1,569 research outputs found

    Optimal Microgrid Topology Design and Siting of Distributed Generation Sources Using a Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm

    Get PDF
    n this work, a problem of optimal placement of renewable generation and topology design for a Microgrid (MG) is tackled. The problem consists of determining the MG nodes where renewable energy generators must be optimally located and also the optimization of the MG topology design, i.e., deciding which nodes should be connected and deciding the lines’ optimal cross-sectional areas (CSA). For this purpose, a multi-objective optimization with two conflicting objectives has been used, utilizing the cost of the lines, C, higher as the lines’ CSA increases, and the MG energy losses, E, lower as the lines’ CSA increases. To characterize generators and loads connected to the nodes, on-site monitored annual energy generation and consumption profiles have been considered. Optimization has been carried out by using a novel multi-objective algorithm, the Multi-objective Substrate Layers Coral Reefs Optimization algorithm (Mo-SL-CRO). The performance of the proposed approach has been tested in a realistic simulation of a MG with 12 nodes, considering photovoltaic generators and micro-wind turbines as renewable energy generators, as well as the consumption loads from different commercial and industrial sites. We show that the proposed Mo-SL-CRO is able to solve the problem providing good solutions, better than other well-known multi-objective optimization techniques, such as NSGA-II or multi-objective Harmony Search algorithm.This research was partially funded by Ministerio de Economía, Industria y Competitividad, project number TIN2017-85887-C2-1-P and TIN2017-85887-C2-2-P, and by the Comunidad Autónoma de Madrid, project number S2013ICE-2933_02

    Robust design of a passive wind turbine system

    Get PDF
    The effectiveness of full passive Wind Turbine (WT) systems has been recently demonstrated. Such low cost and reliable structures without active control and with a minimum number of sensors can be efficient only if the system design parameters are mutually adapted through an integrated optimal design approach. Even if there is a good agreement between theoretical design models and an experimental prototype, it is relevant to evaluate the WT efficiency with respect to design variable variations. Thus, this work is devoted more specifically to the sensitivity analysis of a passive WT system according to electrical variable variations of the Permanent Magnet Synchronous Generator (PMSG). It also investigates the interest of a robust design approach for reducing the sensitivity of the WT efficiency to specific variable variations

    Reactive optimization of transmission and distribution networks

    Get PDF
    Some of the challenges associated with the multi-objective optimization on a modern power system were addressed in this work. Optimization of reactive resources was performed in order to simultaneously optimize several criteria: transmission losses, distribution losses, voltage stability, etc. The optimization was performed simultaneously on the entire power system; transmission and distribution subsystems included. The inherent physical complexity of modeling together transmission and distribution systems was considered first. After considering all pros and cons for such a task, a model of the entire power system was successfully developed. The inherent mathematical complexity of high-dimensional optimization space was handled by introducing the decoupling principle. System is first decoupled in several independent models and optimizations were performed on each part of the system. An algorithm is developed that properly combines the independent solutions to reach the overall system optima. The principle of algorithm synthesis is used to reduce the size of the solution space. Deterministic algorithms are used to locate the local optima which are subsequently refined by probabilistic algorithm. The algorithm is applied on a "real-life" test system and it is shown that the obtained solutions outperform the solution obtained with the conventional algorithms.Ph.D.Committee Chair: Begovic, Miroslav; Committee Member: Divan, Deepakraj; Committee Member: Dorsey, John; Committee Member: Ferri, Bonnie; Committee Member: Lambert, Fran

    Performance Assessment of Pareto and Non-Pareto Approaches for the Optimal Allocation of DG and DSTATCOM in the Distribution System

    Get PDF
    This paper proposes a Differential Evolution (DE) optimization algorithm and a Pareto-frontier Multi-Objective Differential Evolution (MODE) optimization algorithm for the optimal allocation of Distributed Generation (DG) and Distribution Static Compensator (DSTATCOM) in a radial distribution system. It considers the minimization of active power dissipation, voltage drop and the annual cost as the objectives of this optimization problem. The proposed techniques are tested on an IEEE 33 bus radial distribution system. To compare the performance of the MODE and DE, the weighted sum approach is carried out. This helps to select one solution from the Pareto front of the MODE. Case studies show that the allocation of both DG and DSTATCOM results in a noticeable reduction of system losses, voltage drop and annual cost. Comparative studies also show that the global convergence characteristics of MODE are better than several other optimization algorithms

    A probabilistic method for the operation of three-phase unbalanced active distribution networks

    Get PDF
    YesThis paper proposes a probabilistic multi-objective optimization method for the operation of three-phase distribution networks incorporating active network management (ANM) schemes including coordinated voltage control and adaptive power factor control. The proposed probabilistic method incorporates detailed modelling of three-phase distribution network components and considers different operational objectives. The method simultaneously minimizes the total energy losses of the lines from the point of view of distribution network operators (DNOs) and maximizes the energy generated by photovoltaic (PV) cells considering ANM schemes and network constraints. Uncertainties related to intermittent generation of PVs and load demands are modelled by probability density functions (PDFs). Monte Carlo simulation method is employed to use the generated PDFs. The problem is solved using ɛ-constraint approach and fuzzy satisfying method is used to select the best solution from the Pareto optimal set. The effectiveness of the proposed probabilistic method is demonstrated with IEEE 13- and 34- bus test feeders

    Coordinated Placement and Setting of FACTS in Electrical Network based on Kalai-smorodinsky Bargaining Solution and Voltage Deviation Index

    Get PDF
    To aid the decision maker, the optimal placement of FACTS in the electrical network is performed through very specific criteria. In this paper, a useful approach is followed; it is based particularly on the use of Kalai-Smorodinsky bargaining solution for choosing the best compromise between the different objectives commonly posed to the network manager such as the cost of production, total transmission losses (Tloss), and voltage stability index (Lindex). In the case of many possible solutions, Voltage Profile Quality is added to select the best one. This approach has offered a balanced solution and has proven its effectiveness in finding the best placement and setting of two types of FACTS namely Static Var Compensator (SVC) and Thyristor Controlled Series Compensator (TCSC) in the power system. The test case under investigation is IEEE-14 bus system which has been simulated in MATLAB Environment

    Energy management in electric vehicles: Development and validation of an optimal driving strategy

    Get PDF
    Electric vehicles (EVs) are a promising alternative energy mode of transportation for the future. However, due to the limited range and relatively long charging time, it is important to use the stored battery energy in the most optimal manner possible. Existing research has focused on improvements to the hardware or improvements to the energy management strategy (EMS). However, EV drivers may adopt a driving strategy that causes the EMS to operate the EV hardware in inefficient regimes just to fulfil the driver demand. The present study develops an optimal driving strategy to help an EV driver choose a driving strategy that uses the stored battery energy in the most optimal manner. First, a strategy to inform the driver about his/her current driving situation is developed. Then, two separate multi-objective strategies, one to choose an optimal trip speed and another to choose an optimal acceleration strategy, are presented. Finally, validation of the optimal driving strategy is presented for a fleet-style electric bus. The results indicated that adopting the proposed approach could reduce the electric bus’ energy consumption from about 1 kWh/mile to 0.6-0.7 kWh/mile. Optimization results for a fixed route around the Missouri S&T campus indicated that the energy consumption of the electric bus could be reduced by about 5.6% for a 13.9% increase in the trip time. The main advantage of the proposed strategy is that it reduces the energy consumption while minimally increasing the trip time. Other advantages are that it allows the driver flexibility in choosing trip parameters and it is fairly easy to implement without significant changes to existing EV designs. --Abstract, page iii
    • 

    corecore