples, cycle
digraphs and dipaths, this yields an isomorphic digraph, but this is not the case
in general.

Marginalisation of DFMs concerns only the full monotone clauses and not
the binary clauses, formulated as follows:

Lemma 5.2.10 Consider a clause-set F obtained by partial marginalisation
of a non-trivial DFM F ′ (Section 4.2). Then F has no unit-clause and its
formation did not touch binary clauses but only shortened its monotone clauses.

Proof: By definition, marginalisation can be reordered. So assume that partial
marginalisation is done for a binary clause at first. It is clear that the resulting
unit-clause would subsume one of the full monotone clauses. Thus F contains
no unit-clause and is obtained by partial marginalisation of the positive or the
negative clause. �

By Theorem 5.2.9, deciding whether for F ∈ CLS holds F ∈ DFM can be
done in polynomial time: Check whether we have the two full monotone clauses,
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while the rest are binary clauses, if yes, translate the binary clauses to a digraph
and decide whether this digraph is an MSD (which can be done in quadratic
time; recall that deciding the SD property can be done in linear time). If yes,
then F ∈ DFM, otherwise F /∈ DFM.

We now come to the two simplest example classes, cycle digraphs and di-
paths.

5.2.1 Cycle digraphs

An easy observation is that the cycle digraphs CDn (Section 3.3) have the
minimum deficiency zero among MSDs.

Lemma 5.2.11 Consider an MSD G with at least two vertices. Then δ(G) =
|E(G)| − |V (G)| ≥ 0, where δ(G) = 0 if and only if G is a cycle digraph.

Proof: All vertices in G have in-degree and out-degree at least one, and so
there must be at least |V (G)| arcs, i.e., δ(G) ≥ 0. A cycle digraph is an MSD
with deficiency 0. In the reverse direction, for an MSD G, δ(G) = 0 implies
that every vertex has in-degree and out-degree both exactly one, and thus G is
a cycle digraph. �

We obtain the basic class Fn, and we can now uncover its underlying graph
structure:

Definition 5.2.12 Let Fn := mcs(CDn) ∈ DFM for n ≥ 2 (Definition 5.2.7).
That is,

Fn = {{−1, 2}, . . . , {−(n− 1), n}, {−n, 1}, {1, . . . , n}, {−1, . . . ,−n}} ∈ DFM.

We have F2 = A2 and δ(Fn) = 2. The DFMs of deficiency 2 are the Fn:

Lemma 5.2.13 For F ∈ DFMδ=2 holds F ∼= Fn(F ).

Proof: By Theorem 5.2.9 the positive implication digraph pdg(F ) is an MSD
with the deficiency δ(F )− 2 = 0, and thus is a cycle digraph (Lemma 5.2.11) of
length n(F ). �

It is known that all Fn are saturated, but for completeness we give a proof:

Lemma 5.2.14 For every n ≥ 2, Fn is saturated.

Proof: We show that adding a literal x to any clause C ∈ Fn introduces
a satisfying assignment, i.e., Fn is saturated. Note that the positive and the
negative clauses are already full, and saturation can only touch the mixed binary
clauses. Recall var(Fn) = {1, . . . , n}. Due to symmetry assume C = {−n, 1},
and we add x ∈ {2, . . . , n − 1} to C. Let ϕ be the total assignment where all
variables 2, . . . , n are set to true while 1 is set to false. Then ϕ satisfies the
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monotone clauses and the new clause {−n, 1, x}. Every literal occurs only once
in the core of Fn and so literal 1 occurs only in C. So ϕ satisfies every mixed
clause in F \ {C} (which has a positive literal other than 1). �

5.2.2 Ditrees and dipaths

Recall that ditrees are the directed version of trees (Section 3.3), and it is easy
to see that for every tree G the digraph dg(G) is an MSD. Now consider the
path digraph PDn = ({1, . . . , n}, {(1, 2), . . . , (n− 1, n)} for n ∈ N0.

Definition 5.2.15 Let DBn := mcs(dg(PDn)) ∈ DFM (n ∈ N0) (Definition
5.2.7). That is,

DBn = {{−1, 2}, {1,−2}, . . . , {−(n− 1), n}, {n− 1,−n},
{−1, . . . ,−n}, {1, . . . , n}} ∈ DFM.

So DBn = An for n ≤ 2, while in general n(DBn) = n, and for n ≥ 1 holds
c(DBn) = 2 + 2(n− 1) = 2n, and δ(DBn) = n.

Example 5.2.16 By Definition 5.2.15 for the dipath

dg(PD4) = 1
((
2

((
hh 3

((
hh 4hh

we obtain DB4 = mcs(dg(PD4)) as follows:

DB4 = {{−1, 2}, {1,−2}, {−2, 3}, {2,−3}, {−3, 4}, {3,−4},
{1, 2, 3, 4}, {−1, ,−2,−3,−4}} ∈ DFM

DBn for n 6= 1 is nonsingular, and every variable in var(DBn) \ {1, n} is
of degree 6 for n ≥ 2, while the variables 1, n (which are the endpoints of the
dipath) have degree 4.

Example 5.2.17 Consider DBn and obtain F by the DP-reduction on a vari-
able v. First assume that v ∈ {1, n} (the two variables of degree 4), and
w.l.o.g. consider the DP-reduction on variable n. Then DPn(F ) changes only
the clauses containing literals n,−n, namely the full monotone clauses plus
{−(n−1), n}, {n−1,−n}. These four clauses are replaced by the two monotone
clauses {1, . . . , n − 1}, {−1, . . . ,−(n − 1)} and we get F = DBn−1. Note that
δ(F ) = δ(DBn) − 1. Otherwise, v is of degree 6 and occurs in the monotone
clauses plus four mixed binary clauses. W.l.o.g. consider variable 2. Then DP-
reduction replaces these six clauses with two monotone clauses {1, 3, . . . , n −
1}, {−1,−3, . . . ,−(n − 1)} and two mixed clauses {1,−3}, {−1, 3}, where F ∼=
DBn−1.

Among ditrees, only dipaths can be marginalised to nonsingular 2-uniform
MUs, since dipaths are the only ditrees with exactly two linear vertices. The
unique marginal MUs obtained from dipaths are as follows:
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Definition 5.2.18 For n ≥ 2 obtain the uniform Bn ∈ 2–MU from DBn by
replacing the full positive/negative clause with {1, n} resp. {−1,−n}, i.e.,

Bn := {{−1,−n}, {1, n}, {−1, 2}, {1,−2}, . . . , {−(n− 1), n}, {n− 1,−n}}.

We note that Bn is a complement-invariant marginalisation of DBn for n ≥ 2,
and every literal of Bn has degree 2 (occurs exactly twice). Indeed the Bn are
(precisely) the marginalisations of the DBn.

Lemma 5.2.19 For n ≥ 2, DBn has a unique marginalisation, namely Bn.

Proof: Let F be a marginalisation of DBn, n ≥ 2. By Lemma 5.2.10 we know
that marginalisation affects only the full positive and the full negative clauses
of DBn, which become P ∈ F resp. N ∈ F , while the rest stays unchanged.
We have to show P = {1, n} and N = {−1,−n}, and for that it suffices to
show 1, n ∈ P and −1,−n ∈ N . By symmetry w.l.o.g. we only need to show
1 ∈ P , and so assume 1 /∈ P . Now literal 1 only occurs once in F , and variable
1 is singular in F . The occurrences of variable 1 in the (unchanged) mixed
binary clauses of F are in {−1, 2}, {1,−2}. So the resolution of {−1, 2}, {1,−2}
is tautological, but singular DP-reduction for MUs can not have tautological
resolvents (see Section 4.5). �

5.3 Deficiency 2 revisited

We now come to the first main application of the new class DFM, and we give a
new and relatively short proof, that MUs Fn are precisely the nonsingular MUs
of deficiency 2. The core combinatorial-logical argument is to show MU ′δ=2 ⊆
FCδ=2, i.e., every F ∈MU ′δ=2 must have two full complementary clauses C,D ∈
F . The connection to the “geometry” then is established by showing FMδ=2 ⊆
DFMδ=2, i.e., if an FM F has deficiency 2, then it must be a DFM, i.e., all
clauses besides the full monotone clauses are binary. The pure geometrical
argument is the characterisation of DFMδ=2, which has already been done in
Lemma 5.2.13.

The proof of the existence of full clauses C,D = C in F is based on the
Splitting Ansatz (see Section 1.5.2). Since MUδ=2 is stable under saturation,
we can start with a saturated F , and can split on any variable (though later an
argument is needed to undo saturation). There must be a variable v occurring at
most twice positively as well as negatively (otherwise the basic lemma δ(F ) ≥ 1
for any MU F would be violated), and due to nonsingularity v occurs exactly
twice positively and negatively. The splitting instances F0, F1 have deficiency
1. So they have at least one 1-singular variable. There is very little “space”
to reduce a nonsingular variable in F to a 1-singular variable in F0 resp. F1,
and indeed those two clauses whose vanishing in F0 do this, are included in F1,
and vice versa. Since clauses in MUδ=1 have at most one clash, F0, F1 have
exactly one 1-singular variable. And so by the geometry of the structure trees
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(resp. their Horton-Strahler numbers), both F0, F1 are in fact renamable Horn!
Thus every variable in F0, F1 is singular, and F0, F1 must contain a unit-clause.
Again considering both sides, it follows that the (two) positive occurrences of
v must be a binary clause (yielding the unit-clause) and a full clause C (whose
vanishing yields the capping of all variables to singular variables), and the same
for the (two) negative occurrences, yielding D. So F0, F1 ∈ RHO both contain
a full clause and we know that the complements of the literals in the full clause
occur exactly once in F0 resp. F1. Thus in fact C resp. D have the “duty” of
removing each others complement, and we get D = C.

Now consider F ∈ FMδ=2 with monotone full clauses C,D ∈ F . Transform
the core F ′ within F into an equivalent F ′′, by replacing each clause in F ′ by a
contained prime implicate of F ′, which, since the core means that all variables
are equal (semantically), is binary. So we arrive in principle in DFM, but we
could have created redundancy, and this can not happen, since an MSD has
minimum deficiency 0. The details are as follows:

Theorem 5.3.1 DFCδ=2 = FCδ=2 =MU ′δ=2.

Proof: By definition and Lemma 5.1.3 we have DFCδ=2 ⊆ FCδ=2 ⊆ MU ′δ=2.
First we show MU ′δ=2 ⊆ FCδ=2, that is, every nonsingular F ∈ MU with
δ(F ) = 2 contains, up to flipping of signs, a full positive and a full negative
clause.

MUs with deficiency 2 are non-trivial and so n(F ) ≥ 2. We know that F
has a variable v ∈ var(F ) of degree at most 4 (recall Lemma 4.3.4). Then
nonsingularity of F implies that every variable in F is nonsingular with degree
at least 4; so v is a nonsingular variable of degree 4. Let C1, C2 ∈ F be the two
clauses containing the literal v and D1, D2 ∈ F be the two clauses containing
the literal v.

We assume that F is saturated (note that saturation maintains minimal
unsatisfiability and deficiency). By the Splitting Ansatz (recall Lemma 4.4.3),
F0 := 〈v → 0〉 ∗ F ∈ MUδ=1 and F1 := 〈v → 1〉 ∗ F ∈ MUδ=1 (due to F being
nonsingular, by Corollary 4.4.7 splitting strictly reduces the deficiency). So
F0 removes D1, D2 and shortens C1, C2, while F1 removes C1, C2 and shortens
D1, D2 as follows:

F0 = (F \ {C1, C2, D1, D2}) ·∪ {C1 \ {v}, C2 \ {v}} ∈ MUδ=1,

F1 = (F \ {C1, C2, D1, D2}) ·∪ {D1 \ {v}, D2 \ {v}} ∈ MUδ=1.

We want to show that F0, F1 ∈ RHO. Both F0, F1 contain a 1-singular
variable, called a resp. b. We obtain {a, a} ⊆ D1 ∪D2, since F has no singular
variable and only by removing D1, D2 the degree of a decreased to 2. Similarly
{b, b} ⊆ C1 ∪C2. In MUδ=1 any two clauses have at most one clash (Corollary
4.6.14), and thus indeed F0, F1 have each exactly one 1-singular variable. Now
F0, F1 ∈MUδ=1 with exactly one 1-singular variable are renamable Horn clause-
sets (Lemma 4.6.27).

Now we determine the length of C1, C2, D1, D2. Since unsatisfiable Horn
clause-sets contain unit-clauses (Lemma 4.6.15), which must be created by
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clause-shortening, one of C1, C2 and one of D1, D2 are binary (recall that
F \ {C1, C2, D1, D2} has no unit-clause). W.l.o.g. assume C1, D1 are binary.
As already shown in Corollary 4.6.24, in an RHO-MU, all variables are singu-
lar. F has no singular variable, so in F0 all singularity is created by the removal
of D1, D2, and in F1 all singularity is created by the removal of C1, C2. Thus
C2, D2 must be full clauses.

It remains to show that C2 is the complement of D2. For a full clause in an
RHO-MU, by Lemma 4.6.23, Part 2 we know that the complement of its literals
occur only once. That F0, F1 ∈ RHO has at least one full clause implies that
C2 and D2 have the duty of eliminating each others complement, and so we
obtain C2 = D2, and indeed SMU ′δ=2 ⊆ FCδ=2. Furthermore, C2 = D2 implies
that every w ∈ var(F ) \ {a, b} has degree 4, while a, b have degree 4, and thus
every literal occurs exactly twice in F . Therefore, no literal-occurrence can be
removed from F without creating a singular variable. That is, all F ∈ MU ′δ=2

are saturated (the initial saturation did nothing) and so MU ′δ=2 ⊆ FCδ=2.
We turn to the second part of the proof, showing FMδ=2 ⊆ DFMδ=2,

that is, the core F ′ of every F ∈ FMδ=2 contains only binary clauses. By the
characterisation of FMs (Theorem 5.1.8), F ′ realises AllEqual over the variables
of F . The deficiency of F ′ is δ(F ′) = δ(F ) − 2 = 0. Obtain F ′′ by replacing
each C ∈ F ′ by a prime implicate C ′′ ⊆ C of F ′, where every prime implicate
is binary. Now F ′′ is logically equivalent to F ′, and we can apply Theorem
5.2.9 to F ′′ ·∪ {P,N} (P,N are full positive and negative clauses over var(F ′′)),
obtaining an MSD G := pdg(F ′′ ·∪ {P,N}) with δ(G) = δ(F ′′). Due to the
functional characterisation of F ′ we have var(F ′′) = var(F ′) = var(F ). Using
that MSDs have minimal deficiency 0 (Lemma 5.2.11), thus δ(G) = 0, and so by
the same lemma G is a cycle of length n(F ), and thus F ·∪ {P,N} is isomorphic
to Fn(F ) (recall Lemma 5.2.13). Now Fn(F ) is saturated (Lemma 5.2.14), and
thus indeed F ′′ = F ′. �

Now by Theorem 5.3.1 and Lemma 5.2.13 we obtain a new proof of the
seminal result of Kleine Büning ([78]).

Corollary 5.3.2 ([78]) For F ∈MU ′δ=2 holds F ∼= Fn(F ).

We remark that the approach of [78] is based on splitting F ∈ MU ′δ=2 on an
appropriate variable and analysing the resulting clause-sets. For MUs such a
splitting leads to unsatisfiable clause-sets which contain some minimally unsat-
isfiable sub-formulas. Via a detailed study of the splitting behaviour, they show
that splitting instances F0, F1 has some MUSs F ′0, F

′
1 ∈ MUδ=1. Then using

so-called “basic matrices” they characterise F ′0, F
′
1, and obtain the characterisa-

tion of the original clause-set F . Our method (for characterising F ∈ MU ′δ=2)
is based on the Splitting Ansatz (see Section 1.5.2) and the correspondence be-
tween DFMs and MSDs. We use splitting on saturated MUS (where the results
are always MUs) to show that F is a DFM, up to isomorphism. Then using
graph-theoretical reasoning we show that DFMs of deficiency 2 correspond to

72



MSDs of deficiency 0 which are cycles digraphs, and this yields the characteri-
sation of F .

Now using Corollary 5.3.2, it is easy to see that up to isomorphism the only
hitting clause-sets in MU ′δ=2 are F2,F3:

Corollary 5.3.3 ([110]) There are precisely two elements in UHITδ=2∩MU ′
(up to isomorphism), namely F2 and F3.

We know nst(F ) for F ∈MU is unique (Theorem 4.5.4). So with Corollary
5.3.2, we have confluence modulo isomorphism for F (i.e., all F ′ ∈ sDP(F )
are pairwise isomorphic), since Fn ∼= Fm iff n = m. This reveals that each
F ∈MUδ=2 contains a unique reason of unsatisfiability, namely a cycle digraph
of length nst(F ) over some of its literals (which are not unique in general)
together with two clauses stating their non-equivalence.

5.4 Nonsingular 2-MUs

The main goal of this section is to show the confluence modulo isomorphism
of singular DP-reduction for 2-MUs (i.e., for F ∈ 2–MU all F ′ ∈ sDP(F ) are
pairwise isomorphic), and to characterise the nonsingular elements of 2–MU
(i.e., F ∈ 2–MU ′) using the positive implication digraph (which is enough in
this case); while in the next chapter we will use the full implication digraph to
characterise all 2-MUs. We start off with non-uniform 2-MUs, and then provide
insight for the characterisation of 2–MU ′.

5.4.1 The non-uniform cases

Here we study some properties of non-uniform 2-MUs, i.e., 2-MUs with a unit-
clause; while in Section 6.3 we will characterise all the isomorphism types of
this class.

A well-known fact about 2-MUs with a unit-clause is that they are renamable
Horn clause-sets with deficiency 1 ([27, Lemma 7] and [80, Lemma 5.1]), and
have at most two unit-clauses ([116, Lemma 8]):

Lemma 5.4.1 For F ∈ 2–MU with a unit clause holds F ∈ MUδ=1 ∩ RHO,
and has at most two unit-clauses.

Proof: Unsatisfiable clause-sets in 2–CLS have a unit-resolution refutation
([90, Lemma 5.6]). By Lemma 4.6.20, for F ∈ MU holds: F ∈ RHO iff F is
refutable by unit-resolution, and so F has deficiency 1 (see the proof of Lemma
4.6.20 for more details). In a 2-MU F with deficiency 1 (i.e., c(F ) = n(F ) + 1)
and a unit-clause, the number of literal occurrences in F is less than 2c(F ) =
2n(F ) + 2. Recall that in MUs, all variables occur at least once positively and
once negatively and so the minimum number of literal occurrences is 2n(F ).
Therefore F can have at most two unit-clauses. �

73



Regarding the number of literal occurrences in 2-MUs the following upper
bound is given in [82, proposition 4]:

Lemma 5.4.2 ([82]) For F ∈ 2–MU , a literal x ∈ lit(F ) occurs at most twice,
i.e., ldF (x) ≤ 2.

Proof: First consider the case that F has a unit clause. Then by Lemma 5.4.1,
F has deficiency 1 (i.e., c(F ) = n(F ) + 1) and there are at most 2c(F ) − 1 =
2n(F ) + 1 literals in F . That is, F has at most one literal of degree 2 while
every other literal has degree 1.

Now consider the case that F is 2-uniform. Let v ∈ var(F ) be the variable
of x. And let F ′ ∈ MU be a clause-set obtained by locally saturating F on
v (Definition 4.1.7). Consider splitting F ′ on v and let F0 := 〈v → 0〉 ∗ F ′
and F1 := 〈v → 1〉 ∗ F ′. By Lemma 4.4.4 we have F0, F1 ∈ MU , while by
construction holds F0, F1 ∈ 2–CLS. Since F0, F1 have some unit-clauses (which
come from the binary clauses in F containing v), by Lemma 5.4.1 we get F0, F1 ∈
MUδ=1. Now by the first part of this proof, each of F0, F1 has at most two unit-
clauses. Thus each of v and v occurs at most twice in F , since the unit-clauses
in F0 resp. F1 come precisely from the occurrences of v resp. v in F . �

Here we characterise a special case of 2-MUs with a unit-clause while in
Section 6.3 we provide full classification of these 2-MUs.

Lemma 5.4.3 Consider F = {{1}, {−1, 2}, . . . , {−(n−1), n}, {−n}} in Lemma
4.6.40. Any G ∈ 2–MU with exactly two unit-clauses is isomorphic to F .
Furthermore both unit-clauses can be partially saturated to a full clause (yielding
two saturations), and these two full clauses are complementary.

Proof: Let n := n(G). Since G is uniform except of two unit-clauses, the
number of literal occurrences is 2c(G)− 2 = 2n, and so every literal in G occurs
only once and G is marginal (Lemma 4.6.13). By Lemma 4.6.28 we have G ∈
RHO and δ(G) = 1. Therefore there exists some G′ ∼= Sn ∈ SMUδ=1 ∩ RHO
where G′ is a saturation of G (recall Lemmas 4.6.20 and 4.6.22). Now as Sn has
only one unit-clause, there are precisely two possibilities for G′ as follows where
each has a full monotone clause (recall that by definition of saturation there is
a bijection f : G→ G′ with C ⊆ f(C) ∈ G′ for all C ∈ G):

1. Either G′ = Sn ∈ SMUδ=1 ∩RHO;

2. or G′ = {{−n}, {n,−(n−1)}, . . . , {n, . . . , 2,−1}, {n, . . . , 1}} ∈ SMUδ=1∩
RHO.

�

Before coming to the main results of this section, we comment on a statement
from the literature about the shape of 2-MUs:
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Example 5.4.4 In [116, Lemma 19] we find the following general form of 2-
MUs F :

F =
{
{x, l1}, {−l1, l2}, . . . , {−lm, y}, {−y, s1}, . . . , {−sm,−y}

}
∪{

{−x, p1}, {−p1, p2}, . . . , {−pm, z}, {−z, q1}, . . . , {−qm,−z}
}
.

In general 2-MUs may have up to two unit-clauses, while F does not contain any
unit-clause, so we restrict ourselves to the uniform case. F should allow Bn,
but F has at least one apparent singular variable, namely x. It follows that the
different names might stand for equal variables. But we can not have arbitrary
equalities, since every literal in 2-MUs occurs at most twice, and also redundan-
cies can occur. So we see that the above general form of F only shows, that it
has a refutation using two input-resolution chains, while the understanding of
the possible isomorphism types is a completely different thing.

5.4.2 The uniform cases

We now come to the main results of this section, characterising the nonsingular
2-MUs. We first show that F ∈ 2–MU ′ can be saturated to a DFM, up to
renaming. That is, there exist a positive clause and a negative clause in F
which can be partially saturated to full positive and negative clauses. The proof
is based on the Splitting Ansatz (Section 1.5.2): we use local saturation on an
appropriate variable v ∈ var(F ) (Definition 4.1.7) to obtain splitting instances
F0, F1 ∈ 2–MU , then we characterise them and lift the information obtained
back to F . We show that F0, F1 are in RHO and each has a unit-clause which
can be saturated to a full clause. Then we show that these full clauses are
complementary and can be lifted to the original F (by adding v resp. v). So
this yields a DFM which is a partial saturation of F . The details are as follows:

Theorem 5.4.5 Every element of 2–MU ′ can be partially saturated to some
element of DFC.

Proof: We show F ∈ 2–MU ′ contains, up to flipping of signs, exactly one
positive and one negative clause, and these can be saturated to full monotone
clauses. F has no unit-clause and is 2-uniform (see Lemma 5.4.1). By the upper
bound for the literal degree (Lemma 5.4.2), every literal in F has degree 2. Let
F ′ ∈MU be a clause-set obtained from F by locally saturating v ∈ var(F ). So
F0 := 〈v → 0〉∗F ′ and F1 := 〈v → 1〉∗F ′ are in 2–MU (Lemma 4.4.4) and each
has exactly two unit-clauses (obtained precisely from the clauses in F containing
v, v). So by Lemma 5.4.1 holds F0, F1 ∈ RHO ∩ MUδ=1. And by Lemma
5.4.3 all variables are 1-singular and in each of F0, F1, both unit-clauses can be
partially saturated to a full clause. These full clauses can be lifted to the original
F (by adding v resp. v) while maintaining minimal unsatisfiability (if both
splitting results are MU, so is the original clause-set; Lemma 4.4.3, Part 1). Now
we show that for a full clause in F0, F1 adding v or v yields a full clause in F , i.e.,
only v vanished by splitting. All variables in F0, F1 are 1-singular, while F has
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no singular variable. If there would be a variable w in F0 but not in F1, then the
variable degree of w would be 2 in F , a contradiction. Thus var(F0) ⊆ var(F1).
Similarly we obtain var(F1) ⊆ var(F0). So var(F0) = var(F1) = var(F ) \ {v}.

It remains to show that we can lift w.l.o.g. a full positive clause from F0 and
a full negative clause from F1. Let C1, C2 ∈ F be the clauses containing v and
D1, D2 ∈ F be the clauses containing v. Assume the unit-clause C1 \ {v} ∈ F0

can be saturated to a full positive clause. This implies that every C ∈ F \ {C1}
has a negative literal (since F \{C1} is satisfied by setting all variables to false).
Then by Lemma 5.4.3 the unit-clause C2\{v} can be saturated to a full negative
clause in F0. Similarly we obtain that every clause in F \ {C2, D1, D2} has a
positive literal. So F has exactly one positive clause C1 and all binary clauses
in F0, F1 are mixed. Since c(F1) = n(F1) + 1 = (n(F ) − 1) + 1 = n(F ) and
there are n(F ) − 1 occurrences of each literal in F1, w.l.o.g. D1 is a negative
clause and D2 is mixed. Recall that in MUδ=1 every two clauses have at most
one clash (Corollary 4.6.14), and so D1 \ {v} ∈ F1 can be saturated to a full
negative clause (otherwise there would be a clause with more than one clash
with the full clause). So we obtain a DFM which is a partial saturation of F .
�

By [59, Theorem 4], every MSD with at least two vertices has at least two
linear vertices (Definition 3.1.5). We need to characterise a special case of
MSDs with exactly two linear vertices. This could be derived from the general
characterisation by [58, Theorem 7], but proving it directly is useful and not
harder than to derive it:

Lemma 5.4.6 An MSD G with exactly two linear vertices, where every other
vertex has in-degree and out-degree both at least 2, is a dipath.

Proof: We show that G is a dipath by induction on n := |V (G)|. For n = 2 it
is clear that G is MSD iff G is a dipath. So assume n ≥ 3. Consider one linear
vertex v ∈ V (G) with arcs (w, v) and (v, w′), where w,w′ ∈ V (G). If w 6= w′

would be the case, then the MSD obtained by removing v and adding the arc
(w,w′) had only one linear vertex (since the in-degree and out-degree of other
vertices are unchanged). So this case is not possible and we have w = w′. Let
G′ be the MSD obtained by removing v. Now w is a linear vertex in G′ (since
every MSD has at least two linear vertices). By induction hypothesis G′ is a
dipath of length |V (G′)|. The assertion follows now immediately by choosing a
linear vertex u ∈ V (G′) and adding a new vertex v with arcs (u, v) and (v, u).
�

By definition, for a mixed binary clause-set F , a singular variable of degree
2 (occurring exactly once positively and once negatively) is a linear vertex in
the positive implication digraph pdg(F ). So by Theorem 5.2.9, a variable v in a
DFM F has degree 4 (i.e., degree 2 in the core) iff v is a linear vertex in pdg(F ).
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Theorem 5.4.7 F ∈ DFC can be partially marginalised to some nonsingular
element of 2–MU if and only if F ∼= DBn(F ).

Proof: Since by Lemma 5.2.19 Bn is a marginalisation of DBn (obviously
then the unique nonsingular one), it remains to show that a DFM F , which
can be partially marginalised as in the assertion, is isomorphic to DBn(F ). We
show that pdg(F ) has exactly two linear vertices, while all other vertices have
in-degree and out-degree at least two, which proves the statement by Theo-
rem 5.2.9 and Lemma 5.4.6. Consider a nonsingular G ∈ 2–MU obtained by
marginalisation of F . Recall that by Lemma 5.2.10 the mixed clauses are un-
touched. pdg(F ) has at least two linear vertices, so the mixed clauses in G have
at least two 1-singular variables. Indeed the core of F has exactly two 1-singular
variables, since these variables must occur in the positive and negative clauses
of G, which are of length two. The other vertices have in-degree/out-degree at
least two due to nonsingularity. �

By Theorems 5.4.5, 5.4.7 we obtain a new proof for the characterisation of
nonsingular 2-MUs:

Corollary 5.4.8 ([82]) For F ∈ 2–MU ′ with δ(F ) ≥ 2 holds F ∼= Bn(F ).

We remark that the approach of [82] is based on splitting F ∈ 2–MU ′ on a
variable and characterising some minimally unsatisfiable sub-formulas of the
resulting clause-sets. Since in general the splitting instance F0, F1 are not MU,
their approach is to remove clauses appropriately in one of splitting instances
F0 in order to obtain an MU F ′0 ⊂ F0. They show that such F ′0 has deficiency 1,
and they characterise its isomorphism type. Also via induction on the number
of variables in F , they show that for any clause C ∈ F we have C ∈ F , which
then yields the isomorphism type of F (using the isomorphism type of F ′0). Our
method is based on the Splitting Ansatz (Section 1.5.2) and the correspondence
between DFMs and MSDs. Since 2–MU ′ is not stable under saturation, we use
local saturation which only saturates the variable we want to split on. So local
saturation uses all clauses, and we obtain 2-MUs F0, F1 ∈ MUδ=1. Then we
connect 2–MU ′ to the new class DFM and use the connection between DFMs
and digraphs to obtain the isomorphism types of F ∈ 2–MU ′.

Regarding the number of clauses for F ∈ 2–MU , in [116, Lemma 19] the
upper bound c(F ) ≤ 4n(F ) is given, while a sharper bound c(F ) ≤ 4n(F ) − 2
is shown in [112, Proposition 1] (which is also far from being sharp). Here we
present the sharp bound for the number of clauses in 2-MUs, attained exactly
for the Bn:

Corollary 5.4.9 For F ∈ 2–MU , F 6= {⊥} holds c(F ) ≤ 2n(F ), where we
have equality iff F ∼= Bn(F ).

Proof: First we show the upper bound. F with a unit-clause is inMUδ=1 and
so c(F ) = n(F ) + 1 (Lemma 5.4.1). Otherwise, by Lemma 5.4.2, the number
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of literals is at most 4n(F ) and so the number of binary clauses is at most
4n(F )/2 = 2n(F ).

Now turning to the characterisation of equality, for F ∼= Bn(F ) we have
equality. In the reverse direction, n(F ) ≥ 2 implies δ(F ) ≥ 2, and so F is 2-
uniform (Lemma 5.4.1). The upper bound for the literal degree (Lemma 5.4.2)
yields that every literal is of degree 2, i.e., F ∈MU ′ and so F ∼= Bn(F ). �

Corollary 5.4.8 together with Theorem 4.5.4 imply that singular DP-reduction
for F ∈ 2–MUδ=k with k ≥ 2 is confluent modulo isomorphism to some F ′ ∼= Bk.
This implies that F has a unique reason of unsatisfiability, namely the presence
of a dipath of length nst(F ) = k together with two binary monotone clauses
containing variables of the endpoints of the dipath.

Example 5.4.10 Singular DP-reduction is not confluent in general for F ∈
2–MU : Consider DB2 = A2. Let F be the clause-set obtained by a singular
2-extension of DB2, for clauses {1, 2}, {1,−2} and a new variable 3 as follows:
F := {{1,−3}, {2, 3}, {−2, 3}, {−1, 2}, {−1,−2}}, where vars(F ) = {1, 3}. Let
F ′ := DP1(F ) ∈ MU . So we get F ′ = {{2,−3}, {2, 3}, {−2, 3}, {−2,−3}},
where F ′ ∼= DB2 but F ′ 6= DB2 (so |sDP(F )| > 1).

Finally since the Bn are marginal (Section 5.2.2), by Corollary 5.4.8 we
immediately obtain:

Corollary 5.4.11 Every element of 2–MU ′ is marginal.

By contrast every F ∈MU ′δ=2 is saturated (Corollary 5.3.2 and Lemma 5.2.14).
So we see a potentially interesting duality about the basic classes: every nonsin-
gular MU with deficiency 2 is automatically saturated, while every nonsingular
MU with clauses of length at most 2 is automatically marginal.
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Chapter 6

Classification of minimally
unsatisfiable 2-CNFs

In Section 5.4 we characterised nonsingular 2-MUs via their positive implication
digraph, while in this chapter we provide a full classification all 2-MUs using
their (full) implication digraph and give a very precise overview.

After explaining the running example of this chapter in Section 6.1, the
important notion of implication digraphs of 2-CNFs are discussed in Section
6.2. Then in Section 6.3 we study 2-MUs of deficiency 1 and characterise their
isomorphism types. In Section 6.4 we explain singular DP-reduction in gen-
eral, including the specialisation 1-singular DP-reduction. We define digraphs
WDCs in Section 6.5, and then we characterise their isomorphism types. Sec-
tion 6.6 provides classification of 2-MUs of deficiency k ≥ 2. We first provide
a generation process for the elements of 2–MUδ=k, showing that their impli-
cation digraphs are 2k-WDCs. Then we show that for 2-MUs F, F ′ the set of
isomorphisms between F, F ′ is equal to the set of isomorphisms between their
implication digraphs. Finally we obtain a variety of applications in Section
6.7, including a polytime isomorphism decision for 2-MUs, and a bound for the
number of their isomorphism types.

6.1 The running example

The running example of this chapter is based on B3 ∈ 2–MUδ=3 (Definition
5.2.18), which has the following implication digraph (3 variables, thus 6 vertices,
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and 6 clauses, thus 2 · 6 = 12 arcs):

idg(B3) = 1 **

��

K1 2 44jj K2 3

��

tt

−K3 {{−1, 2}, {1,−2}, {−2, 3}, {2,−3}, {1, 3}, {−1,−3}} K3

−3
**

YY

−K2 −2 44jj −K1 −1
tt

EE

idg(B3) is a double 6-cycle and so has six cycles of length two, the cycles
K1,K2,K3, and their contrapositions −K1,−K2,−K3. The contraposition of
an arc (x, y) is the arc (x, y) := (y, x) (we do not use the notation Ki here for
typographical reasons). We note here, that the contraposition of each small
cycle is its “antipodal” cycle, on the “opposite side” of the digraph. idg(B3)
has also two big cycles, namely K4 : 1 → 2 → 3 → −1 → 2 → −3 → 1 and its
contraposition −K4, and these two cycles are exactly the contradictory cycles.
In general the implication digraph of Bn is a double 2n-cycle (see Section 3.3)
with 2n small cycles (non-contradictory), and two big cycles (contradictory), so
that together idg(Bn) has exactly 2n + 2 cycles (a cycle of a digraph is always
directed).

To display the unlabelled idg(B3) with complementation, the three pairs of
complementary literals (this is all what is needed to know about complemen-
tation) in idg(B3) are shown below by three different types •, ◦,× of vertices
(note their antipodal positions). Furthermore we show the abstract implication
digraph (the unlabelled idg(B3)), which has lost the information on the com-
plementation. The final abstraction for a 2-MU F is the homeomorphism type
of the implication graph (undirected) of F , which here is a cycle of 6 (small)
cycles connected by single vertices:

• %%

��

K1 ◦ 99ee K2 ×

��

zz

−K3 K3

× %%

\\

−K2 ◦ ::ee −K1 •zz

CC •
  

��

• ==aa •

��

~~

•
  

\\

• ==aa •
~~

BB • •

• •

• •

The following implication digraph, which is a WDC, is our running example,
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obtained from idg(B3) by splitting some vertices and arcs:

4

��
1

**

��

K1 6

��

K2 3

tt

��

2

bb ==

5

::

−K3 K3 −5

dd

−2

��
−3

**

UU

−K2 −6

��

−K1 −1

tt

II

−4

bb ==

As mentioned before, the implication digraph together with complementation
of vertices is essentially the same as the original clause-set. So the underlying
clause-set of the above implication digraph is

F = {{−5, 1}, {−1, 4}, {−4, 6}, {−6, 2}, {−2, 3}, {−3,−1}, {1,−2},
{4,−3}, {3, 5}} ∈ 2–MU .

idg(F ) has six small cyclesK1,K2,K3 and their contraposition−K1,−K2,−K3,
as in idg(B3). Furthermore, idg(F ) has four linear vertices, namely 5,−5, 6,−6.
In order to understand better the structure of F , we consider its non-1-singular
normalform, denoted by 1sDP(F ), with its implication digraph obtained by
removing all the linear vertices. Together with the homeomorphism type of F
these graphs are:

4

��
1

**

��

K1 K2 3

tt

��

2

cc ==

−K3 K3

−2

��
−3

^^

++

−K2 −K1 −1

@@

ss

−4
cc <<

•
• •

•

•
• •

•

1sDP(F ) = {{1, 3}, {−1, 4}, {2,−4}, {−2, 3},
{−1,−3}, {1,−2}, {−3, 4}} ∈ 2–MU .

6.2 Implication digraphs of 2-CNFs

In Chapter 5 we introduced the positive implication digraph (Definition 5.2.3)
which sufficed to characterise the nonsingular elements of 2–MU , while here
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we need the (full) implication digraph to characterise all 2-MUs. Since in this
chapter often the empty clause ⊥ is just in the way, by an upper-index “∗” we
exclude it: 2–CLS∗ := {F ∈ 2–CLS : ⊥ /∈ F}, and 2–MU∗δ=1 := 2–MUδ=1 \
{{⊥}}.

Definition 6.2.1 For F ∈ 2–CLS∗ the implication digraph idg(F ) is de-
fined as follows:

• V (idg(F )) := lit(F ),

• E(idg(F )) := {(x, x)|{x} ∈ F} ∪ {(x, y), (y, x)|{x, y} ∈ F and x 6= y}.
The implication graph is ig(F ) := ug(idg(F )).

For a literal x ∈ lit(F ) its degree ldF (x) is the in-degree of vertex x in idg(F ),
and the out-degree of vertex x, while for a variable v ∈ var(F ) its degree vdF (v)
is the degree of vertex v as well as the degree of vertex v in idg(F ). The arc y → x
is the contraposition of the arc x→ y. In an implication digraph, a cycle with
two clashing literals (i.e., a literal and its complement) is called contradictory.
The fundamental property, first observed in [8], is that a clause-set F ∈ 2–CLS∗
is unsatisfiable iff there exists a contradictory cycle in idg(F ). By forgetting
complementation and translating clauses into arcs we have:

Lemma 6.2.2 For F1, F2 ∈ 2–CLS∗ holds: if F1
∼= F2 then idg(F1) ∼= idg(F2).

More precise, if f : F1 → F2 is an isomorphism, then also f : idg(F1)→ idg(F2)
is an isomorphism.

The reverse direction of Lemma 6.2.2 does not hold in general, and so the
isomorphism type of implication digraphs is not a “complete isomorphism in-
variant” for 2-CNFs, as the following example shows:

Example 6.2.3 Consider any digraph G which is the disjoint union of two
(directed) cycles, and assume that G is the implication digraph of some 2-CNFs.
If the cycles have different lengths, then they can not be the contraposition of
each other, and so each cycle must be a contradictory cycle (as for every literal
its complement must be in the same cycle). That is, every F ∈ 2–CLS∗ with
idg(F ) ∼= G is unsatisfiable.

Now assume that the cycles have equal length. So we have two possibilities,
namely that the cycles are the contraposition of each other, or they both are
contradictory. The first case corresponds to a satisfiable 2-CNF, while the second
case yields an unsatisfiable 2-CNF as before, e.g., consider

F = {{−1, 2}, {−2, 3}, {−3, 4}, {1,−4}},
F ′ = {{−1}, {1, 2}, {−2}, {−3}, {3, 4}, {−4}}.

The implication digraphs are

idg(F ) = 1 // 2

��

−1 // −4

��
4

OO

3oo −2

OO

−3oo

idg(F ′) = 1 // −1

��

3 // −3

��
−2

OO

2oo −4

OO

4oo
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idg(F ′) has two contradictory cycles, and so F ′ is unsatisfiable, while F is
satisfiable. Therefore F 6∼= F ′, while idg(F ) ∼= idg(F ′).

Now consider any implication digraph with precisely two components, each
isomorphic to dg(CG4) (recall Example 3.3.1). One possibility is that the two
components are contraposition of each other, which yields a satisfiable 2-CNF,
e.g.,

F = {{−1, 2}, {1,−2}, {−2, 3}, {2,−3}, {−3, 4}, {3,−4}, {−1, 4}, {1,−4}}.

Another possibility is that each of the components has a contradictory cycle, and
so this case corresponds to an unsatisfiable 2-CNF, e.g.,

F ′ = {{−1, 2}, {1,−2}, {1, 2}, {−1,−2}, {−3, 4}, {3,−4}, {3, 4}, {−3,−4}}.

The implication digraphs of F, F ′ are as follows, where we see idg(F ) ∼= idg(F ′)
but F 6∼= F ′.

idg(F ) = 1
''

��

2

��

gg −1
**

��

−2

��

jj

4

GG

''
3gg

GG

−4

HH

**
−3jj

HH idg(F ′) = 1
((

��

2

��

hh 3
((

��

4

��

hh

−2

GG

**
−1jj

GG

−4

GG

**
−3jj

GG

When adding a notion of complementation to digraphs, then we obtain ba-
sically the same as 2-CNFs, as we now explain:

Definition 6.2.4 ([64]) A skew-symmetry of a digraph G is a bijection σ :
V (G)→ V (G) with the following properties:

1. σ is its own inverse, i.e., ∀ v ∈ V (G) : σ(σ(v)) = v (i.e., σ is an involu-
tion);

2. for every vertex v ∈ V (G) we have σ(v) 6= v (i.e., σ has no fixed-point);

3. for every arc (a, b) ∈ E(G) holds σ(a, b) := (σ(b), σ(a)) ∈ E(G), and the
induced map σ : E(G) → E(G) is a bijection (i.e., transposition by σ is
an automorphism of G).

A digraph G is called skew-symmetric, if there exists a skew-symmetry for G.
A digraph with skew-symmetry is a pair (G, σ), where G is a digraph G and
σ is a skew-symmetry of G.

For a digraph G, the transposed digraph, obtained by reversing the direction
of all arcs, is denoted by Gt. A skew-symmetry for G is an isomorphism f :
G → Gt, where f as a map (from V (G) to itself) is an involution and fixed-
point free. For F ∈ 2–CLS∗ the digraph idg(F ) has a natural skew-symmetry,
namely the complementation of literals, and the corresponding digraph with
skew-symmetry is denoted by sidg(F ) := (idg(F ), (x)x∈lit(F )).

An isomorphism from (G1, σ1) to (G2, σ2) is a digraph-isomorphism f :
G1 → G2 which is compatible with the skew-symmetries, i.e., for all v ∈
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V (G1) holds σ2(f(v)) = f(σ1(v)). For all F, F ′ ∈ 2–CLS∗ holds F ∼= F ′ iff
sidg(F ) ∼= sidg(F ′). For any digraph with skew-symmetry (G, σ) we can as-
sume w.l.o.g. that V (G) is a set of literals closed under complementation, and
that σ(x) = x for all x ∈ V (G) holds, and then there is a unique F ∈ 2–CLS∗
with sidg(F ) = (G, σ). So in this sense digraphs with skew-symmetry are “the
same” of 2-CNFs (however without variables, but just based on literals and their
complements), and we can call skew-symmetries of digraphs just “complemen-
tations”. A digraph may have no complementation (e.g., digraphs with an odd
number of vertices) or multiple complementations.

Example 6.2.5 For an example of a digraph with multiple complementations,
we continue Example 6.2.3, by considering the underlying unlabelled digraph G
consisting of two disjoint cycles v1 → . . .→ v4 → v1 and w1 → . . .→ w4 → w1

of length four, i.e.,

G := ({v1, . . . , v4, w1, . . . , w4}, {(v1, v2), . . . , (v4, v1), (w1, w2), . . . , (w4, w1)}).

We have seen two complementations, given by G ∼= idg(F ) and G ∼= idg(F ′).
Now what are all complementations?

There are four complementations yielding a digraph with skew-symmetry iso-
morphic to sidg(F ), namely one can choose v1 = wi for any i, and then the
other complementations are determined. And there are 2 · 2 = 4 complemen-
tations yielding sidg(F ′), namely one can say v1 = v2 or v2 = v3 for the first
cycle (which determines the complementations in this cycle), and the same for
the second cycle. Altogether G has exactly 4 + 4 = 8 complementations, which
yield exactly two isomorphism-types of digraphs with skew-symmetry.

An arc (x, y) is mapped by complementation to itself, i.e., (y, x) = (x, y), iff
x = y, iff the arc corresponds to the unit-clause {y}.

6.3 2-MUs of deficiency one

In this section we characterise of the isomorphism types of F ∈ 2–MUδ=1. By
Lemma 4.6.1 1-singular DP-reduction applied to any MU F results in {⊥} iff
δ(F ) = 1. So we can generate (exactly) all of 2–MUδ=1 by inverse 1-singular
DP-reduction. That is, we start with the empty clause, and repeatedly replace a
single clause C already generated by two clauses C ′∪{v}, C ′′∪{v} for C ′∪C ′′ =
C, |C ′|, |C ′′| ≤ 1, and a new variable v (a special case of the creation process
in Theorem 4.6.2). The clause-sets generated this way, starting with {{⊥}},
together exactly yield 2–MUδ=1.

Here we consider generating the elements of 2–MU∗δ=1 (without {⊥}), and so
the starting point are the 2-MUs with precisely one variable, namely {{v}, {v}}.
We need indeed not to create all of 2–MU∗δ=1, but only up to isomorphism. To
make a start, we have w.l.o.g. the following cases, for |C| = 1, 2:

(i) C = {x}:
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A: C ′ = {x, v}, C ′′ = {v}.
B: C ′′ = {x, v}, C ′′ = {x, v}.

(ii) C = {x, y}, x 6= y: C ′ = {x, v}, C ′′ = {y, v}.

The above “w.l.o.g.” here just means that all additional unit-clauses are neg-
ative. We note that there are always at most two unit-clauses (Lemma 5.4.1).
We now (further) standardise the process, to minimise the number of case dis-
tinctions needed. It is possible to start only with variable v = 1, that is, with
{{1}, {−1}}, and for each new variable to choose the next natural number.

Lemma 6.3.1 We can generate up to isomorphism the elements of 2–MU∗δ=1

by a sequence of applications of Rules A, B, (ii), with the following restrictions:
First at most one application of A, then at most two applications of B, and
finally arbitrarily many application of (ii) (if at least one application of Rules
(ia) or (ib) took place). If we have one A and at least one B, then as main
clause of the first B the new unit-clause is used.

Proof: Rule (ii) can not be used at the start, and Rule B can be applied at
most twice. Indeed the generation process can be restricted w.l.o.g. to have two
phases, where Rules A, B are only used in the first phase, and Rule (ii) only
in the second phase. For each rule, the clause we choose (C above) is the main
clause, while the side clauses are the replacement clauses (C ′, C ′′ above). If
Rule (ii) is followed by Rule A or B, then we can swap the applications, as the
side clauses for Rule (ii) are binary and thus disjoint with the main clause for
Rule A or B. Also if Rule B is followed by Rule A, then because of disjointness
of the side clauses of B and the main clause of A we can swap the rules. So we
can assume that a generation process has first applications of Rule A, then at
most two applications of B, and then applications of (ii).

Furthermore, two consecutive applications of Rule A can be replaced by one
application of Rule A, followed by one application of Rule (ii); this is shown
by considering the very first applications, w.l.o.g. first applied to {1}, then to
{−2}, yielding

{{1}, {−1}}; {{1, 2}, {−2}, {−1}}; {{1, 2}, {−2, 3}, {−3}, {−1}}.

The simulation is

{{1}, {−1}}; {{1, 3}, {−3}, {−1}}; {{1, 2}, {−2, 3}, {−3}, {−1}}.

The last point in this standardisation process is to consider exactly one
application of A, followed by at least one application of B. Here it does not
matter, whether the first application of B uses as main clause the original clause
or the new unit-clause produced by A, while we note that the unit-clause for
a second application of B is unique. The reason is that both clause-sets are
isomorphic: the first case yields

{{1}, {−1}}; {{1, 2}, {−2}, {−1}}; {{1, 2}, {−2}, {−1, 3}, {−1,−3}},
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the second case yields

{{1, 2}, {−2}, {−1}}; {{1, 2}, {−2, 3}, {−2,−3}, {−1}},

and the isomorphism swaps variables 1 and 2. �
Concerning Rule (ii), it is easy to see that it produces just a chain as follows:

Lemma 6.3.2 Applying Rule (ii) n ≥ 1 times to {x, y} yields a clause-set
isomorphic to {x, 1}, {−1, 2}, . . . , {−(n− 1), n}, {−n, y}.

Important to note here that when there are several binary clauses to start with,
the applications of Rule (ii) do not interfere, and so for each of the starting
binary clauses we can apply Lemma 6.3.2, with the new variables made disjoint.

We are now ready to derive the basic types of F ∈ 2–MU∗δ=1, according to
the number of applications of Rules A, B (while Rule (ii) is applied arbitrarily
often). By Lemma 6.3.1 we have:

Corollary 6.3.3 The five starting points for the applications of Lemma 6.3.2
(and Rule (ii)) are as follows, showing the sequence of applications of Rules A,
B, and after the colon the number of unit-clauses:

(A) {{1, 2}, {−2}, {−1}} : 2.

(B) {{1, 2}, {1,−2}, {−1}} : 1.

(AB) {{1, 2}, {−2, 3}, {−2,−3}, {−1}} : 1.

(BB) {{1, 2}.{1,−2}, {−1, 3}, {−1,−3}} : 0.

(ABB) {{1, 2}, {−2, 3}, {−2,−3}, {−1, 4}, {−1,−4}} : 0.

Definition 6.3.4 Let M := {{−1, 2}, . . . , {−(n − 1), n}} for n ∈ N (and with
n−1 clauses) be the invariant “middle part” (compare Lemma 6.3.2). We define
the following clause-sets where with “U” denotes “unit”:

1. U2
n := M ∪ {{1}, {−n}} for n ≥ 1 (occurs in [27] and [80]).

2. U1
n,i := M ∪{{1}, {−n,−i}} for n ≥ 2, 1 ≤ i ≤ n−1 (introduced in [27]).

3. U0
n,i := M ∪ {{1, i}, {−n,−i}} for n ≥ 3, 2 ≤ i ≤ n+1

2 (occurred in [35]).

4. U0
n,x,y = M ∪ {{1, x}, {−n,−y}} for n ≥ 4, 2 ≤ x < y ≤ n− 1, x+ y ≤

n+ 1.

We now characterise the isomorphism types of F ∈ 2–MU∗δ=1. First consider
2-MUs with two unit-clauses:

Lemma 6.3.5 For F ∈ 2–MUδ=1 holds F ∼= U2
n(F ) iff F has two unit-clauses.
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Proof: The only starting point in Corollary 6.3.3 with two unit-clauses is case
(A). Replacing {1, 2} according to Lemma 6.3.2, using new variables 3, . . . , n,
yields the clauses {1, 2}, {−2, 3}, . . . , {−(n − 1), n}, {−n, 2}, {−2}, {−1}. For
better formatting we swap variables n and 2, and flip variable 1. This yields U2

n

(Definition 6.3.4), which makes sense for n ≥ 1, and thus covers all cases with
exactly two unit-clauses. �
The implication digraph of U2

n is a cycle digraph with 2n vertices and 2n edges
(where all vertices have degree 2). The labelled digraph, actually a digraph with
skew-symmetry, is shown as follows (see Lemma 6.6.7 for more details). Here
arcs from unit-clauses are drawn as double-arcs (if multigraphs would be used,
then unit-clauses indeed would yield two parallel arcs):

idg(U2
n) = 1 // 2 // · · · // n− 1 // n

��
−1

KS

−2oo · · ·oo −(n− 1)oo −noo

We now characterise 2-MUs with precisely one unit-clause. First we note
that we can merge chains based on two binary clauses {x, z}, {y, z}, using z to
connect the chains:

Lemma 6.3.6 Applying Rule (ii) n ≥ 1 times to {{x, z}, {y, z}} yields a clause-
set isomorphic to {x, 1}, {−1, 2}, . . . , {−(n− 1), n}, {−n, y}.

Lemma 6.3.7 For F ∈ 2–MUδ=1 holds F ∼= U1
n(F ),i for some 1 ≤ i < n(F ) iff

F has exactly one unit-clause.

Proof: In Corollary 6.3.3 cases with precisely one unit-clause are cases (B) and
(AB). From Case (B) we obtain {{−1}, {1, 2}, {−2, 3}, . . . , {−(n−1), n}, {−n, 1}}
for n ≥ 2. We note that after flipping literal 1, this is U2

n, when adding to the
last clause the literal −1, i.e., we get U1

n,1 (Definition 6.3.4).
For Case (AB), we rename variable 2 to some x not used as new variable.

First from {1, x} we obtain either {1, x} or {1, 2}, . . . , {−p, x} for some p ≥
2. And from {−x, 3}, {−x,−3}, renamed to {−x, p + 1}, {−x,−(p + 1)}, we
obtain {−x, p + 1}, . . . , {−q,−x} for some q ≥ p + 1. Appending these chains
yields with the original {−1} a clause-set isomorphic to {−1}, {1, 2}, . . . , {−(n−
1), n}, {n,−i} for some 2 ≤ i < n and n ≥ 2. After flipping literal 1, this is U2

n,
when adding to the last clause the literal −i, i.e., we get U1

n,1 (Definition 6.3.4).
�
We note that U2

n = U1
n,n (allowing this degeneration for the moment). The

implication digraph of U1
n,i has 2n vertices and 2n+1 edges, and consists of two

cycle digraphs of length n+ i, which overlap in a path of length 2i− 1 ≥ 1 (we
note 2(n+ i)− (2i− 1) = 2n+ 1); two vertices have degree 3, all other vertices
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have degree 2:

idg(U1
n,i) = 1 // · · · // i //

))

· · · // n

uu−1

KS

· · ·oo −ioo · · ·oo −noo

=

n

xx

n− 1oo · · ·oo i+ 2oo i+ 1oo

−i // −(i− 1) // · · · // −1 +3 1 // · · · // i− 1 // i

}}

bb

−(i+ 1)

ee

−(i+ 2)oo · · ·oo −(n− 1)oo −noo

We note here that the digraphs idg(U1
n,i) have a unique skew-symmetry (we

do not prove that here, but the basic fact used is that a skew-symmetry is an
“anti-automorphism”, and has to pair vertices of identical degree).

Finally we characterise 2-uniform (without unit-clauses) elements of 2–MUδ=1:

Lemma 6.3.8 For 2-uniform F ∈ 2–MUδ=1 with n := n(F ) holds:

• If F has a variable of degree 4 (occurring twice positively and twice nega-
tively), then n ≥ 3 and F ∼= U0

n,i for some i ∈ {2, . . . , n− 1}.

• Otherwise n ≥ 4 and F ∼= U0
n,x,y for some x, y ∈ {2, . . . , n−1} with x < y.

Proof: The 2-uniform starting points in Corollary 6.3.3 are cases cases (BB)
and (ABB). For case (BB), we apply Lemma 6.3.6 twice, and similar to above,
we obtain U0

n,i (Definition 6.3.4), for the moment allowing all 2 ≤ i ≤ n−1. The

implication digraph of U0
n,i has 2n vertices and 2n + 2 edges, and two vertices

have degree 4, while all other vertices have degree 2:

idg(U0
n,i)) = 1 // · · · // i //

))

· · · // n

uu−1

55

· · ·oo −ioo

ii

· · ·oo −noo

=

1 // 2 // · · · // i− 2 // i− 1

��

−(i− 1) // −(i− 2) // · · · // −2 // −1

%%−i

77

>>

i

yy

��
−(i+ 1)

gg

−(i+ 2)oo · · ·oo −(n− 1)oo −noo

n

``

n− 1oo · · ·oo i+ 2oo i+ 1oo

The two paths from −i to i have length i, while the two paths from i to −i have
length n− i+ 1. If i > n− i+ 1, then we reverse the direction of all arcs in this
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digraph, which corresponds to flipping all literals in U0
n,i. So then we obtained

an isomorphic clause-set, where the upper two paths are swapped with the lower
two paths, and thus w.l.o.g. one can assume i ≤ n− i+ 1, that is, i ≤ n+1

2 . We

note here that the digraphs idg(U0
n,i)) again have a unique skew-symmetry.

Similarly, for case (ABB), in a sense the most general case, we obtain U0
n,x,y

(Definition 6.3.4), allowing for the moment all 2 ≤ x, y ≤ n−1, where x < y (this
comes from the chaining-order). Allowing degenerations, we have U2

n = U0
n,1,n,

U1
n,i = U0

n,1,i and U0
n,i = U0

n,i,i. The implication digraph of U0
n,x,y has 2n

vertices and 2n+2 edges, and four vertices have degree 3, while all other vertices
have degree 2:

idg(U0
n,x,y) = 1 // · · · // x // · · · // y

))

// · · · // n

uu−1

55

· · ·oo −xoo

ii

· · ·oo −yoo · · ·oo −noo

=

1 // 2 // · · · // x− 2 // x− 1

%%−x

66

// −(x− 1) // −(x− 2) // · · · // −2 // −1 // x

��
−(x+ 1)

OO

x+ 1

��
· · ·

OO

· · ·
��

−(y − 1)

OO

y − 1

��
−y

OO

−(y + 1)oo −(y + 2)oo · · ·oo −(n− 1)oo −noo yoo

yy
n

gg

n− 1oo · · ·oo y + 2oo y + 1oo

The two paths from −x to x have length x, the two paths from y to −y have
length n−y+1. As above, w.l.o.g. we can assume x ≤ n−y+1, i.e., x+y ≤ n+1.
�

Example 6.3.9 The “snakes” clause-sets introduced in [35] are isomorphic to
U0
n,n+1

2
∈ 2–MUδ=1 for odd n.

Also “bicycle” 2-CNFs in [35] are a more general form of U0
n,x,y, namely

that a bicycle can be obtained from U2
n for some n ≥ 2 by choosing literals

x, y ∈ lit({2, . . . , n− 1}), and adding literal x to the unit-clause {1} and adding
literal y to the unit-clause {−n}. So these bicycle 2-CNFs in general might be
satisfiable or unsatisfiable.

Altogether we achieved the classification of 2–MU∗δ=1:
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Theorem 6.3.10 For input F ∈ 2–MU∗δ=1 exactly one of the four cases in
Lemmas 6.3.5, 6.3.7, and 6.3.8 applies. Let u(F ) ∈ {0, 1, 2} be the number
of unit-clauses in F . Then in polynomial time the unique parameter-list L(F )
of length 0, 1, 2, according to the applicable case can be computed, such that

F ∼= U
u(F )
n(F ),L(F ) holds. This map canon : 2–MU∗δ=1 → 2–MU∗δ=1 given by

canon(F ) := U
u(F )
n(F ),L(F ), is a polytime computable clause-set-canonisation, that

is, for F, F ′ ∈ 2–MU∗δ=1 holds F ∼= F ′ iff canon(F ) = canon(F ′).
Furthermore the map F ∈ 2–MU∗δ=1 7→ canon′(F ) := ig(canon(F )) to

the class of graphs is a polytime computable graph-canonisation, that is, for
F, F ′ ∈ 2–MU∗δ=1 holds F ∼= F ′ iff canon′(F ) = canon′(F ′). From canon′(F ) in
polytime F can be reconstructed up to isomorphism.

Proof: A contraction of two arcs into one edge, when transitioning from the
implication digraph idg(F ) to the implication graph ig(F ), happens exactly for
the two following cases:

1. For complementary unit-clauses in F , idg(F ) is the cycle digraph of length
2, while ig(F ) is the complete graph with two vertices.

2. Equivalence-clauses {x, y}, {x, y} ∈ F yield a cycle digraph of length 2 in
idg(F ), and a single edge in ig(F ).

We see from the implication digraphs, that here only the first case happens, i.e.,
when n(F ) = 1. This is the case U2

1, which does not pose any problems. For
the sequel of the proof we assume n(F ) ≥ 2, and thus no contractions happen
when transitioning from idg(F ) to ig(F ).

The four cases U2
n,U

1
n,i,U

0
n,i,U

0
n,x,y are separated by vertex-degrees in the

implication graph, since their degree-spectra as triples in (N0 ∪ {+∞}3) for
the numbers of degree-2/3/4-vertices, with “inf” meaning “unbounded”, are
resp. (inf, 0, 0), (inf, 2, 0), (inf, 0, 4) and (inf, 4, 0). Some parameter-list L(F )
can be computed in polytime by performing the standardisation of the chain of
1-singular-DP-reductions leading to ⊥, as in the proofs of Lemmas 6.3.5, 6.3.7,
and 6.3.8, or they are determined from the implication graph, as in the following
uniqueness argument. Namely that the parameters are uniquely determined, is
read off the unlabelled implications graphs (i.e., vertices are “anonymised”) as
follows:

• The parameter i in ig(U1
n,i) can be computed from the length of the shared

path 2i− 1 of the two cycles.

• For ig(U0
n,i) there are exactly two vertices of degree 4, and there are two

paths of length i and two paths of length n − i + 1 between them (no
more). Since i ≤ n− i+ 1, we can compute i.

• For ig(U0
n,x,y) there are exactly four vertices a, b, c, d of degree 3, which

we can identify in such a way that ig(U0
n,x,y) consists of a cycle running

through these vertices in the given order, and where between a, b and c, d
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there are parallel paths to the path between a, b resp. c, d on that cycle,
such that this is all of the graph. These parallel paths have the same
length p resp. q. W.l.o.g. p ≤ q, and now x := p and y := n− q + 1.

This shows all the statements in the theorem. �

By adding up the contributions we obtain the exact number of isomorphism
types of 2-MUs of deficiency 1 as follows:

Theorem 6.3.11 The exact number of isomorphism types of F ∈ 2–MUδ=1

with n(F ) = n ∈ N0 is 
1 if n = 0
1
4n(n+ 2) if n is even
1
4 (n+ 1)2 if n is odd.

This is the sequence A076921 in the OEIS ([139]), where that sequence starts
with index 1.

Proof: We have n = 0 iff F = A0 = {⊥}. For n ≥ 1 by Theorem 6.3.10 there
are precisely four cases as follows:

2 unit-clauses: F ∼= U2
n(F ), with precisely 1 isomorphism type.

1 unit-clause: F ∼= U1
n,i and the number of isomorphism types is 0 for n = 1,

and n− 1 for n ≥ 2.

0 unit-clauses, 1 non-1-singulars: F ∼= U0
n,i with number of isomorphism

types 0 for n ≤ 2, otherwise n−1
2 for odd n, and n−2

2 for even n.

0 unit-clauses, 4 non-1-singulars: F ∼= U0
n,x,y with the number of isomor-

phism types 0 for n ≤ 3, otherwise 1
4 (n−2)2 for even n, and 1

4 (n−1)(n−3)
for odd n.

The sum for n ≥ 4 yields 1
4n(n+ 2) for even n, and 1

4 (n+ 1)2 for odd n; these
formulas hold indeed for n ≥ 1. �

6.4 Singular DP-reduction and smoothing

As already discussed, a fundamental tool for the analysis of MUs is singular
DP-reduction, where DPv(F ) ∈ MU is guaranteed (see Section 4.5). For F ∈
2–MU∗δ=1, a variable v is singular, iff vertex v or v in idg(F ) is linear. The classes
of MUs with fixed deficiency k ≥ 1 are stable under singular DP-reduction
(Corollary 4.5.3), and since 2–CLS is stable under resolution, also the classes
2–MUδ=k are stable under singular DP-reduction. The basic result for this
chapter, already shown in Corollary 5.4.8, is that for F ∈ 2–MU and F ′ ∈
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sDP(F ) holds: If δ(F ) = 1 then F ′ = {⊥}, if δ(F ) ≥ 2 then F ′ ∼= Bδ(F ).
In Section 6.3 we characterised all 2-MUs with deficiency 1, based on reversal
of 1-singular DP-reduction (in a special setting; this will be taken up again in
Subsection 6.4.1). To generate all 2-MUs for higher deficiencies, general singular
DP-reduction (for 2-CNFs) has to be reversed.

6.4.1 1-singular DP-reduction

The nicest case of singular DP-reduction is when we have confluence, that is,
|sDP(F )| = 1. By [108, Section 5] we indeed have confluence, when perform-
ing only 1-singular DP-reduction. And furthermore it follows by the general
results there, that once all 1-singular variables are eliminated, none are being
reintroduced. The simple reason for confluence is that 1-singular DP-reduction
does not remove 1-singular variables other than the eliminated variable (but
we note that new 1-singular variables in general are created). We denote by
MU+ ⊂ MU the set of non-1-singular F ∈ MU , i.e., where every vari-
able of F has degree at least 3 (while for nonsingular F ∈ MU ′ every vari-
able has degree at least 4). For C ⊆ MU we use C+ := C ∩ MU+. We use
1sDP(F ) ∈ MU+ for F ∈ MU to denote the (unique) non-1-singular MU
obtained by 1-singular DP-reduction from F . The basis for Section 6.3 is that
for all F ∈ MU holds 1sDP(F ) = {⊥} iff δ(F ) = 1 (Lemma 4.6.1). As men-
tioned, once we have removed all 1-singular variables, singular-DP-reduction
never reintroduces them:

Lemma 6.4.1 MU+ is stable under singular-DP-reduction.

Proof: The only possibility of a singular DP-reduction on v with main clause
v ∈ C ∈ F ∈ MU and side-clauses v ∈ D1, . . . , Dm ∈ F decreasing the degree
of a literal x ∈ lit(F ) is that x ∈ C ∩D1 ∩ · · · ∩Dm, but since F ∈ MU+, we
have m ≥ 2, and thus the literal-degree of x in DPv(F ) is at least two. �
The analysis of singular DP-reduction for a class C ⊆ MU , where always sta-
bility of C under singular DP-reduction is assumed, now can proceed by first
considering the simple confluent reduction F ∈ C ; 1sDP(F ) ∈ C+ and charac-
terising the elements of C+. The second stage then can start with C+ ⊆ C, and
need only to consider non-1-singular DP-reductions to arrive at C′ = C ∩MU ′.

6.4.2 Smoothing of (multi-)graphs

We will now see that a general reduction operation for graphs, strongly related
to the concept of “homeomorphism” of graphs, covers most cases of 1-singular
DP-reduction. Indeed it is essential to consider multigraphs here, which allow
loops and parallel edges.

Following [66, Section 7.2.4, D37], a smoothing step for a multigraph
G chooses a linear vertex v ∈ V (G) (Definition 3.1.5) and with v /∈ NG(v)
(the set of neighbours of v), removes the vertex v and the two edges from
G incident with v, and for the vertices u,w with NG(v) = {u,w} (note that
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possibly u = w) adds an edge connecting u and w; thus the obtained multigraph
G′ has V (G′) = V (G) \ {v} and E(G′)({u,w}) = E(G)({u,w}) + 1. We note
that the degree of the remaining vertices is not changed except for the case
u = w, in which case the degree of u decreases by one. Especially linear vertices
in G different from v stay linear vertices in G′, except for the case when we have
two linear vertices v 6= v′ forming a 2-cycle (i.e., E(G)({v, v′}) = 2), in which
case the degree of v′ in G′ is 1 (namely E(G′)({v}) = 1).

Example 6.4.2 Smoothing of the graph G yields the multigraph G′:

G = 5 6 1 7 9

4 3 2 8 10

G′ = 1

2 8

Smoothing of the cycle multigraph CGn, n ≥ 1, yields exactly one of the multi-
graphs with one vertex i, 1 ≤ i ≤ n, with exactly one edge.

So performing smoothing steps on a multigraph G as long as possible results
in a multigraph G′ (with V (G′) ⊆ V (G)), where G′ is uniquely determined
except for isolated cycles C ⊆ V (G) (all vertices of C are linear in G) of length
at least two, where exactly one v ∈ C is chosen, and the whole cycle C is replaced
by a loop at v. For 1-singular DP-reduction this choice does not happen, since
the result of this situation is the (unique) empty clause.

Example 6.4.3 Consider U2
2 = {{1}, {−1, 2}, {−2}}: we can perform 1-singular

DP-reduction on variables 1 or 2, obtaining {{2}, {−2}} or {{1}, {−1}}, which
corresponds to isolated cycles of length 2, but resolution in both cases yields ⊥,
while for the corresponding smoothing-operation one of the two literals is selected
to label the remaining loop.

Now assume that some linear order on the universe of vertices is given. For
a (finite) digraph G by sm(G) we denote the multigraph obtained from G by
performing smoothing steps as long as possible, where in case of a choice the
first element in the given linear order is chosen. We have shown:

Lemma 6.4.4 For a digraph G we have precisely two cases for sm(G) as fol-
lows:

1. If G has no isolated cycles, then smoothing is confluent (i.e., sm(G) does
not depend on the linear order on vertices), and the vertices of sm(G) are
the nonlinear vertices of G.

2. Otherwise, G has some isolated cycles C ⊆ V (G) of length |C| ≥ 2,
where for the last element v ∈ C according to the linear order we have
V (sm(G)) ∩ C = {v}, with degsm(G)(v) = 1 and Nsm(G)(v) = {v}. Fur-
thermore the vertices of sm(G) are the nonlinear vertices of G plus these
selected vertices for each isolated cycle of G, and the results obtained for
different linear orders are isomorphic.
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Corollary 6.4.5 For two multigraphs G,G′, if G ∼= G′ then sm(G) ∼= sm(G′).

Following [66, Section 7.2.4, D38], two multigraphs G,G′ are homeomorphic,
if sm(G) ∼= sm(G′). So two isomorphic multigraphs are homeomorphic, but not
vice versa.

Example 6.4.6 Consider our running example F and its non-1-singular nor-
malform 1sDP(F ) (Section 6.1). The multigraph mg(idg(F )), shown below, has
four linear vertices 5,−5, 6,−6, which are removed by smoothing as follows.

4

1 6 3

2

5 −5

−2

−3 −6 −1

−4

4

1 3

2

−2

−3 −1

−4

The result sm(idg(F )) is isomorphic to the multigraph mg(idg(1sDP(F ))) which
has no linear vertices (see Section 6.1 for the implication digraph of 1sDP(F )).
That is, the results of smoothing for the implication digraph of F and 1sDP(F )
are isomorphic, and so their multigraphs are homeomorphic.

In order to present the connection between 1-singular DP-reduction for 2-MUs
and smoothing of the implication graphs, we need indeed to introduce the im-
plication multigraph img(F ) for F ∈ 2–CLS, which is obtained from idg(F )
by conversion in case of ⊥ /∈ F , while for ⊥ ∈ F we add a new vertex v⊥ to
img(F \ {⊥}), and add a loop at v⊥ (of multiplicity 1). So for a variable v its
variable-degree vdF (v) equals the degree of vertex v as well as the degree of
vertex v in img(F ). Thus a vertex x ∈ V (img(F )) is linear iff x is linear, while
a variable v is 1-singular in F iff vertices v, v are linear in img(F ). If f : F → F ′

is an isomorphism between F, F ′ ∈ 2–CLS, then f ′ : img(F )→ img(F ′) is also
an isomorphism, where f ′ just extends the map f by mapping f ′(v⊥) = v⊥.

Now smoothing of img(F ) for F ∈ 2–MU corresponds exactly to 1-singular
DP-reduction for F , except that unit-clauses {x} obtained by contraction, i.e.,
from {v, x}, {v, x}, with v being 1-singular, never participate in the reduction
process, since the multiplicity of the edge between −x and x here is increased
by two. And except that the clause-set-process does not record multiplicities of
edges, of course:

Lemma 6.4.7 Consider F ∈ 2–MU . Then the underlying graph of sm(F ) :=
sm(img(F )) is ig(F ′), where F ′ is obtained from F by any series of 1-singular
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DP-reductions without using new unit-clauses obtained by contraction, where
the series is maximal, and where in case F ′ = {⊥} we let the single vertex v⊥
of img(F ′) be the final vertex in the smoothing-sequence of img(F ).

We call sm(F ) the homeomorphism type of F . By Theorem 6.3.10 we obtain
that sm(F ) for F ∈ 2–MUδ=1 is equal to exactly one of the homeomorphism
types of the four cases U2

n,U
1
n,i,U

0
n,i,U

0
n,x,y (see Section 6.3 for the implication

digraphs of these cases):

sm(U2
n) = • , sm(U1

n,i) = • • ,

sm(U0
n,i) = • • , sm(U0

n,x,y) = • •

• •
Before coming to the main results of this chapter, we comment on a differ-

ent study of graphs related to 2-CNFs from the literature about distinguishing
satisfiability and unsatisfiability of 2-CNFs:

Example 6.4.8 In [74] the multigraphs considered for F ∈ 2–CLS, call it
ig′(F ), can be obtained from the implication graphs ig(F ) by identifying comple-
mentary vertices (this information comes from F itself). The paper only studies
the graph-cases (no parallel edges), by first applying an arbitrary preprocessing
of F to remove C,D ∈ F , with C 6= D but var(C) = var(D) (these yield the par-
allel edges). For example the isomorphism types of 2–MUδ=1 (Theorem 6.3.10)
we obtain:

ig′(U2
n) : 1 2 . . . n , ig′(U1

n,i) : 1 2 . . . i . . . n− 1

n

ig′(U0
n,i) : 2 . . . i . . . // n− 1

1 n

ig′(U0
n,x,y) : 2 . . . x . . . y . . . n− 1

1 n

Each of ig′(U0
n,x,y) and ig′(U0

n,i) is already homeomorphic to one of the graphs in

[74, Theorem 18]. However based on the paper, 2-MUs U2
n,U

1
n,i are not “simple”

as they have some unit-clauses or two clauses with same variable-set. Then the
preprocessing for these clause-sets (as explained in [74, Remark 1]) yields {⊥}.
Therefore this preprocessing destroys information on isomorphism types, and
thus is not suitable for our investigations. An interesting aspect is that at least
for the graph cases, ig′(F ) can distinguish satisfiable and unsatisfiable F .
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6.5 Weak-double-cycles for 2-MUs of higher de-
ficiency

The operation of splitting a vertex x in a digraph G consists of replacing x
by two new vertices u, v and an arc (u, v), such that all arcs coming into x come
into u, and all arcs going out of x go out of v.

)) ))x

55

))
// u // v

55

))
55 55

Splitting an arc (also called subdividing an arc) in a digraph G replaces an
arc (x, y) ∈ E(G) by (x, v), (v, y) for a new (linear) vertex v.

x // y // x // v // y

A double m-cycle for m ≥ 3 is the digraph obtained from some cycle graph,
that is, a digraph isomorphic to dg(CGm) (see Section 3.3). A double cycle G
is strongly connected, and every vertex has in- and out-degree 2. Furthermore
for every arc in G also the reverse arc exists (this characterises the class of
double cycles) and so |E(G)| = 2 · |V (G)| and δ(G) = |V (G)|. The main class
of digraphs studied here is the “m-weak-double-cycle”, introduced in [136] in
the context of the Even-Cycles-problem (called “weak m-double-cycles” there),
while we use the terminology of [13]. Weak-double-cycles (WDCs) are obtained
from double cycles by splitting some vertices or some arcs.

Definition 6.5.1 An m-weak-double-cycle (m-WDC) is a digraph obtained
from some double m-cycle (m ≥ 3) by splitting some vertices or arcs.

A double m-cycle G has m (small) cycle digraphs of length two, and two
(big) cycle digraphs of length m. These m+ 2 cycles are precisely all the cycle
digraphs in G. It is easy to see that splitting arcs or vertices in any digraph
G maintains the number the cycles of G (just enlarges some of them). So
an m-WDC G has precisely m + 2 cycle digraphs. The small cycles in G are
characterised by having at most 4 nonlinear vertices (in G), with at most two
of them of degree 4 (in G). The big cycles (“clockwise” and “anticlockwise”)
contain all the overlapping vertices between small cycles, and alternately choose
the “outer section” and “the inner section” of a small cycle, using the natural
planar drawing of G.

Example 6.5.2 Examples of WDCs are the implication digraph of F and its
non-1-singular normalform 1sDP(F ) in Section 6.1.

To get a better grasp on the cycle digraphs in WDCs, we introduce the
general concept of the cycle-multigraph cmg(G) for a graph/multigraph/di-
graph G, which is a multigraph with vertex-set the cycles of G (recall these
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are sub-graph/multigraph/digraphs), and for any two vertices g, g′ the num-
ber of edges between them is |V (g) ∩ V (g′)|, i.e., the number of common ver-
tices. For an isomorphism f : G → G′, we obtain an induced isomorphism
f ′ : cmg(G) → cmg(G′) in the obvious way (just mapping via f the vertices
of G inside the structure cmg(G)). For an m-WDC G the cycle-multigraph
cmg(G) is as follows:

1. There are m + 2 vertices, m of them in an m-cycle (the “small cycles”),
and two central vertices connected to every other vertex (the “big cycles”).

2. Every vertex of G has a loop, with multiplicity the size of the sub-graph
(|V (g)|).

3. Every small-cycle-vertex connects with its neighbouring small cycles, where
multiplicity of the connecting is being the number of vertices in the over-
lap.

4. The multiplicity of the edge between the two central vertices is the sum
of these overlaps.

5. The multiplicity of the edge connecting one central vertex g with a small-
cycle g′ is the sum of the overlaps of g′ with its small-cycle-neighbours
plus the number of vertices in the “outer-/inner-section” of g′ as chosen
by g.

An isomorphism f : G→ G′ of WDCs G,G′ maps small cycles of G to small cy-
cles of G′ (by the above invariant characterisation of small cycles in WDCs), and
the appropriate restrictions of f yield isomorphisms of these small cycles (as sub-
digraphs). Let S, S′ be the induced sub-multigraphs of cmg(G), cmg(G′) given
by the small-cycle-vertices. As stated above, we have the induced multigraph-
isomorphism f ′ : cmg(G)→ cmg(G′), which induces a multigraph-isomorphism
f ′′ : S → S′, since small cycles are mapped by f ′ to small cycles. Furthermore,
from f ′′ one can reconstruct f in polynomial time: f must respect the overlaps
of the cycles, and then the map is fixed also on the interior vertices of the cycles.
The underlying graph ug(S) is an m-cycle graph. The automorphism group (the
self-isomorphisms together with the composition of maps) of CGm (the cycle
graph with m vertices) is the Dihedral group with 2m elements (m rotations
and m reflections). We have arrived at an efficient process for computing the
isomorphisms between WDCs:

Lemma 6.5.3 Consider WDCs G,G′. The isomorphisms f : G → G′ can be
determined in polynomial time as follows, where we assume that both G,G′ are
m-WDCs for some m ≥ 3 (otherwise G 6∼= G′):

1. Choose any isomorphisms α, β between the cycles S, S′ of small cycles in
cmg(G), cmg(G′), as graphs, with CGm.

2. Run through the 2m automorphisms of the Dihedral group, as permutations
of {1, . . . ,m}, considered via α, β as an isomorphism f ′′ : S → S′.
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3. Keep those f : V (G) → V (G′), where the extension process from f ′′ suc-
ceeds.

Proof: As explained before, any isomorphism f : G → G′ induces a unique
isomorphism f ′′ : S → S′ where S, S′ are the induced sub-multigraphs of
cmg(G), cmg(G′), respectively. On the other hand, from any f ′′ we can re-
construct a potential f and check whether f is an isomorphism between G,G′

in polynomial time. Therefore in order to obtain all isomorphisms between G,G′

we just need to run through all isomorphisms between S, S′, where the details
are as follows: We recall that the underlying graphs for S, S′ are isomorphic to
the cycle graph CGm, and that the automorphism group of CGm is the Dihedral
group with 2m elements. Now consider any isomorphism α : S → CGm and
β : S′ → CGm (step 1). For any arbitrary automorphism γ of CGm we have
f ′′ = β−1 ◦γ ◦α, and in this way we can run through all the 2m automorphisms
γ of CGm and transfer them to isomorphisms f ′′ between S, S′ (step 2). Finally
because of the relation between f, f ′′, we transfer f ′′ to f and keep those f
which are a bijection f : V (G)→ V (G′) with f(E(G)) = {(f(a), f(b)) : (a, b) ∈
E(G)} = E(G′) (Definition 3.2.1), i.e., f : G→ G′ (step 3). �
We see that the automorphism groups of m-WDCs are subgroups of the Dihedral
group with 2m elements (obtained in Lemma 6.5.3 by a natural filtering process).
We also obtain a reasonably direct procedure for deciding isomorphism of WDCs
(which indeed follows immediately from [121] by the fact that the maximum
degrees of WDCs is 4):

Corollary 6.5.4 The class of WDCs has polytime isomorphism decision.

In general from the (unlabelled) cmg(G) one can not reconstruct G (up to
isomorphism), but for a WDC G this is possible, and this even from cmg(ug(G)).
This implies that WDCs can be reconstructed up to isomorphism from their
underlying graphs. We prove this however in a more direct way, avoiding to
unfold here the “full cycle-picture” (we note that cmg(ug(G)) has more elements
than cmg(G), which corresponds to the wlog’s in the direct proofs).

Between the base level of double cycles and the general level of WDCs there
is the middle level of nonlinear WDCs, i.e., WDCs without linear vertices.
Once one linear vertex has been produced via splitting of arcs, we will always
keep one, and thus nonlinear WDCs are exactly generated from double cycles by
(only) splitting vertices. Nonlinear m-WDCs arise from from 0 to m splittings
of vertices, where splitting a degree-4-vertex yields two degree-3-vertices, and
the new arc is an overlap between the two neighbouring cycles involved.

Lemma 6.5.5 For any nonlinear WDC G, from the unlabelled mg(G) we can
reconstruct G up to isomorphism (in polynomial time).

Proof: We need to give directions to the arcs of mg(G), which is a big cycle of
small cycles (each of length 2, 3, 4). We just choose one of the small cycles, and
choose one direction for it (does not matter which). Now those neighbouring
cycles, which have a nontrivial overlap with that cycle, obtain their direction
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from the one arc in them, and so on. If we come to a one-point-connection
between cycles, then we are free to choose a direction for the new cycle, and we
force again the neighbouring cycles with an overlap. In this way we necessarily
can give all edges a direction, and we obtain a digraph isomorphic to G. �

It is easy to see that general WDCs G are produced by first producing some
nonlinear WDC G′, and then splitting arcs in G′, obtaining G. In other words,
using the smoothing operation (recall Definition 6.4.2), an arbitrary digraph G
is a WDC iff sm(G) is a nonlinear WDC. Adding linear vertices still allows to
apply the proof of Lemma 6.5.5, and so we obtain

Corollary 6.5.6 For any WDC G, from the unlabelled mg(G) we can recon-
struct G up to isomorphism (in polynomial time).

So transpositions of WDCs are isomorphic WDCs (which allows Lemma 6.5.3
to be applied in the determination of skew-symmetries for WDCs). We can even
forget the multiplicity of edges:

Corollary 6.5.7 For any WDC G, from the unlabelled underlying graph of G
we can reconstruct G up to isomorphism (in polynomial time).

Proof: If in the big cycle there are “single edges”, not part of a small cycle, then
these edges are replaced by a pair of parallel edges. To the obtained multigraph,
Corollary 6.5.6 is applied. �
So for any WDCs G,G′ we have G ∼= G′ iff ug(G) ∼= ug(G′).

Now that we know that mg(G) for WDCs G contains the essential informa-
tion of G, we can consider the homeomorphism type of G, i.e., the homeomor-
phism type of mg(G). So we reduce mg(G) to sm(mg(G)) according to Lemma
6.4.4. We have sm(mg(G)) = mg(G′), where G′ is the nonlinear WDC which
is obtained in the first phase of generating G (only splitting vertices in double
cycles). So the homeomorphism type of G (all digraphs homeomorphic to G)
is the set of all WDCs H with sm(mg(G)) ∼= sm(mg(G)), which is equivalent
to G′ ∼= H ′, where G′, H ′ are the nonlinear WDCs obtained of the first phase
of generation. We will conclude this section on WDCs by giving a concrete
description of the isomorphism type of nonlinear WDCs, in terms of “binary
bracelets” (instead of “bracelet” also “turnover necklace” is used). Since for-
mulas for counting bracelets are known ([61]), this yields an explicit formula for
the number of isomorphism types of nonlinear m-WDCs.

Definition 6.5.8 A binary bracelet of length m ∈ N is a binary string of
length m (i.e., a m-tuple (a1, . . . , am) ∈ {0, 1}m). Two binary bracelets are
equivalent if one can be obtained from the other by rotation or reflection.

Example 6.5.9 Numerical data on the number of equivalence classes of binary
bracelets of length m is given in the OEIS ([139, Sequence A000029]). For
example for m = 3 one has 4 equivalence classes as

000, 100, 110, 111,

99

https://oeis.org/A000029


and for m = 4 there are 6 classes as

0000, 1000, 1100, 1010, 1110, 1111.

For the graphical illustration of these examples see [41].

A nonlinear m-WDC G is a big cycle of m small cycles, where the overlap of
two neighbouring cycles is either a vertex or a single edge. Such multigraphs are
equivalent to a binary bracelet of length m, where the one- resp. the two-vertex
overlap is represented by 0 resp. 1. This can be seen by considering cmg(G)
of a nonlinear m-WDC G, and the multi-cycle S of m small cycles in cmg(G)
(recall the discussion before Lemma 6.5.3).

Example 6.5.10 The implication digraph idg(B3), shown is Section 6.1, is a
6-WDC. So idg(B3), as a big cycle of 6 small cycle, and the graphical illustration
of its corresponding bracelet (i.e., 000000) are as follows:

Consider the non-1-singular normalform 1sDP(F ) of our running example F
(Section 6.1). The implication digraph of 1sDP(F ) is a nonlinear 6-WDC, and
its representation as a cycle of small cycles, and the graphical illustration of
its corresponding bracelet (i.e., 010010 when starting from top-left and moving
clockwise) are as

@@

??

��

uuii

(( XX
�� 
ff

&&YY
~~

��

Since due to nonlinearity the small cycles have no internal structure other
than given in the overlaps, G can be reconstructed up to isomorphism from S.
The information we are seeking is contained in the multiplicity of connecting
edges in the multi-cycle, and we can drop the loops at the vertices. So the
isomorphism type of G is represented by the cycle-multigraph S′ of length m
obtained from S by removing all loops: neighbouring vertices in S′ are connected
by one/two edges if they intersect in one/two vertices. Translating “one edge”
into 0 and “two edges” into 1, we obtain the derived bracelet (up to equivalence
of bracelets; we pick an arbitrary starting point in the cycle, and pick one of
the two directions). We have shown:

Lemma 6.5.11 For two nonlinear WDCs G,G′ we have G ∼= G′ iff the derived
binary bracelets are equivalent.
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Thus the number of isomorphism types of nonlinear m-WDCs is the number of
equivalence classes of binary bracelets. Using the bounds in [133], an asymptotic
formula for the number of binary bracelets of length m is 2mm−1f(m) where
2−1 ≤ f(m) ≤ 2.

6.6 Classifying 2-MUs of higher deficiency

We fix now k ≥ 2 and consider F ∈ 2–MUδ=k. Two reminders: F does not have
unit-clauses (but is 2-uniform; Lemma 5.4.1), and every literal occurs in F at
most twice (Lemma 5.4.2). From not having unit-clauses we get:

Lemma 6.6.1 From 2–MU+
δ=k, k ≥ 2 we obtain 2–MUδ=k by repeated ap-

plications of 1-singular extension, which means that for F ∈ 2–MUδ=k one
chooses {x, y} ∈ F (x 6= y holds) and a new variable v, and replaces {x, y} by
{v, x}, {v, y} ∈ F .

Proof: 1-singular DP-reduction for any F ∈ 2–MUδ=k with k ≥ 2 does not
create any unit-clause since singular DP-reduction preserves deficiency and 2-
MUs with a unit-clause have deficiency 1 (Lemma 5.4.1). Thus DP-reduction of
F on any 1-singular variable, removes only one variable, and leaves other literal-
degrees unchanged (i.e., does not create any new 1-singular variable). There-
fore complete 1-singular DP-reduction of F is confluent to F ′ := 1sDP(F ) ∈
2–MU+

δ=k (Section 4.5), and by performing reverse of this process (i.e., 1-singular
extension) we create all elements of 2–MUδ=k from the elements of 2–MU+

δ=k.
�
The related reduction by 1-singular DP-reduction reduces F to F ′ := 1sDP(F ) ∈
2–MU+

δ=k. For the implication digraphs G := idg(F ) and G′ := idg(F ′) we have
now mg(G′) = sm(mg(G)) by Lemma 6.4.7 (contractions are impossible).

Our new starting point is now F ′, and we perform singular DP-reductions,
which by Lemma 6.4.1 are necessarily non-1-singular, that is, eliminate variables
of degree 3 (also called “2-singular variables”, since there are two side-clauses).
So consider a variable v of degree 3 in F , with occurrences {v, x}, {v, y}, {v, z} ∈
F . Again we do not have contraction here, that is x 6= y and x 6= z (otherwise a
unit-clause would be created but recall that singular DP-reduction preserves de-
ficiency and 2-MUs with a unit-clause have deficiency 1), thus DP-reduction for
v increases the literal-degree of x by one, and thus not only literal v occurs only
once in F , but also literal x (and var(x) is also 2-singular). We have shown that
a singular DP-reduction for any F ′ ∈ 2–MU+

δ=k removes one 2-singular variable
(degree-3-variable), transforms one 2-singular variable (degree-3-variable) into
a nonsingular variable (degree-4-variable), and leaves other literal-degrees un-
changed. Since this reduction process for F ′ ends with a clause-set isomorphic
to Bk, which has k variables, all of degree 4 (nonsingular), there can be at most
k singular DP-reductions for F ′. So the reverse of this process generates the
elements of 2–MU+

δ=k:
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Lemma 6.6.2 We obtain 2–MU+
δ=k for k ≥ 2 by starting with any clause-

set isomorphic to Bk, and then repeatedly applying up to k times the following
process for F ∈ 2–MU+

δ=k: choose some literal x which occurs positively and
negatively twice in F , and for the occurrences {x, a}, {x, b}, {x, c}, {x, d} ∈ F
and a literal y with underlying new variable var(y), replace the two x-clauses by
{y, x}, {y, a}, {y, b}.

Proof: Lemma 6.4.1 together with Lemmas 5.4.1 and 5.4.2 imply that non-
1-singular DP-reduction for any F ∈ 2–MU+

δ=k removes exactly one 2-singular
variable, transforms one 2-singular variable into a nonsingular variable, and does
not change other literal-degrees (so does not create any new singular variable).
Since complete non-1-singular DP-reduction of F is confluent to some clause-set
isomorphic to Bk (Corollary 5.4.8), the reverse process creates the elements of
2–MU+

δ=k starting from some clause-set isomorphic to Bk. Furthermore since
Bk has precisely k nonsingular variables of degree 4 (Definition 5.2.18) and the
creation process does not introduce new nonsingular variable, there can be at
most k applications of singular extension in the creation process. �
So altogether we obtain all F ∈ 2–MUδ=k by first applying Lemma 6.6.2, ob-
taining F ′ ∈ 2–MU+

δ=k, which is taken as starting point for applying Lemma
6.6.1. Such a generation sequence can be computed in polynomial time for F ,
by first computing 1sDP(F ), which in turn is reduced by singular DP-reduction,
and then reversing the whole reduction sequence.

We now show that the implication digraphs of F ∈ 2–MUδ=k are 2k-WDCs.
To start, we have idg(Bk) ∼= dg(CG2k):

idg(Bk) = 1 **

		

2
++jj · · ·

,,
jj k − 1 ))

jj k

		

ll

−k
--

GG

−(k − 1)
++

kk · · · **
mm −2

**
jj −1jj

GG .

Now consider Lemma 6.6.2. We replace two clauses {x, a}, {x, b} by three clauses
{y, x}, {y, a}, {y, b}. For the implication digraph this means the transition:

a
((

c a
((

c

x

66

((

// y // x

66

((
b

66

d b

66

d

c
((

a c
((

a

x

66

((

// x // y

66

((d

66

b d

66

b

We see that this can be obtained up to isomorphism of digraphs by first, say,
splitting vertex x, and then splitting vertex x (recall that the vertices in impli-
cation digraphs are just placeholders, and also do not know about complemen-
tation). We have shown:
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Lemma 6.6.3 The implication digraph of F ∈ 2–MU+
δ=k for k ≥ 2 is a non-

linear 2k-WDC.

Proof: As shown before idg(Bk) ∼= dg(CG2k) is a 2k-WDC. Then the creation
process for F ∈ 2–MU+

δ=k in Lemma 6.6.2 and the correspondence between
performing reverse non-1-singular DP-reduction for a 2-MU F and splitting
vertices in idg(F ) implies that idg(F ) can be created from some G ∼= idg(Bk)
by splitting some vertices. That is, idg(F ) is a non-linear 2k-WDC. �
In the same way, obviously Lemma 6.6.1 means the following transition of the
implication digraph:

x // y // x // v // y

y // x // y // v // x

and thus one step of 1-singular extension is captured by two applications of
arc-splitting.

Altogether we have shown:

Theorem 6.6.4 The implication digraph of F ∈ 2–MUδ=k with k ≥ 2 is a
2k-WDC.

Proof: By Lemma 6.6.1 we obtain F from some F ′ ∈ 2–MU+
δ=k by performing

reverse 1-singular DP-reduction, which corresponds to splitting some arcs in
idg(F ′). Now by Lemma 6.6.3 idg(F ′) and so idg(F ) are 2k-WDCs. �

Lemma 6.6.5 The implication digraph of F ∈ 2–MUδ=k for k ≥ 2 has precisely
2k + 2 cycle digraphs, and precisely two contradictory cycles.

Proof: The statement follows from Theorem 6.6.4 and the definition of WDCs
(see the properties of WDSs presented after Definition 6.5.1). �

Example 6.6.6 In this example we show that for F ∈ 2–MUδ=k, the contra-
dictory cycles in the implication digraph are not always Hamiltonian, and only
special 2-MUs have such cycles. The problem is that a contradictory cycle has
to use one of the two arcs associated with a clause, but not necessarily both.
For example, for 2-MUs of deficiency 1 only idg(U2

n) has a Hamiltonian cycle
(Section 6.3), while the other cases has no such cycle. Another counter example
is our running example F (Section 6.1), where each of vertices 5,-5 is in only
one contradictory cycle (and so idg(F ) has no Hamiltonian cycle).

More generally for F ∈ 2–MUδ=k with k ≥ 2, in the process of obtaining
idg(F ) from idg(Bk), splitting vertices maintains the Hamiltonian cycles (just
enlarges them), and so an implication digraph with no linear vertices has pre-
cisely two Hamiltonian cycles which are the two big contradictory cycles of the
digraph. But splitting an arc might destroy this property.
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We are now ready to prove the main technical result of this chapter, show-
ing that the implication digraph of F has a unique skew-symmetry, which yields
the complementation of literals, and thus one can reconstruct F from the (un-
labelled) idg(F ). Since F does not have unit-clauses, we have to exclude skew-
symmetries, which yield them (otherwise uniqueness would not hold). So we
define, that a skew-symmetry σ of a digraph G is unit-free if ∀ v ∈ V (G) :
(v, σ(v)) 6∈ E(G). We start with a lemma on the skew-symmetries of the cycle
digraph:

Lemma 6.6.7 Consider a cycle digraph G with n ≥ 2 vertices. If n is odd then
there is no complementation. For even n there are exactly n/2 complementations
σ. All clause-sets given by (G, σ) are isomorphic to U2

n (and thus σ has a unit).

Proof: W.l.o.g. we assume G = 1 → . . . → n → 1. Recall, the skew-
symmetries are the digraph-isomorphisms f : G → Gt, which as permutations
of V (G) are involutions and do not have fixed-points. The isomorphisms from
G to Gt are given by the n rotations, the n symmetries of G, composed with
one fixed isomorphism from G to Gt, where one can use the rotation “anticlock-
wise”, i.e., 1 7→ 1, 2 7→ n, . . . , n 7→ 2. This yields that precisely the n reflections
of the (undirected) cycle CGn are the sought isomorphisms. They all are invo-
lutions, and exactly half of them are fixed-point free. Recalling the implication
digraph of U2

n (given after Lemma 6.3.5), we see that these skew-symmetries all
yield clause-sets isomorphic to U2

n. �
We also need a variation:

Lemma 6.6.8 Consider a digraph G which is the union of two cycle digraphs
G′, G′′, i.e., V (G) = V (G′)∪ V (G′′) and E(G) = E(G′)∪E(G′′), such that the
overlap V (G′)∩V (G′′) is not empty, and the induced sub-digraph on it is a path
of length |V (G) ∩ V (G′)| − 1. Then every skew-symmetry of G has a unit.

Proof: Assume a unit-free complementation σ of G, and let F ∈ 2–CLS be
the corresponding clause-set. F is unsatisfiable, since G is (minimal) strongly
connected. Indeed F is minimally unsatisfiable, since otherwise there would be
a sub-digraph G′ stable under σ with at least two arcs less, corresponding to
an MU inside F , but by Lemma 6.6.7 G′ can not have a contradictory cycle.
The homeomorphism type of G is that of two cycles, either with a one-point
connection or with a nontrivial overlap. If δ(F ) ≥ 2, then by Lemma 6.6.3
there would be 2k cycles in it, which is not possible. So δ(F ) = 1. But also
this requires at least three cycles, since F does not have a unit-clause (see the
homeomorphism types for deficiency 1 as shown after Lemma 6.4.7). �

We are ready to show that WDCs can yield at most one 2-MU (in the precise
sense, not just up to isomorphism):

Theorem 6.6.9 Every WDC has at most one unit-free complementation.
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Proof: Consider a WDC G and a unit-free skew-symmetry σ for G. We show
that σ is unique. As above, σ : G → Gt is an isomorphism, where Gt is also a
WDC. We obtain the induced isomorphism σ′ : cmg(G)→ cmg(Gt) (recall the
discussion before Lemma 6.5.3). Furthermore, there is the induced isomorphism
σ′′ : S → S′, where S, S′ are the induced sub-graphs given by the small cycles
in G,Gt (here indeed just as the sub-graphs, not as sub-multigraphs). σ′ is
just σ on the vertices, transported to the small cycles as sub-digraphs of G.
Now the small cycles of Gt are essentially the same as the small cycles of G,
except of the reversed direction of the arcs. Thus w.l.o.g. we can consider σ′′

as an automorphism (symmetry) of the undirected m-cycle S (where G is an
m-WDC), that is, σ′′ is one of the m rotations and m reflections.

If σ′′ had a fixed-point (would map one small cycle of G to itself), then
by Lemma 6.6.7, σ would not be unit-free. If m would be odd, then the only
symmetries without fixed-points are the nontrivial rotations, but for odd m
none of them is an involution. So m is even. This leaves for σ′′ the m reflections
and the point-symmetry, the rotation by 180 degrees. We now exclude the
reflections, which proves the theorem (since from σ′′ one can reconstruct σ).
And this is indeed easy now: Assume σ is a reflection. As already used in
Lemma 6.6.7, there are two neighbouring vertices of S which are mapped by σ′′

to each other. Now by Lemma 6.6.8, σ again would not be unit-free. �

We finally have shown the main result of this chapter:

Theorem 6.6.10 Consider F, F ′ ∈ 2–MUδ=k with k ≥ 2. Then the set of
isomorphisms f : F → F ′, as maps f : lit(F ) → lit(F ′), is equal to the set of
isomorphisms f : idg(F )→ idg(F ′) (as maps f : V (idg(F ))→ V (idg(F ′))).

Proof: In general every isomorphism from F to F ′ is an isomorphism from
idg(F ) to idg(F ′); so assume that f is an isomorphism from idg(F ) to idg(F ′),
and we have to show that f is an isomorphism from F to F ′. This follows
by observing that f transports any skew-symmetry σ for idg(F ) to a skew-
symmetry σf for idg(F ′), and f then becomes an isomorphism from (idg(F ), σ)
to (idg(F ′), σf ). By Theorem 6.6.9, σ is the natural skew-symmetry of idg(F )
as given by the complementation of F , and σf is the natural skew-symmetry as
given by F ′. Since digraphs with given skew-symmetry are the same as 2-CNFs,
the statement follows. �

6.7 Applications

We obtain a number of applications:

Corollary 6.7.1 For F, F ′ ∈ 2–MUδ=k holds F ∼= F ′ iff idg(F ) ∼= idg(F ′),
where the implication digraphs are 2k-WDCs.
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Proof: The assertion follows from Theorems 6.6.4 and 6.6.10. �

That the isomorphisms between 2-MUs are exactly the isomorphisms be-
tween their implication digraphs (Theorem 6.6.10), together with the process
in Lemma 6.5.3 for computing the isomorphism between two WDCs, we obtain
the following results.

Corollary 6.7.2 For F, F ′ ∈ 2–MUδ=k the number of isomorphisms between
F and F ′ is at most 4k. The automorphism group of F is a subgroup of the
Dihedral group with 4k elements, and construction of the group table can be done
in time O(k · ‖F‖), using ‖F‖ for the length of F .

Corollary 6.7.3 The isomorphism problem for inputs F, F ′ ∈ 2–MU can be
decided in time O(δ(F )·‖F+F ′‖)), assuming δ(F ) = δ(F ′) (otherwise F 6∼= F ′).

Corollary 6.7.4 The number of isomorphism types of F ∈ 2–MUδ=k with (ex-
actly) n(F ) = n ∈ N0 variables is Θ(n3k−1) (for fixed deficiency k).

Proof: There are 2k cycles in idg(F ), with half of them duplicated by skew-
symmetry, so that we have k essential cycles. These cycles are arranged in a
big cycle, and so have three non-overlapping parts, say the upper, right, and
lower parts, which makes 3k numbers adding up to n, and so the number of
isomorphism types is O(n3k−1). By Corollary 6.7.2 the equivalence classes are
bounded. �

For clause-sets F ∈ 2–MUδ=k we now characterise the homeomorphism
types sm(F ), which by Lemma 6.4.7 are the implication graphs of 1sDP(F ) ∈
2–MU+

δ=k (the canonical normalform of F obtained by 1-singular DP-reduction).

Corollary 6.7.5 The homeomorphism types of 2–MUδ=k are in one-to-one cor-
respondence with the equivalence classes of binary bracelets of length k.

Proof: The homeomorphism types of F ∈ 2–MUδ=k are the isomorphism types
of the implication graphs ig(F ′) for F ′ := 1sDP(F ) ∈ 2–MU+

δ=k (Lemma 6.4.7),
and correspond to the isomorphism types of nonlinear 2k-WDCs with skew-
symmetry (Lemma 6.6.3). Isomorphism types of nonlinear 2k-WDCs correspond
to equivalence classes of binary bracelets of length 2k (recall Lemma 6.5.11), and
due to skew-symmetry, half of them are discarded. �
For example, the implication digraph of the non-1-singular normalform for our
running example F ∈ 2–MUδ=3 (introduced in the Introduction) is a nonlinear
6-WDC where the derived bracelet (starting top-left, moving clockwise) is 010.

Example 6.7.6 As shown in Example 6.5.10, for the implication digraph of
the non-1-singular normalform 1sDP(F ) of our running example F (see Section
6.1), the derived binary bracelet is 010010. Therefore the homeomorphism type
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of 1sDP(F ) and so F corresponds to the equivalent class of 010 (note that due
to skew-symmetry, we only need half of 010010).
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Chapter 7

Conclusion and outlook

This thesis extended the understanding of the structure of MUs via investigat-
ing their combinatorial properties. Connecting MUs to graph theory, we used
the strength of graph-theoretical reasoning in combination with logical reason-
ing to classify various classes of MUs. The main contribution of Chapter 5
was to show the strong correspondence between the new class DFM (using
simple syntactical criteria) and the powerful world of MSDs, via the positive
implication digraph. Via saturation and marginalisation, we related this class
to two basic classes of MUs (namely, MU ′δ=2 and 2–MU ′) and achieved their
complete classification. In Chapter 6 we showed that implication digraphs of 2-
MUs are closely related to skew-symmetric WDCs. So we reduced determining
isomorphisms/automorphisms of 2-MUs to a purely graph-theoretical problem
between simple digraphs. As direct applications of this relation we obtained a
full classification of 2-MUs together with a polytime isomorphism decision.

To conclude, a more detailed summary of contributions of Chapters 5 and
6 together with discussions on computing special MUSs, conjectures and fu-
ture directions are presented in Sections 7.1 resp. 7.2. Also in Section 7.3 we
discus the Finite-Patterns Conjecture, and give an overview of the main char-
acterisations of MUs and open questions. Finally in Section 7.4 we review some
connections between MUs and graph theory, and discuss further conjectures and
open questions.

7.1 FMs and DFMs

In Chapter 5 we introduced the novel classes FM and DFM, which offer new
conceptual insights into MUs. Fundamental for F ∈ FM is the observation,
that the easy syntactical criterion of having both full monotone clauses immedi-
ately yields the complete understanding of the semantics of the core (F without
the full monotone clauses). Namely that the satisfying assignments of the core
are precisely the negations of the full monotone clauses, and so all variables are
either all true or all false, i.e., all variables are equivalent (AllEqual).
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DFM is the class of FMs where the core is a 2-CNF. This is equivalent to
the clauses of the core, which must be mixed binary clauses {v, w}, constituting
an MSD via the arcs v → w. Due to the strong correspondence between DFMs
and MSDs, once we connect a class of MUs (e.g. MUδ=2 and 2–MU) to DFM,
we can use graph-theoretical reasoning. As a first application of this approach,
we provided the known characterisations ofMU ′δ=2 and 2–MU ′ in an accessible
manner, unified by revealing the underlying graph-theoretical reasoning. We
remark that another conceptual contribution of Chapter 5 was to strengthen
the Splitting Ansatz by saturation, in two forms, full saturation for MUs of
deficiency 2, and local saturation, which is introduced for the first time in this
work, for 2-MUs.

Now that we understand DFM, we need to extend this knowledge, using
the various relations between MUs. Below are some examples of related open
questions:

1. Which MUs reduce via singular DP-reduction to elements of DFM? Let
DFM+ be the set of F ∈MU with sDP(F )∩DFM 6= ∅. In other words,
performing singular extensions starting at DFM we introduce “trivial
variables” and obtain finally DFM+. So we have DFM ∪ MUδ≤2 ∪
2–MU ⊆ DFM+. Is there a “nice” description of DFM+? Do we have
confluence modulo isomorphism, that is, does for all F ∈ DFM+ and
F ′, F ′′ ∈ sDP(F ) hold F ′ ∼= F ′′? If not, do we at least always have
sDP(F ) ⊆ DFM?

2. What are the saturations of the elements of DFM (these only concern
the binary clauses)? It is not hard to see that the only saturated elements
of DFM are the trivial elements and the Fn. Saturations in a sense label
the arcs of the underlying MSDs and break the flow of free movements
between the cycles.

3. What are the marginalisations of the elements of DFM (this can only
concern the two monotone clauses; in Lemma 5.2.19 we have seen an
example)?

Considering the isomorphism problem, as explained in [144] the graph iso-
morphism for MSDs conjectured to be as hard as deciding graph isomorphism.
That is, for MSDs G,G′, the decision “whether G ∼= G′” is GI-complete. There-
fore the isomorphism decision for strong digraphs (SDs) is also conjectured to be
GI-complete, and we immediately obtain the following conjecture (see Section
5.2):

Conjecture 7.1.1 The isomorphism problem for classes DFM and FM is
GI-complete.

In Section 7.3 we discuss two conjectures concerning the isomorphism problem
for FMs and DFMs with fixed deficiency.
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Finally we discuss an application of DFMs concerning enumeration of MUSs
(listing with no repetition all the MU-Sub-clause-sets in an unsatisfiable clause-
set). First we consider mixed binary clause-sets F where the positive implication
digraph pdg(F ) is an SD. Adding the full positive and negative clauses to F , we
obtain an unsatisfiable clause-set F ′. We see that any MUS in F ′ has some mixed
binary clauses plus both full monotone clauses (otherwise would be satisfiable).
Thus MUSs of F ′ are DFM, and their positive implication digraphs are sub-
digraphs of pdg(F ). Since pdg(F ) is an SD, by Lemma 5.2.5 and Theorem
5.2.9 MUSs of F ′ correspond exactly to the minimal strong sub-digraphs of
pdg(F ):

Lemma 7.1.2 For a mixed binary clause-set F with pdg(F ) being an SD, let
P,N be the full positive resp. full negative clauses over var(F ). Then MUSs of
F ′ := F ·∪ {P,N} are DFM and correspond precisely to the MSDs in pdg(F ).

Considering enumeration complexity, [76] studied the problem of enumerating
all minimal strong sub-digraphs of a given SD, and showed that this problem can
be solved in “incremental polynomial time” ([76, Theorem 2]). An enumeration
algorithm is incremental polynomial time if the time needed to enumerate the
first i outputs is polynomial in i and in the size of the input (an overview of
enumeration complexity classes can be found in [32] and in Chapter 2 of [141]).
Now by Lemma 7.1.2 it follows that:

Lemma 7.1.3 For inputs F ′ as explained in Lemma 7.1.2, we can enumerate
in incremental polynomial time all contained MUSs.

Proof: By Lemma 7.1.2, any MUS F ′′ of F ′ is a DFM, and pdg(F ′′) is an MSD
in pdg(F ) (see Definition 5.2.3); also for any MSD G in pdg(F ), the clause-set
mcs(G) is a DFM and an MUS of F ′ (recall the two formations in Theorem
5.2.9). Since MSDs in a given SD can be enumerated in incremental polynomial
time ([76]), the statement follows. �

In general for an unsatisfiable clause-set with both full monotone clauses and
some binary clauses, the positive implication digraph is not SD. So in order to
generalise Lemma 7.1.3 we need to restrict to the strongly connected components
of the positive implication digraph. A basic observation is that the strongly
connected components of a given digraph can be computed in linear time (there
are several known algorithms, see for example [143]). So [76, Theorem 2] can
be generalised to all digraphs, i.e., for a given digraph all minimal strong sub-
digraphs can be enumerated in incremental polynomial time. Therefore we can
generalise Lemma 7.1.3 to clause-sets consisting of some mixed binary clauses
and the two full monotone clauses as follows (note that MUSs are all DFMs):

Theorem 7.1.4 For inputs F which are mixed binary clauses plus the two full
monotone clauses, all MUSs of F can be enumerated in incremental polynomial
time.
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Proof: Let F ′ be the set of mixed binary clauses in F . Since MUSs of F
are DFM (otherwise would they be satisfiable), they correspond precisely to the
MSDs in the strongly connected components of pdg(F ′) (via the two formations
in Theorem 5.2.9). The linear time algorithm for enumeration of the strongly
connected components of a given digraph G in [143], and the incremental poly-
nomial time algorithm for enumerating all MSDs in a given SD shown in [76]
imply that enumeration of all MSDs in G can be done in incremental polyno-
mial time. So all MSDs in pdg(F ′) can be listed in incremental polynomial
time, from which the assertion follows. �
Theorem 7.1.4 can be generalised to all unsatisfiable clause-sets F which are
2-CNFs plus two full complementary clauses, with the additional assumption
that they are subsumption-free: Obtain F ′ from F by renaming the full (com-
plementary) clauses to full positive and negative clauses. Then F ′ ∼= F consists
of some mixed binary clauses plus the two full monotone clauses (otherwise
there would be some binary monotone clause subsuming one of the full clauses).
Now by Theorem 7.1.4 we can enumerate MUSs of F ′ and so F in incremental
polynomial time.

7.2 2-MUs

In Chapter 6 we determined the structure of 2-MUs, using their implication
digraphs. A non-trivial result from the literature (which we also proved in
Corollary 5.4.8) is that complete singular DP-reduction of a 2-MU F with defi-
ciency k yields a clause-set isomorphic to Bk. Reverting this process, we showed
that the implication digraph idg(F ) for F ∈ 2–MUδ=k is a 2k-WDC. As multi-
graphs, 2k-WDCs are essentially one big cycle of 2k small cycles, where their
homeomorphism types are the binary bracelets.

By combining arguments from logic and graph theory, we showed that ev-
ery WDC has at most one skew-symmetry. Thus 2-MUs F, F ′ are isomorphic
iff their implication digraphs idg(F ), idg(F ′) are isomorphic. Furthermore we
showed that the isomorphisms between 2-MUs F, F ′ are exactly the isomor-
phisms between idg(F ), idg(F ′). So we reduced determining isomorphisms/au-
tomorphisms of 2-MUs to a purely graph-theoretical problem between digraphs,
where it is easy to see that the automorphisms of F ∈ 2–MUδ=k form a subgroup
of the Dihedral group with 4k elements.

Another contribution was to show that the special case of 2-MUs without
1-singular variables, 2–MU ∩MU+, corresponds exactly to binary bracelets.
In Section 1.4.2 we discussed that the class of F ∈ 2–MU ∩MU+ is similar
to SMUδ=1 andMMUδ=1 in a sense that they all have polytime isomorphism
decision with super-polynomially many isomorphism types. Now an open ques-
tion is whether the class 2–MU ∩MU+ is easier than classes SMUδ=1 and
MMUδ=1 (which have recursive classification, see Section 4.6) as its classifica-
tion is non-recursive, and a conjecture is that whether this class has actually
efficient isomorphism type determination (Definition 7.3.2).
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Conjecture 7.2.1 The class 2–MU ∩ MU+ has efficient isomorphism type
determination.

Another fundamental open question is the complexity of determining all
MUSs for input 2-CNFs. MUSs of 2-CNFs have been studied in [28], showing
how to compute shortest MUSs in polytime. By [27] the problem of deciding
whether a 2-CNF contains an MUS with deficiency 1 is NP-complete. We showed
that the isomorphism problem for 2-MUs is polytime decidable (Corollary 6.7.3).
This result implies that via enumerating all MUSs of F , we can group them
by their isomorphism type in polytime. This yields a list of all isomorphism
types of MUSs and their counts, which seems very valuable and is a complete
representation of MUSs of F .

Furthermore, using the framework of DFM, we provide an approach to enu-
merate MUSs of an unsatisfiable 2-uniform F with precisely two monotone
clauses. Any MUS of such F has the two monotone clauses (otherwise would
be satisfiable). In order to use Theorem 7.1.4 we need to enlarge the mono-
tone clauses. Let G ⊂ F be the set of mixed binary clauses, P ∈ F be the
positive clause and N ∈ F be the negative clause (i.e., F = G ·∪ {P,N}). Ob-
tain F ′ := G ·∪ {P ′, N ′} where P ′, N ′ are the full positive resp. full negative
clauses over var(F ). By Theorem 7.1.4 there exists an incremental polynomial
time algorithm to enumerate MUSs of F ′. Now for any MUS of F ′, obtain a
new clause-set by replacing P ′, N ′ (the full monotone clauses) with P,N (the
binary monotone clauses in F ), and let S be the set of these new clause-sets.
It is easy to see that MUSs of F correspond precisely to the minimally unsat-
isfiable clause-sets in S (note that all elements of S are unsatisfiable but some
might be redundant, see Section 4.2). Therefore one further step is needed to
check minimal unsatisfiability of 2-CNFs in S. As discussed in Section 1.4.4 the
minimal unsatisfiability problem for 2-CNFs can be decided in quadratic time,
however whether the whole process is still incremental polynomial time, is an
open question.

7.3 The Finite-Patterns Conjecture

As explained in the Introduction (Section 1.4.2), a major motivation of this
work has been the project of classifying MUs, where the main open question is
a proof of the Finite-Patterns Conjecture as considered in the outlook of [109].

Considering classification of classesMUδ=k with fixed deficiency k ≥ 1, [81]
showed the necessity to consider some form of reduction for these classes, as
the isomorphism problem is GI-complete. A “harmless” reduction for MUs in
general is singular DP-reduction, since minimal unsatisfiability and deficiency
are maintained (Lemma 4.5.2). A weaker form of the Finite-Patterns Conjecture
is that isomorphism for the nonsingular elements ofMUδ=k is feasibly decidable:

Conjecture 7.3.1 For all k ∈ N, MU ′δ=k has polytime isomorphism decision.
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Although Conjecture 7.3.1 means that we can understand the general “shape”
of the class, but if it has super-polynomially many isomorphism types then we
still do not have precise knowledge. There are several complexity levels for the
isomorphism problem which are each interesting. However we state the simplest
case of complexity level where we have already seen some examples (see Table
7.1 for an overview of these examples):

Definition 7.3.2 A class C ⊆ CLS has an efficient isomorphism type de-
termination (EID) if there exists a surjective map f : C → N with the follow-
ing properties:

1. f is computable in polynomial time;

2. for F,G ∈ C holds: F ∼= G ⇔ f(F ) = f(G) (that is, f is a complete
invariant for C);

3. for m ∈ N we can compute in polytime some F with f(F ) = m (m in
unary notation).

We note that in general there are two possible notations (or encodings) for m
in Definition 7.3.2, namely unary notation (length of encoding is m) and binary
notation (length of encoding is log2m). Since for practical reasons we really
want to explicitly list clause-sets (for example as inputs for SAT-solvers), we
need to use unary notation for m as otherwise complexity of computing some
F with f(F ) = m would be exponential. As seen before for classes MU ′δ=1 =
{{⊥}} and MU ′δ=2 we have EID, where for F ∈ MU ′δ=2 the parameter m is
the number of variable n(F ) (Corollary 5.3.2). Furthermore some preliminary
investigation intoMU ′δ=3 in [110] shows that we might have EID for this class.
So strengthening Conjecture 7.3.1, the Finite-Patterns Conjecture takes the
following specific form:

Conjecture 7.3.3 For fixed k ∈ N the classes MU ′δ=k have EID.

In Conjecture 7.3.3 it is desirable to have fixed-parameter tractability of classes
MU ′δ=k in k as otherwise run-time of computing of f, f−1 (in Definition 7.3.2)
might grow exponentially in k (in which case we could only handle small k).

Question 7.3.4 Consider Conjecture 7.3.3 for classes MU ′δ=k with fixed k ∈
N. Are the maps f and their inverses in Definition 7.3.2 fixed-parameter tractable
(FPT) in k? That is, whether computation of f, f−1 has the complexity β(k)·nC
for input size n, some constant C and a function β(k) (which likely is exponen-
tial in k).

A variation on Conjecture 7.3.3 is to consider the classes SMUδ=k, where a
common weakening is to consider the classes SMU ′δ=k. Once the isomorphism
types of SMU ′δ=k have been determined, then we can speak of the “nonsingular-
ity type” of an arbitrary SMUδ=k, since singular DP-reduction is confluent for
saturated clause-sets (Lemma 4.5.5). Then from SMU ′δ=k we obtainMU ′δ=k via

113



Table 7.1: An overview of main characterisations of MUs. See Appendix A.1
for a list of classes and their definition, and Appendix A.3 for definitions of MUs
Fn,Bn, Sn,U2

n,U
1
n,i,U

0
n,i,U

0
n,x,y .

Classes Complexity Characterisations

MU ′δ=1 EID {{⊥}} (Corollary 4.6.10)

SMUδ=1 Polytime Full binary trees (Lemma 4.6.3)

MMUδ=1 Polytime Trees (Lemma 4.6.38)

MU ′δ=2 EID Fn, as graphs, correspond to cycles (Corollary 5.3.2)

UHIT ′δ=1 EID =MU ′δ=1 (Corollary 4.6.10)

UHIT ′δ=2 EID F2,F3 (Corollary 5.3.3)

UHITδ=1 Polytime = SMUδ=1 (Corollary 4.6.10)

2–MU ′ EID Bn, as graphs, correspond to dipaths (Corollary 5.4.8)

2–MUδ=1 EID U2
n,U

1
n,i,U

0
n,i,U

0
n,x,y (Theorem 6.3.10)

2–MU ∩MU+ Polytime Binary bracelets (Corollary 6.7.5)

2–MUδ=k, k ≥ 2 Polytime 2k-WDCs (Corollary 6.7.1)

RHO ∩ SMU EID Sn (Lemma 4.6.22)

RHO ∩ 2–MU EID U2
n,U

1
n,i (Lemma 5.4.1 and Theorem 6.3.10)

DFCδ=2 (so DFMδ=2) EID =MU ′δ=2 (Theorem 5.3.1)

FCδ=2 (so FMδ=2) EID =MU ′δ=2 (Theorem 5.3.1)

partial marginalisation. An alternative approach would be to consider marginal
instances. Then we would use partial saturation instead of partial saturation.
However, it seems that nonsingularity can not be used here, since partial sat-
uration can make a singular instance nonsingular (and thus from the marginal
nonsingular instances we can not obtain all nonsingular instances).

Another major step towards Conjecture 7.3.3 is the classification of unsat-
isfiable nonsingular hitting clause-sets in dependency on the deficiency, i.e.,
determining the elements of UHIT ′δ=k which are saturated minimally unsat-
isfiable (Lemma 4.1.9), and thus have deficiency at least 1. In [106, Conjec-
ture 25] it is conjectured that there are only finitely many isomorphism types
of F ∈ UHIT ′δ=k with fixed k ≥ 1. This conjecture has been shown for
k ≤ 3 in [110], leaving open the determination of the isomorphism types of
UHITδ=3. While in [88] we find a catalogue of the elements of UHIT ′δ=3 via
all uhit def(3) (Maxima in the OKlibrary [100]).

Finally another special case of the Finite-Patterns Conjecture 7.3.3 is that
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FMs have EID:

Conjecture 7.3.5 For fixed k ≥ 2 the classes FMδ=k have EID.

We expect the class FMδ=k at least for δ = 3 to be a stepping stone towards
understanding MUδ=3 (the current main frontier).

A special case of Conjecture 7.3.5 is to have EID for DFMs:

Conjecture 7.3.6 For fixed k ≥ 2 the classes DFMδ=k have EID.

Conjecture 7.3.6 should be provable by showing that for fixed k the number of
cycles in MSDs of deficiency k is bounded.

7.4 Connections to graph theory

To use the strength of graph-theoretical reasoning, several concepts have been
used/introduced in this thesis to connect clause-sets to graph theory. Table 7.2
provides an overview of these concepts and their applications to characterise
various classes of MUs.

An extension of these relations is concerning the conflict patterns of clauses.
Definition 4.6.31 of the conflict graph cg(F ) for F ∈ CLS can be extended
to conflict multigraph cmg(F ), to allow parallel edges (see [109] for an
overview). Conflict multigraphs do not exist for deficiency 1 (recall Corollary
4.6.14), while for higher deficiencies k conflict graph and conflict multigraphs
can be used to obtain better understanding of classesMUδ=k and UHITδ=k (at
least the nonsingular versions). For example for F ∈ MUδ=2 we know cg(F )
has at least four vertices (and is connected, as is every cg(F ) for F ∈ MU).
Furthermore cg(F2) is isomorphic to the complete graph with four vertices. For
n ≥ 3, cg(Fn) is isomorphic to the cycle digraph CDn with two added universal
vertices, which one might call a full wheel (where there is also an edge between
the two universal vertices). Now a question is that whether some cg(F ) can be
a tree? Perhaps trees are only possible for deficiency 1 ?

Finally we remark that we did not tackle the graph isomorphism problem
for graphs and digraphs, however we showed that still some classes of MUs can
yield some insights into the structure of graphs/digraphs. For example using
the deficiency of (di)graphs (Definition 3.1.2), Conjecture 7.3.6 is equivalent to
the following conjecture:

Conjecture 7.4.1 MSDs have efficient isomorphism type determination, that
is, there is a surjective map f : MSD → N, such that two MSDs G1, G2 are
isomorphic iff f(G1) = f(G2), and where computation of f as well as comput-
ing some choice for f−1 (here input size measured in unary) can be done in
polynomial time.

This conjecture has been proved for deficiency zero in Lemma 5.2.11 (cycle
digraphs). In [59] we find some results concerning enumeration of isomorphism
types with numerical results on the OEIS ([139, Sequence A130756]) and [60].
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Table 7.2: An overview of some connections between clause-sets and graph theory, and their
applications in this thesis. DFM is the set of MUs which are mixed binary clauses plus both
full monotone clauses, 2–CLS∗ is the set of 2-CNFs excluding {⊥}, and 2–MU is the set of
2-CNF MUs. Also SMUδ=1 is the set of saturated MUs of deficiency 1.

Relation to
clause-sets

Classes Connection to graph theory
for an element F of the class

Main outputs

2-CNFs as
implications

DFM The positive implication
digraph pdg(F ) (Definition
5.2.3)

Classification of MU ′δ=2 =
DFCδ=2 = FCδ=2 (Section 5.3)
and 2–MU ′ (Section 5.4)

2–CLS∗ The (full) implication digraph
idg(F ) (Definition 6.2.1)

Classification of 2-MUs with defi-
ciency k ≥ 2 (Section 6.7)

2–CLS∗ The implication graph ig(F )
(Definition 6.2.1)

Classification of 2–MUδ=1 (Theo-
rem 6.3.10)

2–CLS∗ The implication multigraph
img(F ) (Section 6.4.2)

Correspondence of 1-singular DP-
reduction for 2-MUs and smooth-
ing of their implication graphs
(Section 6.4.2)

2–CLS∗ The implication digraph with
the complementation of lit-
erals (as a skew-symmetry)
sidg(F ) (Section 6.2)

The isomorphism between 2-MUs
are exactly the isomorphism be-
tween their implication digraphs
(Theorem 6.6.10)

1-singular
DP-reduction

2–MU The homeomorphism type
sm(F ) (Lemma 6.4.7)

Classification of the normalforms
of 2-MUs (Corollary 6.7.5)

Splitting/
resolution

SMUδ=1 The structure tree T (F ) (Def-
inition 4.6.3)

Classification of SMUδ=1 =
UHITδ=1 (Section 4.6.2)

The conflict
patterns of
clauses

CLS The conflict graph cg(F ) (Def-
inition 4.6.31)

Classification of MMUδ=1 (Sec-
tion 4.6.4)

In Section 6.5 we obtained a polytime isomorphism decision for WDCs, and
characterised their homeomorphism types using graph-theoretical reasoning,
while in Section 6.6 we showed the uniqueness of skew-symmetry for WDCs
via connecting 2-MUs and WDCs.
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normal forms. Faculté des Sciences de Luminy, Dpt. Mathematique-
Informatique, 13288 Marseille, France, November 1994.

[54] John Franco and Allen Van Gelder. A perspective on certain polynomial-
time solvable classes of satisfiability. Discrete Applied Mathematics, 125(2-
3):177–214, 2003. doi:10.1016/S0166-218X(01)00358-4.

[55] John Franco and John Martin. A history of satisfiability. In Biere et al.
[22], chapter 1, pages 3–74. URL: https://www.iospress.nl/book/

handbook-of-satisfiability/, doi:10.3233/978-1-58603-929-5-3.

[56] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT prob-
lem. In Armin Biere and Carla P. Gomes, editors, Theory and Appli-
cations of Satisfiability Testing - SAT 2006, 9th International Confer-
ence, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume 4121
of Lecture Notes in Computer Science, pages 252–265. Springer, 2006.
doi:10.1007/11814948\_25.

[57] Nicola Galesi and Oliver Kullmann. Polynomial time SAT decision, hy-
pergraph transversals and the hermitian rank. In Holger H. Hoos and
David G. Mitchell, editors, Theory and Applications of Satisfiability Test-
ing 2004, volume 3542 of Lecture Notes in Computer Science, pages 89–
104, Berlin, 2005. Springer. doi:10.1007/11527695_8.
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[85] Hans Kleine Büning and Xishun Zhao. The complexity of some subclasses
of minimal unsatisfiable formulas. Journal on Satisfiability, Boolean Mod-
eling and Computation, 3:1–17, 2007. doi:10.3233/SAT190026.

[86] Robert A. Kowalski. Logic programming. In Jörg H. Siek-
mann, editor, Computational Logic, volume 9 of Handbook of
the History of Logic, pages 523–569. Elsevier, 2014. URL:
https://doi.org/10.1016/B978-0-444-51624-4.50012-5, doi:

10.1016/B978-0-444-51624-4.50012-5.

[87] Melven R. Krom. The decision problem for a class of first-order formulas
in which all disjunctions are binary. Zeitschrift für mathematische Logik
und Grundlagen der Mathematik, 13(8):15–20, 1967. doi:10.1002/malq.
19670130104.

[88] Oliver Kullmann. Classification of unsatisfiable hitting clause-sets in
dependency on the deficiency. URL: https://github.com/OKullmann/
oklibrary/blob/master/ComputerAlgebra/Satisfiability/Lisp/

MinimalUnsatisfiability/data/uhit_def.mac.

[89] Oliver Kullmann. Obere und untere Schranken für die Komplexität
von aussagenlogischen Resolutionsbeweisen und Klassen von SAT-
Algorithmen. Master’s thesis, Johann Wolfgang Goethe-Universität
Frankfurt am Main, April 1992. (Upper and lower bounds for the com-
plexity of propositional resolution proofs and classes of SAT algorithms
(in German); Diplomarbeit am Fachbereich Mathematik).

[90] Oliver Kullmann. Investigating a general hierarchy of polynomially decid-
able classes of CNF’s based on short tree-like resolution proofs. Technical
Report TR99-041, Electronic Colloquium on Computational Complexity
(ECCC), October 1999. URL: http://eccc.hpi-web.de/report/1999/
041/.

125

http://dx.doi.org/10.1007/s10472-005-0422-8
http://dx.doi.org/10.1007/s10472-005-0422-8
http://wwwcs.uni-paderborn.de/cs/ag-klbue/de/research/MinUnsat/index.html
http://wwwcs.uni-paderborn.de/cs/ag-klbue/de/research/MinUnsat/index.html
http://dx.doi.org/10.1016/S0166-218X(02)00405-5
http://dx.doi.org/10.1007/s10472-005-0435-3
http://dx.doi.org/10.3233/SAT190026
https://doi.org/10.1016/B978-0-444-51624-4.50012-5
http://dx.doi.org/10.1016/B978-0-444-51624-4.50012-5
http://dx.doi.org/10.1016/B978-0-444-51624-4.50012-5
http://dx.doi.org/10.1002/malq.19670130104
http://dx.doi.org/10.1002/malq.19670130104
https://github.com/OKullmann/oklibrary/blob/master/ComputerAlgebra/Satisfiability/Lisp/MinimalUnsatisfiability/data/uhit_def.mac
https://github.com/OKullmann/oklibrary/blob/master/ComputerAlgebra/Satisfiability/Lisp/MinimalUnsatisfiability/data/uhit_def.mac
https://github.com/OKullmann/oklibrary/blob/master/ComputerAlgebra/Satisfiability/Lisp/MinimalUnsatisfiability/data/uhit_def.mac
http://eccc.hpi-web.de/report/1999/041/
http://eccc.hpi-web.de/report/1999/041/


[91] Oliver Kullmann. An application of matroid theory to the SAT problem.
In Proceedings of the 15th Annual IEEE Conference on Computational
Complexity, pages 116–124, July 2000. doi:10.1109/CCC.2000.856741.

[92] Oliver Kullmann. Lean clause-sets: Generalizations of minimally unsat-
isfiable clause-sets. Discrete Applied Mathematics, 130:209–249, 2003.
doi:10.1016/S0166-218X(02)00406-7.

[93] Oliver Kullmann. On the conflict matrix of clause-sets. Technical Re-
port CSR 7-2003, University of Wales Swansea, Computer Science Report
Series, March 2003. URL: http://www.cs.swansea.ac.uk/reports/

yr2003/CSR7-2003.pdf.

[94] Oliver Kullmann. The combinatorics of conflicts between clauses.
In Giunchiglia and Tacchella [62], pages 426–440. doi:10.1007/

978-3-540-24605-3_32.

[95] Oliver Kullmann. Conflict matrices and multi-hitting clause-sets. Ex-
tended Abstract for the Guangzhou Symposium on Satisfiability and its
Applications, September 2004.

[96] Oliver Kullmann. Upper and lower bounds on the complexity of gener-
alised resolution and generalised constraint satisfaction problems. Annals
of Mathematics and Artificial Intelligence, 40(3-4):303–352, March 2004.
doi:10.1023/B:AMAI.0000012871.08577.0b.

[97] Oliver Kullmann. Constraint satisfaction problems in clausal form: Au-
tarkies and minimal unsatisfiability. Technical Report TR07-055, Elec-
tronic Colloquium on Computational Complexity (ECCC), June 2007.
URL: http://eccc.hpi-web.de/report/2007/055/.

[98] Oliver Kullmann. Constraint satisfaction problems in clausal form: Au-
tarkies, deficiency and minimal unsatisfiability. Technical Report TR07-
055, revision 1, Electronic Colloquium on Computational Complexity
(ECCC), November 2008. URL: http://eccc.hpi-web.de/report/

2007/055/.

[99] Oliver Kullmann. Present and future of practical SAT solving. In Nadia
Creignou, Phokion Kolaitis, and Heribert Vollmer, editors, Complexity
of Constraints: An Overview of Current Research Themes, volume 5250
of Lecture Notes in Computer Science, pages 283–319. Springer, 2008.
doi:10.1007/978-3-540-92800-3_11.

[100] Oliver Kullmann. The OKlibrary: Introducing a “holistic” research plat-
form for (generalised) SAT solving. Studies in Logic, 2(1):20–53, 2009.

[101] Oliver Kullmann. Constraint satisfaction problems in clausal form I: Au-
tarkies and deficiency. Fundamenta Informaticae, 109(1):27–81, 2011.
doi:10.3233/FI-2011-428.

126

http://dx.doi.org/10.1109/CCC.2000.856741
http://dx.doi.org/10.1016/S0166-218X(02)00406-7
http://www.cs.swansea.ac.uk/reports/yr2003/CSR7-2003.pdf
http://www.cs.swansea.ac.uk/reports/yr2003/CSR7-2003.pdf
http://dx.doi.org/10.1007/978-3-540-24605-3_32
http://dx.doi.org/10.1007/978-3-540-24605-3_32
http://dx.doi.org/10.1023/B:AMAI.0000012871.08577.0b
http://eccc.hpi-web.de/report/2007/055/
http://eccc.hpi-web.de/report/2007/055/
http://eccc.hpi-web.de/report/2007/055/
http://dx.doi.org/10.1007/978-3-540-92800-3_11
http://dx.doi.org/10.3233/FI-2011-428


[102] Oliver Kullmann. Constraint satisfaction problems in clausal form II:
Minimal unsatisfiability and conflict structure. Fundamenta Informaticae,
109(1):83–119, 2011. doi:10.3233/FI-2011-429.

[103] Oliver Kullmann. The conflict matrix of (multi-)clause-sets — a link be-
tween combinatorics and (generalised) satisfiability problems. In prepara-
tion; continuation of [93], 2014.

[104] Oliver Kullmann and Horst Luckhardt. Deciding propositional tautolo-
gies: Algorithms and their complexity. Preprint, 82 pages, January 1997.
URL: http://cs.swan.ac.uk/~csoliver/papers.html#Pre199799.

[105] Oliver Kullmann and Horst Luckhardt. Algorithms for SAT/TAUT deci-
sion based on various measures. Preprint, 71 pages, February 1999. URL:
http://cs.swan.ac.uk/~csoliver/papers.html#Pre199799.

[106] Oliver Kullmann and Xishun Zhao. On variables with few occurrences in
conjunctive normal forms. In Laurent Simon and Karem Sakallah, editors,
Theory and Applications of Satisfiability Testing - SAT 2011, volume 6695
of Lecture Notes in Computer Science, pages 33–46. Springer, 2011. doi:
10.1007/978-3-642-21581-0_5.

[107] Oliver Kullmann and Xishun Zhao. On Davis-Putnam reductions for min-
imally unsatisfiable clause-sets. In Alessandro Cimatti and Roberto Se-
bastiani, editors, Theory and Applications of Satisfiability Testing - SAT
2012, volume 7317 of Lecture Notes in Computer Science, pages 270–283.
Springer, 2012. doi:10.1007/978-3-642-31612-8_21.

[108] Oliver Kullmann and Xishun Zhao. On Davis-Putnam reductions for min-
imally unsatisfiable clause-sets. Theoretical Computer Science, 492:70–87,
June 2013. doi:10.1016/j.tcs.2013.04.020.

[109] Oliver Kullmann and Xishun Zhao. Bounds for variables with few occur-
rences in conjunctive normal forms. Technical Report arXiv:1408.0629v5
[math.CO], arXiv, January 2017. URL: http://arxiv.org/abs/1408.
0629.

[110] Oliver Kullmann and Xishun Zhao. Unsatisfiable hitting clause-sets with
three more clauses than variables. Technical Report arXiv:1604.01288v1
[cs.DM], arXiv, April 2016. URL: http://arxiv.org/abs/1604.01288.

[111] B. V. Landau. An asymptotic expansion for the wedderburnether-
ington sequence. Mathematika, 24(2):262–265, 1977. doi:10.1112/

S0025579300009177.

[112] Choongbum Lee. On the size of minimal unsatisfiable formulas. The
Electronic Journal of Combinatorics, 16(1), 2009. URL: http://www.

combinatorics.org/Volume_16/Abstracts/v16i1n3.html.

127

http://dx.doi.org/10.3233/FI-2011-429
http://cs.swan.ac.uk/~csoliver/papers.html#Pre199799
http://cs.swan.ac.uk/~csoliver/papers.html#Pre199799
http://dx.doi.org/10.1007/978-3-642-21581-0_5
http://dx.doi.org/10.1007/978-3-642-21581-0_5
http://dx.doi.org/10.1007/978-3-642-31612-8_21
http://dx.doi.org/10.1016/j.tcs.2013.04.020
http://arxiv.org/abs/1408.0629
http://arxiv.org/abs/1408.0629
http://arxiv.org/abs/1604.01288
http://dx.doi.org/10.1112/S0025579300009177
http://dx.doi.org/10.1112/S0025579300009177
http://www.combinatorics.org/Volume_16/Abstracts/v16i1n3.html
http://www.combinatorics.org/Volume_16/Abstracts/v16i1n3.html
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Appendix A

Overview of the notations
and acronyms

A.1 Classes of clause-sets

Class name Description

CLS The set of all clause-sets

2–CLS The set of all clause-sets with clauses of size at most two

2–CLS∗ {F ∈ 2–CLS : ⊥ /∈ F}

SAT The set of all satisfiable clause-sets

USAT The set of all unsatisfiable clause-sets

MU The set of all minimally unsatisfiable clause-sets (MUs)

MUδ=k The set of all MUs with fixed deficiency k ≥ 1

MU ′ The set of all nonsingular MUs

MU+ The set of all non-1-singular MUs

MU ′δ=k The set of all nonsingular MUs with fixed deficiency k ≥ 1, i.e.,
MUδ=k ∩MU ′

SMU The set of all saturated MUs

SMUδ=k The set of all saturated MUs with fixed deficiency k ≥ 1, i.e.,
SMU ∩MUδ=k
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SMU ′ The set of all nonsingular saturated MUs, i.e., SMU ∩MU ′

SMU ′δ=k The set of all nonsingular saturated MUs with fixed deficiency k ≥ 1,
i.e., SMU ∩MU ′δ=k

MMU The set of all marginal MUs

MMUδ=k The set of all marginal MUs with fixed deficiency k ≥ 1, i.e.,
MMU ∩MUδ=k

2–MU The set of all MUs with clauses of size at most two (2-MUs), i.e.,
MU ∩ 2–CLS

2–MUδ=k The set of all 2-MUs with fixed deficiency k ≥ 1, i.e., 2–MU ∩
MUδ=k

2–MU ′ The set of nonsingular 2-MUs, i.e., 2–MU ∩MU ′

2–MU∗δ=1 2–MUδ=1 \ {{⊥}}

FM The set of all MUs with two full monotone clauses (FMs)

FM′ The set of all nonsingular FMs, i.e, FM∩MU ′

FC The closure of FM under isomorphism

FC′ The closure of FM′ under isomorphism

DFM The set of all FMs where the core consists of binary clauses

DFC The closure of DFM under isomorphism

UHIT The set of all unsatisfiable hitting clause-sets

UHITδ=k The set of all unsatisfiable hitting clause-sets with fixed deficiency
k ≥ 1

UHIT ′δ=k The set of nonsingular unsatisfiable hitting clause-sets with fixed
deficiency k ≥ 1

HO The set of all Horn clause-sets

RHO The set of all renamable Horn clause-sets, i.e., closure of HO under
isomorphism
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A.2 Notations on clause-sets

VA is the set of all variables, while LIT is the set of all literals. > is the empty
clause-set, and ⊥ is the empty clause. Consider a clause-set F ∈ CLS.

Notation Description

n(F ) The number of variables in F

c(F ) The number of clauses in F

`(F ) The number of literal occurrences in F

δ(F ) The deficiency of F , i.e., δ(F ) = c(F )− n(F )

var(F ) The set of all variables occurring in F

lit(F ) The set of all possible literals over the variables in F

ldF (v) The literal degree of v, i.e., the number of clauses of F containing
literal v

vdF (v) The variable degree of v, i.e., ldF (v) + ldF (v)

µvd(F ) The minimum of the variable degrees over all variables in F

varµvd(F ) The set of variables of minimum variable degree in F

vars(F ) The set of singular variables in F

DPv(F ) The DP-reduction of F on a variable v

sDP(F ) The set of all clause-sets obtained by complete singular DP-
reduction of F

1sDP(F ) The (unique) non-1-singular MU obtained by complete 1-singular
DP-reduction of F

A.3 Special clause-set examples

An (defined in Section 2.1) is the full clause-set consisting of the 2n full clauses
over variables 1, . . . , n for n ∈ N0. For example:

• A0 = {⊥},

• A1 = {{1}, {−1}},

• A2 = {{1, 2}, {−1, 2}, {1,−2}, {−1,−2}},
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• A3 = {{1, 2, 3}, {1, 2,−3}, {1,−2, 3}, {1,−2,−3}, {−1, 2, 3}, {−1, 2,−3},
{−1,−2, 3}, {−1,−2,−3}}.

For n ∈ N0 the saturated Horn-MUs Sn (Definition 4.6.21) are defined as
follows:

Sn = {{1}, {−1, 2}, . . . , {−1, . . . ,−(n−1), n}, {−1, . . . ,−n}} ∈ SMUδ=1∩HO.

Initial cases are as follows:

• S0 = A0 = {⊥},

• S1 = A1 = {{1}, {−1}},

• S2 = {{1}, {−1, 2}, {−1,−2}},

• S3 = {{1}, {−1, 2}, {−1,−2, 3}, {−1,−2,−3}}.

For n ∈ N, n ≥ 2 the Fn clause-sets (Definition 5.2.12) are as follows:

Fn := {{−1, 2}, {−2, 3}, . . . , {−(n− 1), n}, {−n, 1},
{1, . . . , n}, {−1, . . . ,−n}} ∈ MUδ=2.

Fn clause-sets are DFM and the initial cases are:

• F2 = A2 = {{−1, 2}, {−2, 1}, {1, 2}, {−1,−2}},

• F3 = {{−1, 2}, {−2, 3}, {−3, 1}, {1, 2, 3}, {−1,−2,−3}},

• F4 = {{−1, 2}, {−2, 3}, {−3, 4}, {−4, 1}, {1, 2, 3, 4}, {−1,−2,−3,−4}}.

For n ≥ 2 the uniform 2-MUs Bn (Definition 5.2.18) are defined as

Bn := {{−1, 2}, {1,−2}, . . . , {−(n− 1), n}, {n− 1,−n},
{1, n}, {−1,−n}} ∈ MUδ=n.

The initial cases of Bn are

• Bn = A2 = {{−1, 2}, {1,−2}, {1, 2}, {−1,−2}},

• B3 = {{−1, 2}, {1,−2}, {−2, 3}, {2,−3}, {1, 3}, {−1,−3}},

• B4 = {{−1, 2}, {1,−2}, {−2, 3}, {2,−3}, {−3, 4}, {3,−4}, {1, 4},
{−1,−4}}.

For n ∈ N0, DBn clause-sets (Definition 5.2.16) are

DBn := {{−1, 2}, {1,−2}, . . . , {−(n− 1), n}, {n− 1,−n},
{1, . . . , n}, {−1, . . . ,−n}} ∈ DFM,

with the initial cases as follows:
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• DB0 = A0 = {⊥},

• DB1 = A1 = {{1}, {−1}},

• DB2 = A2 = {{−1, 2}, {1,−2}, {1, 2}, {−1,−2}},

• DB3 = {{−1, 2}, {1,−2}, {−2, 3}, {2,−3}, {1, 2, 3}, {−1,−2,−3}}.

The following examples are defined in Section 6.3. For n ∈ N the 2-MUs U2
n

are as

U2
n := {{1}, {−1, 2}, . . . , {−(n− 1), n}, {−n}} ∈ 2–MUδ=1.

And the initial cases are:

• U2
1 = {{1}, {−1}},

• U2
2 = {{1}, {−1, 2}, {−2}},

• U2
3 = {{1}, {−1, 2}, {−2, 3}, {−3}},

• U2
4 = {{1}, {−1, 2}, {−2, 3}, {−3, 4}, {−4}}.

For n ≥ 2, 1 ≤ i ≤ n− 1 the 2-MUs U1
n,i are as

U1
n,i :=

{
{1}, {−1, 2}, . . . , {−(n− 1), n}, {−n,−i}

}
∈ 2–MUδ=1.

Some examples are

• U1
2,1 = {{1}, {−1, 2}, {−2,−1}},

• U1
3,2 = {{1}, {−1, 2}, {−2, 3}, {−3,−2}},

• U1
4,1 = {{1}, {−1, 2}, {−2, 3}, {−3, 4}, {−4,−1}}.

• U1
4,3 = {{1}, {−1, 2}, {−2, 3}, {−3, 4}, {−4,−3}}.

For n ≥ 3, 2 ≤ i ≤ n+1
2 the uniform 2-MUs U0

n,i are defined as

U0
n,i :=

{
{1, i}, {−1, 2}, . . . , {−(n− 1), n}, {−n,−i}

}
∈ 2–MUδ=1.

For example

• U0
3,2 = {{1, 2}, {−1, 2}, {−2, 3}, {−3,−2}},

• U0
4,2 = {{1, 2}, {−1, 2}, {−2, 3}, {−3, 4}, {−4,−2}}.

• U0
5,3 = {{1, 3}, {−1, 2}, {−2, 3}, {−3, 4}, {−4, 5}, {−5,−3}}.

Finally for n ≥ 4, 2 ≤ x < y ≤ n − 1, x + y ≤ n + 1, the uniform 2-MUs
U0
n,x,y are defined as

U0
n,x,y := {{1, x}, {−1, 2}, . . . , {−(n− 1), n}, {−n,−y}} ∈ 2–MUδ=1.

Some examples of U0
n,x,y are as follows:
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• U0
4,2,3 = {{1, 2}, {−1, 2}, {−2, 3}, {−3, 4}, {−4,−3}},

• U0
5,2,3 = {{1, 2}, {−1, 2}, {−2, 3}, {−3, 4}, {−4, 5}, {−5, 3}},

• U0
5,2,4 = {{1, 2}, {−1, 2}, {−2, 3}, {−3, 4}, {−4, 5}, {−5,−4}},

• U0
6,2,3 = {{1, 2}, {−1, 2}, {−2, 3}, {−3, 4}, {−4, 5}, {−5, 6}, {−6,−3}}.

A.4 Acronyms and abbreviations

Acronym Description

SAT The propositional satisfiability problem

CNF Conjunctive Normal Form

DNF Disjunctive Normal Form

MUS Minimally Unsatisfiable Sub-clause-sets

MU Minimally Unsatisfiable clause-set

2-MU Minimally unsatisfiable 2-CNF

RHO-MU Minimally unsatisfiable renamable Horn clause-set

FM MU with Full Monotone clauses

DFM FM whose core contains only binary clauses

EID Efficient Isomorphism type Determination

FPT Fixed-Parameter Tractable

SD Strong Digraph

MSD Minimal Strong Digraph

WDC Weak-Double-Cycle
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