13,394 research outputs found

    Wetting gradient induced separation of emulsions: A combined experimental and lattice Boltzmann computer simulation study

    Full text link
    Guided motion of emulsions is studied via combined experimental and theoretical investigations. The focus of the work is on basic issues related to driving forces generated via a step-wise (abrupt) change in wetting properties of the substrate along a given spatial direction. Experiments on binary emulsions unambiguously show that selective wettability of the one of the fluid components (water in our experiments) with respect to the two different parts of the substrate is sufficient in order to drive the separation process. These studies are accompanied by approximate analytic arguments as well as lattice Boltzmann computer simulations, focusing on effects of a wetting gradient on internal droplet dynamics as well as its relative strength compared to volumetric forces driving the fluid flow. These theoretical investigations show qualitatively different dependence of wetting gradient induced forces on contact angle and liquid volume in the case of an open substrate as opposed to a planar channel. In particular, for the parameter range of our experiments, slit geometry is found to give rise to considerably higher separation forces as compared to open substrate.Comment: 34 pages, 12 figure

    Modeling Dispersive Coupling and Losses of Localized Optical and Mechanical Modes in Optomechanical Crystals

    Get PDF
    Periodically structured materials can sustain both optical and mechanical excitations which are tailored by the geometry. Here we analyze the properties of dispersively coupled planar photonic and phononic crystals: optomechanical crystals. In particular, the properties of co-resonant optical and mechanical cavities in quasi-1D (patterned nanobeam) and quasi-2D (patterned membrane) geometries are studied. It is shown that the mechanical Q and optomechanical coupling in these structures can vary by many orders of magnitude with modest changes in geometry. An intuitive picture is developed based upon a perturbation theory for shifting material boundaries that allows the optomechanical properties to be designed and optimized. Several designs are presented with mechanical frequency ~ 1-10 GHz, optical Q-factor Qo > 10^7, motional masses meff 100 femtograms, optomechanical coupling length LOM < 5 microns, and a radiation-limited mechanical Q-factor Qm > 10^7.Comment: 25 pages, 9 figure

    Laser velocimetry in the low-speed wind tunnels at Ames Research Center

    Get PDF
    The historical development of laser velocimetry and its application to low-speed (less than 100 m/sec) aerodynamic flows in the subsonic wind tunnels at Ames Research Center is reviewed. A fully three dimensional velocimeter for the Ames 7- by 10-Foot Wind Tunnel is described, and its capabilities are presented through sample data from a recent experiment. Finally, a long-range (2.6 to 10 m) velocimeter that is designed to be installed within the test section of the Ames 40- by 80-Foot Wind Tunnel is described and sample data are presented

    Imaging stress and magnetism at high pressures using a nanoscale quantum sensor

    Get PDF
    Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For the former, we quantify all six (normal and shear) stress components with accuracy <0.01<0.01 GPa, offering unique new capabilities for characterizing the strength and effective viscosity of solids and fluids under pressure. For the latter, we demonstrate vector magnetic field imaging with dipole accuracy <1011<10^{-11} emu, enabling us to measure the pressure-driven αϵ\alpha\leftrightarrow\epsilon phase transition in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1 noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions even in the absence of static magnetic signatures. By integrating an atomic-scale sensor directly into DACs, our platform enables the in situ imaging of elastic, electric and magnetic phenomena at high pressures.Comment: 18 + 50 pages, 4 + 19 figure

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-μm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-μm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications

    Linear laser diode arrays for improvement in optical disk recording for space stations

    Get PDF
    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated
    corecore