Guided motion of emulsions is studied via combined experimental and
theoretical investigations. The focus of the work is on basic issues related to
driving forces generated via a step-wise (abrupt) change in wetting properties
of the substrate along a given spatial direction. Experiments on binary
emulsions unambiguously show that selective wettability of the one of the fluid
components (water in our experiments) with respect to the two different parts
of the substrate is sufficient in order to drive the separation process. These
studies are accompanied by approximate analytic arguments as well as lattice
Boltzmann computer simulations, focusing on effects of a wetting gradient on
internal droplet dynamics as well as its relative strength compared to
volumetric forces driving the fluid flow. These theoretical investigations show
qualitatively different dependence of wetting gradient induced forces on
contact angle and liquid volume in the case of an open substrate as opposed to
a planar channel. In particular, for the parameter range of our experiments,
slit geometry is found to give rise to considerably higher separation forces as
compared to open substrate.Comment: 34 pages, 12 figure