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Abstract 

An S-stage hybrid (or flexible) flowshop, with sequence-independent uniform setup times, parallel 

batching machines with compatible parallel batch families (like in casting or heat treatments in 

furnaces, chemical or galvanic baths, painting in autoclave etc.) has been analyzed with the purpose 

of reducing the number of tardy jobs (and the makespan); in Graham’s notation: FPB(m1, m2, … , 

mS)|p-batch, STsi,b|ΣUi. Jobs are sorted dynamically (at each new delivery); batches are closed 

within sliding (or rolling) time windows and processed in parallel by multiple identical machines. 

Computation experiments have shown the better performance on benchmarks of the two proposed 

heuristics based on new formulations of the critical ratio (CRsetup) considering the ratio of allowance 

setup and processing time in the scheduling horizon, which improves the weighted modified 

operation due date rule (WMOD). 
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1. Introduction 

This work considers a non-permutation hybrid (or flexible) flowshop, with sequence-independent 

uniform setup times, parallel batching machines with compatible parallel batch families. 

A flowshop environment is similar to a job shop with unidirectional flow through production stages. 

Setup times can be sequence-dependent or sequence-independent respectively if jobs and machines 

or only jobs are considered (Allahverdi et al., 2008). Buffers between stages of the hybrid flowshop 

environment allow setup and processing of different jobs in parallel and different job sequences on 

subsequent machines (known as non-permutation flowshop scheduling, introduced by Tandon et 

al., 1991); buffers can be shared in the form of an automatic warehouse or an open space. When 

buffers between machines are present, non-permutation schedules are likely to outperform their 

permutation counterparts, where job sequences on each machine remain unchanged. Solutions 

overcoming the increasing complexity with respect to its permutation counterpart were proposed by 

Liao et al. (2006), Ying et al. (2010) and Rossi and Lanzetta (2013a, 2013b, 2013c). The impact of 

buffers, along with machines, products and operations, on reconfiguration and performance 

evaluation were examined by Colledani and Tolio (2005). 

A hybrid flowshop is a flowshop with more than one machine in at least one stage. The hybrid 

flowshop scheduling problem is being extensively studied in manufacturing, logistics, computer 

sciences etc. with the purpose of assigning jobs to machines to make a better use of resources. A 

survey of scheduling literature on hybrid flowshop is available from Ribas et al. (2010) and Ruiz 

and Maroto (2006). 

The model briefly recalled below is a two-stage non-permutation hybrid flowshop, with sequence-

independent uniform setup times, parallel batching machines and compatible parallel batch families, 

which is extended to S stages. It has been derived from a real case, the central sterile services of a 

large hospital, proposed by the authors (Rossi et al., 2013). The purpose is assuring the required 

quality level, by reducing the number of delayed (or tardy) jobs, virtually to zero, still keeping low 

staff costs, by reducing the total completion time (or makespan). Shorter schedules mean less idle 

times, better resources utilization and higher efficiency. Results can be extended to other 

sterilization plants, continuous casting (steel making), coating (heat and galvanic treatments, 

painting) etc. Investigating this scheduling problem is also important as it affects the logistics 

targets with due date reliability/no tardy jobs but also high capacity utilization and low inventory 

levels. 

The layout and some notation for the examined case are represented in Figure 1. A mixed integer 

linear programming model (MILP) is available in Rossi et al. (2013), along with the related 

literature. 
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Figure 1. The examined layout, the FP2B(3, 4)|p-batch, STsi,b|ΣΣΣΣUi model and notation 

Figure 1 about here 

 

The examined flow line includes four stages with manual operations preceding machine operations 

alternatively. It is modeled as two-stage flowshop by considering manual operations as machine 

setup. Setup times for each job type are standardized and sequence-independent, consequently the 

total setup time (and cost) for different schedules remains constant. Also, the total setup time for 

different job permutations within the same batch is constant. Permutations are possible, because 

buffers are present in machine loading/unloading (trays and carts). The batch forming time only 

depends on the current batch to be processed and not on the previous one. Operators work 

concurrently on the same batch thus affecting the setup speed. Setup can be considered uniform 

because jobs processed within different batches are affected by the different setup times of the other 

jobs belonging to the same batch. All jobs have the same routing through the stages. They are 

delivered (release date) at prefixed interval of times, and must be processed based on their 

subsequent planned utilization (due date); both times for each job are known in advance, before 

scheduling. After setup, jobs are processed by one of the identical parallel machines at each stage. 

The machine time within a stage is the same for all jobs and the same for both stages (70 minutes). 

The setup time could be added to the processing time. By this alternative two-stage flowshop model 



 

 

without setup, each job type has a different processing time and processing is interrupted 

(preemption) during batch forming until the machine starts. 

Each machine has a finite capacity, i.e. it is able to process one or more (usually in the order of 24-

48) jobs of different type simultaneously, in batches. Two types of batch productions are possible, 

serial batches and parallel batches. In serial batches, jobs of the same batch are processed 

sequentially, while in parallel batches (current case) they are processed simultaneously, like in 

casting or heat treatments in furnaces, chemical or galvanic baths, painting in autoclave etc. 

Scheduling problems can be described by a triplet α|β|γ according to the notation of Graham et al. 

(1979), where field α denotes the system layout and the production flow type (Figure 1), field β 

indicates the operation characteristics and field γ denotes the adopted performance indices. 

The current problem can be formulated as 

 

 FPB(m1, m2, … , mS)|p-batch, STsi,b|ΣUi (1) 

 

where, an S-stage hybrid flowshop (F) with m1, m2, … , mS identical parallel (P) batching (B) 

machines per stage, processes parallel batches (p-batch) with sequence-independent setup times 

(STsi,b) in order to minimize the number of tardy jobs ΣUi. 

The case of only one stage with capacity of all machines equal to one can be reduced to P||ΣUi. The 

case P||Cmax is NP-hard according to Garey and Johnson (1979), therefore the FPB(m1, m2, … , 

mS)|p-batch, STsi,b|ΣUi problem is NP-hard. Finding an optimum in a reasonable time is unlikely, 

hence heuristics should be employed. 

The main contribution of this work is to combine a priority rule and the sliding (or rolling) time 

window (or time slot) for application to the batch scheduling problem. Two proposed heuristics sort 

released jobs by ascending Setup Critical Ratio (CRsetup), an innovative formulation of the Critical 

Ratio (CR), which involves the setup times of jobs. The priority of jobs is determined dynamically 

at sliding time windows by evaluating the ratio of allowance setup and processing times in the 

scheduling horizon. 

The proposed heuristics are dynamic, because they allow updating the schedule after new jobs enter 

the system. 

 

1.1  Priority rule 

In the literature, the dynamic priority has been applied to the sequencing rule of (individual) jobs 

and to batch forming. 



 

 

Regarding individual jobs, a number of sequencing rules has been evaluated by Kapanoglu and 

Alikalfa (2011) and Shafaei and Brunn (1999). Kapanoglu and Alikalfa tested nine priority rules, 

particulary FIFO, EDD, MST, SOPN, SPT, SRPT, Critical Ratio (CR), COVERT, and Modified 

Due Date (MDD), in a job shop with time windows dynamic and reconfigurable over time. 

Dynamic priority rules such as the Critical Ratio and/or COVERT rules work generally better than 

static rules. The CR rule, originally proposed by Berry and Rao (1975), uses the ratio of the 

allowance time (time left to the due date) to the remaining processing time to determine the jobs 

priority. Shafaei and Brunn (1999) state that CR was the second best rule for a cost-based 

performance considering tardiness and holding costs. Abu-suleiman et al. (2005) introduced a 

modified CR rule, which yielded better performance than the original CR rule in terms of tardiness 

and earliness. Pfund et al. (2006) introduced a priority CR (PRCR), a critical ratio that tends to 

prioritize jobs that have less time available before they become late, but also acknowledges the need 

to finish tardy jobs that are close to their completion quickly. Chiang and Fu (2007) considered job 

shop scheduling and extended the concept of Enhanced Critical Ratio (ECR) introducing a degree 

of urgency based on due date. Chiang and Fu (2009) used a GA scheduler and took the ECR rule as 

the basis of genome encoding and of the refining mechanism for the local search procedure. 

According to the proposed dynamic priority rule, the priority value of a job depends on the 

influence upon all competing jobs caused by first processing it. This rule combines a concept of 

shorter processing time, earlier due date and longer remaining processing time. 

Regarding dynamic priority in batch forming, the review by Perez et al. (2005) provided a detailed 

classification of papers dealing with deterministic scheduling problems related to batching. Mason 

et al. (2002) suggested a modification of the Apparent Tardiness Cost index for Sequence-

dependent setup times (ATCS, Lee and Pinedo, 1997) to cover batching problems in order to 

minimize the total weighted tardiness in a hybrid job shop with sequence-dependent setup and 

ready times (BATCS). Pfund et al. (2008) minimized the total weighted tardiness with ready times 

on identical parallel machines scheduling with sequence-dependent setup times. They extended the 

ATCS heuristic by Lee and Pinedo considering a composite dispatching rule (called ATCSR) to 

allow non-ready jobs to be scheduled on a machine, which necessarily remains idle for a high 

priority job arriving at a later time. Recently, Pickardt et al. (2013) proposed a two-stage hyper-

heuristic that combines a generator of composite rules with a GA to select the best possible 

combination of common and evolved rules for both the sequencing rule of individual jobs and for 

batch forming. Except for BATCS, all sequencing rules for batch forming are combined with a 

batching rule that selects the fullest batch, similarly to the principle of setup avoidance in its focus 

on maximizing the utilization of machine capacity. They examined a problem taken from a complex 



 

 

dynamic job shop problem from semiconductor manufacturing. It results that the hyper-heuristic 

enhances all the common batch forming rules (BATCS, WMDD, PRCR, etc.) and the rules 

assigned most frequently to critical work centers by the hyper-heuristic is the batch forming rule of 

the PRCR rule. 

Despite the sophisticated formulations of the hyper-heuristic proposed by Pickardt et al., a simple 

reformulation of the batch forming rule for the priority CR has been selected in this work for easier 

implementation and interpretation of experimental data; in the proposed heuristics, the novel 

priority rule has been integrated with a sliding time window technique. 

 

1.2 Time window 

In real-world situations, it is useful to consider the information on future job arrivals for making 

decisions in a batch-processing environment. The use of this information can lead to better 

decisions than those taken by considering only the current system status. Based on this intuitive 

idea, new heuristics can be devised where batches are formed and sequenced for a pre-specified 

time window (time slot) using a close-to-optimal procedure. The main objective of shop scheduling 

by time windows is to assign jobs to available time windows within the scheduling horizon in order 

to meet due dates. Time windows are used in combination with dispatching rules achieving a 

dynamic priority over time of jobs, addressed as sliding (or rolling) time windows. As for priority 

rules, in the literature sliding time windows have been applied to sequencing rules of (individual) 

jobs and to batch forming.  

Regarding individual jobs, Garcia and Lozano (2005) used the time windows approach in a two-

stage permutation flowshop with identical parallel machines, where each job would correspond with 

the production and delivery of each order. Among priority rules tested by Kapanoglu and Alikalfa 

(2011) in dynamic job shop with sliding time windows, a GA is developed for matching queue 

length intervals with appropriate priority rules during simulation. 

Regarding batch forming, Chand et al. (1997) used time windows for the problem of minimizing 

total completion time on a single machine with release times. Mönch et al (2005) approached the 

batch forming problem of minimizing the total weighted tardiness on parallel batching machines 

(included in a single stage) with incompatible job families, Pm|p-batch,incompatible|ΣiwiTi. They 

proposed a GA, which first assigns jobs to machines and then forms batches on each machine for 

the jobs assigned to it by a rule similar to BATCS (Mason et al., 2002). Computation experiments 

with 4-8 batches on 3-5 machines show that on average the GA is about 7% better than the 

considered dispatching rule used independently; however, the GA is time-consuming ranging 

between 10 minutes and almost 2 hours compared to the real-time decision of the dispatching rule. 



 

 

A combination of dispatching rule and GA in which the GA assigns batches to the parallel 

machines of the single-stage system considered, reduces the computation time and improves the 

performance of the dispatching rule. 

Rossi et al. (2013) considered time windows to assign job to batches and batches to available time 

windows for each of the two stages of the flowshop in order to minimize tardy jobs and makespan, 

similarly to Garcia and Lozano (2005), which considered sequencing rules of individual jobs. Rossi 

et al. considered a case study for problem (1) with m1=3, m2=4, i.e. the FP2B(3,4)|p-batch, 

STsi,b|(ΣUi, Cmax), and developed two heuristics that combine minimum slack time and FCFS rules, 

based on 

- constrained size of parallel batches and 

- time windows. 

By the first heuristic, a machine (on each of the two stages) starts when the belonging batch reaches 

a fixed fraction of the machine capacity (δ). The second heuristic is an extension to batch forming 

of the sequencing rule proposed by Kanet and Li (2004), the weighted modified operation due date 

rule (WMOD), where different job weights are accounted to reduce the mean weighted tardiness. It 

considers a time window (a fixed slot of time, T), which acts like a system clock for forming 

batches, independently on the batch size, as shown in the two cases of Figure 2 also considered in 

current work. 
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Figure 2. The time slot (or time window) effect on the batch forming time and machine 

loading capacity 

Figure 2 about here 

 

Computation experiments were performed on combinations of machines and operator numbers and 

suggested 

- balancing the two stages by allocating operators proportionally to the setup time requirements; 

- closing batches before completion, e.g. at fixed intervals of time or before a given machine 

capacity threshold is reached. 

The first conclusion also allows assigning resources (operators on the different stages) and 

designing a plant layout, not only job scheduling. Both criteria suggest keeping a constant flow of 

jobs, to prevent accumulation, when all machines are busy, which could delay jobs with short 

deadline. These criteria are intuitive and results left room for further improvement. The machine 

capacity threshold was 80% of the total; the fixed interval of time corresponded to the mentioned 

machine processing time (70 minutes). 

As a possible improvement, these two heuristics can be parameterized, by changing the batch-

closing interval or the machine capacity threshold. The search of optima for these two heuristics 

parameters could be carried out 

- off-line, however there is no guarantee that they will remain optimal for different manufacturing 

plans or for different applications; 



 

 

- on-line, by automatically and exhaustively searching parameters by the scheduling algorithm, 

thus increasing the scheduling computation time. 

As explained below, the proposed heuristics require a single parameter to be set, which is updated 

automatically, which characterizes the sliding time window. 

 

 

2. The proposed heuristics 

The developed scheduling method performs batch forming considering the CRsetup rule and a sliding 

time window technique, applied to the MILP model in Rossi et al. (2013). 

 

Objective function 

The objective function is minimizing the number of tardy jobs 
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Notation 

j stage index, j=1,...,S 

h machine index, h=1,...,Mj, where Mj is the total number of parallel machine at stage j 

i, i', i* job indices, i=1,...,N, where N is the total number of jobs 

b batch index, b=1,...,B, where B is the total number of batches 

k operator index, k=1,.., vj, vj+1,.., vj+1,…,V where V is the total number of operators 

and vj is the number of operators at stage j (also representing the setup speed at stage 

j) 

uj machine capacity at stage j (i.e. all the machines at stage j have the same capacity) 

ri release date (delivery) of job i; also used to update the job available time in the 

system 

di due date of the job i 

zi size of job i 

si j setup time of job i at stage j 

pj processing time of parallel machines at stage j 

Ci j completion time of job i at stage j 

SCj i k completion time of operator k for the setup of job i at stage j 

BCj b h completion time of batch b of machine h at stage j 

t current time 



 

 

t* closing time of batch 

T sliding time window span 

L
w
 w

th
 queue of jobs included in the sliding time window, sorted by the CRsetup rule 

CRsetup Setup Critical Ratio defined in expressions (2) and (7) below. 

 

Decision variable 

Zi j b h 1, if job i is assigned to batch b of machine h at stage j 

0, otherwise 

 

CRsetup rule 

The proposed priority rule is based on the setup critical ratio, CRsetup, which considers setup time 

and due date of each job. This rule allows selecting jobs according to the ratio between the setup 

time of the current operation and its deadline by the expression 

 

 CRsetup = 
{ }

jiji

i

ts

td

+

− 0,max
, i∈L, j=1,..,S (2) 

 

The CRsetup rule considers the time elapsed from the earliest to the latest setup time of jobs ready to 

be processed. Jobs with lower CRsetup, corresponding to closer due date di and higher setup time si j, 

are scheduled first at each stage j. Below, a more sophisticated CRsetup rule that considers the 

allowance setup times of the scheduling horizon (all the release and due dates are known a priori) is 

also proposed. 

If a new job enters the system, the whole schedule can be changed by applying the CRsetup rule on 

all the jobs except those already being processed by an operator. This makes the algorithm dynamic. 

The proposed implementation is reported in concise form for readability in Listing 1. The same 

steps are reported in bold and further detailed in Listing 2 and Listing 3 for completeness. 

 

Listing 1: The proposed heuristic (concise) 

Select a sliding time window by the lowest ready time 

Stage Loop (j=1,…,S) 

1. Sort jobs of the sliding time window by increasing CRsetup and update the sliding time 

window 

2. Open a batch for each machine h of stage j 



 

 

3. Assign jobs to operators 

3.1. Sort jobs included in the sliding time window by CRsetup 

3.2. Assign the highest priority job to the available operator 

3.3. Update the sliding time window with the lowest setup time 

4. Assign jobs to batches 

4.1. Sort jobs included in the sliding time window by CRsetup 

4.2. Assign the highest priority job to the available batch until the machine capacity 

is reached 

4.3. Machine capacity reached ?: close the batch and open a new batch for the next 

run 

4.4. Update the sliding time window with the maximum between the next time 

window parameter and the lowest batch processing time 

5. Performance index evaluation, ∑
=

N

i

iU
1

 (and Cmax) 

 

As the scheduling horizon is known, the proposed heuristics schedule batches stage by stage. For 

each stage, jobs whose release date is included in the sliding time window [ ]t*t*riNi },, {min 1,...,=  are 

sorted by increasing CRsetup and assigned to the first available operator. If no release date of jobs is 

included in the sliding time window, i.e. iNi rt ,..,1min =< , all the jobs are sorted by the CRsetup. 

Hence, the sliding time window is updated to the lowest setup completion time 

 

}, {min * 1,..,1-*,,..,1 kjii SCr
jvjviNi +==

    (3) 

 

where i* is the job assigned for setup to operator k of stage j. 

Initially, for each machine of the stage, a batch is opened (to allow forming a lot of jobs that are 

processed together, i.e. a parallel batch). Next, the two steps of job assignment to, respectively, 

operators (in list L
1
) and batches (in list L

2
), are performed. Both steps include the same three 

phases (detailed in Listing 3) of: i) sort by increasing CRsetup the jobs included in the time window, 

ii) assign the highest priority job to, respectively, the available operator or the available batch 



 

 

(machine) and iii) update the sliding time window with, respectively, the lowest setup or batch 

processing time. Moreover, in the case of batch assignment, the heuristics check the machine 

capacity, with expression 

 

  
jhhbji
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1
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with δ = 1, whereas in Rossi et al. (2013) this was an additional algorithm parameter to be set. If the 

batch size exceeds the machine capacity, the batch is closed (and the machine starts); the end time 

of the sliding time window is updated considering the time window parameter, T, by the expression 

 

{ }TrBCt ijbhh += = *M,..,1 },{minmin
J

     (5) 

 

Expression  (5) slides the time window parameter from the previous time to a new time (ri*+T). If 

a machine completes within this time window, the end time of the time window rolls to the machine 

completion time and hence a new batch can be formed Figure 2. 

 

Listing 2: The proposed heuristic (complete) 

Initialization: set t=0, b=0, v0=0, Ci 0= ri for all jobs, close_batchh=0 for each machine h = 1,.., Mj; 

set the time window parameter (T). Set all the binary digits Zi j b h
,
 and all the completion setup and 

batch processing times to zero. 

Stage loop (j=1,…,S) 

1. Assign jobs to operators 

1.1. Sort jobs of the sliding time window (list L
1
) by increasing CRsetup and 

update the sliding time window 

1.2. Assign job to available operator 

1.2.1. Assign job i* to the first available operator k*∈{vj-1+1,.., vj} 

1.2.2. Update the current completion time Cj i* k* of job i* increasing the 

available time of operator k*: ri* ← max {Ci*0, SCj i’ k*}+ si* j, SCj i* k* ←ri*, 

where i’ is the previous job processed by operator k* 



 

 

1.2.3. Insert job i* in list L
2
 and remove job i* from L

1
 

1.3. Update the sliding time window with the lowest setup time 

1.3.1. If L
1
 is empty go to Assign Job to Batches, else 

)(min * 1,..,1- kjivvk SCt
jj +=←  and go to Sort jobs of the sliding time window 

(L
1
) by increasing CRsetup and update the sliding time window 

2. Assign jobs to batches 

2.1. Sort jobs of the sliding time window (L
2
) by increasing CRsetup and update 

the sliding time window 

2.2. Select a machine with an open batch 

2.2.1. If the set M = {h | close_batchh = 0} is not empty 

2.2.1.1. Select a machine h*∈M 

2.2.1.2. Sort jobs of the sliding time window (L
2
) by increasing 

CRsetup and update the sliding time window 

2.2.1.3. Apply the close batch rule for machine h* 

2.2.1.3.1. If job i* can be included in machine h* according to 

expression (4) 

2.2.1.3.1.1. 1**)(* ←+ hhbjiZ  

2.2.1.3.1.2. remove job i* from L
2
 

2.2.1.3.2. Else (i.e. job i* exceeds the size of machine h*) 

2.2.1.3.2.1. close_batchh←1 

2.2.1.3.2.2. evaluate Ci j ← Ci j + pj and BCj b h=Ci j 

∀i=1,..,N | 1**)( =+ hhbjiZ  

2.2.1.3.2.3. go to Sort jobs of the sliding time 

window (L
2
) by increasing CRsetup and update the 

sliding time window (at step 2.i) 



 

 

2.2.2. Else synchronize the new current time, with time window parameter 

and first completed batch: { }TrBCt ijbhh += = *M,..,1 },{minmax
J

 

2.3. If L
2
 is empty 

2.3.1. If j=S go to Performance index evaluation 

2.3.2. Else If j=1 go to Stage loop (j=1,…,S) 

2.4. Else b ← b+ Mj and go to Assign jobs to batches 

Performance index evaluation 

∑
=

N

I

iU
1

={|i| | C i S – di > 0} and Cmax = maxi=1,..,N  C i S 

 

Two heuristics, H� and H�, are proposed in order to test the impact of different batch forming 

criteria on performance targets according two different expressions of the CRsetup rule. Heuristic H� 

considers stages separately as already defined by expression (2) 

 

 CRsetup(H
�) = CRsetup (6) 

 

evaluated at each stage individually. 

Heuristic H� evaluates the critical ratio by the expression 

 

 CRsetup(H
�) = 

{ }

( )∑
=

+

−
S

jj

jiji

i

ts

td

*

0,max
, i=1,…N, j=j*,..,S (7) 

 

which takes into account the allowance setup times of the remaining scheduling horizon (all the 

release and due dates are known a priori), i.e. the total job setup time over all the remaining stages. 

The main difference between heuristic H� and H� is the (jobs) precedence criterion. The former 

considers stages separately, while the latter considers all the setup times in advance. 

According to these two heuristics, batches are closed when full capacity is reached or at dynamic 

sliding times window also without reaching the full capacity. 

To achieve better schedules, the machine idle time needs to be minimized and can be achieved by 

starting a machine as soon a batch is closed (as described below), i.e. non-delay batch schedule is 

considered. Nevertheless, non-delay schedule not necessarily implies optima schedules. 



 

 

These heuristics do not include a capacity threshold limit δ to close a batch as in the authors’ 

previous work, where it was fixed at 80%; one parameter less, δ = 1, and only one to set, the sliding 

time window T, reduces the number of computation experiments and makes the application of the 

proposed heuristics to real cases straightforward; the machine capacity is automatically adjusted by 

the limited waiting time (time window) before the batch close and the machine start. 

The differentiation of the two heuristics according to expressions (2) and (7) and the integration 

with the sliding time window is detailed in Listing 3. The priority lists L
1
 for the assignment of jobs 

to operators and L
2
 for the assignment of jobs to batches are parameterized in Listing 3 as L

w
. 

 

Listing 3: Sort jobs of the sliding time window (L
w
) by the CRsetup rule and update the sliding 

time window 

1. Sort all the jobs in list L
w
 by CRsetup 

1.1. Sort jobs in a list L
w
 according to decreasing }0,{max tri − , i=1,..,N and, in case of 

ties, arrange jobs in decreasing order according to CRsetup by expression (2) for H� and 

by expression (7) for H� 

2. Update the sliding time window: if *irt ≤  *irt ←  

3. Select the highest priority job i* from L
w
 

 

A pictorial view of the different cases available for combinations of release and due date of jobs is 

shown in Figure 3 for the simpler heuristic H� for clarity. 
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Figure 3. The proposed heuristic for the formation of batches A, B and C: dynamic priority 

rule and time window selection 

Figure 3 about here 

 

The following cases are possible: 

• batch A: at instant t1, jobs i1, i2 and i3 included in batch A have identical release (r1=r2=r3) and 

due dates (d1=d2=d3). According to heuristic H�, jobs with higher setup time are processed first;  

• batch B: jobs included in batch B have identical due dates (di-1=di=di+1) and one job has earlier 

release date (ri-1=ri>ri+1). At current time t2, all jobs are available and hence their release dates 

are not considered by heuristic H�. 

• batch C: jobs included in batch C have identical release dates. At current time t3, all jobs are 

available and hence according to CRsetup, jobs with lower due dates, i.e. di –t in expression (2), 

are processed first. 

Figure 3 also shows a typical behavior of the batch formation mechanism. Batches A and B 

complete exactly within the interval of time T, respectively at times (t1+T) and (t2+T). On the 

opposite, batch C is not closed within the sliding time window T, because all the machines are busy. 



 

 

In this case the sliding time window is expanded by ∆T, which corresponds to the time before a 

machine is available again (i.e. t2+T+∆T=minh{Cj b h}). 

A sliding time window has the purpose of reducing the operator idle time, based on the machines 

availability: 

− if there is at least a machine waiting, the time window is kept constant, whilst  

− if all machines are busy, the sliding time window is increased. 

The performance of the two formulations of CRsetup has been assessed by computation experiments. 

 

 

3. Computation experiments 

The performance of the proposed heuristics, implemented with Visual Basic for Applications in 

Microsoft Excel 2007, has been assessed with the heuristic parameters in Table 1 on the six 

benchmark problems by Rossi et al. (2013) generated with the parameters in Table 5 below. 

 

Table 1. Heuristic parameters 

Parameter Symbol Proposed Selected 

Sliding time window span T 7 ⋅ Uniform[1,8] 19 for H� 

18 for H� 

Heuristic H� CRsetup(H
�) { }

jiji

i

ts

td

+

− 0,max
 

i∈L, j=1,..,S 

no 

Heuristic H� CRsetup(H
�) { }

( )∑
=

+

−
S

jj

jiji

i

ts

td

*

0,max
 

i=1,…N, j=j*,..,S 

yes 

 

 

In the cited paper, a lower bound (recalled in Table 3) is given for each problem for tardy jobs and 

for makespan, consequently the total completion time is also considered in experiments. The results 

of the proposed heuristics are compared with the best of the four heuristics proposed by Rossi et al. 

in all possible layout configurations of operators assignment (v1, v2), with a total of six and seven 

operators (V={6,7}) and minimum two operators on the two stages (v1=(V-i, i=2,..,V-2), v2=V-v1). 

 



 

 

3.1 Optimal time window 

A preliminary set of tests has been carried out to evaluate the basic algorithm parameter T providing 

the minimum makespan. In particular, a Set of suitable T values (Set={7 ⋅ l, l=1,..,8}) has been used 

for each layout configuration. The operators’ assignment to the two stages has been exhaustively 

tested, considering their low number (seven combinations). 

In conclusion, each of the two heuristics has run 48 times (considering the six benchmark problems 

for each occurrence of T), totaling 672 runs considering both heuristics and the combinations of (v1, 

v2). 

Table 2 shows the values of the optimal time windows determined by the heuristics H� and H� with 

operators’ assignment (v1, v2). The main statistical parameters (median, mean, mode and standard 

deviation) for the optimal makespan occur when the time window parameter ranges in [7, 28] 

minutes. From this preliminary analysis the average values for T are selected, particularly T=19 for 

H� and T=18 for H�. 

 

Table 2. Exhaustive evaluation of time windows T from the Set={7 ⋅⋅⋅⋅ l, l=1,..,8} providing the 

minimum makespan with heuristics H� and H� (last two columns) with operators assignment, 

(v1, v2), where v1=(V-i, i=2,..,V-2), v2=V-v1 and V={6, 7} 

instance 

no. 

benchmark 

no. 

operators 

no. (stage 

1) v1 

operators 

no. (stage 

2) v2 

best T 

heuristic 

H� 

best T 

heuristic 

H� 

1 1 5 2 21 21 

2 2 5 2 21 21 

3 3 5 2 7 7 

4 4 5 2 7 14 

5 5 5 2 14 21 

6 6 5 2 14 7 

7 1 4 3 7 21 

8 2 4 3 21 28 

9 3 4 3 7 35 

10 4 4 3 21 14 

11 5 4 3 14 14 

12 6 4 3 21 7 

13 1 3 4 14 21 

14 2 3 4 21 35 

15 3 3 4 49 28 

16 4 3 4 21 7 

17 5 3 4 7 14 



 

 

18 6 3 4 7 14 

19 1 2 5 21 14 

20 2 2 5 28 35 

21 3 2 5 21 28 

22 4 2 5 7 28 

23 5 2 5 35 14 

24 6 2 5 14 7 

25 1 4 2 21 21 

26 2 4 2 7 7 

27 3 4 2 7 7 

28 4 4 2 14 7 

29 5 4 2 21 21 

30 6 4 2 21 14 

31 1 3 3 7 7 

32 2 3 3 35 7 

33 3 3 3 21 21 

34 4 3 3 21 21 

35 5 3 3 28 14 

36 6 3 3 21 14 

37 1 2 4 21 21 

38 2 2 4 7 7 

39 3 2 4 49 28 

40 4 2 4 21 35 

41 5 2 4 14 35 

42 6 2 4 49 7 

Median 21 14 

Mode 21 7 

Mean 19 18 

Standard deviation 11 9 

 

From the statistics in Table 2, it can be noticed that the best sliding time window values with 

heuristic H� are slightly lower than with H�. This shows that CRsetup(H
�) produces a higher 

fragmentation of batches. 

The computation time for each run is in the order of 4-6 minutes, consequently the optimal time 

window parameter T can be updated often to take into account changing production plans. The 

computation time is significantly lower than manual scheduling in the original hospital case. This 

computation time is lower than 0.5% of the considered horizon (in the original time unit: minutes). 

This processing time can be easily reduced by at least one order of magnitude by software 

engineering and new processors, considering that high-level programming language has been used. 



 

 

 

 

4. Results 

4.1 Operators’ assignment 

The seven configurations of operators’ assignment are listed in Table 3 along with the two 

performance indices calculated (the number of tardy jobs and the makespan) and are compared on 

benchmark no. 1 (worst case) from Rossi et al. (2013). The grayed rows in Table 3 list the 

assignment of V=7 operators, at stages 1 (2): v1=2 (5), 3 (4), 4 (3) and 5 (2). Similarly in the white 

rows for one operator less: V=6 and v1={2, 3, 4}. 

The configuration parameters can be expressed in compact form by the tern H
p|Vq

|v1
r
 with the 

quotes of p={1,2}, q={6,7} and r={2,..,V-2}. The short version H
p|| indicates each set of seven 

configurations where the first two columns take the values H=p. 

Results have been evaluated for the two heuristics by comparison with the LB according to 

 

%gapH-LB = [Cmax(H
p
) – LB] / LB     (8) 

 

Analogously the relative distance between the results of different heuristics versus Rossi et al. 

(2013) is evaluated with reference to the LB, e.g. 

 

%gapRPL-H = [Cmax(RPL) – Cmax(H
p
)] / LB    (9) 

 

where Cmax(RPL) is the best heuristic and operator configuration from Rossi et al. (2013). 

 



 

 

Table 3. Benchmark no. 1 (worst case), the lower bound (LB) is 624.3 minutes: result of 

simulations for different operators’ assignment for heuristics H� and H� with selected time 

windows, respectively, of T=19 and T=18. In bold new upper bounds 

 Operators Rossi et al. 

(2013) 

Proposed 

heuristic H� 

Proposed 

heuristic H� 

%gapRPL-H  

INSERIRE 

(9) 

%gapH-LB 

INSERIRE (8) 

Case no. V v1 v2 ∑Ui Cmax ∑Ui Cmax ∑Ui Cmax H� H� H� H� 

1 7 5 2 3 867 0 785 0 784 13.1 13.3 25.7 25.6 

2 7 4 3 0 745 0 689 0 700 9.0 7.2 10.4 12.1 

3 7 3 4 0 690 0 667 0 666 3.7 3.8 6.8 6.7 

4 7 2 5 0 676 0 659 0 661 2.7 2.4 5.6 5.9 

5 6 4 2 3 867 0 789 0 806 12.5 9.8 26.4 29.1 

6 6 3 3 6 749 0 695 0 694 8.6 8.8 11.3 11.2 

7 6 2 4 6 700 0 678 0 672 3.5 4.5 8.6 7.6 

 

 

Both heuristics H� and H� reach the optimum schedule with 0 tardy jobs for all instances. 

This optima performance was not reached by Rossi et al. in some configurations (particularly with 

the minimum number of operators, V=6), with up to six tardy jobs. 

The best makespan for each heuristic are respectively 659 and 661 minutes with 7 operators (case 

|V
7
|v1

2
 no. 4) and 678 and 672 with 6 operators (case |V

6
|v1

2
 no. 7). With both H� and H�, the worst 

results are achieved when the assignment of operators between the two stages is strongly 

unbalanced inversely to the respective setup speeds (case |V
7
|v1

5
 no. 1), particularly with one 

operator less (case |V
6
|v1

4
 no. 5) with a makespan of respectively 789 and 806 for the two heuristics. 

The makespan Cmax ranges from 659 (case H�|V
7
|v1

2
 no. 4) to 806 minutes (case H�|V

6
|v1

5
 no. 5), 

with respect to the range [676.2, 889.8] achieved by the competitor heuristics. This also shows that 

a wrong selection of the total number of operators V and assignment on the two stages vi causes a 

total batch processing time increase of 147 minutes (+22%). 

A wrong operator assignment may not produce an increase of the number of tardy jobs but it clearly 

produces a makespan increase. 

The minimum makespan with the new heuristic case H�|V
7
|v1

2
 no. 4 is only +5.6% above the lower 

bound with respect to +8.3% of the competitor heuristics. 

As for the operators’ assignment, a wrong assignment (H�|V
7
|v1

5
 no. 1 vs. case H�|V

7
|v1

2
 no. 4) 

produces a makespan increase of 126 minutes (+20.1%) within the same heuristic. Also within 

heuristic H� (H�|V
7
|v1

5
 no. 1 vs. case H�|V

7
|v1

2
 no. 4) a wrong assignment provides an increase of 

123 minutes (+19.7%). A reduction of one operator (case V
7
|v1

2
 no. 4 vs. V

6
|v1

2
 no. 7) produces no 



 

 

effect on the number of tardy jobs and a slight makespan increase: 19 minutes (+3.0%) for H� and 

11 minutes (+1.8%) for H�. This performance decrease is most probably tolerable compared to the 

relevant economic impact of reducing the operator number. 

The case of one machine less (m2=3 vs. m2=4) and one operator less in the latter stage (|V
6
|v1

2
) has 

also been simulated. Also machines seem redundant, considering the slight makespan increase of 19 

minutes (+3.0% above 659 minutes of case |V
7
|v1

2
 no. 4) for H� and of 11 minutes (+1.8% above 

661 minutes of case |V
7
|v1

2
 no. 4) for H�. 

 

4.2 Validation 

In the first set of tests, the preferred layout configuration is |V
6
|v1

2
, because it involves fewer 

operators as anticipated, and they are assigned to the two stages inversely to the respective setup 

speeds. 

The two proposed heuristics have been tested in this optimal layout configuration on five 

benchmark problems proposed by Rossi et al. (2013), which were obtained by randomization of real 

data for validation purposes. 

Table 4 shows the results achieved by heuristics H� and H� with time windows parameter T=19 

minutes for H� and T=18 minutes for H� on benchmarks no. 2 to no. 6. 

The performance of the best heuristic and operator configuration from Rossi et al. (2013) is 

evaluated as 

 

%gapRPL-LB = [Cmax(RPL) – LB] / LB     (10) 

 



 

 

 

Table 4. Benchmarks no. 2 to no. 6 (generated with the parameters in Table 5 below). Tardy jobs and makespan and respective lower 

bounds (LB) from Rossi et al. (2013) and the best results (case |V
6
|v1

2
 and their best heuristic). In bold new upper bounds 

   Rossi et al. (2013) H� H� 

Benckmark 

no. 

LB for 

∑
=

N

i

iU
1  

LB for Cmax ∑
=

N

i

iU
1  

Cmax 
%gapRPL 

(10) 
∑

=

N

i

iU
1  

Cmax %gapH-LB (8) ∑
=

N

i

iU
1  

Cmax %gapH-LB (8) 

1 0 624.3 6 700 12.1 0 678 8.6 0 672 7.6 

2 7 620.6 7 689 11.0 7 685 10.4 7 689 11.0 

3 6 633.5 7 709 11.9 6 694 9.6 6 676 6.7 

4 6 607.9 6 671 10.4 6 673 10.7 6 662 8.9 

5 5 629.0 6 719 14.3 5 723 14.9 5 684 8.7 

6 4 633.5 5 676 6.7 4 673 6.2 4 662 4.5 

 



 

 

The number of tardy jobs is minimum, equal to the lower bound, for both the heuristics and for all 

the benchmark problems, whereas Rossi et al. (2013) reached no tardy jobs only in two benchmarks 

(no. 2 and no. 4).  

Heuristic H� based on the new expression (7) of the critical ratio performs better than H� in five out 

of six benchmark problems. The %gapH-LB reduction of H� with respect to H� ranges between 1.0% 

and 6.2% except in benchmark no. 2. The %gapH-LB of the best heuristic H� is 4.5% allowing a 

further makespan reduction by future work. Both proposed heuristics perform better than the best 

heuristics from Rossi et al. (2013) in all 7 operator configurations for benchmark no. 1 and on the 5 

random benchmarks no. 2 to no. 6, except for H� in benchmark no. 3 and no. 4. The total number of 

tardy jobs for all six benchmarks in Table 4 has been reduced by 32% with respect to the competitor 

heuristics. Additionally, the %gapRPL-H reduction of H� for all six benchmarks in Table 4 is 3.2%. 

 

 

5. Discussion 

The two performance indices (number of tardy jobs and makespan) versus operator number, 

assignment and time window have been assessed. Tardy jobs are the dominating criterion (efficacy) 

for the examined problem. The makespan is an efficiency criterion. The minimum Cmax achieved in 

simulations is less than half of the observation period (24 hours). 

From preliminary computation experiments, an optimal time window parameter T between 7 and 28 

minutes, further restricted to 18-19 minutes has been found, as opposed to 70 minutes of previous 

work. By such low time allowed for setup, machines start operation more frequently and 

consequently with smaller batches. For this reason, there has been no need to test the system with 

an additional parameter to limit the machine capacity as in previous work. 

Computation experiments with the two new proposed heuristics on the six benchmarks have shown 

similar or better performance in all cases with respect to the best result among the best of the four 

heuristics in Rossi et al. (2013). Both the machine capacity threshold and the time window 

parameter have been explored here, yielding lower optimal values than those that were fixed in 

Rossi et al. The better performance seems a consequence of the increased batch fragmentation by 

the lower time window. Batch fragmentation (machine loaded with fewer jobs and starting more 

frequently) is possible by the excess of machine capacity with respect to the number of jobs to be 

processed. The excessive machine capacity has also been shown by the slightly worst performance 

achieved with one machine less in the second stage. 



 

 

The optimal time window and capacity provided are not absolute values and will probably vary on a 

case basis; however these two parameters are automatically set by the CRsetup rule. 

Heuristic H� based on the new proposed expression (7) of critical ratio, which compares the 

available time with the total remaining processing (setup) time is better than H�, which only 

considers the processing time on each stage individually, as in the authors’ previous work. 

A difference in performance of the two proposed heuristics and regarding tardy jobs and makespan 

has been noticed between the first benchmark obtained from a real case (Table 3) and the five 

benchmarks obtained by randomization (Table 4). 
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Figure 4. Benchmark no. 1 (worst case), distributions of setup times on stage 1 and on stage 2 

are similar 

Figure 4 about here 

 

From Table 3, with benchmark no. 1, heuristic H� does not differ significantly from H� in the case 

of makespan minimization. Figure 4 shows that for benchmark no. 1, the setup times have a similar 

distribution between stage 1 and stage 2. Consequently, the adopted critical ratio CRsetup calculated 

respectively with expression (2) and (7) produces the effect of sorting jobs in a similar order. 
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Figure 5. Benchmark no. 2 (generated with the parameters in Table 5 below), distributions of 

setup times on stage 1 and on stage 2 are uniform 

Figure 5 about here 

 

From Table 4 with benchmarks no. 2 to no. 6, heuristic H� does differ from H� in the case of 

makespan minimization. Figure 5 shows that setup times of benchmark no. 2 have a uniform 

distribution (by construction, according to the parameters in Table 5) and that they do not have a 

similar distribution between stage 1 and stage 2 (as opposed to benchmark no. 1 in Figure 4). The 

same occurs for the other randomly generated benchmarks. 

From computation experiments overall it can be observed that heuristic H� based on the new 

proposed expression of the critical ratio, which considers the processing (setup) times on all the 

remaining stages is to be preferred, particularly for the more general case where setup times on 

different stages are not correlated. 

 

 

5. 1 Extension to S stages 

To show the applicability of the proposed heuristics to S stages, five new benchmarks have been 

generated with the parameters in Table 5 and can be downloaded as supplementary material. To 

compare the performance of the proposed approach on two-stage benchmarks with the new 5-stage 

benchmarks the following criteria has been adopted: the selected heuristic parameters from Table 1 

(T=18 and H�) and the worst conditions denoted by * in Table 5 have been selected. 

 



 

 

Table 5. Benchmarks parameters 

Parameter Symbol Benchmarks no. 2 to no. 6 Benchmarks no. 7 to no. 11 

Number of jobs N 60 60 

Job size zi Uniform[1,4] Uniform[1,4] 

Job setup time si j Uniform[1,30], j=1 

Uniform[1,45], j=2 

Uniform[1,12] 

Number of stages S 2 5 

Number of machines per 

stage 

Mj 3, j=1 

4, j=2 

3* 

Machine capacity uj 30, j=1 

24, j=2 

30 

Release date ri Uniform[0,480] Uniform[0,3600]* 

Due date di Uniform[360,1440] Uniform[900,3600] 

Number of operators per 

stage 

vj 2, j=1 

4, j=2 

2* 

Machine processing time pj 70 70 

 

Results of computation experiments on the new benchmarks no. 7 to no. 11 are listed in Table 6. 

The LB for tardy jobs has been met only in two cases (compared to five cases for benchmarks no. 2 

to no. 6 in Table 4), whereas the efficiency parameter (the makespan) has decreased approximately 

by one order of magnitude and one benchmark (no. 11) is solved to the optimality and has met the 

LB. 

 

Table 6. Benchmarks no. 7 to no. 11 (generated with the parameters in Table 5). Tardy jobs 

and makespan and respective lower bounds (LB) for the best heuristic parameters T=18 and 

H�|V
10

|v1
2
|v2

2
|v3

2
|v4

2
. In bold LBs that have been met 

Benchmark 

no. 

LB for 

∑
=

N

i

iU
1  

LB for 

Cmax 
Cmax ∑

=

N

i

iU
1  

%gapH-LB (8) 

7 5 1555 1565 5 0.6 

8 4 1571 1589 5 1.1 

9 4 1557 1573 5 1.0 

10 4 1557 1561 5 0.3 

11 5 1573 1573 5 0.0 

 



 

 

 

6. Conclusions 

Two new heuristics have been proposed for the non-permutation hybrid flowshop scheduling 

problem, with parallel batching machines, compatible parallel batch families and manual machine 

loading modeled as sequence-independent uniform setup times, with the purpose of reducing the 

number of tardy jobs (and the makespan). 

Jobs are sorted to form batches according to a dynamic priority, updated at each new event, e.g. the 

release of a new job. The job priority depends on an innovative formulation of the critical ratio 

(CRsetup) of the available time between current time and due date versus the remaining processing 

(setup) time, according to two heuristics which consider respectively individual stages or all stages. 

In this latter formulation the algorithms has been extended to S stages and it improves the weighted 

modified operation due date rule (WMOD) for two-stage flowshop, which only considers imminent 

setup. 

Batches are closed (machine setup) and machines start within a time limit (sliding time window) 

determined by preliminary tests and updated automatically. 

Computation experiments have shown that the combination of the CRsetup rule and the sliding time 

window mechanism has produced an improvement of tardy jobs and makespan. 

This work has the following highlights: 

• The benefit of fragmenting batches to achieve better schedules instead of loading machines to 

full capacity, found in previous work has been confirmed with both the new proposed heuristics. 

• A machine capacity limit in the heuristic is not necessary because the optimal time window is 

much lower than the one used in previous work (less than 20 minutes compared to 70). This 

result further stresses the benefit of fragmenting batches until all available machines are loaded. 

The result is that machines run more often and with lower loads. This should be taken into 

account where energy requirements are more relevant (like in the case of furnaces running at 

high temperature) than in the examined case. A general recommendation seems reducing the 

machine capacity and increasing their number, ideally to the limit of single-job batches as in 

flexible (or hybrid) flowshop scheduling. However a constraint to reducing the machine 

capacity is given by the job size: the minimum machine capacity is given by the maximum job 

size. 

• Regarding the two-stage case, operators should be assigned to the two stages proportionally to 

the respective setup times of scheduled jobs (constant setup speed at different stages). This is 

confirmed from previous work, showing that a constant flow of jobs as opposed to waiting to 



 

 

achieve full machine capacity is beneficial. By introducing the sliding time window parameter, 

the system achieves some kind of cyclic behavior with synchronized stages. A reduction of one 

operator (economic impact) is more tolerable than a wrong (unbalanced) assignment on the two 

stages (organization impact), producing no effect on the number of tardy jobs and slight 

makespan increase. 

The given problem and the provided approach offer further investigation opportunities, including: 

o finding possible relationships between time window and release/due date and setup times, as an 

alternative to the presented exhaustive search; 

o optimizing “fragmentation”, e.g. batch sizing and machine capacity/number; 

o correlating setup time distribution on the S stages and operators’ assignment; 

o optimization algorithms, such as metaheuristics, may increase the performance. 
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