186 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Heuristics for scheduling a two-stage hybrid flow shop with parallel batching machines: application at a hospital sterilisation plant

    Get PDF
    The model of a two-stage hybrid (or flexible) flow shop, with sequence-independent uniform setup times, parallel batching machines and parallel batches has been analysed with the purpose of reducing the number of tardy jobs and the makespan in a sterilisation plant. Jobs are processed in parallel batches by multiple identical parallel machines. Manual operations preceding each of the two stages have been dealt with as machine setup with standardised times and are sequence-independent. A mixed-integer model is proposed. Two heuristics have been tested on real benchmark data from an existing sterilisation plant: constrained size of parallel batches and fixed time slots. Computation experiments performed on combinations of machines and operator numbers suggest balancing the two stages by assigning operators proportionally to the setup time requirements

    Dynamic set-up rules for hybrid flow shop scheduling with parallel batching machines

    Get PDF
    An S-stage hybrid (or flexible) flow shop, with sequence-independent uniform set-up times, parallel batching machines with compatible parallel batch families (like in casting or heat treatments in furnaces, chemical or galvanic baths, painting in autoclave, etc.) has been analysed with the purpose of reducing the number of tardy jobs (and the makespan); in Graham’s notation: FPB(m_1, m_2, … , m_S)|p-batch, STsi,b|SUM(Ui). Jobs are sorted dynamically (at each new delivery); batches are closed within sliding (or rolling) time windows and processed in parallel by multiple identical machines. Computation experiments have shown the better performance on benchmarks of the two proposed heuristics based on new formulations of the critical ratio (CRsetup) considering the ratio of allowance set-up and processing time in the scheduling horizon, which improves the weighted modified operation due date rule

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Integrated Batching and Lot Streaming with Variable Sublots and Sequence-Dependent Setups in a Two-Stage Hybrid Flow Shop

    Get PDF
    Consider a paint manufacturing firm whose customers typically place orders for two or more products simultaneously: liquid primer, top coat paint, and/or undercoat paint. Each product belongs to an associated product family that can be batched together during the manufacturing process. Meanwhile, each product can be split into several sublots so that overlapping production is possible in a two-stage hybrid flow shop. Various numbers of identical capacitated machines operate in parallel at each stage. We present a mixed-integer programming (MIP) to analyze this novel integrated batching and lot streaming problem with variable sublots, incompatible job families, and sequence-dependent setup times. The model determines the number of sublots for each product, the size of each sublot, and the production sequencing for each sublot such that the sum of weighted completion time is minimized. Several numerical example problems are presented to validate the proposed formulation and to compare results with similar problems in the literature. Furthermore, an experimental design based on real industrial data is used to evaluate the performance of proposed model. Results indicate that the computational cost of solving the model is high

    Scheduling hybrid flowshop with parallel batching machines and compatibilities.

    Get PDF
    International audienceThis paper considers a two-stage hybrid flowshop problem in which the first stage contains several identical discrete machines, and the second stage contains several identical batching machines. Each discrete machine can process no more than one task at time, and each batching machine can process several tasks simultaneously in a batch with the additional feature that the tasks of the same batch have to be compatible. A compatibility relation is defined between each pair of tasks, so that an undirected compatibility graph is obtained which turns out to be an interval graph. The batch processing time is equal to the maximal processing time of the tasks in this batch, and all tasks of the same batch start and finish together. The goal is to make batching and sequencing decisions in order to minimize the makespan. Since the problem is NP-hard, we develop several heuristics along with their worst cases analysis. We also consider the case in which tasks have the same processing time on the first stage, for which a polynomial time approximation scheme (PTAS) algorithm is presented
    corecore