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Abstract: In this work, a problem of optimal placement of renewable generation and topology design
for a Microgrid (MG) is tackled. The problem consists of determining the MG nodes where renewable
energy generators must be optimally located and also the optimization of the MG topology design,
i.e., deciding which nodes should be connected and deciding the lines’ optimal cross-sectional areas
(CSA). For this purpose, a multi-objective optimization with two conflicting objectives has been used,
utilizing the cost of the lines, C, higher as the lines’ CSA increases, and the MG energy losses, E,
lower as the lines’ CSA increases. To characterize generators and loads connected to the nodes, on-site
monitored annual energy generation and consumption profiles have been considered. Optimization
has been carried out by using a novel multi-objective algorithm, the Multi-objective Substrate Layers
Coral Reefs Optimization algorithm (Mo-SL-CRO). The performance of the proposed approach has
been tested in a realistic simulation of a MG with 12 nodes, considering photovoltaic generators and
micro-wind turbines as renewable energy generators, as well as the consumption loads from different
commercial and industrial sites. We show that the proposed Mo-SL-CRO is able to solve the problem
providing good solutions, better than other well-known multi-objective optimization techniques,
such as NSGA-II or multi-objective Harmony Search algorithm.

Keywords: Microgrids; network topology; distributed renewable generation; Multi-objective
Substrate Layers Coral Reefs Optimization algorithm (Mo-SL-CRO)

1. Introduction

Local and distributed generation is on the rise due to the constant evolution and improvement of
technologies related to the production of electricity using renewable energies, the storage in batteries
or other energy storage systems and the intelligent management systems. These advances are leading
to the development of Microgrids (MGs), small-sized networks of electricity users (loads) with local
sources of electricity supply and, sometimes, even containing energy storage systems [1]. These MGs
can operate connected to the main national grid or in islanded mode [2]. MGs promote installation of
Distributed Generation (DG) for self-consumption [3], and a reduction of electricity transportation lines
losses and, therefore, research efforts are focusing on the design and optimization of MGs’ topologies,
planning, energy management, etc.
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However, due to DG and the intermittent nature of renewable energy sources, design and
management of MGs pose great challenges. Thus, different reviews on the planning of a MG and
its optimization [4–6] show the complex procedures to consider that can be tackled as a sequence
of optimization processes to obtain best results. Issues optimized vary, mainly, from the design
determining the optimal power generation mix selection (renewable, diesel, etc.) to satisfy demand for
a particular area [7–9], the sizing and siting problem [10–16] or the scheduling to minimize operational
costs, environmental impact, quality, etc. while covering the demand [17–20].

Focusing on DG allocation and sizing, a complex problem with non-linear objective function
or constraints, heuristic algorithms represent an interesting option to solve it. A wide range of
objectives are suggested in the literature to perform the siting, such as power loss reduction,
stability voltage improvement, reliability improvement, cost reduction, etc. [10–24]. Normally,
the few times these works refer to the loads description, they are assumed invariant or of constant
power, although optimality found in these cases may not be of application when real time-varying
loads are used. Moreover, a wide range of optimization techniques has been proposed as well,
such as Radial Basis Functions [16], Invasive Weed Optimization [22], Plant Growth Simulation
algorithm [25], Bacterial Foraging Optimization algorithm [14,26], Honey bee mating [27], Coral reefs
optimization [28], etc. In all cases, optimal sizing and siting of DG are considered and effectiveness
of the optimization techniques is usually tested on standard network topologies such as IEEE
33-bus [22,23,25], 69-bus [16,23] or 69-radial [22]. In all these cases, several objective functions are
considered as a single one by using a weighted sum of them. In [23], the optimal sizing and siting of
DG in appropriate lines in the system is performed by minimizing the power losses and operating
cost using a weighted sum approach of them. No information is provided regarding the nature of the
loads used.

On the contrary, another approach is to find optimal locations and sizes by optimizing several
objective functions simultaneously, based on Pareto optimal fronts that yield to non-dominated
solutions [15,24,29,30]. Sheng et al. [15] propose the use of an improved version of the well-known
non-dominated sorting genetic algorithm II (iNSGA-II) to solve the multi-objective optimization with
consideration of line loss, voltage regulation and voltage stability margin. Test scenario used is IEEE
33-bus and no information is provided regarding the loads used or their profiles.

In [24], the authors use power losses and voltage regulation as objectives, and an improved
Multi-objective Harmony Search optimization technique based on Pareto fronts. Regarding the loads
used, two prototype systems are considered, but further information is not provided.

In [29] a strategy to place DG units in uncertain environments (modelled using fuzzy numbers) is
presented. Objective functions to be minimized are monetary cost (that includes investment, operation
cost and cost of losses), technical risks (including voltage and loading constraints violation) and
economic risk due to uncertainty of electricity’s market price.

Optimization problems feature two main stages. First, choosing the objectives and constraints,
as well as the generation and loads’ power profiles. Later, choosing the optimization algorithm to
determine the optimal solution.

In this work the type of microgrid considered is formed by several electric points of consumption
(loads), each located at a different “node”. The MG’s nodes are connected conforming a topology,
that may be a radial topology, where all nodes are connected to a main one (the PCC, Point of Common
Coupling, the node connecting to the main grid), a fully mesh topology, where all nodes are connected
to each other, or any in-between topology. To determine the design criteria, several options referred
in the literature by different authors have been presented before. In this work we have chosen to
consider the MG’s economic cost and the energy losses associated to the topology, as most authors
are prone to consider them as key design criteria. In addition, siting of DG is added to the problem,
increasing the difficulty of the design process. Furthermore, instead of the use of constant power
loads attached to the nodes, on-site monitored annual industrial and commercial consumption profiles
are considered. Eventually, optimal siting of DG and optimal topology design (determining which
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nodes should be connected by lines and which cross-sectional areas should be used) will be analized
considering the MG’s costs and its energy losses. Moreover, these aspects are also conflicting to one
another: the more expensive the topology is (higher lines’ cross-sectional areas), the lower the energy
losses are. Therefore, we propose the use of a multi-objective optimization approach to determine a
front of non-dominated solutions (no solution in the front is better or worse than the others, and the
decision maker needs to choose the most fitted solution for his/her interests). In this paper we propose
modifying the Coral Reefs Optimization (CRO) algorithm [31], an evolutionary-based algorithm that
shows good convergence and optimization skills, to be able to tackle multi-objective approaches. To do
so, we propose to enhance the algorithm with Substrate Layers [32] and then, adapt it to be able to
generate a full Pareto front to tackle conflicting objectives. In conclusion, the main contribution of
this work is presenting the novel and powerful algorithm “Multi-objective Substrate Layers Coral
Reefs Optimization algorithm (Mo-SL-CRO)”, and testing it on a MG equipped with several loads
(represented by real monitored consumption profiles) where distributed renewable generation needs
to be allocated.

The remainder of the paper is organized as follows: Section 2 states the formulation of the problem
at hand, defining all variables considered and the mathematical formulation of the objective functions.
Section 3 explains the methodology used by introducing the novel multi-objective Substrate Layer
Coral Reefs Optimization algorithm, the different substrates considered, solutions’ encoding and
metrics to analyze the algorithm’s performance. Finally, results obtained are given in Section 4 and
some conclusions are drawn in Section 5.

2. Problem Formulation

The aim of this work is to optimize the network topology and structure of a microgrid, considering
the design of the lines that connect the nodes in the grid (which nodes should be interconnected and
which should not, and which cross-sectional area (CSA) should be used for those lines) and the best
node(s) to locate each DG unit. This optimization will consider simultaneously two conflicting to one
another objectives: lines’ deployment cost, C, higher as the line’s CSA increases, vs the energy losses,
E, lower as the line’s CSA increases. However, any other objectives can be added to the problem to be
optimized by the proposed algorithm.

Let us consider a MG that formed by N nodes, where the power lines that connect nodes i and k
in the grid may have different cross-sectional areas represented by aik. Therefore, an N × N matrix, S ,
can be formed to represent the microgrid’s topology, where each position S(i, k) stands for the CSA of
the line connecting nodes i and k. If those nodes are not connected, and there is no power line between
them, a zero will be used at position (i, k). Note that, by definition, as a node cannot be connected to
itself by any line, ∀i ∈ {1, . . . , N},S(i, i) = 0.

Furthermore, a given number of different types of loads (i.e., industrial, commercial or domestic)
are allocated at the nodes of the MG and are characterized, in this work, by their annual power
hourly-consumption profiles. Other elements of the microgrid to be considered are renewable energy
generators (specifically, wind-turbines and photovoltaic generators have been used) that may be placed
conveniently at any node N. Thus, an N × 2 matrix T that represents the renewable energy generators
to be allocated at each node N can be defined.

Consequently, the objective of this work is to optimize the topology, S , and assign the generators,
T , using two design criteria: the total energy losses of the lines, E, and the total cost of those lines, C.

To obtain the energy losses of a given topology (where the lines’ CSAs and the location of
generators and consumption loads are set), the power flowing over the lines of the grid has to be
determined. This procedure is iterative [33] and time consuming, thus, under certain circumstances
(such as those ocurring in small-sized MGs with low-voltage supply networks), several assumptions
can be made that simplify the process to obtain the power losses [34]. Let us define Lik as the power
losses corresponding to the line connecting the pair of nodes (i, k) (Equation (1)). These losses are
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determined by the power transmitted over that line at time t, Pt
ik, obtained using the DC power

flow method [34].

Lt
ik = (

Pt
ik

Vnom
)

2

⋅ Rik = (
Pt

ik
Vnom

)

2

⋅ ρ ⋅
lik
aik

(1)

where Rik is the resistance of the line that connects the pair of nodes (i, k). The resistance is characterized
by the cross-sectional area (aik), the length (lik), and the resistivity of the material (ρ). Vnom is a constant
standing for the nominal voltage value (Volts) of the MG. Consequently, the line’s energy losses, Eik,
are obtained as depicted in Equation (2).

Eik =
T
∑
t=1

Lt
ik (2)

Finally, summing up each line’s energy losses, the total energy losses are obtained (Equation (3)).

E(x) =
N−1
∑
i=1

N
∑

k=i+1
Eik (3)

where x stands for the individual that represents a particular MG network topology (S) and a specific
generators’ location (T ).

Additionally, the location of the generators yields to different topologies that present certain
infrastructure costs that have been approximated as in Equation (4).

C(x) =
N
∑
i=1

N
∑
k=i

lik ⋅ [Cins + aik ⋅Cmat] (4)

Note that Cmat stands for the unity cost per m ⋅mm2 of the line and Cins stands for the unity cost
per m of the lines’ installation.

3. Materials and Methods

This Section starts specifying the algorithm proposed to solve the multi-objective optimization
problem. It then continues with the definition of the substrates chosen to empower the algorithm
in different manners: generation of best larva candidates, stretching of the Pareto front, etc. Next,
a subsection determining the individual’s encoding is provided. Then, the flowchart of the overall
procedure is presented, showing the Mo-SL-CRO steps and how the individual’s fitness (health)
functions are obtained using Equations (3) and (4), introduced in Section 2. Finally, the optimization
performance metrics needed to objectively compare Pareto optimal fronts is introduced, as each
solution is not better or worse than the others contained in the front, and it is the decision maker the
one that has to decide which solution suits best for his/her interests.

3.1. The Multi-Objective Substrate Layers Coral Reefs Optimization Algorithm

The original Coral Reefs Optimization (CRO) Algorithm [31,35,36] is an evolutionary-based
algorithm that simulates the processes occurring in a coral reef. Furthermore, when substrate
layers (each representing a different exploration mechanism) are implemented constituting the
so called Substrate Layers Coral Reefs Optimization algorithm (SL-CRO), survival of coral larvae
depending on the substrate is emulated, and competitive co-evolution is added to the the original
CRO algorithm [32,37].

Nevertheless, this is a mono-objective algorithm and if the problem under study needs to optimize
conflicting to one another objective functions, it has to be addressed as multi-objective and a new
algorithm needs to be defined in order to produce a front of non-dominated solutions. In this case,
a possible solution vector x1 is said to dominate another solution vector x2 (denoted by x1 ≻ x2) if and
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only if x1 is not worse than x2 in all i objectives (∀i ∶ fi(x1) ≤ fi(x2), i = 1, . . . , m) and is strictly better
than x2 in at least one objective (∃i∣ fi(x1) < fi(x2), i = 1, . . . , m).

This subsection explains the multi-objective non-domination based Substrate Layers Coral Reefs
Optimization algorithm (Mo-SL-CRO). LetR be an R1 × R2 grid simulating the reef, where each cell is
represented by three values (i, j, s). (i, j) denotes the cell location inR and is able to allocate a coral or
a colony of corals (Ψi,j). Index s ∈ {S1,⋯, SN} represents the substrate layer associated to position (i, j).
Thus, the reef is divided in SN different substrate layers.

Each coral (solution) is labeled with two or more associated health functions f ((Ψij)
k) ∶ A → R

(k ∈ {S1,⋯, SN}) that correspond to the problem’s opposite objective functions. The CRO is based on
the fact that the reef will evolve and develop as long as healthier or stronger corals (which represent
better solutions to the problem at hand) survive, while less healthy corals perish. In the multi-objective
algorithm a coral is considered stronger if it dominates the existing coral in all objectives.

The algorithm starts with an initialization process, where a percentage of the elements of the grid
is assigned with random corals, leaving the other elements unoccupied. These holes are available to
settle new corals in later phases of the algorithm. The initial occupation factor (i.e., the rate between
free and occupied cells inR) is a parameter of the algorithm denoted as ρ0 (0 < ρ0 < 1).

The second phase simulates the formation of the reef, implementing the processes of reproduction
and prey, and is repeated k ∈ {1 . . . K} iterations. The different reproduction mechanisms available in
nature are recreated by sequentially applying different operators:

1. Sexual reproduction: The CRO algorithm implements three different types of sexual reproduction:
external, internal and asexual.

1.1. External sexual reproduction or Broadcast spawning. In nature, most reef’s corals reproduce
ejecting gametes. These gametes combine and produce a new larvae. To model this
procedure in the SL-CRO algorithm, a high fraction Fe of the reef’s existing corals are
chosen (the broadcast spawners). For a given coral, its substrate layer s is checked to
determine the exploration strategy to apply (Section 3.2). Depending on the operator to
be used in that particular substrate, one, two or more corals will be chosen to create the
new larva. Note that if a coral is chosen to father a larva at a given iteration k, it will not be
selected for other external reproduction purposes during that iteration. The selection of
the corals can be performed using different techniques, i.e., randomly, uniformly, or using
any selection approach proportionate to the health function (e.g., roulette wheel).

1.2. Internal sexual reproduction or Brooding. In nature, the reproduction technique of
hermaphrodite corals is called brooding. The CRO algorithm models brooding using
any type of mutation mechanism. To do so, it considers the remaining fraction of corals
that were not chosen for broadcast spawning (Fi = 1− Fe). Next, a percentage Pi of the coral
is mutated.

1.3. Asexual reproduction or Budding. Another reproduction technique in corals is asexual,
where new larvae are formed by fragmentation or budding. The CRO models this nature’s
mechanism using a mutation process. All corals in the reef are considered and sorted by
their health function ( f (Ψij)). Next, a fraction Fa of the healthier individuals are chosen.
Then, to provide more variability to the reef’s population, new larvae are formed using
mutation with probability Pa.
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2. Larvae settlement. Once all new larvae are formed at iteration k, they try to settle down and
grow in the reef. Each larva will randomly attempt at setting at a position (i, j) of the reef. If there
is no coral at it, the coral grows there, independently of its health function. On the contrary, if the
position is already occupied, the new larva will set only if it dominates in all axes the existing
larva (its health functions are better than the fitness functions of the existing coral). We define
a number of attempts Natt for a larva to set in the reef: after Natt unsuccessful tries, it will be
discarded and die.

3. Prey. In nature, there are some corals that die during the formation of the reef. This process is
simulated choosing a small amount of settled corals (Fp) that are removed with a small probability
(Pp) at the end of each reproductive iteration k. Thus, some space in the reef is freed to allow for
the settlement of worst-fitted larvae during next generation (iteration k + 1), opening the search
space to new .

To determine which corals die during this step, a procedure similar to that applied in NSGA-II [38]
is used in the Mo-SL-CRO algorithm. First, a non-dominated sort of the reef’s population
is performed (calculating each coral’s rank). Then, an estimate of the density of solutions
surrounding each particular coral is obtained, using the crowded comparison operator. Finally,
between two corals with differing non-domination ranks, the coral with lower rank will be kept.
If both belong to the same rank, the coral located in a region with lesser number of points will
be kept.

3.2. Substrate Layers Used in This Work

Many possible substrate layers may be used to implement the competitive co-evolution of the
SL-CRO algorithm. In this work, the following substrates have been considered.

• Harmony Search (HS) [39]. It is inspired on the search of best music harmonies through
improvisation. The next harmony is determined obtaining several combinations following
these rules: (1) Choosing the new combination from the memory. (2) Considering a harmony
from the memory that is adjacent to the given one. (3) Generating a random combination. For this
purpose, two parameters are defined: Harmony Memory Considering Rate (HMCR) and Pitch
Adjusting Rate (PAR) that are used to create the Harmony Search Memory (HM) needed to try
new harmonies.

Considering this substrate layer means improvising a new larva using the HM, and no existing
coral (parent) is needed to create it.

• Differential Evolution Mutation (DEM) [40]. Three parents (parent-A, parent-B and parent-C)
are chosen randomly from the existing reef to create a new larva as follows: the weighted
difference between parent-A and parent-B is added to parent-C (weights are randomly chosen).

• 2-points Crossover (2PX). Two existing corals are chosen as parents (parent-A and parent-B) of
the new larva. Then, two cross-points from parent-A are picked out randomly. New larva inherits
genetic code in-between those cross-points from parent-A, and the rest from parent-B.

• Gaussian Mutation (GM). An existing coral is chosen as parent of one new larva, and a unit
Gaussian distributed random value is added to each gene (element) in the coral. If it falls outside
the upper or lower bounds, the new gene is adjusted to the correct bound.

• Strange attractors-based mutation (SABM). SABM [41] is a search operator that replicates
fractal geometric patterns to obtain structures of non-linear dynamical systems with chaotic
behaviour [42]. For this purpose, one coral made up of T genes or elements (x = [x1x2 . . . xi . . . xT])
is used as parent of the next generation’s larva (x′ = [x′1x′2 . . . x′i . . . x′T]). Each gene x′i of the
mutated larva is obtained as:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x′i = xi + Fυ; probability P
or
x′i = xi + Fω; probability (1−P)
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where P is the probability of choosing between one expression or the other, F controls the
mutation width and υ or ω are determined using a two-dimensional quadratic map formed as:

⎧⎪⎪
⎨
⎪⎪⎩

υ = υγ = a1 + a2υγ−1 + a3υ2
γ−1 + a4υγ−1ωγ−1 + a5ωγ−1 + a6ω2

γ−1
ω = ωγ = a7 + a8υγ−1 + a9υ2

γ−1 + a10υγ−1ωγ−1 + a11ωγ−1 + a12ω2
γ−1

This procedure allows to generate very different attractors using a reduced number of parameters.
In this work, the SABM has been implemented following the procedure proposed in [41] and
50 different attractors have been defined (each attractor has 12 parameters, a1-a12, associated in
the range [−1.2, 1.2]). A random attractor is used each time the operator is applied, therefore
obtaining the quadratic map over a random number γ ∈ [500, 1000] of iterations starting from an
initial condition (υ0, ω0) = (0.6, 0.9) until υ and ω are found. Thus, over 2510 different attractors
(intermittent, convergent to a periodic orbit or chaotic) are generated.

• Simulated Binary Crossover (SBX) attempts to simulate the single-point crossover operator used
in binary-encoded Genetic Algorithms, producing children (larvae) with same average value as
their parents (corals) and being more likely near the parents [43]. Thus, two existing corals are
chosen as parents and two different larvae are generated.

• Polynomial Mutation (PM) models the generation of offsprings using binary-encoded bit-flip
mutation on real-valued decision variables, favouring mutated solutions to be near the parent
generating them [44].

3.3. Individual’s Encoding

Each solution to the problem x, a.k.a. individual, encodes, using integer numbers, the information
in S and T . A first factor to be considered is that S is a symmetric matrix (the line connecting nodes i
and k is the same as the one connecting k and i) and the elements of the main diagonal are equal to
zero (there is no line connecting a node to itself). Thus, only the upper triangular matrix without the
main diagonal needs to be encoded in the individual. Notation used to refer to the CSA of the line
connecting nodes n1 and n2 is an1n2 .

The second factor is that T stores the number of generators per node and represents a finite
quantification of the generator’s size (nominal power). In this work two types of renewable energy
generation have been considered: wind turbines (W) and photovoltaic generators (PV). An example of
the notation used to define the number of wind turbines at node n1 is: NW

n1
.

Therefore, the individual is encoded as:

x = [an1n2 an1n3 . . . an1nN ∣ an2n3 an2n4 . . . an2nN ∣ . . . ∣ anN−1nN ∣

NW
n1

NW
n2

. . . NW
nN

∣ NPV
n1

NPV
n2

. . . NPV
nN

]

3.4. Overall Optimization Procedure

The multi-objective formulation of the problem at hand consists of finding the optimal MG’s
topology, S, together with the optimal siting for the renewable generation, T . This information is
encoded in each individual/coral considered in the Mo-SL-CRO (Section 3.3). The optimization
algorithm (Sections 3.1 and 3.2) will then obtain a family of non-dominated solutions x (Pareto front)
in terms of the two health functions considered: f1(x) = C(x) and f2(x) = E(x) that optimize S and T
(Section 2). The flowchart of the overall optimization procedure is shown in Figure 1.
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Figure 1. Flowchart of the overall optimization procedure.

3.5. Multi-Objective Optimization Performance Metrics

The multi-objective optimization algorithms aim to find a set of non-dominated Pareto optimal
solutions. Each of these solutions is not better or worse than the others contained in the front, and it
is the decision maker the one that has to choose the solution that suits his/her interests best [45,46].
Therefore, when comparing Pareto fronts obtained by different methodologies it is necessary to apply
metrics [45–48] that indicate the overall performance of each front. These types of metrics are divided
in those in which the optimal front or ideal trade-off is known, or those where an ideal front or function
to verify the overall performance of the set of solutions is not needed. The latter are the ones that are
used in this work.

These evaluation metrics usually involve three indexes, grouped in two goals:

1. Convergence or closeness: the best solutions (non-dominated) are those more approximate to
the Pareto optimal solutions.

2. Diversity: The diversity concept can be separated in two different measures, which in the ideal
case should be jointly fulfilled.

• Spread: the best solutions should cover most of the Pareto optimal frontier.
• Spacing: the best solutions should be uniformly distributed (relative distance among

solutions) along the Pareto optimal frontier.

These metrics are partly conflicting, therefore there is no metric able to determine the performance
of a multi-objective algorithm in an absolute sense. Therefore, there is a clear need of considering at
least two performance metrics for adequately assess both goals.

In some cases, the result obtained using the evaluation metrics, depends on the scale and/or
intervals of values that each of the objectives to optimize can reach [45,48]. For this purpose we
have chosen to normalize each non-dominated solution, so that, problems of magnitude, scale,
and maximum and minimum values that can take each of the solutions are avoided. Specifically,
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on each Pareto front Q, and for each objective j, each solution i is transformed into a solution i′,
normalized to [0, 1] and therefore maximized for the comparison procedure:

i′j =
1

1+ ij
, ∀ i ∈ Q, j = 1, 2

The metrics most used in the literature and utilized in this work are the following:

• Hypervolume or Hyperarea (HA): This metric calculates the volume in the objective space
covered by the solutions of a Pareto front. Mathematically, for each solution i belonging to
Q, a hypercube vi is constructed with a reference point W, in this work W = (0, 0). HA takes
into consideration both closeness and diversity, providing a combined qualitative measure.
The objective of this metric is its maximization in the interval [0, 1], being 1 the best possible HA.

Note that if normalization is not carried out, this metric would clearly manifest important
problems, as the first objective function takes values an order of magnitude more than that of the
second objective. A unit improvement in the first objective would reduce HA much more than a
unit in the second objective.

• Zitzler’s Spread (SPR): SPR measures the spread of the trade-off surface [49]. It is a measure that
obtains the length of the diagonal of a hyperbox formed by the extreme function values of the
trade-off surface, using the sum of the greatest distance for each objective i.

For two objectives, this measure refers to the two solutions with the longest Euclidean distance in
the objective space. Thus, the objective of this metric is its maximization, but it is important to
note that it does not reveal the distribution of intermediate solutions, becoming paramount its
use along with another metric that measures the uniformity of the Pareto front.

• Schott’s Spacing (SPA): This metric is calculated with a relative distance measure di for each
solution i on the trade-off [50]. Specifically, di is the minimum value of the sum of the absolute
difference for each objective between the i-th solution and any other solution in the obtained
non-dominated set (note that it is different from the minimum Euclidean distance). Taking this
into account, the standard deviation of the distances di is calculated, so that, if the solutions are
uniformly spaced, the corresponding distance measure will be small. Thus, the objective of this
metric is its minimization.

• Hole Relative Size (HRS): The spacing metric SPA computes a mean error with respect to an ideal
spacing, but it could have a tendency to hide some important gaps. HRS allows to measure the
size of the biggest hole on the trade-off surface between neighbors [48]. Specifically, the distance
of each solution with respect to its nearest neighbor is calculated, and then, the maximum of those
distances is divided by the mean of the distances of each solution respect to its nearest neighbor.
The objective of this metric is its minimization (the best and lowest possible value is 1, that is,
the biggest distance between neighbors coincides with the mean).

4. Results

This section describes the MG used in this work: loads’ profiles considered, DG and types of
generators used, distances separating the nodes in the grid, etc. Later, an assessment of the proposed
Mo-SL-CRO algorithm is presented, providing results obtained with different combinations of substrate
layers and comparing them with the outcomes of well-known multi-objective algorithms (NSGA-II,
Multi-objective Harmony Search).

4.1. Description of the MG and the Generators and Loads Used

The proposed multi-objective algorithm has been tested on a twelve-noded MG (N = 12) where
the nodes are separated by distances shown in Table 1. Eleven different loads (relating to commercial
and industrial consumptions), Li, modeled by their real-life annual hourly-consumption profiles,
have been used and placed as shown in Figure 2.
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Table 1. Distance separating each pair of nodes in the MG. A distance of 1 corresponds to 100 m.
Distances’ matrix is symmetrical lik = lki (it has not been represented that way for clarity purposes) and
all elements in the main diagonal are equal to zero.

Node # 2 3 4 5 6 7 8 9 10 11 12

1 0.6 0.8 1.6 1.3 0.6 1.3 0.4 1.2 1.3 2.0 1.9
2 - 0.5 1.1 0.7 0.3 0.8 0.6 1.0 0.9 1.4 1.4
3 - - 0.7 0.6 0.8 0.9 1.0 1.5 1.2 1.4 1.2
4 - - - 0.4 1.4 0.9 1.7 1.9 1.5 1.0 0.6
5 - - - - 0.9 0.5 1.3 1.4 1.0 0.9 0.6
6 - - - - - 0.7 0.4 0.7 0.7 1.5 1.5
7 - - - - - - 1.2 1.0 0.5 0.7 0.9
8 - - - - - - - 0.8 1.0 1.9 1.9
9 - - - - - - - - 0.4 1.6 1.8

10 - - - - - - - - - 1.1 1.3
11 - - - - - - - - - - 0.5
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N9 N10 N11

N12
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1
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9

L

L

L

L L

L

L

L

L

L

L

(PCC)
l1-3= 80m

l9-10 = 40m

l
7-11 =

70m

Figure 2. Distribution of the loads in the MG.

The objective is to optimally allocate 800 kW of photovoltaic generation (using sixteen 50 kW
PV units that add up a total energy generated of 1,316,998.96 kWh) and four 175 kW micro-wind
turbines (1,302,277.92 kWh generated). At the same time, optimal cross-sectional areas of the
lines that should be installed in the MG to minimize energy losses and total cost are determined.
According to the normalized cross-sectional areas referred in the IEC 60364-5-52:2009/Corr:2011
(Low-voltage electrical installations) [51], the set of possible line CSAs considered in this work is:
aik ∈ {6, 10, 16, 25, 35, 50, 70, 95, 120, 150, 185, 240, 300, 400, 500, 630} [mm2].

To continue characterizing the loads and generators, Table 2 shows the annual micro-wind and
photovoltaic energy generation per year, as well as the annual energy consumption of the loads.
Later, the annual energy consumption in the microgrid (∑L−∑G) divided by the number of nodes
is presented.
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Table 2. Annual energy consumption in the MG divided by the number of nodes at the scenario.

Profile Number of Generators/Loads Energy Consumption [kWh]

Per Unit Total

GPV 16 82,312.00 1,316,992.00
GW 4 325,569.00 1,302,276.00
L1 3 382,194.42 1,146,583.26
L2 1 461,280.58 461,280.58
L3 1 445,640.19 445,640.19
L4 1 398,193.68 398,193.68
L5 1 421,681.87 421,681.87
L6 1 400,714.81 400,714.81
L7 1 428,316.70 428,316.70
L8 1 324,092.84 324,092.84
L9 1 323,307.95 323,307.95

Annual energy consumption divided by N = 12 [kWh] 146,322.21

Considering the loads’ power consumption at each node i during a time interval T as Li =

{Li
(t=1),L

i
(t=2), . . . ,Li

(t=T)}, and the power generated at each node i during a time interval T as G i =

{G i
(t=1),G

i
(t=2), . . . ,G i

(t=T)}, the DC power flow can be solved [34] obtaining the power flowing through
each line is obtained, therefore all lines energy losses may be determined afterwards.

4.2. Assessment of the Mo-SL-CRO

First of all, an assessment of the proposed multi-objective substrate-based algorithm has
been performed using the tuned parameters showed in Table 3 and randomized initialization.
The two health functions considered are those defined by the two conflicting objectives presented in
Equations (3) and (4).

Table 3. Mo-SL-CRO optimization parameters.

Phase Parameter

Inicialization
Reef size = 14× 10 (140 elements)
µ ∈ {1 . . . 7} (7 possible substrates)
ρ0 = 0.8 (total of 112 corals)

External sexual reproduction Fe = 0.97

Internal sexual reproduction Fi = 1− Fe = 0.03
Pi = 0.30

Asexual reproduction Fa = 0.05
Pa = 0.005

Larvae setting Natt = 3
Identical corals are not allowed in the reef.

Depredation Pp = 0.10
Fp = 0.40

Stop criteria kmax = 500 iterations.

For this purpose, several experiments have been run considering the reef formed by just one type
of substrate at a time. Therefore, seven Pareto fronts have been obtained using the following substrates:
(1) Harmony Search (HS), (2) Differential Evolution (DE), (3) 2-points crossover (2PX), (4) Gaussian
Mutation (GM), (5) Strange attractors-based mutation (SABM), (6) Polinomial mutation (PM), and (7)
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Simulated Binary Crossover (SBX), and have been compared with the proposed algorithm using all
seven substrates in contend (Mo-7SL-CRO). Results obtained are presented in Figure 3 and Table 4.

According to this, the multi-objective Mo-1SL-CRO using the SBX (Simulated Binary Crossover)
substrate layer is the best algorithm, as it covers the most hypervolume, HA, and has the smallest
spacing. The main issue of this algorithm is that it has a very small diversity (SPR). The second best
algorithm is the Mo-7SL-CRO, that presents the second best HA and the best SPR, although showing
bad spacing between solutions.

1,000 2,000 3,000 4,000 5,000 6,000

E

0

5,000

10,000

15,000

20,000

25,000

30,000

C

HS substrate layer

DE substrate layer

2PX substrate layer

GM substrate layer

SABM substrate layer

PM substrate layer

SBX substrate layer

Mo-7SL-CRO

Figure 3. Comparison of the Pareto fronts obtained using multi-objective CRO with the reef formed
only by one type of substrate and the Mo-7SL-CRO.

Table 4. Main performance metrics’ results corresponding to Figure 3. ↑ represents Maximization and
↓Minimization. The best result for each metric is shown in boldface, while the second one is presented
in italics.

Algorithm Metrics

HA (↑) SPR (↑) SPA (↓) HRS (↓)

Mo-1SL-CRO: HS 6.6817 × 10−8 4.6625 × 10−4 8.4446 × 10−6 1.8472
Mo-1SL-CRO: DE 7.2183 × 10−8 4.4331 × 10−4 6.3684 × 10−6 2.1950
Mo-1SL-CRO: 2PX 6.5093 × 10−8 3.6942 × 10−4 4.6958 × 10−6 10.7885
Mo-1SL-CRO: GM 3.3227 × 10−8 4.2093 × 10−4 5.2403 × 10−5 2.8114

Mo-1SL-CRO: SABM 5.0976 × 10−8 3.8077 × 10−4 6.0658 × 10−6 2.4426
Mo-1SL-CRO: PM 2.9044 × 10−8 3.0797 × 10−4 6.9765 × 10−6 2.4630
Mo-1SL-CRO: SBX 8.5343 × 10−8 2.8038 × 10−4 2.7530 × 10−6 3.2094

Mo-7SL-CRO 8.1182 × 10−8 5.1537 × 10−4 7.5753 × 10−6 3.7524

Considering the different performances of the substrates chosen (some of them presenting
poor results), a thorough study of multi-objective µ-substrates CRO (Mo-µSL-CRO) was conducted.
Therefore, all combinations of µ ∈ {1 . . . 6} were run, resulting in best performance when three specific
substrates were used together, namely SBX, 2PX and DE (Mo-3SL-CRO(SBX/2PX/DE)).

Figure 4 and Table 5 present a comparison of the best Mo-3SL-CRO and the Mo-7SL-CRO,
together with two well-known multi-objective techniques in the literature: the NSGA-II and the
Multi-objective Harmony Search (Mo-HS). Note that for clarity purposes, results obtained with all
possible combinations of substrate layers tried are not shown in the table nor in the figure. It can be
seen that the Mo-3SL-CRO is the algorithm performing best, producing also a more spreaded and less
spaced front than the reference algorithms.
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Figure 4. Pareto fronts obtained using Mo-7SL-CRO (multi-objective 7 substrates CRO), Mo-3SL-CRO,
multi-objective Harmony Search algorithm (Mo-HS) and NSGA-II.

Table 5. Main performance metrics’ results corresponding to Figure 4. ↑ represents Maximization and
↓Minimization. The best result for each metric is shown in boldface, while the second one is presented
in italics.

Algorithm Metrics

HA (↑) SPR (↑) SPA (↓) HRS (↓)

NSGA-II 4.7811 × 10−8 3.6453 × 10−4 1.4696 × 10−6 3.9872
Mo-HS 8.6657 × 10−8 4.3820 × 10−4 7.9602 × 10−6 5.9867

Mo-3SL-CRO (SBX/2PX/DE) 1.0405 × 10−7 4.8956 × 10−4 5.7188 × 10−6 2.9453
Mo-7SL-CRO 8.1182 × 10−8 5.1537 × 10−4 7.5753 × 10−6 3.7524

Furthermore, a comparison of the best Mo-3SL-CRO (using three substrate layers DE/SBX/2PX)
with the Mo-1SL-CRO using only one substrate per experiment was also run and results are shown in
Figure 5 and Table 6, along with the multi-objective harmony search algorithm. It can be seen that,
if the proposed multi-objective algorithm is run considering only one substrate, performance is not
as appropriate as that obtained using all those substrates in contend. Best hyperarea, second best
spreading and second best HRS spacing. Again, the Mo-7SL-CRO presents worse performance than
the Mo-3SL-CRO, as too many substrate layers in the algorithm introduce noise to the system.

Table 6. Main performance metrics’ results corresponding to Figure 5. ↑ represents Maximization and
↓Minimization. The best result for each metric is shown in boldface, while the second one is presented
in italics.

Algorithm Metrics

HA (↑) SPR (↑) SPA (↓) HRS (↓)

Mo-HS 8.6657 × 10−8 4.3820 × 10−4 7.9602 × 10−6 5.9867
Mo-1SL-CRO: DE 7.2183 × 10−8 4.4331 × 10−4 6.3684 × 10−6 2.1950
Mo-1SL-CRO: 2PX 6.5090 × 10−8 3.6942 × 10−4 4.7144 × 10−6 10.5966
Mo-1SL-CRO: SBX 8.5343 × 10−8 2.8038 × 10−4 2.7530 × 10−6 3.2094

Mo-3SL-CRO (SBX/2PX/DE) 1.0405 × 10−7 4.8956 × 10−4 5.7188 × 10−6 2.9453
Mo-7SL-CRO 8.1182 × 10−8 5.1537 × 10−4 7.5753 × 10−6 3.7524
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Figure 5. Comparison of the Pareto fronts obtained using multi-objective CRO with the reef formed
only by one type of substrate and the Mo-7SL-CRO.

Additionally, a study considering the prey of different fractions of the reef (Fp) as well as different
probabilities to perform predation at each iteration (Pp) has also been conducted and can be found in
Figure 6 and Table 7. It is important to highlight that prey is needed in the algorithm, as it allows to
clear a part of the reef and new solutions (located at other parts of the solutions’ space) can enter the
reef and form new corals, escaping from local minima and extending the Pareto front. If no prey takes
place, it can be observed that the algorithm is able to find good solutions but concentrated on a small
area of the solutions’ space (only the SPA metric is good, but really poor results in HA, SPR and HRS
are obtained). On the contrary, high prey probabilities and fractions of corals preyed over-decimate
the population and turn the algorithm into a random search, being the frontier to that a Pp = 20%
and a Fp = 50%. In between, each combination of Pp and Fp results in more spreaded or less-spaced
outcomes. In our case, we chose a prey population of 10% and a fraction of the reef preyed of 40%,
as this combination is a good trade-off between convergence (it presents the second best hyperarea),
spreading and spacing of the front (in both cases close to the second best).
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Figure 6. Comparison of the Pareto fronts obtained using the Mo-3SL-CRO (DE/SBCX/2PX) for
different prey probabilities (Pp) and fractions of the reef preyed (Fp).
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Table 7. Main performance metrics’ results corresponding to the Mo-3SL-CRO presented in Figure 6.
↑ represents Maximization and ↓Minimization. The best result for each metric is shown in boldface,
while the second one is presented in italics.

Algorithm Metrics

HA (↑) SPR (↑) SPA (↓) HRS (↓)

Pp = 0% 5.9680 × 10−8 4.3620 × 10−5 7.2532 × 10−7 7.2436
Pp = 10%, Fp = 25% 9.1250 × 10−8 3.7871 × 10−4 5.3818 × 10−6 9.6488
Pp = 10%, Fp = 40% 1.0405 × 10−7 4.8956 × 10−4 5.7188 × 10−6 2.9453
Pp = 10%, Fp = 50% 9.9919 × 10−8 5.0712 × 10−4 7.4044 × 10−6 6.5887
Pp = 20%, Fp = 25% 9.8817 × 10−8 5.3255 × 10−4 7.2635 × 10−6 3.2939
Pp = 20%, Fp = 50% 1.0412 × 10−7 5.6316 × 10−4 7.3454 × 10−6 4.6866

Figure 7 presents the Pareto front obtained for the best configuration of the Mo-µSL-CRO:
best three substrates (DE/SBX/2PX) and Pp = 10% and Fd = 40%. Table 8 shows the numerical results
obtained for three different solutions in the Pareto front, depicted as XP1, XP2, and XP3. Solution XP1

is obtained using the max-min approach [29] for the Pareto front and represents the best compromise
between the two objective functions considered (E and C). Solution XP2 is the one that minimizes the
energy losses (E) and Solution XP3 is the one that minimizes the cost (C).

1,000 2,000 3,000 4,000 5,000 6,000
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5,000

10,000

15,000

20,000

25,000

30,000

C

MO-3SL-CROXP2

XP1 XP3

Figure 7. Pareto front for the best Mo-SL-CRO configuration: 3 substrates (DE/SBCX/2PX), Pp = 10%
and Fd = 40%. Points XP1, XP2, and XP3 represent three solutions chosen whose results are presented
in Table 8.

Table 8. MG lines’ energy losses, E, and their cost, C, using the Mo-3SL-CRO.

Point Energy Losses Cost

XP1 1988.30 9506.90
XP2 1498.00 26, 680.00
XP3 4807.00 4483.00
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Table 9 presents a comparison of the results obtained with the proposed algorithm and the
well-known NSGA-II algorithm for the best compromise solution XP1 at each Pareto (using the
max-min approach). A simultaneous reduction of the energy losses in a 23% and the costs in a 31%
reinforce the goodness of the Mo-SL-CRO.

Table 9. Comparison of the MG lines’ cost, C, and their energy losses, E, using the Mo-3SL-CRO and
the NSGA-II algorithm for the best compromise solution XP1 at each Pareto.

Optimization Algorithm Energy Losses Cost

E [kWh] Improvement (%) C [Monetary Units] Improvement (%)

NSGA-II 2589.00 – 13, 903.00 –
Mo-3SL-CRO 1988.30 23.20% 9506.90 31.62%

Table 10 presents the optimal topology matrix S associated to solutions XP1, XP2 and XP3. It can
be seen that the compromise solution (XP1) is a star (radial) network where the central node is the PCC
and is also equipped with several extra lines that connect the secundary nodes to other close ones.
The expensive solution (XP2) is a mesh network, almost fully connected, with high cross-sectional area
lines, resulting in low energy losses. Finally, the cheap solution (XP3) has few high-CSA lines that are
needed to let the power generated/consumed at the nodes flow, and few other lines to guarantee that
each node is connected, at least, to one node (a restriction set to the problem).

Table 10. Optimal topology matrix S for solutions XP1, XP2 and XP3. Element S(i, k) represents the
cross-sectional area of the line connecting nodes i and k. Elements aik = 0 represent that there is no line
connecting those nodes. Note that matrix S is symmetrical, as aik = aki, and elements aii = 0, as none of
the nodes are connected to itself.

Solution Node # 1 2 3 4 5 6 7 8 B 10 B 12

XP1

1 0 500 500 500 500 500 500 500 500 500 500 0
2 500 0 185 0 240 500 0 0 0 16 0 0
3 500 185 0 0 0 0 0 0 0 0 0 35
4 500 0 0 0 500 0 0 0 0 0 0 300
5 500 240 0 500 0 0 0 0 0 0 0 0
6 500 500 0 0 0 0 0 500 0 300 0 0
7 500 0 0 0 0 0 0 0 0 0 500 0
8 500 0 0 0 0 500 0 0 0 10 0 0
9 500 0 0 0 0 0 0 0 0 500 0 0

10 500 16 0 0 0 300 0 10 500 0 0 0
11 500 0 0 0 0 0 500 0 0 0 0 400
12 0 0 35 300 0 0 0 0 0 0 400 0

XP2

1 0 500 500 500 500 500 500 500 500 500 500 500
2 500 0 95 6 0 400 0 500 50 0 120 400
3 500 95 0 10 500 0 0 500 500 500 500 500
4 500 6 10 0 500 500 500 0 0 500 0 500
5 500 0 500 500 0 500 500 0 150 500 500 500
6 500 400 0 500 500 0 300 500 0 0 0 70
7 500 0 0 500 500 300 0 120 500 500 500 0
8 500 500 500 0 0 500 120 0 240 500 10 240
9 500 50 500 0 150 0 500 240 0 400 500 500

10 500 0 500 500 500 0 500 500 400 0 0 500
11 500 120 500 0 500 0 500 10 500 0 0 120
12 500 400 500 500 500 70 0 240 500 500 120 0
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Table 10. Cont.

Solution Node # 1 2 3 4 5 6 7 8 B 10 B 12

XP3

1 0 500 500 185 0 500 240 500 0 0 0 0
2 500 0 16 0 500 500 0 0 0 0 0 0
3 500 16 0 0 0 0 0 0 0 0 0 0
4 185 0 0 0 500 0 0 0 0 0 0 300
5 0 500 0 500 0 0 0 0 0 0 0 0
6 500 500 0 0 0 0 0 25 0 500 0 0
7 240 0 0 0 0 0 0 0 0 0 500 0
8 500 0 0 0 0 25 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 500 0 0

10 0 0 0 0 0 500 0 0 500 0 0 0
11 0 0 0 0 0 0 500 0 0 0 0 400
12 0 0 0 300 0 0 0 0 0 0 400 0

Table 11 presents the optimal number of generators allocated at each node (matrix T ) by the
Mo-3SL-CRO algorithm for solutions XP1, XP2 and XP3. As expected, in all solutions, generators are
distributed around all nodes, presenting more generation close to more consuming loads (bear in mind
that there is one load connected to each node as depicted in Figure 2). Furthermore, in the moderate
and low costs solutions, it can be observed that the more generation produced in one node, the more
lines connecting that node to closer nodes to distribute the power generated to them.

Table 11. Optimal number of wind turbines (NW) and PV generators (NPV) allocated for solution
XP1.The number of micro-wind turbines and photovoltaic generators at each node is provided. Note
that Node #1 (the PCC) is not presented in the table, as a restriction applies and no generation can
be allocated.

XP1 XP2 XP3

Node # NPV NW NPV NW NPV NW

2 2 - 3 1 4 -
3 1 1 - - 1 -
4 1 - 2 1 - -
5 - 1 1 1 - 1
6 2 - 2 - 1 -
7 1 1 1 - - 1
8 2 - - - 2 1
9 2 - 2 - 3 1

10 2 1 1 1 - -
11 - - 1 - 1 -
12 3 - 3 - 4 -

5. Conclusions

The Multi-objective Substrate Layers Coral Reefs Optimization algorithm (Mo-SL-CRO),
is presented in this work to solve the problem of determining the best Microgrid’s topology (lines
interconnecting the nodes) and the optimal renewable generation siting in the MG. For this purpose,
two conflicting objectives are used: the cost of the infrastructures and their deployment, and the energy
losses produced along the lines of the MG. On the one hand, deployment costs will increase as a more
interconnected topology is designed (the more nodes connected to each other, the more expensive
a topology is). Besides, the lines connecting each pair of nodes can have low cross-sectional areas,
resulting in less material and, thus, a cheaper solution, or high CSAs, resulting in higher infrastructures’
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cost. On the other hand, higher CSAs result in lower energy losses in the line. Moreover, change in
the CSAs results in a different power flowing along the lines, thus a power redistribution along the
different lines considered in the MG.

The Mo-SL-CRO outperforms two well-known multi-objective algorithms, the NSGA-II and the
multi-objective Harmony search, and presents an interesting feature: the user can implement as many
substrate layers as wanted, or even remove those that display bad performance for the problem and
include new substrates. In the abovementioned aim, the combined use of three substrate layers fits
best in the optimization process, being these substrates a layer based on Differential Evolution, another
one based on a two point crossover and, finally, a Simulated Binary crossover to obtain new candidates
for the following iteration. Each substrate layer on its own does not produce a result as good as that
achieved with all of them jointly, and each substrate layer contributes with a special feature: some
improve the results, others stretch out the Pareto optimal-fronts, some perform best in certain areas of
the search space while others on different ones, etc. For this reason, the novel Mo-SL-CRO comes out
as an interesting optimization technique.

Regarding the field of application, the proposed algorithm shows important results in the joint
optimization of the MG’s topology and the generators placement, suggesting that this technique may
help decision-makers to analyze solutions and determine best strategies based on the multi-objective
options. A comparison between the proposed Mo-3SL-CRO algorithm and a fair reference as the
NSGA-II algorithm shows, for the best compromise solution at each Pareto front, a cost improvement
of 31% and, simultaneously, an energy losses reduction of 23%, confirming the good results of the
proposed algorithm.
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Nomenclature

Ψ CRO algorithm: Coral or colony of corals (each algorithm’s solution)
aik Cross-sectional area of the line connecting nodes i and k
C Line’s deployment cost
Cins Line’s installation unity cost per m
Cmat Line’s material unity cost per m ⋅mm2

CSA Cross-sectional area
DG Distributed Generation
E Line’s energy losses
E Energy losses in the line connecting nodes i and k
Fa CRO algorithm: Fraction of the reef’s existing corals that generate new larvae during

asexual reproduction
Fe CRO algorithm: Fraction of the reef’s existing corals that generate new larvae during

external sexual reproduction
Fi CRO algorithm: Fraction of the reef’s existing corals that generate new larvae during

internal sexual reproduction
Fp CRO algorithm: Fraction of the reef’s existing corals that are preyed
G Renewable generator
Lik Power losses in the line that connects nodes i and k
lik Length of the line connecting nodes i and k
L Load
µ Number of possible substrates
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MG Microgrid
Mo-SL-CRO Multi-objective Substrate Layers Coral Reefs Optimization algorithm
Natt = 3 Number of attempts for a larva to set in the reef
N Number of nodes in the Microgrid
NPV

ni Number of photovoltaic generators located at node ni
NW

ni Number of wind generators located at node ni
NSGA-II Non-dominated Sorting Genetic Algorithm II
Pt

ik Power transmitted over the line connecting nodes i and k at time t
Pa CRO algorithm: Probability of mutating a coral during asexual reproduction
Pi CRO algorithm: Percentage of a coral that is mutated during internal sexual reproduction
Pp CRO algorithm: Prey probability
PCC Point of Common Coupling
PV Photovoltaic generator
ρ Line’s resistivity
Rik Resistance of the line connecting nodes i and k
s CRO algorithm: Substrate layer
R R1 ×R2 grid simulating the coral reef
S N ×N Matrix representing the MG’s topology
Sik CSA of the line connecting nodes i and k
T Matrix representing the renewable energy generators allocated at each node
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