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Abstract

This paper considers a two-stage hybrid flowshop problem in which the first stage
contains several identical discrete machines, and the second stage contains several identical
batching machines. Each discrete machine can process no more than one task at time,
and each batching machine can process several tasks simultaneously in a batch with the
additional feature that the tasks of the same batch have to be compatible. A compatibility
relation is defined between each pair of tasks, so that an undirected compatibility graph
is obtained which turns out to be an interval graph. The batch processing time is equal
to the maximal processing time of the tasks in this batch, and all tasks of the same batch
start and finish together. The goal is to make batching and sequencing decisions in order
to minimize the makespan. Since the problem is NP-hard, we develop several heuristics
along with their worst cases analysis. We also consider the case in which tasks have the
same processing time on the first stage, for which a polynomial approximation scheme
(PTAS) algorithm is presented.

Keywords. Hybrid flowshop problem, batch processing machines, task compatibilities.

1 Introduction

In this paper we consider a two-stage hybrid flowshop scheduling problem, where each of n
tasks is to be processed first at stage one and then at stage two. The first stage contains several
identical discrete machines and the second stage contains several identical batching machines.
Each discrete machine can process no more than one task at time, and each batching machine
can process up to k tasks simultaneously in a batch. The batch processing time is equal to the
maximal processing time of the tasks in this batch, and all tasks of the same batch start and
finish together. The processing of task j on any machine of stage one requires pj time units,
and on any machine of stage two the processing time qj lies in closed interval [aj , bj ]. The
terms initial and terminal endpoints will refer to aj and bj , respectively. On the second stage
the tasks are processed in batches. A batch is a set of tasks with the additional constraint
that the tasks of the same batch have to be compatible. A compatibility is a symmetric binary
relation in which a pair (i, j) of tasks is compatible if they share a similar processing time on
the second machine (i.e, [ai, bi] ∩ [aj, bj ] 6= ∅), so an undirected compatibility graph G = (V, E)
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-which is an interval graph- is defined, where V is the set of tasks and a pair of tasks is an
element of the edge set E if and only if they are compatible. The batch processing time on the
batching machine is determined as the maximum initial endpoint aj of compatible tasks. For
each batch B, denote its processing time on the second machine as q(B) = max{aj | j ∈ B}.
For a given schedule, task completion times Cj , j = 1, . . . , n can be calculated. If task j belongs
to batch B on the second stage, then Cj = C2(B), where C2(B) is the time at which a machine
on stage two finishes the processing of batch B. The objective is to find a schedule which
minimizing the completion time of the latest batch Cmax = max{Cj | j = 1, . . . , n}. Following
the standard scheduling notation, see Graham et al.[8], we denote the problem formulated
above as FH2Bm1, m2|p − batch(II), Gp = INT, k < n|Cmax, where m1 and m2 represent the
number of machines on first and second stage, respectively, p− batch(II) means that the stage
two is composed with parallel batching machines, Gp = INT specifies that the compatibility
graph is an interval graph, which depends on the processing times of tasks, and k < n specifies
that the capacity of batching machines is a variable and it is part of the input.

This problem is motivated by the scheduling of tire in the manufacturing industry. Indeed,
making tires involves several steps, and requires a high degree of precision and control at each
step of the process. This process begins by producing the gum-like material that will be milled
and split into strips that become the sidewalls after adding steel and fabric cords to reinforce the
rubber compound and provide strength. When all parts involved to make the tires are prepared,
the main and difficult task can be started. A typical tire is built in a two-stage process. In the
first stage (tire building), all components (sidewalls and tread) are assembled and radial tires
are built on a round drum, which is a part of the tire building machine. The machine pre-shapes
the tire into a form that is very close to the tire’s final dimensions. The end result is called
a green tire or uncured tire. In the second stage (tire curing), curing occurs through a series
of chemical reactions. Tire curing is a high-temperature and high-pressure batch operation in
which a pair of uncured tires is placed into a mold at a specified temperature. Each type of
tire must be cured for a total duration in the interval of its total curing duration and total
curing duration plus 4% of this value. Two kinds of tires can be cured together if they share
a same value of total curing duration. After the mold is closed, the rubber compound flows
into mold the shape and form the tread details and sidewall. The mold cannot be opened until
the curing reaction is completed for both green tires on the same mold. As the rubber is a
perishable material, the objective is to produce tires as soon as possible, which is equivalent to
minimizing the completion time of the last product.

In the scheduling literature, intensive research involving a single batching machine without
task compatibilities are studied for various objective functions and additional constraints. The
main comprehensive study is that of Brucker et al. [4]. Potts and Van Wassenhove [23], Potts
and Kovalyov [21] have published state-of-the-art surveys of the batch scheduling problem.
A single batching machine with task compatibilities has been studied in Finke et al. [6] for
general graph and also for some special graphs. Boudhar and Finke [3] consider the problem
of minimizing makespan in general compatibility graph. They show that the problem with
capacity k = 2 of the batching machine is solvable in polynomial time as a weighted matching
problem. For 3 ≤ k < n minimizing the makespan is NP-hard, even for split graph.

For flowshop system, Potts et al. [22] studied the flowshop problem with two batching
machines. They offered a polynomial algorithm for the problem of minimizing batch completion
time, when both batching machines can process an unbounded number of tasks in the same
batch, and proved the NP-hardness of this problem when at least one of the machines can
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process up to k tasks in the same batch k < n. Oulamara et al. [19] consider the two-machine
flowshop problem where the first machine is a discrete machine and the second is a batching
machine. The objective is to minimize the makespan. The tasks in the same batch have to be
compatible. One of their result is used in our study. Given a batching machine with capacity
k and each task j has processing time given as an interval [aj , bj]. Minimizing the total batch
processing time is solvable in O(nlogn) by listing the intervals in nonincreasing order of their
initial endpoint aj and forming the first batch from the first k compatible tasks, forming the
second batch with the next k compatible tasks and so on. We call this rule, Full-Compatible-
Batch-Largest-Processing-Time (FCBLPT). Oulamara et al. [20] studied the no-wait flowshop
problem with two batching machines, and proposed a polynomial algorithm for the above
problem, though they also extended their studies to the case of m batching machines. Other
related results for the case of flowshop batching machine can be found in [17], [18].

Although extensive research has been carried out on flowshops with batching machines, to
the best of our knowledge, the problem of hybrid flowshop involving batching machines and
task compatibilities has not been considered before. The case of classical hybrid flowshop is
extensively considered in the literature, Lee and Vairaktarakis [15], Gupta et al. [10], Guinet
et al. [9], Allaoui and Artiba [2], Haouari and M’Hallah [12].

The reminder of this paper is organized as follows. In section 2, we introduce the notation
used in this paper. In section 3 we establish lower bounds, heuristics with computational
experiments for the considered problem. Section 5 presents a PTAS algorithm scheme in the
case of uniform processing time on the first stage.

2 Notations

The following notations are used throughout the paper:

• m1 (m2) : The number of machines on the first (second) stage.

• m = max{m1; m2}.

• pj : The processing time of task j on any machine of the first stage.

• qj : The processing time of task j on any machine of the second stage, the value of qj lies
within interval [aj , bj].

• k : The batch capacity of machines of the second stage, 2 6 k < n.

• q(Bl) : The processing time of batch Bl on the second stage, q(Bl) = max{aj |j ∈ Bl}.

The example below illustrates the considered scheduling problem, with n = 8, k = 2. The
processing times are given in Table 1, whereas Figure 1 shows the compatibility graph. A
feasible schedule S = 〈(T1, T8), (T6, T7), (T3, T5), (T2, T4)〉 contains four batches, its Gantt chart
is given in Figure 2.

[Insert Figure 1 about here]

[Insert Figure 2 about here]
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T1 T2 T3 T4 T5 T6 T7 T8

p1,j 4 7 5 6 8 6 10 4
p2,j [5,15] [3,6] [7,10] [3,11] [9,12] [11,16] [15,18] [14,19]

Table 1: Task processing times.

3 Several machines on each stage

In this section we consider the general case in which each stage contains several machines,
denoted by FH2B(m1, m2). We start by presenting three lower bounds and three heuristics
along with their worst case analysis.

3.1 Lower bounds

In the following we derive three lower bounds to be used to evaluate the performance of ap-
proximate heuristics. The first and the second are machine-based bounds, whereas the third is
job-based bound. Let Cmax be the minimum makespan.

First, observe that all the processing on the first stage cannot be completed before time
P

i pi

m1
.

Therefore,

Cmax ≥ LB1 =

∑n
i=1 pi
m1

+ min
1≤j≤n

aj .

On the other hand, the processing at the second stage cannot be completed before the minimal
load of that stage, i.e. the total processing on the second stage is greather than Cmax(B) divided
by m2, where Cmax(B) is obtained by the FBCLPT algorithm. Therefore,

Cmax ≥ LB2 = min
1≤i≤n

pi +
Cmax(B)

m2

.

The last lower bound is based on the largest processing time, i.e.

Cmax ≥ LB3 = max
1≤i≤n

{pi + ai}.

3.2 Heuristics with worst-case performance

In this section, we investigate the worst-case analysis of three heuristic algorithms. These
heuristics are based on the combination of well known rules for machine scheduling.

Before presenting these heuristics, we show the efficiency of the H-FCBLPT heuristic on schedul-
ing of parallel batching machines (PB(m)|G = INT, k < n|Cmax) that would be useful in the
rest of the paper.

Algorithm H-FCBLPT

1. Apply FCBLPT rule to construct a list of batches.

2. Order the batches in nonincreasing order of their processing time and assign them to the
machines as they become available.
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Lemma 1 The H-FCBLPT rule approximate the problem PB(m)|Gp = INT, k < n|Cmax with
ratio of (4

3
− 1

3m
).

Proof. The H-FCBLPT heuristic starts by constructing a list of batches with minimal
total processing times, Oulamara et al. [19], and it order the batches in nonincreasing order of
their processing times and assigns them to the machines as they become available. In fact, the
second step of H-FCBLPT heuristic applies the LPT rule to the P ||Cmax problem obtained by
aggregating the jobs in the batches, then the ratio (4

3
− 1

3m
) of Graham [7]. �

In the rest of this section, we present three heuristics and their worst-case analysis when
each stage contains several machines.

Heuristic HLPT

Heuristic HLPT schedules tasks at each stage independently, in a way that tasks are scheduled
on the first stage following LPT rule, and then batched using the FCBLPT rule. Note that
batches are carried out on the second stage in the LPT order.

Algorithm HLPT

1. Reindex tasks in a LPT order and let L be the list of tasks. On the first stage, schedule
each task of L in the order in which they appear in the list on the first available machine.
Let t be the completion time of all tasks.

2. Apply FCBLPT rule to construct a list of batches and denote by LB the obtained list.

3. Let B be the first batch of list LB. Schedule a batch B on stage two on the first available
machine starting from time t. Remove B from LB. If LB = ∅, then return the schedule,
else go to step 3.

Theorem 1 The heuristic HLPT gives a schedule SHLPT
in O(n log n) with a performance

guarantee of 8
3
− 2

3m
, and this bound is tight.

Proof. Let SHLPT
be the schedule produced by heuristic HLPT . Let us consider the two stages

independently. At the first stage, the LPT rule gives an approximation ratio of (4
3
− 1

3m1
). At

the second stage, one has a scheduling problem with parallel batching machines (PB(m)|Gp =
INT, k < n|Cmax), which is approximated with a ratio of (4

3
− 1

3m2
) by FCBLPT heuristic

(Lemma 1). Therefore,

Cmax(SHLPT
) 6 Cmax(SHPm1

) + Cmax(SHBm2
)

6

(

4
3
− 1

3m1

)

Cmax(S
∗
Pm1

) +
(

4
3
− 1

3m2

)

Cmax(S
∗
Bm2

).

Let S∗ be the optimal schedule for hybrid flowshop problem, and Cmax(S
∗) its makespan, then

Cmax(S
∗) > Cmax(S

∗
Pm1

) and Cmax(S
∗) > Cmax(S

∗
Bm2

).

Hence,

Cmax(SHLPT
) 6

(

4
3
− 1

3m1

)

Cmax(S
∗
HPm1

) +
(

4
3
− 1

3m2

)

Cmax(S
∗
Bm2

)

6
(

8
3
− 2

3m

)

Cmax(S
∗).

5



Type Tasks number pj [aj, bj ]
A1 2 2m − 1 [ǫ; 2m − 1]
A2 2 2m − 2 [ǫ; 2m − 1]

...
Am−1 2 m + 1 [ǫ; 2m − 1]
Am 3 m [ǫ; 2m − 1]
B1 2 ǫ [2m − 1; 2m − 1]

and [2m − 1 − ǫ; 2m − 1 − ǫ]
B2 2 ǫ [2m − 2; 2m − 2]

and [2m − 2 − ǫ; 2m − 2 − ǫ]
...

Bm−1 2 ǫ [m + 1; m + 1]
and [m + 1 − ǫ; m + 1 − ǫ]

Bm 3 ǫ [m; m], [m − ǫ; m − ǫ]
and [m − 2ǫ; m − 2ǫ]

C nbC ǫ [ǫ; ǫ]

Table 2: Task processing times.

Therefore,
Cmax(SHLPT

)

Cmax(S∗)
6

8

3
−

2

3m
.

Thus, the heuristic HLPT provides a solution with a performance ratio bounded by 8
3
− 2

3m
.

Now we present an instance for which this upper bound is reached. Denote by I an instance for
the hybrid flowshop problem with m machines on stage one and two, composed of classes A, B
and C containing 2m + 1, 2m + 1 and nbC tasks, respectively. The processing times are given

in Table 2 where ǫ < min{m
3
; (m−1)2

2m+1
}. The capacity of batching machines is equal to 2m + 1.

Without loss of generality, we assume that m is an even number.

[Insert Figure 3 about here]

[Insert Figure 4 about here]

The makespan Cmax(SHLPT
) for the schedule SHLPT

, produced by the heuristic HLPT , is equal
to Cmax(SHLPT

) = 8m−2−3ǫ (see Figure 3). While the optimal value of the makespan for the
instance I is Cmax(S

∗) = 3m + 2ǫ (see Figure 4). Cmax(S
∗) is optimal as it reachs the lower

bound LB1 =
P

pi

m
+ minj aj . Therefore,

Cmax(SHLPT
)

Cmax(S∗)
=

8m − 2 − 3ǫ

3m + 2ǫ
.

Hence

lim
ǫ→0

Cmax(SHLPT
)

Cmax(S∗)
=

8

3
−

2

3m
.

If nbC > 0, when ǫ tend toward 0, then the tasks of type C are insignificant. Thus the result.
�
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Heuristic HLBPT

This heuristic starts by constructing a list LB of batches using the FCBLPT rule. Then the
tasks of each batch are scheduled at the Stage 1 according to LPT order. At Stage 2, batches
are scheduled as soon as possible.

Algorithm HLBPT

1. Apply the FCBLPT rule on the list of tasks, and let LB be the list of batches, i = 1.

2. Let B be the first batch of LB, and LB(B) be the list of tasks of B. Schedule tasks LB(B)
at Stage 1 according to the LPT rule. Next, schedule the batch B on Stage 2 on the first
available machine when all its tasks of B are completed at Stage 1. Remove B from L.
If L = ∅, then return the schedule, otherwise go to step 2.

Theorem 2 The heuristic HLBPT gives a schedule SHLBPT
in O(nlogn) with a performance

guarantee of 10
3
− 4

3m
.

Proof. Let SHLBPT
be the schedule produced by heuristic HLBPT . Consider the two stages inde-

pendently. The second stage is a parallel batching machines problem (PB(m)|Gp = INT, k <
n|Cmax). The FCBLPT algorithm generates a solution within (4

3
− 1

3m2
) of the optimal solution.

The first stage is a classical parallel machines problem. It is known that the list scheduling
gives a solution within (2 − 1

m1
) of the optimal solution. Therefore,

Cmax(SHLBPT
) 6 Cmax(SHPm1

) + Cmax(SHBm2
)

6

(

2 − 1
m1

)

Cmax(S
∗
Pm1

) +
(

4
3
− 1

3m2

)

Cmax(S
∗
Bm2

).

Let S∗ be the optimal schedule for the hybrid flowshop problem, and Cmax(S
∗) its makespan.

Then
Cmax(S

∗) > Cmax(S
∗
Pm1

) and Cmax(S
∗) > Cmax(S

∗
Bm2

).

Hence

Cmax(SHLBPT
) 6

(

2 − 1
m1

)

Cmax(S
∗
Pm1

) +
(

4
3
− 1

3m2

)

Cmax(S
∗
Bm2

)

6
(

10
3
− 4

3m

)

Cmax(S
∗).

The tightness of this bound is an open question. �

Heuristic HJ

This heuristic is based on Johnson algorithm. It starts by constructing a list of batches using the
FBCLPT rule, and reindex batches according to Johnson rule [13]. The batches are considered

as tasks, and the processing time of each batch B is equal to
P

j∈B pj

m1
and Q(B)

m2
on Stage 1 and

2, respectively.

Algorithm HJ

1. Apply the FCBLPT rule on the list of tasks, and let LB be the reindexed list of batches
obtained by applying Johnson algorithm.
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2. Denote B the first batch of LB, and LB(B) be the list of tasks of B. Schedule tasks
LB(B) at stage one according to the LPT rule. Then schedule batch B on the second
stage on the first available machine, when all tasks of B are completed on the first stage.
Remove B from L. If L = ∅, then return the schedule, otherwise go to step 2.

Theorem 3 The heuristic HJ produces a schedule SHJ
in O(nlogn) with a performance guar-

antee of 4 − 2
m

.

Proof. Let SHJ
be the schedule produced by heuristic HJ . Consider the two stages indepen-

dently. The second stage is a parallel batching machines problem (Bm|Gp = INT, k < n|Cmax),
it is approximated with a ratio of (2− 1

m
) by list scheduling. At Stage 1, one uses a list scheduling

to schedule tasks, which gives a ratio of (2 − 1
m

) to makespan. Therefore,

Cmax(SHJ
) 6 Cmax(SHPm

) + Cmax(SHBm
)

6
(

2 − 1
m

)

Cmax(S
∗
Pm) +

(

2 − 1
m

)

Cmax(S
∗
Bm).

Let S∗ be the optimal schedule for the hybrid flowshop problem, and Cmax(S
∗) its makespan.

Then,
Cmax(S

∗) > Cmax(S
∗
Pm) and Cmax(S

∗) > Cmax(S
∗
Bm).

So,
Cmax(SHJ

) 6
(

2 − 1
m

)

Cmax(S
∗
Pm) +

(

2 − 1
m

)

Cmax(S
∗
Bm)

6
(

4 − 2
m

)

Cmax(S
∗).

�

4 One machine at the second stage

In this section we consider the case in which the second stage contains only one batching ma-
chine. We denote this problem as FH2B(m, 1). We present two heuristics with a performance
guarantee.

Heuristic HLPT

This heuristic schedules tasks at each stage independently, i.e. tasks are scheduled on the first
stage according to the LPT rule. Then, on Stage 2, tasks are batched using FCBLPT rule, and
batches are scheduled on the batching machine as soon as possible.

Algorithm HLPT

1. Reindex tasks in LPT order and let L be the list of tasks. At the first stage, schedule
each task of L in the order they appear in the list on the first available machine.

2. Apply FCBLPT algorithm, and let LB be the list of the produced batches.

3. Schedule the first batch B of LB on the batching machine as soon as possible, i.e. when
all tasks of B are completed on Stage 1. Remove B from LB. If LB = ∅, then return the
schedule, otherwise go to step 3.

8



Theorem 4 The heuristic SHLPT
gives a schedule SHLPT

in O(nlogn) with a performance guar-
antee of (7

3
− 1

3m
) and this bound is tight.

Proof. The first stage is classical parallel machine problem. It is known that the list scheduling
generates a solution within (4

3
− 1

3m
) of the optimal solution. At the second stage, we have a

problem of one batching machine (B|Gp = INT, k < n|Cmax), which is solved by FCBLPT
rule ([19]). Using the same technical aspect as in the proof of theorem 1, we obtain the ratio
(7

3
− 1

3m
).

To show that this bound is tight, consider the following instance I of the problem with the
capacity of the batching machine equal to 2m + 2. The list of tasks and their processing times
are given in Table 4. Without loss of generality, we consider an even number of machines.

Type Tasks number p1 p2

A1 2 2m − 1 [ǫ; 3m]
A2 2 2m − 2 [ǫ; 3m]

...
Am−1 2 m + 1 [ǫ; 3m]
Am 3 m [ǫ; 3m]
B 1 ǫ [3m; 3m]
C nbC ǫ [ǫ; ǫ]

Table 3: Task processing times.

The makespan Cmax(SHLPT
) for schedule SHLPT

produced by heuristic HLPT is equal to Cmax(SHLPT
) =

7m−1, Figure 5. The optimal value of the makespan is Cmax(S
∗) = 3m+2ǫ, Figure 6. Cmax(S

∗)

is optimal it reaches the lower bound LB1 =
P

p1,i

m
+ minj aj.

[Insert Figure 5 about here]

[Insert Figure 6 about here]

Therefore,
Cmax(SHLPT

)

Cmax(S∗)
=

7m − 1

3m + 2ǫ
,

and

lim
ǫ→0

7m − 1

3m + 2ǫ
=

7

3
−

1

3m
.

�

Heuristic HJ

This heuristic uses Johnson algorithm. It starts by applying FCBLPT rule to construct a list
of batches, then a Johnson order [13] is used to sequence these batches.
Algorithm HJ

1. Apply FCBLPT rule to produce a list L of batches.

9



2. Reindex batches following Johnson order, where the processing time of each batch B is

equal to
P

j∈B pj

m1
and Q(B)

m2
on Stages 1 and 2, respectively.

3. Let B be the first batch of L, and LB be the list of tasks of B. At the first stage, schedule
tasks LB in LPT order on the first available machine. Then, schedule a batch B on the
batching machine as soon as possible. Remove B from L. If L = ∅, then return the
schedule, otherwise go to step 3.

Theorem 5 Heuristic HJ generates a schedules SHJ
in O(nlogn) with a performance guarantee

of (3 − 1
m

), and this bound is tight.

Proof. At the first stage, we have a parallel machines problem, where a list algorithm is used to
schedule tasks within(2 − 1

m
) of the optimal solution. On stage 2, the FBCLPT rule produces

an optimal solution. Therefore, heuristic HJ produces a schedule with ratio performance of
(3 − 1

m
).

To show the tightness of this bound, consider the following instance I of problem with the
capacity of the batching machine equal to 2m. The list of tasks and their processing times are
given in Table 4. Let L be an integer.

Type Tasks number p1 p2

A m − 1 (m − 1)L [ǫ; mL]
B m − 1 L [ǫ; mL]
C 1 mL [ǫ; mL]
D 1 ǫ [mL; mL]
E nbE ǫ [ǫ/2; ǫ/2]

Table 4: Task processing times.

The makespan Cmax(SHJ
) for schedule SHJ

produced by heuristic HJ is equal to Cmax(SHJ
) =

(3m − 1)L, Figure 7. The optimal value of the makespan is Cmax(S
∗) = mL + 2ǫ, Figure 6.

Cmax(S
∗) is optimal as it reaches the lower bound LB1 =

P

p1,i

m
+ minj aj.

[Insert Figure 7 about here]

[Insert Figure 8 about here]

Therefore,
Cmax(SHJ

)

Cmax(S∗)
=

3m − 1

m + 2ǫ
.

And

lim
ǫ→0

(3m − 1)L

mL + 2ǫ
= 3 −

1

m
.

This completes the proof.
�
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5 One machine at the first stage

In this section we consider the case in which the first stage contains one machine and the
second stage contains m parallel batching machines. We denote this problem as FH2B(1, m).
We present two heuristics along with their performance guarantee.

Heuristic HLBPT

This heurstic starts by creating a list L of batches using FCBLPT rule. Then the tasks of each
batch are scheduled on Stage 1, and on Stage 2, each batch is scheduled on the first available
machine.

Algorithm HLBPT

1. Apply FCBLPT rule and let L be the produced list of batches.

2. Let B be the first batch of L. Sequence tasks of B on the first machine. After their
completion, schedule batch B at the second stage on the first available machine. Remove
B from L, if L = ∅, then return the schedule, otherwise go to step 2.

Theorem 6 Heuristic HLBPT produces a schedule SHLBPT
in O(nlogn) with a performance

guarantee of (7
3
− 1

3m
), and this bound is tight.

Proof. Since at the second stage, the LPT order gives a (4
3
− 1

3m
) approximation ratio for parallel

batching machines problem then, including the first stage, we obtain the ratio of (7
3
− 1

3m
).

To show that this bound is tight, consider the following instance I of problem with the
capacity of the batching machines equal to 2. The list of tasks and their processing times are
given in Table 5, and an even number of machines at second stage.

Type Tasks number p1 p2

A1 2 ǫ [2m − 1; 2m − 1] et [2m − 1 − ǫ; 2m − 1 − ǫ]
A2 2 ǫ [2m − 2, 2m − 2] et [2m − 2 − ǫ; 2m − 2 − ǫ]

...
Am−1 2 ǫ [m + 1; m + 1] et [m + 1 − ǫ; m + 1 − ǫ]
Am 3 ǫ [m; m], [m − ǫ; m − ǫ] et [m − 2ǫ; m − 2ǫ]
B 1 3m [ǫ; 2m]
C nbC ǫ [ǫ; ǫ]

Table 5: Task processing times.

The makespan Cmax(SHLBPT
) for schedule SHLBPT

produced by heuristic HLBPT is equal to
Cmax(SHLBPT

) = 7m − 1 − 2ǫ, Figure 9. The optimal value of the makespan is Cmax(S
∗) =

(2m + 2)ǫ + 3m, Figure 10. Cmax(S
∗) is optimal since it reaches the lower bound LB1 =

∑

p1,i + minj aj .

[Insert Figure 9 about here]

[Insert Figure 10 about here]
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Therefore,
Cmax(SHLBPT

)

Cmax(S∗)
=

7m − 1 − 2ǫ

3m + (2m + 2)ǫ
,

and

lim
ǫ→0

7m − 1 − 2ǫ

3m + (2m + 2)ǫ
=

7

3
−

1

3m

This completes the proof. �

Heuristic HJ

This heuristic uses Johnson algorithm. It starts by applying FCBLPT algorithm to construct a
list of batches. Then, a Johnson order is used to sequence these batches. The processing time
of each batch B is equal to

∑

j∈B pj and Q(B)
m2

on Stages 1 and 2, respectively.

Algorithm HJ

1. Apply FCBLPT rule to produce a list L of batches.

2. Reindex the batches according to Johnson order. The processing time of each batch B is
equal to

∑

j∈B pj and Q(B)
m2

on Stages 1 and 2, respectively.

3. Let B be the first batch of L, and LB be the list of tasks of batch B. Sequence tasks of B
on the first machine. After their completion, schedule the batch B on the first available
machine. Remove B from L. If L = ∅, then return the schedule, otherwise go to 3.

Theorem 7 Heuristic HJ gives a schedule SHJ
in O(nlogn) with a performance guarantee of

(3 − 1
m

).

Proof. The proof is similar to that of theorem 6. Instead of an approximation ratio of (4
3
− 1

3m
)

obtained by the LPT order for parallel batching machines, we use here a list order that results
a performance ratio of (2 − 1

m
) for parallel batching machines. Thus we obtain a performance

guarantee ratio of (3 − 1
m

). �

6 Computational experiments

In this section we mesure the efficiency of the heuristics as follows by calculating the relative
distance between the solution given by the heuristic and the best lower bound:

DH
moy =

Cmax(H) − LB

LB
× 100

.
Experiments were done on two sets of 100 and 250 tasks, respectively. For each set of tasks,

we have done two series of computational experiments. With regard to the first experiment,
the initial endpoint aj of the interval processing time of tasks on the batching machine are
generated from a uniform distribution [5, 100]. In the second experiments, they are generated
from a uniform distribution [50, 500]. The terminal endpoints bj for the task j are given by
bj = aj + aj × α where α ∈ {0.05, 0.15, 0.25}. For both sets, the processing times of tasks on
Stage 1 are generated from a uniform distribution [5, 100]. We tested instances with 3 different
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couples of number of machines at each stage: the first case contains 1 machine on Stage 1
and 10 on Stage 2, denoted as 1-10. With the same notation, cases 10-1 and 10-10 denote the
second and the third couple, respectively. For all instances, the capacity of batching machine,
k, is equal to two. The comparative results are summarized in Tables 6 and 7.

p2i ∈
m1 −
m2

α
HLPT HLPTa HLPBT HJ

moy worst moy worst moy worst moy worst

[5, 100]

1-10

0.05 2.962 4.007 0.244 0.273 0.244 0.273 0.244 0.273
0.15 2.747 3.786 0.249 0.284 0.249 0.284 0.249 0.284
0.25 2.434 3.481 0.253 0.283 0.253 0.283 0.253 0.283

10-1

0.05 15.693 19.783 4.683 7.795 1.739 2.765 0.233 0.701
0.15 14.552 18.804 6.103 9.187 1.848 3.316 0.255 0.613
0.25 15.152 19.154 5.918 8.399 1.965 2.990 0.287 0.755

10-10

0.05 40.713 53.332 - - 8.326 12.101 8.338 11.933
0.15 39.363 48.178 - - 8.790 12.255 8.690 11.928
0.25 38.446 50.842 - - 7.559 9.760 7.480 9.955

[50, 500]

1-10

0.05 14.337 17.475 0.264 0.323 0.264 0.323 0.264 0.323
0.15 14.105 18.844 0.282 0.435 0.282 0.435 0.282 0.435
0.25 13.115 17.538 0.298 0.466 0.298 0.466 0.298 0.466

10-1

0.05 2.879 4.075 0.791 1.405 0.408 0.703 0.060 0.176
0.15 2.382 3.272 1.181 2.207 0.421 0.699 0.077 0.300
0.25 1.860 3.244 1.393 1.950 0.494 0.779 0.067 0.177

10-10

0.05 35.627 43.105 - - 7.516 9.135 10.779 16.966
0.15 36.412 44.111 - - 8.037 9.570 12.528 18.478
0.25 37.769 44.737 - - 8.143 10.127 10.637 19.971

Table 6: Experiments on Dmoy, for n=100

For the parameter setting in Tables 12 and 13, we can see that heuristic HLPT is outper-
formed by heuristics HLPBT and HJ , even when one of each stage contains only one machine.
Heursitics HLPBT and HJ generate similar results with a minimal advantage to HJ . This may
be due to the fact that in HJ the flowshop environment is better taken into count.

7 Constant processing times at stage one

In this section, we analyze the case where each stage contains several machines (m1 parallel
machines on Stage 1 and m2 parallel machines on Stage 2). The processing times of tasks are
constant on Stage 1, and their interval processing times on Stage 2 are uniform, i.e., for all tasks
i and j if ai ≤ aj , then bi ≤ bj . The uniform interval processing times on batching machines is
a real assumption, as in the tire manufacturing (see section 1).

This scheduling problem can be considered as a problem of minimizing the makespan with
generalized release dates on parallel batching machines. The processing tasks on Stage 1 are
considered as generalized release dates. A generalized release date ri means that at time ri one
has αi available tasks. In our case, at release date r1, one has m1 available tasks, i.e., m1 tasks
are completed on Stage 1, and available for processing on Stage 2. At r2 one has 2m1 available
tasks, and so on. This probem is denoted by PB(m2)|r, Gp = INT, k < n|Cmax and PB(r) for
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p2i ∈
m1 −
m2

α
HLPT HLPTa HLPBT HJ

moy worst moy worst moy worst moy worst

[5, 100]

1-10

0.05 3.862 4.242 0.096 0.102 0.096 0.102 0.096 0.102
0.15 3.615 4.431 0.097 0.101 0.097 0.101 0.097 0.101
0.25 3.632 4.402 0.097 0.102 0.097 0.102 0.097 0.102

10-1

0.05 17.346 19.327 4.507 5.922 0.940 1.244 0.064 0.277
0.15 17.462 20.333 4.540 6.407 0.791 1.269 0.066 0.190
0.25 17.396 19.242 4.802 6.170 0.862 1.234 0.083 0.185

10-10

0.05 43.802 48.198 - - 3.230 5.270 3.250 5.391
0.15 42.032 46.273 - - 3.381 4.370 3.395 4.242
0.25 42.600 46.323 - - 3.162 4.496 3.166 4.560

[50, 500]

1-10

0.05 16.885 19.006 0.103 0.122 0.103 0.122 0.103 0.122
0.15 16.676 18.983 0.106 0.174 0.106 0.174 0.106 0.174
0.25 16.799 18.556 0.109 0.170 0.109 0.170 0.109 0.170

10-1

0.05 3.199 4.249 0.626 1.004 0.220 0.304 0.015 0.044
0.15 3.415 4.035 0.743 1.221 0.219 0.311 0.019 0.045
0.25 3.127 4.226 0.808 1.578 0.189 0.298 0.015 0.045

10-10

0.05 38.351 44.161 - - 3.123 3.608 1.342 3.138
0.15 40.447 43.943 - - 2.935 3.540 1.409 2.361
0.25 39.356 44.929 - - 3.101 3.593 1.353 2.175

Table 7: Experiments on Dmoy, for n=250

short. Since the generalized release dates in our model correspond to completion times of tasks
on Stage 1, then ri = i× p where p is the constant processing time of tasks on Stage 1, and at
time ri there are i × m1 available tasks, where 1 ≤ i ≤ α = ⌈ n

m1
⌉. In the rest of this section,

we use the term release dates instead of generalized release dates.

Since the problem PB(r) is NP-hard, this section focusses on setting a polynomial time
approximation scheme (PTAS, for short) for the PB(r) problem. In other words, we need
to find a solution within a (1 + ǫ) factor of the optimal solution in polynomial time, over all
0 < ǫ < 1. To get such PTAS, we perform several transformations to simplify the input of an
instance into one with a simple structure. Each transformation increases the objective function
value by less than 1 + O(ǫ). So with a constant number of transformations, the objective
function value stays within 1 + O(ǫ) of the original optimum.

Li et al. [16] exhibited an approximation scheme algorithm (PTAS) for the problem of
minimizing makespan with release times on identical parallel batching machines. Afrati et al.
[1], Hall et Shmoys [11], et Deng et al. [5] provide principle and results for PTAS algorithm.

Let rmax = ⌈ n
m1

⌉p be the maximum release date, amax = max{aj|1 ≤ j ≤ n} be the
maximum initial endpoint over all tasks, and P (B) be the total processing times of batches
obtained by applying the FCBLPT rule. Denote by opt the optimal value of the makespan. We
have the following result.

Lemma 2 max{rmax, amax,
P (B)
m2

} 6 opt 6 rmax + amax + P (B)
m2

.

Proof. It is obvious that max{rmax, amax,
P (B)
m2

} is a lower bound for the optimal solution

of PB(r), since each of rmax, amax and P (B)
m2

is a lower bound for the problem. To show
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the correctness of the upper bound, we exhibit a schedule with an objective value of at most
rmax +amax + P (B)

m2
. Consider the schedule obtained from the following algorithm: Let L be the

list of batches obtained by the FCBLPT rule, and use a list scheduling algorithm to sequence
batches, starting at time rmax. Let B be the last scheduled batch. B starts no later than
rmax + P (B)

m2
, and must finish no later than rmax + amax + P (B)

m2
. Thus, the correctness of the

upper bound. �

Let M = ǫ × max{rmax, amax,
C(B)
m2

}, where 0 < ǫ < 1. From Lemma 2, we can deduce that

any optimal schedule has a makespan value lower than 3
ǫ
M .

Consider the first transformation on release dates. The idea is to transform each ri, i =
1, . . . , α, to a multiple integer of M , i.e. we round down each ri to the nearest multiple of M .
Let r̃i = M⌊ ri

M
⌋ be the rounded value of ri. We have the following result.

Lemma 3 With (1+ǫ) loss, we can assume that there are at most (1
ǫ
+1) distinct release dates

in the original problem.

Proof. The gap between an original release date and its rounded value is at most M . So,
a feasible schedule for the original problem can be obtained from the feasible solution of the
rounded problem by moving forward all batches by an amount of at most M . Since M 6 ǫ×opt,
the transformation involves a (1+ǫ) loss. Furthermore, we have M > ǫ×rmax. Hence ⌊ ri

M
⌋ 6 1

ǫ
,

for all i. Thus we obtain at most (1
ǫ
+ 1) distinct release times. �

Since the rounded problem contains (1
ǫ

+ 1) distinct release dates, where each release date
is a multiple of M , we partition the time horizon interval [0, 3

ǫ
M) into (1

ǫ
+1) disjoint intervals.

We denote by δi = [(i − 1)M, iM) the ith interval, i = 1, . . . , 1
ǫ

and δ 1

ǫ
+1 = [(1

ǫ
M, (3

ǫ
)M).

We assume that the (1
ǫ

+ 1) release dates are denoted by ρ1, ρ2, ..., ρ 1

ǫ
+1, with ρi = (i − 1)M ,

i = 1, 2, . . . , 1
ǫ

+ 1.

The second transformation concerns tasks. We split the set of tasks into two subsets, namely
small tasks and large tasks. A task is called small if its initial endpoint of the interval processing
time is less than ǫ × M . Otherwise, it is called large. A batch is called large if it contains at
least one large task, and small otherwise.

Our polynomial time approximation scheme (PTAS) proceeds in two steps. First, we sched-
ule large tasks optimally after one transformation on their processing times. In the second step,
we schedule approximately the set of small tasks. Before proceeding further, let us present the
following result.

Lemma 4 There exists an optimal schedule with the following properties :

1. On any one machine, the batches started at the same time interval are sequenced in non-
increasing batch processing times order.

2. On each interval, δ1 to δ 1

ǫ
+1, batches started at the same interval are filled in non-

increasing batch processing times order, such as each of them consists of k (or as many
as possible) largest compatible and available number of tasks.

3. On each interval, δ1 to δ 1

ǫ
+1, there is at most one large batch that contains small tasks.

Proof. This lemma can be easily established by using exchange arguments. �
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7.1 Small tasks

In this section, we restrict our discussion to the case where all tasks are small.

First, we apply FCBLPT rule to obtain a list L of batches. This list is ordered in non-
increasing order of PBi

ki
where PBi is the processing time and ki is the number of tasks of batch

Bi. Then, at the beginning of each interval δi, when there are enough number of tasks available
to sequence the first batch of L, schedule this batch on the first available machine, otherwise
we go to the next interval.

Algorithm ST

• Apply algorithm FCBLPT. Let L be the list of obtained batches. Reindex L in non-
increasing PBi

kBi
, where PBi denote the batch processing time and kBi the number of tasks

of batch Bi, respectively. Let B be the first batch of list L, and nb = 0.

• For each interval δi

1. If there is no enough available tasks to process a batch B (i.e. m1⌊
(i−1)M

p
⌋−nb ≤ 0)

or if there is no available machine before the end of interval δi (except for the last
interval), then go to the next interval δi+1

2. If enough tasks are available to process batch B (i.e. m1⌊
(i−1)M

p
⌋ − nb ≥ kB) and

there is an available machine, then schedule batch B on the first available machine.
Remove B from L, nb = nb + kB go to step 1.

Lemma 5 Algorithm ST is a PTAS when all tasks are small with at most 1+ (2+ 1
m2

)ǫ2 loss.

Proof. Denote by S and opt the optimal schedule and the optimal makespan, respectively. Let
S̃ and ˜opt be the schedule obtained by Algorithm ST and the value of its makespan, respectively.
Consider the last idle time interval ∆ in schedule S̃, and let t be the terminal endpoint of ∆. It
is easy to see that t must be one of the modified release date ρi, otherwise the batch scheduled
after ∆ can be shifted to the right. Since all batches in S̃ are small, then any batch that starts
before t must be finished earlier than t + ǫM . Denote by Ã the set of all batches in S̃ started
after t. Since all batches of Ã are scheduled without idle times from time t + ǫM and S̃ is
obtained by list scheduling algorithm, then an upper bound on ˜opt is

˜opt ≤ t + ǫM +

∑

B∈Ã PB

m2
+ Pmax

B ≤ t +

∑

B∈Ã PB

m2
+ 2ǫM, (1)

where Pmax
B is the largest processing time of batches of set Ã.

Assume that B̃ is the delayed batch from δi to δi+1. We have that
∑

B∈Ã PB =
∑

B∈Ã\B̃ PB+

PB̃ ≤
∑

B∈Ã\B̃ PB + ǫM . Ã \ B̃ represents the set of all tasks to be scheduled from time t.
We denote by A the list of batches scheduled after time t in the optimal schedule S. Looking

at the construction and the reindexing operation in Algorithm ST, it is easy to deduce that
∑

B∈Ã\B̃ PB ≤
∑

B∈A PB. Thus
∑

B∈Ã PB ≤
∑

A PB + ǫM . It then follows that,

t +

∑

B∈Ã PB

m2
+ 2ǫM ≤ t +

∑

B∈A PB + ǫM

m2
+ 2ǫM

Since t +
P

B∈A PB

m2
is a lower bound for opt then using inequality (1), we obtain ˜opt ≤ opt +

ǫM
m2

+ 2ǫM . Since M ≤ ǫ × opt, we get ˜opt ≤ (1 + (2 + 1
m2

)ǫ2)opt. �
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7.2 Large tasks

The scheduling of the large tasks is based on enumeration. In order to limit the number of
feasible schedules, we use the technique of [1] to get a number of distinct processing times
independent of number of tasks. We round the initial endpoint of all interval processing times
by multiplying every initial endpoint by (1+ ǫ). Next, we decrease it to the lower integer power
of (1 + ǫ). The following lemma is due to Afrati et al. [1].

Lemma 6 With (1+ ǫ) loss, we assume that all initial endpoint of interval processing times of
large tasks are integer powers of (1 + ǫ).

This lemma ensures that the number of distinct processing times can be bounded by a
constant number.

Lemma 7 The number of distinct initial endpoint of processing times of large tasks, v, is
bounded by ⌊log1+ǫ(1/ǫ) + 1⌋.

Proof. Let j be the shortest large task, we have aj > ǫM > ǫ2amax. From lemma 6, we
may assume that aj = (1 + ǫ)x and amax > (1 + ǫ)x+v−1 for some integer x. It follows that
aj = (1 + ǫ)x > ǫ2(1 + ǫ)v−1(1 + ǫ)x. Hence v ≤ ⌊1 + log1+ǫ(1/ǫ

2)⌋. �

Let a1 < a2 < . . . < av be the v distinct processing times of large tasks. We keep the com-
patibility relations between tasks. We use the concept of machine configurations and execution
profiles, introduced by Hall and Shmoys [11].

Let σ be a feasible schedule. We delete from σ all tasks and small batches, and retain
only empty large batches, which are represented by their processing times. For each machine,
we call machine configuration, with respect of σ, the pair (λ, µ) with λ = (λ1, . . . , λ 1

ǫ
+1) and

µ = (µ1,1, . . . , µ1,v, µ2,1, . . . , µ2,v, , µ 1

ǫ
+1,1, . . . , µ 1

ǫ
+1,v) such that λi is the total number of large

batches started on that machine in interval δi, and µi,j, i = 1, . . . , 1
ǫ

+ 1, j = 1, . . . , v is the
number of empty large batches started in δi with processing time aj, thus

∑v
i=1 µi,j = λi,

i = 1, . . . , 1
ǫ

+ 1. Since the length of each interval δi, i = 1, . . . , 1
ǫ
, is M , except for δ 1

ǫ
+1 which

has length of 2
ǫ
M , and each large batch has processing times greater than ǫM , then each δi,

i = 1, . . . , 1
ǫ

contains at most 1
ǫ

large batches and the last interval δ 1

ǫ
+1 contains at most 2

ǫ

large batches. On the other hand, from Lemma 7, processing times of empty large batches are
chosen from v values with v ≤ ⌊1 + log1+ǫ(1/ǫ

2)⌋. Then, when δi contains w large batches, the
number of possibilities for each interval δi is at most vw configurations. Hence, when w takes all
values from zero to 1

ǫ
, the total number of configurations of vector µi = (µi,1, . . . , µi,v) is equal

to 1+v+ . . .+v1/ǫ, and the number of machine configuration to consider for all intervals δi can
be bounded by (1 + v + . . . + v1/ǫ)1/ǫ × (1 + v + . . . + v2/ǫ2) < 21/ǫ × v3/ǫ, which is independent
of n. Thus, for a given schedule, we define an execution profile as a tuple (m1, . . . , mψ), where
mi is the number of machines with the configuration i for that schedule. Therefore, we may
only consider (m + 1)ψ execution profile.

7.3 A PTAS for PB(r)

In this section we merge the two types of tasks in the same schedule to produce a polynomial
approximation scheme for the P (r).
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The main idea of PTAS Algorithm is as follows : given an execution profile σ and feasible
assignement of large tasks to this profile, the objective is to schedule small tasks in intervals δi
(i = 1, . . . , 1

ǫ
+1) each time it is possible, i.e. there are enough number of available tasks at each

begining interval δi and there is an idle time on machines in interval δi. When a scheduling of
a small batch in an interval idle time δi crosses the interval δi+1, i.e. a small batch starts its
execution in the interval δi and completed in interval δi+1, we can strech the end of the interval
δi to make an extra space with length ǫM for a small batch such that it need not cross the
interval. Since there are at most 1

ǫ
intervals streched, then the following lemma.

Lemma 8 (Afrati et al. [1]) With (1 + ǫ) loss, we restrict our attention to schedules in which
no small batch crosses an interval.

From Lemma 3, we know that among the large batches started in the same interval, only
one large batch may contain small tasks. Since all these small tasks are compatible between
each other, we can stretch each interval to make an extra space of length ǫ×M to schedule the
small tasks in the same small batch. Since there are (1

ǫ
+ 1) intervals, we obtain the following

lemma.

Lemma 9 With (1 + ǫ + ǫ2) loss, we assume that no small tasks is included in a large batch.

Now we are ready to present the complete algorithm.

Algorithm LT-ST

• Get all possible execution profiles as mentioned in Section 7.2

• For each execution profile, set nb = 0

1. Assign a configuration for each machine according to the profile. If it is not possible,
delete the profile.

2. For each machine and each interval, start the empty large batches specified by the
execution profil as soon as possible in non-increasing processing times order. If some
batch needs to be delayed to start in one of the next interval, then delete this profile.

3. For each interval, fill the empty large batches started in this interval in the order
of non-increasing batch processing times such that each of them consists of b (or
as many as possible) compatible tasks that have greater initial endpoints and no
more than the processing time of the batch. If one of the batches remains empty,
than delete the profile. Otherwise, add to nb, the number of sequenced tasks, and
update the rest of available tasks to be scheduled in this interval, i.e. lδi = m1.⌊(i−
1)M/p⌋ − nb.

4. Run algorithm ST to schedule small tasks in the spaces left by the large batches.

• Select the feasible schedule with the smallest makespan.

Theorem 8 Algorithm LT-ST is a PTAS for problem PB(r).
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Proof. Since an optimum schedule is associated with one of the (m + 1)ψ execution profiles
and all execution profiles are explored, then a schedule obtained by Algorithm LT-ST approxi-
mates the optimal solution. Given an execution profile, Algorithm LT-ST generates an optimal
schedule of large tasks for this profile. Invoking Algorithm ST yields at most 1+(2+ 1

m2
)ǫ2 loss.

Combining Lemmas 2, 5, 7 and 8, and taking the smallest one among the feasible schedules
produced, Algorithm LT-ST generates an (1 + 4ǫ + (3 + 1

m2
)ǫ2) loss, and its time complexity is

O(nlogn + n × (m + 1)ψ). �

8 Conclusion

In this paper we have considered a new application of two-stage hybrid flowshop problem that
involves classical and batching machines. The batching machine can process several tasks per
batch with the additional feature that the tasks of the same batch have to be compatible. A
compatibility relation is defined between each pair of tasks. We have considered the makespan
criterion. Since minimizing the makespan is NP-hard, we have presented three heuristics and
their worst-case analysis. We have also considered two particular cases, namely, one discrete
machine at the first stage and one batching machine at the second stage. When the process-
ing times of the tasks are constant at the first stage, we have propossed a polynomial time
approximation scheme.
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Figure 1: Graph compatibility between tasks.
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