16 research outputs found

    Fifteenth Annual Summer Research Symposium Abstract Book

    Get PDF
    2019 summer volume of abstracts for science research projects conducted by students at Trinity College

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Dynamic modeling and bioinspired control of a walking piezoelectric motor

    Get PDF
    Szufnarowski F. Dynamic modeling and bioinspired control of a walking piezoelectric motor. Bielefeld: UniversitÀt Bielefeld; 2013.Piezoelectric motors have increasingly extended their field of applications during recent years. Improved material properties and manufacturing techniques have led to a variety of designs which can achieve theoretically unlimited displacements for moderate voltage levels while retaining a relatively high stiffness. In practical terms, this leads to stronger and faster motors which become a viable alternative to electromagnetic drives, especially if compact size and small weight are important. The piezoelectric motor considered in this work consists of four piezoelectric bender elements which can forward a ceramic bar by means of a frictional interaction. The drive elements can be compared to "legs" walking on a movable plane. The walking motor offers outstanding force generation capabilities for a motor of its size. Despite this fact, this motor has not been used in a force control scenario before and no motor models exist in the literature which can reproduce the effect of load on its performance. In this work, two dynamic motor models are developed to address the latter issue. Both of them faithfully reproduce the non-linear motor velocity decrease under load. The first model is based on an analytic approach and describes the low-level frictional interactions between the legs and the ceramic bar by means of several physically meaningful assumptions. This analytic model explains several non-linear phenomena in the operation of the walking motor within the full bandwidth of its rated operation. Non-linear influences due to the impact dynamics of the legs, ferroelectric hysteresis and friction are identified in the motor and new insights for an improved motor design as well as an improved motor-drive strategy gained. Moreover, the analytic model finds its application in a theoretical investigation of an alternative motor-drive strategy which is based on findings in insect walking. Specifically, it is shown that the performance of the motor can be improved by a half in terms of its force generation and doubled in terms of its maximal velocity, as compared to classical drive approaches, if the bioinspired drive strategy as proposed in this work is used. The second model is based on an experimental approach and system identification. Although less general, the second model is well-suited for a practical application in a force-control scenario. In particular, the experimental model is used in this work for the development of a load compensation strategy based on force feedback which restores the linearity of motor operation for moderate levels of loading. Based on the linearized motor model, a force controller is developed whose performance is evaluated both theoretically and experimentally. The developed force controller is also used in a bioinspired control scenario. Specifically, two walking motors together with their force controllers are employed in a 1-DOF antagonistic joint as force generators. The motors are supposed to partially mimic the functionality of a muscle based on the non-linear force-length relation as derived by Hill. A simple positioning task shows the feasibility of this kind of non-standard application of a piezoelectric motor. Beside the development of motor models and bioinspired control approaches, this work addresses the issue of drive-signal generation for the walking motor. Specifically, the development of motor-drive electronics is presented which supersedes the commercially available products due to its compactness and the possibility of waveform generation at much higher drive frequencies, above 50 kHz, as compared to the nominal limit of 3 kHz and commercial products. In this context, the possibility of motor operation at ultrasonic frequencies is discussed which would benefit the motor in terms of its speed and the absence of audible noises

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Book of abstracts

    Get PDF
    corecore