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Batching is a commonly used concept when work needs to be done. Regardless of the specific use 

case, batching means combining or grouping two or more tasks. In other words, it is a productivity 

strategy in which tasks are grouped into batches and processed together. In everyday life, instead of 

going to the supermarket five times a week, these tasks may be batched and reduced to one or perhaps 

two visits. The two visits will be slightly more laborious, but batching the visits will save a lot of 

time. Batching, therefore, helps to increase effectiveness and efficiency. 

Depending on the specific use case, it is not only the batching decision that is crucial but also the 

decision as to when to process a batch – known in operations management as “scheduling”. To return 

to the example, the visits to the supermarket are not likely to be random but are scheduled with other 

pending tasks. Obviously, there exist interdependencies between batching and scheduling decisions. 

One of the most prominent examples of such a specific use case comes from the manufacturing 

industry – the scheduling of laser-cutting machines. Here, we often find machines that achieve higher 

productivity by processing jobs in batches. The operational production planning of such batch 

processing machines (“batch scheduling”) also comprises the two interdependent decisions: the 

batching decision (assigning jobs, production orders, products, etc. to batches) and the scheduling 

decision (assigning batches to machines – in the case of multiple machines – and sequencing these 

batches). Since the batch composition strongly influences the scheduling decision (and vice versa), 

the batching and scheduling decisions should be made taking into account their interdependencies.  

The interdependencies between the batching and the scheduling decisions can vary and are strongly 

related to the specific problem context, i.e., the machine characteristics, the job and processing 

characteristics, and the scheduling objectives. In terms of job and processing characteristics – in this 

respect most batch scheduling problems differ strongly from classical scheduling problems – batch 

scheduling problems can be classified according to some main characteristics (cf., Wahl et al., 2023): 

(a) batching type, e.g., parallel batching and serial batching, (b) job availability, i.e., batch availability 

and item availability, and (c) batch capacity, i.e., unbounded batch capacity and bounded batch 

capacity. “Parallel batching” means that the jobs within a batch are processed simultaneously (in 

parallel, e.g., burn-in operations in the semiconductor industry), while “serial batching” means that 

the jobs within a batch are processed sequentially (e.g., laser cutting in the metalworking industry). 

“Batch availability” means that a job is not available until its entire batch has been completed, while 

“item availability” means that a job is available immediately after it has been processed. The 

characteristic “unbounded batch capacity” means that any number of jobs can be grouped into one 

batch, while “bounded batch capacity” (bc) indicates restrictions on the batches (e.g., a limited 

number, size, or volume of the jobs per batch). In addition to these main characteristics, there are 

several others, such as “release dates” or “setup times” (s), which can make two batch scheduling 

problems very different from each other (also speaking in terms of complexity). 
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For example, consider a single batch-processing machine with bounded batch capacity (e.g., by the 

number of jobs) and batch availability. While the batch completion time for parallel batching 

problems is calculated from the maximum processing time of the jobs in a batch (cf., Figure 1), the 

batch completion time for serial batching problems is calculated from the sum of the processing times 

of the jobs in a batch. In addition, serial batching problems usually include setup times or setup costs 

(cf., Figure 2). 

 

Figure 1: Batch scheduling with parallel batching 

 

Figure 2: Batch scheduling with serial batching 

The interdependencies between the batching and the scheduling decisions can be seen in Figure 1 and 

Figure 2: moving a job to a different batch (e.g., job j3 from batch b1 to b2) – to achieve a better 

objective value – can have an impact on each job and the entire schedule (because the composition of 

the batches determines the processing time of the batches and thus their completion time (Cb1 and 

Cb2) – in the case of batch availability). Because of the interdependencies, batch scheduling problems 

are particularly challenging combinatorial optimization problems. 

When solving combinatorial optimization problems in general, we typically seek optimum solutions. 

Standard solver engines (e.g., CPLEX Optimizer or Gurobi Optimizer) or exact solution methods 

(e.g., exact algorithms or dynamic programs) are capable of computing such optimum solutions. 

However, very often these solution methods are only able to solve “small” batch scheduling problem 

instances (i.e., with a small number of jobs) in a reasonable time, and such instances often do not 

reflect real-world application cases. For the solving of real-world application cases (i.e., problem 
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instances with a larger number of jobs – speaking in the range of hundreds and thousands), the 

employment of heuristics or metaheuristics is recommended or even necessary (especially for NP-

hard problems). While heuristics and metaheuristics do not guarantee to find optimum solutions, they 

commonly provide good results in a reasonable amount of time. This solving efficiency is usually 

sufficient for most cases, but it is not without limitations: heuristics and metaheuristics are very often 

problem-specific developments. They have to be adapted to the problem. Thereby, the quality of 

solutions often depends on parameters that control the behavior of heuristics and metaheuristics. The 

tuning of such parameters is therefore of particular importance. 

In summary, there are three challenges in solving batch scheduling problems: First, the 

interdependencies between the batching decisions and the scheduling decisions should be respected. 

Second, the selection or development of appropriate solution methods, and third, the determination 

of appropriate parameters for the solution methods (if necessary). 

This dissertation is based on a real-world application case from the metal processing industry, namely 

the scheduling of laser cutting machines. The problem can be classified as “Scheduling parallel serial-

batch processing machines with incompatible job families, sequence-dependent setup times and 

arbitrary sizes” (PSBIJF) and is defined and elaborated across several conjoining scientific 

contributions. 

The structure of this thesis is as follows: Section 2 highlights each scientific contribution and explains 

the overall context. Section 3 provides an overview of the bibliographic data and the abstract of each 

contribution – the complete manuscripts can be found in the appendix. Finally, Section 4 summarizes 

the results of the four contributions, discusses the added value to the field of batch scheduling 

research, and gives some future research directions. 



 

 

 

 

 

 

2 
2 CONSTITUENT ELEMENTS OF 

THE DISSERTATION 
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Contribution C1 

“Scheduling parallel serial-batch processing machines with incompatible job families, sequence-

dependent setup times and arbitrary sizes”. Gahm et al. (2022b) 

In the metal processing industry, many companies produce customer-specific parts, that are either 

finished products or undergo further processing. The manufacturing process for all of these parts 

usually starts with the cutting of raw shapes from metal sheets. The raw shapes have several 

characteristics such as material type, material thickness, and the shape itself (CAD data). As an 

efficient planning strategy, jobs of the same job family (i.e., jobs of the same material type and 

material thickness) are grouped together. The decision to group jobs together is called “batching” and 

a resulting group of jobs is called a “batch”. The batching decision must ensure that the jobs can be 

placed on the metal sheet, i.e., that they do not exceed the sheet boundaries and that they do not 

overlap. The fulfillment of these constraints together with an intelligent spatial arrangement of the 

jobs (depending on the objective, e.g., minimizing waste or energy consumption) is also known in the 

literature as the “complex nesting problem” (CNP) (or “two-dimensional, highly irregular strip 

packing problem”, cf., e.g., Wäscher et al., 2007). In addition, the planned batches must be allocated 

to the available laser-cutting machines and placed in an advantageous sequence (depending on the 

objective, e.g., minimizing tardiness). This scheduling decision must take into account setup times 

that depend on the sequence and job family. The complete serial-batch scheduling problem for the 

special case of laser-cutting machines is illustrated in Figure 3 (along with the decisions to be made). 

 

Figure 3: The serial-batch scheduling problem and its decisions 
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The experimental study shows that the standard solver Gurobi (solving the MILP) is basically able to 

solve problem instances with up to 60 jobs and 5 machines. When the number of jobs increases, 

heuristics are used. The unique feature of the presented heuristics is the controllable batch utilization, 

which allows the creation of smaller batches without non-urgent jobs. The experimental results show 

that this feature leads to a general superiority of the proposed heuristics compared to heuristics from 

the literature. 
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Contribution C2 

“Applying machine learning for the anticipation of complex nesting solutions in hierarchical 

production planning”. Gahm et al. (2022a) 

Both the described batch scheduling problem (PSBIJF) and the complex nesting problem (CNP) are 

NP-hard (cf., Gahm et al., 2022b and Gahm et al., 2022a). Since the complexity of NP-hardness 

suggests that any optimization program or exact solution method is likely to run into an extremely 

high computational effort as the number of jobs increases, and since solving the PSBIJF would require 

solving the CNP several times, an approximation approach is developed. This means that the capacity 

requirements of the jobs are only roughly estimated (i.e., via the sum of the content areas of the raw 

shapes) and the sum of the capacity requirements of the jobs grouped in a batch must not exceed the 

available capacity (i.e., the area of the metal sheet). The nesting decision is thus replaced by a simple 

capacity check (cf., Figure 4, III). Obviously, the use of such a simple approximation is subject to 

error (and not as accurate as solving the CNP) but is very fast to compute. 

 

Figure 4: The BSP with approximation 
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Contribution C1), but it is subject to error. At the same time, better approximations (e.g., packing the 

minimum bounding rectangles instead of nesting the original shapes) might be very time-consuming. 

Therefore, a highly accurate and also efficient anticipation method for complex nesting solutions 

would be valuable to improve solution quality and/or reduce computation time.  

For solving the PSBIJF it is important to plan only with feasible batches (i.e., that the batched jobs 

do not exceed the sheet boundaries and do not overlap). Actually, a real nesting is not necessary, but 

the decision (or even a good suggestion) as to whether a batch is feasible or not is sufficient. 

Therefore, we propose the anticipation of base-level reactions by using machine learning (ML) to 

approximate the feasibility of batches (cf., Figure 4, II). In addition, Contribution C2 presents a 

prediction framework to identify the most promising machine learning method, with particular 

emphasis on the entire process of data preparation, learning pipeline configuration, hyperparameter 

tuning, validation, and testing to ensure transparency and reproducibility. 

The experimental results show the great potential and suitability of the proposed ML-based 

anticipation approach and its superiority over simple approximations as anticipation functions. 
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Contribution C3 

“Learning-augmented heuristics for scheduling parallel serial-batch processing machines”. 

Uzunoglu et al. (2023) 

Contribution C3 focuses on the development and improvement of the solution methods. Two main 

aspects are addressed: 

Due to the specific problem context (in particular the serial batching characteristic and the weighted 

tardiness objective), it is not necessarily appropriate to maximize batch utilization. As a result, batches 

with a lower utilization result in more batches with a shorter processing time and thus, batches can be 

scheduled more flexibly according to the due dates of the jobs. Of course, more batches also result in 

additional setups that delay batch start and completion times. This relationship is exploited by 

Contribution C1, wherein the 𝛽-parameter is used to control the batch utilization. Contribution C3 

presents another batching strategy by controlling the jobs in a batch according to their “urgency”, i.e., 

the priority of a job. For this purpose, a parameter 𝛿 is used, again in combination with the weighting 

of processing time (𝜅1) and setup time (𝜅2). 

Since the setting of the heuristics’ parameters (i.e., 𝛽, 𝜅1, 𝜅2 and 𝛿, 𝜅1, 𝜅2) has a significant influence 

on the solution quality, multi-start heuristic approaches with full-grid search are used. This leads to 

very competitive results in terms of solution quality, but also to high computation times for large-

scale problem instances with hundreds or thousands of jobs (as can be found in some industries). 

Contribution C3 proposes new solution methods that are competitive in terms of solution quality and 

particularly efficient in solving large-scale problem instances. The main driver thereby is the use of 

machine learning, which significantly shortens the time-consuming enumerative search for promising 

parameter configurations. Again, special emphasis is placed on the complete data preparation, 

learning pipeline configuration, hyperparameter tuning, validation, and testing processes to ensure 

transparency and reproducibility. 
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Contribution C4 

“Serial batch scheduling: a systematic review and future research directions”. Wahl et al. (2023) 

Contribution C4 has a broader view of batch scheduling problems compared to the other 

contributions. Its purpose is to structure the research field of (serial) batch scheduling problems, based 

on the authors’ scheduling expertise and the experience and insights gained in Contributions C1, C2, 

and C3. The main goals of Contribution C4 are to establish a conceptual framework based on 

classification schemes for batch scheduling research and to provide a comprehensive knowledge base 

for theory and practice. 

As discussed in the introduction, one of the challenges of batch scheduling problems is the 

interdependencies that arise from the relationship between the grouping of jobs into batches and the 

scheduling of those batches. In this context, batching and scheduling characteristics can lead to very 

different problems. This makes it difficult to identify relevant literature and to keep track of the state 

of the art. To overcome this difficulty, two classification schemes are developed: the “Scheduling 

Problem Classification Scheme” (SPCS) and the “Scheduling Article Classification Scheme” 

(SACS). As it is common in the context of scheduling problem classification, the SPCS – with the 

aim of comprehensively specifying batch scheduling problems – comprises three fields, namely “A - 

Machine characteristics” (e.g., machine environment), “B - Job and processing characteristics” (e.g., 

batching type or job availability), and “C - Objective system” (e.g., objective criteria). The 

SACS – for the purpose of describing research articles in detail – consists of five fields, namely “D - 

Theoretical insights” (e.g., problem complexity), “E - Model type” (e.g., mixed-integer linear 

program), “F - Solution method” (e.g., heuristic), “G - Experimental evaluation” (e.g., problem 

instance data), and “H - Application case” (e.g., manufacture of fabricated metal products). The 

development of the two classification schemes is based on existing classification schemes from the 

literature and, in particular, on an iterative process of literature search, analysis, and synthesis. This 

process identified 425 high-quality research articles on batch scheduling, the analysis of which led to 

iterative adaptations of the schemes and the detailed classification of the articles.  

Based on the classification schemes and the classified articles, a systematic review of serial-batch 

scheduling problems is conducted. As the first review of serial-batch scheduling problems in the 

literature, 118 articles are analyzed, providing some interesting insights into the current state of 

research, identifying research gaps, and suggesting several future research directions. 
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CONTRIBUTION C1 

 

Scheduling parallel serial-batch processing machines with 

incompatible job families, sequence-dependent setup times and 

arbitrary sizes 

 
 

Christian Gahm*, Stefan Wahl and Axel Tuma 

Published in the International Journal of Production Research, 2021, 60(17), 5131–5154. 

* Corresponding author 

 

Available via: https://doi.org/10.1080/00207543.2021.1951446 

 

Abstract: 

The scheduling of (parallel) serial-batch processing machines is a task arising in many industrial 

sectors. In the metal-processing industry for instance, cutting operations are necessary to fabricate 

varying metal pieces out of large base slides. Here, the (cutting) jobs have individual, arbitrary base 

slide capacity requirements (sizes), individual processing times and due dates, and specific material 

requirements (i.e. each job belongs to one specific job family, whereby jobs of different families 

cannot be processed within the same batch and thus are incompatible). In addition, switching of base 

metal slides and material dependent adjustments of machine parameters cause sequence-dependent 

setup times. All these conditions need to be considered while minimising total weighted tardiness. 

For solving the scheduling problem, a mixed-integer program and several tailor-made construction 

heuristics (enhanced by local search mechanisms) are presented. The experimental results show that 

problem instances with up to five machines and 60 jobs can be tackled using the optimisation model. 

The experiments on small and large problem instances (with up to 400 jobs) show that a purposefully 

used batch capacity limitation improves the solution quality remarkably. Applying the best heuristic 

to the data of two real-world application cases shows its huge potential to increase delivery reliability. 
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CONTRIBUTION C2 

 

Applying machine learning for the anticipation of complex nesting 

solutions in hierarchical production planning 

 
 

Christian Gahm*, Aykut Uzunoglu, Stefan Wahl, Chantal Ganschinietz and Axel Tuma 

Published in the European Journal of Operational Research, 2022, 296(3), 819–836. 

* Corresponding author 

 

Available via: https://doi.org/10.1016/j.ejor.2021.04.006 

 

Abstract: 

In hierarchical production planning, the consideration of interdependencies between superior top-

level decisions and subordinate base-level decisions is essential. In this respect, the anticipation of 

base-level reactions is highly recommended. In this paper, we consider an example from the metal-

processing industry: a serial-batch scheduling problem constitutes the top-level problem and a 

complex nesting problem constitutes the base-level problem. The top-level scheduling decision 

includes a batching decision, i.e., the determination of a set of small items to be cut out of a large 

slide. Thus, to evaluate the feasibility of a batch, the base-level nesting problem must be solved. 

Because solving nesting problems is time consuming even when applying heuristics, it is troublesome 

to solve it multiple times during solving the top-level scheduling problem. Instead, we propose an 

approximative anticipation of base-level reactions by machine learning to approximate batch 

feasibility. To that, we present a prediction framework to identify the most promising machine 

learning method for the prediction (regression) task. For applying these methods, we propose new 

feature vectors describing the characteristics of complex nesting problem instances. For training, 

validation, and testing, we present a new instance generation procedure that uses a set of 6,000 

convex, concave, and complex shapes to generate 88,200 nesting instances. The testing results show 

that an artificial neural network achieves the lowest expected loss (root mean squared error). 

Depending on further assumptions, we can report that the approximate anticipation based on machine 

learning predictions leads to an appropriate batch feasibility decision for 98.8% of the nesting 

instances. 
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CONTRIBUTION C3 

 

Learning-augmented heuristics for scheduling parallel serial-batch 

processing machines 

 
 

Aykut Uzunoglu, Christian Gahm, Stefan Wahl* and Axel Tuma 

Published in Computers & Operations Research, 2023, 151, 106122. 

* Corresponding author 

 

Available via: https://doi.org/10.1016/j.cor.2022.106122 

 

Abstract: 

The addressed machine scheduling problem considers parallel machines with incompatible job 

families, sequence-dependent setup times, limited batch capacities, and arbitrary sizes combined with 

the serial-batch processing characteristic (i.e., the processing time of a batch is equal to the sum of 

processing times of all jobs grouped in a batch). The primary objective is the minimization of the total 

weighted tardiness, and a subordinate (secondary) objective is the minimization of the flow time. This 

scheduling problem arises in many production environments like cutting operations (metal-processing 

industry or garment industry) or in industrial 3D printing. For solving this problem, we propose a new 

multi-start construction heuristic with controlled batch urgencies. Furthermore, to improve solution 

efficiency, we use machine learning methods that are appropriate for multi-target regression with 

dependent outputs (i.e., Neural networks) to minimize the number of starts by predicting the most 

suitable heuristic parameters. Hereby, different learning aspects and pipeline parameters must be 

considered. Additionally, we apply a mixed-integer linear program and a local search mechanism 

with advanced termination criteria for solution improvement. 

To evaluate the performance of the new heuristic, we use an exhaustive set of small, large, and very 

large instances (with symmetric Euclidean, asymmetric Euclidean, and arbitrary sequence-dependent 

setup times) and heuristics from the literature. The results indicate the superiority of the new, learning-

augmented heuristics in terms of solution quality and computation times. 
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CONTRIBUTION C4 

 

Serial-batch scheduling: a systematic review and future research 

directions 

 
 

Stefan Wahl, Christian Gahm* and Axel Tuma 

Submitted to the European Journal of Operational Research, 2023. 

* Corresponding author 

 

The manuscript printed here represents the submitted version of Contribution C4 

to the European Journal of Operational Research. 

 

Abstract: 

Cutting operations (e.g., laser cutting) and especially industrial 3D printing are two production 

processes that are becoming increasingly important in many manufacturing companies. The 

corresponding scheduling problems can be classified as serial-batch scheduling problem and 

hierarchical-batch scheduling problem. In serial-batch scheduling, the processing time of a batch is 

the sum of the processing times of the jobs grouped in a batch. In hierarchical-batch scheduling, which 

can be seen as a special form of serial-batch scheduling, the processing time of a batch results from 

sub-level decisions, such as solving a 3-dimensional nesting problem. Both scheduling problems are 

challenging because they involve considering the interdependencies between two major decisions: 

the grouping of jobs into batches and the scheduling of these batches. In addition, small variations in 

process characteristics can make one batch scheduling problem very different from another. 

In this paper, we present a systematic review of the current state of the literature on serial-batch and 

hierarchical-batch scheduling. Systematic means that a structured, traceable, and repeatable search 

process has been applied and that each relevant, high-quality scientific article has been classified 

using two classification schemes (taxonomies). The used classification schemes allow an objective 

comparison of the literature, empirical analyses, the traceable elaboration of research gaps, and 

facilitate the identification of relevant research for new batch scheduling problems (for academics 

and practitioners). The analysis of 118 classified articles on serial- and hierarchical-batch scheduling 

provides some interesting insights into the current state of research and draws attention to various 

aspects that should be considered to improve research articles. Based on the analysis, we highlight 

several topics that might be interesting to explore in the future. 
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Key results and added value 

A problem of high theoretical and practical relevance, which has not yet been considered in the 

literature, has been studied. The problem is specified and solved by a mixed-integer linear program, 

and several heuristic solution methods are developed. The main goal in the development of the 

solution methods was to achieve high solution efficiency, i.e., solution methods with competitive 

solution quality and low computation time. Regarding the solution quality, the heuristics employ 

different parameters that control the weighting of the processing time (𝜅1) and the setup time (𝜅2), as 

well as the batch utilization (𝛽) and the urgency of the jobs (𝛿), respectively. Using multi-starts with 

full-grid search to find suitable parameter configurations for 𝛽, 𝜅1, 𝜅2 and 𝛿, 𝜅1, 𝜅2 leads to very 

competitive results, but also to high computation times for large-scale problem instances. Therefore, 

in terms of computation time, we propose to use machine learning to predict promising parameter 

configurations, which significantly shortens the time-consuming enumerative search. In general, the 

experimental results show a broad superiority of the newly developed heuristics compared to 

heuristics from the literature. 

Solving the introduced PSBIJF actually requires solving a subordinate CNP several times. Since both 

problems are NP-hard, all presented solution methods use a simple approximation of the CNP. This 

approach is effective, but simple approximations are error-prone. To address this challenge, we 

propose to use machine learning to approximate the CNP. The experimental results show the great 

potential and suitability of the proposed ML-based anticipation approach and its superiority over 

simple approximations. 

The proposed optimization program and the heuristic solution methods are not only applicable to the 

described laser cutting use case, but also to many other cutting or packing problems, and even to 

industries such as additive manufacturing (3D printing). Similarly, the application of machine 

learning techniques as an approximate anticipation function is not only applicable to the described 

use case of production scheduling but also to other hierarchical decision environments. 

One of the challenges of batch scheduling problems is the interdependencies between the batching 

and the scheduling decisions. These interdependencies can vary and are strongly related to the specific 

problem context. To enable a comprehensive specification of batch scheduling problems and a 

detailed description of the research articles, two extensive classification schemes were developed, 

and 425 high-quality research articles were classified.  

Based on the classification schemes and the classified articles, the first literature review on serial-

batch scheduling problems is carried out. It includes 118 scientific articles, which are systematically 

analyzed. The analysis reveals several research gaps and points to many important and interesting 

future research directions. 



CONCLUSION 

19 

 

The classification schemes used allow an objective comparison of the literature, empirical analysis, 

the elaboration of research gaps, and facilitate the identification of relevant research for new batch 

scheduling problems in a very efficient way. The classification schemes, together with the classified 

articles, provide a comprehensive and freely accessible knowledge base for researchers and industrial 

decision-makers. 

 

Outlook and future research 

Even though the developed heuristic solution methods achieve a high solution efficiency, 

sophisticated improvement methods or metaheuristics such as Variable neighborhood search or 

Genetic algorithms should be developed. The use of metaheuristics would also facilitate the 

investigation of different objective functions. In particular, since the production processes under 

consideration require substantial amounts of resources, the efficient use of resources (e.g., material 

or energy) and the elimination of waste should be investigated. The different objectives could be 

investigated individually, or in a multi-criteria approach to optimize multiple objectives 

simultaneously. 

The laser cutting application case is very similar to the additive manufacturing application case. The 

results and findings from laser cutting should be applied to additive manufacturing. One of the first 

steps should be to synthesize and consolidate batch scheduling and additive manufacturing scheduling 

research to avoid reinventing scheduling methods and to unify terms and notations. 

A common problem with knowledge bases (and literature reviews in particular) is that they quickly 

become out of date. They need to be maintained and updated. For this reason, it would be very useful 

to establish a collaborative web-based knowledge base for batch scheduling problems. Authors would 

contribute their own classified articles (according to standardized classification schemes) and a 

review process could ensure the required scientific quality of the knowledge base. 
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Abstract: 

Cutting operations (e.g., laser cutting) and especially industrial 3D printing are two production 

processes that are becoming increasingly important in many manufacturing companies. The 

corresponding scheduling problems can be classified as serial-batch scheduling problem and 

hierarchical-batch scheduling problem. In serial-batch scheduling, the processing time of a batch is the 

sum of the processing times of the jobs grouped in a batch. In hierarchical-batch scheduling, which 

can be seen as a special form of serial-batch scheduling, the processing time of a batch results from 

sub-level decisions, such as solving a 3-dimensional nesting problem. Both scheduling problems are 

challenging because they involve considering the interdependencies between two major decisions: the 

grouping of jobs into batches and the scheduling of these batches. In addition, small variations in 

process characteristics can make one batch scheduling problem very different from another. 

In this paper, we present a systematic review of the current state of the literature on serial-batch 

and hierarchical-batch scheduling. Systematic means that a structured, traceable, and repeatable search 

process has been applied and that each relevant, high-quality scientific article has been classified using 

two classification schemes (taxonomies). The used classification schemes allow an objective 

comparison of the literature, empirical analyses, the traceable elaboration of research gaps, and 

facilitate the identification of relevant research for new batch scheduling problems (for academics and 

practitioners). The analysis of 118 classified articles on serial- and hierarchical-batch scheduling 

provides some interesting insights into the current state of research and draws attention to various 

aspects that should be considered to improve research articles. Based on the analysis, we highlight 

several topics that might be interesting to explore in the future. 
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1 Introduction 

Batch processing machines are widely used in many manufacturing industries, such as the 

semiconductor industry (e.g., burn-in operations), metalworking (e.g., laser cutting), or in industrial 

3D printing. In general, batch processing is an important technique for improving production 

efficiency by processing jobs in groups rather than individually. The decision to group jobs together is 

called “batching” and a resulting group of jobs is called a “batch”. The scheduling of batch processing 

machines (batch scheduling) involves two decisions: the batching decision (grouping jobs into 

batches) and the scheduling decision (assigning batches to machines – in the case of multiple 

machines – and sequencing the batches). Since the composition of the batches strongly influences the 

scheduling decision, the batching and scheduling decisions should be made considering their 

interdependencies. These interdependencies can vary and are strongly related to the respective 

problem context, i.e., the machine characteristics, the job and processing characteristics, and the 

scheduling objectives. In terms of processing characteristics, batching problems can typically be 

described by “batching type”, “job availability”, “batch capacity” and “job families”: 

i. batching type 

- parallel batching (pb): the processing of jobs is performed in parallel, and the processing time of a 

batch is equal to the longest processing time of the jobs in the batch. (e.g., parallel burn-in 

operations in the semiconductor industry, cf., e.g., Yang et al., 2022). 

- serial batching (sb): the processing of jobs is performed in series and the processing time of a batch 

is the sum of the processing times of the jobs in the batch (e.g., laser cutting in the metalworking 

industry; cf., e.g., Gahm et al., 2022b). 

- fixed batching (fb): the processing time of a batch is independent of the jobs in a batch, i.e., given 

by a “fixed” value (cf., e.g., Sung & Kim, 2003). 

- mixed batching (mb): the processing time of a batch is composed by a pb-component and a sb-

component (Wang et al., 2020). 

- hierarchical batching (hb): the batch processing time depends on the result of a sub-level decision 

(e.g., in the case of industrial 3D printing, the batch processing time depends on the nesting of the 

parts assigned to a batch; cf., e.g., Zehetner & Gansterer, 2022). Since the sub-level decision, and 

thus the resulting batch processing time, most often depends on job characteristics, hb can be seen 

as a special type of sb. However, we introduce this type of batching to highlight the particular 

hierarchical dependency between the top-level decision and the base-level decision (on such a 

hierarchical dependency see e.g., Gahm et al., 2022a). 

ii. job availability 

- batch availability (ba): a job is not available until its entire batch is completed. 

- item availability (ia): a job is available immediately after its processing is completed (cf., e.g., Shen 

& Buscher, 2012). 
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iii. batch capacity 

- unbounded batch capacity: any number of jobs can be grouped into a batch. 

- bounded batch capacity: the grouping of jobs can be restricted in different ways, e.g., by a limited 

number of jobs (cf., e.g., Li, 2017), where the batch capacity requirement of a job is equal to one 

(cr1),  or by a maximum total size per batch (cf., e.g., Muter, 2020), where job-dependent batch 

capacity requirements are given (crJ). In both cases, further characteristics such as family-related 

(bF) or machine-related (bM) upper bounds and batch lower bounds (bLb) can be given. 

iv. job families 

- compatible job families (cf): jobs belonging to different compatible job families may be processed 

in the same batch (cf., e.g., Bellanger & Oulamara, 2009). 

- incompatible job families (if): jobs belonging to different incompatible job families cannot be 

processed in the same batch (cf., e.g., Chakhlevitch et al., 2011). 

In addition to these main characteristics, there are several others, such as "release dates" or "setup 

times", which can make two batch scheduling problems very different. Overall, this leads to a wide 

variety of batch scheduling problems discussed in the literature. 

To analyze the current state of research, we use classification schemes. Classification schemes 

offer several advantages, especially in the area of scheduling (cf., e.g., Herroelen et al., 1999). They 

are particularly helpful in enabling an objective comparison of the literature, conducting empirical 

analyses, elaborating research gaps, and facilitating the identification of relevant research for new 

batch scheduling problems (for academics and practitioners). For this purpose, two classification 

schemes are used: The first classification scheme is an adapted and extended scheduling problem 

classification scheme (SPCS) to comprehensively specify batch scheduling problems. The second 

classification scheme is a completely new scheduling article classification scheme (SACS), developed 

to describe theoretical insights, solution methods, and other important aspects. The development of 

both classification schemes is based on existing classification schemes from the literature and on an 

iterative process of literature search, analysis, and synthesis. In this process, all types of batching (cf., 

i.) are considered, and 425 research articles have been analyzed in detail. In the analytical part of this 

paper (starting with section 5) we focus on sb- and hb-scheduling research. For pb-scheduling 

research, please see the recently published survey by Fowler & Mönch (2022). Since fb- and mb-

scheduling play a minor role in theory and practice, these are not part of our analysis. However, the 

entire data and analysis of all 425 classified articles is provided for download at Mendeley Data (along 

with detailed descriptions of the methodology and the classification schemes; see Wahl et al., 2023). 

In summary, our article makes the following contributions to literature: 

- We present two comprehensive classifications schemes for specifying batch scheduling problems 

and scheduling research articles. 

- We provide the first systematic review of sb- and hb-scheduling research. The analysis of 118 

scientific articles gives insights and elaborates several future research directions. 
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- The detailed documentation of the applied methodology provides the foundation for high-quality 

reviews as it ensures transparency and reproducibility. 

The remainder of this paper is organized as follows: In section 2, we document the methodology and 

scope of the review. Section 3 describes basics and the related literature on classification schemes and 

batch scheduling. Section 4 briefly introduces the proposed classification schemes. In section 5, we 

analyze the current state of sb- and hb-scheduling research and elaborate future research directions that 

are summarized in section 6. The paper closes with final remarks in section 7. 

2 Methodology and scope 

The methodology of the systematic literature review, the development of the classification schemes 

and the classification of the articles is illustrated in Figure 1. It is based on general guidelines for 

literature reviews and guidelines for the design of research frameworks described in Webster & 

Watson (2002), vom Brocke et al. (2009), and Gahm et al. (2016). The implementation of these 

guidelines is carried out in a six-step process, which is briefly explained in the following (the complete 

literature search process is described in full detail in Wahl et al., 2023). 

Figure 1: Methodology of the classification scheme development 

In the first step (I.), we define scope and purpose: The scope of our analysis is problems with 

integrated, active batching and scheduling decisions (e.g., the scheduling of given batches is not 

included in the scope; please note, that we do not restrict our literature search to sb- and hb-scheduling 

research, but also consider pb-, fb-, and mb-scheduling). The purpose is to provide a systematic review 

and analysis of the current state of research on sb- and hb-scheduling problems. 

In the deductive conceptualization step (II.), we examine a basic literature sample consisting of 

the reviews discussed in section 3. This literature sample also builds the groundwork for identifying 

most relevant journals and keywords, which are used to structure the subsequent literature search. 

For the literature search by journal and key words (III.), we only consider scientific articles that 

are published in the English language, have undergone a peer review process, and that can be found in 

renowned journals (with an SJR-index not less than 1.00 or an h-index not less than 75). The literature 

search resulted in 1,319 initial “hits” in 60 journals (last update: February 2023). 

SPCS SACS Classified articles

I. Definition of 

scope and 

purpose

II. Conceptuali-

zation

III. Literature 

search by journal 

and keywords

IV. Literature 

evaluation

VI. Scheme 

development

V. Problem 

classification and 

article analysis
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In the literature evaluation (IV.), we examine the search results for compatibility with the scope. 

For this purpose, we check title, keywords, abstract (and full text) and then decide whether an article 

matches the scope and will be analyzed further or whether it will be discarded. Altogether, a total of 

425 articles in 33 journals were identified as relevant and analyzed in detail. Due to the large number 

of relevant articles, we refrain from an explicit forward and backward search. 

Step five (V.) comprises the problem classification and article analysis. Here, we analyzed the 

relevant articles in detail and classified them according to both classification schemes. Whenever 

appropriate, we adjusted and adapted both schemes by adding or rearranging dimensions, categories, 

and attributes (VI.). The resulting versions of both schemes are then used to finally complete and 

update the classification of all relevant articles. 

These six steps lead to a comprehensive knowledge base consisting of the SPCS, the SACS, and 

the fully classified research articles. 

3 Basics and related literature 

Generally, scheduling problems belong to the class of combinatorial search problems. Hereby, a 

combinatorial search problem   is a set of pairs (I, S), where I represents a problem instance (i.e., a 

finite set of parameters with given values) and S a (feasible) solution for instance I (Błażewicz et al., 

2019). For calculating solutions (scheduling), exact algorithms, heuristics, metaheuristics, and other 

solution methods are applied to assign scarce resources (machines, processors, workers, etc.) to jobs 

(production orders, products, etc.). This may require interdependent decisions, as in the case of batch 

scheduling. Whenever more than one processing step is required to execute a job, several operations 

(tasks, processing steps) must be scheduled, and the term “station” is used to indicate the machines 

(resources) dedicated to a subset of operations (belonging to the different jobs). Furthermore, jobs, 

operations, and resources can be grouped in “families” if they have similar characteristics that are 

relevant for scheduling. 

Regarding the research area of batch scheduling, several reviews exist: Potts & van Wassenhove 

(1992) describe a general model to capture the notions of batching and lot-sizing. For this purpose, 

they adapt the 𝛼|𝛽|𝛾 classification scheme of a technical report published by Lawler et. al in 1989 to 

their general model and review articles on problems that integrate scheduling with batching or lot-

sizing, respectively. Their focus is on the specification of problems, and the analysis of problem and 

solution method complexity. Webster & Baker (1995) review the three basic models “family 

scheduling with item availability”, “family scheduling with batch availability”, and “batch processing” 

with a single machine. Their family scheduling models correspond to an unbounded serial-batch 

scheduling model with setup times. The batch processing model investigates constant batch processing 

times and parallel batching. The authors provide several insights concerning the objectives minimizing 

total weighted flowtime and minimizing maximum lateness (amongst others). To indicate different 

types of batching, Jordan (1996) introduces an entry in the 𝛽-field differentiating between “family 

scheduling”, “item availability-preemptive batching”, “item availability-nonpreemptive batching”, and 
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“batch availability”. Based on this differentiation, the author discusses solution methods for the single 

machine and parallel machine case. Potts & Kovalyov (2000) update the reviews of Potts & van 

Wassenhove (1992) and Webster & Baker (1995). They adapt the 𝛼|𝛽|𝛾 classification scheme of 

Graham et al. (1979) and detail the investigation of the family scheduling models and the batch 

processing model. For a selection of problems, they analyze their complexity and solution methods, 

and their efficiency and effectiveness. They also take up approximation algorithms and their worst-

case performance. Mathirajan & Sivakumar (2006) classify and analyze literature dealing with the 

scheduling of batch processing machines in semiconductor manufacturing. They introduce two 

schemes that are different from the three-field classification. The first scheme explicitly addresses 

problem characteristics from semiconductor manufacturing, whereby the second scheme is related to 

solution methods. In a meta-analysis, they match articles from the literature (published between 1986 

and October 2004) according to their proposed schemes and identify potential research areas. 

Allahverdi et al. (2008) provide an extensive survey on scheduling literature that explicitly considers 

setup times not already classified in Allahverdi et al. (1999) or Potts & Kovalyov (2000). They review 

static, dynamic, deterministic, and stochastic problems and categorize them according to shop 

environments, non-batching and batching considerations, and sequence-independent and sequence-

dependent setup times. Regarding setup times, they adapt the three-field notation of Graham et al. 

(1979). In their survey, the authors give concise summaries of the problem, the objective criteria, and 

the solution approach or result. Mönch et al. (2011) present a survey on scheduling semiconductor 

manufacturing operations. They focus on very specific process characteristics and introduce 

corresponding entries in their 𝛽-field. However, also batching related characteristics are depicted. Wu 

(2014) proposes a taxonomy of batch queuing models that differentiates between transfer and process 

batches, whereby the latter one is further separated into “parallel batch” and “serial batch” problems. 

Altogether, the author considers eight different problem settings and discusses queuing models and 

simulation results according to those settings. In a third survey on scheduling with setups, Allahverdi 

(2015) reviews about 500 papers including static, dynamic, deterministic, and stochastic settings. 

However, problems with batching decisions are explicitly excluded. To structure their literature 

review, Gahm et al. (2022b) extend and adapt the classification scheme of Potts & Kovalyov (2000) 

by several new, batching-related attributes in the 𝛽-field. This enables the authors to efficiently 

describe and compare the most relevant literature in the context of scheduling parallel serial-batch 

processing machines with incompatible job families, sequence-dependent setup times and arbitrary 

sizes. In a recent survey, Fowler & Mönch (2022) discuss literature on parallel batch processing with 

bounded batch capacities and a focus on offline deterministic scheduling approaches. Their survey 

considers the makespan and flow time- and due date-related performance measures but also multi-

criteria settings. For classifying a problem, a taxonomy based on the notations developed by Graham 

et al. (1979) and Pinedo (2016) is used and their literature analysis is structured according to the type 

of job families, machine environment, and performance measure. 
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As this summary of the literature review shows, there is no current and comprehensive analysis of 

sb- and hb-scheduling research. As a result, our review serves to fill this research gap. 

4 Applied classification schemes 

To analyze the current state of research in a specific area, literature reviews based on classifications 

schemes (taxonomies or research frameworks) are very helpful as they can serve different purposes 

(cf., e.g., Herroelen et al., 1999 and Ganschinietz, 2021): 

- A classification scheme greatly simplifies the presentation, discussion, and comparison of 

scheduling problems by immediately highlighting the basic problem characteristics in an objective 

manner (through well-defined terms and notations). 

- A classification scheme facilitates the identification of relevant research for new (batch) scheduling 

problems (for academics and practitioners). 

- A classification scheme allows for an easy and traceable elaboration of viable research topics by 

the identification of open problems. 

- A classification scheme comprises the most relevant aspects to be considered and helps to analyze 

and structure individual scheduling problems and research articles. 

Summarizing, the usage of up-to-date classification schemes is important and thus, we present an 

adapted and extended “Scheduling Problem Classification Scheme” (SPCS) to comprehensively 

specify (batch) scheduling problems. It provides several extensions and adaptations of existing 

classification schemes to reflect recent trends and developments in (batch) scheduling. Furthermore, 

we propose a more generic concept to simplify further extensions and adaptations. 

Besides the SPCS, we propose a second, completely new classification scheme to describe 

research articles in detail, the “Scheduling Article Classification Scheme” (SACS). 

4.1 Basic structures 

Both classification schemes are structured in a strong hierarchical tree structure using different 

elements: “fields” are used to separate different aspects (dimensions), “categories” are used to 

structure the fields, and “sub-categories” are introduced to flexibly structure categories whenever 

helpful. For instance, the field “C - Objective system” contains the category “C1 Objective criteria” 

that is further divided into the sub-categories “C1.1 Time-oriented” criteria, “C1.2 Resource-oriented” 

criteria, and “C1.3 Finance-oriented” criteria. For the classification of a scheduling problem (or a 

research article) itself, we provide “binary” attributes. Binary means that it should be possible to 

clearly decide if an attribute is “true” for a scheduling problem (or a research article) or if an attribute 

is “false”. Hereby, it is important that each attribute has a unique and meaningful name. 

For the SPCS, we additionally define unique abbreviations that allow scientists and practitioners 

to specify a (batch) scheduling problem by a single “classification string” (as it is possible with the 

existing classification schemes). 
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Unlike existing classification schemes, we do not use Greek letters, subscripts, superscripts, or 

any special characters in the attribute abbreviations to make them easier to type (especially for 

practitioners). Furthermore, we introduce the convention that abbreviations of attributes belonging to 

the same category should start with the same lowercase character (e.g., “p” for processing time or “s” 

for setups) whenever reasonable. In addition, we use specific capital letters to indicate specific 

relations (dependencies) of an attribute to a single object or a set of objects (e.g., jobs or machines): 

“J” indicates a relationship to jobs, “O” indicates a relationship to operations, “B” indicates a 

relationship to batches, “F” indicates a relationship to job families, “M” indicates a relationship to 

machines (or stations), “S” signals a dependence on the sequence, and “C” stands for a common 

property. These letters can also be combined to express multiple dependencies. By using these 

conventions, it is easy to understand that the attribute “pF” marks processing times that are family 

related or that “sMS” indicates machine- and sequence-dependent setup times. In consequence, new 

attributes can be easily defined, and their context (category and dependencies) can be derived from 

their reasonably defined abbreviation. 

4.2 Scheduling problem classification scheme (SPCS) 

The first three-field (𝛼|𝛽|𝛾) classification scheme to specify scheduling problems was proposed by 

Graham et al. in 1979. They use the 𝛼 -field to define the “machine environment”, the 𝛽-field to define 

the “job characteristics”, and the 𝛾-field to define the “optimality criteria”. Blazewicz et al. (1983) 

extend this classification scheme by allowing the jobs to demand for additional scarce resources. 

Lawler et al. (1993) take up the idea of the three fields: While 𝛼 and 𝛾 remain largely the same (this 

generally applies for most notations), some changes take place around the characteristics of the 𝛽-

field. The three-field classification approach also found its way into standard text books like the ones 

of Brucker (2007), Pinedo (2016), and Błażewicz et al. (2019) and many extensions and adaptations 

for different research areas have been made: e.g., for project scheduling (cf., e.g., Brucker et al., 1999 

or Herroelen et al., 1999) or scheduling semiconductor manufacturing operations (cf., Mönch et al., 

2011). Because most readers are familiar with the general classification schemes cited above, we omit 

their detailed description here. 

Based on the analysis of previously published reviews and classification schemes in (batch) 

scheduling, we follow the traditional and established approach and propose three fields to classify 

(batch) scheduling problems. However, we break with the tradition of using 𝛼, 𝛽, and 𝛾, but use A, B, 

and C to represent the three fields “A - Machine characteristics”, “B - Job and processing 

characteristics”, and “C - Objective system”. This change is made for two reasons: First, we generally 

omit Greek letters in both classification schemes to make the typing easier. Second, the SACS 

includes the fields D to H and thus, a consistent naming is achieved. 

To keep this paper to a manageable size, we omit a detailed description of the SPCS here and 

refer the reader to the full description in Wahl et al. (2023). However, we list the fields, categories, 

sub-categories, and attributes in the following sections. Note that most categories have a default 
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attribute (abbreviated as “–”), indicating either that the problem does not have a special characteristic 

in this category, or that the category is not relevant at all. In both cases, the abbreviation is not part of 

the classification string. 

4.2.1 A - Machine characteristics 

The field A - Machine characteristics is not only used to specify the basic machine environment and 

the number of machines but also to inform about their availability. Therefore, we use three categories 

for the classification: 

‐ A1 Machine environment  {S, P, Q, R, F, HF, PF, J, HJ, O} 

‐ A2 Number of machines  {–, m=2, m=3} 

‐ A3 Machine availability  {–, avSt, avDyn, avFlx, avPer, avStoc, avState} 

The newly introduced category A3 provides attributes for machine availability characteristics: e.g., 

dynamic unavailability (avDyn; e.g., due to shift calendars), flexible unavailability (avFlx; e.g., 

maintenance activities to be scheduled). Also, machine state characteristics (avState; e.g., idle or 

processing) can be characterized here. 

4.2.2 B - Job and processing characteristics 

The B-field specifies job (operation) and processing characteristics. The categories B1 to B6 provide 

job attributes and the categories B7 to B14 provide processing attributes. 

‐ B1 Processing times and intensities {–, pF, pC, p1, pJM, pCM, pDet, pLe, pCo, …} 

‐ B2 Release dates   {–, rJ, …} 

‐ B3 Due dates and deadlines  {–, dJ, dC, da, daC, dlJ, dlC, …} 

Note that da and daC are used to classify due date assignment problems. 

‐ B4 Precedence relations  {–, chain, in-tree, out-tree, net, alt, re} 

Note that alt and re are used to classify alternative and re-entrant routings, respectively. 

‐ B5 Job families   {–, if, if2, cf, …} 

‐ B6 Batch capacity requirement  {–, crO, crJ, crF, crC, cr1} 

‐ B7 Setup and removal   {–, s, sF, sM, sS, sFM, sFS, sFMS, sDet, sCo, …} 

‐ B8 Timing constraints   {–, minL, maxL, now, ...} 

Note that minL (maxL) are used to classify minimum (maximum) time lags and now for no-wait. 

‐ B9 Execution characteristics  {–, blk, buf, cb, dcr, elig, mode, res, …} 

The execution characteristics contain specials like blocking (blk), the requirement of consistent 

batches (cb) on all stages of a flow shop, or machine eligibility constraints (elig). 

‐ B10 Batching type    {–, pb, sb, fb, mb, hb} 

‐ B11 Job availability    {–, ia} 

Note that batch availability (ba) is considered the default case here and is therefore omitted. 

‐ B12 Batch capacity    {–, bF, bM, bFM, bLb} 

‐ B13 Transportation    {–, tInb, tInt, tOub} 
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‐ B14 Information type   {–, fuzzP, on, on-sc, …} 

The information type contains characteristics like fuzzy processing times (fuzzP) or on-line 

scheduling (on). 

4.2.3 C - Objective system 

Since the consideration of multiple objective criteria has received increasing attention in recent years, 

we propose to specify not only the objective criterion, such as makespan or weighted tardiness, but 

also the model that is used in the case of multiple criteria. In the “C1 Objective criteria” category, we 

use three sub-categories to simplify the identification of attributes, i.e., the specific objective criteria: 

“C1.1 Time-oriented” (e.g., wT for the total weighted tardiness), “C1.2 Resource-oriented” (e.g., 

Cmax for the makespan), “C1.3 Finance-oriented” (e.g., cRc for resource consumption costs), and 

“C1.4 Other” (e.g., FY for a feasibility problem). In the “C2 Multi-criteria model” category, the way in 

which the objective system handles multiple criteria can be specified (e.g., ParA indicates Pareto 

optimization with two agents, cf., Feng et al., 2013). 

4.3 Scheduling article classification scheme (SACS) 

Besides the detailed specification of batch scheduling problems by the SPCS, further aspects are 

important for structuring and analyzing scheduling research. For this purpose, we propose the SACS, 

which consists of five fields: “D - Theoretical insights”, “E - Model type”, “F - Solution method”, “G - 

Experimental evaluation”, and “H - Application case”. These fields are used because they represent 

the most important aspects for researchers (e.g., to identify the complexity of a problem, which is 

classified in field D) and industry decision-makers (e.g., to identify whether a suitable solution method 

exists for solving problem instances of a certain size, which is specified by fields F and G) to assess 

the relevance of an article. 

4.3.1 D - Theoretical insights 

Field D provides several categories and attributes to describe different findings common to (batch) 

scheduling problems. For example, the complexity of a problem (NP or sNP), dominance properties, 

lower bounds, or the definition of a worst-case performance or competitive ratio. 

4.3.2 E - Model type 

Besides the basic model type (e.g., mixed-integer linear program MILP, mixed-integer non-linear 

program MINLP, or queuing model QM), also the type of the main decision variables can be classified 

in this field: sequence-based, position-based, time-indexed, time point-based or network (graph) 

model. 

4.3.3 F - Solution method 

The F-field is structured by ten categories: F1 Standard solver, F2 Exact solution method, F3 

Heuristic, F4 Metaheuristic, F5 Matheuristic, F6 Simulation, F7 Robust scheduling method, F8 

Learning-augmented scheduling method, F9 Parameter tuning, and F10 Advanced computing. 
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4.3.4 G - Experimental evaluation 

The experimental investigation and evaluation of specific problem characteristics, optimization 

programs, solution methods, instance parameters, etc. is an essential part of most research articles 

dealing with (batch) scheduling problems. Three categories are used to analyze and structure this 

aspect: G1 Evaluation scope (Solution method(s), Objective system, Lower/upper bounds, 

Optimization models), G2 Performance assessment, and G3 Instance data. 

4.3.5 H - Application case 

Many research articles discuss (batch) scheduling problems that are related to specific application 

cases. To enable a consistent specification of application cases, “The International Standard 

Classification of All Economic Activities” (ISIC; cf., United Nations, Department of Economic and 

Social Affairs, 2008) is used. In addition to the division related attributes of Section C - 

Manufacturing, we add the attributes Additive manufacturing (3D printing) and Cloud manufacturing 

and collaborative production as these applications are not included in the most recently published 

ISIC version. 

5 Current state of sb- and hb-scheduling research 

In this part of the literature review, we analyze the current state of research based on both 

classification schemes. The analysis is based on the 118 sb- and hb-scheduling related articles listed in 

Table 1 through Table 5 in Appendix A. These tables report the complete problem specification 

according to the SPCS and some major SACS-attributes (the complete classifications of all 118 sb- 

and hb-articles are provided by spreadsheets in the supplementary material). 

Since research gaps build the basis for identifying further research directions, we focus not only 

on problems and characteristics that have already been investigated, but also on those that have not yet 

been considered. In the following, we focus on what we consider to be the most interesting topics. For 

further and individual analysis, the data made available for download can be used. 

5.1 Analysis of problem characteristics 

The temporal development of sb- and hb-scheduling research, illustrated in Figure 2, shows that the 

number of articles published has remained almost constant over the last years (the values in brackets 

indicate the total number). 
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All three hb-scheduling related articles are dedicated to the use case of Additive manufacturing 

(AM). This research stream has only recently started, but due to the increasing importance of AM, this 

research area will be of great importance in the future (see R1 in section 6 Further research directions). 

5.1.1 Machine environment (A1) and Machine availability (A3) 

Machine environment and related machine availability characteristics are presented in Figure 3. Most 

approaches consider single machine environments (S) and parallel identical machines (P), flow shops 

(F), and hybrid flow shops (HF) are also very often considered. However, research on job shop (J) or 

hybrid job shop (HJ) machine environments is relatively sparse and offers potential for further 

research (R6). 

Most authors addressing a multi-stage machine environment (F, HF, PF, J, HJ, O) consider 

batch-processing machines at more than one stage: F2 – Glass et al. (2001), Lin & Cheng (2001), 

Kovalyov et al. (2004), F – Ng & Kovalyov (2007), Shen & Gupta (2018), Quadt & Kuhn (2007), 

HF2 – Yu et al. (2017), HF – Voß & Witt (2007), Shahvari & Logendran (2016), PF – Hakim Halim 

& Ohta (1993), Mosheiov & Oron (2005), J2 – Mosheiov & Oron (2011), J – Shen & Buscher (2012), 

HJ – Castillo & Gazmuri (2015), O2 – Gribkovskaia et al. (2006), and O – Mosheiov & Oron (2008b), 

Lin & Cheng (2011). The special case of combining different batching types per stage is considered by 

Figure 2: Temporal development of the number of articles published (per year) 

Figure 3: Machine environment (A1) and Machine availability (A3) 
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Oulamara (2007), Muthuswamy et al. (2012), and Zhou et al. (2016), who all consider two-machine 

flow-shops (F2) with one pb-stage and one sb-stage. 

Regarding the machine availability characteristics, Figure 3 shows that almost all authors 

consider a continuous machine availability from the beginning of the planning horizon. Machine 

availabilities related to given start times (avSt) or dynamic unavailability (avDyn; e.g., due to break 

calendars) are rarely considered. The scheduling of maintenance activities, represented by flexible 

unavailability (avFlx) and periodic repetitive unavailability (avPer), may become more important in 

the future as “predictive maintenance” is an emerging topic (R7). Overall, only Pei et al. (2016) 

consider stochastic machine unavailability (avStoc; caused by machine breakdowns). An aspect not 

yet been considered, but particularly important for energy-efficient scheduling (cf., Gahm et al., 2016), 

is machine state characteristics (avState; e.g., idle or processing). In general, too little attention is paid 

to the topic of energy-related scheduling. Therefore, it is an important research topic for the future 

(R2). 

5.1.2 Job availability (B11) and Setup and removal (B7) 

The job availability (B11) characteristics, which include batch availability (ba) and item availability 

(ia), are shown in Figure 4. As setups are related to this aspect, the setup types considered are also 

shown. Note that since some attributes are non-exclusive (sDet - setup times with deterioration effect; 

sCo - setup times are controllable or “compressible”; sAnt - anticipatory setups), the total amount per 

row is not equal to the amount per job availability type. 

The strong relationship between batch scheduling and setups can be clearly seen in Figure 4 (only 

four articles do not consider setups at all), and the variety of considered setup types indicates their 

importance for sb- and hb-scheduling. It also shows that item availability is always related to setups 

(otherwise no batching decisions are necessary). Currently, neither batch-related setups (sB; e.g., 

related to the batch size), past sequence-dependent setups (sPastS), setups with learning effects (sLe), 

nor removal times (rt) are investigated. 

Figure 4: Job availability (B11) and Setup and removal (B7) 
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5.1.3 Batch capacity (B12) and Batch capacity requirement (B6) 

Regarding batch capacity, we can report that most articles consider problems with unbounded batches 

(80). Regarding bounded batches, most of the 42 articles consider maximum capacity bounds (38), but 

only Castillo & Gazmuri (2015) consider a job family-related bound (bF) and Muthuswamy et al. 

(2012) consider a machine-related bound (bM). Bounds related to job families and to machines (bFM) 

are not considered at all and seven articles account for a lower bound on the batch capacity (bLb). 

As far as bounds on the batch capacity are concerned, we observe that the consideration of the 

number of jobs in a batch (with a batch capacity requirement of one; cr1) and individual batch 

capacity requirements per job (crJ) has increased since 2010 (about 76% of these 42 articles have been 

published since then; cf., Figure 5). This suggests that bounded batch capacity is of increasing interest. 

5.1.4 Job families (B5) 

Job families, both compatible (cf) and incompatible (if), play an important role in batch scheduling: of 

the 118 articles analyzed, 42% (49) consider job families, of which 39% (46) consider incompatible 

job families and 3% (3) consider compatible job families. Regarding the articles that consider exactly 

two incompatible job families (if2), we observe that they are mostly (6 out of 7) related to problems 

with two “competing agents” (e.g., representing two types of customers; see, e.g., Mor & Mosheiov, 

2011). 

In general, job families are a very flexible concept that can be used to represent not only customer 

groups, but also, for example, part types (Cheng et al., 2004), material types (Uzunoglu et al., 2023), 

or recipes (Castillo & Gazmuri, 2015). 

5.1.5 Job and processing characteristics (B) 

The large variety of job and processing characteristics examined is best illustrated by Figure 6: leaving 

aside sb and hb, 53 different job and processing characteristics from field B are considered by at least 

one article. Furthermore, only four pairs of articles deal with the same scheduling problem (according 

to their SPCS-classification). We can therefore conclude that the research field of sb- and hb-

scheduling is very heterogenous. 

Figure 5: Bounded batch capacities (B12) and Batch capacity requirement (B6) 
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However, we can also see that some job characteristics are rarely considered, e.g., minimum time 

lags (minL) or blocking (blk), and others are not considered at all, e.g., maximum time lags (maxL) or 

work contents (also called “work packages” or “variable intensity operations”). The latter aspect in 

particular may be of interest in the future (R9). A hardly considered topic is the assembly production 

environment represented by the in-tree attribute. This is somewhat surprising as sb-processing 

machines are often used to produce parts that need to be assembled into components or final products 

in subsequent production stages. So far, only Kovalyov et al. (2004), Lin et al. (2007), Hwang & Lin 

(2012), and Liao et al. (2015) have considered assembly processes (all in two-stage flow-shop 

production systems). Therefore, we conclude that this is another interesting research topic (R5). 

Another topic that is hardly considered is transportation. Only four articles consider outbound 

transports (tOub; e.g., transport from the production to the customer, Pei et al., 2015). Inbound 

transports (e.g., transports from the warehouse to the shop floor) and intermediate transports (e.g., 

between machines) are not considered. Consequently, the integrated consideration of scheduling and 

transport planning is another topic for future research (R11). 

A further observation is that almost all articles assume a deterministic environment (116): only 

one article considers on-line scheduling (on; clairvoyant, i.e., all the parameters of a job are revealed at 

the stochastic arrival of a job; Giglio, 2015); one article considers semi-clairvoyant on-line scheduling 

(on-sc; i.e., only some parameters or approximate knowledge are known at the stochastic arrival of a 

job; Wu, 2014), and fuzzy parameters or stochastic parameters are not considered at all. This 

observation, and the fact that only one article considers a stochastic machine availability (cf., Figure 

3), leads to the conclusion that the consideration of uncertainty is also an important future research 

direction (R4). 

Figure 6: Considered problem characteristics (number of articles) 
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5.1.6 Objective system (C) 

The diversity of sb- and hb-problems is underlined by the large number of objective criteria 

considered (32). The tree map diagram in Figure 7 illustrates the objective criteria used, grouped by 

the categories Time-oriented, Resource-oriented, Finance-oriented, and Other. 

Figure 7 shows that the makespan objective (Cmax) dominates all others (45). In the group of 

time-oriented criteria, the completion time related criteria (such as total completion time - C, total 

weighted completion time - wC, total flow time - F, and total weighted flow time - wF) and the due 

date related criteria (such as maximum lateness - Lmax, total weighted tardiness - wT, and number of 

tardy jobs - U) are considered with about the same frequency (50 and 58, respectively). 

The importance of on-time delivery is reflected in the steady increase in the number of articles 

with objective criteria related to due dates (cf., Figure 8) and the interest in such criteria is likely to 

continue to grow. 

Figure 7: Used Objective criteria (C1) 

Figure 8: Temporal development of the used objective criteria 
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It should be noted that the maximum lateness criterion is the only criterion used that directly 

measures both earliness and tardiness, thus reflecting the just-in-time principle. Criteria such as 

quadratic lateness are not considered at all and only Hazır & Kedad-Sidhoum (2014) and Yin et al. 

(2021) consider earliness and tardiness in a weighted sum multi-criteria approach. Thus, the 

optimization of just-in-time related criteria might be a topic for further research (R8). 

The analysis of the objective criteria also reveals that no article addresses energy-related 

objectives. This aspect clearly indicates a future research topic (R2), especially since many sb- and hb-

scheduling problems are related to energy-intensive production processes (e.g., heat-treatment or 

industrial 3D printing). 

Regarding multi-criteria decision making, we can report that 15 articles examine multiple criteria 

independently from each other. In contrast, 29 articles use a multi-criteria model, most commonly 

weighted sum (17), Pareto optimization (7), and single optimization criterion combined with 

satisficing constraints (9). Also, two articles consider a lexicographical ordering of objectives. Note 

that some articles consider more than one multi-criteria model. 

Analyzing the objective criteria used by the multi-criteria models, we can report that 25 different 

criteria from all three categories are used. However, the application of multi-criteria models seems to 

be a valuable research topic for the future, especially when social, environmental, and economic 

criteria are combined to form a sustainable objective system (R3). 

5.2 Analysis of article characteristics 

In this section, we present various analyses with respect to the article classification scheme SACS to 

gain insights into theoretical findings, applied model types and solution methods, experimental 

evaluation, and considered application cases. We focus not only on the current-state and further 

research topics, but also derive some points to improve research articles. 

5.2.1 Theoretical insights (D) and Model type (E) 

In total, 107 articles explicitly provide theoretical insights by reporting the complexity of their 

problems (33 claim NP hardness and 19 sNP hardness), dominance properties (79), lower bounds (21), 

upper bounds (3), and worst-case performances (9). 

Regarding model types, we observe that 32 optimization programs (6 LP, 24 MILP, and 2 

MINLP) have been developed. 10 of them use sequence-based variables (e.g., to indicate that one 

batch is being processed before another; Shen et al., 2013), 22 use position-based assignment variables 

(e.g., to assign jobs to batches having a fixed position on a machine; Gahm et al., 2022b), and 17 use 

timepoint-based variables (e.g., to Guo et al., 2020). Only Voß & Witt (2007) use a time-indexed 

formulation with binary variables. Note that many of the proposed models use more than one type of 

decision variables and the type was characterized by the “main” decision variables (if possible). To 

date, there is no article that compares different optimization models for the same sb- or hb-problem or 

the performance of different solver engines. This seems to merit further research (R12). 
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5.2.2 Solution methods (F) 

As far as the use of standard solvers is concerned, we would like to point out that not all developed 

optimization models are used, e.g., to compute reference solutions, and that in some articles the 

termination criteria (e.g., MIP-gap or maximum runtime) are not correctly or not completely specified. 

The wide range of maximum runtimes (from 30 minutes to more than 720 minutes) indicates that this 

parameter seems to be very problem specific. 

In Figure 9, the applied solution methods are depicted according to the main categories Exact 

solution method (ExSM; comprising DP - Dynamic programming, ExAlg - Exact algorithm, and EnB - 

Enumeration-based methods such as Branch-and-bound), Heuristic (Heu; comprising AS - 

Approximation schemes, CH - Construction heuristics, LS - Local search, and oHeu* - Other 

heuristics), Metaheuristic (Meta, comprising MetaS - Single-solution metaheuristic, MetaP - 

Population-based metaheuristic, and MetaHyb - Hybrid metaheuristic), and Other (comprising MatH - 

Matheuristic, Sim - Simulation, RoSM - Robust scheduling method, and LaSM - Learning-augmented 

method). 

As can be seen in Figure 9, a wide variety of solution methods have been developed for sb- and 

hb-scheduling. Enumeration-based methods (EnB) such as Branch-and-bound or Branch-and-price are 

seldom used (R13). As there is only one problem with stochastic parameters investigated, there is also 

only one RoSM applied: Completely reactive scheduling (cf., Pei et al., 2016). This clearly indicates 

the need for further research on non-deterministic scheduling problems (R4). Furthermore, although 

some authors consider multi-criteria problems (cf., section 5.1.6), so far none use multi-criteria 

metaheuristics such as NSGA-II (Deb et al., 2002) or SPEA2 (Zitzler et al., 2001), which are 

commonly used to compute Pareto solutions for comparisons (R14). Multi-criteria models and 

metaheuristics should be given more attention, especially for hb-scheduling, where aspects such as 

Figure 9: Applied Solution methods (F) (number of articles) 
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resource consumption (base metal sheets in the case of laser cutting or polymers in the case of additive 

manufacturing) and energy consumption are important (R3). 

The emerging topic of learning-augmented scheduling methods (i.e., a method/model from the 

field of machine learning is used to improve scheduling methods) is rarely addressed by the current 

literature. Only two articles have been published on this topic: Shahvari et al. (2022) use Random 

forest classification to estimate lower bounds on the number of jobs in a batch to reduce the solution 

space; Uzunoglu et al. (2023) use Artificial neural networks to estimate a set of most preferred 

parameters for a multi-start construction heuristic to reduce the computational effort. Both articles 

demonstrate the potential of integrating machine learning with scheduling, so this integration is worth 

exploring further in the future (R15). 

The performance of many heuristics, metaheuristics and other solution methods depends strongly 

on appropriate parameters, and thus their determination (tuning) is important. However, many authors 

only report the parameters they use without giving any reasons. When using solution methods from the 

literature for comparisons, even given parameter values from the literature are used without any 

problem specific adjustment. As also stated by Neufeld et al. (2022), this “simple” application of 

benchmark methods to show the superiority of newly proposed solution methods is not appropriate, as 

it is not clear whether the superiority is only due to the tuned parameters. Furthermore, we observe 

that most (73%) of the parameters used are independent of the characteristics of a specific problem 

instance (e.g., the number of jobs), and that only six articles use online tuning, where the parameters 

are tuned while solving a problem instance. Overall, these observations show that more attention 

should be paid to the topic of parameter tuning in sb- and hb-scheduling research (R16). 

In terms of advanced computing capabilities such as parallel or distributed computing, we found 

that only Uzunoglu et al. (2023) explore and exploit the capabilities of a parallel implementation 

(shared-memory multiprocessor computing). The authors report remarkable speedups and efficiency 

gains. As the benefits of parallel processing for optimization algorithms are also emphasized in the 

review by Schryen (2020), we conclude that this topic is also of further interest for sb- and hb-

scheduling (R17). 

5.2.3 Experimental evaluation (G) 

59 of the 118 analyzed articles include an experimental evaluation. The scope of most of them (58) is 

dedicated to the investigation of solution methods. Only two articles (also) investigate different 

optimization programs: Shahvari & Logendran (2017) compare a complete model with the 

performance of a restricted model and Yin et al. (2016) analyze several models with different 

objective criteria. Lower/upper bounds or objective functions are not studied at all (note that here, 

investigating objective functions means analyzing the impact of different operational criteria on 

business goals). Regarding the performance assessment, we observe a wide variety of performance 

indicators and aggregation functions. Unfortunately, the descriptions of the indicators, the reference 

values used, the problem instances solved, and the aggregation functions are not clearly and 
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comprehensively described in all the articles examined. Another aspect related to writing articles is 

that the number of experiment repetitions is not always clearly stated when stochastic solution 

methods are used. 

Another point for improvement would be the application of (the same) statistical methods to 

analyze the performance of solution methods. Currently only three articles use Wilcoxon signed-rank 

test (e.g., Zhang et al., 2020 or Toksarı & Toğa, 2 22), two articles use Paired t-test (Suppiah & Omar, 

2014 and Gahm et al., 2022b), one article uses multivariate test (Shin et al., 2020), and one article uses 

Confidence intervals (Zehetner & Gansterer, 2022). We conclude that it would be very welcome to see 

a greater use of statistical methods as well as the use of the same (standardized) methods. 

The analysis of problem instance sources shows that 92% (54) of the articles use self-generated 

instances, whereas only three use real-world instances and four use instances from the literature. These 

values indicate a high non-uniformity of the problem instances. Although many of the investigated sb- 

and hb-problems are very different und thus the individual generation of problem instances is 

reasonable, the development of benchmark instances (or at least the basic data for specific problem 

classes) would be very helpful to improve the performance assessment of new solution methods (R18). 

Another way for improvement would be to provide problem instances for download, as these instances 

could then be used for appropriate comparisons. Currently, only three articles use a data repository to 

provide their instances for permanent download (Gahm et al., 2022b, Zehetner & Gansterer, 2022, and 

Uzunoglu et al., 2023). 

The number of articles using a certain number of instances is shown in Figure 10. As can be seen, 

many authors examine only a small number of instances, making it difficult to derive statistically valid 

statements about the performance of solution methods. 

Figure 10: Number of solved instances 
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The diversity of problem instances investigated is illustrated by the frequency of use (in terms of 

number of jobs and machines/stations) shown in Figure 11. Note that for problems with more than one 

production stage (F, HF, PF, J, HJ, or O) the number of jobs is depicted and not the number of 

operations. 

As can be seen in Figure 11, the combination of the two main characteristics, number of jobs and 

number of machines (stations), varies widely and the future development of benchmark problem 

instances should take this into account. For sb- and hb-scheduling, particularly instances with a very 

large number of jobs and/or machines (stations) can be very interesting to evaluate solution methods 

with respect to real-world applications. For further details on main instance characteristics that should 

be considered during instance generation, see Table 6 in Appendix B. 

During the analysis of the used instances, we observe that many descriptions of instance 

generation procedures or the instance declarations are unclear or incomplete (cf., “unknown” classes 

in Figure 10 and Table 6). To improve the transparency and the reproducibility of experimental 

evaluations, authors should pay more attention to a complete documentation of their experimental 

studies. 

5.2.4 Application case (H) 

57 articles directly refer to one or more real-world application cases. Figure 12 shows the number of 

application cases related to ISIC-divisions (cf., 4.3.5) and decade. Almost all of theme refer to 

manufacturing, only Mor & Mosheiov (2014b) address a problem from Telecommunication (i.e., a 

problem to satisfy the service requirements of a content provider that uses a commercial satellite to 

transfer voice, image and text files). 

Figure 11: Number of articles in relation to the number of jobs and machines/stations (S representing 

single machine problems) 
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Very interesting for further research are the application areas of Cloud manufacturing and 

Additive manufacturing, for which an increasing interest can be assumed. Zehetner & Gansterer 

(2022) are the only ones who explicitly consider Cloud manufacturing and sb- or hb-scheduling, so 

this seems to be a promising topic (R10). 

Of the articles dealing with Additive manufacturing (AM), Gahm et al. (2022b) and Uzunoglu et 

al. (2023) formulate a sb-problem with considering the subordinate nesting problem by a single one-

dimensional batch capacity constraint (with crJ). Zhang et al. (2020) formulate an hb-problem with 

three constraints to respect the length, width, and height of the Stereo Lithography Appearance printer. 

The processing time depends, among other things, on the scanning time per part and the recoating time 

for multiple parts, which depends on the number of layers determined by the maximum height of all 

parts assigned to a batch. Toksarı & Toğa (2022) also formulate an hb-problem. The authors use a 

one-dimensional batch capacity constraint that guarantees that the total area of parts assigned to a 

batch cannot be greater than the production area of the AM machine. The batch processing time 

depends on the maximum height and the total volume of all parts assigned to a batch. Zehetner 

& Gansterer (2022) investigate an hb-problem for a powder bed laser machine. The authors use 

several constraints to guarantee that all the rectangular cubic parts are positioned in the geometric 

boundaries of the print chamber and to prevent part overlapping. What all these articles have in 

common is that they simplify, to a greater or lesser extent, the characteristics of the subordinate 

nesting problem. Whether the applied anticipations are appropriate to reflect the subordinate nesting 

problem or whether more advanced methods should be applied is a topic for further research (R1). 

The above list of AM scheduling approaches is by no means complete, but they are the only ones 

that directly link AM and batch scheduling. This leads to the future research topic of synthesizing and 

consolidating batch scheduling and AM scheduling research (R1). 

6 Further research directions 

The preceding analysis of the current state of the literature on sb- and hb-scheduling has led to several 

starting points for future research. The following list of research topics summarizes the potential 

Figure 12: Number of application cases by ISIC-divisions 
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directions and the references listed here either come to similar conclusions in other scheduling 

contexts or provide further detail on the topic. 

6.1 Topics related to (new) problem settings 

R1 In many application cases and particularly in AM, sb- and hb- scheduling problems are strongly 

coupled with subordinate nesting problems (as also highlighted by Neufeld et al., 2022). Their 

integration by anticipation (in a hierarchical production planning system) generally depends on 

simplifying estimations and it needs to be investigated whether these are appropriate or whether 

more advanced methods should be used. A first step in this direction is made by Gahm et al. 

(2022a), who use Artificial neural networks to anticipate complex nesting solutions. A further 

topic to be investigated is the synthesis and consolidation of batch scheduling research and AM 

scheduling research to avoid the reinvention of scheduling methods (Fowler & Mönch, 2022) 

and to unify terms and notations. 

R2 Energy-oriented (or even sustainability-oriented) aspects are not considered in sb- and hb- 

scheduling. Despite the fact that many of the production processes considered require 

substantial amounts of energy, none of the aspects discussed in the energy-oriented scheduling 

reviews by Biel & Glock (2016) and Gahm et al. (2016) have been considered so far. Fowler 

& Mönch (2022) and Neufeld et al. (2022) also conclude that energy considerations will 

become more important in the future. 

R3 In general, more attention should be paid to multi-criteria problems. Not only energy-

awareness, but also general limitations in the availability of resources make the efficient use of 

(material) resources (e.g., base metal sheets in the case of laser cutting or polymers in the case 

of AM) and the elimination of waste more important in the future. Therefore, appropriate 

objective criteria should be developed and integrated into multi-criteria models to find the most 

suitable tradeoffs. 

R4 Also, more attention needs be paid to information uncertainty and dynamics. Only two articles 

address on-line scheduling problems and only Pei et al. (2016) consider stochastic machine 

breakdowns and use a reactive scheduling approach to deal with them. The low consideration of 

uncertainty is also highlighted by Fowler & Mönch (2022) and Neufeld et al. (2022). 

R5 A rarely considered topic is assembly production environments, where parts are produced in a 

first production stage (e.g., by a laser cutting machine) and then assembled into components or 

final products in subsequent production stages (for more details on assembly production 

environments, cf., e.g., Komaki et al., 2019). 

R6 The study of job shop (J) and hybrid job shop (HJ) machine environments, particularly in the 

context of assembly processes, is a promising research topic, as those are the prevailing 

production environments in special part manufacturing and only three articles have addressed 

such environments so far (cf., Mosheiov & Oron, 2011, Shen & Buscher, 2012, and Castillo 

& Gazmuri, 2015). 
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R7 Since new machine learning methods provide the information needed to schedule “predictive 

maintenance” operations, the scheduling of maintenance activities will become more important 

in the future. 

R8 Just-in-time related criteria and objective systems are rarely considered. Their study should be 

intensified in the future, as production processes getting more dispersed, and their efficient 

timely coordination becomes more important. 

R9 Not only, but also in the context of energy-oriented scheduling, the potential of variable-

intensity operations (work contents) should be investigated (for more details on this topic, cf., 

e.g., Fündeling & Trautmann, 2010). 

R10 Cloud manufacturing (CM) is an emerging manufacturing paradigm with the goal to deliver on-

demand manufacturing services to customers (Liu et al., 2019). As scheduling is of critical 

means in this context and only Zehetner & Gansterer (2022) have addressed CM so far, it is a 

promising future research topic. 

R11 The combined consideration of scheduling and transportation (distribution) planning is 

somehow related to CM. Whenever production stages are located in different geographical 

locations or when customer delivery depends on production location decisions, transport and 

production should be planned together. Inbound, outbound, and intermediate transportation 

should be investigated. Also Fowler & Mönch (2022) and Neufeld et al. (2022) highlight this 

aspect for further research. 

6.2 Topics related to solution methods and their assessment 

R12 Although different optimization models (with different main decision variables) can be found in 

the literature, there is no article that compares different models for the same sb- or hb-problem. 

Therefore, the analysis of different types of models and also the performance of different solver 

engines should be addressed in the future. 

R13 In principle, greater efforts should be made to develop enumeration based-based exact solution 

methods like branch-and-bound or branch-and-cut (at least for calculating benchmark 

solutions). 

R14 The application and development of multi-criteria metaheuristics should be addressed. Hereby, 

special attention should be paid to the metrics used to evaluate Pareto fronts (cf., Neufeld et al., 

2022). 

R15 A current research trend that has received too little attention in the past is the enhancement of 

scheduling methods by Machine learning. In this regard, approaches such as heuristic 

generation (e.g., Genetic programming), scheduling method (algorithm) selection, or operator 

and neighborhood selection should be explored. In addition, online learning and Reinforcement 

learning seem to be promising topics for the future. 

R16 For many solution methods, parameter tuning is very important. However, many authors do not 

use appropriate methods to determine suitable parameters. In this context, it would be helpful to 
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develop standard procedures or at least basic requirements for appropriate parameter tuning. 

Also, the application of automated parameter tuning by analytical methods should be 

investigated. 

R17 The use of advanced computing architectures, features, or capabilities (e.g., parallel or 

distributed computing or GPUs/CUDA) should be explored and exploited in the future (see also 

Fowler & Mönch, 2022). 

R18 The development and provision of benchmark problem instances for “standard” problems 

would be very welcome to enable a more valid and traceable evaluation of newly developed 

solution methods (see also Fowler & Mönch, 2022 and Neufeld et al., 2022). 

7 Final remarks 

The literature review and analysis presented here are based on two classification schemes (SPCS and 

SACS), as these are perfectly suited for conducting objective reviews, empirical analyses, and 

developing further research directions. The analysis of the literature has led to several topics for future 

research but is of course not exhaustive. For example, research on new solution methods is only 

addressed to a limited extent, since their development is usually very problem-specific and 

corresponding analyses have to be carried out in relation to the specific problem. However, the 

classified articles help to identify the most relevant literature in the most efficient way. 

A common problem with literature reviews is that they are out of date by the time they are 

published. Therefore, we propose to develop and establish a collaborative online knowledge base for 

batch scheduling problems, where the current state of research is “automatically” updated as 

researchers contribute their own classified articles. The review of the submitted articles will lead to an 

appropriate scientific quality of the knowledge base. 

References 

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. Eur J 

Oper Res, 246(2), 345–378. doi:10.1016/j.ejor.2015.04.004. 

Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling research involving setup 

considerations. Omega, 27(2), 219–239. doi:10.1016/S0305-0483(98)00042-5. 

Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with 

setup times or costs. Eur J Oper Res, 187(3), 985–1032. doi:10.1016/j.ejor.2006.06.060. 

Bellanger, A., & Oulamara, A. (2009). Scheduling hybrid flowshop with parallel batching machines and 

compatibilities. Comput Oper Res, 36(6), 1982–1992. doi:10.1016/j.cor.2008.06.011. 

Biel, K., & Glock, C. H. (2016). Systematic literature review of decision support models for energy-efficient 

production planning. Comput Ind Eng, 101, 243–259. doi:10.1016/j.cie.2016.08.021. 

Blazewicz, J., Lenstra, J. K., & Kan, A. (1983). Scheduling subject to resource constraints: classification and 

complexity. Discrete Appl Math, 5(1), 11–24. doi:10.1016/0166-218X(83)90012-4. 

Błażewicz, J., Ecker, K., Pesch, E., Sterna, M., Ecker, K. H., Schmidt, G., Sterna, M., & Weglarz, J. (2019). 

Handbook on Scheduling: From Theory to Practice (Second edition). International Handbooks on 

Information Systems. Cham: Springer International Publishing. 

Brucker, P. (2007). Scheduling Algorithms (Fifth edition). Berlin Heidelberg: Springer-Verlag GmbH. 

C4 - page 24



25 

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: 

Notation, classification, models, and methods. Eur J Oper Res, 112(1), 3–41. doi:10.1016/S0377-

2217(98)00204-5. 

Castillo, F., & Gazmuri, P. (2015). Genetic algorithms for batch sizing and production scheduling. Int J Adv 

Manuf Technol, 77(1-4), 261–280. doi:10.1007/s00170-014-6456-5. 

Chakhlevitch, K., Glass, C. A., & Kellerer, H. (2011). Batch machine production with perishability time 

windows and limited batch size. Eur J Oper Res, 210(1), 39–47. doi:10.1016/j.ejor.2010.10.033. 

Cheng, T. C. E., Chen, Z.-L., Kovalyov, M. Y., & Lin, B. M. T. (1996a). Parallel-Machine Batching and 

Scheduling to Minimize Total Completion Time. IIE Trans, 28(11), 953–956. 

doi:10.1080/15458830.1996.11770748. 

Cheng, T. C. E., Chen, Z.-L., & Oguz, C. (1994). One-machine batching and sequencing of multiple-type items. 

Comput Oper Res, 21(7), 717–721. doi:10.1016/0305-0548(94)90001-9. 

Cheng, T. C. E., & Gordon, V. S. (1994). Batch Delivery Scheduling on a Single Machine. J Oper Res Soc, 

45(10), 1211–1216. doi:10.1057/jors.1994.191. 

Cheng, T. C. E., Gordon, V. S., & Kovalyov, M. Y. (1996b). Single machine scheduling with batch deliveries. 

Eur J Oper Res, 94(2), 277–283. doi:10.1016/0377-2217(96)00127-0. 

Cheng, T. C. E., Janiak, A., & Kovalyov, M. Y. (2001). Single machine batch scheduling with resource 

dependent setup and processing times. Eur J Oper Res, 135(1), 177–183. doi:10.1016/S0377-

2217(00)00312-X. 

Cheng, T. C. E., & Kovalyov, M. Y. (1995). Single machine batch scheduling with deadlines and resource 

dependent processing times. Oper Res Lett, 17(5), 243–249. doi:10.1016/0167-6377(95)00011-8. 

Cheng, T. C. E., & Kovalyov, M. Y. (1996). Batch scheduling and common due-date assignment on a single 

machine. Discrete Appl Math, 70(3), 231–245. doi:10.1016/0166-218X(96)80468-9. 

Cheng, T. C. E., & Kovalyov, M. Y. (1998). An exact algorithm for batching and scheduling two part types in a 

mixed shop: A technical note. Int J Prod Econ, 55(1), 53–56. doi:10.1016/s0925-5273(98)00039-5. 

Cheng, T. C. E., & Kovalyov, M. Y. (2001). Single machine batch scheduling with sequential job processing. 

IIE Trans, 33(5), 413–420. doi:10.1023/A:1011005314354. 

Cheng, T. C. E., Kovalyov, M. Y., & Chakhlevich, K. N. (2004). Batching in a two-stage flowshop with 

dedicated machines in the second stage. IIE Trans, 36(1), 87–93. doi:10.1080/07408170490247368. 

Cheng, T. C. E., Lin, B. M. T., & Toker, A. (2000). Makespan minimization in the two‐machine flowshop batch 

scheduling problem. Nav Res Log, 47(2), 128–144. doi:10.1002/(SICI)1520-6750(200003)47:2<128::AID-

NAV4>3.0.CO;2-%23. 

Cheng, T. C. E., & Wang, G. (1998). Batching and scheduling to minimize the makespan in the two-machine 

flowshop. IIE Trans, 30(5), 447–453. doi:10.1080/07408179808966485. 

Chrétienne, P., Hazır, Ö., & Kedad-Sidhoum, S. (2011). Integrated batch sizing and scheduling on a single 

machine. J Sched, 14(6), 541–555. doi:10.1007/s10951-011-0229-x. 

Crauwels, H. A. J., Hariri, A., Potts, C. N., & van Wassenhove, L. N. (1998). Branch and bound algorithms for 

single-machine scheduling with batch set-up times to minimize total weighted completion time. Ann Oper 

Res, 83, 59–76. doi:10.1023/A:1018920416308. 

Crauwels, H. A. J., Potts, C. N., van Oudheusden, D., & van Wassenhove, L. N. (2005). Branch and Bound 

Algorithms for Single Machine Scheduling with Batching to Minimize the Number of Late Jobs. J Sched, 

8(2), 161–177. doi:10.1007/s10951-005-6365-4. 

Crauwels, H. A. J., Potts, C. N., & van Wassenhove, L. N. (1996). Local search heuristics for single-machine 

scheduling with batching to minimize the number of late jobs. Eur J Oper Res, 90(2), 200–213. 

doi:10.1016/0377-2217(95)00349-5. 

C4 - page 25



26 

Crauwels, H. A. J., Potts, C. N., & van Wassenhove, L. N. (1997). Local search heuristics for single machine 

scheduling with batch set-up times to minimize total weighted completion time. Ann Oper Res, 70, 261–279. 

doi:10.1023/A:1018978322417. 

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: 

NSGA-II. IEEE Trans Evol Computat, 6(2), 182–197. doi:10.1109/4235.996017. 

Dobson, G., Karmarkar, U. S., & Rummel, J. L. (1987). Batching to Minimize Flow Times on One Machine. 

Manage Sci, 33(6), 784–799. doi:10.1287/mnsc.33.6.784. 

Dobson, G., Karmarkar, U. S., & Rummel, J. L. (1989). Batching to Minimize Flow Times on Parallel 

Heterogeneous Machines. Manage Sci, 35(5), 607–613. doi:10.1287/mnsc.35.5.607. 

Dobson, G., & Khosla, I. (1995). Simultaneous resource scheduling with batching to minimize weighted flow 

times. IIE Trans, 27(5), 587–598. doi:10.1080/07408179508936774. 

Erel, E., & Ghosh, J. B. (2007). Batch scheduling to minimize the weighted number of tardy jobs. Comput Ind 

Eng, 53(3), 394–400. doi:10.1016/j.cie.2007.03.006. 

Fan, W., Pei, J., Liu, X., Pardalos, P. M., & Kong, M. (2018). Serial-batching group scheduling with release 

times and the combined effects of deterioration and truncated job-dependent learning. J Glob Optim, 71(1), 

147–163. doi:10.1007/s10898-017-0536-7. 

Feng, Q., Yuan, J., Liu, H., & He, C. (2013). A note on two-agent scheduling on an unbounded parallel-batching 

machine with makespan and maximum lateness objectives. App Math Model, 37(10-11), 7071–7076. 

doi:10.1016/j.apm.2013.03.013. 

Fowler, J. W., & Mönch, L. (2022). A survey of scheduling with parallel batch (p-batch) processing. Eur J Oper 

Res, 298(1), 1–24. doi:10.1016/j.ejor.2021.06.012. 

Fündeling, C.-U., & Trautmann, N. (2010). A priority-rule method for project scheduling with work-content 

constraints. Eur J Oper Res, 203(3), 568–574. doi:10.1016/j.ejor.2009.09.019. 

Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A 

review and research framework. Eur J Oper Res, 248(3), 744–757. doi:10.1016/j.ejor.2015.07.017. 

Gahm, C., Uzunoglu, A., Wahl, S., Ganschinietz, C., & Tuma, A. (2022a). Applying machine learning for the 

anticipation of complex nesting solutions in hierarchical production planning. Eur J Oper Res, 296(3), 819–

836. doi:10.1016/j.ejor.2021.04.006. 

Gahm, C., Wahl, S., & Tuma, A. (2022b). Scheduling parallel serial-batch processing machines with 

incompatible job families, sequence-dependent setup times and arbitrary sizes. Int J Prod Res, 60(17), 5131–

5154. doi:10.1080/00207543.2021.1951446. 

Ganschinietz, C. (2021). Design of on-site energy conversion systems for manufacturing companies – A 

concept-centric research framework. J Clean Prod, 310, 127258. doi:10.1016/j.jclepro.2021.127258. 

Geng, Z., Yuan, J., & Yuan, J. (2018). Scheduling with or without precedence relations on a serial-batch 

machine to minimize makespan and maximum cost. App Math Comp, 332, 1–18. 

doi:10.1016/j.amc.2018.03.001. 

Gerstl, E., & Mosheiov, G. (2013). A two-stage flow shop batch-scheduling problem with the option of using 

Not-All-Machines. Int J Prod Econ, 146(1), 161–166. doi:10.1016/j.ijpe.2013.06.018. 

Giglio, D. (2015). Optimal control strategies for single-machine family scheduling with sequence-dependent 

batch setup and controllable processing times. J Sched, 18(5), 525–543. doi:10.1007/s10951-015-0440-2. 

Glass, C. A., Potts, C. N., & Strusevich, V. A. (2001). Scheduling Batches with Sequential Job Processing for 

Two-Machine Flow and Open Shops. INFORMS J Comput, 13(2), 120–137. 

doi:10.1287/ijoc.13.2.120.10521. 

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and Approximation 

in Deterministic Sequencing and Scheduling: a Survey. In B. H. Korte, E. L. Johnson, & P. L. Hammer 

(Eds.), Annals of Discrete Mathematics: Vol. 5. Discrete optimization II (, 287–326), Amsterdam, New York, 

New York: North-Holland Pub. Co. 

C4 - page 26



27 

Gribkovskaia, I. V., Lee, C.-Y., Strusevich, V. A., & Werra, D. de. (2006). Three is easy, two is hard: open shop 

sum-batch scheduling problem refined. Oper Res Lett, 34(4), 459–464. doi:10.1016/j.orl.2005.07.006. 

Guo, Q., Tang, L., Liu, J., & Zhao, S. (2020). Continuous-time formulation and differential evolution algorithm 

for an integrated batching and scheduling problem in aluminium industry. Int J Prod Res, 1–16. 

doi:10.1080/00207543.2020.1747656. 

Hakim Halim, A., Miyazaki, S., & Ohta, H. (1994). Batch-scheduling problems to minimize actual flow times of 

parts through the shop under JIT environment. Eur J Oper Res, 72(3), 529–544. doi:10.1016/0377-

2217(94)90421-9. 

Hakim Halim, A., & Ohta, H. (1993). Batch-scheduling problems through the flowshop with both receiving and 

delivery just in time. Int J Prod Res, 31(8), 1943–1955. doi:10.1080/00207549308956833. 

Hazır, Ö., & Kedad-Sidhoum, S. (2014). Batch sizing and just-in-time scheduling with common due date. Ann 

Oper Res, 213(1), 187–202. doi:10.1007/s10479-012-1289-9. 

He, C., Lin, H., & Han, X. (2022). Two-agent scheduling on a bounded series-batch machine to minimize 

makespan and maximum cost. Discrete Appl Math, 322, 94–101. doi:10.1016/j.dam.2022.08.001. 

He, C., Xu, C., & Lin, H. (2020). Serial-batching scheduling with two agents to minimize makespan and 

maximum cost. J Sched, 609–617. doi:10.1007/s10951-020-00656-5. 

Herroelen, W., Demeulemeester, E., & Reyck, B. de. (1999). A Classification Scheme for Project Scheduling. In 

F. S. Hillier & J. Węglarz (Eds.), International Series in Operations Research & Management Science. 

Project Scheduling (, 1–26), Boston, MA: Springer US. 

Hidayat, N. P., Cakravastia, A., Samadhi, T. A., & Hakim Halim, A. (2016). A batch scheduling model for m 

heterogeneous batch processor. Int J Prod Res, 54(4), 1170–1185. doi:10.1080/00207543.2015.1056322. 

Hochbaum, D. S., & Landy, D. (1994). Scheduling with batching: minimizing the weighted number of tardy 

jobs. Oper Res Lett, 16(2), 79–86. doi:10.1016/0167-6377(94)90063-9. 

Hochbaum, D. S., & Landy, D. (1997). Scheduling with batching: two job types. Discrete Appl Math, 72(1-2), 

99–114. doi:10.1016/S0166-218X(96)00039-X. 

Hwang, F. J., & Lin, B. M. T. (2012). Two-stage assembly-type flowshop batch scheduling problem subject to a 

fixed job sequence. J Oper Res Soc, 63(6), 839–845. doi:10.1057/jors.2011.90. 

Ji, M., & Cheng, T. C. E. (2010). Batch scheduling of simple linear deteriorating jobs on a single machine to 

minimize makespan. Eur J Oper Res, 202(1), 90–98. doi:10.1016/j.ejor.2009.05.021. 

Jordan, C. (1996). Batching and Scheduling: Models and Methods for Several Problem Classes (Vol. 437). 

Berlin, Heidelberg: Springer Berlin Heidelberg. 

Jordan, C. (1998). A two-phase genetic algorithm to solve variants of the batch sequencing problem. Int J Prod 

Res, 36(3), 745–760. doi:10.1080/002075498193679. 

Jordan, C., & Drexl, A. (1998). Discrete Lotsizing and Scheduling by Batch Sequencing. Manage Sci, 44(5), 

698–713. doi:10.1287/mnsc.44.5.698. 

Komaki, G. M., Sheikh, S., & Malakooti, B. (2019). Flow shop scheduling problems with assembly operations: a 

review and new trends. Int J Prod Res, 57(10), 2926–2955. doi:10.1080/00207543.2018.1550269. 

Kovalyov, M. Y. (1997). Batch scheduling and common due date assignment problem: An NP-hard case. 

Discrete Appl Math, 80(2-3), 251–254. doi:10.1016/S0166-218X(97)00092-9. 

Kovalyov, M. Y., Oulamara, A., & Soukhal, A. (2015). Two-agent scheduling with agent specific batches on an 

unbounded serial batching machine. J Sched, 18(4), 423–434. doi:10.1007/s10951-014-0410-0. 

Kovalyov, M. Y., Potts, C. N., & Strusevich, V. A. (2004). Batching decisions for assembly production systems. 

Eur J Oper Res, 157(3), 620–642. doi:10.1016/S0377-2217(03)00250-9. 

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H., & Shmoys, D. B. (1993). Chapter 9 Sequencing and 

scheduling: Algorithms and complexity. In S. C. Graves, A. H. G. Rinnooy Kan, & P. H. Zipkin (Eds.), 

C4 - page 27



28 

Handbooks in Operations Research and Management Science. Logistics of Production and Inventory (, 445–

522), North-Holland Pub. Co. 

Leung, J. Y., Ng, C. T., & Cheng, T. C. E. (2008). Minimizing sum of completion times for batch scheduling of 

jobs with deteriorating processing times. Eur J Oper Res, 187(3), 1090–1099. 

doi:10.1016/j.ejor.2006.03.067. 

Li, S. (2017). Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to 

minimize makespan. Eur J Oper Res, 260(1), 12–20. doi:10.1016/j.ejor.2016.11.044. 

Li, S., Cheng, T. C. E., Ng, C. T., & Yuan, J. (2017). Two-agent scheduling on a single sequential and 

compatible batching machine. Nav Res Log, 64(8), 628–641. doi:10.1002/nav.21779. 

Li, X., Ishii, H., & Masuda, T. (2012). Single machine batch scheduling problem with fuzzy batch size. Comput 

Ind Eng, 62(3), 688–692. doi:10.1016/j.cie.2011.12.021. 

Liao, B., Song, Q., Pei, J., Yang, S., & Pardalos, P. M. (2020). Parallel-machine group scheduling with inclusive 

processing set restrictions, outsourcing option and serial-batching under the effect of step-deterioration. J 

Glob Optim, 78(4), 717–742. doi:10.1007/s10898-018-0707-1. 

Liao, C.-J., Lee, C.-H., & Lee, H.-C. (2015). An efficient heuristic for a two-stage assembly scheduling problem 

with batch setup times to minimize makespan. Comput Ind Eng, 88, 317–325. doi:10.1016/j.cie.2015.07.018. 

Lin, B., & Jeng, A. (2004). Parallel-machine batch scheduling to minimize the maximum lateness and the 

number of tardy jobs. Int J Prod Econ, 91(2), 121–134. doi:10.1016/j.ijpe.2003.07.003. 

Lin, B. M., & Cheng, T. C. E. (2001). Batch scheduling in the no-wait two-machine flowshop to minimize the 

makespan. Comput Oper Res, 28(7), 613–624. doi:10.1016/S0305-0548(99)00138-0. 

Lin, B. M. T., & Cheng, T. C. E. (2005). Two-Machine Flowshop Batching and Scheduling. Ann Oper Res, 

133(1-4), 149–161. doi:10.1007/s10479-004-5029-7. 

Lin, B. M. T., & Cheng, T. C. E. (2011). Scheduling with centralized and decentralized batching policies in 

concurrent open shops. Nav Res Log, 58(1), 17–27. doi:10.1002/nav.20437. 

Lin, B. M. T., Cheng, T. C. E., & Chou, A. (2007). Scheduling in an assembly-type production chain with batch 

transfer. Omega, 35(2), 143–151. doi:10.1016/j.omega.2005.04.004. 

Liu, Y., Wang, L., Wang, X. V., Xu, X., & Zhang, L. (2019). Scheduling in cloud manufacturing: state-of-the-art 

and research challenges. Int J Prod Res, 57(15-16), 4854–4879. doi:10.1080/00207543.2018.1449978. 

Lu, L. F., & Yuan, J. J. (2007). The single machine batching problem with identical family setup times to 

minimize maximum lateness is strongly NP-hard. Eur J Oper Res, 177(2), 1302–1309. 

doi:10.1016/j.ejor.2005.12.027. 

Luu, D. T., Bohez, E. L. J., & Techanitisawad, A. (2002). A hybrid genetic algorithm for the batch sequencing 

problem on identical parallel machines. Prod Plan Control, 13(3), 243–252. 

doi:10.1080/09537280110065517. 

Mathirajan, M., & Sivakumar, A. I. (2006). A literature review, classification and simple meta-analysis on 

scheduling of batch processors in semiconductor. Int J Adv Manuf Technol, 29(9-10), 990–1001. 

doi:10.1007/s00170-005-2585-1. 

Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., & Rose, O. (2011). A survey of problems, solution 

techniques, and future challenges in scheduling semiconductor manufacturing operations. J Sched, 14(6), 

583–599. doi:10.1007/s10951-010-0222-9. 

Mor, B., & Mosheiov, G. (2011). Single machine batch scheduling with two competing agents to minimize total 

flowtime. Eur J Oper Res, 215(3), 524–531. doi:10.1016/j.ejor.2011.06.037. 

Mor, B., & Mosheiov, G. (2012a). Batch scheduling on uniform machines to minimize total flow-time. Comput 

Oper Res, 39(3), 571–575. doi:10.1016/j.cor.2011.05.014. 

Mor, B., & Mosheiov, G. (2012b). Batch scheduling with step-deteriorating processing times to minimize 

flowtime. Nav Res Log, 59(8), 587–600. doi:10.1002/nav.21508. 

C4 - page 28



29 

Mor, B., & Mosheiov, G. (2014a). Batch scheduling of identical jobs with controllable processing times. Comput 

Oper Res, 41, 115–124. doi:10.1016/j.cor.2013.08.007. 

Mor, B., & Mosheiov, G. (2014b). Batch scheduling with a rate-modifying maintenance activity to minimize 

total flowtime. Int J Prod Econ, 153, 238–242. doi:10.1016/j.ijpe.2014.03.004. 

Mosheiov, G., & Oron, D. (2005). A note on flow-shop and job-shop batch scheduling with identical processing-

time jobs. Eur J Oper Res, 161(1), 285–291. doi:10.1016/j.ejor.2003.09.010. 

Mosheiov, G., & Oron, D. (2008a). A single machine batch scheduling problem with bounded batch size. Eur J 

Oper Res, 187(3), 1069–1079. doi:10.1016/j.ejor.2006.01.052. 

Mosheiov, G., & Oron, D. (2008b). Open-shop batch scheduling with identical jobs. Eur J Oper Res, 187(3), 

1282–1292. doi:10.1016/j.ejor.2006.03.068. 

Mosheiov, G., & Oron, D. (2011). Batch scheduling on a two-machine jobshop with machine-dependent setup 

times. Nav Res Log, 58(7), 676-684. doi:10.1002/nav.20473. 

Mosheiov, G., Oron, D., & Ritov, Y. (2004). Flow-shop batch scheduling with identical processing-time jobs. 

Nav Res Log, 51(6), 783–799. doi:10.1002/nav.20028. 

Mosheiov, G., Oron, D., & Ritov, Y. (2005). Minimizing flow-time on a single machine with integer batch sizes. 

Oper Res Lett, 33(5), 497–501. doi:10.1016/j.orl.2004.09.007. 

Muter, İ. (2 2 ). Exact algorithms to minimize makespan on single and parallel batch processing machines. Eur 

J Oper Res, 285(2), 470–483. doi:10.1016/j.ejor.2020.01.065. 

Muthuswamy, S., Vélez-Gallego, M. C., Maya, J., & Rojas-Santiago, M. (2012). Minimizing makespan in a two-

machine no-wait flow shop with batch processing machines. Int J Adv Manuf Technol, 63(1-4), 281–290. 

doi:10.1007/s00170-012-3906-9. 

Naddef, D., & Santos, C. (1988). One-pass batching algorithms for the one-machine problem. Discrete Appl 

Math, 21(2), 133–145. doi:10.1016/0166-218X(88)90049-2. 

Neufeld, J. S., Schulz, S., & Buscher, U. (2022). A systematic review of multi-objective hybrid flow shop 

scheduling. Eur J Oper Res. doi:10.1016/j.ejor.2022.08.009. 

Ng, C. T., Cheng, T. C. E., Yuan, J. J., & Liu, Z. H. (2003a). On the single machine serial batching scheduling 

problem to minimize total completion time with precedence constraints, release dates and identical 

processing times. Oper Res Lett, 31(4), 323–326. doi:10.1016/S0167-6377(03)00007-5. 

Ng, C. T., & Kovalyov, M. Y. (2007). Batching and scheduling in a multi-machine flow shop. J Sched, 10(6), 

353–364. doi:10.1007/s10951-007-0041-9. 

Ng, C. T. D., Cheng, T. C. E., & Kovalyov, M. Y. (2003b). Batch scheduling with controllable setup and 

processing times to minimize total completion time. J Oper Res Soc, 54(5), 499–506. 

doi:10.1057/palgrave.jors.2601537. 

Ng, C. T. D., Cheng, T. C. E., & Kovalyov, M. Y. (2004). Single machine batch scheduling with jointly 

compressible setup and processing times. Eur J Oper Res, 153(1), 211–219. doi:10.1016/S0377-

2217(02)00732-4. 

Ng, C. T. D., Cheng, T. C. E., & Yuan, J. J. (2002). A note on the single machine serial batching scheduling 

problem to minimize maximum lateness with precedence constraints. Oper Res Lett, 30(1), 66–68. 

doi:10.1016/S0167-6377(01)00105-5. 

Oulamara, A. (2007). Makespan minimization in a no-wait flow shop problem with two batching machines. 

Comput Oper Res, 34(4), 1033–1050. doi:10.1016/j.cor.2005.05.028. 

Pei, J., Cheng, B., Liu, X., Pardalos, P. M., & Kong, M. (2019a). Single-machine and parallel-machine serial-

batching scheduling problems with position-based learning effect and linear setup time. Ann Oper Res, 

272(1-2), 217–241. doi:10.1007/s10479-017-2481-8. 

C4 - page 29



30 

Pei, J., Liu, X., Fan, W., Pardalos, P. M., & Lu, S. (2019b). A hybrid BA-VNS algorithm for coordinated serial-

batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple 

manufacturers. Omega, 82, 55–69. doi:10.1016/j.omega.2017.12.003. 

Pei, J., Liu, X., Fan, W., Pardalos, P. M., Migdalas, A., Goldengorin, B., & Yang, S. (2016). Minimizing the 

makespan for a serial-batching scheduling problem with arbitrary machine breakdown and dynamic job 

arrival. Int J Adv Manuf Technol, 86(9-12), 3315–3331. doi:10.1007/s00170-016-8408-8. 

Pei, J., Liu, X., Liao, B., Pardalos, P. M., & Kong, M. (2018). Single-machine scheduling with learning effect 

and resource-dependent processing times in the serial-batching production. App Math Model, 58, 245–253. 

doi:10.1016/j.apm.2017.07.028. 

Pei, J., Liu, X., Pardalos, P. M., Fan, W., & Yang, S. (2017a). Scheduling deteriorating jobs on a single serial-

batching machine with multiple job types and sequence-dependent setup times. Ann Oper Res, 249(1-2), 

175–195. doi:10.1007/s10479-015-1824-6. 

Pei, J., Liu, X., Pardalos, P. M., Migdalas, A., & Yang, S. (2017b). Serial-batching scheduling with time-

dependent setup time and effects of deterioration and learning on a single-machine. J Glob Optim, 67(1-2), 

251–262. doi:10.1007/s10898-015-0320-5. 

Pei, J., Pardalos, P. M., Liu, X., Fan, W., & Yang, S. (2015). Serial batching scheduling of deteriorating jobs in a 

two-stage supply chain to minimize the makespan. Eur J Oper Res, 244(1), 13–25. 

doi:10.1016/j.ejor.2014.11.034. 

Pei, J., Song, Q., Liao, B., Liu, X., & Pardalos, P. M. (2021). Parallel-machine serial-batching scheduling with 

release times under the effects of position-dependent learning and time-dependent deterioration. Ann Oper 

Res, 298(1-2), 407–444. doi:10.1007/s10479-020-03555-2. 

Pinedo, M. L. (2016). Scheduling: Theory, Algorithms, and Systems (Fifth Edition). Cham: Springer 

International Publishing. 

Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: A review. Eur J Oper Res, 120(2), 228–249. 

doi:10.1016/S0377-2217(99)00153-8. 

Potts, C. N., & van Wassenhove, L. N. (1992). Integrating Scheduling with Batching and Lot-Sizing: A Review 

of Algorithms and Complexity. J Oper Res Soc, 43(5), 395–406. doi:10.1057/jors.1992.66. 

Qi, X., & Yuan, J. (2017). A further study on two-agent scheduling on an unbounded serial-batch machine with 

batch delivery cost. Comput Ind Eng, 111, 458–462. doi:10.1016/j.cie.2017.07.029. 

Quadt, D., & Kuhn, H. (2007). Batch scheduling of jobs with identical process times on flexible flow lines. Int J 

Prod Econ, 105(2), 385–401. doi:10.1016/j.ijpe.2004.04.013. 

Schryen, G. (2020). Parallel computational optimization in operations research: A new integrative framework, 

literature review and research directions. Eur J Oper Res, 287(1), 1–18. doi:10.1016/j.ejor.2019.11.033. 

Shabtay, D. (2014). The single machine serial batch scheduling problem with rejection to minimize total 

completion time and total rejection cost. Eur J Oper Res, 233(1), 64–74. doi:10.1016/j.ejor.2013.08.013. 

Shabtay, D., & Steiner, G. (2007). Single machine batch scheduling to minimize total completion time and 

resource consumption costs. J Sched, 10(4-5), 255–261. doi:10.1007/s10951-007-0025-9. 

Shahvari, O., & Logendran, R. (2016). Hybrid flow shop batching and scheduling with a bi-criteria objective. Int 

J Prod Econ, 179, 239–258. doi:10.1016/j.ijpe.2016.06.005. 

Shahvari, O., & Logendran, R. (2017). An Enhanced tabu search algorithm to minimize a bi-criteria objective in 

batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes. 

Comput Oper Res, 77, 154–176. doi:10.1016/j.cor.2016.07.021. 

Shahvari, O., Logendran, R., & Tavana, M. (2022). An efficient model-based branch-and-price algorithm for 

unrelated-parallel machine batching and scheduling problems. J Sched. doi:10.1007/s10951-022-00729-7. 

Shallcross, D. F. (1992). A polynomial algorithm for a one machine batching problem. Oper Res Lett, 11(4), 

213–218. doi:10.1016/0167-6377(92)90027-Z. 

C4 - page 30



31 

Shen, L., & Buscher, U. (2012). Solving the serial batching problem in job shop manufacturing systems. Eur J 

Oper Res, 221(1), 14–26. doi:10.1016/j.ejor.2012.03.001. 

Shen, L., & Gupta, J. N. D. (2018). Family scheduling with batch availability in flow shops to minimize 

makespan. J Sched, 21(2), 235–249. doi:10.1007/s10951-017-0529-x. 

Shen, L., Mönch, L., & Buscher, U. (2013). An iterative approach for the serial batching problem with parallel 

machines and job families. Ann Oper Res, 206(1), 425–448. doi:10.1007/s10479-013-1339-y. 

Shin, J.-H., Yu, J.-M., Doh, H.-H., Kim, H.-W., & Lee, D.-H. (2020). Batching and scheduling for a single-

machine flexible machining cell with multi-fixturing pallets and controllable processing times. Int J Prod 

Res, 58(3), 863–877. doi:10.1080/00207543.2019.1602742. 

Sung, C. S., & Joo, U. G. (1997). Batching to minimize weighted mean flow time on a single machine with batch 

size restrictions. Comput Ind Eng, 32(2), 333–340. doi:10.1016/S0360-8352(96)00300-2. 

Sung, C. S., & Kim, Y. H. (2003). Minimizing due date related performance measures on two batch processing 

machines. Eur J Oper Res, 147(3), 644–656. doi:10.1016/S0377-2217(02)00352-1. 

Suppiah, Y., & Omar, M. K. (2014). A hybrid tabu search for batching and sequencing decisions in a single 

machine environment. Comput Ind Eng, 78, 135–147. doi:10.1016/j.cie.2014.10.010. 

Tamer Unal, A., & Kiran, A. S. (1992). Batch Sequencing. IIE Trans, 24(4), 73–83. 

doi:10.1080/07408179208964235. 

Tang, C. S. (1990). Scheduling batches on parallel machines with major and minor set-ups. Eur J Oper Res, 

46(1), 28–37. doi:10.1016/0377-2217(90)90295-M. 

Tanrisever, F., & Kutanoglu, E. (2008). Forming and scheduling jobs with capacitated containers in 

semiconductor manufacturing: Single machine problem. Ann Oper Res, 159(1), 5–24. doi:10.1007/s10479-

007-0273-2. 

Toksarı, M. D., & Toğa, G. (2 22). Single batch processing machine scheduling with sequence-dependent setup 

times and multi-material parts in additive manufacturing. CIRP J Manuf Scien Tech, 37, 302–311. 

doi:10.1016/j.cirpj.2022.02.007. 

United Nations, Department of Economic and Social Affairs. (2008). International Standard Industrial 

Classification of All Economic Activities (ISIC) (4th ed.). Statistical papers. Series M. New York: United 

Nations Publications. 

Uzunoglu, A., Gahm, C., Wahl, S., & Tuma, A. (2023). Learning-augmented heuristics for scheduling parallel 

serial-batch processing machines. Comput Oper Res, 151, 106122. doi:10.1016/j.cor.2022.106122. 

vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., & Cleven, A. (2009). RECONSTRUCTING 

THE GIANT: ON THE IMPORTANCE OF RIGOUR IN DOCUMENTING THE LITERATURE SEARCH 

PROCESS. In L. Mathiassen (Ed.), Proceedings of the 17th European Conference on Information Systems 

(ECIS 2009) . 

Voß, S., & Witt, A. (2007). Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with 

batching requirements: A real-world application. Int J Prod Econ, 105(2), 445–458. 

doi:10.1016/j.ijpe.2004.05.029. 

Wahl, S., Gahm, C., & Tuma, A. (2023). Knowledge base for batch-processing machine scheduling research, 

Mendeley Data (V3). doi:10.17632/7cv58py5hk.3. 

Wang, J.-Q., Fan, G.-Q., & Liu, Z. (2020). Mixed batch scheduling on identical machines. J Sched, 23(4), 487–

496. doi:10.1007/s10951-019-00623-9. 

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. 

MIS Quarterly, 26(2), 13–23. Retrieved from https://www.jstor.org/stable/4132319 

Webster, S., & Baker, K. R. (1995). Scheduling Groups of Jobs on a Single Machine. Oper Res, 43(4), 692–703. 

doi:10.1287/opre.43.4.692. 

C4 - page 31



32 

Wu, K. (2014). Taxonomy of batch queueing models in manufacturing systems. Eur J Oper Res, 237(1), 129–

135. doi:10.1016/j.ejor.2014.02.004. 

Yang, F., Davari, M., Wei, W., Hermans, B., & Leus, R. (2022). Scheduling a single parallel-batching machine 

with non-identical job sizes and incompatible job families. Eur J Oper Res, 303(2), 602–615. 

doi:10.1016/j.ejor.2022.03.027. 

Yin, Y., Li, D., Wang, D., & Cheng, T. C. E. (2021). Single-machine serial-batch delivery scheduling with two 

competing agents and due date assignment. Ann Oper Res, 298(1-2), 497–523. doi:10.1007/s10479-018-

2839-6. 

Yin, Y., Wang, Y., Cheng, T. C. E., Wang, D.-J., & Wu, C.-C. (2016). Two-agent single-machine scheduling to 

minimize the batch delivery cost. Comput Ind Eng, 92, 16–30. doi:10.1016/j.cie.2015.12.003. 

Yu, J.-M., Huang, R., & Lee, D.-H. (2017). Iterative algorithms for batching and scheduling to minimise the 

total job tardiness in two-stage hybrid flow shops. Int J Prod Res, 55(11), 3266–3282. 

doi:10.1080/00207543.2017.1304661. 

Yuan, J. J., Lin, Y. X., Cheng, T. C. E., & Ng, C. T. (2007). Single machine serial-batching scheduling problem 

with a common batch size to minimize total weighted completion time. Int J Prod Econ, 105(2), 402–406. 

doi:10.1016/j.ijpe.2004.04.014. 

Yuan, J. J., Liu, Z. H., Ng, C. T., & Cheng, T. C. E. (2006). Single machine batch scheduling problem with 

family setup times and release dates to minimize makespan. J Sched, 9(6), 499–513. doi:10.1007/s10951-

006-8776-2. 

Yuan, J. J., Yang, A. F., & Cheng, T. C. E. (2004). A note on the single machine serial batching scheduling 

problem to minimize maximum lateness with identical processing times. Eur J Oper Res, 158(2), 525–528. 

doi:10.1016/S0377-2217(03)00361-8. 

Zarook, Y., Rezaeian, J., Tavakkoli-Moghaddam, R., Mahdavi, I., & Javadian, N. (2015). Minimization of 

makespan for the single batch-processing machine scheduling problem with considering aging effect and 

multi-maintenance activities. Int J Adv Manuf Technol, 76(9-12), 1879–1892. doi:10.1007/s00170-014-6342-

1. 

Zdrzałka, S. (1991). Approximation algorithms for single-machine sequencing with delivery times and unit batch 

set-up times. Eur J Oper Res, 51(2), 199–209. doi:10.1016/0377-2217(91)90250-Y. 

Zdrzałka, S. (1995). Analysis of approximation algorithms for single-machine scheduling with delivery times 

and sequence independent batch setup times. Eur J Oper Res, 80(2), 371–380. doi:10.1016/0377-

2217(93)E0160-Y. 

Zehetner, D., & Gansterer, M. (2022). The collaborative batching problem in multi-site additive manufacturing. 

Int J Prod Econ, 248, 108432. doi:10.1016/j.ijpe.2022.108432. 

Zhang, J., Yao, X., & Li, Y. (2020). Improved evolutionary algorithm for parallel batch processing machine 

scheduling in additive manufacturing. Int J Prod Res, 58(8), 2263–2282. 

doi:10.1080/00207543.2019.1617447. 

Zhou, S., Li, X., Chen, H., & Guo, C. (2016). Minimizing makespan in a no-wait flowshop with two batch 

processing machines using estimation of distribution algorithm. Int J Prod Res, 54(16), 4919–4937. 

doi:10.1080/00207543.2016.1140920. 

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength pareto evolutionary algorithm 

(TIK Report), ETH Zurich, Computer Engineering and Networks Laboratory. doi:10.3929/ethz-a-004284029. 

C4 - page 32



33 

Appendix A 

Table 1: Classified literature with sb, S, and unbounded batch capacity (46) 

A B C D E & F Reference 

S pF, if, s, sb, ia F - MILP, PRH Dobson et al. (1987) 
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S dJ, if, sF, sb, ia Lmax - oAS* Zdrzałka (1991) 

S pC, s, sb C - PTExAlg Shallcross (1992) 

S pF, dlJ, if, sF, sb, ia FY - oExAlg*, GCH Tamer Unal & Kiran (1992) 

S if, sF, sb F - DP Cheng et al. (1994) 

S dJ, sb NumB, cE, wSum NP DM, DP Cheng & Gordon (1994) 

S, R dJ, dC, s, sb F - LP, oExAlg*, PRH, oHeu* Hakim Halim et al. (1994) 

S pC, dJ, dlJ, s, sb wU NP PTExAlg, PPTExAl, DP Hochbaum & Landy (1994) 

S pCo, dlJ, s, sb wUt NP DP, FPTAS Cheng & Kovalyov (1995) 

S rJ, dJ, if, sF, sb, ia Lmax, Cmax - oAS* Zdrzałka (1995) 

S, P s, sb 
E, wE, Emax, NumB, 

wSum 
NP DP Cheng et al. (1996b) 

S pF, daC, if, s, sb, ia wU NP DP, FPTAS Cheng & Kovalyov (1996) 

S dJ, if, sF, sb, ia U NP 
PRH, LS, SA, TS, VND, 

GA 
Crauwels et al. (1996) 

S if, sF, sb wC - 
BnB, GCH, PRH, LS, SA, 

TS, TA, GA 
Crauwels et al. (1997) 

S pC, s, sb wC - PTExAlg Hochbaum & Landy (1997) 

S pF, daC, if, sF, sb, ia wT, wU, wSum NP - Kovalyov (1997) 

S if, sF, sb, ia wC - BnB, oCH*, LS Crauwels et al. (1998) 

S dlJ, if, sFS, sb, ia wE, cSR, wSum - DM, PRH, Heu-ExSM* Jordan & Drexl (1998) 

S pC, pCo, dJ, dlJ, sM, sCo, sb Lmax, wRC - PTExAlg Cheng et al. (2001) 

S dJ, dlJ, cr1, s, sb 
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NP oExAlg* Cheng & Kovalyov (2001) 

S dJ, net, s, sb Lmax - PTExAlg Ng et al. (2002) 

S pC, rJ, net, s, sb C - DP Ng et al. (2003a) 

S pCo, sCo, sb C, cC, wSum, OS - - Ng et al. (2003b) 

S pCo, sCo, sb C - PTExAlg, DP Ng et al. (2004) 

S rJ, net, s, sb Lmax - PTExAlg Yuan et al. (2004) 

S dJ, if, sF, sb, ia U NP BnB Crauwels et al. (2005) 

S p1, s, sb F - LP, oExAlg* Mosheiov et al. (2005) 

S rJ, sF, sb Cmax sNP DP, PTAS, oHeu* Yuan et al. (2006) 

S dJ, if, sF, sb, ia wU NP DP, FPTAS Erel & Ghosh (2007) 

S dJ, if, sF, sb, ia Lmax NP - Lu & Yuan (2007) 

S pCo, s, sCo, sb C, cIh, cP - oExAlg* Shabtay & Steiner (2007) 

S pDet, s, sb, ia Cmax sNP DP, FPTAS Ji & Cheng (2010) 

S p1, if2, sF, sb F, OSA - LP, LS Mor & Mosheiov (2011) 

S p1, pDet, s, sb C - oAS* Mor & Mosheiov (2012b) 
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S, 

avFlx 
p1, s, sb C - oAS* Mor & Mosheiov (2014b) 

S s, sb C, cR, Par, wSum, OS NP PTExAlg, PPTExAl Shabtay (2014) 

S pCo, dJ, if, sFS, sb, ia, on wT, cRc, cSR, wSum NP DM, DP Giglio (2015) 

S dJ, if2, sF, sb 
wC, Lmax, wU, Cmax, 
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NP oExAlg* Kovalyov et al. (2015) 
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NP MILP, DP Yin et al. (2016) 
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- DP Qi & Yuan (2017) 
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Table 2: Classified literature with sb, S, and bounded batch capacity (19) 

A B C D E & F Reference 
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S pDet, dJ, if, cr1, sFS, sb 
C, Emax, Tmax, 

Lmax, U, Cmax 
- PTExAlg Pei et al. (2017a) 

S pDet, pLe, dJ, cr1, sDet, sb Emax, U, Cmax - PTExAlg Pei et al. (2017b) 

S 
pDet, pLe, rJ, if, cr1, sF, sDet, 

sb 
Cmax - 

PRH, SA, VNS, PSO, 

Meta-LS 
Fan et al. (2018) 

S pLe, pCo, cr1, sDet, sb Cmax - SA, GSA, Meta-Meta Pei et al. (2018) 

S, P pLe, dC, dlC, cr1, sDet, sb Emax, U - 
MILP, PRH, LS, SA, VNS, 

GSA, Meta-Meta 
Pei et al. (2019a) 

S rJ, dJ, crJ, buf, mode, sb T, cP, Par NP PRH Shin et al. (2020) 

S cr1, s, sb Cmax, cP, ParA - PTExAlg He et al. (2022) 

Table 3: Classified literature with sb and parallel machines (21) 

A B C D E & F Reference 

R sM, sb, ia F - DM, oCH* Dobson et al. (1989) 

P pF, cf, sF, sb, ia Cmax - oCH* Tang (1990) 

S, R dJ, dC, s, sb F - LP, oExAlg*, PRH, oHeu* Hakim Halim et al. (1994) 

P pF, if, sF, res, sb wF NP MILP, oCH* Dobson & Khosla (1995) 

P cr1, s, sb C - DP Cheng et al. (1996a) 

S, P s, sb 
E, wE, Emax, 

NumB, wSum 
NP DP Cheng et al. (1996b) 

P dlJ, if, sF, sb cIh NP GCH, GA, Meta-LS Luu et al. (2002) 

P dJ, s, sb Lmax, U - DP, PRH Lin & Jeng (2004) 

P pDet, s, sb, ia C sNP oExAlg*, oAS* Leung et al. (2008) 
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Q2 pCM, sM, sb C - LP, oAS* Mor & Mosheiov (2012a) 

P pF, if, sFS, sb C sNP MILP, PRH, LS, VNS Shen et al. (2013) 

R pC, dlJ, cr1, sM, sb F - MILP, oCH* Hidayat et al. (2016) 

P2, 

avStoc 
rJ, crJ, s, sb, tOub Cmax sNP MILP, PRH Pei et al. (2016) 

R, 

avDyn 

rJ, dJ, if, cr1, sFMS, elig, sb, 

ia, bLb 
wC, wT, wSum sNP 

MILP, PRH, TS, Meta-

Meta 
Shahvari & Logendran (2017) 

S, P pLe, dC, dlC, cr1, sDet, sb Emax, U - 
MILP, PRH, LS, SA, VNS, 

GSA, Meta-Meta 
Pei et al. (2019a) 

P pDet, cr1, sM, sDet, dcr, sb Cmax NP 
LS, PSO, oMetaP*, Meta-

LS 
Pei et al. (2019b) 

P pDet, if, crJ, sF, elig, sb Cmax, cSub, wSum - oCH*, VNS, Meta-Meta Liao et al. (2020) 

P pDet, pLe, rJ, cr1, s, sb Cmax NP 
PRH, LS, DE, GA, PSO, 

oMetaP*, Meta-Meta 
Pei et al. (2021) 

P dJ, if, crJ, sFS, sb wF, wT, Lex NP MILP, PRH, LS Gahm et al. (2022b) 

R, avSt rJ, dJ, if, sMS, elig, sb, ia wC, wT, wSum - MILP, BnP Shahvari et al. (2022) 

P dJ, if, crJ, sFS, sb wF, wT, Lex NP MILP, PRH, LS, Heu-Opt* Uzunoglu et al. (2023) 

Table 4: Classified literature with sb and multi-stage machine environment (32) 

A B C D E & F Reference 

PF dC, sM, sb F - MILP, LS, Heu-Opt* Hakim Halim & Ohta (1993) 

F2 if2, sFM, sb, ia Cmax - DP Cheng & Kovalyov (1998) 

F2 s, sAnt, sb Cmax NP DP Cheng & Wang (1998) 

F2 dlJ, if, sF, sb, ia wE, cSR, wSum - PRH, GA Jordan (1998) 

F2 s, sb Cmax sNP PRH, LS Cheng et al. (2000) 

F2, O2 sM, sAnt, sb Cmax NP, sNP FPTAS, PRH Glass et al. (2001) 

F2 s, now, sb Cmax NP oAS* Lin & Cheng (2001) 

HF2 pF, if, sF, sb Cmax - oExAlg* Cheng et al. (2004) 

F2, HF2 in-tree, cr1, sM, pb, sb Cmax sNP oAS* Kovalyov et al. (2004) 

F p1, s, sb C - oAS* Mosheiov et al. (2004) 

F2 s, sAnt, sb Cmax sNP oAS* Lin & Cheng (2005) 

PF pC, s, cb, sb Cmax - oExAlg* Mosheiov & Oron (2005) 

O2 s, cb, sb Cmax - oExAlg* Gribkovskaia et al. (2006) 

HF2 in-tree, s, sb Cmax sNP oCH* Lin et al. (2007) 

F sM, sAnt, cb, sb Cmax sNP DP, oAS* Ng & Kovalyov (2007) 

F2 cr1, s, sAnt, now, cb, pb, sb Cmax sNP oAS* Oulamara (2007) 

HF pC, if, sF, sb, ia F, cSR - GA Quadt & Kuhn (2007) 

HF, 

avDyn 

dJ, net, if, sFS, minL, elig, 

mode, sb, ia 

wT, Cmax, cSR, 

wSum 
- MILP, PRH Voß & Witt (2007) 

O pC, s, cb, sb F, Cmax - oExAlg*, oAS* Mosheiov & Oron (2008b) 

O dJ, re, sM, conc, sb wC, Lmax, wU - oExAlg* Lin & Cheng (2011) 

J2 p1, sM, cb, sb Cmax - oExAlg* Mosheiov & Oron (2011) 

HF2 dJ, in-tree, s, sb C, Fmax, T, U - DP Hwang & Lin (2012) 

F2 rJ, crJ, s, now, cb, pb, sb, bM Cmax NP MILP, PSO Muthuswamy et al. (2012) 

J if, sFMS, sb, ia Cmax NP PRH, TS Shen & Buscher (2012) 

HF2 p1, sM, cb, sb Cmax - PTExAlg, DP Gerstl & Mosheiov (2013) 

HJ if, crJ, sFMS, cb, sb, bF, bLb Cmax NP SA, GA Castillo & Gazmuri (2015) 

F2 in-tree, if, s, sb Cmax - MILP, PRH Liao et al. (2015) 

HF, 

avSt 

pJM, rJ, dJ, if, cr1, sFMS, 

elig, sb, ia, bLb 
wC, wT, wSum sNP 

MILP, GCH, TS, GA, 

Meta-Meta 

Shahvari & Logendran 

(2016) 
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F2 rJ, crJ, s, now, pb, sb Cmax - 
MILP, PSO, oMetaP*, 

Meta-LS 
Zhou et al. (2016) 

HF2 dJ, s, sb T NP MILP, oCH*, LS Yu et al. (2017) 

F if, sFS, sb Cmax - MILP, TS Shen & Gupta (2018) 

HF crJ, sS, dcr, sb Cmax - MILP, DE Guo et al. (2020) 

Table 5: Classified literature with hb 

A B C D E & F Reference 

S cf, crJ, s, sFS, hb Cmax sNP MILP Toksarı & Toğa (2022) 

P pB, crJ, s, hb Cmax, Bal NP DM, PRH, GA, PSO, Meta-LS Zhang et al. (2020) 

P dJ, if, crJ, s, elig, hb, tOub cIh, cP, cSR, cTr sNP MILP, Meta-ExSM* Zehetner & Gansterer (2022) 

Appendix B 

Table 6: Instance properties 

Max. number of 

machines/stations 
# Max. number of jobs  # 

Max. batch 

capacity 
# 

Max. number of 

job families 
# 

2 8 < 75 13 < 10 7 2 2 

3 4 btw. 75 to 149 9 btw. 10 to 19 3 3 3 

4 0 btw. 150 to 299 11 btw. 20 to 49 6 4 1 

5 4 btw. 300 to 599 11 btw. 50 to 99 2 5 1 

6 4 btw. 600 to 1,199 9 btw. 100 to 249 0 6 0 

7 1 btw. 1,200 to 2,399 1 btw. 250 to 499 0 7 0 

8 2 btw. 2,400 to 4,799 1 ≥ 5   1 8 0 

9 2 btw. 4,800 to 9,599 0 unknown 4 9 0 

btw. 10 to 14 7 btw. 9,600 to 19,199 0   btw. 10 to 19 15 

btw. 15 to 19 0 ≥ 19,2   2   btw. 20 to 49 6 

btw. 20 to 29 3 unknown 2   ≥ 5  2 

btw. 30 to 49 0     unknown 3 

btw. 50 to 99 0 

≥ 1   or more 0 

unknown 1 
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