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SUMMARY

Piezoelectric motors have increasingly extended their field of appli-
cations during recent years. Improved material properties and man-
ufacturing techniques have led to a variety of designs which can
achieve theoretically unlimited displacements for moderate voltage
levels while retaining a relatively high stiffness. In practical terms,
this leads to stronger and faster motors which become a viable alter-
native to electromagnetic drives, especially if compact size and small
weight are important. The piezoelectric motor considered in this work
consists of four piezoelectric bender elements which can forward a
ceramic bar by means of a frictional interaction. The drive elements
can be compared to “legs” walking on a movable plane.

The walking motor offers outstanding force generation capabilities
for a motor of its size. Despite this fact, this motor has not been used
in a force control scenario before and no motor models exist in the
literature which can reproduce the effect of load on its performance.
In this work, two dynamic motor models are developed to address the
latter issue. Both of them faithfully reproduce the non-linear motor
velocity decrease under load.

The first model is based on an analytic approach and describes the
low-level frictional interactions between the legs and the ceramic bar
by means of several physically meaningful assumptions. This analytic
model explains several non-linear phenomena in the operation of the
walking motor within the full bandwidth of its rated operation. Non-
linear influences due to the impact dynamics of the legs, ferroelectric
hysteresis and friction are identified in the motor and new insights
for an improved motor design as well as an improved motor-drive
strategy gained. Moreover, the analytic model finds its application
in a theoretical investigation of an alternative motor-drive strategy
which is based on findings in insect walking. Specifically, it is shown
that the performance of the motor can be improved by a half in terms
of its force generation and doubled in terms of its maximal velocity,
as compared to classical drive approaches, if the bioinspired drive
strategy as proposed in this work is used.

The second model is based on an experimental approach and system
identification. Although less general, the second model is well-suited
for a practical application in a force-control scenario. In particular,
the experimental model is used in this work for the development of a
load compensation strategy based on force feedback which restores
the linearity of motor operation for moderate levels of loading. Based
on the linearized motor model, a force controller is developed whose
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performance is evaluated both theoretically and experimentally. The
developed force controller is also used in a bioinspired control scenario.
Specifically, two walking motors together with their force controllers
are employed in a 1-DOF antagonistic joint as force generators. The
motors are supposed to partially mimic the functionality of a muscle
based on the non-linear force-length relation as derived by Hill. A
simple positioning task shows the feasibility of this kind of non-
standard application of a piezoelectric motor.

Beside the development of motor models and bioinspired control
approaches, this work addresses the issue of drive-signal generation
for the walking motor. Specifically, the development of motor-drive
electronics is presented which supersedes the commercially available
products due to its compactness and the possibility of waveform gen-
eration at much higher drive frequencies, above 50 kHz, as compared
to the nominal limit of 3 kHz and commercial products. In this con-
text, the possibility of motor operation at ultrasonic frequencies is
discussed which would benefit the motor in terms of its speed and
the absence of audible noises.

VI



CONTENTS

Acknowledgments I

List of publications III

General abstract V

1 introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . 7

modeling part 11

2 fundamentals of piezoelectric technology 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Piezoelectric effect . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 History of discovery . . . . . . . . . . . . . . . . 14

2.2.2 Modern piezoelectric ceramics . . . . . . . . . . 20

2.2.3 Linear theory of piezoelectricity . . . . . . . . . 26

2.3 Piezoelectric motors . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Classification . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Ultrasonic motors . . . . . . . . . . . . . . . . . . 37

2.3.3 Quasistatic motors . . . . . . . . . . . . . . . . . 41

2.4 The walking piezo motor . . . . . . . . . . . . . . . . . 44

2.4.1 The walking principle . . . . . . . . . . . . . . . 44

2.4.2 Walking motor construction . . . . . . . . . . . . 47

3 physical model of motor dynamics 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Leg kinematics . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Piezoelectric bending beam . . . . . . . . . . . . 51

3.2.2 Driving waveforms . . . . . . . . . . . . . . . . . 55

3.3 Leg dynamics . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Single leg z dynamics . . . . . . . . . . . . . . . 60

3.3.2 Single leg x dynamics . . . . . . . . . . . . . . . 63

3.3.3 Hysteretic nonlinearity . . . . . . . . . . . . . . 65

3.4 Motor dynamics . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Motor z dynamics . . . . . . . . . . . . . . . . . 68

3.4.2 Motor x dynamics . . . . . . . . . . . . . . . . . 73

3.5 Parameter optimization . . . . . . . . . . . . . . . . . . 77

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VII



4 gray-box identification of motor dynamics 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Gray-box modeling . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Static unloaded behavior . . . . . . . . . . . . . 91

4.2.2 Static behavior under load . . . . . . . . . . . . 93

4.2.3 Linear dynamics . . . . . . . . . . . . . . . . . . 96

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 101

control part 105

5 bioinspired generation of optimal driving waveforms 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Leg coordination rules . . . . . . . . . . . . . . . . . . . 111

5.3 Trajectory generation . . . . . . . . . . . . . . . . . . . . 115

5.4 Parameter optimization . . . . . . . . . . . . . . . . . . 123

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 frequency matching in waveform generation 133

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Waveform generating electronics . . . . . . . . . . . . . 134

6.3 Continued fractions approach in frequency matching . 140

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 dynamic load compensation and force control 147

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2 Feedback load compensation approach . . . . . . . . . 148

7.3 Force control . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 157

application part 159

8 muscle-like actuation of an antagonistic joint 161

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2 Virtual muscles . . . . . . . . . . . . . . . . . . . . . . . 164

8.3 Antagonistic joint architecture . . . . . . . . . . . . . . 168

8.4 Position control scenario . . . . . . . . . . . . . . . . . . 172

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9 discussion 177

9.1 Contributions of the thesis . . . . . . . . . . . . . . . . . 177

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . 184

a appendix a 189

b appendix b 193
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1 INTRODUCT ION

abstract

This chapter provides a general motivation for and a short introduction into
the topics of bioinspired control and modeling of a walking piezoelectric
motor as regarded in detail in further chapters of this thesis. Specifically,
the necessity of the derivation of a motor model capable of reproducing the
behavior of the real motor under external loading is motivated. Further, an
alternative drive strategy in which all driving elements are allowed to move
independently is proposed in order to improve the force generation capabilities
of the motor. Additionally, the feasibility of a non-standard application in
a biologically inspired robot joint is discussed. Finally, the main research
objectives of the thesis are defined and the content of the particular chapters
sketched.

1.1 motivation

It is interesting to note that most innovations are material based. Dif-
ferent materials together with the technology of their processing have
always had a profound impact on the evolution of human civiliza-
tion which is reflected in the names given to the past epochs like
the Stone, Bronze or the Iron Age [212]. The time after World War II
was abundant in a new class of man-designed synthetic materials like
plastics or composites which are suited to specific applications and
show superior performance over traditional materials. This period
of time is sometimes referred to as the Synthetic Materials Age [75].
Gandhi [75] sees the beginning of the 21

st century as the dawn of yet
another class of materials, including piezoelectric materials, which are
not only designed to have certain properties but which are also able
to actively change their properties in response to some external condi-
tions. He terms this class of materials Smart Materials. Piezoelectric
materials can change their shape under the influence of an electric
field and build up an electric field under the application of a me-
chanical stress. Since the discovery of piezoelectricity in 19

th century
and of ferroelectric ceramics in 20

th century, piezoelectric materials
have been engineered into a variety of products utilizing the above
properties and ranging from the sonar and ultrasonographic devices,
through buzzers and auto-focus lenses to atomic force microscopes
and piezoelectric motors [172]. These products help us now to gain
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Dynamic model
Internal states: X(t)

Input
U(t)

Output 
Y(t)

Figure 1: Abstract depiction of a dynamic system model having some time-
dependent internal states X(t) and reacting to input U(t) with a
response Y(t).

invaluable insights into the process of fetal development or the atomic
structure of matter [25, 169].

Recent years have also brought about many interesting develop-
ments in the field of piezoelectric actuation – the utilization of piezo-
electric materials in order to produce (macroscopic) motion. New-
ton describes in [155] a linear motor whose actuation principle is
inspired by the movement pattern of an inchworm. Uchino [207]
enumerates several resonant motors whose working principle can
be compared to the movement mechanism of Euglena, Paramecium
or Ameba. Bouchilloux [30] presents a miniature tube-shaped motor
and Johansson [114] introduces a non-resonant (quasistatic) motor
based on the walking principle in which four driving elements (“legs”)
interact with a movable drive rod. This thesis is concerned with the
latter, now commercially available walking piezoelectric motor.

The above developments were possible because of a good under-
standing of piezoelectric properties based on formal models. In more
formal terms, the motivation behind creating models of physical sys-
tems consists in the wish to predict the behavior of the system in
terms of its response Y(t) (e.g. displacement, speed) to a given input
U(t) (e.g. voltage, stress) at a certain time t [192, 121]. If the mathe-
matical description accounts for the time-dependent changes in the
internal state X(t) of the system, the mathematical model is called a
dynamic model and the process of its derivation dynamic modeling.1

Fig. 1 illustrates the idea of a dynamic system model. If the formal
description is accurate enough, i.e. it faithfully predicts the response
of the real system, the model can be used to develop control strategies
which let the system generate a desired response [188]. However,
since the actual system to be modeled is rarely fully understood, its
mathematical model is necessarily a simplified description of the real
physical system. In fact, the modeling process can be seen as means to
improve one’s own understanding of the physical system.2 In general,

1This should not be confused with dynamics as the branch of physics which
studies the effect of forces and torques on motion. However, a dynamic model can also
describe the dynamics of a given system.

2Mathematical models are used not only to model physical systems. A vast field
of their application is for example economics and sociology, where they are used to
predict the development of stocks or the behavior of groups [136].
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the better the description is, the better the understanding becomes.3

In this context, a mathematical model can also be used in order to
investigate possible design improvements of or application scenarios
for the real system. This kind of model exploration is greatly facili-
tated by modern computers together with specialized simulation and
optimization software [148, 126, 104]. This thesis is concerned with
the derivation of dynamic models which can faithfully describe the
dynamics of the walking piezoelectric motor.

A successful application of a technical device in general and of
a piezoelectric motor in particular depends not only on a good un-
derstanding of its behavior but also on finding suitable means of its
control. According to the notation from the previous paragraph, the
objective of a control task is to make the output Y behave in a desired
way by manipulating the input U [188]. In case of a piezoelectric mo-
tor the usual control objective is to make the motor move to a certain
position or at a given velocity by changing the frequency of the drive
signal. A more sophisticated control scenario, as pursued in this work,
could involve the adaptive change of the drive signals in order to im-
prove certain characteristics of the motor (e.g. its stall force or maximal
speed) or the generation of forces according to the non-linear character-
istics of a muscle. These non-standard control scenarios are examples
of a bioinspired control. Bioinspiration or bioinspired technology
refers to the transfer of knowledge about structure and function of
biological systems into technological solutions [108]. The motivation
behind this process is twofold. First, biological systems have effi-
ciently solved many problems which scientists are interested in like
dynamic control of adhesion [78, 66], outdoor locomotion [49, 232, 110]
or robust navigation [211, 149]. Second, we are ourselves biological
systems, thus the understanding of biological principles is essential in
order to develop technical devices like an artificial heart [43, 167] or
hand prostheses [131] controlled by means of myoelectric activity [97].
This thesis is concerned with bioinspired control in both of the above
senses.

The starting point for this work was a market research on small-
sized contemporary actuators carried out by the author in 2008. The
objective of this research was to find an actuator which would be
able to lift a weight of about 1 kg and be as small and lightweight as
possible for an application in a biologically inspired robot joint. Large
force generation capability was especially important since the actuator
of choice was supposed to mimic a muscle and muscles can be seen
as force generators with nonlinear force-position and force-velocity
characteristics [102, 101]. In a long-term perspective, such actuator
together with biologically inspired control approaches could be used

3This does not have to hold true for purely data-driven models. However, even
this kind of models benefits from prior knowledge and physical insight about the
system [187]. Moreover, techniques exist to extract useful information about the
system from data-driven models [192].
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Figure 2: A photograph of the piezoelectric walking motor considered in
this work together with the drive electronics developed to control
the motor.

for example in robotic prostheses of the hand. As of 2008, the force
generation capability of the walking motor was truly exceptional for
motors of its size, even if compared to the state-of-art electromagnetic
drives. The walking motor weights only 20 g and has the dimensions
of 22 x 10.8 x 18 mm. It can develop forces up to 10 N and move at
velocities exceeding 1 cm/s over a theoretically unlimited distance
defined by the length of the movable drive rod (white ceramic bar hav-
ing the length of 50 mm in the photograph of Fig. 2) while retaining
positional accuracy in the range of tens of nanometers. Furthermore,
it can hold its position when powered down which saves energy and
does not develop interfering magnetic fields. This combination of
features makes it a theoretically perfect candidate for an application
in a small-sized joint. However, the motor also comes with certain dis-
advantages. Beside its noisy operation, the motor requires a relatively
complex and large drive electronics [195] and is difficult to model due
to its discontinuous and nonlinear dynamics. Before the publication
by Merry et al. [145] in 2009, no dynamic models of this motor existed
in literature. Still, Merry’s modeling approach was purely experimen-
tal and delivered a compound model of the motor together with a
nanopositioning stage in which the motor was integrated. Addition-
ally, the proposed model neglected the discontinuous dynamics of the
interaction between the legs and the drive rod, was focused on low
driving velocities and – most importantly – did not consider the effects
of external load on motor velocity. The model by Merry et al. [146]
from 2011 introduced the discontinuous dynamics but it required a
dedicated solver and still did not explain the behavior of the walking
motor for large drive velocities and external loading. These limitations
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in the models by Merry are comprehensible since classical application
scenarios for piezoelectric actuation are positioning tasks in which
forces and masses play a subordinate role. The focus of the above
models was put on precise positioning capabilities and low-velocity
operation in an almost load-free condition. Motor models capable of
reproducing the nonlinear load-velocity characteristics observed in the
walking motor and thus faithfully describing its dynamics were not
available. This understanding, however, is necessary for a successful
application in any force control scenario. Further, beside the influence
of the load, the performance of the motor is affected by the shape of
driving signals and their frequency. A deeper understanding of these
relations is a foundation for an improved motor-drive strategy. Clas-
sically, the walking motor is driven by fixed periodic signals which
make the four legs move in pairs. Several signals of different shapes
are commonly used [186]. The particular form of these signals has
a significant effect on the performance of the motor in terms of its
speed or force generation capacity. Merry et al. [146] proposed a
waveform optimization strategy based on Fourier series description
of the waveforms with 32 parameters. Despite this large number of
degrees of freedom, the model-based reduction of velocity errors in
their work did not exceed 24 % for low drive frequencies below 20 Hz
as compared to one of the classical waveforms. Higher drive frequen-
cies or optimization in terms of maximal motor velocity were not
considered. Although flexible in terms of the shape of the waveforms,
their approach still relies on the pairwise drive strategy in order not
to compromise motor stability. However, motor stability does not
have to suffer if the legs are allowed to move independently. The only
necessary ingredient for a stable operation is a proper coordination
mechanism. In this context, it is natural to look for a bioinspired
solution since the task of multi-leg coordination had been efficiently
solved by the nature [24]. Specifically, the findings concerning the
coordination mechanisms in insects [47, 49] pose a plausible solution
approach. From a conceptual point of view, if more than two legs were
allowed to have contact to the drive rod, the force generation capacity
of the motor could be improved due to improved load sharing among
them.

1.2 objectives of the thesis

The piezoelectric motor considered in this work is an example of an
end product of a highly elaborated engineering process. The details
related to this process are internal knowledge of the manufactur-
ing company and not available to the public in other form than a
patent [139]. As soon as a non-standard application, like force control
or a bioinspired drive strategy, is intended, or if the system shows
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a different behavior than expected, this information turns out to be
insufficient.

This thesis has several objectives which are listed below in the order
in which they are considered. The lack of publicly available data
and motor models capable of reproducing the dynamic behavior of
the walking motor hinder its application in force control scenarios.
Therefore, the main objective of this work is the development of
a motor model which can faithfully reproduce several non-linear
phenomena observed in the behavior of the walking piezoelectric
motor which cannot be explained by the published data. In particular,
the movement speed of the motor has an approximatively linear
dependency on the frequency of the driving signals. However, this
dependency varies depending on the particular form of the electrical
signals in a way which cannot be explained by the linear assumption
about the motion of the driving elements inside the motor. Further,
the motor is characterized by a stall force limit of 10 N. However, the
actual stall force limit changes not only in dependency of the particular
driving signal but also of its drive frequency. And – most importantly
for the application in a force control scenario – the speed of the motor
changes non-linearly under load. The model to be developed in the
scope of this thesis is supposed to identify the non-linear effects in the
motor.

With a deeper understanding of the non-linear dependencies and
the working principle of the motor, the next objective of this work is
to investigate the feasibility of a bioinspired drive approach based
on the findings on insect walking [49, 61]. There are four driving
elements inside the motor which are hard-wired to move in pairs due
to stability issues. A theoretical investigation in this work is supposed
to answer the question to what degree the performance of the motor
could be improved, in terms of its force generating capabilities, if
the driving elements were allowed to move independently. At the
same time, however, the coordination mechanism between the driving
elements has to guarantee a stable operation of the motor.

The starting point for this research was the idea to employ the piezo-
electric motor as a force generator in a biologically inspired joint. This
is a non-standard application since piezoelectric motors are almost
exclusively employed in precise positioning tasks even if they present
notable force generating capabilities [72]. A foundation for this is the
development of a force control strategy suitable for the application
in a biologically inspired joint, which is the third objective of this
work.

Finally, according to the long-term perspective of an application in a
biologically inspired hand-prostheses, the piezoelectric motor together
with an appropriate force controller is to be used as a muscle-like
force generator in a simple 1-DOF joint to test the feasibility of this
kind of application. Fig. 3 illustrates the idea. Two motors are ar-
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agonist technical muscle

antagonist technical muscle

rotary joint

max

min

Figure 3: Two piezoelectric motors arranged antagonistically as actuators
in a simple 1-DOF rotary joint. The actuators are supposed to
mimic the characteristics of muscles and move the joint by exerting
pulling forces on tendons connected to a pulley.

ranged in an antagonistic setup and rotate the joint by transmitting
pulling forces via tendons connected to the joint. The motors are
equipped with position and force sensors in order to act as virtual
muscles and generate forces according to the characteristic of a muscle
as described by Hill [101, 79].

1.3 outline of the thesis

The thesis consists of nine chapters including the Introduction in
Chapter 1. Each chapter begins with a short abstract summarizing its
content. Each chapter except of the Introduction and the final Discus-
sion (Chapter 9) contains an additional chapter-specific introduction
with the relevant background also in the context of other works. The
main structural division of the thesis consists of three parts. Beside
the general Introduction and the final Discussion, the remaining six
chapters belong either to the Modeling, Control or the Application
part according to their content.

MODELING PART
Chapter 2 – Fundamentals of Piezoelectric Technology – provides
the reader with the background knowledge about piezoelectricity
including the mathematical foundations used later in the process of
motor model derivation. This chapter also presents an overview of
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the contemporary piezoelectric motors in general and the construction
and drive principle of the walking motor in particular.

Chapter 3 – Physical Model of Motor Dynamics – is concerned with
the derivation of a new and physically meaningful model of the
dynamics of the walking motor. The difficulty of this process lies
in the fact that the motor is fully assembled and only macroscopic
measurements related to its operation are available. The physical
motor model, however, is meant to explain the nonlinear phenomena
observed in motor operation which are based on the microscopic
effects within the motor. The model of Chapter 3 is essential for the
evaluation of the bioinspired drive strategy in Chapter 5.

Chapter 4 – Gray-box Identification of Semiphysical Motor Dynamics
– presents an experimental approach to the derivation of a simplified
motor model which is suitable for control-theoretical applications
including the design of a force controller in Chapter 7. This chapter
additionally contains a discussion of the nonlinearities of the physical
motor model and the possible means of their linearization.

CONTROL PART
Chapter 5 – Bioinspired Generation of Optimal Driving Waveforms –
proposes a novel motor-drive strategy inspired by the kinematic model
of insect walking. The issues related to the novel application of the
original biological model, describing the coordination rules between
neighboring legs of an insect, are discussed and a solution strategy
proposed. The bioinspired drive strategy is also contrasted with other
alternative drive approaches and finally evaluated in the simulation.

Chapter 6 – Frequency Matching in Waveform Generation – presents
the motor-drive electronics developed in order to overcome several
deficits of the commercial products delivered together with the motor.
This chapter is also concerned with the technical question of how the
motor driving signals or waveforms can be generated at a particular
frequency. An algorithmic approach based on the solution to the
Bézout’s identity and a practical solution to this problem are presented.

Chapter 7 – Dynamic Load Compensation and Force Control – is
devoted to the development of a compensation strategy which is
supposed to restore the linear operation of the motor under load
and to the design of a force controller suitable for the application
in a bioinspired robot joint. The chapter is also concerned with
the derivation of theoretical limits on the performance of the force
controller. The actually designed force controller is subsequently
evaluated in simulation and in a real-world experiment.

8



APPLICATION PART
Chapter 8 – Muscle-like Actuation of a Bioinspired Antagonistic Joint
– presents a technical implementation of a 1-DOF robot joint driven by
two virtual muscles in an antagonistic arrangement. The piezoelectric
motors are equipped with positional and force sensors and generate
pulling forces on the joint according to a classical model of the muscle.
The whole arrangement is evaluated in a simple joint positioning
scenario.

The last Chapter 9 contains the final discussion of the achievements of
this thesis and the presentation of further research topics and possible
applications of the walking piezoelectric motor.

APPENDICES
Appendix A contains a detailed description of the manufacturing
process of the driving elements of the walking piezoelectric motor.

Appendix B contains the mathematical proof of the Bézout’s identity
and the derivation of the algorithm used in Chapter 6.

Appendix C is a collection of the circuit diagrams and PCB layout im-
ages of the motor-drive electronics, which is introduced in Chapter 6.

Appendix D introduces the bound graph notation used in the mod-
eling of mechatronical systems and presents the derivation of state
space equations for the force sensor described in Chapter 7.
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2 FUNDAMENTALS OF
P IEZOELECTR IC TECHNOLOGY

abstract

Barely noticed by the public, piezoelectric technology has dominated many
technological applications during recent years. These include communication,
industrial automation, medical diagnostics and consumer electronics. Since
its discovery at the end of 19th century, the history of piezoelectricity has
been a parade example of material-based innovation. Also in the field of
actuation, improved material properties and manufacturing techniques have
led to a variety of actuator designs which can achieve large displacements for
moderate voltage levels while retaining a relatively high stiffness. Within this
trend, modern linear piezoelectric motors have become a viable alternative
to electro drives in terms of their size, speed and stall force characteristics.
They can generate large displacements, do not require a gear and develop
forces of several Newtons at velocities in the range of a few cm/s. This
chapter is devoted to sketching the history of the development of piezoelectric
technology and lay the foundation for its understanding. The focus is put
additionally on presenting the state-of-art piezoelectric linear motors with the
final presentation of the walking piezoelectric motor.

2.1 introduction

Piezoelectric materials are crystalline materials which become electri-
cally polarized when subjected to mechanical stress and conversely
change shape when an electric field is applied [100]. From the techno-
logical point of view, this phenomenon only becomes interesting if it
provides efficient, stable, reproducible, cost-effective and large enough
means to convert electrical to mechanical energy or vice-versa.1 The
many requirements pose serious obstacles for a successful applica-
tion of an emerging technology which has to compete with already
established and profitable solutions. This fact has also influenced the
development of piezoelectric technology, whose practical applications
have been mostly hampered by the elder and more mature electromag-
netic technology, since its discovery in 1880. From this point of view,
the actual rise of piezoelectric technology has started only in 1940s
with the discovery of modern piezoelectric ceramics. This discovery

1The change of shape in natural piezoelectric materials is too small for many prac-
tical applications. Many applications have only become possible with the emergence
of artificial materials which exhibit a much stronger piezoelectric effect.
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offered a large enough factor of advantage, i.e. improved properties as
compared to other technologies, to succeed in practical applications.

The following sections explain the phenomenon of piezoelectricity
and give a brief overview of the history of its discovery and contem-
porary applications. In particular, sect. 2.2 introduces the piezoelec-
tric effect from the phenomenological point of view and sect. 2.2.1
sketches the history of its discovery. This is followed by sect. 2.2.2
which explains piezoelectricity in modern piezoelectric ceramics and
the derivation of linear equations describing piezoelectric phenomena
in sect. 2.2.3. This section also discusses the limitations of the linear
theory and thus lays the foundation for deriving the physical motor
model in the next chapter (chapt. 3) of this work. This chapter closes
with the presentation of piezoelectric technology in contemporary
linear motors in sect. 2.3 and in the walking piezoelectric motor in
particular (sect. 2.4).

2.2 piezoelectric effect

The piezoelectric effect interrelates mechanical quantities such as stress
or strain and electrical quantities such as electric field and displace-
ment. It is exhibited by a number of naturally occurring crystals, e.g.
quartz, tourmaline, topaz, cane sugar and Rochelle salt. If a force
is applied to a piezoelectric material, electric charge is induced by
the dielectric displacement which causes an electric field to build up.
This phenomenon is termed direct piezoelectric effect and illustrated
in Fig. 4(a,b). The effect is direction-dependent. Given the direction
of polarization of a piezoelectric material, the measured potential is
either positive or negative depending on the direction of the applied
force. The piezoelectric effect is also reciprocal. The application of
an electric field to a piezoelectric body causes its distortion and by
mechanically preventing the distortion/blocking the material, force
can be generated. This is known as the converse piezoelectric effect (see
Fig. 4(c,d)). Finally, the piezoelectric effect is highly linear, i.e. the
polarization varies in proportion to the applied stress. The following
sections will give the historical background of piezoelectricity (next
section) and the physical explanation of its origin in the so called fer-
roelectric ceramics (sect. 2.2.2). Finally, the mathematical formulation
of the linear theory of piezoelectricity will follow in sect. 2.2.3.

2.2.1 History of discovery

The discovery of piezoelectricity dates back to the 19
th century. Bal-

lato [13] suggests in his review of literature that the French physicist
Charles-Augustin de Coulomb theorized already in the late 18

th cen-
tury that electricity might be produced by the application of pressure.
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Figure 4: In the direct piezoelectric effect, electric potential builds up on the
surface of a piezoelectric material if an external (a) tensile or (b)
compressive force is applied. The dipoles indicate the direction of
polarization in the material, the voltmeters the polarity of induced
potentials. In the converse effect, application of an electric field
leads to the induction of strain and distortion of the piezoelectric
material – (c). If the material is clamped an elastic tension occurs
and force is generated – (d).

However, it was not until 1880 that a first successful experimental
demonstration of this phenomenon was conducted by Pierre and
Jacques Curie. In a series of consecutive surface charge measurements
on different crystals including tourmaline, quartz and Rochelle salt
they observed charge variation which was dependent on the amount
of applied mechanical stress. They announced their discovery as
follows [39]:

Those crystals having one or more axes whose ends are unlike,
that is to say, hemihedral crystals with oblique faces, have the
special physical property of giving rise to two electrical poles
of opposite signs at the extremities of these axes when they are
subjected to a change in temperature. This is the phenomenon
known under the name of pyro-electricity [...] We have found a
new method for the development of polar electricity in these same
crystals, consisting in subjecting them to variations in pressure
along hemihedral axes.

Thus the Curie brothers are to be attributed the discovery of the
direct piezoelectric effect. The actual term “piezoelectricity” was suggested
one year later (1881) by Wilhelm Hankel and it soon found wide ac-
ceptance in the scientific circles. The term derives from the Greek
words piezo (to press) and electric (amber). The discovery attracted
much attention among scientists. In the same year Gabriel Lippmann
deduced from fundamental thermodynamic principles that the reverse
effect should exist, i.e. that the imposition of surface charge would
induce mechanical deformation. The Curie brothers confirmed the
converse piezoelectric effect experimentally in 1882. Further milestones
in the understanding of piezoelectricity were reached by Franz Ernst
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Figure 5: The Curies’ quartz piezo-electrique consisting of an elongated quartz
bar with two metalized surfaces as used in their original instrument
from 1882 [50].

Neumann who laid the foundation for understanding the physical
properties of crystalline materials, Lord Kelvin who developed in 1893

the first atomic model explaining the direct and converse piezoelectric
effects, and by Neumann’s student Woldemar Voigt who developed
the tensor notation describing the linear behavior of piezoelectric crys-
tals (see sect. 2.2.3). Within 15 years after the discovery the theoretical
core of piezoelectric science was established. This core grew steadily
and by 1910 – with the publication of “Lehrbuch der Kristallphysik” [216]
by Voigt – 20 natural crystal classes displaying the piezoelectric effect
together with their corresponding macroscopic coefficients were iden-
tified. Still, the piezoelectric science remained in the realm of scientific
investigation as opposed to electromagnetism which by that time had
already taken the step to technological applications. The practical
change was brought about by the sinking of the Titanic in 1912 and
the outbreak of World War I in 1914 which led to an urgent need for
submarine detection technology. The challenge was picked up, among
others, by Ernest Rutherford and Paul Langevin. Their work resulted
in the development of a measuring device by the former and the sonar
by the latter. Rutherford’s device was based on Pierre and Jacques
Curie’s instrument for measuring either electric charge or pressure
(see Fig. 5). Although the device was a highly sensitive sensor useful
for determining the amplitudes of underwater diaphragms, it was
inefficient as a generator because it relied on the transverse mode of
operation in the original crystal cut.2 Langevin, who knew the Curies

2The term transverse refers to the displacement mode of a piezoelectric material
which is perpendicular to the direction of the applied electric field. A longitudinal
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personally, had a deeper understanding of piezoelectricity and ad-
justed the design in order to employ a crystal of different dimensions
(in longitudinal mode) having a much larger surface exposed to changes
in water pressure. With his final design he was able to detect sub-
marines from a distance of 3 km but the device did not go into actual
service by the end of war [208, 122].

The success of sonar stimulated the development of other piezo-
electric devices like crystal oscillators, material testing and pressure
measurement devices. In fact, before the outbreak of World War II the
foundation for most of the by now classic piezoelectric applications
was already laid including microphones, accelerometers, bender ac-
tuators, phonograph pick-ups, etc. However, in the first half of 20

th

century the development, performance and commercial application of
these devices were hampered by the fact that only natural piezoelectric
materials were known and could be employed. The war was again to
be the trigger for innovative developments. During World War II, three
independent research groups from the USA in 1942 as well as Japan
and the Soviet Union in 1944 working on improved high capacitance
materials for radar systems discovered that certain ceramic materi-
als – in particular barium titanate (BaTiO3, BT) – exhibited dielectric
constants even 100 times higher than common crystals. Although the
original discovery of BT was not directly related to piezoelectric prop-
erties, it was soon found out by the engineer Robert B. Gray from Erie
Resistor Corp. that the electrically poled BT exhibited piezoelectricity
owing to the domain re-alignment (see next section). Gray applied
for a patent for his discovery in 1946 and thus is seen as the “father
of piezoceramics” [208]. The discovery of easily producible BT trig-
gered an intensive research on these electro-ceramics including other
perovskite isomorphic oxides (see next section) and developing of a
rationale for doping them with metallic impurities to achieve desired
physical properties. This led to the discovery of the present key com-
position of lead (Latin plumbum) zirconate titanate (Pb(Zrx,Ti1-x)O3

with 0 ≤ x ≤ 1, PZT) in 1950s and later other (also Pb-free) solid
solutions, relaxor ferroelectrics as well as piezoelectric polymers and
piezoceramic-polymer composites [208]. A new era for piezoelectric
devices began – tailoring materials to specific applications. The next
section gives an explanation of how compositional variations with
different piezoelectric properties can be realized in case of PZT.

The discovery of modern piezoelectric materials started an avalanche
of piezo technology which nowadays covers many markets with
turnover of billions of dollars [100]. Table 1 shows a selection of some
contemporary piezoelectric applications. They range from research
and military, through medical and automotive to telecommunication

mode refers to the displacement coincident with the direction of the electric field. In
both cases, however, the directions of the electric field and of material polarization
coincide. In a shear mode, electric field and polling directions are perpendicular to
each other.
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and consumer electronics. While the selection is far from being com-
plete, its main purpose is to illustrate the wide variety of contemporary
piezoelectric applications. Sect. 2.3 will focus on how piezo techno-
logy is utilized in piezoelectric motors in general and in the walking
piezoelectric motor in particular.
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2.2.2 Modern piezoelectric ceramics

The immense success of piezoelectricity in technological applications
can to a large degree be attributed to the discovery of modern piezo-
electric ceramics. From a technological point of view, there are several
important characteristics of piezoelectric materials. Uchino [208] enu-
merates five of them as the piezoelectric charge/strain constant d, the
piezoelectric voltage constant g, the electromechanical coupling factor k, the
mechanical quality factor Q and the acoustic impedance Z. Also the Curie
temperature (see below) is important from the application and produc-
tion process point of view. Not all of these characteristics are superior
in ceramic materials. For example quartz has a quality factor Q which
is several orders of magnitude higher than the one of ceramics. This
means a low mechanical loss which together with a (cut-dependent)
compensation of temperature and stress effects, elastic linearity and
the presence of (relatively weak) piezoelectricity makes it the perfect
choice for acoustic (e.g. surface-acoustic-wave (SAW) filters, wireless
transceivers) and timekeeping (e.g. clocks, pulse generators) applica-
tions [100]. On the contrary, piezoelectric ceramics have a relatively
low quality factor but a high electromechanical coupling factor and
piezoelectric strain constant which is most important for high-power
transducer and actuator applications. Obviously, the latter application
is of particular interest to this work.

Another important reason for focusing on piezoelectric ceramics in
this section is the understanding of the origins of piezoelectricity in the
nowadays most common piezoelectric ceramic – PZT. This understand-
ing is grounded in the internal structure of the ceramic material. Both
epoch-making ceramic materials mentioned in the previous section,
BT and PZT, are polycrystalline, i.e. they consist of multiple (variously
oriented) crystals. Crystals can be classified into 32 point groups
according to their crystallographic symmetry [91]. Of the 32 point
groups, 21 classes are noncentrosymmetric (a necessary condition for
piezoelectricity to exist) and 20 of these are actually piezoelectric,3

i.e. positive and negative charges appear on their surface when stress
is applied. 10 of these 20 groups are polar (exhibit spontaneous po-
larization) and thus pyroelectric, i.e. electric charge appears on their
surface in temperature dependent way. If their polarization is addi-
tionally reversible by the application of an external electric field they
are called ferroelectric.4 Both BT and PZT are ferroelectric ceramics
which have the so called Perovskite crystalline structure [20] named

3One class – the point group “432” – is not piezoelectric because of the combined
effect of other symmetry elements which eliminates the accumulation of electric
charge in this group.

4Although most ferroelectric materials do not contain iron (Greek ferro) the name
ferroelectricity was chosen because of some principal analogies to ferromagnetism
which was already known before the discovery of ferroelectricity in 1920 by Joseph
Valasek.
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Figure 6: Schematic representation of the Perovskite crystal unit cell struc-
ture ABO3. In case of PZT, the unit cell consists of an oxygen
octahedron with the B-site cation around its center occupied by
either Ti4+ or Zr4+ ions and the A-site cations of the surrounding
cuboid occupied by Pb2+ ions. BT has A-site cations occupied
by Ba2+ and the B-site cation by Ti4+ ions. (a) shows the Cubic
phase of the structure above the Curie temperature TC and (b) the
tetragonal phase below TC exhibiting spontaneous polarization.

after the Russian mineralogist Lev Perovski. Fig. 6 shows the structure
represented by the compositional formula ABO3 which is adopted by
both BT and PZT. The following discussion of piezoelectric ceramics
focuses on the latter. PZT is a solid solution of PbZrO3 and PbTiO3

adapting the Perovskite structure. The A-site cations are filled with
the larger lead ions and form a cuboid box which an oxygen filled
octahedron falls within. The B-site cation is randomly filled with
the smaller Zr or Ti ions. Above the so-called Curie temperature TC,
this structure is symmetric and does not exhibit ferroelectricity. At
TC an asymmetry develops as the oxygen octahedron is shifted off
the center of the cuboid box and the B-site ions are shifted off the
center of the octahedron. An electrical dipole builds up, the structure
starts exhibiting spontaneous polarization and becomes ferroelectric.
The understanding of this process has been developed only recently
due to first-principles studies. For a detailed discussion the reader
is referred to [100] where five key concepts are used to explain the
phenomenon of ferroelectricity in oxide materials including hybridiza-
tion between the B-site cation and its oxygen neighbors, polarization
rotation and the prediction of morphotropic phase boundary.5 At this
point only a brief explanation will be given. The Perovskite structure
forms several stable lower-symmetry or distorted versions besides the
ideal symmetric case as the stability of the cubic structure is strongly
dependent on the relative ion sizes and the formation of certain types
of bondings. Ferroelectricity comes to be as an overall effect due
to the competition between long-range Coulomb forces which favor

5Hybridization refers to the concept of mixing atomic orbitals and forming new
hybrid orbitals with different properties.
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Figure 7: Phase diagram of PbTiO3-PbZrO3 solid solutions adapted
from [100]. (a) shows the different lattice structures according
to the temperature and Ti/Zr ratio and the morphotropic phase
boundary (MPB). One possible direction of polarization is indi-
cated for both the tetragonal and rhombohedral phase. (b) shows
the enhancement of piezoelectric properties of PZT at the MPB.

off-centering and short-range repulsive forces which favor the high-
symmetry centric phase where the atoms are as far apart as possible.
Hybridization or the formation of covalent bondings between the
B-side cation and its oxygen neighbors reduces the repulsive forces
and allows the atoms to move off-center. This induces large crystalline
distortion and the formation of an electric dipole. In case of PZT, this
distortion is additionally enhanced due to the hybridization of Pb
6s electrons with the covalent bondings between the Ti and O ions
such that its spontaneous polarization is three times larger than of
BT. Consequently, PZT is especially suitable for high performance
piezoelectric materials. Furthermore, because of the possibility of
compositional modification a wide variety of piezoelectric properties
can be realized. Kimura et al. [208] describe three typical methods of
compositional modifications.

First, the Ti/Zr ratio can be modified which strongly influences the
lattice structure and the piezoelectric properties. Fig. 7 illustrates this
graphically. The asymmetric structures below the Curie temperature
are ferroelectric. In the tetragonal phase, the Ti ions move in the oxy-
gen octahedra in the < 100 > directions, according to the convention
of indexing lattice directions in material science, which gives 6 possible
directions each passing through each vertex of the oxygen octahedron.
In the rhombohedral phase, the Ti ions can move in the < 111 >

directions through the centers of each octahedral face. This gives
altogether 8 possible dipole moment directions. The phase bound-
ary between the tetragonal and rhombohedral structures is termed
morphotropic phase boundary (MPB). This boundary is vertically
elongated around the composition with the Ti/Zr ratio of 47/53 and
exhibits extraordinary piezoelectric properties. However, to the best
knowledge of the author the reason for this enhancement has still not
been sufficiently clarified and is the matter of scientific investigations.
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It should be noted that if stability of piezoelectric properties against
external conditions (e.g. heat, pressure) are especially important for a
given application, a composition close to the MPB should be avoided.
In such cases, tetragonal PZT composition is usually chosen due its
high Curie temperature.

Second, the cation sites of PZT can be doped with donor or acceptor
ions. Donor or acceptor-doped PZT is called soft or hard PZT, respec-
tively. The descriptors correspond to the electrically and mechanically
compliant or rigid behavior of PZT. Hard PZT ceramics possess gen-
erally more stable piezoelectric properties and have higher quality
factors and are thus preferred for applications utilizing resonance, e.g.
in ultrasonic actuators (see sect. 2.3), whereas soft PZT is better suited
for non-resonant sensors and actuators as the one described in this
thesis. Doping affects the piezoelectric properties because it has a
strong effect on the ferroelectric domain switching behavior (described
in more detail below).

The third compositional modification is a solid solution with other
Perovskite compounds. The resulting PZT is called the ternary PZT
system. Kimura et al. [208] give the examples of Pb(Sb

1/2
Nb

1/2
)O3 PZT

showing good temperature stability and used in communication circuit
components, Pb(Mn

1/3
Sb

2/3
)O3 PZT with a high mechanical quality

factor used for electromechanical transducers and Pb(Ni
1/2

Nb
1/2

)O3

PZT which exhibits a very large strain constant d and is often used
in actuator applications. These three compositional methods men-
tioned above, especially if combined, result in a great variety of PZT
with different piezoelectric properties suitable for a broad range of
applications.

So far in the discussion of piezoelectric ceramics in this section,
it has been implicitly assumed that the piezoelectric properties of a
unit cell of PZT and of a polycrystalline ceramic made of PZT can
be treated in the same way. This is of course not true (for a detailed
discussion refer to [100]) and becomes obvious at the latest when any
compositional variation of PZT is considered. In general, ferroelectric
polycrystalline materials consist of ferroelectric domains, i.e. groups
of unit cells with the same direction of spontaneous polarization. Be-
cause the domains – called Weiss domains after the French physicist
Pierre-Ernest Weiss who suggested the existence of such magnetic
domains in ferromagnets – are randomly oriented after the sintering
process (see sect. 2.4.2), the ferroelectric material does not exhibit any
piezoelectric properties globally.6 However, by an application of a
strong external electric field, it is possible to force the domains to
be oriented or poled along the direction of the field. This process is
called poling and is schematically depicted in Fig. 8. Depending on
the phase of PZT, the external field causes the domains to switch

6Sintering refers to the process of creation of solid objects from powders.
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Figure 8: Schematic illustration of the poling process adapted from [100].
(a) shows a raw PZT sample with randomly oriented domains –
no net polarization can be observed. In (b) an external electric
field is applied to the sample which causes the realignment of
dipoles in the domains along the external field and formation of
net polarization P together with sample distortion and induction of
strain Sr. The overall strain is additionally enhanced by the poling
external field component Sp. After removal of the external field
in (c) most of the domain retain their new orientation and thus
the poled sample exhibits the remanent polarization Pr and the
remanent strain Sr.

their orientation to one of 6 (tetragonal) or 8 (rhombohedral phase)
possible states. While the domains cannot be perfectly aligned with
the external field, except if the compound crystals were by coincidence
oriented in field direction, the polarization vectors align with the
external field in a way which maximizes the number of components
resolved in that direction. Thus by means of poling, a macroscopic
asymmetry/distortion and polarization are imprinted in the ceramic
sample. After poling, when the external field is removed, a remanent
polarization Pr and strain Sr are maintained in the sample. In practice,
poling is usually performed at an elevated temperature above the TC

when the crystal structures become centrosymmetric and the electric
dipoles vanish. When the material is cooled in the presence of external
field, the formation of dipoles in field direction is enhanced [163].
A poled PZT sample has been given artificial anisotropy, i.e. direc-
tion dependence, and exhibits piezoelectric properties macroscopically.
However, these properties are still strongly influenced by the domain
behavior. Depending on the magnitude and direction of an external
field, the domains can switch their metastable configurations which
results in the change of polarization and strain exhibited by the poled
sample. The overall effect is usually described by the polarization
hysteresis loop and the butterfly curve, both depicted in Fig. 9. After
sintering, the polarization value is zero (point 1 in Fig. 9) and in-
creases during poling with the application of an electric field along the
dashed curve 1 - 2 until it reaches the maximum level Pm at which it
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Figure 9: Schematic illustration of (a) the polarization hysteresis and (b) the
strain butterfly curve of a typical ferroelectric ceramic. P denotes
polarization, S strain and E electric field. The corresponding sub-
scripts denote the remanent (r) and maximal (m) polarization or
strain levels. Ec is the coercive field strength. Gray-shaded areas
indicate the typical region of operation in which positive electric
field is employed and the strain/field dependence is approximately
linear. Depiction after [95].

saturates. At this point 2 , all domains have aligned with the external
field and the maximal positive strain Sm has been reached. If the
external field is gradually reduced, the orientations of the domains
will also return to their random state. However, due to the induced
deformation and mechanical stress within the ceramic, many of them
will retain new configurations close to the orientation they took during
poling. Even if the external field is completely removed, a remanent
polarization Pr and strain Sr are exhibited at point 3 . In order to
turn the polarization/strain value back to zero, a negative field needs
to be applied. The necessary value of this field is called (negative)
coercive field Ec and is shown at point 4 . If the negative field is further
increased beyond the Ec value, a polarization reversal arises until it
saturates again at point 5 where the domains are aligned along the
negative field. In the strain butterfly curve this corresponds to the
maximum negative strain. By reversing the electric field again, the
polarization returns to zero, passing the remanent negative polariza-
tion point 6 and reaching zero polarization at the (positive) electric
field value of Ec. Further increasing the field leads again to saturation
at point 2 , the curves close and the hysteretic cycle is completed.
In addition to the change in polarization due to the application of a
strong electric field, the orientation change of the electrical dipoles
can also be caused by mechanical stress. If an external stress of suffi-
ciently large magnitude is applied in the direction of the polarization,
it can displace the B-site ions to energetically more favorable positions
leading to mechanical form change. This change is also hysteretic and
can be described with a stress/strain hysteresis loop which crosses
regions of zero strain at the coercive stress level, the remanent and
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maximal strain in a way similar to the polarization hysteresis loop
from Fig. 9(a) [175]. This phenomenon is called ferroelasticity.

As can be seen from the above discussion, most mechanical, electri-
cal and thus piezoelectric properties of PZT exhibit a strong nonlinear
behavior if subjected to large electric fields or mechanical stresses.
Furthermore, the area of the hysteresis loop enclosed while operat-
ing the piezoelectric ceramic in a particular application corresponds
to the dissipated energy density [77] and degrades efficiency. For
this reason but even more importantly because of the difficulties con-
nected with nonlinear modeling and control, piezoelectric actuators
are usually operated in an approximately linear unipolar region of the
hysteresis loop as indicated in Fig. 9. In this region, the linear theory of
piezoelectricity applies.

2.2.3 Linear theory of piezoelectricity

The behavior of piezoelectric materials can be approximated with the
linear theory very accurately if non-ferroelectric materials like quartz
are considered [212]. In case of ferroelectric materials, the application
of linear theory is subjected to several restrictions. First of all, it is
limited to the linear range of operation mentioned in the previous
section when small or moderate unipolar electric or mechanical field
levels are used. Second, there exist important nonlinear effects like
electrostriction, resonance, creep, depolarization, etc. which will be
discussed at the end of this section and whose influence needs to
be taken into account in an application specific way. For interested
readers, a detailed treatment of the limitations of the linear theory can
be found in [229].

In the linear theory of piezoelectricity, the properties of a piezoelec-
tric material are described by the elastic, dielectric and piezoelectric
tensors. A tensor-based description is necessary since a piezoelectric
material is inherently asymmetric and its response to given electrical or
mechanical stimuli is direction dependent. Furthermore, this response
is temperature dependent and consists of both real and imaginary
(out-of-phase) components. The interrelation between the mechan-
ical, electrical and thermal components is often depicted by means
of the Heckmann diagram [94] shown in Fig. 10. In this diagram,
the circles of the outer triangle represent the intensive variables of
mechanical stress T, electric field strength E and temperature Θ and
the circles of the inner triangle the extensive variables of strain S, di-
electric displacement D and entropy σ.7 The connections between the
outer and inner circles represent the major mechanical, electrical and
thermal effects. The piezoelectrical, pyroelectrical and thermoelastic

7Intensive and extensive properties of matter refer to their dependency on size/ex-
tend. An intensive property does not depend on size in contrast to an extensive
property.

26



E
�eld

disp.
D

strain
S

stress
T

temp.
ϑ

entropy
σ

electrical

ele
ct

ro
m

ec
ha

ni
ca

l e
�ec

ts

mechanical

electrotherm
al e�ects

thermoelastic e�ects
thermal

pyroelectricitypi
ez

oe
le

ct
ric

ity

thermal pressure

pe
rm

iti
vi

ty

piezocaloric e�ect thermal expansion

heat of deformation

heat capacity
elasticity

dire
ct p

iezo
-e�ect

in
ve

rs
e 

pi
ez

o-
e�

ec
t

pi
ez

oe
le

ct
ric

ity

electrocaloric e�ect

pyroelectric e�ect

heat of polarization

Figure 10: Heckmann diagram illustrating the interrelationship between me-
chanical, electrical and thermal properties in an inorganic solid.
The outer circles represent the intensive variables of mechanical
stress, electric field strength and temperature. The inner circles
are the extensive variables of strain, dielectric displacement and
entropy. The coupling effects between the intensive and exten-
sive variables are represented by arrow-headed lines with labels
corresponding to their common naming.

couplings between the intensive variables are the edges of the outer
triangle. The remaining couplings represent the interrelations between
thermal (scalar), electrical (vector) or mechanical (second-rank tensor)
properties of the material. The coupling of different effects in the
diagram indicates the difficulty in measuring any of the encircled
variables since their change may be due to multiple effects. For exam-
ple, the mechanical strain in a piezoelectric material may be caused
by an external stress through Hooke’s law or be induced by an elec-
tric field through converse piezoelectric effect or due to temperature
change and thermal expansion of the material. In order to accurately
describe the response of the material, an energy (thermodynamical)
approach is used. In particular, the equations governing the behav-
ior of piezoelectric materials can be formulated from the Gibbs free
energy thermodynamical approach [100, 203, 106, 51] by considering
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infinitesimal energy changes at a constant temperature and pressure.
The derivation of these equations is outlined below.

The first law of thermodynamics (energy conservation law) states
that the change in the internal energy of a system U must correspond
to the heat q transferred into or out of the system and the work w
done on or by the system

dU = dq + dw. (1)

According to the second law of thermodynamics (entropy change for
reversible processes) dq can be expressed as

dq = Θdσ (2)

and if work is considered to consist of a mechanical and an electrical
part as is the case in piezoelectric materials, then dw can be formulated
as

dw = TijdSij︸ ︷︷ ︸
dwmech

+ EidDn︸ ︷︷ ︸
dwelec

, i, j = 1, 2, 3. (3)

Variables with single indices are vector-valued and variables with
double indices correspond to second-rank tensors. Reformulating
equation (1) in terms of (2) and (3) one arrives at

dU = Θdσ + TijdSij + EidDi. (4)

This equation is formulated in terms of the extensive independent vari-
ables S, D and σ. In order to replace the independent variables with
their intensive thermodynamic conjugates (which are usually known
from material property tables or experiments), a Legendre transform
of U is used resulting in the Gibbs free energy formulation [106, 204]

G = U −Θσ− TijSij − EiDi, (5)

where G is the Gibbs function.8 The total differential of G together
with a substitution from (4) gives

dG = −σdΘ− SijdTij − DidEi. (6)

By setting two of the now independent (intensive) variables constant
at a time, three relations follow for the dependent variables

σ = − ∂G
∂Θ

∣∣∣∣
T,E

, Sij = −
∂G
∂Tij

∣∣∣∣
E,Θ

, Dn = − ∂G
∂Ei

∣∣∣∣
T,Θ

. (7)

For many applications it is sufficient to approximate the relations
between the dependent and independent variables with a set of linear

8There are (2
1)

3
= 8 different ways of choosing a triple of independent variables

from the altogether 6 intensive and extensive properties. For each selection, an
appropriate thermodynamical potential can be defined and the transition from U to
this new potential realized via Legendre transform.
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functions [203]. In this case, the total differentials of S, D and σ are
computed resulting in the set of so called constitutive equations

dσ =
∂σ

∂Θ

∣∣∣∣
T,E

dΘ︸ ︷︷ ︸
heat capacity

+
∂σ

∂Tij

∣∣∣∣
E,Θ

dTij︸ ︷︷ ︸
piezocaloric effect

+
∂σ

∂Ei

∣∣∣∣
T,Θ

dEi︸ ︷︷ ︸
electrocaloric effect

(8)

dSij =
∂Sij

∂Θ

∣∣∣∣
T,E

dΘ︸ ︷︷ ︸
thermal expansion

+
∂Sij

∂Tkl

∣∣∣∣
E,Θ

dTkl︸ ︷︷ ︸
elastic compliance

+
∂Sij

∂Ek

∣∣∣∣
T,Θ

dEk︸ ︷︷ ︸
converse piezoelectricity

(9)

dDn =
∂Di

∂Θ

∣∣∣∣
T,E

dΘ︸ ︷︷ ︸
pyroelectric effect

+
∂Di

∂Tjk

∣∣∣∣
E,Θ

dTjk︸ ︷︷ ︸
direct piezoelectricity

+
∂Di

∂Ej

∣∣∣∣
T,Θ

dEj︸ ︷︷ ︸
dielectric permittivity

.

(10)

where dT and dE are assumed to be small deviations from zero initial
stress and electric field. The derivatives of the dependent variables
with respect to the independent ones in the above set of equations
correspond to physical effects from Fig. 10. They also represent mate-
rial coefficients and can be written as partial second derivatives of the
Gibbs function by substituting (7) into the constitutive equations.9 In
this way the direct and converse piezoelectric effects can be shown to
be thermodynamically equivalent

dT,Θ
ijk =

∂Sij

∂Ek

∣∣∣∣
T,Θ︸ ︷︷ ︸

converse

=
∂2G

∂Ek∂Tij
=

∂2G
∂Tij∂Ek

=
∂Dk

∂Tij

∣∣∣∣
E,Θ︸ ︷︷ ︸

direct

= dE,Θ
kij . (11)

In the above relationship, dE,Θ
kij and dT,Θ

ijk represent the coefficients in
the direct and converse piezoelectric effects, respectively, both defined
at a constant temperature (indicated by the superscripts). Since the
order of derivatives (indicated by the subscripts) is irrelevant, these
coefficients are equal and the superscript indication of constant E or
T conditions redundant (cf. simplified notation in (17)). In a similar
way other coefficients can be defined. It is common to express the
constitutive equations (8)-(10) in an integrated form with material
coefficients in place of the equivalent partial derivative expressions

∆σ =
cT,E

Θ
∆Θ + αE,Θ

ij Tij + pT,Θ
i Ei (12)

Sij = αT,E
ij ∆Θ + sE,Θ

ijkl Tkl + dT,Θ
kij Ek (13)

Di = pT,E
i ∆Θ + dE,Θ

ijk Tjk + εT,Θ
ij Ej, (14)

9Because of the second derivative formulation these coefficients are called second-
order material coefficients.
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Table 2: Matrix notation rules according to Voigt’s convention.

Tensor notation Equivalent matrix notation
ii = 11, 22, 33 α = 1, 2, 3
ij = 23 or 32, 13 or 31, 12 or 21 α = 4, 5, 6
sijkl sαβ, both α and β = 1, 2, 3
2sijkl sαβ, α or β = 4, 5, 6
4sijkl sαβ, both α and β = 4, 5, 6
dijk diα, α = 1, 2, 3
dijk

1
2 diα, α = 4, 5, 6

where c, α, p, s, d and ε are heat capacity, expansion, pyroelectric,
compliance, piezoelectric and permittivity coefficients, respectively,
and superscripts indicate variables held constant in the definitions
of the coefficients. The ∆ in σ and Θ indicates that specific initial
conditions need to be taken into account while changes in T and
E are considered always with respect to zero initial condition. By
assuming adiabatic (∆σ = 0) and isothermal (∆Θ = 0) conditions,
these equations can be further simplified. Moreover, as in the above
equations tensors up to the forth order appear, it is common to simplify
the notation by using Voigt’s matrix notation10 together with Einstein’s
summation convention11 for repeated subscripts [100]. The notation
adapted by Voigt [216] takes advantage of symmetries in the material
tensors and is summarized in Table 2. Eventually, the simplified set of
matrix equations takes the following form

Sα = sE
αβTβ + dT

iαEi (15)

Di = dE
iαTα + εT

ij Ej (16)

or by omitting the subscripts altogether and using block matrix nota-
tion [

S
D

]
=

[
sE dt

d εT

] [
T
E

]
(17)

which is known as the d-form constitutive equation because the coupling
between mechanical and electrical behavior is realized by the d piezo-
electric coefficient (strain/charge constant), i.e. for non-piezoelectric
material d = 0. Depending on the choice of independent variables in
the formulation of thermodynamical potential, three other isothermal
piezoelectric constitutive equations can be defined – h, g and e-form
corresponding to the couplings via piezoelectric stiffness, voltage and
stress coefficients, respectively. However, these formulations are of
no interest for this work and are not further considered. The d-form

10i, j = 1, 2, 3 and α, β = 1, . . . , 6
11TαSα ≡ ∑α TαSα
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Figure 11: Designation of the axes and directions of deformation according
to the IEEE Standard on Piezoelectricity.

shown compactly in (17) consists of the elasto-piezo-dielectric matrix and
is presented below with all direction specific coefficients



S1

S2

S3

S4

S5

S6

D1

D2

D3


=



sE
11 sE

12 sE
13 sE

14 sE
15 sE

16 d11 d12 d13

sE
21 sE

22 sE
23 sE

24 sE
25 sE

26 d21 d22 d23

sE
31 sE

32 sE
33 sE

34 sE
35 sE

36 d31 d32 d33

sE
41 sE

42 sE
43 sE

44 sE
45 sE

46 d41 d42 d43

sE
51 sE

52 sE
53 sE

54 sE
55 sE

56 d51 d52 d53

sE
61 sE

62 sE
63 sE

64 sE
65 sE

66 d61 d62 d63

d11 d12 d13 d14 d15 d16 εT
12 εT

12 εT
13

d21 d22 d23 d24 d25 d26 εT
22 εT

22 εT
23

d31 d32 d33 d34 d35 d36 εT
32 εT

32 εT
33





T1

T2

T3

T4

T5

T6

E1

E2

E3


.

(18)
The material coefficients in the above matrix are experimentally de-
termined values for a given piezoelectric material and numbered
according to the IEEE Standard on Piezoelectricity [1, 144]. The stan-
dard defines the z direction as the polarization direction and numbers
the orthogonal axes x, y and z as 1, 2 and 3. The numbers 4, 5, and 6
correspond to rotations about x, y and z (shear stress about these axes).
The convention is visualized in Fig. 11. The constants in the matrix are
written with subscripts referring to these numbers. For example, sE

26
is the compliance for shear stress about axis 6 (z) and accompanying
strain in direction 2 (y) under the condition of a constant electric field.
In practice, only a few entries in the elasto-piezo-dielectric matrix are
of interest for a given application and many are negligibly small and
thus assumed zero. In the next chapter [see sect. 3.2.1, eq. (21)] where
the physical model of the walking piezoelectric motor (see sect. 2.4) is
derived, the set of nine equations in (18) reduces to just two.

The above derivation of the piezoelectric constitutive equations has
led to the elasto-piezo-dielectric matrix which describes the global
direction-dependent response of a piezoelectric material by coupling
its mechanical and electrical behavior in a unified mathematical frame-
work. This idealized response is computed for isothermal conditions
and is linear as the piezoelectric coefficients in the matrix are assumed
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constant. However, it should be stressed that their values are not
invariable. These coefficients describe material properties under small-
signal conditions only and vary to some degree with mechanical as
well as electrical boundary conditions, environmental conditions like
temperature, pressure or humidity, electric field, form factor and time.
While the linear approximation is sufficient for many applications and
will be used further in this work to model the piezoelectric drive units
(legs or bimorphs, see sect. 2.4.1 and 3.2.1), it is important to be aware
of the limitations of the linear theory.

Probably the most serious limitation, at least in ferroelectric piezo-
electric materials, is the inadequacy in describing material behavior for
large signal conditions or signals of varying polarity both electrically
and mechanically. This is the consequence of the resistance to domain
switching in ferroelectric materials and results in the polarization hys-
teresis loop, butterfly-shaped strain curve and ferroelastic stress/strain
hysteresis loop described in the previous section. Even if operated
in the approximately linear unipolar region, ferroelectric materials
are still subjected to memory and saturation effects and thus react
differently depending on input history and level. These effects are
especially important for nano-positioning applications [77, 111, 133]
and need to be carefully compensated if absolute accuracy is aimed
at. In this work, dielectric hysteresis is assumed to be responsible
for nonlinear leg deflection characteristics described in sect. 3.3.3. For
low-level hysteresis modeling approaches, the reader is referred to
[113, 105, 217, 134] and for hysteresis compensation techniques (e.g.
input shaping, dynamic digital linearization etc.) to [178, 21].

Another nonlinear effect not covered by the linear theory is the
secondary electromechanical coupling or the electrostrictive effect. Elec-
trostriction is a property of all dielectric materials, whether they are
crystalline, amorphous, polar or centrosymmetric, which causes them
to change shape under the application of an electric field [91]. This
relation is quadratic meaning that the induced strain is proportional
to the square of applied field; the proportion is described with the
electrostrictive coefficient Q. In piezoelectric materials this coefficient
is usually lower than the piezoelectric strain coefficient d of the pri-
mary linear coupling. However, the electrostrictive effect can become
significant if the electric field is gradually increased. Although not
further considered in this work, electrostriction plays an important
role in a group of so called relaxor ferroelectric ceramics such as
Pb(Mg

1/3
,Nb

2/3
)O3 (PMN) in which the electrostrictive effect is much

stronger than the piezoelectric and is comparable to piezoelectricity in
PZT-based materials. Some advantages of electrostrictive over piezo-
electric ceramics are minimal hysteresis, very stable (in terms of aging
and creep, see below) deformation and no necessity of poling treat-
ment as these ceramics are operated above their Curie temperature
(which is very low compared to typical piezoelectric ceramics). The
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disadvantages include a limited usable temperature and frequency
range (high temperature and frequency dependence), small defor-
mations at low fields and high drive currents for dynamic operation
due to their especially high capacitance [91]. PMN-based actuators
have been utilized e.g. in the Hubble Space Telescope to drive the tilt
mirrors of its corrector optics [100, 208].

Piezoelectric ceramics exhibit time-dependent non-linear deforma-
tion effects under constant mechanical loading known as (mechanical)
creep as well as creep effects under constant electrical field [95]. In
both cases, the deformation of the material increases/decreases slowly
in the direction of the applied loading or field. These effects are im-
portant in all application in which stable deformation over time has to
be maintained but negligible for dynamic/periodic operation, as in
the piezoelectric motor considered in this work, due to their negligible
effect on repeatability.

Another class of non-linear influences in piezoelectric ceramics
consists of depolarization effects. After poling the ceramic material
may be depolarized thermally, electrically or mechanically. Thermal
depolarization takes place as soon as the material is heated to its
TC temperature when the domains become disordered and complete
depolarization occurs. However, partial depolarization at elevated
temperatures can already take place well below TC [100]. Electrical
depolarization occurs whenever the piezoelectric material is exposed
to a strong electric field of the opposite polarity to the poling field.
The level of depolarization also depends on the time the depolarizing
field is applied and the ambient temperature. Finally, mechanical
depolarization occurs when the level of mechanical stress on the
piezoelectric material becomes high enough to disturb the orientation
of ferroelectric domains. Also in this case many factors, e.g. material
grade, play an important role. For actuator application, if safety
margins given by the manufacturer are respected, the depolarization
effects are negligible as re-poling occurs every time a high electric
field (high voltage in the periodic drive signal) is applied.

Last but not least, all physical systems have a natural frequency of
vibration in whose vicinity they can oscillate with high amplitudes
when excited by a periodic driving force at a frequency close to the
natural one. This phenomenon is called resonance and the linear
theory can only be applied in frequency regions which are not affected
by resonance. For some actuators/motors (ultrasonic motors, see
sect. 2.3.2) resonance is utilized as the main driving principle and
its accurate modeling is naturally of paramount importance for a
successful application. In case of quasistatic motors (see sect. 2.3.3),
as the one considered in this work, the driving signals are usually far
below the resonance regions.

The previous sections were supposed to make the reader acquainted
with the phenomenon of piezoelectricity in general and with the
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Figure 12: Efficiency vs. motor size. Piezoelectric motors whose efficiency
is virtually not affected by size are superior to electromagnetic
motors in mini-motor applications. Courtesy of New Scale Tech-
nologies, Inc.

workhorse of piezoelectric actuation, the ferroelectric ceramic PZT [209]
in particular. The linear theory of piezoelectricity described in this sec-
tion together with the non-linear effects in ferroelectric ceramics form
the foundation for any actuator modeling approach and will show
themselves especially useful in sect. 3. The following sections will give
an overview of current piezoelectric linear motor technology (sect. 2.3)
and describe the construction as well as the working principle of the
walking piezoelectric motor (sect. 2.4).

2.3 piezoelectric motors

Piezoelectricity plays nowadays the most prominent role in actuator
applications next to electromagnetic, hydraulic and pneumatic actu-
ators [209, 207, 95]. While the latter actuation principles dominate
the industry whenever large displacements or high force/torque out-
put are relevant, piezoelectric actuation has dominated applications
where compact size, fast response and highest positional accuracy are
of importance. This area of application is naturally determined by
the characteristics of piezoelectric energy conversion which is scal-
able, direct (no resolution limiting moving parts), fast (acceleration
rates over 10000 g possible) and controllable down to sub-nanometer
range [209]. Moreover, as new techniques of (unlimited) movement am-
plification (see next section) are developed and even more importantly
the demand for small-sized actuator applications gains momentum,
piezoelectric motor technology is likely to gain further on importance.
This tendency is explained graphically in Fig. 12. Piezoelectric motors
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(a) (b)

Figure 13: Schematic drawings of the first piezoelectric motor developed by
L.W. Williams and W.J. Brown from the patent application [223]
filled at United States Patent Office in 1942. (a) cross-sectional
view of an embodied motor and (b) diagrammatic view exempli-
fying the mode of operation.

are virtually insensitive to size in terms of efficiency [164]. The com-
mercially available motors maintain a typical efficiency of about 30 %
whereas the efficiency of electromagnetic motors decreases steeply for
motor size below 10 mm – a critical size for many electronic devices.12

Uchino [209] compares the piezoelectric and electromagnetic motors
in terms of efficiency as the function of power consumption and es-
timates that the later are inferior to the former in the power range
below 30 W.

Some strong points of piezoelectric motor technology can be already
recognized in the patent application for the invention of the first
“piezoelectric motor” from 1942 [223]:

[...] Another object is to provide an electric motor that shall
not require commutators, slip rings or the like for convey-
ing alternating electric potentials [...] wherein vibratory
movement of a piezoelectric crystal element is translated
into rotary motion of a driven part without the interposi-
tion of gears, ratchet wheels or like [...] and provide speed
reducing means devoid of gears of conventional type.

The inventors obviously had in mind as simple as possible direct drive.
Two schematic illustrations from this patent application (granted in
1948) can be seen in Fig. 13. The motor consisted of multiple piezo-
electric flexing elements so arranged that their vibrational motion
was converted into rotary motion of a shaft and gear. Besides their
(generally) simple structure, no need of a reduction stage and suit-
ability for miniaturization, piezoelectric motors offer other important

12The theoretical efficiency of piezoelectric motors is much higher, e.g. 98 % for
standing-wave ultrasonic motors [100] but practically it remains at about 30 % in
commercial products due to losses in the drive circuitry, piezoelectric and elastic
materials and due to friction.

35



advantages including quick response, wide velocity range, excellent
controllability and position resolution, high power/weight ratio and
efficiency, no backlash, no power consumption in steady state, very
low or no maintenance effort, EMI and vacuum compatibility, op-
eration at cryogenic temperature and high temperature sterilization,
non-flammability, etc. The disadvantages include reduced durability
due to frictional drive, dropping velocity under load, necessity of
high-frequency power supply and high electric fields. For a more
complete discussion on this topic, the interested reader is referred to
the literature [209, 207, 96, 112].

In the subsequent sections, a selection of contemporary piezoelec-
tric motors will be discussed. The discussion will be constrained to
linear motors due to the focus of this thesis starting with a general
classification of piezoelectric linear motors (next section), followed by
several examples of ultrasonic (sect. 2.3.2) and quasistatic (sect. 2.3.3)
linear motors.

2.3.1 Classification

The classification task should start with a clear definition of the term
piezoelectric motor and how it differs from the term piezoelectric actuator.
In the literature the terms are often used interchangeably or a vague
distinction is made. In this work, the following definitions after [194]
are adopted:

• Piezoelectric actuator is an electro-mechanical energy transducer
which converts electrical energy into motion using the inverse
piezoelectric effect.

• Piezoelectric motor is an electro-mechanical drive system in which
the limited displacement of a piezoelectric element is converted
into the unlimited rotary or translatory (in case of linear motors)
motion of a rotor or slider.

According to the above definitions every piezoelectric element can be
considered an actuator if it is utilized with the objective to produce
motion. However, the travel range of a simple actuator is naturally
limited by the maximum possible deformation of the material. In more
complex actuators the displacement can be amplified in terms of space
by using a suitable mechanism. The most common techniques are
listed below with the indication of further references for the interested
reader:

1. Amplifying longitudinal strain by stacking actuators

• high-voltage discrete stack actuator [140]

• low-voltage co-fired multilayer actuator [202]

2. Producing bending motion by internal leverage

36



• unimorph actuator [209]

• bimorph actuator [209, 58]

• multimorph actuator [129]

3. Coupling longitudinal strain to a rigid strut or shell via flexures

• moonie actuator [154, 209]

• cymbal actuator [209, 59]

4. Monolithic hinge lever mechanism [209]

5. Using a combination of the above techniques

• monomorph/rainbow actuator [90, 210]

• thunder actuator [53, 157]

Strictly speaking, the (functionally) bimorph drive elements of the
walking motor (see sect. 2.4) also use a combination of the above
techniques (multilayer as well as bimorph actuators, see sect. 3.2.1)
in order to increase the displacement of the legs. In addition to the
above direct amplification techniques, other forms of amplification in
connection with a secondary amplification system (lever mechanism,
oil-pressure amplifier, etc.) are employed [209, 172].

In case of piezoelectric motors a further step is taken. They utilize
either simple actuators or some of the above-mentioned amplification
techniques and additionally accumulate the small displacements by
means of intermittent frictional coupling with a movable element.
Thus the displacement amplification occurs in terms of time. The
resulting macroscopic movement is either rotatory or translatory de-
pending on the constraints imposed on the movable element. In the
following sections only the latter type will be considered. A possible
classification of piezoelectric linear motors based on their working
principle is approached in Fig. 14. The top-level branching in the
diagram builds up on the distinction between the resonant (ultrasonic,
speed-controlled) and non-resonant (quasistatic, position-controlled)
mode of operation. In the following sections these two classes of
piezoelectric motors are introduced with the objective of showing the
diversity of actual designs and providing the reader with a reference
to commercially available products.

2.3.2 Ultrasonic motors

In ultrasonic motors, a piezoelectric actuator is driven by a high-
frequency power supply at one of resonant frequencies of the actuator
to make it oscillate with an increased amplitude. This oscillation of
the actuator produces motion of a movable part (slider) through their
smooth frictional contact. The name ultrasonic is supposed to reflect
the fact that the motors are operated at ultrasonic frequencies (above
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Figure 14: Classification of piezoelectric linear motors according to their
working principle. The gray-shaded path illustrates how the
classification applies to the walking piezoelectric motor.

20 kHz) and thus their operation is not audible. However, this name
may be misleading because the resonance frequency of a particular
motor design may lie in the audible range and because there are other
non-piezoelectric (solid state, e.g. magnetostrictive) motors which
operate in the ultrasonic range. With this side note in mind, the
naming convention is so widely accepted that it is also used in this
work. From the vibration characteristics point of view two types of
ultrasonic motors exist – the standing-wave (or stationary-wave) and
the traveling-wave (or propagating-wave) type. By waves mechanical
oscillations traveling through the piezoelectric medium and induced
through resonance are meant.

The standing-wave type is also called vibratory-coupler type due to
the fact that the motion of the vibrating element is transferred to the
slider as a series of microscopic pushes. In the simplest possible design,
these pushes provide a unidirectional force transmission. While this
may be sufficient for many rotary applications, bidirectional motion
is usually needed for linear motors. The bidirectional motion can be
obtained either by employing at least two separate vibrating elements
excited with a phase difference or by superimposing two oscillations in
a single resonator (bimodal motor). An example of the former design
is the motor by Endo et al. [64] which employs two longitudinal
effect piezoelectric elements arranged at right angle to each other
which produce an elliptical vibration locus of a common tip. The
direction of motion can be reversed by swapping the drive signals
between the elements. Another interesting design of this kind is the
piezoelectric motor using two orthogonal bending modes of a hollow
cylinder developed by Uchino et al. [125]. The original design is
a rotary motor. A linear version has been commercialized by New
Scale Technologies, Inc. (Victor, NY, USA) in a series of Squiggle
motors. The smallest version of this motor is shown in Fig. 15. The
motor consists of four piezoceramic actuators, a threaded nut and
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Figure 15: The squiggle motor from New Scale Technologies, Inc. is one
of world’s smallest linear motors. (a) Photograph of the motor
giving the impression of its size. Next to the motor on top of the
board pin is the motor drive ASIC. (b) CAD drawing illustrating
the component of the motor. (c) Schematic illustration of electrical
connections to the piezoelectric ceramic elements. Courtesy of
New Scale Technologies, Inc.

screw. The actuators are pressed against the surface of the nut and
excited with a 2-phase drive signal [see Fig. 15(c)] which imparts a
wobbling “hula hoop” motion in the nut at the resonant frequency
of about 170 kHz and thus causes the screw to rotate and translate.
The translation of the screw is bidirectional depending on the phase
difference between the excitatory phases. The design is very compact
and has low manufacturing costs [194].

The other type of a bidirectional standing-wave motor is the bi-
modal motor. The first known motor of this type was invented in
1970s by Russian scientists [214]. They used 4 diagonally arranged
electrodes to excite the longitudinal and bending mode oscillations in
a plate-shaped actuator. The superposition of the oscillations led to
an elliptical motion of surface points. The idea was commercialized
by the company Nanomotion Ltd. (Yokneam, Israel). A selection of in-
teresting designs of bimodal motors is offered by the company Physik
Instrumente GmbH (Karlsruhe, Germany) in their PILine drive line.
The operation of these motors is based upon resonant asymmetric
excitation of a two-dimensional standing extension wave in a piezoce-
ramic plate element. The basic design is shown in Fig. 16. The actuator
consists of a piezoceramic plate having the dimensions LxWxH (x,y,z)
and being polarized in the y-direction. The two largest faces of the
plate are covered with electrodes – one common drain on the bottom
face and two excitation electrodes on the top face each covering half
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Figure 16: Bimodal standing-wave motor from Physik Instrumente (PI)
GmbH. (a) CAD drawing of motor components in a linear stage.
(b) Piezoceramic actuator with the indication of its dimensions
and the placement of electrodes. (c) Harmonic analysis using
a FEM-model showing the straight line motion of the pusher.
Courtesy of PI.

of the surface. A wear-resistant pusher made of aluminum oxide is
placed between these electrodes on one of the long perpendicular
faces and pressed against a guided slider. The actuator is excited with
a sinusoidal voltage applied to one of the excitation electrodes while
the other floats. The excited oscillation can be described mathemat-
ically by two standing waves in x- and z-dimensions.13 The pusher
moves along a straight-line trajectory inclined at either 45 ◦ or 135 ◦

depending on the direction of motion [see Fig. 16(c)] and provides
microscopical pushes which drive the slider at a resonant frequency
of approximately 63 kHz. The direction of motion can be changed
by applying the drive signal to the previously floating electrode and
letting the other electrode float.

The other type of ultrasonic motors according to the classifica-
tion from Fig. 14 is the traveling-wave type. It was invented by
Sashida [174] in 1982 and commercialized one year later by Shin-
sei Corporation (Tokyo, Japan). The original invention was a rotary
motor. Rotary motors of this type are nowadays ubiquitous in camera
auto focus lenses and wrist watches. Linear traveling-wave motors,
however, are much less popular [96] and more difficult to construct.
They are mentioned here for the sake of completeness of the discus-
sion. Traveling-waves can propagate on a closed ring-type stator easily
in contrast to a finite medium, e.g. a bar, in which they get partially
reflected upon hitting its boundaries which leads to the formation of
standing waves. Thus, traveling-waves can be generated stably in a lim-
ited size medium only by superimposing two standing waves whose
phases differ by 90 ◦ from each other both in time and space [207].

13Specifically, an extensional wave of the E(3,1) mode can be excited in the plate if
its L/H ratio is approximately 2:1. For a detailed treatment of this topic, the interested
reader is referred to the theory of wave propagation in elastic plates and to [213].
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It follows that two vibration sources are required to generate one
propagating wave decreasing the overall motor efficiency. Another
difficulty in the successful application of traveling-wave motors is the
construction of the support for the stator because no steady nodal
points exist. Several designs of linear traveling-wave motors have been
proposed [127, 98, 205]. In the design by Kurosawa et al. [127] two
piezoelectric vibrators are installed at both ends of a steel rod. These
vibrators excite and receive a traveling transverse wave. By adjusting
a load resistance in one of the vibrators, a perfect traveling wave can
be obtained. The wavelength is chosen as short as several mm in
order to provide a stable surface contact to a slider which clamps the
transmission rod with an appropriate force via a rubber coating. The
design has a poor efficiency because the whole rod needs to be excited
although only a small part of it is used for the output. No commercial
application is known to the author.

2.3.3 Quasistatic motors

Quasistatic motors are the other large class of piezoelectric motors
next to ultrasonic motors. Their name reflects the mode of operation
in which, at least conceptually, several discrete stages can be distin-
guished and the operation can be stopped at any point while cycling
through the stages in a quasistatic state. Thus, this type of operation is
rather position than velocity controlled in contrast to ultrasonic motors
in which there is no such control over the resonating structures. The
term quasistatic should not be confused with the definition from ther-
modynamics in which infinitely slow processes are meant. Although
operated well below its resonant frequency, a quasistatic motor driven
at 1 or 10 kHz can hardly be called static. The main advantage of
this kind of motors is their theoretically unlimited resolution (down
to sub-nanometer range) as the amount of displacement imposed by
the actuator(s) on the moving part can be controlled precisely even
in open loop systems. As a matter of fact, most piezoelectric motors
except of the traveling-wave type can, in principle, be driven quasistat-
ically [96]. Still, due to their substantially higher drive frequency and
amplified displacement ultrasonic motors are preferred in applications
where high velocity and noiseless operation count. Quasistatic motors
operate according to one of two principles – the inertial or the stepping
principle.

As far as inertial principle motors are concerned, there are roughly
two classes of motors belonging to this group – stick-slip drives drives
incorporating a fixed actuator and impact drives which have a mov-
ing actuator. However, the former term is often used generically to
describe both of these classes. In the actual stick-slip drives with a
fixed actuator, two movement stages can be distinguished. First, the
actuator expands slowly and the slider follows this movement due to
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Figure 17: Schematic depiction of the actuation stages in (a) the stick-slip and
(b) impact drive piezoelectric motors. The dotted lines indicate
the magnitude of displacement per cycle (step size).

static friction (stiction). Next, the actuator contracts so rapidly that the
slider is unable to follow this movement and lets the actuator slip back
due to its own inertia and the not sufficiently high dynamic friction.
This principle is depicted schematically in Fig. 17(a). In this way, a
stepwise motion pattern of the slider is obtained. The direction of
motion is determined by the mode of the slow movement (expansion
or contraction). The above motion principle can be compared to the
“tablecloth trick” in which dishes remain on the table after a quick
pull of the cloth, while a slow pull makes the dishes follow the cloth.
Commercial piezoelectric motors utilizing this principle are offered
e.g. by New Focus (Santa Clara, USA) in their Picomotor products.

In impact drive motors, static friction and impulsive force caused
by a rapid displacement of the actuator are utilized. An impact drive
motor consists conceptually of three main parts: the movable main
body, the actuator and the inertial weight. The main body is placed
on a guiding surface to which it has frictional contact. The actuator
is attached at one end to the main body and at the other end to
the inertial weight. Neither the actuator nor the weight touch the
surface. The drive cycle consists of four stages depicted schematically
in Fig. 17(b). It starts with the actuator fully extended followed by its
slow contraction so that the inertial force on the main body remains
smaller than the static friction between the main body and the surface
– the main body maintains its position. This contraction is stopped
suddenly at the end of the process breaking the static friction and
immediately a rapid extension of the actuator follows which causes
impulsive inertial force to be exerted on the main body. The main body
follows in the direction of the force (away from the inertial weight).
This drive cycle results in a stepwise motion of the main body as in
the stick-slip drive. In order to change the direction of motion the
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Figure 18: Schematic depiction of the actuation stages in an inchworm motor
with two (pairs of) clamping and one (pair of) extensional actua-
tor(s). Note the translation of the slider in step 1 and 4 indicated
by a direction arrow. The dotted reference baseline indicates a
common initial position in all pictograms.

extensional stage needs to become slow and the contraction stage fast.
This kind of motors has been employed e.g. in a 3-DOF UHV (ultra
high vacuum) positioning stage [227] and in a precision assembly
device [228]. Impact drive motors are employed commercially in
products of Owis GmbH (Staufen, Germany).

Quasistatic motors based on the stepping principle are sometimes
called clamping-type motors in analogy to the working principle of the
inchworm motor [143] which was the first motor of this type introduced
to the commercial market by Burleigh Instruments, Inc. (NY, USA).
Fig. 18 illustrates the actuation stages of a typical inchworm motor.
The slider is initially clamped by one of the clamping actuators. In step
1 , the extensional actuator expands increasing the distance between
the clamping actuators. The clamped slider moves away from the
open clamp. Subsequently the open clamp closes in step 2 and the
previously closed one opens – step 3 . When the extensional actuator
contracts in step 4 , the distance between the clamps reduces and
the clamped slider moves further in the desired direction. Finally, in
steps 5 and 6 , the clamping actuators change their roles again and
the whole cycle starts anew. By reversing the clamping sequence the
direction of motion becomes reversed. The maximal stroke of a single
cycle depends on the length and maximum strain of the extensional
actuator. The no-load motor velocity depends on the stroke and the
drive frequency. The holding force of the motor is dependent on
the blocking force of the clamping actuators as well as the friction
coefficient between them and the slider. The well-ordered sequence
of clamping and unclamping or contact establishment and disestab-
lishment in the inchworm motor is typical for all stepping principle
motors, also for the walking type motors which will be described in
detail in the next section.
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2.4 the walking piezo motor

The discussion of the walking type stepping principle quasistatic mo-
tors has been purposely postponed and is covered now in a separate
section. While the overview of other motor types from the previous
section was supposed to provide a possibly wide range of illustra-
tive examples, it was necessarily superficial. In this section a more
detailed discussion of the walking drive principle (sect. 2.4.1), motor
construction and the fabrication process of the drive units (i.e. legs)
(sect. 2.4.2) is presented.

2.4.1 The walking principle

In the walking type motors several drive elements (legs) alternately
engage and disengage in a frictional contact to a movable slider. This
sequence is similar to the clamping/unclamping mechanism of the
inchworm motor. However, in walking type motors both the clamping
and advancing of the slider is realized by the same legs in contrast to
the separate set of clamping and extensional actuators in the inchworm
motor. Thus, the drive elements of the walking motor can be intuitively
compared to legs which can move up and down as well as forward
and backward and the whole movement cycle can be compared to a
walking sequence of these legs on a movable treadmill – i.e. the slider.
Several different designs of the drive elements are conceivable includ-
ing stacking one longitudinal mode (clamp/unclamp movement) and
one shear mode (forward/backward movement) actuator as in the
PiezoWalk drives from Physik Instrumente GmbH or using one of the
many possible designs of piezoelectric benders [209, 172] as long as the
design allows elongation of the bender. An especially advantageous
design of the drive elements in terms of displacement amplitudes is
obtained when monolithic multilayer actuators can be made behave
functionally like extensible benders. This kind of drive elements is
employed in the piezoelectric motor modeled in this work. The techno-
logy is patented by the companies Physik Instrumente GmbH [142]
and PiezoMotor Uppsala AB [114]. Further details on the fabrica-
tion process of the drive units are given in the next section, while
the mathematical models describing motion of the legs are derived
in sect. 3.2 and 3.3. A graphical illustration of the walking principle
utilizing leg elements in the form of extensible piezoelectric benders
is shown in Fig. 19. From the functional point of view, each leg can be
conceptually seen as consisting of two elongated longitudinal mode
actuators which can extend and contract independently because of
their electrical separation. These actuators are mechanically coupled
so that an elongation/contraction of just one of them causes the whole
structure to bend. A pure elongation or contraction is only possible if
an electrical field of the same magnitude is applied to both of them.
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Figure 19: Drive principle of walking piezoelectric motors. One walking
cycle is shown for an exemplary sine-shaped driving waveform.
The drive signal consists of four phase-shifted electrical phases
(numbered 1-4). The phases are connected to the legs as shown
in the encircled region. The four legs are arranged in two pairs,
each pair receiving the same driving signals (e.g. first and third
leg from the left). The capital letters next to the walking stages
correspond to the sampling time of the drive signal. Darker shad-
ing indicates higher drive voltage, arrows indicate the direction
of motion of leg tips and of the slider.

In a walking cycle, the legs alternately establish contact to a movable
slider which is pressed against them with some kind of preload (see
next section). The contact to the slider is maintained by those legs
which are most extended and while in contact, these legs advance the
slider in the direction of their bending motion due to friction. This
alternating contact sequence is a necessary condition for the walking
principle to work (cf. sect. 3.4.1). It follows that at least two legs are
required in a walking type motor. However, in order to ensure static
stability of the slider, it has to be supported at least at two different
points along its length at any given time. For this reason, four legs
in two pairs are employed in practical designs; also in the PiezoLegs
motor considered in this work. Each leg in a pair receives the same
control signals – two signals per leg for each of the longitudinal mode
actuators. Thus, a four phase signal is necessary to drive the motor
consisting of two pairs of legs.14 The higher the driving signal (i.e.
voltage) the higher the electric field and consequently the elongation
of a given actuator. In the walking sequence of Fig. 19, an exemplary
sine-shaped four phase drive signal is used. There is a 90 ◦ phase shift
between phase 1 and 2. Phase 3 and 4 are phase shifted 180 ◦ with

14A pair, or an m-tuple, can consist of m legs in a theoretical design of the walking
motor. This fact is accounted for in the general motor modeling strategy of chapt. 3.
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regard to phase 1 and 2, respectively. The effect is as follows. At the
time point marked with an A , phases 1 and 4 are relatively low while
phases 2 and 4 relatively high. Thus all legs are bent – pair 1 to the
left and pair 2 to the right. Pair 2 is at the moment slightly higher
than pair 1 and thus maintains contact to the slider which has been
forwarded by its bending motion to the right. In the next step, B ,
pair 2 contracts while pair 1 has taken over the contact to the slider
and advances it while bending to the right. At time point C , pair 1

reaches its maximal bending to the right while pair 2 being now bent
to the left expands to take over the contact to the slider. Finally, in D ,
pair 1 has retracted and pair 2 being now in frictional contact with the
slider moves it to the right. The next time step in this sequence would
again be A completing one walking cycle. During this cycle, the
slider has been all the time advanced to the right. In order to change
the direction of motion phase 1 would need to be swapped with phase
2 and phase 3 with phase 4 or the sequence A - D be reversed. In any
case, in order for the motor to move in a given direction both pairs
of legs need to move most of the time in the same direction while
contacting the slider. The non-contact times are used to reposition the
legs before contacting the slider again. This requirement together with
the alternating leg contacts to the slider provides the basic rules of the
walking principle.

Besides the sine-shaped driving signals (waveforms), other peri-
odic waveforms as well as phase relations between them are conceiv-
able [145, 146] and employed in order to optimize particular aspects
of motor performance (e.g. speed, maximal stall force, etc.). By using
different waveforms, important insights into the internal workings
of the motor can be gained. In the following chapter (chapt. 3), the
force waveform, which improves the stall force characteristics of the
motor, will be used additionally to the sine waveform. This will prove
useful in identifying a nonlinearity in leg deflection characteristics
(sect. 3.3.3). It will be also shown that in reality there are overlap-
ping contact times between both pairs of the legs and the slider and
how these contact times are influenced by the choice of a particular
waveform (sect. 3.4.1). Finally, in chapt. 5, a bio-inspired waveform
generation strategy is proposed. In simulation, this strategy proves
to be superior to any particular fixed periodic waveform. Its practical
application would require an independent control over each of the
four legs as opposite to the pairwise control. Before proceeding to the
chapters concerned with motor modeling and waveform generation,
the last section of this chapter provides details on motor construction
and leg fabrication process.
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Figure 20: Computer rendering of the walking piezo motor (PiezoLegs).
The motor consists of only a few parts which are numbered and
displayed in separate boxes. Inside of the lower housing (1) the
drive unit (2) with four piezoelectric leg elements (10) is placed.
Each leg has a wear-resistant cap made of aluminum oxide on
its top face (11). The description of all parts can be found in the
running text.

2.4.2 Walking motor construction

The different drive strategies used in piezoelectric motors including the
walking principle can be understood easily. The actual construction of
a device utilizing these principle is a more demanding technological
challenge. On overview of this process is sketched below.
The commercially available walking piezo motor PiezoLegs considered
here is produced by the Swedish company PiezoMotor Uppsala AB.
Similar motors are offered by the German company Physik Instru-
mente GmbH. The motor consists of only a few parts which are shown
in Fig. 20. Inside of a steel lower housing marked with 1 there is a
drive unit 2 consisting of four leg elements made of a soft-type PZT.
Each leg is a piezoceramic multilayer bimorph 10 covered with a wear-
resistant aluminum oxide cap 11 . Backfaces of the legs are coated
with electrodes and soldered to a flexible printed circuit board (flex
circuit, PCB) 9 on which a 5-pin socket 8 (JST SH BM05B-SRSS TB)
is mounted. The socket is the interface to the driving circuitry (see
chapt. 6) which provides the legs with a 4-phase signal and a common
ground. A 50 mm long ceramic bar 3 (drive rod, slider) is placed
on top of the legs and pressed against them by means of two roller
bearings 5 whose outer ring can roll freely on the slider. The inner
ring is elongated and supported by the upper steel housing 4 . The
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upper and lower parts of the motor housing are screwed together with
M1.6 hexagon cap or torque screws 7 . The preload force required to
press the slider against the legs is generated by a stack of cross-shaped
leaf springs 6 . The central part of the springs has a whole in it and
is screwed to the upper housing while the arms of the springs lay on
the elongated parts of the bearings pressing them against the slider.
The preload level can be adjusted with the central screw.

Especially interesting from the technological point of view is the
fabrication process of the drive elements (legs). According to the
classification from sect. 2.3.1, the drive elements are composite actu-
ators because they are both multilayer and bending mode actuators.
Multilayer structure is chosen in order to increase the displacement
and decrease the driving voltage at cost of a higher current and lower
structural rigidity. There are two basic techniques for the fabrication of
a multilayer structure – cut-and-bond and tape-casting method [209, 208]
which is also used for multilayer capacitors. In the first method, mul-
tiple polished ceramic discs are prepared and stacked together with
metal foils in-between the layers serving as electric leads. The minimal
layer thickness in this method is limited to about 1 mm and thus it
is not suited for small-sized, low-voltage actuators.15 In the second
method, ceramic green sheets with printed electrodes are prepared,
laminated and co-fired with internal electrodes.16,17 Much thinner
layers below 100 µm and lower driving voltages are possible with this
method. A variation of the tape-casting method [185, 186] is used to
produce the drive elements of the walking motor. Several steps which
the method consists of are described in detail in appendix A.

This chapter provided the reader with the basic knowledge about
the piezoelectric technology in general and the construction as well as
the working principle of the walking piezoelectric motor in particular.
The next chapter opens the main part of this work concerned with
modeling of the walking motor.

15A multilayer actuator with 90 1 mm layers would have to be 9 cm long and
would generate ten times smaller displacement in relation to its length for the same
amount of applied voltage as compared to a 9 mm long actuator consisting of 90

100 µm thick layers.
16“Green” refers to the approximate color of the ceramic slurry, i.e. a mixture of

ceramic powder and organic binders, formed in the shape of a flat sheet by a forming
machine.

17Co-firing refers to the fact that electrodes can be applied already to the green
material and sintered in one step. A prerequisite for this process is a ceramic material
which can be sintered at relatively low temperatures below the melting point of the
electrodes.
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3 PHYS ICAL MODEL OF MOTOR
DYNAMICS

abstract

In this chapter a novel dynamic model of a contemporary linear piezoelectric
motor is presented. The model is based on physically meaningful parameters
and macroscopically measured data in fully assembled state. The model
describes the frictional interaction between multiple piezoelectric legs and
a ceramic rod. It consists of two orthogonal dynamics which are coupled
together by means of preload and frictional forces. Linearity of the model
is maintained through most of the modeling stages with clear indication
of nonlinear effects due to hysteresis, friction and impact dynamics of the
legs. Unknown model parameters are estimated within a global optimization
procedure and bounds on parameter values are indicated. The presented
model explains the linear drive frequency/velocity as well as the nonlinear
load force/velocity characteristics of the motor within its full operational
range. The insights gained throughout the modeling process indicate the
possibilities of design improvements. Moreover, the model is able to explain
the resonance phenomena limiting the range of motor operation and is used to
develop an alternative drive strategy in chapt. 5. The content of this chapter
is based on publication I.

3.1 introduction

The previous chapter has introduced the walking piezoelectric mo-
tor and provided details on its construction and fabrication process
(sect. 2.4) as well as laid the mathematical foundation (sect. 2.2.3) for
modeling of piezoelectric phenomena. These prerequisites will prove
very useful in formulating the physical model of the motor in this
chapter which marks the beginning of the main part of this thesis.
The derivation of a physical motor model will provide a framework
for understanding the interaction between the legs and the drive rod,
the effect of different drive signals on motor performance and the
performance limiting factors. In chapt. 5 this physical model will be
used to validate a bioinspired drive strategy and show its superiority
to classical approaches.

As far as models of quasi-static legged motors are concerned, there
exist only a few of them in the literature. These models either rely
on transfer function identification techniques [145] (see also chapt. 4)
or they are based on the finite element method (FEM) [9]. While
the first approach is well suited to provide a motor model based on
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macroscopic measurements in a narrow region of operation, it pro-
vides little physical insights and falls short of reproducing the holistic
behavior of the motor. On the other hand, FEM-based approaches re-
quire a good knowledge of motor construction and low-level material
properties but can accurately reproduce its low-level behavior. The
disadvantage lies in their high computational costs. Moreover, it is
often not possible to obtain low-level experimental data for the model
if the motor is fully assembled or expensive sensors are required in
order to obtain the measurements. Merry [146] recently proposed a
contact dynamics model which accurately describes the behavior of a
nano-positioning stage employing the legged motor for frequencies
below 50 Hz. However, the motor is suited for a much higher range of
frequency up to 3 kHz [200]. Moreover, the proposed model does not
consider the effect of tangential load on motor velocity and requires a
dedicated numerical solver. The focus of the above models is put on
precise positioning capabilities and low-velocity operation in load-free
condition.

This chapter presents a physical model of the legged piezoelectric
motor which can be used e.g. as force generator in small-sized robotic
applications. The model is based on physically meaningful parameters
and macroscopically measured data in fully assembled state. The pre-
sented model explains the behavior of the legged motor within its full
range of operation even under load. In this chapter, the focus is also
put on functional aspects of motor operation which shows possible
design improvements and anticipates an alternative drive strategy for
even higher motor velocities. This chapter is organized as follows.
In sect. 3.2 a kinematic model of the legs is derived and a general
notation for a motor driven by N legs is introduced.1 Leg dynamics as
well as the effect of hysteresis on leg deflection is presented in sect. 3.3
while the two-dimensional interaction dynamics between the legs and
the drive rod is presented in sect. 3.4. In sect. 3.5 the optimization
procedure used to find the unknown model parameters is introduced
followed by a discussion on model shortcomings in sect. 3.6.

1Following notation with regard to mathematical expressions is used in this
chapter. Constants like N or general terms like z-dimension are given with a regular
sans-serif typeface. The only exception concerns the inertia I (capital “i”) which has
serifs in order to distinguish it easily from an l (lowercase “l”). Variables like zs,
U+ or MA are given with an italic serif typeface. The same convention holds for
vector-valued expressions like a or D but bold-faced fonts are used. Additionally,
calligraphic letters like in D or Lz are used to denote the functions which represent
final expressions for model components and are used as their labels in the block
diagrams.
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Figure 21: Simplified structure of a multilayer piezoelectric bimorph. (a) de-
tailed view of a single piezoelectric layer between two electrodes.
The direction of polarization p and of the electric field E are in-
dicated. (b) piezoelectric stack consisting of Nl layers. Electrical
connections between the electrodes and two voltage sources are
indicated with dots, the resulting directions of electric field with
arrows. (c) stack dimensions. (d) bimorph element consisting of
two stacks (A and B) connected to independent voltage sources
and a common ground.

3.2 leg kinematics

Legs are the basic constituent and functional elements of the piezoelec-
tric motor introduced in the previous chapter. In the following section,
a kinematic model of a multilayer piezoelectric bimorph, i.e. a single
leg of the walking motor, is derived based on the inverse piezoelectric
effect and the theory of elastic deflection of beams. Furthermore, a
general notation for a motor consisting of N pairs of M legs each is
introduced. In accordance with the walking principle (see sect. 2.4.1)
all legs belonging to one pair perform the same movement. Sect. 3.2.2
describes the electrical signals (waveforms) needed to drive the legs of
the walking motor.

3.2.1 Piezoelectric bending beam

Piezoelectric bimorphs come in different versions due to differences
in manufacturing methods [191]. Those employed in the PiezoLegs
motor are tape-casted multilayer bimorphs with interdigital electrode
configuration [209]. Fig. 21 shows a simplified structure of such a
bimorph element while the construction and fabrication details of
similar structures can be found in sect. 2.4.2. To a good approximation,
the bimorph consists of a series of Nl soft-type ceramic (EDO EC-76)
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layers which alternate in the direction of polarization p (Fig. 21[a]) and
together constitute a stack of height L. The ceramic layers are separated
with screen-printed electrodes which are connected to two external
voltage sources U+ and U− in such a way that the resulting electric
fields coincide in polarity with the polarization p in the corresponding
layers and cause their elongation.2 As each layer experiences the
effect of its own electric field, the overall effect is a large electric field
experienced by the entire stack (Fig. 21[c]). Two stacks which are
coupled together mechanically form a bimorph. Fig. 21(d) shows how
the different stacks A and B are connected to two driving voltage
sources UA and UB and a common ground. A positive voltage applied
to any of the stacks causes its expansion in z-dimension. If one stack
expands more than the other, the whole bimorph also bends in x-
dimension because of their mechanical coupling. Thus a piezoelectric
bimorph is a special form of a piezoelectric bender.

While extensive research has been done in modeling and design of
piezoelectric benders [191, 190, 58, 89, 220, 129, 60] in general, the va-
riety of actual designs requires an individual approach for each motor
type. In the following, the static relation between the applied voltages
and the expansion and bending of the bimorph is derived based on
the Euler-Bernoulli theory of elastic deflection of beams [150, 69]. For
this purpose, each multilayer stack is considered a single piezoelectric
bar with an enhanced elongation due to its actual multilayer structure
(see above) and reduced rigidity.3 Fig. 22(a) shows the piezoelectric
bimorph in form of a cantilever beam consisting of two parts A and B.
The plane connecting the two parts forms the neutral axis (NA) of the
beam. For the following analysis, the beam is assumed to be homoge-
nous, with uniform rectangular cross-section and is subjected only to
pure bending and small deflections. Only internal forces due to the
inverse piezoelectric effect are considered. When the beam reaches a
steady bending state, there is a static equilibrium of moments M and
forces F acting on different parts of the beam. Additionally, the strains
S at the interface plane between A and B must be equal

SA − SB = 0 (19a)

FA + FB = 0 (19b)

MA + MB = (H2 )F
A + (−H

2 )F
B. (19c)

2Note that the direction of polarization of each particular layer is imposed during
the polling process and thus has to coincide with the direction of the respective
electric field.

3The structural rigidity of a multilayer structure, in the simplest case, can be seen
as series connection of multiple springs. For this reason, the overall structural rigidity
of a multilayer structure has to be lower than the one of a bulk material.
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Figure 22: Bending beam model of the piezoelectric bimorph. (a) forces and
torques acting on the beam. (b) static position of the piezoelectric
leg when equilibrium of internal forces and moments is reached.
(c) block abstraction of static leg position model.

The interface strains can be found by superimposing axial strains (a)
and strains due to bending (b) and piezoelectricity (p)

SA =SA
a + SA

b + SA
p (20a)

SB = SB
a + SB

b + SB
p . (20b)

As the bimorph is a type 33 bender the general linear model of piezo-
electricity [1] can be reduced to the following coupled equations:

D3 = d33T3 + εT33E3 (21a)

S3 = sE33
E

T3︸ ︷︷ ︸
Sa

+ d33E3︸ ︷︷ ︸
Sp

(21b)

with D and S being the electric charge and mechanical strain, respec-
tively. d33 is a piezoelectric charge constant, εT33 dielectric displacement
per unit electric field under constant stress T and sE33 compliance under
constant electric field E. The variables T and E stand for stress and elec-
tric field accordingly. In a static equilibrium condition FA = -FB = F.
Assuming upward directed forces to be positive, the axial strains at
the neutral axis are found as

SA
a = 1

εWHF (22a)

SB
a = − 1

εWHF (22b)

where ε is Young’s modulus of the beam defined in (66). The strains
due to the inverse piezoelectric effect are

SA
p = d33EA= η d33

Ll
UA (23a)

SB
p = d33EB = η d33

Ll
UB (23b)
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where Ll thickness of a single ceramic layer and η ∈ [0, 1] a factor
corresponding to the quality of electrode connections in the manufac-
turing process. The strains due to bending can be derived through
geometrical consideration [150] to be

SA
b = − H

2R (24a)

SB
b = H

2R , (24b)

where H is the width as shown in Fig. 21. From differential calculus,
the curvature is known to be

1
R = d2x/dz2

[1+(dx/dz)2]3/2 (25)

which for small deflections reduces to

1
R ≈ d2x

dz2 . (26)

Since the curvatures at the interface are equal the same holds true for
the radii of curvature

RA = RB = R. (27)

This identity together with the Euler-Bernoulli bending moment equa-
tion

d2x
dz2 =

M
εI

, (28)

where I = WH3/12 is the axial moment of inertia about the axis z

through the centroid of the rectangular cross-section of each of the
two parts of the beam, leads to the equality of bending moments

MA = MB = M. (29)

Combining (24) and (28), the equations for bending strains are ob-
tained as

SA
b = − H

2RA = − H
2εI M (30a)

SB
b = H

2RB=
H
2εI M. (30b)

Using (19c) and (19a) and resolving the particular strain terms accord-
ing to (22), (23) and (30), the axial force is found to be

F = η 4d33εWH
5Ll

(UB −UA) (31)

and the bending moment is

M = η 2d33εWH2

5Ll
(UA −UB). (32)

Using equation (28) together with the above expression for the bend-
ing moment (32) and performing double integration with cantilever
boundary condition, the deflection in x in dependency on z is obtained.
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For pure bending, the bimorph has to deform into circular configura-
tion and by means of a geometrical consideration, the deflection at its
tip is also given by Nash and Potter in [150] as

xs =
ML2

2εI . (33)

With the above relations, it is possible to compute the steady-state
deflection and elongation of the tip of the beam in the xz-plane in
dependence on the applied voltage and relative to its potential-free
origin. The elongation in z-dimension equals

zs =
1
2 L(SA + SB). (34)

The following function f s
z : R2 → R

f s
z (U)

def
= zs = η d33L

2Ll︸︷︷︸
C
′
z

N+U (35)

yields this elongation for a given two-phase input U = (UA UB)T with
N+ being one of the following prefilters:

N+ = (1 1) (36)

N− = (1 −1) . (37)

The deflection at the tip in x-dimension equals xs and corresponds to
(33). Defining a function f s

x : R2 → R similar to (35) and using (32)
leads to

f s
x(U)

def
= xs = η 3d33L2

10LlH
N−U. (38)

Taken together, the relations derived in (35) and (38) result in the
following definition of static leg position as coordinate of the leg tip

Ls(U) =

(
xs

zs

)
=

(
f s
x(U)

f s
z (U)

)
. (39)

3.2.2 Driving waveforms

The previous section has established the relation between the applied
voltage U (the driving voltage) and the static position of the tip of a
single piezoelectric leg. In a multi-legged motor, multiple legs need to
be provided with driving voltages. In general, a motor can consist of
N legs, N ∈N, which can be arranged in various configurations [155,
117, 185, 35] and be driven independently by a driver signal D defined
as

D =
[

U (1) U (2) . . . U (N)

]
=(

UA
(1) UA

(2) . . . UA
(N)

UB
(1) UB

(2) . . . UB
(N)

)
.

(40)
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Figure 23: Schematic depiction of the electrical connections between the
driver D providing driving voltages to a theoretical motor con-
sisting of 2 triples of legs. All legs belonging to the same triple
receive an identical driving voltage and thus move in unison.
The driving voltages are output from the driver at the driving
frequency f .

In the PiezoLegs motor, the legs are arranged in a row. At least
two legs (a leg pair) have to move in unison in order to establish
contact with the drive rod at two different points and ensure static
stability in z-dimension. If more legs make contact with the drive rod
simultaneously, an even stronger motor design could be achieved (see
sect. 3.4.1). In the definitions to follow, it is assumed that the motor
is driven by N driving voltages each connected to M different legs.
Fig. 23 shows this schematically for a theoretical motor design.

In case of the PiezoLegs motor, M = N = 2. The motor can be driven
with different waveforms depending on the particular aspect of its
performance (e.g. speed, motion linearity, stall force) to be optimized.
While a few basic waveforms can be found through reflection on the
driving principle of the motor [186, 145], others are estimated through
a computationally intensive optimiztion task [146].

Two different waveforms (force and sine) are used in this chapter
for the sake of functional analysis of the motor. These can be seen
in Fig. 24. The force waveform is of particular interest for this work
as it is supposed to improve the load characteristic of the motor (i.e.
stall force maximization). The reason for this will become clear in
sect. 3.4.1. The sine waveform is used in addition in order to illustrate
the nonlinearity in leg deflection (see sect. 3.3.3) and because of its
simple mathematical description (see below).

To find a common mathematical description of the waveforms, the
notion of a waveform-generating function ŵ : RK → [0, 1], K ∈
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Figure 24: Diagrams showing 4 electrical phases of two different waveforms
(force and sine) used to drive the walking motor. Phases connected
to distinct leg pairs are coded by the line style (solid and dotted
lines). Phases connected to different parts of the same leg are
intensity-coded.

Z+, K ≥ 3 is introduced. The function is parametrised by K − 3
parameters, drive frequency f , phase shift φ and time t. The waveform
generating function ŵf for the force waveform was estimated by finding
a sixth order Fourier series fit to the waveform data obtained from
the manufacturer. With R2 > 0.99 as quality criterion on the fit, the
following function was obtained:

ŵf( f , φ, m)
def
= a+

6

∑
i=1

ai cos(i( f t + φ)w)+

m
6

∑
i=1

bi sin(i( f t + φ)w)

(41)

with w = 6.238, a = 0.674 and

a = (-0.452, -0.197, -0.052, -0.002, 0.013, 0.013),

b = (0.124, 0.042, -0.035, -0.042, -0.009, 0.008).

For the above generating function, the driving voltages for the two
pairs of legs in the walking motor equal respectively:

Uf
(1)( f ) =Umax

(
ŵf( f , 0,−1) ŵf( f , 0, 1)

)T (42a)

Uf
(2)( f ) =Umax

(
ŵf( f , π,−1) ŵf( f , π, 1)

)T (42b)

where Umax is a motor specific voltage limit of 48 V. As time is an
implicit parameter of equation (42), the only remaining parameter
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Figure 25: Trajectories of the leg tip described by the kinematic model for
(a) force and (b) sine waveforms when different quality factors of
the electrode connections are used. Reference trajectories based
on manufacturer’s data are shown with dotted lines.

which has to be given explicitly is the driving frequency f . At this
point, it it possible to define the force driver as

Df( f ) =
[
Uf

(1)( f ) Uf
(2)( f )

]
. (43)

The driver for the sine waveform can be defined in an analogous way.
With the waveform generating function

ŵs( f , φ)
def
= 1

2

[
sin(2π f t + φ) + 1

]
(44)

the driving voltages are

Us
(1)( f ) =Umax

(
ŵs( f , 0) ŵs( f , π/2)

)T (45a)

Us
(2)( f ) =Umax

(
ŵs( f , π) ŵs( f , 3π/4)

)T (45b)

and the sine driver becomes

Ds( f ) =
[
Us

(1)( f ) Us
(2)( f )

]
. (46)

With the kinematic model of the leg from the previous section and
the above definitions of the waveforms, the trajectory followed by a
leg can be computed for a particular driving voltage. Data given by
the manufacturer describes the static position of the tip of a leg in
xz-plane by means of two constants C∗x and C∗z as:

xs = C∗x(U
A −UB) (47a)

zs = C∗z(U
A + UB). (47b)

The leg trajectories according to these relations are shown in Fig. 25 as
dotted curves. The leg trajectories according to the kinematic model
from sect. 3.2.1 are shown in the same figure for different values of
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Table 3: Summary of model parameters – piezoelectric constants and leg
kinematics.

Name Value SI unit Description
d33 583 · 10−12 C/N charge constant
sE33 415 · 10−12 m2/N elastic compliance
Ll 56 · 10−6 m layer thickness
Nl 96 - number of layers
 0.9 - quality factor
Cx 45.5 · 10−9 m/V deflection const.
Cz 25.6 · 10−9 m/V elongation const.
H 0.0014 m stack breadth (x)
L 0.004 m stack length (z)
W 0.003 m stack depth (y)

the quality factor η. In order to match the reference trajectories, a
gradient search for η was performed. As an objective, the least squares
error between the reference and model-generated trajectories was
used. As a result η of 0.86 and 0.91 was obtained for the force and sine,
respectively. These values have to be ascribed to the imperfections
in the manufacturing process and agree with the values found in the
literature [19].

For all following derivations of the motor model, a constant η of 0.9
is assumed. By referring to (35) and (38) and defining

Cx = ηC
′
x (48a)

Cz = ηC
′
z (48b)

the kinematic model (39) can be reformulated in matrix notation as

Ls(U) =

(
xs

zs

)
=

(
Cx 0
0 Cz

) [
N−

N+

]
U. (49)

3.3 leg dynamics

While the kinematic model derived in the previous section explains
the tip trajectory data provided by the manufacturer, it has several
shortcomings. First, a kinematic model does not describe the time
behavior of the legs and thus of the walking motor which can be
driven with driving frequencies up to 3 kHz. Second, function (49)
maps only the driving voltage to the position of a leg. However, the
driving principle of the real motor relies on the interaction between
the legs and the drive rod including normal and frictional forces.
Finally, all piezoelectric motors exhibit some form of hysteresis [209]
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Figure 26: Linear oscillator model of the dynamics of the leg in z-dimension.
(a) shows an MSD model of the leg. (b) is a free-body depiction
and (c) a block abstraction of the model.

and other forms of nonlinear behavior like e.g. creep [119, 111]. This
section addresses the above-mentioned shortcomings by providing a
dynamic model of the leg, considering interaction with external forces
and introducing a hysteretic nonlinearity into the model. In particular,
the dynamic behavior of a leg is split into two independent dynamics
in z- (sect. 3.3.1) and x-dimension (sect. 3.3.2) which will be coupled
back together in sect. 3.4 where the interaction between the legs and
the drive rod is considered. In sect. 3.3.3 a deflection nonlinearity due
to hysteretic effects is introduced into the model based on a simple
model assumption and macroscopic data measurements.

3.3.1 Single leg z dynamics

The periodic movement of a piezoelectric leg elicited by an external
driving voltage can be compared to the movement of an oscillator
driven by a periodic external force. Moreover, as long as linear mod-
eling techniques are applied, the dynamics of this movement can be
separated conveniently into the dynamics of two linear oscillators in z-
and x-dimension. This section focuses on the former case.

Fig. 26(a) illustrates a damped linear oscillator model of the leg in
z-dimension. This lumped parameter model (Mass-Spring-Damper
or MSD model) consists of an effective mass mzl connected to a fixed
ground with a spring having stiffness Kzl and a damper having a
damping factor of Bzl. These lumped parameters have to be deduced
from real physical parameters of the piezoelectric leg. The stiffness of a
single piezoceramic layer of the piezoelectric stack shown in Fig. 21(a)
is known to be Kl = 1/sE33. Refraining from the consideration of other
intermediate layers, the stiffness of the whole stack can be seen as
a series connection of Nl springs with this stiffness. Following this
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consideration, the structural stiffness of the whole leg can be seen as a
parallel connection of two stacks resulting in the overall leg stiffness

Kzl =
2
Nl

Kl (50)

in z-dimension. When an external force Fext is applied to the leg tip in
negative z-direction, the leg contracts by the amount

zext = Fext/Kzl (51)

measured from its tip at z = 0. The amount of leg contraction mea-
sured from an arbitrary position z in negative z-direction, i.e. z = −L

at the base, is defined by the function f d
z : R2 → R:

f d
z (z, Fext)

def
= 1

Kzl

L+z
L Fext (52)

which can be reformulated in terms of leg contraction from its tip as

f d
z (z, ·) = L+z

L f d
z (0, ·), (53)

where the dot is a placeholder for the second function argument
and underlines the fact that this argument does not affect the above
definition. In order to find the effective mass of the leg at its tip which
corresponds to mzl in the linear oscillator model, an energy approach
is followed. As the damping factor Bzl of the leg in z-dimension is not
known and it can not be estimated easily without direct experiments
on the leg, it is neglected in the following derivation of the effective
mass. This simplifies the mathematical treatment of the problem as
no energy dissipation needs to be taken into account. The modeling
decision is justified by the fact that damping is supposed to affect the
behavior of the leg only for much higher driving frequencies than the
rated operation of the PiezoLegs motor (see sect. 3.4.1) and can not
have a considerable effect on the value of the derived effective mass.
Moreover, damping remains incorporated into the actual oscillator
models and is analysed further in sect. 3.5.

With (52) the kinetic energy of an infinitesimally small cross-sectional
leg element at position z can be formulated as

dEk
z(z, Fext) =

m
2

[
d f d

z (z,Fext)
dt

]2
dz
L (54)

with m being the mass of a single leg. Using relation (53) and inte-
grating over the entire beam length yields the overall kinetic energy
function as

Ek
z =

0∫
−L

dEk
z =

0∫
-L

m
2

[
d f d

z (0,Fext)
dt [L+z

L ]
]2

dz
L

= m
6

[ d f d
z (0,Fext)

dt

]2.

(55)
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The potential energy function Ep
z corresponds to the work which is

necessary to move the load-free end of the leg from its origin at z = 0
to the new position zext

Ep
z = Ep

z (z, Fext) =

zext∫
0

Kzlzdz

= 1
2 Kzl

(
f d
z (0, Fext)

)2.

(56)

The gravitational force due to the weight of the leg is neglected as it is
6 orders of magnitude smaller than the normal forces exerted on the
leg in the motor (see sect. 3.4.1). Under the assumption that there is
no energy dissipation in the system, the overall energy has to remain
constant.4 Computing

d(Ek
z + Ep

z )/dt = 0 (57)

gives the equation of motion for the leg tip in z-dimension as

m
3

d2 f d
z (0,Fext)
dt2 + Kzl f d

z (0, Fext) = 0, (58)

thus the effective mass of the leg equivalent to mzl in the linear oscilla-
tor model has to be

mzl =
1
3 m. (59)

The mass m of a single leg is estimated to be about 0.25 g from the
knowledge of its volume and the density of the ceramics. In the above
derivation of the effective mass, the notion of an external force Fext

was used. Two actual forces are assumed to affect the motion of the
linear oscillator – the electromotive force Fz originating in the inverse
piezoelectric effect and defined as

Fz(U)
def
= Kzlzs = KzlCzN

+U (60)

and the normal force Fn from interaction with the drive rod (see
sect. 3.4). Fig. 26(b) illustrates the oscillator model as a free body
diagram with the indication of these forces. The state space repre-
sentation of this model according to Fig. 26(a) and incorporating the
external forces as inputs is(

żl
z̈l

)
=

(
0 1

−Kzl/mzl −Bzl/mzl

)(
zl
żl

)
+(

0 0
1/mzl −1/mzl

)(
Fz

Fn

)
.

(61)

4Note that this implies an energy conservative system (damping neglected) for
which the constancy of the total energy can be assumed. A more general approach

based on the principle of least action, would involve finding the solution to d
dt

(
∂L
∂ż

)
=

∂L
∂z with L ≡ Ek

z − Ep
z being the Lagrangian [57].
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Figure 27: Linear oscillator model of the dynamics of the leg in x-dimension.
(a) shows an MSD model of the leg. (b) is a free-body depiction
and (c) a block abstraction of the model.

The abstract representation of the z-dynamics which can be seen in
Fig. 26(c) and is used later in the motor model is defined as the state
space output of the above representation and reads

Lz(Fz, Fn) =

(
zl
żl

)
. (62)

3.3.2 Single leg x dynamics

Similar energy argument as in the previous section can be brought
forward to derive the dynamics of a linear oscillator in x-dimension
(see Fig. 27[a]). If an external force Fext acts on the leg in x-direction
at the position z, it creates a bending moment Mext. Knowing (28), a
deflection function f d

x can be defined similar to (52) as

d2 f d
x

dz2
def
= d2x

dz2 = 1
εI Mext =

L+z
εI Fext, (63)

since the amount of deflection in x depends on the z-coordinate (cf.
(28)). Double integration over the entire length of the beam with
cantilever boundary conditions leads to

f d
x (z, Fext) =

1
6εI (z + L)3Fext. (64)

The deflection at the tip of the leg due to an external force equals

xext = f d
x (0, Fext) =

1
6εI L3Fext. (65)

Using equation (50) Young’s modulus of the leg ε can be computed as

ε = L
W(2H)Kzl =

L
sE33NlWH

(66)

and thus the spring constant has to be

Kxl =
6εI
L3 = 4H2

sE33NlL2 . (67)
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In order to derive the effective mass mxl of the leg tip in x-dimension,
the kinetic energy function is defined in analogy to (54) and (55) as

dEk
x(z, Fext) =

m
2

[
d f d

x (0,Fext)
dt [( z

L ) + 1]3
]2

dz
L . (68)

Integrating this equation over the entire length of the leg yields

Ek
x(z, Fext) =

0∫
-L

dEk
xdz = m

14

(
f d
x (0, Fext)

)2. (69)

The potential energy function corresponds to the work required to
move the leg tip to the position xext and equals

Ep
x(z, Fext) =

xext∫
0

Kxlxdx = 1
2 Kxl

(
f d
x (0, Fext)

)2. (70)

Assuming no energy dissipation as in sect. 3.3.1, the equation of mo-
tion for the oscillator in x-dimension is found to be

1
7 m

d2 f d
x (0,Fext)
dt2 + Kxl f d

x (0, Fext) = 0 (71)

and thus the effective mass is

mxl =
1
7 m. (72)

In case of the x-dimension oscillator, two external forces are considered
as well. The piezoelectric electromotive force Fx defined as

Fx(U)
def
= Kxlxs = KxlCxN

−U (73)

and a frictional force Ff coming from the interaction with the drive
rod and defined in sect. 3.4.2. These are depicted schematically in
the free body diagram in Fig. 27(b). The state space representation of
leg dynamics in x-dimension according to the model in Fig. 27(a) and
including the external forces is easily found to be(

ẋl
ẍl

)
=

(
0 1

−Kxl/mxl −Bxl/mxl

)(
xl
ẋl

)
+(

0 0
1/mxl −1/mxl

)(
Fx

Ff

) (74)

with the abstract representation of Fig. 27(c) defined as

Lx(Fx, Ff ) =

(
xl
ẋl

)
. (75)
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3.3.3 Hysteretic nonlinearity

At all modeling stages so far, only linear modeling techniques have
been used. However, piezoelectric ceramics are ferroelectric materials
and thus fundamentally nonlinear in their response to applied electric
fields showing hysteresis as well as time-dependent creep. These can
have a considerable effect on the actual performance of the motor
and are difficult to model exactly even if low-level experimental data
is provided [56, 231, 226, 118]. Newcomb and Flin showed in [153]
that the nonlinear effect of hysteresis on the extension of a multilayer
piezoelectric stack is especially strong if the stack is voltage-driven
and proposed a charge drive to achieve a much higher degree of
linearity. In [209], Uchino gives many examples of hysteretic behavior
for different piezoelectric materials with the majority of them showing
a strong strain response to low electric fields which saturates with
increasing field level. For the bimorph leg considered in this work,
this indicates that leg deflection might be strongest for a small increase
in one of the phases UA or UB of the driving voltage while the other
remains close to ground potential. In this case, one of the stacks A or B

would experience a relatively high increase in length not compensated,
in terms of bending, by a corresponding increase in length in the other
stack. If the effect of hysteresis on leg deflection is strong, it should
become visible in the macroscopic behavior of the motor, even though
hysteresis can not be observed directly in the assembled state.

Fig. 28(a) shows that this is indeed the case. The PiezoLegs motor
was driven with 5 different drive frequencies within its rated operation
regime for which the corresponding average velocities were measured.
These velocities were taken as normalized references (white bars
having the value of 1) and compared to the average velocities of the
legs (black bars) during contact periods with the drive rod according
to the dynamic leg model of the previous sections. The average leg
velocities were normalized with respect to the measured reference
values. It was assumed that the legs were in perfect stiction condition
with the drive rod when the contact was established as there was no
external load force Fl exerted on the drive rod (cf. velocity decrease
due to external load in sect. 3.5) and the motor was not driven up
to its frequency limits (cf. resonance region in sect. 3.4.1). The latter
constraint, i.e. moderate drive frequencies, also implies that the legs
were not affected by damping to a considerable degree and could
follow the trajectories predicted by the linear model of sect. 3.2.2. The
contact periods were computed by comparing the elongations zl(1) of
leg pair (1) with the elongations zl(2) of leg pair (2). Sect. 3.4.1 shows
that in reality there have to be times of overlapping contact between
both pairs of legs and the drive rod. Still, this does not affect the
observations of Fig. 28 qualitatively. Similar results are obtained when
full motor model – which considers the overlapping contact periods –
of sect. 3.4 is employed and the velocity of drive rod measured.
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Figure 28: Leg deflection nonlinearity. (a) shows average leg velocity during
rod contact for 5 different drive frequencies when linear (black
bars) leg deflection is assumed. White bars show the actually
measured rod velocity. All data is normalized with respect to the
measured rod velocity. (b) shows leg deflection in dependence
of the difference between the driving voltage phases. Dashed
lines show the maximal/minimal voltage difference for the force
and sine waveforms. Black crosses are data derived from (a)
which indicate a change in leg deflection that leads to the equality
between the average leg and the measured rod velocity. The black
curve is a nonlinear least square fit on these data. Grey bars in (a)
show the average leg velocity when the nonlinearity is employed
in the model.

The above experiment was done for both the force and sine wave-
forms as shown in Fig. 28(a). For the force waveform, the average
leg velocity according to the linear leg deflection model (49) and the
corresponding linear electromotive force (73) is about 50 % slower that
the actually measured drive rod velocity. For the sine waveform leg ve-
locity becomes about 10 % higher than the reference. This observation
agrees with the conjecture that leg deflection should increase faster for
small differences between the two phases UA

(i) and UB
(i) of the driving

voltage at small voltage levels. This is the case for the force waveform
for which the difference N−U (i) remains relatively small compared to
the sine waveform (see Fig.24).

66



An exact model of hysteresis including dependency on the drive
frequency [105] would need to be included already in sect. 3.2.1 where
the strains due to inverse piezoelectric effect were considered in order
to explain the nonlinear deflection. However, aside from the lack of
experimental data this approach would complicate the mathematical
treatment of the problem and could not be solved analytically for
common hysteresis models like Preisach [105], Jiles-Atherton [113]
or the MRC model [118]. In this chapter, an alternative approach
based on macroscopically measured data and assumptions made at
the beginning of this section (especially the assumption of stiction) is
followed. Instead of considering the electric field/strain relation on
the level of piezoelectric stack modeling, a leg deflection nonlinearity
is introduced on the level of dynamic leg model. When in stiction, the
average rod velocity has to correspond to the average leg velocity in x-
direction. If it is higher, then for the same drive-frequency-dependent
contact time the deflection of the leg has to be larger and the other
way round. Fig. 28(b) illustrates this relation graphically. The dotted
line is the linear dependency of leg deflection in x-dimension on the
difference between the phases of the driving voltage. Dashed lines
illustrate the minimum and maximum levels of this difference for
both of the considered waveforms.5 Black markers on these lines are
data derived from Fig. 28(a) and illustrate how the maximal/minimal
deflection of the legs would need to change in order for the average
leg velocity to match the measured velocity of the drive rod. As the
derived data points have origin symmetry, a nonlinear curve passing
through these points would have a sigmoid shape. The following
function

H(u) = χ0 arctan(χ1u) (76)

with two scaling parameters χ0 and χ1 was chosen in order to capture
the nonlinear deflection characteristics of the legs. The function is
shown as a black curve in Fig. 28(c) for the values χ0 and χ1 obtained
in the optimization process (see Table 6). With the nonlinear deflection
characteristics, the definition of the electromotive force (73) changes
to

Fx(U) = KxlCxH
(
(N−U)T) (77)

Fig. 28(a) illustrates with help of gray-shaded bars the change in
average leg velocity normalized with respect to the measured rod
velocity when the nonlinearity is introduced into the dynamic model
of the leg. The result is a much better agreement between the model-
predicted and actually measured velocities.

5The maximal and minimal levels are symmetric with respect to the (vertical)
leg-deflection axis since their absolute values are equal.
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Table 4: Summary of model parameters – leg dynamics.

Name Value SI unit Description
Kxl 1.14 · 107 N/m leg eff. stiffness (x)
Kzl 5.02 · 107 N/m leg eff. stiffness (z)
mxl 1.76 · 10−5 kg leg eff. mass (x)
mzl 4.10 · 10−5 kg leg eff. mass (z)

3.4 motor dynamics

The dynamic leg model of the previous sections provides the base for
the actual motor model where the interaction of multiple legs with
the drive rod and external forces needs to be considered. Sect. 3.2.2
has introduced the general notation of a driver signal which supplies
a multi-legged motor with driving voltages. The following sections
builds up on this notation in order to arrive at a multi-legged motor
model. Subscript (i) labels a particular leg pair. Multivalued vector
signals in block diagrams have a drop shadow added. The addition of
a scalar to a vector or matrix is element-wise.

Figure 29 illustrates the interaction forces between the legs and the
drive rod in the two-dimensional dynamic model of the walking motor.
The normal forces Fn(i) in z-dimension depend on the magnitude of the
preload force Fp (due to leaf springs, see Fig. 20) and the elongation
of all legs having contact with the drive rod and counterbalancing
the preload. The normal forces are also responsible for the coupling
between the x- and z-dynamics as they allow frictional interaction
between the legs and the drive rod in x-dimension. These forces are
further considered in sect. 3.4.1. In x-dimension friction forces Ff (i)
develop between the drive rod and legs in contact with it. These forces
depend on the normal forces, external load Fl, contact history, relative
velocities and possibly many other factors according to the friction
model in use and are further considered in sect. 3.4.2.

3.4.1 Motor z dynamics

The z-dynamics of the legged motor consists in the interaction between
the drive rod and the legs as shown in Fig. 30(a). An MSD model
of the drive rod with the mass mr, effective spring constant Kzr and
damping Bzr is shown on top of the linear oscillator model of the
leg from sect. 3.3.1. zr and zl(i) denote the position of the drive rod
and a leg tip, respectively. Kn represents the effective stiffness at the
interaction interface between the ceramic surfaces of the drive rod and
the legs. In the following, Kn is assumed in the order of 1010 N/m
according to stiffness characteristics of aluminium oxide ceramics. Kzr

corresponds to the stack of leaf springs and is known to be 105 N/m.
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Figure 29: Two-dimensional dynamics in the motor model. Fn(i) are normal
forces between the legs and the rod in z-dimension. Ff (i) are
frictional forces in x-dimension. Fp and Fl are external forces –
normal preload and tangential load, respectively.

Damping Bzr is negligible as the preload force from the prestretched
leaf springs is transferred to the drive rod through solid metal roller
bearings and is included in the model only for the sake of generality.
The mass of the rod mr is known to be 20 g. When the rod is pressed
against the legs by means of a preload force Fp normal forces Fn build
up at the contact spots according to

Fn = Fn(zr, zl) = Kn

〈
zl − zr

〉
(78)

with zl = [zl(1), . . . , zl(N)]
T and

〈
·
〉

being a singularity function used to
model the discountinous contacts due to the impact dynamics of the
legs and defined for a vector input u = [u(1), . . . , u(N)]T as

〈
u
〉
=
(〈

u(1)

〉
, . . . ,

〈
u(N)

〉)T

〈
u(i)

〉
=

{
u(i) , if u(i) ≥ 0
0 , otherwise.

(79)

From the above definition it is clear that the computed normal forces
are nonnegative, i.e. directed upwards to counteract the preload
force. Fig. 30(b) illustrates the different forces acting on the drive
rod. It should be noted that generally M legs in a pair/tuple move
in unison establishing a contact with the rod and thus the computed
normal forces need to be multiplied with this factor. The state space
representation of the drive rod dynamics according to the model in
Fig. 30(a) and incorporating the preload and normal forces is(

żr

z̈r

)
=

(
0 1

−Kzr/mr −Bzr/mr

)(
zr

żr

)
+[

0 01N

1/mr

{
M/mr

}
N

] [
Fp

Fn

] (80)
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Figure 30: Motor dynamics in z-dimension shown exemplary as (a) an MSD
model of one leg in contact with the drive rod. (b) shows a free-
body digram of the drive rod with normal forces from two leg
pairs (i) and (j). (c) block abstraction of the drive rod.

with the following state space output

Rz(Fp, Fn) =

(
zr

żr

)
. (81)

In (80), square brackets denote a block matrix, 01N is a 1xN matrix (here
a row vector) filled with 0 and the expression in curly braces{

u
}

N
= diag

(
u, . . . , u︸ ︷︷ ︸

N

)
is a diagonal matrix having the value between the curly braces on its
diagonal.

The normal forces acting on the legs need to have the opposite sign
to those acting on the rod. The general external force Fext included
in the dynamic leg model of sect. 3.3.1 can be substituted now as Fn

and the state space representation of leg dynamics from (61) can be
adjusted to represented multiple legs as[

żl
z̈l

]
=

[
0NN

{
1
}

N{
−Kzl/mzl

}
N

{
− Bzl/mzl

}
N

] [
zl
żl

]
+

[
0NN 0NN{

1/mzl

}
N

{
− 1/mzl

}
N

] [
Fz

Fn

] (82)

with the corresponding state space output

Lz(Fz, Fn) =

[
zl
żl

]
. (83)
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Figure 31: Change in drive rod elevation (a) and normal force magnitude (b)
over one leg movement period when sine waveform is used. Grey-
shaded regions mark overlapping leg-pair contacts. Simulation
data is shown for an exemplary preload of −125 N (intersection
of dashed lines in [c]) and driving frequency of 100 Hz. (c) shows
the times when both of the two leg pairs in the walking motor
have contact with the drive rod as percentage of leg movement
period. When driven with the force waveform, the motor can
withstand higher preload forces.

The definition of the electromotive force (60) remains unchanged for
the multi-legged case. The function is only provided with a driver
signal D instead of a single driving voltage U:

Fz = Fz(D) = KzlCz(N
+D)T. (84)

The above definitions constitute a complete model of the z-dynamics
of a multi-legged motor. Although it is not possible to observe the
legs-rod interaction in the PiezoLegs motor in the assembled state, this
model sheds light on some aspects of this interaction. First, there have
to be times when multiple legs (from different leg pairs) have contact
with the drive rod. Second, there have to be limits on the magnitude
of the preload force since the legs can not lift infinitely large loads.
Third, there are bandwidth limits on the motor.

Fig. 31 addresses the first two of the above statements. Fig. 31(a)
and (b) show how the drive rod elevation and the magnitude of
the normal force that acts on the drive rod (solid curves) change in
time. The simulation was done for an exemplary preload force of
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−125 N and drive frequency of 100 Hz. Also indicated are elongations
and contributions to the normal force experienced by the drive rod
coming from the two different pairs of legs of the walking motor
(dashed and dotted curves). Grey-shaded regions in these figures
show periods when both of the leg pairs have contact with the drive
rod (overlapping contact). The diagram in Fig. 31(c) shows how the
times of overlapping contact, as percentage of one movement period
T, change for different levels of preload force. These times should
approach 0 % (immediate transition in contact with the drive rod from
one leg pair to another) for small preload and reach 100 % for some
large preload force when the driving principle is violated since leg
pair can develop enough force to lift the drive rod. The model can
reproduce this behavior and indicates that the motor can be driven
with higher preload when the force waveform is used as opposed to
the sine waveform. Although the exact preload levels and the shape
of the curves from Fig. 31(c) have not been validated experimentally,
this observation agrees with the recommendation of the manufacturer
to use the force waveform for high-preload operation. This can be
explained by the fact that the maximal difference in elongation of two
different pairs of legs is larger for force than for the sine waveform. In
particular, the maximal level of preload for a given waveform can be
determined by noting that

max
t∈(0,T]

∣∣zl(1)(t)− zl(2)(t)
∣∣ > ∣∣Fp

∣∣/(MKzl), (85)

or in other words, that during one movement period, the difference
in the elevation of two different leg pairs has to be larger than the
contraction of M legs (belonging to one pair) induced by the preload.6

As the level of preload has direct influence on the magnitude of static
friction (see next section), the above inequality provides insights into
possible improvements to the motor design in terms of stall force limit.
These range from waveform-based optimization of the left-hand side
difference in (85) to the deployment of more legs in a pair or stiffer
design of the legs. A more exact inequality would have to include
the effect of hysteresis on leg elongation also in z-dimension and is
beyond the scope of this work.

The last question to be addressed in this section concerns the band-
width limits of the motor. The manufacturer allows rated operation
up to 3 kHz. The reason for this can also be revealed in simulation.
Fig. 31(a) has shown the exemplary change in drive rod elevation for
the drive frequency of 100 Hz. Fig. 32 shows how the peak-to-peak
magnitude of this elevation changes when the drive frequency in-
creases. A resonance peak exists at 3 kHz, followed by further peaks

6Note that this is a necessary condition for the walking principle to work. How-
ever, this condition is not sufficient since the direction of leg movement in x-dimension
is not considered.
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Figure 32: Amplitude of the peak-to-peak drive rod oscillations in z-
dimensions for an increasing drive frequency. The simulation
data confirms the existence of a 3 kHz resonance peak given
by the manufacturer of the PiezoLegs motor. Additionally, the
simulation data anticipates two further resonance peaks and a
non-resonant operation region beyond 15 kHz.

at 6 and 12 kHz. Resonant behavior in z-dimension affects the op-
eration of the motor in x-dimension as no proper contact between
the drive rod and the legs is ensured. Indeed, the PiezoLegs mo-
tor stops moving when driven at 3 kHz and for higher frequencies
within the grey-shaded region loud cracks and even sudden changes
in movement direction occur. Besides the nominal and resonant range
of operation, the simulation predicts a third region beyond 15 kHz –
overdrive region – in which the oscillations virtually disappear. In
order to test this condition the motor was driven at a drive frequency
of 20 kHz for a short time due to the flow of high currents and the risk
of a breakdown.7 No audible noises typical for quasi-static motors in
their nominal range of operation up to several kHz could be heard
and the motor moved at the velocity of 150 mm/s which is an order
of magnitude higher than the nominal range of operation allows. This
finding indicates the possibility of design improvements in terms of
maximal drive velocity ranging from the design of an intelligent cur-
rent controller to the deployment of electrodes which could conduct
higher currents. The magnitude of the oscillations in the resonant
region could be decreased by introducing an additional damping.

3.4.2 Motor x dynamics

The previous section has stressed the importance of z-dynamics on
the performance of the legged motor. This section focuses on the

7This problem could be alleviated by employing an integral current control or
temperature monitoring strategy. A burst-wise operation in the overdrive region for
short periods of time is also conceivable.
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Figure 33: Motor dynamics in x-dimension. (a) shows an MSD model of
the drive rod with two interacting leg pairs (i) and (j). (b) is
a free-body diagram of the drive rod from (a) and (c) its block
abstraction.

x-dynamics where frictional interaction between the legs and the drive
rod takes place. Fig. 33(a) shows an MSD model of the x-dynamics
using the example of a drive rod and two legs as introduced in
sect. 3.3.2. The drive rod has a mass mr, position xr and velocity
ẋr. Its movement in x is determined by frictional interaction with
the legs in contact, a velocity-dependent damping term Bxr assigned
to friction in the roller bearings and an external load force Fl in x-
dimension. Fig. 33(b) shows this exemplary as a free-body diagram.
The frictional forces due to the interaction with the legs need to be
multiplied with a factor M according to the number of legs which
move in unison.

As friction plays the most important role in the driving principle
of the motor, it is essential to describe this phenomenon accurately.
The frictional interaction between the legs and the drive rod relies on
dry sliding friction. There exists a number of models which describe
sliding friction [160]. The models show high diversity with regard to
the modeling technique, number of parameters and computational
effort. An overview is given e.g. in [10] and an extensive study
of friction phenomena can be found in [16, 18] and more recently
in [17]. Because of the nature of frictional interaction between the legs
and the drive rod, in particular stick-slip effects and high dynamic
range, the friction model to be used in this chapter had to unite
static and dynamic friction phenomena, be continuous at zero velocity
crossing, suitable for low velocities and include stiction. Two models
fulfilling these prerequisites were taken under consideration – the
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Bliman-Sorine [26] and the LuGre [40, 11] model. The LuGre model
was chosen finally due to its better damping properties at zero velocity
crossing [74] and a more intuitive treatment of friction parameters
which suit the lumped parameter modeling strategy followed in this
chapter. In this model, two surfaces make contact at a number of
microscopic asperities which are modelled as elastic bristles. When
a tangential force is applied, these bristles deflect like springs giving
rise to friction force. The LuGre model can be described by a set of
three equations

Ff = λ0u + λ1u̇ + λ2v (86a)

u̇ = v− u|v|/g(v) (86b)

λ0g(v) = Fc + (Fs − Fc) exp(−(v/ν)2) (86c)

where u is the average deflection of the bristles, v relative velocity
between the two surfaces and λ0, λ1, λ2 model parameters which
describe stiffness, damping properties of the bristles and velocity-
dependent damping between the surfaces in contact. The parametriza-
tion of function g in (86c) has been proposed to describe the Stribeck
effect [40]. Fs and Fc denote the stiction and Coulomb friction level
and ν is the Stribeck velocity.

The above set of equations (86) is not yet applicable as a friction
model for the multi-legged motor. First, friction has to be computed
for every leg (leg pair) in contact with the drive rod. Second, the
contacts are discontinuous due to the impact dynamics of the legs.
And third, not all parameters can be treated as constants. By defining
a contact matrix CN using the singularity function from (79) as

CN = con(Fn) = diag
(<Fn(1)>

Fn(1)
, . . . ,

<Fn(N)>

Fn(N)

)
(87)

which has a 1 as its (i)-th diagonal element if the leg pair (i) has
contact with the drive rod and 0 otherwise, (86a) can be reformulated
in vector notation as

Ff (ẋl , ẋr, Fn) = CN

(
λ0u + λ1u̇ + λ2(ẋl − ẋr)

)
(88)

where ẋr is the drive rod (motor) velocity and ẋl is a vector of leg
velocities. Vector u can be found through numerical integration of

u̇ = (ẋl − ẋr)− u|ẋl − ẋr|/g(ẋl , ẋr, Fn). (89)

as long as the contact between the drive rod and a corresponding
leg pair is established. The initial condition upon contact reestablish-
ment with leg pair (i) is obviously u(i) = 0. The function g has been
redefined from (86c) as

g = g(ẋl , ẋr, Fn)

= µstFn
λ0

[
µ̂dn + (1− µ̂dn) exp(−(ẋl − ẋr)

2/ν2)
]
.

(90)
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In the above definition, constant stiction has been made dependent on
the variable normal force and a constant static friction coefficient µst

according to the Amonton-Coulomb laws (cf. discussion in sect. 3.6).
Coulomb friction is usually expressed in terms of a dynamic friction
coefficient which does not exceed the static friction coefficient, there-
fore – assuming the common definition Fc = µdnFn – the dynamic
friction coefficient is replaced by a normed parameter µ̂dn ∈ [0, 1] for
which µdn = µstµ̂dn. Assuming that there is no significant damping
at the contact interface between the ceramic surfaces, i.e. λ1 = 0,
the friction model is characterised by 5 parameters. These will be
estimated in the next section.

Having defined friction force according to the LuGre model, the
extension of the dynamic leg model from sect. 3.3.2 to the multi-legged
case proceeds analogously to the previous section. By defining Ff as
the friction force and following the block matrix notation, the state
space representation (74) becomes[

ẋl
ẍl

]
=

[
0NN

{
1
}

N{
−Kxl/mxl

}
N

{
− Bxl/mxl

}
N

] [
xl
ẋl

]
+

[
0NN 0NN{

1/mxl

}
N

{
− 1/mxl

}
N

] [
Fx

F f

] (91)

and the state space output is

Lx(Fx, F f ) =

[
xl
ẋl

]
. (92)

The definition of the electromotive force remains basically unchanged
from (77) except that it is evaluated for a driver signal D now and thus
has a vector-valued output

Fx = Fx(D) = KxlCxH(N−D)T. (93)

Based on Fig. 33, the drive rod state space equations are(
ẋr

ẍr

)
=

(
0 1
0 −Bxr/mr

)(
xr

ẋr

)
+

[
0 01N

1/mr

{
M/mr

}
1N

] [
Fl
F f

] (94)

with the corresponding output

Rx(Fl , F f ) =

(
xr

ẋr

)
. (95)

Fl is an external tangential load force and will be further considered
in the next section in context of the load characteristics of the motor.

The complete model of a multi-legged motor including the interac-
tion between the drive rod and the legs both in x- and z-dimension
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Figure 34: Schematic depiction of the overall motor model as (a) an intercon-
nection of model components and (b) a block diagram abstraction.

Table 5: Summary of model parameters – motor dynamics.

Name Value SI unit Description
Kn 1010 N/m interface stiffness (z)
Kzr 105 N/m preload spring stiffness (z)
mr 0.02 kg drive rod mass

is depicted in Fig. 34(a). A block diagram depiction was chosen to
visualise the flow of signals between different model components
in a clear manner. Also for the sake of clarity, the signals were not
explicitly labeled. The exact equations governing the behavior of par-
ticular blocks were defined in this section. Except of the friction block
which couples the z- and x-dynamics through normal forces and has
an additional input, all blocks have inputs on the left and outputs on
the right-hand side with top-down numbering order. Vector-valued
signals have a drop shadow. Fig. 34(b) shows a black box abstraction
M of this model with a driver signal D, preload Fp and tangential
load Fl as inputs and motor position xm (=xr) and velocity ẋm (=ẋr) as
outputs.

3.5 parameter optimization

While the previous section has established a lumped parameter model
of the coupled dynamics of a multi-legged motor, two more questions
still need to be addressed. First, what are the values of the unknown
parameters which could not be derived from the knowledge of material
properties or model assumptions. And second, how accurate does the
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model describe the behavior of the actual PiezoLegs motor in terms
of macroscopically measurable data. This section addresses both of
these questions with help of three experiments which were carried
out with the PiezoLegs motor. As a result, reference data as well as
an optimization procedure for model parameter identification have
been found. It will be shown that the proposed model explains the
measured data.

The purpose of the first two experiments was to find the damping
coefficients Bxl, Bzl of the legs and Bxr of the drive rod as well as the
nonlinear leg deflection parameters χ0 and χ1 from sect. 3.3.3. For
this purpose, at least two different waveforms which produce distinct
maximal leg deflections had to be used. Furthermore, the PiezoLegs
motor had to be driven with several drive frequencies spanning its
nominal range of operation in order to identify possible damping
effects. The experiment had to be carried out in a load-free condition
in order to prevent additional leg deflection and slipping (stiction
condition). The PiezoLegs motor was driven with 6 increasing drive
frequencies f1 = 10 Hz, . . . , f6 = 2000 Hz within its rated operational
range either with the force (first) or the sine waveform (second exper-
iment). The preload force Fp in z-direction (leaf spring, see Fig. 20)
was set to −100 N and there was no tangential load force Fl applied in
x-direction (load-free operation). For each drive frequency, the corre-
sponding average motor velocity ẋm was computed based on drive rod
position measurements with a linear encoder having the resolution
of 61 nm. These velocities were used as reference values for model
evaluation. Two simulations mimicking the above experiments were
designed in Matlab/Simulink (The MathWorks Inc., Natick, MA, USA)
and used in an optimization procedure (see below) to find values of
the unknown parameters which result in a best match between the
measurement and simulation. Fig. 35(a) shows the simulation design.

The measured reference and the simulated velocity data is shown
in the diagram on the right. The simulation data is shown for an
already optimized set of parameters including the friction parameters
from the previous section. A good agreement between the measured
and simulated data can be seen within the full operation range of
the motor. The experiments indicate linear relation between the drive
frequency and motor velocity. The slight deviation from the linear
trend at 2 kHz is to be attributed to the proximity of the first resonance
peak of the z-dynamics at 3 kHz rather than to the damping effects as
the motor can be driven at substantially higher velocities beyond the
resonance region (see sect. 3.4.1).
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Figure 35: Three simulations used in the parameter optimization procedure
and their results. (a) load-free motor was driven with the force
and sine waveforms and 6 increasing drive frequencies ( f1- f6)
within the nominal operation region. The measured (ref.) and
simulated (sim.) data is shown for the optimized parameter set.
(b) the motor was driven with 3 increasing drive frequencies
(g1-g3) for each of which an increasing load was applied to the
drive rod in 10 discrete steps. The magnitude of the load was
based on the linear division of the measured data into 10 discrete
values for each test frequency. The actually measured raw data
for different frequencies is shown as intensity-coded dots. The
simulation result for the optimized parameter set is shown by
means of different markers.
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As the driving principle of the motor relies on friction and the
stiction condition assumed in the previous experiments is violated
under tangential load, an additional experiment had to be designed in
order to estimate the friction parameters which also explain dynamic
friction effects under load. In particular, when tangential load is
applied, a decrease in motor velocity is observed until the motor
stops moving for a load approaching its stall force limit. To a first
approximation, this velocity decrease is linear but becomes nonlinear
for high drive frequencies and high loads due to permanent slipping
of the legs. Especially for high drive frequencies a large variation
in the measured velocities is observed not only between different
motors but also for subsequent measurements performed with the
same motor. A plausible explanation of this observation lies in the
fact that friction is sensible to surface contamination and the friction
coefficient may vary due to scraping effects (see next section). For this
purpose, in the third experiment all measurements were carried out
with 4 different motors. In particular, for each motor the position of
its housing was fixed to ground and a force sensor was connected in
series between one end of the movable drive rod and an extension
spring connected to a fixed wall. When driven at a certain drive
frequency and moving away from the wall, the drive rod caused
spring elongation and thus continous increase of the tangential load
Fl which was measured by the force sensor. At the same time, the
velocity of the motor ẋm was measured with help of a linear encoder
as in the previous experiments. The experiment was repeated for each
motor at 3 different test drive frequencies g1 = 250 kHz, g2 = 500 Hz
and g3=1 kHz using the force waveform. The measured raw data from
all experiments is shown in the diagram on the right-hand side of
Fig. 35(b). The data points are intensity-coded according to their drive
frequency. A simulation corresponding to the above experiment was
implemented in Matlab/Simulink. For practical reasons the increasing
tangential load was not applied continuously but in 10 discrete steps
as seen schematically in the left-hand side of Fig. 35(b). The results
of the simulation are depicted with help of different markers in the
diagram on the right-hand side. Again, there is a good agreement
between the simulation and the measurements. The proposed motor
model captures the most important trends in the measured data, i.e.
the nonlinear velocity decrease for high loads and higher stall force
limits for lower drive frequencies. An even better agreement could
be obtained if the model would be fitted to one particular motor and
a dedicated weighting scheme would be used in the optimization
procedure.

The optimization procedure which was employed in this chapter is
differential evolution (DE) [166]. A global optimization algorithm was
used due to the diversity of local minima for an optimization problem
with 10 parameters representing either not directly measurable prop-
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erties of the legs or highly nonlinear friction phenomena. Differential
evolution was preferred as it converges faster and with more certainty
than adaptive simulated annealing [197] and requires only a few con-
trol variables. 10 unknown model parameters including the damping
coefficients, leg deflection nonlinearity scaling factors and LuGre fric-
tion model parameters from the previous section were optimized.
These parameters formed a parameter vector or a population member.
An initial population consisted of 70 members which were uniformly
distributed over a physically plausible parameter space. The quality of
each population member was evaluated by means of a simple objective
function. The parameter values of the current member were assigned
to the motor model and the three simulations described above were
run one after another. The velocity data from each simulation was
collected and compared to the reference data from the experiments.
The computed least squares error was used as the quality measure.
Although the default parametrization of the differential evolution al-
gorithm was used, the optimization procedure converged to a solution
after only 50 iterations – see Fig. 36. The choice of parameters used
in the simulations of Fig. 35 and presented in Table 6 was obtained
after 100 iterations. Although the objective functions are abundant
in local minima for the given parameter space, clusters of optimal
parameter values can be identified. Fig. 36(b) and (c) show this ex-
emplary for the leg parameters which can not be measured directly.
Objective function values of all parameter vectors evaluated during
223 iterations are shown by means of intensity-coded dots (higher/-
darker intensity codes lower objective value). Fig. 36(b) shows that
in the linear oscillator model of the leg there is a stronger damping
in x- than in z-dimension and that the range of possible values for
Bxl is much more narrow than the range for Bzl which does not have
a strong influence on model performance. This observation has a
direct correspondence to the actual design of the PiezoLegs motor in
which the space between the legs is filled with a resin-like substance
which influences damping in x- but not in z-dimension. In contrast,
Fig. 36(c) shows that the choice of parameters for the nonlinear leg
deflection function from sect. 3.3.3 is essential for the performance of
the model. The parameters χ0 and χ1 need to have values within a
clearly identifiable oval region. This can be explained by observing
how the shape of the deflection function (76) changes when varying
these parameters (see results in Fig. 28).

81



100

101

102

103

100 101 102 103

B
xl
 vs.  B

zl
χ0  vs.  χ1

0.5 1 1.5 2 x 10-6
0.1

0.2

0.3

0.4

0.5

[Ns/m] [unitless]

[m
/V

]

[N
s/

m
]

cross-over factor: 0.3
weighting factor: 0.6 

DE - parameters:
strategy:        rand/1/exp
population size: 70

0 50 100 150 200 250

 objective value of best member  vs.  # of iterations

0

2

4

6

8 x 10-6

no further iterations necessary

(a)

(b) (c)

Figure 36: Objective function values. (a) shows the development of the
objective value of the best population member over an increas-
ing number of iterations. Default parametrization used in the
differential evolution algorithm is indicated. (b) and (c) show
the objective value of all population members as intensity-coded
dots (higher/darker intensity codes lower objective value) for a
choice of parameters. In (b) damping factors and in (c) nonlinear
deflection parameters of the legs are considered. White markers
show the choice of parameters obtained after 100 iterations and
presented in Table 6. Note that the parameter values in (b) are
logarithmically while in (c) linearly scaled.

Table 6: Summary of unknown model parameters obtained in the optimiza-
tion process after 100 iterations.

Name Value SI unit Description
Bxr 91.12 Ns/m rod damping coeff.
Bxl 299.88 Ns/m leg eff. damping (x)
Bzl 101.02 Ns/m leg eff. damping (z)
χ0 9.95 · 10−7 - deflection coeff.0
χ1 0.30 m/V deflection coeff.1
λ0 9.41 · 106 N/m bristle stiffness
λ2 284.44 Ns/m viscous friction
ν 0.89 · 10−2 m/s Stribeck velocity
µst 0.14 - static friction coeff.
µ̂dn 0.10 - dyn. friction coeff.

82



3.6 discussion

The legged motor model presented in this chapter together with the
set of model parameters found in the optimization process explains
the behavior of the PiezoLegs motor in terms of its velocity and load
characteristics. The modeling strategy followed in this chapter is based
on the lumped parameters approach and the identification of unknown
model parameters is based solely on macroscopically measurable data
in fully assembled state. For these reasons, several simplifications
have been made throughout the modeling process and are discussed
in this section.

First, except of the coupled linear equations of piezoelectricity from
sect. 3.2.1, leg dynamics has been considered under a pure mechanical
point of view. This is justified by the fact that for the nominal range
of operation the behavior of piezoelectric legs is dominated by their
mechanical response. The quality of power supply has implicitly been
assumed ideal. However, if the motor were driven with much higher
drive frequencies, e.g. in the overdrive region of Fig. 32, the influence
of leg capacitance or ceramic material permittivity would have a much
stronger effect on the response speed of the legs.

Second, sect. 3.3.3 has introduced leg deflection nonlinearity in x

(hysteresis). While this modeling decision has been motivated and
justified by the experiment in Fig. 28 and the optimization results
in Fig. 36(c), the model does not consider hysteretic effects in z. In
contrast to x-dynamics, an explicit model of hysteresis in z is not pos-
sible with the modeling strategy based on macroscopic measurements.
Furthermore, a hysteretic effect in z can not be identified easily as the
elevation of the drive rod is not measured experimentally. Still, the
linear model of leg elevation introduced in sect. 3.4.1 is able to predict
the resonance and overdrive regions of Fig. 32 as well as the higher
level of preload force possible with the force waveform as indicated in
Fig. 31. As long as no extreme levels of preload force are used and the
transitions in contact with the drive rod between different leg pairs are
guaranteed, the linear model of leg elevation seems to be sufficient.
As far as the hysteresis in x-dimension is concerned, it should be noted
that the sigmoid function used to model leg-deflection nonlinearity
[see equation (76)] is chosen arbitrarily. Specifically, the slope of the
arctan function determined by the parameter χ1 is not supported by
experimental data since only two waveforms were used in the ex-
periments. However, the choice of a sigmoid function in general is
motivated in sect. 3.3.3. The specific form of this function could only
be estimated by measuring the actual deflections of the legs.

Another modeling simplification concerns the computation of the
structural stiffness of the legs. In sect. 3.3.1 it has been assumed that
a leg consists of two independent piezoelectric stacks, each of them
composed of a number of piezoelectric layers which can be treated as
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a series connection of springs. In reality, the two stacks are formed by
the same end-to-end ceramic layers and the functional discrimination
between the stacks is conditioned only by the placement of electrodes
in between these layers. An exact model of structural stiffness of such
a composite structure is not trivial and has not been further pursued
in this work. For a modeling approach, see e.g. [76]. The simplified
spring model provides a resonably good approximation of the actual
stiffness of the composite structure as the predicted resonance regions
and the level of load forces which the legs can hold correspond to the
actually measured values.

Also in case of interaction with the drive rod, several modeling
simplifications have been made. In sect. 3.4.1, the preload force Fp acts
on the point mass model of the drive rod and is assumed constant. In
the actual PiezoLegs motor design, the drive rod is a relatively long
ceramic bar which is pressed against the legs by means of a stack
of leaf springs and two roller bearings on the opposite sides of the
motor housing (Fig. 20). When the drive rod moves, the position of
its center of mass changes which may lead to the development of
torque and drive rod instability affecting leg contact. The simplified
model view is justified by the fact that the preload force is chosen
high enough to ensure permanent contact to the legs within the rated
operation range and that there are always M ≥ 2 legs in contact to
ensure static stability. This is not the case in the resonance region and
if the behavior of the motor in this particular region were of interest,
the exact distribution of forces along the drive rod would need to
be considered. Also the level of preload may be assumed constant
as the change in drive rod elevation in the 2 · 10−6 m range has a
little effect on Fp given the effective stiffness Kzr of the leaf springs
in the 105 N/m range. It would be interesting to analyse the effect of
the Kzr/Kzl ratio on the magnitude of drive rod oscillations and the
development of normal and frictional forces. Higher Kzr would lead to
a higher resonance level but also to higher Fp variation. The interaction
with legs in x-dimension is governed by friction. The LuGre model
has been chosen in order to unite the static as well as dynamic friction
phenomena within one modeling framework. Still, frictional effects
can be observed which are not covered by the present model. One of
them is the effect of surface contamination on the magnitude of the
friction coefficient mentioned in the previous section. When the motor
is driven at a high drive frequency under increasing tangential load,
the legs hit the drive rod more often at the same spots due to velocity
decrease (surface of the drive rod above the legs is not forwarded or
forwarded slowly). At the same time, the drive rod is scraped clean
of potential contaminations which may lead to the increase of friction
coefficient and thus improved load characteristics. Friction may also
change in dependence of the time of contact and the true area of
contact between the legs and the drive rod. These factors have not
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been considered in the present work. For a more in-depth treatment
of this topic see [218].

In summary, the modeling decisions of this chapter have resulted
in a motor model consisting of a collection of systems not exceeding
second order which can be extended to cover additional aspects of mo-
tor operation, especially if low-level experimental data were provided.
Based on the macroscopic velocity and load force measurements, an
optimization procedure had to be employed in order to find the model
parameters which were not known or could not be measured directly.
A more complete analysis would be required in order to estimate the
sensitivity of the model to parameter variation and indicate directions
for further improvements. Nevertheless, the previous section has
shown that the optimization process converges quickly to a high qual-
ity solution even with standard parametrization applied and that the
bounds on parameter values can be identified. The derived physical
model accurately describes the linear drive frequency/velocity as well
as the nonlinear load force/velocity characteristics of a real walking
motor within its full operational range. The model will be used in
chapt. 5 to investigate the effects of a bioinspired drive strategy on the
performance of the walking motor.
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4 GRAY-BOX IDENT IF ICAT ION OF
SEMIPHYS ICAL MOTOR
DYNAMICS

abstract

This chapter presents an experimental approach for deriving a semiphysical
model of the walking motor. The difficulties related to the linearization and
control theoretical application of the physical model are discussed and a
modeling approach based on statistical data evaluation proposed. The new
approach results in three motor models of increasing complexity which are
independent of the low-level piezoelectric properties of the driving elements
and the impact dynamics of the legs. The basic model establishes a static
relation between motor velocity and drive frequency for a free-moving motor.
The second model is a nonlinear extension of the first model which introduces
external load forces. The final model introduces time-dependent aspects by
employing system identification techniques. The content of this chapter is
partly based on publication II.

4.1 introduction

The motor model derived in the previous chapter reproduces the
behavior of the actual walking motor within its full range of rated
operation and can be used to anticipate alternative drive strategies,
possible design improvements, etc. These issues will be addressed in
the next chapter in which a bioinspired drive strategy will be proposed.
In this chapter an alternative modeling approach based on system
identification techniques will be motivated and utilized. The main
reason for a yet another motor model is the necessity to control the
motor in practical applications. This goal cannot be achieved easily
with the model from the previous chapter due to several reasons
including its nonlinear nature which complicates the design of a
suitable controller and the level of detail which is beyond the capacity
of real-time controllers and online simulations. A linearization attempt
resulting in a simplified model is required. The following sentence
from a lecture by Richard Feynman [70] motivates this strategy:

Finally, we make some remarks on why linear systems are
so important. The answer is simple: because we can solve
them!

Fig. 37 illustrates the selection of nonlinearities of the physical model
together with possible means of their linearization. The physical
model consists of two dynamics (x and z-dynamics, see chapt. 3) and
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Figure 37: Overview of nonlinearities in the walking piezoelectric motor as
identified in the physical motor model from the previous chapter
and possible methods of their linearization (PW – piecewise
linearization, OP – operating point linearization, FB – feedback
linearization). Impact dynamics (in bold face) of the legs plays
the determinant role in the switched-mode behavior of the motor.
Leg elongation nonlinearity not included in the motor model is
shown in gray-shade for the sake of completeness (cf. sect. 3.3.3).

can be considered a hybrid switched-mode [130, 7, 4] or jump parame-
ter [199] system. This consideration lies in the fact that the system is
subject to a sudden change in the values of its parameters depending
on the contact condition between the legs and the drive rod. Any
linearization attempt has to address this issue first. The most straight-
forward approach is to differentiate between 4 cases in which either
one pair, the other, both leg pairs or no legs have contact with the
drive rod; the latter being an artificial case. In this manner a piecewise
system [161, 54] consisting of several subsystems for each case is ob-
tained. However, this increases the number of state matrices which
can become dramatically high if other nonlinearities are to be split
into piecewise linear components. In order to reduce the number of
subsystems, several realizations of state switching are conceivable and
shown in Fig. 38. The states are depicted as numbered circles with
the necessary conditions for being in the particular state shown next
to them. State transition conditions are not shown on purpose as the
actual implementation may range from a finite-state automaton to a
Markov process.

Fig. 38(a) shows the obvious case with the cycling one leg pair –
both pairs – other leg pair ... transitions. Assuming both leg pairs
behave identically and resetting their state periodically reduces the
number of states by one [Fig. 38(b)]; neglecting the contact dynamics
during the overlapping contact condition and using a periodic reset
would yield a single state implementation [see Fig. 38(c)]. The no-
contact condition (floating drive rod) is ignored in all cases. Although
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Figure 38: Possible realizations of state switching for the impact dynamics
of the legs. (a) shows the basic realization with three states where
either leg pair 1 (c1) only, both leg pairs (c1 ∧ c2) or leg pair 2 (c2)
only have contact with the drive rod. (b) two-states simplification
of (a) with a reset signal. (c) a further simplification neglecting
contact transition dynamics.

theoretically possible, the piecewise linearization strategy proposed
in Fig. 38 could not be attained in a practical control scenario due to
the high switching frequency of the process (up to 3 kHz) and the
non-observability of the states. The latter issue is especially prohibitive
in a force control scenario when the motor is severely disturbed by
external forces. However, for relatively slow nanopositioning tasks
under negligible loads the above linearization strategy could prove
useful in a robust control scenario.

The high switching frequency of the motor remains an obstacle for
any further linearization attempt of the model from chapt. 3. How-
ever, before proceeding to the next section in which an alternative
modeling strategy based on an experimental approach is proposed,
other analytic possibilities will be sketched shortly for the sake of
completeness. Please note, that the goal of the following discussion is
not to arrive at a realistic control-theoretical motor model but rather to
shed light on possible pitfalls related to the analytic linearization ap-
proach. Focusing again on Fig. 37, the behavior of the motor strongly
depends on the choice of the driving waveform (see sect. 3.2.2 and
chapt. 5) which affects the level of leg deflection, elevation, drive rod
contact times, etc. and thus determines the linearization procedure
of the other nonlinearities. The only sensible choice seems to be the
linearization for a particular waveform choice.

The term operating range in Fig. 37 relates to the upper bandwidth
limit of the drive frequency. It has been shown in Fig. 32 of sect. 3.4.1
that the motor can be driven with frequencies beyond its rated opera-
tion. In this case, several regions of operations between and beyond
the resonance regions could be distinguished and the model split
into several piecewise linear models. However, the ultrasonic mode
of operation is likely to lead to further difficulties due to increased
current consumption, temperature rise, etc. Last but not least, this
would further increase the switching frequency of the motor. For these

89



reasons, choosing an operating point below 3 kHz seems to be the best
solution.

The nonlinearity related to leg deflection was considered in sect. 3.3.3.
For many waveforms a suitable operating point could be chosen or
even a piecewise model proposed. An alternative approach could
be based on feedback linearization [73] but this would require the
knowledge of leg states which are not observable in the real motor.
A variation of this technique is shown in chapt. 7 where it is used to
compensate the effects of external load on motor velocity.

Last but not least, the operation of the motor is based on friction.
The nonlinear LuGre model from the previous chapter proved to
be suitable to explain the friction phenomena in the walking motor
(see sect. 3.4.2). Operating point linearization of this model in the
stiction or slippage regions are possible [74, 156]. However, these
simplifications obviously neglect either the dynamic or quasi-static
aspect of motor operation. Moreover, linearization for the stiction
condition increases model complexity by introducing two additional
model states, both of which are neither controllable or observable.
A piecewise attempt, possibly with a different friction model, seems
to be better suited but it poses the non-trivial problem of mediation
between the cases.

Considering the multitude of difficulties in analytic motor model
linearization, a different approach has been chosen in this chapter. In
the following sections, the motor is seen as a gray-box [187] whose
input, output and transfer characteristics can be experimentally mea-
sured but little knowledge of its internal workings is assumed. The
model will be derived based on an measurement and subsequent
(least square) statistical data evaluation. In sect. 4.2.1 the basic linear
model of the unloaded case is presented. This model is extended
by the nonlinear influence of mechanical load in sect. 4.2.2 and the
dynamic transfer characteristics in sect. 4.2.3. The final model will
be used in chapt. 7 to develop a load force compensation strategy
which linearizes the model completely and to design an explicit force
controller.

4.2 gray-box modeling

It is customary to distinguish between three levels of prior knowl-
edge when modeling dynamical systems. These are referred to as
white, gray or black-box models [187] with black standing for no
knowledge, white for full knowledge and gray being the in-between
case. According to this definition, the physical motor model from
the previous chapter is “gray” as some parameters were not known
and needed to be estimated. Sjoberg [187] differentiates additionally
between physical and semiphysical gray-box modeling depending on
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the employment of first principles in the modeling process. Thus,
while the model established in the previous chapter was physical, the
model to be derived in this chapter is semiphysical in accordance with
this widespread classification.

4.2.1 Static unloaded behavior

The development of the motor models in this chapter is based on
experimental data obtained for N = 4 different PiezoLegs-motors
driven with the force waveform since later the motors will be applied
as force generators in a small-sized robot joint (see chapt. 7 and 8).
The motors were equipped with magnetic linear encoders (NANOS-
Instruments GmbH, Hamburg, Germany) which allow a relative posi-
tion measurement with an accuracy of 61 nm. The position data was
sampled at 200 kHz. In the unloaded case, the translatory movement
velocity of the drive rod (motor velocity vm) shows an approximately
linear dependency with respect to the drive frequency f of the four-
phase voltage system.

In its basic form, the motor model assumes a linear relation between
the motor drive frequency f and the drive rod velocity vm. In order
to evaluate this assumption, each motor j was driven with 6 different
drive frequencies ranging from 10 to 2500 Hz and its drive velocity
was measured. The obtained measurement pairs {fk, vk} with k ∈
{1, . . . 6} were used to compute the least squares estimates of the
regression coefficients aj for each of the N motors:

aj =
∑k fkvk,j

f2
k

, j = 1, . . . , N. (96)

The regression was assumed to pass through the origin which is
justified as for the trivial case of f = 0 Hz the motor does not move.
The average slope ā of the freq.-vel. line for the average motor model
was computed as the mean value of the results from (96) for the N
motors:

ā =
1
N

N

∑
j=1

aj. (97)

Fig. 39(a) illustrates the results. Their numerical values are summa-
rized in Table 7. The average slope ā is shown as a bold line in
the diagram. Its quality was evaluated with the R2 coefficient of de-
termination on the measurements done for all motors. The value of
R2 = 0.88 shows that the linearity assumption is plausible. It explains
most of the data in the operating range of the PiezoLegs-motor. Still,
the correlation deteriorates for frequencies approaching flim = 3 kHz.
In order for the motor to remain in its linear domain, a new limit fmax

of 2000 Hz for the maximum drive frequency is defined. It prevents
the motor from reaching the resonance limit flim and assures the lin-
earity of the basic model. In the following, the drive frequency signal
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Figure 39: Linear dependency between motor drive frequency f and the
velocity vm of the drive rod. The main diagram in (a) illustrates
least squares linear fits on the measured motor data for 4 different
motors. The shaded region is magnified in the linearly scaled
inset A. The slope a and the coefficient of determination R2 are
given for the average linear fit (bold line). The encircled set of
points at 2500 Hz was not included in the regression analysis – it
illustrates that the linear dependency deteriorates for frequencies
approaching flim. (b) shows the basic motor model.

is assumed not to exceed fmax if not noted otherwise. The basic linear
model, as shown in Fig. 39(b), is expressed by

vm = V( f ) = ā f (98)

Table 7: Frequency scaling factors computed for all motors and their average
value expressed in decibels.

Motor j Freq. scaling factor aj

1 4.25 · 10−6

2 5.13 · 10−6

3 4.34 · 10−6

4 4.26 · 10−6

average ā = 4.50 · 10−6

motor ≈ −107 dB
The unit of all data is [m/s · 1/Hz].
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where f is the motor drive frequency, V( f ) is the freq.-vel. relation as
introduced above and vm is the velocity of the drive rod.

4.2.2 Static behavior under load

The linear freq.-vel. dependency is valid only in the unloaded case.
If an external force is applied to the drive rod of the motor, the
velocity decreases nonlinearly with increasing force. To quantify this
observation, the motor housing position was fixed and a force sensor
(ME-Meßsysteme GmbH, Hennigsdorf, Germany) was attached to one
end of the movable drive rod. This force sensor has two mechanical
connectors, the second of which was attached to a fixed point via an
extension spring. The sensor can measure forces up to 25 N with a
resolution of 0.1 N. Fig. 40(a) shows the top view of this experimental
setup. All N motors were driven with several fixed frequencies laying
in their linear range of operation. For each frequency fi, the pulling
force Fk on the drive rod up to Fmax (10 N) and the motor velocity vk,i
were measured while the moving rod stretched the extension spring.
Fig. 40(b) illustrates the results for three drive frequencies f1 = 250,
f2 = 500 and f3 = 1000 Hz.

The velocity decreases nonlinearly with increasing force levels. This
tendency can be captured by a monotonically decreasing polynomial
fit of the form:

V( f , F) =
M

∑
j=0

bj( f )Fj (99)

where M is the order of the polynomial fit, F is the external force on
the system (in the experiment generated by the extension spring) and
bj( f ) are the drive frequency dependent coefficients. For the fit at each
frequency dependant force-velocity curve, a third order polynomial
was chosen. The fits are represented by the bold curves in Fig.40(b).
The dashed lines are the error estimates on the corresponding fits and
represent bounds on the fits which contain at least 50 % of the data
samples used in the fitting process if the samples are assumed to be
independent and with a constant variance.

For the generation of a motor model for the loaded case, it is
inefficient to use a set of polynomials for several drive frequencies
as defined in (99). However, the relation between drive frequency,
force and velocity shown in Fig. 40(b) can be separated conveniently
by using the average frequency scaling factor ā introduced in (97).
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Figure 40: Effect of external force on the drive rod movement velocity vm.
(a) shows the top view of the experimental setup used to obtain
velocity and force measurements for increasing motor drive fre-
quencies in (b). The bold lines illustrate third order polynomial
fits on data measured for 4 different motors. The dashed lines
are error bounds on the corresponding fits. (c) shows the effect
of scaling the data points from (b) with the corresponding fre-
quency and the linear frequency scaling factor ā from sect. 4.2.1.
The bold line shows an average third order polynomial fit on all
freq.-normalized force-velocity data points. The quality of the fit
in dependency of its order is presented in the lower inset. Detail
A shows the normalization effect when applied to the polynomial
fits from (b). Note that the bold line is not shown in the detailed
view for the sake of clarity.
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In the first step, the frequency dependency of the data points
{vk,i, Fk, fi} is eliminated according to:

v∗k =
vk,i

ā · fi
=

vk,i

V(fi)
, (100)

resulting in normalized data points {v∗k, Fk}. The normalization ef-
fect is depicted in Fig. 40(c). Although measured for different drive
frequencies, the data points from Fig. 40(b) fall close together for cor-
responding force levels when normalized. All of these normalized
force-velocity data points were used in the second step to estimate
least squares polynomial fits of increasing order according to:

min
b

∥∥∥Fb− v∗
∥∥∥2

2
(101)

where

F =



1 F1 F2
1 . . . FM

1
1 F2 F2

2 . . . FM
2

...
...

...
. . .

...
1 Fk F2

k . . . FM
k

...
...

...
. . .

...
1 Fn F2

n . . . FM
n


(102)

is the matrix of force measurements which are raised up to the power
of M,

v∗ =



v∗1
v∗2
...

v∗k
...

v∗n


(103)

and b is a column vector of M + 1 coefficients. The estimation process
was based on linear least-squares polynomial curve fitting with con-
straints [80]. The constraints can be motivated by the general behavior
of the motor. In particular, the polynomial fit has to:

1. have the value of 1 for the load-free case (max. velocity);

2. have the value of 0 for the maximal external force Fmax (velocity
is zero, stall case);

3. be strictly monotonically decreasing for F ∈ [0, · · · , Fmax] (as can
be seen in the data).

Even with the above constraints, a polynomial fit of the order M = 2
already captures most of the variation in the normalized data resulting
in R2 values of 0.8 (compare Fig. 40[c]).1 The bold curve is a polyno-
mial of second order computed for freq.-normalized data obtained

1Higher orders polynomials with M → ∞ were not considered due to their
complexity and the lack of analytic solution methods.
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Figure 41: Enhanced motor model including the nonlinear effect of an exter-
nal force F acting on the drive rod (V∗(F)).

with 4 different motors. Furthermore, the polynomials from Fig. 40(b)
overlap if normalized by dividing them with the corresponding value
V(fi). This can be seen in the detailed view of Fig. 40(c) and confirms
the assumption that it is possible to separate the effects of frequency
and force on the motor velocity. Specifically, the frequency dependant
polynomial from (99) can be approximatively expressed as a product
of two independent functions:

V( f , F) ≈ V( f ) ·V∗(F). (104)

where V∗(F) is a constrained polynomial fit on the normalized force-vel.
data as introduced above. The first of the three constraints on the poly-
nomial fit ensures that the equation for the force-dependent velocity
(104) reduces to the load-free case from (98). The second constraint
reflects the fact that the motor stops moving when its stall force limit
is reached. For this limit a constant value of Fmax is assumed (wave-
form and frequency dependent variations are neglected; cf. Fig. 35

and Fig. 51). The third constraint reflects the tendency observed in
the measured data and prevents the polynomial fit from having only
statistical significance due to the scatter in the data (stick-slip effects
between the legs and the rod and noise).

With the above observations a motor model for the loaded case can
be established, resulting in the following model equation:

vm = V( f ) ·V∗(F). (105)

The model is depicted as a block diagram in Fig. 41 and the coefficients
for the normalized polynomial fits V∗(F) up to M = 3 are listed in
Table 8.

4.2.3 Linear dynamics

The previous sections have shown how the drive frequency and exter-
nal force are related to the motor velocity. Still, the relation from (105)
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is just a static mapping which does not consider any time constants of
the motor system. In the following, a discrete dynamic system model
for the PiezoLegs-motor is derived using system identification. The
identification techniques allow to estimate a whole dynamic model or
just a set of parameters from experimental data “when it is difficult to ob-
tain reasonable models using only physical insight or if the modelled processes
are too complex to remain at the physical modeling level only” [192].

A linear time-invariant system can be expressed in form of difference
equations as follows:

y(t) + c1y(t− T) + . . . + cnc y(t− ncT) =

d0u(t) + d1u(t− T) + . . . + dnd u(t− ndT) +

ε(t) + e1ε(t− T) + . . . + ene ε(t− neT)

(106)

with u(t), y(t) and ε(t) being system input, output and disturbance
at time t, respectively. T is the cycle time of the system. In a compact
ARMAX notation [135] the above equation can be expressed as:

C(z−1)y(t) = D(z−1)u(t) + E(z−1)ε(t) (107)

where

C(z−1) = 1 + c1z−1 + . . . + cnc z−nc (108a)

D(z−1) = d0 + d1z−1 + . . . + dnd z−nd (108b)

E(z−1) = 1 + e1z−1 + . . . + ene z−ne (108c)

and z−1 is the backward shift operator. The transfer function for an
ARMAX model is given by

D(z−1)

C(z−1)
. (109)

For the identification of the PiezoLegs-motor, a sum of sines input
signal was used. The signal can be considered a frequency-modulated
(ν: modulation frequency) drive frequency input ( f ) of the following
form

u(t) =
n

∑
j=1

Aj sin(2πνjt + φj). (110)

The input was sampled at the rate T = 5 ms and consisted of n = 20
different frequency components spanning the range from 0 to 100 Hz

Table 8: Coefficients of the polynomial fits on normalized force-vel. data up
to the third order.

M b3 b2 b1 b0

1 - - −0.1000 1.0000
2 - −0.0094 −0.0060 1.0000
3 −0.0006 0.0000 −0.0384 1.0000
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(the Nyquist frequency of the sampling system). The amplitudes Aj

were randomized and the phase offsets φj computed according to the
formula by Schroeder

φj =
πk2

n
, k = 1, 2, · · · , n (111)

which improves/minimizes the crest factor of a multisine signal [65].2

Each motor was driven with 5 independent inputs generated accord-
ing to (110). The motor was load free in order to prevent the nonlinear
force effects described in the previous section from corrupting the
linear identification. The measured data for each motor was merged
into a single experiment in order to increase the number of input-
output samples and evaluated using the Matlab System Identification
Toolbox (Matlab, The MathWorks Inc., Natick, MA, USA). Four differ-
ent models were estimated using the prediction error method (PEM)
which gives the least squares estimates of the coefficients from (108).
In this work, no external disturbances were assumed. The results of
the experiment can be seen in Fig. 42.

2The crest factor is the ratio of peak values to the average value of a signal. The
minimal crest factor of 1 indicates no peaks. Signals with a low crest factor are
useful for system identification since they inject more power into the system at the
frequencies of interest. Using a low crest factor input signal can improve the signal to
noise ratio of the resulting plant output. [162]
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Figure 42: System identification experiment and its results. (a) is a schematic
depiction of the experiment in which frequency modulated drive
frequency signal (input) was used to drive the PiezoLegs-motor
while the motor velocity response (output) was measured. The
diagrams (b)-(e) are bode magnitude plots of the transfer func-
tions obtained in the experiment for each of the 4 motors. In each
diagram, the −107 dB magnitude from Fig. 39 is indicated (gray
line). The estimated transfer functions were linear state space
models (no assumptions on model structure) of increasing system
order as well as a lowpass approximation (encircled first-order
system). The quality of their fit with respect to the real output
signal was evaluated using the R2 coefficient of determination
measure.
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Four general discrete linear models up to the order of 3 and a
lowpass model have been estimated using PEM. Except of the lowpass
model, no assumption on model structure was made. As can be seen
in Fig. 42(b-e) all models manage to explain over 2/3 of the variation
in the system output and the estimated gains for all systems up to
about 20 Hz lay close to the -107 dB average slope ā from (97). The
lowpass model was chosen as it explains 70% of the data while being
the simplest one and bearing a physical significance. The difference
equation for a discrete lowpass with the time constant τ and gain K is
given by:

y(t) = (1− T
τ + T

)y(t− T) +
KT

τ + T
u(t) (112)

or in the notation from (108) by:

C(z−1) = 1− (1− T
τ + T

)z−1 (113)

D(z−1) =
KT

τ + T
(114)

with the transfer function [see (109)]

G(z) = K
T

(τ + T)− τz−1 (115)

The numerical estimates of these parameters for all motors and for the
average motor model are summarized in Table 9.

It should be noted that in the strict sense, the identification experi-
ment delivered a linear model of the motor together with the 4-phase
generating electronics (see chapt. 6.2) which converts the drive fre-
quency signal into the amplified analog 4-phase signal. Still, the
electronics can be considered with a pure time delay of 50 µs (the
signal propagation time through the amplification stage) and thus
neglected in the model because this delay is of two orders of magni-
tude smaller than the data sampling rate and the loop rate of the force
controller designed for the motor in sect. 7.3. The estimated lowpass
model can be easily combined with the static model (105) from the
previous section. There are two reasons for this.

First, because in (105) the nonlinear force effect has been separated
from the freq.-vel. relation and can be considered a (force dependent)
constant. Accordingly

G(z) = G(Z{V( f , F)}) = G(Z{V( f )V∗(F)}) (116)

= V∗(F)G(Z{V( f )}) (117)

where Z{.} is the Z-transform operator.
Second, because there is a correspondence between the slope of the

freq.-vel. relation from (97) and the estimated gain K of the lowpass.
By assuming

a ≈ K (118)
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Figure 43: Enhanced motor model including a first-order dynamics H(z).

and

H(z) =
1
K

G(z), (119)

the final motor model becomes:

vm = Z−1{H(z)Z{V( f )}} ·V∗(F). (120)

This model is depicted in Fig. 43 with vF and vm corresponding to u
and y from (112).

The final model has linear dynamics but is still nonlinear due to the
force-vel. scaling. In sect. 7.2 a load compensation strategy based on
feedback is proposed which restores the linearity of the model. This
will allow the employment of linear control theory to design a force
controller in sect. 7.3 and lay the foundation for a practical application
of the walking motor in a bioinspired control scenario of chapt. 8.

4.3 discussion

This chapter has introduced three motor models based on an experi-
mental approach which are suitable for the application in real time
control scenarios. The first and simplest model establishes a static
relationship between velocity and drive frequency in the load-free
case. It was shown that the movement behaviors of four different
motors are similar enough to be replaced by one average frequency
scaling factor ā. The second model extends the first by introducing
the influence of an external force which pulls at the drive rod of the
motor. The nonlinear force-velocity relationships which arise for each
drive frequency were normalized by using the average frequency scal-
ing factor ā from the first model. The normalized force-velocity data
can be fit with a polynomial. Here, a second order polynomial was
chosen which results in a squared correlation value of 80 %. A further
increase of the polynomial order does not improve the quality of the
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fit since the underlying data points are scattered. Several reasons are
conceivable to explain that.

First, there exists a noteworthy variance of the basic velocity data
because of the nonlinear drive rod movement caused by the stepping
pattern of the four piezoelectric legs. Second, slipping-effects between
drive rod and piezoelectric legs might occur which change the rod
position abruptly. Third, noise in the force measurement arises from
the analog nature of the measurement. However, the compensation
of the first two effects would call for additional submodels based
on material interactions and frictional effects. This would obscure
the straight-forward modeling strategy followed in this chapter. The
third motor model extends the second model with the time aspect.
No causal system can generate an action immediately. With the
system identification techniques described in section 4.2.3, linear time-
invariant models of increasing order have been estimated for load-free
piezo motor movements. It has been shown, that already a first-order
system is sufficient to describe the time dependency of the motor.
Higher-order systems did not result in higher quality fits. However,
note that strong differences can be observed in the decline of the gains
for systems of different orders in the magnitude plots of Fig. 42. If
motor operation above 100 Hz – i.e. the maximum frequency included
in the multisine signal used in sect. 4.2.3 – were of primary interest,
the identification experiment would have to focus on frequencies above
this value in order to return a more reliable estimation of the gain at
high drive frequencies.

As far as system identification techniques are concerned, only one
research group is known to the author to have tried to model the walk-
ing piezoelectric motor using the experimental approach. Merry [145]
performed several identification experiments at fixed frequencies with
noise artificially added to the drive signals. Their experiments re-
sulted in a third order LTI model of the motor together with a high
precision linear stage (compound system model). Despite its superb
performance in low frequency precision positioning application, the
estimated model has one serious shortcoming in terms of this work.

Table 9: Gains and time constants of the lowpass dynamic model estimated
for all motors and their average values assumed in the motor model.

Motor j Gain Kj Time const. τj

1 4.92 · 10−6 4.5 · 10−3

2 5.80 · 10−6 3.8 · 10−3

3 4.56 · 10−6 4.6 · 10−3

4 5.51 · 10−6 4.0 · 10−3

average K = 5.19 · 10−6
τ= 4.22 · 10−3

motor ≈ −106 dB
The unit of all time constants is [s].
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The model does not consider any kind of external load on the system
which has been shown (see sect. 4.2.2) to affect the walking motor in
a nonlinear manner and is particularly important for a force control
scenario. Also, the model is set up with an implicit linearity assump-
tion which proves true for low drive frequencies but has been shown
(see sect. 4.2.1) to deteriorate for higher frequencies. The model by
Merry [145] as well as the motor model of this chapter could be im-
proved by using nonlinear identification techniques [187] and/or by
extending them with a suitable disturbance model part.

As a final comment, it should be stressed that the experimental ap-
proach based on system identification has several inherent limitations.
First of all, it has limited validity since the identification experiment
needs to be carried out for a certain working point, input type, etc. Sec-
ond, it gives little physical insight since it is meant primarily as means
of description of system’s overall behavior [192]. Other limitations
relate to noisy measurements, lack of certain measurements or the
actual time variance of model parameters. However, the experimental
strategy is easy to employ and results in models which can be directly
employed for control-theoretical purposes. When motor-design im-
provements, alternative drive strategies or the coverage of a broad
range of drive conditions are important, then a physical model as the
one from previous chapter should be used. This contrast between the
two types of models will further bear significance in the later chapters
of this work. The physical model will be used in the next chapter
(chapt. 5) in order to theoretically investigate a bioinspired drive strat-
egy in which all legs are driven independently (and not in pairs).
The control theoretical model from this chapter will find its practical
application in chapt. 7 and 8 where, respectively, a load force com-
pensation strategy and a bioinspired application in an antagonistic
robot joint will be shown.
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CONTROL PART





5 B IO INSP IRED GENERAT ION OF
OPT IMAL DR IV ING WAVEFORMS

abstract

Walking is the most common way of locomotion in land living animals and
poses a problem whose solution has been fine-tuned by nature during millions
of years of evolution. Multi-legged animals like insects gracefully coordinate
their legs on different substrates and maintain stability even under strong
disturbances. Their superb walking performance is a natural inspiration
for a novel drive strategy in the walking motor. This chapter discusses
different possibilities of an architectural mapping between a bioinspired
model of hexapod walking and the piezomotor. Specifically, a novel drive
strategy is proposed in which all piezoelectric legs are allowed to be driven
independently and not in pairs as in the classical drive strategy. Based on the
physical model of motor dynamics, it is shown that the bioinspired strategy
significantly improves the performance of the motor in terms of its force
generating capabilities as well as maximal drive velocity. Furthermore, the
novel approach is described by a moderate number of intuitive parameters
and produces a variety of velocity-dependent gaits as known from the research
on animals.

5.1 introduction

The previous two chapters were concerned with the derivation of mo-
tor models which can faithfully describe motor behavior in response
to given drive signals and an external load when a standard drive
approach as intended by the manufacturer of the walking motor is
employed. This chapter marks a new part of this thesis which is
concerned with both theoretical and practical issues with regard to
the drive strategy and control of the motor. The discussion in the
following chapters is organized as follows. The current chapter inves-
tigates theoretically an alternative drive strategy based on biological
findings on insect walking and the dynamical model from chapt. 3. In
particular, it shows that the performance of the motor can be signifi-
cantly improved if every leg is allowed to be driven independently as
opposed to the pairwise strategy (cf. sect. 2.4.1). In the next chapter
(chapt. 6), the practical issue of the actual generation of drive signals
at different frequencies is addressed. The last chapter of the control
part (chapt. 7) focuses on the design of a load compensation strategy
and a force controller based on the gray-box model from chapt. 4.
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The choice of driving waveforms has a significant influence on the
performance of the walking motor (cf. sect. 3.2.2). Simu et al. [186]
proposed two rudimentary drive strategies similar to the stick-slip
and impact drive mechanism (called inertial stepping in their work)
from sect. 2.3.3 which result in a relatively high motor speed on the
cost of high velocity fluctuations and a presumably poor load capacity.
As an alternative, in the same work, they proposed a trapezoidal and
the well-known sinusoidal waveforms which are practically used in
the commercial product. Building on their results, Merry et al. [145]
parametrized the sinusoidal waveform and derived an asymmetrical
waveform which improves motor velocity constancy on the cost of
lower drive velocity. In a later work, Merry et al. followed this strategy
and proposed an optimization strategy based on 4

th order Fourier
series description of the waveforms [146]. Each of the 4 waveforms
was described by 8 different parameters, resulting in altogether 32

parameters. As a result, motor velocity constancy could be improved
on the cost of further motor velocity decrease. However, their strategy
is based on an extensive optimization process with a dedicated solver.
The high-dimensional solution is highly susceptible to manufacturing
differences in individual motors, thus questioning the actual perfor-
mance improvement in practical applications. So far, the waveform
optimization efforts in the literature were concentrated on improving
motor performance in load-free nanopositioning tasks and assumed
the legs to move pairwise to ensure static stability. This contrasts with
the high-load capacity, high-speed objectives of this thesis. But even
more importantly, it seems that the engineering efforts fostered with
computationally-intensive, high-dimensional optimization processes
are not able to deliver significant improvements in motor performance.
An analogous observation comes from robotics, where the immense
differences in comparing the walk of an animal and a robot are clearly
visible. Following this analogy and considering the fact that the drive
principle of the motor is based on “walking”, it is useful to look for a
biologically inspired solution [149].

The abundance of biological literature on walking is not surprising
if one considers that one of the defining characteristics of animals
is their movement [24]. The scientific analysis of walking began in
1870s (promptly before the discovery of piezoelectricity) as the result
of a dispute, lingering from ancient times, about whether or not all
four feet of a galloping horse are ever off the ground at the same
time [158]. The answer, given in 1872 by the photographer Eadweard
Muybridge, triggered a broad interest in walking and, particularly, in
how animals are able to generate the rhythmic walking movement. The
scientific efforts led to the conclusion that the mechanism by which the
nervous system generates the rhythmic movements of the leg during
walking is basically the same in animals as diverse as the cat and
the cockroach [158]. Experiments have been performed with cat [85],
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crayfish [42], locust [171], ants [233], flies [225], cockroach [159, 55]
and stick insects [47, 49]. Generally speaking, walking can be seen as
a coordinated action of (at least two) legs which has to account for
the stability of the whole body while at the same time maximizing
propulsion and minimizing strain across the body [61]. While walking,
animals have to control the number of degrees of freedom which is
usually larger than that necessary to perform the task and be able
to adapt to unpredictably changing environment or even a loss of a
leg [123]. Considering the difficulty of the task from the engineering
point of view, it is stunning with what ease even simple animals like
insects can “solve” the problem of walking. In this context, insects are
an especially interesting group of interest not only for the biologists
due to the simplicity of their nervous system but also for this work
because of their multitude of legs which they need to coordinate
during walking.

The research on insects carried out at Bielefeld University since 1981

by Holk Cruse and his coworkers has brought about a repertoire of
findings and a kinematic model of the walking behavior of a stick
insect Carausius morosus.1 A part of this model is used in this chapter
(see next section) to realize a novel coordination mechanism between
the legs of the walking motor. However, before proceeding to the
description of the model, it is worthwhile to focus on the differences
and similarities between the leg of an insect and a piezoelectric leg.
Fig. 44 illustrates the legs schematically during one walking cycle.
Perhaps the most noticeable difference in this depiction is the reversed
concept of a “ground”. Neglecting the climbing or upside down
walking situations, an insect stands on a ground which is under
its body and toward which it is pulled by the gravitational force.
Furthermore, normally it is the insect that moves on a static (immobile)
ground. In case of the motor and neglecting its specific mountings,
the drive rod plays the role of a movable ground which is placed
on top of the fixed drive unit with legs and which is pushed against
them by means of a preload (leaf springs in Fig. 20). The thick black
arrows in Fig. 44 indicate the direction of forward motion either of the
insect’s body or the drive rod of the motor. While the insect moves
preferably forward and takes a turn in order to change the direction
of motion, the forward and backward motion are fully symmetrical
cases in the motor. In the following discussion only forward motion is
considered (for a comment on backward motion refer to the discussion
in sect. 5.5).

Further differences are exhibited in the legs themselves. An insect
leg is functionally a 3 DOF serial manipulator consisting of multiple
segments connecting rotary joints. A piezoelectric leg is a 2 DOF

1This research has its root in much earlier works and dates back to 1921 and
the publication on the stick insect Dyxippus by Buddenbrock [36] and later works of
Wendler [222], Bässler [15] and Cruse [45, 46].
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Figure 44: Schematic depiction of an insect leg and a piezoelectric leg per-
forming one walking cycle. (a) the insect leg consists of several
segments connected with joints resulting in three functional DOF.
(b) the piezoelectric leg is a multilayer bimorph bender which can
perform an in-plane movement. Each walking cycle consists of
two main stages, the stance stage (dashed line) in which the leg
contacts the ground (or the drive rod) and the swing stage (dot-
ted line) in which the leg is freely repositioned. The trajectories
in (b) are highly exaggerated. The contact spots tarsus/ground
and friciton pad/drive rod are marked with an x-symbol. The
resulting directions of motion are indicated with a thick arrow
for both insect’s body and the drive rod of the motor.

piezoelectric bender. For an in-plane motion, the former is redundant
while the latter is not. The walking cycle of an insect leg consists
functionally of two stages – the power stroke (also called the stance or
support phase) and the return stroke (also swing or recovery phase).
During the power stroke, the leg contacts the ground where it can
support and propel the body. During the return stroke, the leg is lifted
off the ground and swung freely to the starting position for the next
power stroke [47]. This starting position is called the anterior extreme
position (AEP) (also touch-down position).2 While performing the
power stroke, which is a retraction/backward movement in forward
motion, the leg moves toward and ends at the posterior extreme position
(PEP) (also lift-up position) from which the next return stroke is started.
Adapting the biological terms, the power stroke can be defined as
the in-contact motion from AEP to PEP and the return stroke as the
contactless motion from PEP to AEP. These are indicated in Fig. 44

with dashed and dotted lines, respectively. Note that due to the
difference in the static vs. movable “ground” concept, the directions of
power and return strokes are swapped for the insect and piezoelectric
legs given the indicated direction of motion. The current leg position
in the walking cycle is marked with an x-marker by which the position
of a leg tip (tarsus base or friction pad center) is meant. Thus both legs
in the schematic depiction are in the middle of their power strokes.

2Anterior (Latin ante; before) is an anatomical term of location and refers to the
front (head) end of an animal if it has a distinct head. The opposite (rear) end is
called the posterior (Latin post; after) end.

110



Also note the difference in the shape of the power stroke trajectory.
While it resembles a straight line compared to the arched return
stroke in case of the insect, it has an arched shape in case of both the
power and return strokes in the motor. These shapes are due to the
differences in the relative compliance of the legs and the “grounds”
which they touch. An insect leg is relatively compliant compared
to the stiff ground it walks on while a piezoelectric leg is relatively
stiff compared to the stiffness of the preload (cf. sect. 3.4.1). The last
difference to be mentioned here concerns the movement velocity of the
legs. The velocity of a piezoelectric leg can vary from a theoretically
infinitely small (cf. next chapter on drive electronics) to as large as
several thousands of cycles (steps) per second. This is in a strong
contrast to the relatively narrow velocity bandwidth of insect leg
movement [81, 123, 86].3 Fortunately, none of the above differences
seems to be a fundamental issue in terms of an adaptation of the
bioinspired strategy in the motor.

Having the one-leg considerations in mind, the following discussion
turns to the problem of coordination of multiple legs. The subsequent
sections are organized as follows. The next section introduces the
kinematic model of leg coordination in hexapod walking and argues
how this bioinspired model can be transformed to suit the architecture
of the walking motor. Next, sect. 5.3 describes the implementation of
the bioinspired trajectory generator together with leg coordination
rules which can be optimized to improve specific aspects of motor
performance. In sect. 5.4, an actual optimization in terms of maximal
stall force and maximal motor velocity is performed with the physical
motor model from chapt. 3. The results show a significant improve-
ment in motor performance as compared to the classical drive strategy
utilizing the force or sine waveforms. Finally, a critical discussion of
the proposed drive strategy is presented in sect. 5.5.

5.2 leg coordination rules

The difficulty of walking can easily be underestimated upon superfi-
cial consideration. It seems to be a fairly automatic behavior which
does not require much effort to be solved. This is obviously not true
considering the huge gap in walking performance between animals
and machines after 50 years of robotic research efforts. For a descrip-
tive overview, the interested reader is referred to [149]. In insects,
three pairs of legs consisting of up to 18 joints need to be controlled
simultaneously. Moreover, the number of legs which are mechanically
coupled via body and ground varies from one moment to the next

3A stick insect at its maximal movement velocity reaches about 2.5 steps a second.
However, for other insects, e.g. cockroaches, this maximal velocity can be much
higher.
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Figure 45: Block diagrams showing leg coordination rules which couple
the step cycles during walking. The labeled boxes correspond
to particular legs and the arrows indicate the directions of leg-
state information flow between the legs. Numbers next to the
arrows denote the coordination rules (summarized in Table 10).
(a) known coordination rules for the six legs of a stick insect as
in [61]. Labels A1 to A3 stand for left front, middle and hind
leg, respectively, and B1 to B3 for corresponding right legs. By
considering only four legs with a reduced set of coordination
rules (1-3), simplified block diagrams are obtained. (b) and (c)
show two alternatives for the walking motor. The labels L1 to L4

stand for the ordered sequence of the first up to the fourth leg of
the drive unit. In the actual motor, L1 with L3 and L2 with L4 are
hardwired to move in unison.

and the external conditions such as friction, compliance and slope of
the substrate are unpredictable [61]. This section attempts to briefly
sketch some biological findings on insect walking and introduces a
kinematic model of hexapod walking developed as a result of these
findings.

Behavioral experiments on stick insects have shown that the mecha-
nisms which produce a proper coordination of the walking legs (even
when walking is disturbed) can be described by a set of rules [47, 48].
Each of the rules is active only during certain fractions of the step
cycle [47, 61] and relies on a specific state information only from the
one leg it applies to and its direct neighbor legs. In other words,
no explicit central knowledge of the state of all legs is required to
account for the observed phenomena in insect walking.4 The identi-
fied leg coordination mechanisms (rules) are summarized in Fig. 45(a)
and Table 10. In Fig. 45, particular legs are depicted as rectangular
blocks. The arrows between these boxes indicate the direction of state
information flow between the legs. The numbers next to the arrows
correspond to the particular rules, as described below and summa-

4This is an example of a distributed (or decentralized) vs. central control approach.
For an extensive discussion on this topic, the interested reader is referred to the classic
work by Rodney Brooks [34]
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rized in Table 10, which mediate between the legs. Numbers with a
subsequent question mark have not yet been proven experimentally in
a sufficient way. As of the time of writing of this thesis, there are six
coordination rules described in literature [61]. These rules describe
the influence that an action of one leg imposes on its direct neighbour
legs (see Table 10).

Rule 1 exerts an inhibitory influence on anterior legs (i.e. it is rostrally
directed) during the return stroke. As soon as a leg is lifted off the
ground, it suppresses the lift-off of the next anterior leg. In other
words, this rule can prolong the power stroke of anterior legs. The net
effect is that Rule 1 supports the maintenance of static stability as it
inhibits the neighboring legs to swing and loose ground contact at the
same time.

Rule 2 also works on anterior legs but in an excitatory manner and
only for some time after the swing-stance transition of the given leg.
Upon touch-down of a leg, this rule facilitates the lift-off of the next
anterior leg. Thus, this influence can shorten the duration of the power
stroke of anterior legs. Because of its effect at the beginning of a power
stroke, this rule favors temporal coherence between step cycles.

Rule 3 is directed toward posterior legs (i.e. it is caudally directed).
This excitatory rule is active during the power stroke and varies in the
magnitude of its influence. The closer a leg gets to its normal lift-off
position, the stronger it encourages the posterior leg being in stance
to lift-off and “catch-up” to maintain the walking rhythm. Thus, also
this rule supports temporal coherence between step cycles.
The above rules ascertain the emergence and maintenance of a rhyth-
mic coordinated walking behavior. The other three known rules are
more situation specific and less important for walking [47], especially
in the context of the walking motor.

Rule 4 is a targeting mechanism as it tries to place the legs in similar
location as the anterior legs were already standing. In stick insects,
the AEP of the swinging leg depends on the current position of the
next anterior leg [61]. This influence occurs also between the front
legs and the corresponding antennae [47]. The main function of this

Table 10: Summary of the coordination rules which couple step cycles in
a stick insect together with their assumed functions according
to [61].

Rule Action Goal
1 suppress lift-off avoid static instability
2 facilitate early protraction support temporal coherence
3 enforce late protraction support temporal coherence
4 aim touch-down location exploit prior foothold
5 distribute propulsive force share load efficiently
6 enforce correction step avoid stumbling
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mechanism is presumably to help a leg find ground contact – an
essential function when climbing on branches [47].

Rule 5 is motivated by the observation that an increase of load in
one leg of a stick insect causes other legs to prolong their power
strokes. Hence, the additional load becomes more effectively dis-
tributed among the legs [179].

Rule 6 is a correction rule which prevents legs from stepping on
each other. If a leg steps on the tarsus of its neighbor leg, a correction
movement is elicited [180].

Evidently, all the rules rely on some kind of state information (i.e.
in-swing, in-stance, distance-to-PEP, etc.). Cruse [47] distinguishes
between three parameters influencing the transitions between the
states. These are position, load and phase in the step cycle of the other
leg, i.e. the leg which is sending this information to the leg under
consideration. The first two depend on proprioceptive information
describing the state of the leg itself and the third has to be mediated
via neuronal pathways from neighbor legs. Fig. 45(a) shows that these
local influences between the legs are either ipsilateral (between legs on
the same side of the body) or contralateral (i.e. between legs on the
opposite sides of the body). Turning back to the technical application
in the walking motor, several issues have to be addressed. The first
one is the different arrangement of legs of which there are four instead
of six and which are all arranged ipsilaterally. Fig. 45(b) and (c) show
two proposals of architectural mappings between the original hexapod
model and the bioinspired motor driver. Clearly, both alternatives
have to consist of four legs but they differ in the way the legs are
interconnected. First of all, only the first three rules are considered
here. Rules 4-6 (perhaps with the exception of Rule 5; see discussion
in sect. 5.5) have little meaning for the walking motor since the tra-
jectories of the legs cannot overlap and no “gaps” in the flat surface
of the drive rod or climbing situations are possible. The first three
rules are somehow redundant in the sense that they all aim at the
(re-)establishment of coordination between the legs. However, as so far
there are no sufficient findings known to the author on their absolute
importance for walking and since they may have an effect on the time
needed for a coordinated walk to emerge, the first three rules have
been selected as the minimal functional set for the bioinspired motor
driver. In both Fig. 45(b) and (c), the ipsilateral rules 1-3 are retained
as in the original model. In (b), the contralateral influence of Rule
3 is proposed additionally between L1 and L3 and between L2 and
L4. This could lead to a better coordination between those legs as in
the classical pairwise drive strategy. However, this solution lacks the
coordination between L2 and L3. The introduction of this coordination
would result in L2 communicating with all other legs which does not
suit the original distributed control concept. In the end, the arrange-
ment (c) was chosen due to its simplicity and better correspondence
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to the physical arrangement of legs in the walking motor. In this case,
only ipsilateral influences are considered and extended with a forth
leg. Another difference between the motor and the stick insect lingers
in the lack of any sensory feedback about the true states of the legs
in the motor. Still, this does not affect the validity of the bioinspired
approach. First, in the dynamic simulation all states are perfectly
known and second, an optimized solution can be applied to a real
motor since it works under well-defined conditions which are covered
by the simulation. Finally, a real-world setup with sensory feedback
about the legs is conceivable as well.

5.3 trajectory generation

Despite the differences between the hexapod model from biology
and the actualities of walking motor construction, it seems that the
bioinspired drive strategy can be applied to the motor. Two practi-
cal issues have to be addressed on this way. First, the legs have to
follow adjustable trajectories during the swing and stance phase of
their walking cycle. Second, there has to be a technical coordination
mechanism between the legs based on the selection of coordination
rules from the previous section. Each of these general issues will be
addressed in this section.

In the original biological work, the kinematic model of hexapod
walking is implemented by means of a distributed artificial neural
network controller called Walknet [49, 123, 61] . Corresponding to its
local nature, the controller for each individual leg is subdivided into
three independent modules [123]. Two modules, a swing and a stance
network, control the movement of the leg during the return and power
strokes, respectively. The transition between them is controlled by a
third module – a selector network. Altogether, there are six almost
identical single leg controllers, which communicate their current states
to their immediate neighbors, generate leg movements and receive
global commands from a higher control level. Walknet is able to re-
produce a multitude of behaviors observed in stick insect (different
gait patterns, avoidance behavior, etc.), has a simple structure, can
generalize over a considerable range of untrained situations and is
remarkably tolerant with respect to external disturbances [49]. Despite
these advantages, the original implementation bears only little practi-
cal significance to this work. In case of the walking motor, the walking
scenario is much simpler, the legs have a different morphology, no
generalization capability is aimed at and an explicit implementation of
the coordination rules from previous section is pursued. For the origi-
nal implementation in terms of artificial neural networks, discussion
on the capabilities of the original model and its possible extensions
the reader is referred to [123, 61] and more recently to [181, 176].
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Figure 46: Leg movement trajectories within the rhomboidal work area of
the piezoelectric leg. Extreme positions marked with A, C, B and
D stand for the (electric-field-free) origin, maximal elongation in
z and maximal deflection in x to the left and right, respectively.
The stance trajectory is shown with a dashed line, while three
alternative swing trajectories, depending on the PEP shift with
a dotted line. The terminal points of the trajectory determining
Bezier curves are indicated with a square or a circle marker. The
x-symbols represent exemplary locations of the control points of
a quartic Bezier curve.

Turning to the practical implementation in the motor and as far as
the generation of leg trajectories is concerned, it is useful to recall
sect. 3.2.2. The legs of the walking motor can follow two-dimensional
trajectories defined by the time course of two driving voltages. The
region reachable by the tip of a leg (its maximal work area) is defined
mainly by the piezoelectric properties of the leg and the maximal
driving voltage Umax. Assuming Umax of 48 V and recalling equation
(47), the maximal work area has a rhomboidal shape as shown in
Fig. 46. A valid leg trajectory either during the power or the return
stroke has to remain within this work area since any point outside
the convex hull of A, B, C and D means at least one of the driving
voltages above Umax. Further requirements on leg trajectory include
its smoothness and an easy as well as an intuitive way of shape
modification. Additionally, the swing and stance trajectories need to
be joined at the transition points between the power and return strokes.
It is also desirable that the area determined by the joined curves
covers as much of the work area as possible. The last requirement is
motivated by the fact that a wide curve in x-dimension means a long
step and the possibility of higher motor velocities whereas a large
distance between the swing and stance curves in z-dimension allows
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higher preloads (cf. sect. 3.4.1). Several choices of polynomial curves
were considered including splines, B-splines, Bézier-splines, Bézier
and NURBS [141, 173]. In the end, the Bézier curve was chosen since
it fulfills the above requirements while being the least computationally
intensive one. Fig. 46 shows an exemplary stance trajectory (dashed
curve) together with several possible swing trajectories (dotted curves)
using quartic Bézier curves. The curves are determined by the location
of the control parameters Pi with i ∈ {0, . . . , 4}. A superscript of 0
or 1 is used to differentiate between the control points for swing (no
contact) or stance (contact) trajectories, respectively. Since a Bézier
curve is contained within the convex hull of its control polygon (the
polygon formed by connecting the control points with lines in an
ordered manner beginning at P0) the curve remains within the work
area of a leg as long as the control points remain in it. Further, by
setting P0

0 = P1
0 = P0 for AEP and P0

4 = P1
4 = P4 for the maximal

PEP, the stance and swing trajectories remain always joined (endpoint
interpolation). The control points are placed close to the edges of the
work area rhombus whose longest diagonal is used as the transition
line between power and return strokes. This is motivated by the desire
to maximize the step length (faster motor) and the distance between
the swing and stance curves (higher preload possible, cf. sect. 3.4.1).
Mathematically, a Bézier curve B(t) is expressed by

B(t) = (Bx(t) Bz(t))T =
n

∑
i=0

(
n
i

)
(1− t)n−itiPi (121)

with n = 4 for a quartic curve and t being the Bézier parameter defined
over the interval [0, 1]. The control points Pi have two-dimensional
(x, z)-coordinates which are either fixed or variable depending on the
role of a specific control point (see below and the next section on
parameter optimization). The (longest) stance trajectory is defined by
the control points

P0, P1
1 , P1

2 , P1
3 and P4 (122)

while the swing trajectory by

P−4 , P0
3 , P0

2 , P0
1 and P0. (123)

Note the dash in P−4 which indicates the variability of P4 as the actual
lift-off point at the beginning of a return stroke – the actual stance
trajectory ends at P−4 . This accounts for the variability in the length of
the power stroke as described in the previous section on leg coordi-
nation rules. Technically, this variability is realized by a shift in the
location of PEP which can lead to a premature stance-swing transition
(see below). In Fig. 46, three different swing trajectories are sketched
depending on the actual lift-off point (latest for P4 and premature for
P
′
4 or P

′′
4 ).
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For the further discussion, it is useful to introduce the indexing
operator I [198] which returns its particular coordinate if applied to a
point. Hence, for P = (x, z)

IxP = x (124a)

IzP = z. (124b)

This means that e.g. IxA = IxC = 0 µm and IzB = IzD = 1.17 µm
when referring to Fig. 46. The control parameters for leg trajecto-
ries are summarized in Table 11 using the above notation. The table
contains either fixed parameters or parameters meant for optimization
(see next section). The z coordinate of AEP and PEP is fixed on the
longest diagonal of the work area. Also fixed is the x coordinate of
the middle control point P1

2 of the stance trajectory. The last four
parameters influence the PEP shift and are described in more detail
at the end of this section. Other parameters need to be computed
in dependency of the parameters in the table or the actual lift-off
point P−4 . The following equations are used for the computation of
remaining control parameters for the stance

IxP1
1 = k1IxP0 (125a)

IzP1
1 = −mIxP1

1 + IzC (125b)

IxP1
3 = k3IxP4 (125c)

IzP1
3 = mIxP1

3 + IzC (125d)

Table 11: Control parameters for leg trajectories. Shading indicates parame-
ters meant for optimization within the allowed range of values. For
other control parameters, see equations (125)-(126). s.f. abbreviates
“scaling factor”.

Name Description Min Max
IxP0 x coordinate of AEP 1.50e-6 2.34e-6
IzP0 z coordinate of AEP 1.17e-6 1.17e-6
IxP4 x coordinate of maximal PEP −2.34e-6 0
IzP4 z coordinate of maximal PEP 1.17e-6 1.17e-6
IxP1

2 x coordinate of P2 in stance 0 0
IzP1

2 z coordinate of P2 in stance 1.17e-6 2.34e-6
k1 s.f. for computation of IxP1 0 1
k3 s.f. for computation of IxP3 0 1

r1 PEP shift according to rule 1 0 -0.3
r2 PEP shift according to rule 2 0 0.3
r∗2 Action time of rule 2 0 0.4
r3 PEP shift according to rule 3 0 0.3
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and for the swing trajectory

IxP0
1 = IxP1

1 (126a)

IzP0
1 = mIxP0

1 (126b)

IxP0
2 = 0.5(IxP0 + IxP−4 ) (126c)

IzP0
2 = m|IxP0

2 | (126d)

IxP0
3 = k3IxP−4 (126e)

IzP0
3 = m|IxP0

3 |. (126f)

The above equations ascertain the location of the control points on the
circumference of the work area rhombus of Fig. 46 and define several
simple relations for the computation of the intermediate control points.
The scaling factor m = 0.5 is the absolute value of the slope of a
straight line collinear with any side of the work area rhombus from
Fig. 46.

Two parts are still missing in the above considerations for the gen-
eration of actual trajectories. First, the computation of the Bézier
parameter t in (121) and second, the realization of swing-stance transi-
tions. Fig. 47 addresses these issues with help of two circuits for the
stance and swing Bézier parameter generating units. Since the trajec-
tories need to be generated for each leg individually, all leg-specific
variables are provided with a subscript (i) according to the notation
from chapt. 3. Both units compute the Bézier parameters by summing
up discrete increments ∆t. These increments are computed as time
differences ∆τ scaled with a velocity factor vx which corresponds to
the horizontal curve traverse velocity in Hz. The velocity may vary
from 0 to 3 kHz.5 Maximal velocity vmax

x is assumed to be constant for
the return stroke since fast leg repositioning is desirable. Furthermore,
this decision is motivated by biological findings [87]. The output of
both stance and swing units is affected by logical control variables
S0
(i), S1

(i) and R(i) which are defined further below in this section.6 The
output of the swing unit t0

(i) varies from 1 at a lift-off down to 0 at a
touch-down event. As soon as AEP is reached, the logical input R(i) is
asserted and used to reset the output t1

(i) of the stance unit to 0. During
the stance movement t1

(i) increases up to 1 for the maximal PEP as long
as a premature swing transition is not elicited. Two additional scaling
terms are used either to account for the prolonged stance movement
according to the optimization result of Rule 1 (influence of posterior
legs, see below) or for the accelerated return stroke after a shortened

5The additional scaling factor of 2 reflects the fact that the walking motor may
be driven up to 3 kHz (rated operation) but vx corresponds to the traverse velocity
of just a half of one walking cycle. In other words, vx has to be doubled in order to
correspond to the drive frequency in the classical (pairwise) mode of operation. The
scaling factor hides this from the end-user.

6The default configuration of the switches, in all figures, corresponds to the
condition of a logically true input.
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Figure 47: Block diagrams illustrating the computation of Bézier parameters
for the (a) stance and (b) swing parameter generating units. Both
units consist of a time derivative and position integrating circuits.
The actual temporal output depends on the velocity input vx and
three logical signals S0

(i), S1
(i) and R(i). Exemplary outputs are

shown in the encircled diagrams. In (a) the output is additionally
scaled in dependence of the r1 parameter value (prolonged stance
phase) while in (b) the swing movement of a leg is accelerated
after a shortened stance stage. Note that the output of the stance
unit is less than 1 for a premature lift-off, while the output of the
swing unit always changes from 1 down to 0.
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Figure 48: Trajectory generator module consisting of two Bézier parameter
generating circuits as in Fig. 47 (TG1(i) – stance, TG0(i) – swing)
and Bézier coordinate computing blocks Bx and Bz. The signal
flow is determined by two switches and a logical signal S(i).

stance phase.7 Taken together, the swing and stance circuits constitute
a trajectory generator (TG) for each leg – see Fig. 48. The trajectory

7This facilitates the detachment of a leg from the drive rod when in swing.
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generator acts as a simple switch between the outputs of the swing
and stance circuits which are subsequently fed into Bézier coordinate
computing blocks according to (121).

So far in this section, the generation of leg trajectories has been
considered in a bottom-up manner for a single-legged case. It has
been mentioned that the actual trajectory depends on the state of the
leg mediated by logical control flow variables and leg coordination
rules. Now it is time to cover these additional aspects of multi-legged
trajectory generation. Each leg can be in one of two major states: (0)
in-swing or (1) in-stance. Additionally, a leg can be at a transition
point between these states corresponding to its location either at AEP
or PEP. Technically, the determination of the state for a leg (i) occurs
according to

(1) t1
(i)(k) > t1

(i)(k− 1)
(0) t0

(i)(k) < t0
(i)(k− 1),

(127)

where k represents the discrete time parameter (t(i)(k) is the output of
one of the Bézier parameter generating circuits at discrete time step k).
In other words, a leg is in stance as long as t1

(i) is increasing or it is in
swing as long as t0

(i) is decreasing (cf. Fig. 47). Two auxiliary variables
are used additionally in order to cover the transition cases. These are

A(i) :=
[
t(i) ≤ 0

]
(128a)

P(i) :=
[
(1 + r1 − ∆P− t(i))︸ ︷︷ ︸

DPEP
(i)

≤ 0
]

(128b)

corresponding to AEP-reached and PEP-reached conditions, respec-
tively. The right-hand side of the latter definition corresponds to
the remaining distance to PEP –DPEP

(i) – during stance phase and will
become clear only after completing this section with the technical
implementation of leg coordination rules. This leads to the definition
of the control flow variable S0

(i) as

S0
(i) := (t0

(i)(k) < t0
(i)(k− 1)) ∧ A(i) (129)

and S1
(i) as

S1
(i) := (t1

(i)(k) > t1
(i)(k− 1)) ∧ P(i) (130)

The reset signal R(i) for the stance circuit upon reaching AEP is equiv-
alent to A(i)

R(i) := A(i). (131)

The above computations (129)-(131) need to be performed for each leg
and can be seen as a leg-state unit or module (LS).

The coordination rules between the legs are realized technically by
means of a PEP shift ∆P which can prolong or shorten the stance
phase according to the textual description from the previous section.
This is summarized in Table 12. Rule 1 and 2 are both rostrally directed
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assuming the leg numbered with a 1 to be at the front of the motor.
Rule 1 is an inhibitory rule (r1 parameter values in Table 11 are less
or equal 0) and is active as long as the return stroke takes place.8

Rule 2 has an excitatory effect on PEP shift and it is active only for
some time after the swing-stance transition. This is realized with help
of an additional parameter r∗2 . The last implemented rule – Rule 3 –
is also excitatory but caudally directed and active during the power
stroke. Additionally, in contrast to the other rules, it does not cause a
fixed PEP shift but it depends on the actual distance to PEP, thus its
influence varies with time.

In the bioinspired waveform generator, each leg implements (a
subset) of the above rules in a Walknet rules module (WR). Taking
a top-level view, the complete waveform generator consists of three
modules for each leg. These are the trajectory generating (TG), leg
state (LS) and Walknet rules (WR) modules. Fig. 49 illustrates the
bioinspired architecture with help of a block diagram. Note the dis-
tributed nature of the bioinspired approach since the information
exchange takes place only between directly neighboring legs (horizon-
tal signal flow in the shaded region of Fig. 49). Trajectories for each
leg are generated as a set of (x, z)-coordinates in response to a velocity
input vx in Hz. Before being forwarded to the motor (see chapt. 3)
they need to be transformed into driving voltages by the driver D
according to

UA
(i) =

1
2

[x(i)
Cx

+
z(i)
Cz

]
(132a)

UB
(i) =

1
2

[z(i)
Cz
−

x(i)
Cx

]
(132b)

which is the reformulation of (47) in terms of x and z as independent
variables.

8In [47] the rule is actually defined as being active during the return stroke and
some time afterward but this has been neglected here.

Table 12: Subset of leg coordination rules as implemented in the simulation
of the walking motor.

Rule Direction [from→ to] PEP shift (∆P) Condition
1 legi+1→legi r1 if t0

(i)(k) < t0
(i)(k− 1)

0 otherwise
2 legi+1→legi r2 if t1

(i+1) ≤ r∗2
0 otherwise

3 legi →legi+1 r3(1− DPEP
(i) ) -
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Figure 49: Top-level block diagram of the bioinspired waveform generator.
The controller C generates a set of (x, z)-coordinates (trajectories)
depending on the drive velocity vx and leg coordination rules.
The trajectories are mapped to a set of drive voltages U by the
driver D and fed into the motor M. For the choice of architecture
from Fig. 45(c) the controller consists of four trajectory generators
(TG), leg state (LS) and Walknet rules (WR) modules. Note that
the coordination rules affect only the directly neighboring legs.

5.4 parameter optimization

Having established the bioinspired waveform generator in the previ-
ous section, the next logical step is to test its performance. In an ideal
case, the bioinspired strategy should be able to generate a continuous
variety of rhythmic gaits as known from biology [82] and excel the
classical motor driving approaches (see chapt. 3 and sect. 5.1) in terms
of a given performance criterion like maximum motor velocity or stall
force. For this purpose, the unknown parameters (shaded in Table 11)
need to undergo an optimization process.
Independently of the particular performance criterion, an optimization
process has to account for stability during motor operation, i.e. during
walking. In walking animals, a statically stable walk is characterized
by their center of gravity being inside the polygonal base defined by
the legs having ground contact and supporting the body. Dynamically
stable gaits like running or trotting [24] are not considered here. In
the walking motor, the issue of static stability reduces basically to the
provision of drive rod contact by at least two legs.9 A number of leg
contacts less than two is used as a criterion for exclusion by heavily

9A free movement of the drive rod is constrained to one dimension (x) through
motor construction. Assuming a sufficiently long drive rod, approximately uniform
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penalizing the objective function during optimization (see below). Fur-
thermore, since the focus of this work is put on the application of the
walking motor as a force generator (see especially chapt. 7-8), the nat-
ural objective of the optimization is to maximize its force-generating
capabilities. According to Table 11, there are altogether 9 unknown
parameters to be optimized. Despite this moderate dimensionality,
the optimization landscape is abundant in terms of local minima and
thus an evolutionary algorithm [166] was chosen as in chapt. 3. Also
the optimization procedure was set up in a similar way to the one in
sect. 3.5 (see Fig. 35(b)). For this purpose, the already optimized mo-
tor model from sect. 3.5 was used. This time the bioinspired waveform
generator according to the implementation from the previous section
was utilized and each leg was driven independently.10 As a drive
frequency, a constant value of vmax

x was chosen since the maximal
drive velocity is most critical in terms of stability when the swing
velocity is set to maximum as well.11 In order to provide means of
force-generation maximization, the motor was loaded increasingly in
a stepwise manner. 12 linearly spaced loads Fl,i between 0 and 20 N
were applied to the drive rod and the corresponding motor veloci-
ties ẋm,i for i ∈ {1, . . . , 12} logged. The optimization problem was
formulated in terms of the average motor velocity as follows

arg min
δ

O(δ) = arg min
δ

w1

[
tr(CN) < 2

]︸ ︷︷ ︸
logical: 0 or 1

+
1

1
12 (∑i ẋm,i)

, (133)

where δ is the vector of unknown to-be-optimized parameters, tr(CN)

is the trace of the contact matrix defined in (87) and w1 is a weight
term of 10000 for penalizing the contact condition of less than two
legs. The initial state of all legs was at AEP (P0) in order to avoid
random penalties for a possibly good parameter choice due to a
disadvantageous initial condition12. After a fixed number of 100
iterations, the optimization task was stopped. The optimized set
of parameters was then used to evaluate the performance of the
bioinspired drive strategy. First, the issue of stability was addressed.
Fig. 50(a) shows drive rod contacts with particular legs (in stance) over
several walking periods for three different drive frequencies. Even
for the maximal drive frequency of 3 kHz, at least two legs support
the drive rod. In this case, the contact patterns resemble the pairwise
drive strategy with alternating contacts between legs 1 & 3 and 2 & 4.
For lower drive frequencies, the amount of legs being in stance at the

preload distribution and non-resonant operation, the movement of the drive rod in x

is stable as long as it is supported at two or more distinct points.
10This can easily be done in the simulation but is not possible in the real motor

due to the hardwired pairwise driving strategy; cf. sect. 5.5.
11This follows from the fact that more legs are in stance for low drive velocities

resulting in an increased overall stability.
12For a random initial condition, an (otherwise) optimal solution could be rejected

if less than two legs contacted the drive rod at the initial stage due to the high penalty.
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Figure 50: Velocity-dependent generation of gaits. The black bars in (a) indi-
cate contact periods between the legs and the drive rod. Typical
insect gait patterns known from the biology [61] albeit with a
much higher frequency bandwith can be observed. For low drive
velocities, all legs tend to contact the drive rod with only short
swing periods repositioning one leg at a time. For higher veloc-
ities, the stance and swing phase durations converge until they
become approximately equal. At this point, alternating contacts
between the drive rod and two leg pairs known from classical
control approaches can be recognized. In (b) the corresponding
commanded leg elevation trajectories are shown (leg 1 – solid, 2 –
dashed, 3 – dash-dotted and 4 – dotted line).

same time increases. At 100 Hz a metachronal or wave gait [82, 149]
can be observed in which all legs are in stance most of the time and a
series of return strokes propagates occasionally among them. These
velocity-dependent patterns are two extremes of a continuum of gaits
with a varying duty cycle β [82] as known from the biology. Since
drive rod contact depends on leg elevation, z trajectories are shown
additionally to the different gait patterns in Fig. 50(b). For the wave
gait, the trajectories for different legs fall close together. Also note
the different curve traversal velocities during the swing and stance
phases.

The results of optimization are promising. Not only in terms of
stability but also in terms of force generation. Fig. 51 illustrates these
results with help of a load force vs. motor velocity diagram recorded
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Figure 51: Load force vs. motor velocity characteristics with the bioinspired
waveform generation optimized for force compared to the classi-
cal drive strategy with the force waveform. The x-symbols show
simulated velocities at increasing load force levels as long as the
commanded direction of motor motion could be maintained. The
results are shown for 5 exemplary drive frequencies (100, 250, 500,
1000 and 1500 Hz). Thick gray curves correspond to motor load
characteristics measured at 250, 500 and 1000 Hz for the classical
force waveform (see also Fig. 35). The bioinspired strategy is
superior to the classical one in terms of both the velocity and stall
force limits. The dashed region to the left shows high frequency
transient phenomena (see Fig. 52). The inset to the right shows
the stall force limits with an increased vertical resolution.

with the optimized set of parameters. Gray curves are the real motor
characteristics known from Fig. 35(b). x-markers represent the sim-
ulation data for velocities above 0 mm/s and are grouped together
with interpolating lines according to one of the 5 drive frequencies
they were measured at. For the sake of clear depiction, only two load
curves at 1 kHz are labeled – the real curve for the classical force wave-
form and the simulated curve for the bioinspired approach. The latter
curve is clearly superior to the former one. Both the drive velocity and
stall force limit are about 50 % higher in the bioinspired approach as
compared to the classical drive strategy. The stall force limits for the
bioinspired drive approach are illustrated additionally in Fig. 52(b)
for a larger number of drive frequencies. While higher stall force
limits could be expected from the increased amount of legs in contact
with the drive rod and the optimization objective, the superior veloc-
ity performance is an additional and most welcome gain. This gain
can only partly be attributed to a longer step size in the bioinspired
solution (cf. Fig. 25(a) and 52(a)). For a more detailed discussion on
the reliability of simulation results, the reader is referred to the next
section. Another interesting phenomenon in the optimization results
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Figure 52: Transient (swing-in) phenomena and stall force limits in the force
optimized bioinspired waveform generation. (a) shows the initial
leg trajectory (1, dashed line) starting from AEP and the sub-
sequent trajectories (2, 3, 4 etc.) up to the point when a stable
movement pattern could be observed (number followed by an
ellipsis). For high drive velocities, several movement cycles pre-
ceded the stable pattern aka swing-in period. (b) stall force limits
shown for 11 exemplary drive frequencies between 10 and 2000

Hz. The static friction borderline, corresponding to the friction
coefficient from sect. 3.4.2, is shown with a dashed line.

is highlighted in the dashed region to the left of Fig. 51. For high
drive frequencies (in the figure 10 and 1.5 kHz), the no-load veloc-
ity is smaller than the velocity at the first load level of approx. 2 N.
This phenomenon is termed swing-in.13 It is explained graphically in
Fig. 52(a). For low drive frequencies, the paths followed by the legs do
not differ significantly between the initial and the ongoing trajectories.
However, as the drive frequency increases the emergence of a steady
coordination between the legs is delayed. For 1.5 kHz it takes about 7

walking cycles until a steady trajectory can be observed. Thus, in a
strict sense, the transient (swing-in) region of Fig. 51 is not a part of
the load characteristics of the motor but only a transient phenomenon.
However, no further effort was put into correcting the load charac-
teristics due to the illustrative purpose of the swing-in region and
because its suppression was not an objective during the optimization.
In sect. 5.2 it has been already mentioned that the emergence of a
stable walk depends on the per se redundant leg coordination rules
but that their relative importance has not been sufficiently quantified
yet.

13In analogy to the German Einschwing-Verhalten.
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5.5 discussion

The main purpose of this chapter was to investigate theoretically an
alternative drive strategy in which all legs of the walking motor are
allowed to be driven independently. It was natural to look for a bio-
logically inspired solution since the task of multi-leg coordination had
been efficiently solved by nature a long time ago [24]. The advantage
of the bioinspired approach over the classical drive strategy in force
generation was conceptually clear (see below) but has only become
obvious after an evaluation on a physical motor model.

First of all, the proposed approach is intrinsically adaptive. While
the pairwise drive principle enforces symmetric relations between the
legs which leads to fixed phase relations in the driving waveforms,
the bioinspired solution benefits from the self-defending stability. The
coordination rules result in the emergence of a continuum of gaits
which are velocity-dependent and allow at times all the legs to support
the drive rod leading to a stronger motor. As far as the pairwise
strategy is concerned, other authors [146] proposed an optimization
approach which may lead to an improved drive performance in terms
of velocity constancy or reduced wear but at the same time shows
the limits of the classical drive approach. Despite the great flexibility
in waveform design, their approach necessarily ends up in a rigid
solution with fixed waveforms. Moreover, the obtained set of 32

parameters (cf. 9 parameters in the bioinspired drive strategy) bears
little meaning as compared to the clear definition of AEP, PEP and the
control points from sect. 5.3. Still, a practical advantage of the solution
from [146] lies in the fact that it can be directly applied to the real
motor. The bioinspired strategy requires separate signal paths to the
piezoelectric stacks of each leg – altogether 8 instead of the 4 hardwired
electrical phases. However, this constraint is only superficial and can
be easily bypassed in the manufacturing process. The overhead due
to additional wiring is well motivated by the possible improvement in
motor performance shown in the last section.

It should be stressed that the transfer of coordination rules to the
walking motor (see sect. 5.2) and the design of the optimization pro-
cess (see previous section) were the result of an intuitive choice rather
than a series of trials and errors. On one hand, this speaks for the
intuitiveness and robustness of the proposed drive strategy. On the
other hand, it leaves a lot of space for further research and iterative
improvements. The particular choice of coordination rules and archi-
tectural mapping from the original hexapod model to the walking
motor was in spirit of the N-legged general modeling strategy from
chapt. 3. Both the physical model and the bioinspired drive approach
based on Walknet are applicable in their present form to motors with
an extended number of legs ordered in one row. However, Walknet
with its many extensions [181, 176] unfolds its true power only when
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applied purposefully as a model of walking in insects. Although it is
not necessary to deal with leg amputation, ground irregularities or
avoid high obstacles [123] in the walking motor, it is conceivable to de-
sign a more insect-like motor (e.g. with six legs arranged in two rows).
In this case, bioinspiration would go one step further – not only in the
means of control but also in the architectural design. Still, even for the
motor in its present form it is credible to consider different inter-leg
coordination mechanisms (cf. Fig. 45(b). Moreover, if the motor were
provided with additional sensing capabilities, other coordination rules
were likely to augment its performance. For example, a load sensing
capability in the legs (based on direct piezoelectric effect and voltage
monitoring) together with the application of Rule 5 could lead to a
higher mechanical load capacity. Last but not least, the bioinspired
strategy together with a sensory feedback would likely be tolerant
against imperfections and wear in the mechanical components of the
motor.

As far as the optimization results are concerned, several issues need
to be addressed. First of all, the optimization aimed at improving the
force-generating capabilities of the motor. This was done indirectly
by trying to keep the instantaneous motor velocity as high as possible
for the increasing levels of loading up to 20 N. Other objectives like
maximizing average (no-load) motor velocity (see below), reducing
wear, etc. are conceivable. The ability to satisfy different optimization
objectives is a soft measure of the flexibility of the proposed approach.
Besides force optimization, another optimization task was started with
the objective to maximize motor velocity. The optimization problem
was formulated as

arg min
δ

w1

[
tr(CN) < 2

]︸ ︷︷ ︸
logical: 0 or 1

+w2
1
¯̇xm

+ w3std(ẋm), (134)

where ¯̇xm is the average motor velocity over a certain distance and
std(ẋm) is the standard deviation of the instantaneous motor velocity –
this term is supposed to minimize large deviations from the average
value for a smoother operation of the motor. The velocity-related
weights w2 and w3 were chosen as 10 and 3, respectively, so the objec-
tive function preferred solutions of high average velocity and possibly
low velocity variation as long as they were statically stable. Fig. 53

shows the results in a diagram and Table 13 summarizes the optimal
parameter values for both the max. force and max. velocity optimiza-
tions. The diagram refers to Fig. 35(a) and 39(a) and shows the real
velocity data for a selection of drive frequencies up to 2 kHz when
the classical sine and force waveforms are employed. The simulation
data utilizing the bioinspired approach is shown with black and gray
x-markers for the force (see previous section) and velocity maximizing
optimizations, respectively. The latter result improves the no-load
velocity of the motor as compared to the force maximizing strategy
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Figure 53: Classical vs. bioinspired waveform generation in terms of average
motor velocity when no external loading was applied. The thick
lines correspond to unloaded motor velocities measured for two
classical waveforms – sine and force (see sect. 35). The x-symbols
show simulated motor velocities for the bioinspired waveform
generation when optimized for max. velocity and max. (stall)
force output. In all cases the bioinspired strategy is superior to
the classical one.

almost by 50 % and overpowers the classical strategy by 100 % even
if compared to the faster sine waveform. Actually, this result is very
close to the theoretical limit of 15 mm/s at 2 kHz for the pairwise
drive strategy.14

The superb force and velocity maximizing results raise a question
of the reliability of the theoretical results from the simulation. The
question can only be answered upon evaluating the reliability of the

14The theoretical limit corresponds to the case when the legs contact the drive rod
interchangeably over the longest diagonal of the work area and the instantaneous leg
velocity is transmitted to the drive rod under the condition of perfect stiction.

Table 13: Optimized parameter values for max. force and max. velocity
optimizations.

Parameter Max. force optimization Max. velocity optimization
r1 -0.1987 -0.0337

r2 0.3000 0.3000

r∗2 0.2410 0.4000

r3 0.3710 0.3000

k1 0.5000 0.5000

k3 1.0000 1.0000

IxP0 1.5000e-6 1.5000e-6
IxP4 -2.3467e-6 -2.3467e-6
IzP1

2 2.3500e-6 2.3500e-6
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physical motor model from chapt. 3 – please refer to the discussion in
sect. 3.6. At this point two additional comments are to be made. In
the context of motor force maximization, Fig. 52(b) shows stall force
limits for the bioinspired strategy over a range of drive frequencies.
In sect. 3.5, it has been shown that the physical motor model with the
LuGre friction model is able to account for the frequency-dependent
stall force limits observed in the motor. In Fig. 52(b) frequency depen-
dency can be seen as well. Here, the stall forces are higher than under
the application of the classical force waveform which is most welcome
but they also show a tendency to increase with drive frequency which
contrasts with the result from chapt. 3. Furthermore, these forces are
partly higher than the static friction limit for the estimated friction
coefficient µst of 0.14. Although, in dynamic operation, it is possible
to achieve stall forces higher than the static limit, this result does not
seem to be reliable. Supposedly, it is the effect of model limitations in
emulating the dynamic friction with linear terms [see equation (86a)].
The contribution of dynamic friction in the interaction between the
legs and the drive rod is not bounded in the linear approximation.
Still, this modeling decision did not prevent the physical model from
explaining the experimental data and is not supposed to fundamen-
tally challenge the superiority of the bioinspired force generation. In
the context of velocity maximization, much higher velocities than
with the classical drive approach, close to the theoretical limit for the
pairwise strategy, can be observed. However, this would require the
legs to travel the entire distance along the horizontal diagonal of the
work area rhombus and contrasts with the leg deflection nonlinearity
introduced in sect. 3.3.3. Since the physical motor model does contain
the nonlinearity, another explanation is needed. Furthermore, in the
bioinspired approach no velocity decrease close to the resonance re-
gion of 3 kHz (cf. Fig. 39(a)) is observed. This is presumably another
advantage of the bioinspired approach since the actual leg trajectories
differ among legs and are devoid of pure frequency components to a
larger degree than in the classical approach.

As a last comment in this section, the issue of direction change
is discussed. So far in the discussion, the motor was assumed to
move in one direction – forward – according to the direction of the
stance trajectory. As far as Walknet is concerned, the issue of backward
walking has been addressed recently and a solution proposed [176,
177]. In the walking motor, the direction change is realized classically
by issuing the driving waveforms backwards. This method cannot
be used in the bioinspired approach since AEP and PEP need to be
swapped as well and the coordination rules adjusted (mirrored in
the simplest case). However, the direction change in the motor can
be realized also by swapping the driving voltages UA

(i) and UB
(i) for

each leg (i) without the need of a change in the direction of waveform
traversal. The latter solution is actually implemented in the drive
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electronics of the motor and described in more detail in the next
chapter.
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6 FREQUENCY MATCH ING IN
WAVEFORM GENERAT ION

abstract

This chapter is concerned with the issue of generating the driving waveforms
at a particular frequency. On this account, the motor-drive electronics devel-
oped for this work is introduced with the focus on the waveform generating
unit and the dependency between its internal register settings and the fre-
quency output. An algorithm based on the solution to the Bézout’s identity is
proposed to match the desired frequency. The algorithm is evaluated and the
problems related to the limitations of the target hardware indicated. In a next
step, an efficient approach based on a look-up table is proposed and shown
to reduce the frequency errors to less than 1 %. Additionally, this chapter
compares the developed electronics with commercial products and introduces
a motor direction change strategy based on phase swapping.

6.1 introduction

So far, in the discussion of the walking motor, either the standard,
i.e. sine and force, or the bioinspired Bézier-based waveforms (see
previous chapter) were considered. In all these considerations, it has
been implicitly assumed that the waveforms can be generated at arbi-
trary feasible frequencies and, to a smaller degree, that the direction
of motor motion can be changed at any given time. These implicit
assumptions are motivated by the fact that they are related to an exter-
nal motor driver rather than to the motor itself. Both the generation of
waveforms at a given frequency and the change of direction of motor
motion are most relevant in any practical application. Any control
strategy depends on a reliable motor-drive interface which is responsi-
ble for the generation of driving waveforms. From this point of view,
it is necessary to explicitly address these issues. This is additionally
motivated by the fact that the commercially available motor-drive
electronics have many shortcomings including their relatively large
size (in comparison to the motor), low maximal drive frequency and
the dependency of an external pulse generating control system.

As an example, a commercial drive system for the walking motor
may consist of a driver module TMCM-090 [80x50 mm (WxH)] and a
base board BB-035 [90x60 mm (WxH, arranged perpendicularly to the
driver module)] from the German company Trinamic Motion Control
(Trinamic Motion Control GmbH & Co. KG, Hamburg, Germany).
Beside its large volume, this system depends on the external pro-
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vision of a pulse wave and does not include any control or signal
processing logic. The external pulses are limited to the frequency
of 384 kHz which means that for a waveform stored with a moder-
ate amount of 256 points the maximal motor-drive frequency equals
1500 Hz – well below the rated limit for the motor. If more complicated
waveforms or better time resolution are required, the drive frequency
limit will shrink further (e.g. 187.5 Hz for a waveform with 2048 data
points). This chapter introduces the motor-drive electronics which
was designed and manufactured with the goal to overcome the above
limitations. The design objectives were small size, modularity, high
waveform resolution and drive frequency as well as the inclusion of
the control logic and a rich interface to an external sensory equipment
on one board. The latter objective is related to the application of the
walking motor as a muscle-like force generator in chapt. 8 in which
case motor position, velocity and external load need to be measured.

This chapter is organized as follows. The motor electronics is in-
troduced shortly in the next section. In sect. 6.3, the problem of
frequency matching in waveform generation is explained and a so-
lution proposed. The same section also discusses the issues related
to motor direction switching. Finally, sect. 6.4 discusses the achieved
functionality and gives several proposals of further improvements.

6.2 waveform generating electronics

The motor-drive electronics is shown in the photographs of Fig. 54. It
consists of two boards, a control and a power unit, which are stacked
together. The separation into two individual boards facilitates modu-
larization since the control unit is independent of the power unit. The
power unit is responsible for converting the digital representation of
waveforms into analog signals ranging from 0 up to 50 V. The con-
version is done with a D/A-converter (AD7305, Analog Devices Inc.)
and the subsequent amplification with analog amplifiers (OPA548F,
Texas Instruments Inc.). Other amplification modules like the D-class
amplifier are conceivable.1 The control unit is governed by a micro-
controller (ATxmega 128A1U, Atmel Corp.) which is responsible for
bus communication with other devices if required, runs the control
algorithms (see the next two chapters) and is a digital signal processor
(DSP). In this context, on the control unit board there are additionally
two quadrature counters (LS7366RTS, LSI Computer Systems Inc.)
providing an interface for linear encoders, two instrumental amplifiers

1A D-class amplification module has also been designed withing the scope of
this work, however it is not further considered here. Its advantage lies in a higher
efficiency and a more compact size – 8 instead of 4 amplifiers can be placed on one
board. However, because of the necessity of a high frequency PWM modulation of
the analog waveforms, the maximal drive frequency drops. The module is also more
susceptible to transient voltage peaks during the switching events.
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Figure 54: Motor-drive electronics (a) developed within the scope of this
work and consisting of two stacked boards – the control unit
board (b) and the power unit board (c).

with additional analog low pass filters for the amplification of analog
signals and two SPI interfaces for other sensors (cf. chapt. 8). The
board is also equipped with an µSD slot as an extensible non-volatile
storage. Next to the microcontroller, the other main part of the board is
an FPGA (Spartan-3E XC3S500E, Xilinx Inc.) configured as a waveform
generator. The online configuration is done from the microcontroller
via an SPI interface. The transmitted commands, which can contain
several kilobytes of data describing a specific waveform, are protected
with a Hamming code. Despite this rich functionality, the overall size
of motor electronics when both the control and power units are stacked
equals 70x28x15 mm (WxHxD). The circuit diagrams together with
the PCB layout views of all four layers of the control unit, analog power
unit and the D-class power unit are attached in appendix C (Fig. 79-90).
Further details can be found in [14, 219]. In Fig. 55 the whole architec-
ture is shown schematically with a conceptual sketch of the internal
structure of the waveform generator. The top-level boxes represent the
motor electronics as described above and the sensorized drive (the
walking motor together with a sensory equipment) which will be
described in more detail in chapt. 8. The intermediate box shows the
top-level hierarchy of the waveform generator which receives commands
from the microcontroller via an SPI interface and manages its current
state with a finite state machine. Depending on the state and the
values of several internal registers, different actions are performed in
the actual generator module which provides a digital representation of
the waveforms for further transmission to a DAC via a D/A interface.
The generator part contains a clock divider which divides the main
system clock of 100 MHz into two clock signals – counter and address
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Figure 55: Schematic depiction of the components in the drive electronics
of the walking motor. On the top-level the electronics consists
of a control and a power unit. The power unit is basically an
amplification stage. The control unit contains the control logic
and an FPGA-based waveform generator. The generator issues in
an ordered manner the current digital values (8-bit resolution)
of all four phases of a given waveform stored in a RAM block.
This functionality is realized with help of synchronous counters.
The drive frequency is affected by a clock division factor d and a
counter increment s. Up to 4 different waveforms can be stored
in the internal RAM with 2048 (11 bits) values each. For details
see appendix C.

clock – of different frequencies depending on the value of a division
factor d ∈ [0, . . . , 216 − 1]. The counter clock is exactly 4 times slower
than the address clock. With each rising edge of the counter clock, the
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values of 4 counters are incremented by the step size s defined by
the value of a corresponding 6-bit register and ranging from 1 to 64.
Every counter value is an index pointing to a RAM block storing
the digital representation of a waveform. The phase shifts between
the waveforms are realized by setting different initial values of the 4

counters. The other clock signal – the address clock – has to be 4 times
faster than the counter clock since it increments an address counter
(mod 4 arithmetic) responsible for the ordered selection of each of
the 4 counters before their next increment. Four different waveforms
with the vertical resolution of 8 bits and the time resolution of 11 bits
can be stored in the internal RAM of the FPGA employed. An RTL
(register transfer language) schematic of the waveform generator can
be seen in appendix C (Fig. 91).

Clearly, the two factors d and s have a direct influence on the drive
frequency since they influence the rate and order, respectively, in
which the data points belonging to a particular waveform are issued.
More specifically, the drive frequency can be seen as a function of the
two variables d and s according to

f (s, d) =
fclock

4(d + 1)
(s + 1)
2048

, (135)

where fclock is the main system clock of 100 MHz and 2048 corresponds
to the time resolution of a waveform. For s = 0, the maximal waveform
resolution is achieved and the maximal drive frequency (for d = 0)
still lies at about 12 kHz.2 However, when computing the value of d
for a desired frequency f and s = 0 according to

d( f ) =
( fclock

4 f
(

=0︷︸︸︷
s +1)
2048

)
− 1 (136)

and substituting d back to (135), it becomes apparent that the desired
frequency f rarely can be met. Fig. 56 illustrates the problem. While
the error in desired drive frequency is relatively small for low drive
frequencies, it becomes seriously large for frequencies above 500 Hz,
exceeding 10 % of the desired value for multiple frequencies above
2500 Hz. The problem can be alleviated by setting s to a larger value (>
0) which corrupts waveform resolution but shifts the frontier for large
errors to higher drive frequencies. This is quantified in Fig. 57 where
the maximal error over the desired frequencies between 1 and 3000 Hz
is plotted against the step register value s ∈ [0, . . . , 63]. A low error in
the desired drive frequency could be realized by setting s constantly
to a high value. However, in order to keep the error below 1 %, a
value of 35 or more is required which leads to the effective waveform
resolution below 60 points. This may be sufficient in many applications

2Practically, the actual maximal drive frequency is two times smaller due to the
limitations in the ADC circuitry.
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Figure 57: Maximal frequency error for a desired integer frequencies be-
tween 1 and 3000 Hz as a function of the step register value s.

but leads to another problem connected with the realization of motor
direction switching. In the simplest case, direction switching can
be achieved by running the waveform counters backwards. While
simple and perfectly well suited for nanopositioning applications,
this approach is not directly compatible with the bioinspired control
strategy described in the previous chapter. It would require a direction-
dependent swapping of AEP and PEP and possibly a special handling
of leg trajectories during the switching events.3 The direction change
can be also realized by swapping the A and B phases belonging to
the same legs. This approach does not affect the bioinspired strategy
since one drive direction can be assumed and the actual direction
change takes place in the low level circuitry of the waveform generator.
Nevertheless, even this approach is haunted by practical issues. In

3In this case, spline or Bézier spline curves would be better suited as means of
trajectory description since pure Bézier curves interpolate end points only.
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Figure 58: Illustration of a motor direction change event (commanded at 0.4
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same pair of legs. The actual direction change occurs as soon as
the respective phases fall into a tolerance window indicated with
grayed boxes. Note that all phases swap at the same time for the
example given with the sine waveform. This is not the case in
general. The phases are shown in the convention of Fig. 24.

order to avoid sudden voltage changes in the electric phases, the
switching should occur when they have the same or a very similar
value (i.e. UA

(i) ≈ UB
(i) or, in other words, when the legs are not bent).

Since the digital values are discrete, a tolerance window needs to
be defined. As soon as the values of both waveforms fall into this
window according to

|UA
(i) −UB

(i)| ≤ tolerance (137)

a direction change may take place. Fig. 58 illustrates a phase-switching
event for the sine waveform. If the tolerance window is small enough,
no large voltage changes due to phase-swapping are possible. But if
a small tolerance is set, the set of allowed values for the step size s
shrinks. Large s values lead to larger differences between consecutive
waveform points. In an extreme case, the difference may be larger
than the tolerance window and possibly cripple the phase-swapping
strategy. Fig. 59 shows the maximal difference between consecutive
waveform points for the force and sine waveforms in dependency of the
s value. Obviously, both maximal difference curves are monotonically
increasing but they are susceptible to the increase in s to different
degrees. The choice of s is much more critical for the force waveform.
As a safety margin, the value of s should be chosen smaller than the
argument for which the maximal difference curve reaches the tolerance
value. For the given waveforms and the tolerance of 10, s should not
exceed the value of 9. But such choice of s leads to frequency error
issues as described earlier in this section.
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Fortunately, this is not a dead-end situation. If one was able to
choose variable s and d values in (135) in a way to arrive at a closest
frequency match to the desired frequency within given bounds for
both independent parameters, the frequency errors would decrease
without violating the tolerance safety margin.

6.3 continued fractions approach in frequency
matching

In eq. (135), s and d are independent variables which can have a variety
of non-negative integer values. In the actual implementation of the
waveform generator, s is a 6-bit and d a 16-bit register which gives
over 4 millions possible combinations of their values. Surely, it would
be beneficial to know an algorithm which can find a solution s and d
in nonnegative integer numbers giving the best possible match to the
desired frequency f in a moderate number of steps. Setting C = fclock

4·2048 ,
letting f be the desired drive frequency and reformulating (135), it
can be seen that

−Cs + f d = C− f . (138)

Equation (138) is an example of Bézout’s identity [116] which has
infinitely many integer solutions s and d as long as C and f are integer
numbers and C − f is the greatest common divider of C and f . A
proof of this can be found in appendix B. Dividing both sides of (138)
by C− f (if C− f 6= 0) we arrive at

− C
C− f︸ ︷︷ ︸

a

s +
f

C− f︸ ︷︷ ︸
b

d = 1. (139)
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The number 1 is a divider of both a and b. However, a and b are not
necessarily integer numbers. Also, it is not known if they have another
common divider greater than 1. Still, we are not looking for an exact
solution to (139) but are rather interested in keeping the frequency
error in (135) as low as possible. Thus, we could either round the
coefficients a and b to the nearest integer values, check if these values
are coprime, and then look for a nonnegative integer solution to s
and d or develop an algorithm which can cope with real coefficients
as well. The latter approach is pursued in appendix B, in which it
is shown that the problem of finding two integer numbers ξ and η

satisfying
aξ + bη = 1

is closely related to finding the continued fraction expansion of a/b.
If a/b is real (irrational), this expansion is infinite and approximates
a/b better and better with every further expansion term.
At this point, two questions still need to be answered. First, how good
is the solution computed by the algorithm from appendix B in terms
of frequency error, especially if upper bounds on s and d are given due
to a fixed width of the registers in the waveform generator. Second,
how to cope with the fact that s and d in (135) have to be nonnegative
integers, if ξ and η can be negative in general.
In order to answer the latter question, note that for frequencies f
below 12 kHz, a in (139) is negative and b is positive. From this, one
can conclude that the sign of s and d has to be the same. Since we are
interested in approximative solutions, we may take the absolute value
of s and d as our solution. This is motivated by the fact that s and d
grow with every iteration. For positive s and d we have

(−C)|s|+ f |d| = C− f ⇒ f (s, d) = C
|s|+ 1
|d|+ 1

and for negative s and d (139) becomes

C|s|+ (− f )|d| = C− f ⇒ f (s, d) = C
|s| − 1
|d| − 1

.

Already after a few iterations the difference between |s|+1
|d|+1 and |s|−1

|d|−1
will become relatively small.

As far as the quality of the solution is concerned, there are fixed
bounds on the maximal values of s and d (available register widths)
and the iterative approach has to be terminated before these bounds
are reached. Fig. 60 illustrates frequency errors for a varying step regis-
ter width between 5 and 12 bits and two different numbers of maximal
iterations. Recall, that the waveform generator is implemented with
6 and 16 bits for the s and d registers, respectively. For this reason,
only the bounds on s were varied as s saturates much faster than d.
In Fig. 60(a) and (b), box-and-whisker plots are used to illustrate the
distribution of frequency errors in dependency of step register width.
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Figure 60: Frequency error distribution for integer frequencies between 1
and 3000 Hz when the iterative Bézout’s identity solving algo-
rithm is used (see sect. B.3). The distributions are illustrated with
help of box-and-whisker plots in (a) and (b) for an increasing
step register width and for different numbers of iterations (N=5

and N=10). Median values are indicated with horizontal lines;
thick vertical bars correspond to the interquartile range (IQR);
the whiskers span the range ±1.5IQR and the outliers are shown
with help of dots having a random horizontal distribution for the
sake of clearer illustration. In (c) the frequency errors are shown
directly for the step register width of 6 and N=10.

More specifically, for each step register width value w and the integer
frequencies f ∈ [0, . . . , 3000] the iterative algorithm from sect. B.3 was
run and terminated before the computed s exceeded 2w − 1 or the
computed d exceeded 216 − 1 or the maximal number of iterations
N was reached. The so computed frequencies were subtracted from
the corresponding desired values and the differences expressed as
absolute percentage errors. Clearly, 5 iterations are not sufficient since
the median of frequency error is close to 10 % and do not improve
considerably with increasing w. For 10 iterations and w of 6, it drops
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below 3.2 % and for w=8 already below 1 %. However, even for large
register widths, there are still outliers close to 100 %. Even for 20 bits
long registers, the calculations for several frequencies still produce
large errors. The situation improves only when no bounds on s and d
are set but the obtained solutions are orders of magnitude too large
for a practical implementation. Note that if s0 and d0 are a solution to

as + bd = 1

then s0 + kb and d0 − ka with k ∈ Z are solutions as well [184]. Ac-
cordingly, by defining

w1|s0 + kb|+ w2|d0 − ka| = s(k) + h(k) = f (k) (140)

with some weighting factors w1 and w2 we could try to minimize
f (k) and find an optimal but possibly smaller/minimized solution.
However, the involved computations quickly overpower the capacities
of the integrated circuits employed in the motor electronics. Another
problem concerns the fact that even with a moderate register width,
as with the 6 bits used for the storage of s, we should be reluctant
to accept high s values even within the given bounds, because they
degrade waveform resolution and because of the tolerance issues
mentioned before.

In practical terms, when s and d are constrained according to the
register widths in the actual implementation of the waveform gener-
ator, the frequency errors take the form of Fig. 60(c). This solution
is not satisfactory since even for a low-median error, there are too
many high-error outliers to treat them as special cases with dedicated
solutions. The most practical way out seems to be the pre-computation
of optimal solutions and their storage in a look-up table for a later
access. This was done for the actual register widths in the waveform
generator but the maximal value of s was additionally constrained to
8 because of the tolerance window considerations at the end of the
previous section. The results are illustrated in Fig. 61. Even with the
narrow interval of the allowed s values, the computed frequencies
differ from the desired ones by at most 1.2 %. The minimal amount
of storage required for the look-up table equals 3000(4 + 16) ≈7.32 kB
for integer frequencies between 1 and 3000 Hz. For frequencies below
100 Hz a finer sampling is advisable but for these frequencies a con-
stant s of 0 and the computation of d according to (136) is sufficient in
terms of the error magnitude below 1 %.
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Figure 61: Optimal step register values (a) resulting in minimal frequency
errors (b) precomputed and stored in a look-up table. The step
register values have an upper bound of 8. Note the large spread
of these values within the allowed range. Also note that the
frequency error remains below 0.2% for most frequencies and
never exceeds 1.2%.

6.4 discussion

This chapter presented the motor-drive electronics developed in order
to overcome the weaknesses of the commercial electronics in terms of
its size and drive frequency generating capabilities. The new electron-
ics is several times smaller than the commercial products, despite the
fact that it contains a self-sufficient control unit and a rich repertoire
on communication and sensor interfaces. A further improvement in
terms of size and efficiency is possible with a digital amplification
power unit which can generate 8 electrical phases while retaining the
dimensions of the analog power unit. Both amplification units can be
used with the same control unit due to the modular design and the
separation of control and amplification into distinct physical boards.
The circuit diagrams and board layouts are included in appendix C.
The new electronics is able to generate analog waveforms with a time
resolution of 2048 points (11 bits) per period and the amplitude re-
solved with 8 bits corresponding to 256 voltage increments of 0.1875 V
between 0 and 48 V. At the maximal time resolution, the maximal
motor-drive frequency equals 6 kHz and is 32 times larger than in the
commercial drive electronics. Higher maximal drive frequencies, even
above 50 kHz, can be achieved if the time resolution is reduced. In
this case, the new electronics can be used to test the overdrive region
of operation mentioned at the end of sect. 3.4.

The generation of waveforms at a given frequency is affected by two
parameters – the clock divider d and the waveform increment/step
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size s, which form a linear equation for the drive frequency. An algo-
rithm based on the solution to the Bézout’s identity has been proposed
in appendix B. The performance of the algorithm is affected by the
physical limitations in the waveform generator which sets bounds on
the maximal values of s and d. This results in severe errors in the com-
putation of multiple frequencies. A solution based on the definition of
an objective function was proposed but not further considered due to
the limited computational capacities of the motor-drive electronics. A
different algorithm based on the theory of integer optimization [152]
with constraints [63, 62, 28] could be designed for the actual hardware
architecture. Furthermore, the algorithm proposed in this thesis is not
meant as an efficient way of computing s and d in (135) but rather as a
mathematical proof of concept illustrating the different challenges re-
lated to its practical implementation. A more efficient approach would
be based on a variant of the Extended Euclidean Algorithm [124, 33].
Efficient binary [32, 196] and accelerated [221, 193] implementations
have been proposed also for parallel and VLSI architectures [41, 201].
The optimal choice of s and d within given constraints on possible
register values has been in the end solved by pre-computing these
values offline (by exhaustive search) and storing them in a look-up
table. The proposed strategy is not only extremely efficient in terms
of its online performance and low storage requirements but most of
all it reduces the median of frequency errors to 0.2 % with several
outliers below 1.2 %. Moreover, the low errors are achieved with the
maximal bound on s set to 8 which is well below the 6-bit register
limit and is compatible with the tolerance limit of 10 required by the
phase-swapping direction change strategy of sect. 6.2. The capability
of a faithful generation of driving signals at a desired frequency will
prove useful already in the next chapter, where a load compensation
mechanism based on drive frequency adjustments is developed.

As a closing remark, it should be stressed that the proposed solu-
tions for the generation of waveforms at a given frequency are to a
large degree specific for the particular implementation of the wave-
form generator. For this reason, the mathematical theory and the
algorithm of appendix B are kept on a general level (i.e. without ar-
chitecture specific bounds or assumptions about the particular form
of the frequency equation). Another frequency generation approach
could be based on the implementation of one of various frequency
synthesis methods like phase-locked loop (PLL) or direct digital syn-
thesis (DDS) [44]. This approach would have the advantage that a
change is waveform resolution, because of the crude clock divider
resolution for high drive frequencies, would not be necessary in order
to match the desired drive frequency exactly.
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7 DYNAMIC LOAD
COMPENSAT ION AND FORCE
CONTROL

abstract

This chapter extends the control theoretical model of chapt. 4 with a load
compensation strategy based on force feedback and drive frequency adjust-
ments. The net effect is the restoration of model linearity and a significant
improvement in velocity characteristics of the walking motor even under
load. Based on the linearized model, standard control design techniques are
applicable to design a force controller. Theoretical limits on the performance
of the controller are derived. The actual performance of the controller is eval-
uated both in simulations and experiments by pulling on tendons of different
elasticities. It is shown that the walking motor can be successfully employed
in a force generation scenario if the force transmission occurs through tendons
of a moderate or high stiffness. The content of this chapter is mainly based on
publication II.

7.1 introduction

In chapt. 4 of this thesis, a control theoretical motor model based
on system identification has been derived with the objective of a
linear description of the dynamics of the walking motor and the
application of the motor as a force generator in a small-sized robot
joint. The accomplishment of both objectives is hampered by the fact
that the performance of the motor deteriorates nonlinearly under load.
This poses a problem for the design of a force controller since the
characteristics of the motor vary strongly in a force-control scenario.
The main objective of this chapter is to develop a mechanism which
compensates the non-linear force dependency of motor movement and
restores the linearity of the final model from chapt. 4. Based on such
compensated model, a linear controller can be designed to regulate
the force generation of the motor.

This chapter is organized as follows. In the next section, a load
compensation mechanism based on force feedback and drive frequency
adjustments is proposed and shown to fully linearize the control-
theoretical motor model and to significantly improve the linearity of
actual motor operation. In sect. 7.3, a linear explicit force controller is
designed and the theoretical limits on the performance of the controller
are presented. Finally, the performance of the controller is evaluated
in an experiment and simulation.
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7.2 feedback load compensation approach

The control theoretical motor model derived in sect. 4.2.3 of chapt. 4

is linear only for a constant force input F (including the load-free
condition of F = 0) and as such cannot be used in a linear force-control
approach. However, by modifying the control signal in dependency
of the magnitude of the external force, the nonlinear force effects
can be compensated. In particular, if the drive frequency signal f is
multiplied with the inverse of the normalized force-vel. polynomial
V∗(F)

fc = f · 1
V∗(F)

(141)

the motor model becomes linear for the new control signal fc. The
above linearization is an example of feedback linearization [73]. Note,
that it applies only if there are no limits on the magnitude of the
control signal because as

F → Fmax, V∗(F)→ 0 and 1/V∗(F)→ ∞

which implies that the motor would need to be driven with frequencies
above its operational limits in order to compensate big external forces.
Due to this physical limitation, the compensation formulated in (141)
has to be modified to include control-frequency saturating terms. The
following set of equations introduces a saturation constraint on (141)

fc = Gcomp( f , F) =


f · 1

V∗(F)
, F ≤ Fsat

f · 1
V∗(Fsat)

, F > Fsat.
(142)

Fsat is the saturation force level which needs to be computed in de-
pendency of the actual external force and drive frequency values
according to

fmax ·V∗(Fsat)− f = 0 and 0 ≤ Fsat < Fmax. (143)

The existence of an unique real solution Fsat for f ∈ [0, fmax] is guar-
anteed because the polynomial V∗(F) satisfies the constraints from
section 4.2.2. Fig. 62(a) and (b) visualize the effect of compensation
on the drive frequency signal with a growing external force. The Fsat

border indicates force levels for which the compensated frequency fc

reaches the fmax limit of 2000 Hz. The gray-shaded area in the diagram
is the saturation region in which fc remains at the fmax level.

The compensated motor model is depicted in Fig. 62(c). The drive
frequency which is fed into the motor after the compensation equals
fc. For F ≤ Fsat (i.e. assuming fc ≤ fmax), the linearity of the final
motor model from sect. 4.2.3 is restored since

V(Gcomp( f , F)) ·V∗(F) = ā f
1

V∗(F)
·V∗(F) = ā f , (144)
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Figure 62: Effect of force compensation on motor drive frequency. (a) shows
the normalized force-vel. polynomial V∗(F) together with its
inverse 1/V∗(F) representing a force compensation factor. The
Fsat limit is given for a drive freq. of 876 Hz and indicates the
border of the saturation region in which fc remains at the fmax
level of 2000 Hz. (b) illustrates the actual compensated freq. levels
fc in dependency of the motor drive freq. f and the external force
F. Gray-shaded area is the saturation region. The black curve
indicates the drive freq. of 876 Hz from (a). (c) shows the final
nonlinear motor model from sect. 4.2.3 with force compensation
which restores the linearity in motor operation.

according to (98) and (142).

The effect of compensation was evaluated experimentally by driving
the PiezoLegs-motor with a moderate (100 Hz) and a high (1000 Hz)
drive frequency in an experimental setup as the one in Fig. 40(a). The
simulation and experimental results are shown in Fig. 63(a) for a drive
frequency of 100 Hz and in Fig. 63(b) for 1000 Hz. The x-markers rep-
resent uncompensated, dots the compensated operation. The dashed
and solid lines show uncompensated and compensated operation as
predicted by the model. In simulation, the force compensation is
perfect and maintains a constant motor velocity for increasing forces
up to the saturation level Fsat where the solid lines start declining
in Fig. 63(a) and (b). Experimental data shows the same behavior
qualitatively. However, saturation sets in already at a lower force
level. Additionally, the simulation assumes a fixed Fmax level of 10 N
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while the actual motor limit is device-dependent and may be larger
(cf. chapt. 3 and 5). For a more formal evaluation of the compensation
strategy for 100, 500 and 1000 Hz, Fig. 63(c) can be consulted. Here the
entirety of motor velocity measurements for a given drive frequency
is presented through its quartiles. For a linear operation, the median
values of velocity distributions should coincide with the straight line
representing the dependency of motor velocity on the drive frequency.
This is the case for the right-side plot with active load compensation.
The interquartile distance is larger for the higher drive frequencies.
This corresponds to more frequent slip events between the legs of the
motor and the drive rod. The macroscopic effect is a higher spread in
the measured velocities.
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was measured at two different drive frequencies, (a) 100 and (b)
1000 Hz. The gray-shaded area illustrates force levels for which
the compensation is in saturation. In (c) velocity distributions are
shown for three drive frequencies of 100, 500 and 1000 Hz when
the load compensation was either active or not. For a perfect
compensation, the median values should be close to the dashed
line which illustrates the linear dependency between the drive
frequency and motor velocity for an unloaded motor. With a com-
pensation applied, the deviation from this line is minimal. The
interquartile range grows with growing drive frequency. However,
note that this effect is much stronger without the compensation.
Also note that, since the data sampling rate was constant, there
are fewer measurements for the higher drive frequency.
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7.3 force control

With the compensated motor model from the previous section, a linear
force controller can be designed using standard approaches. In this
context, only the linear part of the model from Fig. 62(c) needs to be
considered if the external forces are smaller than Fsat. In this work, a
discrete PI controller was designed and optimized using the Matlab
Control System Toolbox. The design criteria were nominal stability of
the closed-loop system, zero steady state error, high system bandwidth
and limited control input. The force control architecture is depicted
schematically in Fig. 64(a)-(b). It consists of a force controller, a force
compensation unit and the linear model of motor dynamics. The
frequency output f of the force controller is compensated for the
nonlinear effects of the load force before being fed into the motor. The
motor velocity vm is integrated to obtain the motor position x which in
turn is converted into a force signal via a tendon transmission system.
The latter consists of several elasticities in series and is in the following
called the sensor-tendon complex. This is depicted in Fig. 65(a). In
order to compute the magnitude of the forces correctly, the different
series elasticities between the drive rod of the motor and the joint have
to be distinguished and taken into account. A schematic depiction of
the sensor-tendon complex can be seen in Fig. 65(b). The force sensor
is modelled as a mass with two elastic connectors having spring
constants ks and an additional elastic element with the spring constant
kt in series. The latter value approximates the effective stiffness of the
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Figure 65: The walking motor as a force generator. In (a) a computer ren-
dering of the motor equipped with a linear encoder and a force
sensor connected to a series elasticity in form of an extension
spring and a tendon is shown. In (b) the different series elastic-
ities are depicted as a spring-mass model of the sensor-tendon
complex. The force sensors consists of a mass m with two liner
springs having the stiffness ks.

Dyneema (Royal DSM, The Netherlands) tendon used in this setup.
kte f f is the effective spring constant of the elastic elements connecting
the force sensor to an external object like a wall or the pulley of a joint
(see next chapter). vm corresponds to the movement velocity of the
motor drive rod while vext is an external velocity input. For a fixed
wall, vext is obviously 0. ps is an auxiliary state variable (momentum
of the force sensor). The state-space equations of this model have been
derived using the bond graphs methodology. The derivation process is
described in appendix D. The final equations take the following form ẋs

ẋte f f
ṗm

 =

 0 0 −1
m

0 0 1
m

ks −kte f f 0

 xs

xte f f
pm

+

 1 0
0 −1
0 0

( vm

vext

)
(145)

and

x f =
(

1 1
1+ ks

kt

0
) xs

xte f f
pm

 (146)

where x-variables correspond to the amount of elongation of the elastic
elements with corresponding subscripts. Additionally, x f is the overall
elongation of the force sensor (both elastic connectors having the
spring constant ks). When multiplied with 0.5ks (series connection of
the connectors), this product delivers the magnitude of the measured
force. The force controller used in the architecture of Fig. 64 is a PI type
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with an additional back-calculation antiwindup control scheme [215].
In the design process, the following set of parameters was obtained
for the controller:

Kp = 1975,

Ti = 0.05,

Tt = 15

with the above constants being the proportional gain, the integral and
the tracking time constants, respectively.

There are theoretical limits on the performance of the controller. As
force generation depends on the displacement of the drive rod x in
combination with the effective stiffness K of the tendon the motor pulls
on, the controller can only track forces which do not require it to move
faster than the maximal velocity vmax of the motor. In the following,
these theoretical limits are derived and the actual performance of
the force controller is evaluated. For this purpose, the consecutive
reference force signal is used in the experimental setup shown in
Fig. 40(a) with the controller from Fig. 64(b):

Fre f (t) =
A
2

sin(2πνt) +
A
2

(147)

The signal spans a range A of forces between its minimal and maximal
value and contains a bias term because only pulling (positive) forces
can be generated in the arrangement of Fig. 40(a) or a tendon-driven
robot joint. The rate of the signal is varied by the frequency ν and its
period is T = 1/ν. The distance which the drive rod needs to travel in
order to generate the reference force is given by

x(t) =
Fre f (t)

K
(148)

for a given effective spring constant K. Note, that the effective spring
constant is a simplification of the sensor-tendon complex as introduced
above in order to simplify the mathematical derivation of the limit
on the performance of the force controller as presented below. This
theoretical limit is defined by the following equation

vmax ≥ max
t∈[0,T]

(|ẋ(t)|) = max
t∈[0,T]

(
|Ḟre f (t)|

K
) (149)

which states that the rate of change in the reference signal cannot
exceed the maximal velocity of the motor at any point and resolves
into

vmax ≥
πνA

K
. (150)

The theoretical limit from (149) can be replaced with a softer condition

vmax ≥
1
T

∫ T

0
|ẋ(t)|dt =

1
KT

∫ T

0
|Ḟre f (t)|dt (151)
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signal in dependency of tendon stiffness and signal frequency
according to (153). Dashed lines indicate the three effective spring
constants (K1, K2 and K3) and the force sine range A used to
evaluate the performance of the controller experimentally – see
Fig. 67.

which only requires that the average rate of change in the reference
signal does not exceed vmax. Because of the periodicity and symmetry
of the cosine, it follows that

1
KT

∫ T

0
|Ḟre f (t)|dt ẋ = cos←→ 4

KT

∫ T/4

0
Ḟre f (t)dt (152)

and the inequality (151) leads to

vmax ≥
4

KT

[
Fre f (t)

] T
4

0
=

2νA
K

. (153)

Fig. 66 is the illustration of the theoretical force controller limits as
defined in (153) for the PiezoLegs-motor due to its maximal velocity.
It shows the maximal range of the reference sine-shaped force signal
that a perfect controller could track on average for a given spring
constant K and signal frequency ν.

The performance of the controller was evaluated both in computer
simulations and in real experiments. For the purpose of the experi-
ments, the motor was employed in the setup from Fig. 40(a). Three
linear springs of increasing spring constants were used resulting in
three effective stiffnesses K1 = 500, K2 = 2400 and K3 = 10000 N/m.
As a reference sine-shaped force signals of the form shown in (147)
were used. The reference signal was biased and spanned the range of
5 N (A = 5) in order to be positive and remain in the well-compensated
range of the motor. Seven different frequencies ν from 0.1 to 20 Hz
were used in the real experiments. The measured force was then
compared with the reference signal. The results of the simulations and
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Figure 67: Three-dimensional Bode plots of force controller performance
in dependency of tendon stiffness [(a) and (b)] computed from
simulation data. (c) and (d) show the experimental data obtained
for three stiffness levels (circles: K1 < diamonds: K2 < x-markers:
K3) and seven different frequencies. Thick curves are simulation
results copied from (a) and (b).

experiments are summarized in Fig. 67 with the help of Bode-like dia-
grams.1 The simulations were able to predict most of the experimental
results. In the magnitude plots (a and c) the measured data deviates
from the simulated only for the highest stiffness K3. Surprisingly, in
this case the real system performs better than expected from the simu-
lations. One explanation for this are possibly nonlinear characteristics
of the Dyneema tendon used in the experiments. When a soft spring
is employed in series with the relatively stiff tendon, the first has a
stronger influence on the elongation of the spring-tendon complex
than the latter. When the spring is stiff, the nonlinear effects in the
tendon gain on importance. In the phase plots (b and d) experimental
data deviates from the simulated mostly for high-frequency inputs.
Also in this case, the reason could be attributed to nonlinear stretch
effects in the Dyneema tendon. In the simulations, the tendon is
modelled as a linear spring with a constant stiffness.

1For a true bode diagram, the gain in the magnitude plot should be depicted in
dB.
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7.4 discussion

This chapter introduced a force-compensation strategy which restores
the linearity of the control-theoretical motor model from sect. 4.2.3.
The compensation is based on feedback linearization through the
inversion of the nonlinearity [73]. In case of the walking motor, this
corresponds to the inverse of the normalized force-velocity relation
as introduced in chapt. 4. If this mechanism is used with the motor
model or with the real motor, both can be considered linear systems.
While in case of the simplified model the linearization is perfect,
the true nonlinear system obeys the means of linearization only to a
certain degree. There are several reasons for this with the most obvious
one being the unmodeled dynamics. This ranges from the load-free
lowpass approximation of sect. 4.2.3 which explains about 70 % of the
experimental data, through nonlinear stick-slip effects under load, to
nonlinear stretch effects in the force transmitting tendons. In practical
terms, the proposed linearization strategy is affected by the physical
limits on the control signal, i.e. the drive frequency. Despite these
limitations, the proposed linearization strategy significantly improves
the performance of the real motor under load. For moderate loads up
to 5 N, the drive velocity can be retained at a nearly constant level. For
higher loads, the modified drive frequency quickly approaches the
saturation level. Moreover, high load forces lead to a more frequent
slip between the piezoelectric legs and the drive rod and reinforce the
nonlinear (frictional) influences.

For the purpose of the design of a force controller, the mainte-
nance of linearity is important since it allows the application of a rich
repertoire of mathematical methods [8]. In particular, model-based ap-
proaches are easily applicable [170]. However, in this work an explicit
PI controller was designed. This decision was motivated by the fact
that model-based control relies on the exact knowledge of the dynam-
ics of the system to be controlled. Model inaccuracies deteriorate the
performance of the controller. PI(D) controllers have the advantage
of their high robustness against model inaccuracies and of a well
established strategy for online tuning [188]. The designed controller
was tested in the simulation and in real experiments by pulling on
tendons of different elasticities. The obtained results were very similar
which speaks for the reliability of the control-theoretical motor model
as well as of the applied load-compensation and force-control strategy.
A more advanced nonlinear control scheme [189, 107] could possibly
improve the results further. However, this chapter has also shown that
there are theoretical limits on the performance of a (perfect) force con-
troller. For a sinusoidal force reference signal at 10 Hz and a tendon
having the stiffness K3, the peak-to-peak amplitude of the reference
cannot exceed 5 N if the controller is supposed to track the reference
perfectly according to the soft performance condition in equation (151).
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The actual performance has to be worse due to time delays in signal
propagation and motor inertia. In the simulation, the performance of
the explicit force controller is at the level of 55 % which corresponds to
the peak-to-peak amplitude of 2.75 N. In practical terms, the designed
controller can be successfully applied in a force control scenario as
long as the series elasticity remains at the effective level of 10 N/mm
or above and the rate of change in the reference force does not ex-
ceed 10 Hz. In the next chapter, two walking motors together with
the force controllers designed in this chapter will be employed in an
antagonistic robot joint to act as muscle-like force generators.
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8 MUSCLE-L IKE ACTUAT ION OF
AN ANTAGONIST IC JO INT

abstract

This chapter presents a technical implementation of a 1-DOF robot joint
driven by two virtual muscles. The macroscopic muscle functionality is
described with a variant of Hill’s model and mimicked by two force generators
consisting of piezoelectric motors together with their explicit force controllers.
The force generators are arranged in an antagonistic configuration. The
generated forces are transmitted to the joint via elastic tendons. To prevent
tendon slack, the force controllers are augmented with the concept of a virtual
tendon. The complete system is tested in a simple positioning task. The
content of this chapter is based on publications III and IV.

8.1 introduction

Biological musculoskeletal systems are actuated by muscles, as their
name implies, and use the antagonistic actuation principle – the move-
ment of each joint is realized by a group of at least two muscles
which pull on bones via elastic tendons [224]. It is not unreasonable
to assume that the qualitative properties found in the majority of
animal muscles have been selected for by evolution for their adap-
tive advantage with respect to the generation of movement [37]. In
the field of robotics, recent years have brought a steady growth in
the appreciation of the role of elasticity for walking [165] and hu-
man robot-interaction [71], thus opposing the classical rigid design
paradigm. Buehrmann et al. [37] argue that not only elasticity but also
various non-linearities in the common muscle model by Hill [102, 88]
lead to various desirable properties with regard to the controllability
of robotic systems like increased stability and robustness to noise.
From the biological point of view, there are also important reasons
to use the antagonistic actuation principle [84]. Beside the obvious
reason that muscles can only pull, the antagonistic principle can be
shown to be energy-optimal for various tasks like posture stabiliza-
tion [183] and provides the joints with an intrinsic flexibility which is
a key factor for any physical interaction with the environment [84].
Furthermore, biological and technical antagonistic systems are able
to actively modulate their stiffness by means of co-contraction and
thus adapt to changes in task requirements or in environmental con-
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ditions [103, 183, 147].1 Beside the above motivation for bioinspired
technical solutions in robotics, i.e. improving the performance of
robots in various natural situations like walking, grasping or throwing,
another important reason for the research on muscle-like antagonis-
tic actuation is the fact that we ourselves are biological systems. A
successful integration of technical actuators and bioinspired control
strategies could lead to a significant improvement in the quality of
artificial limbs and a deeper understanding of the principles of the
biological control of movement [67, 68, 27].

From a technical point of view, a successful transfer of biological
principles on technical systems is difficult for at least two reasons.
First, biological systems are often incomparably more complex than
technical systems. They already are the “end product” of millions of
years of evolution and cannot be reverse-engineered easily. Second, bi-
ological systems consists of different building blocks than the technical
systems. A successful technical implementation not only depends on
the understanding of its biological counterpart but also on bridging the
gap between the different properties of the building blocks. This diffi-
culty is the main research activity in the field of biocompatibility [31]
and is well illustrated by the still unsuccessful technical realization
of an artificial muscle [138]. Also the antagonistic actuation principle
poses serious technical difficulties. The main disadvantage lies in the
increased number of actuators which leads to an increased weight,
larger space requirements and a more complicated mechanical design.
The problem of increased weight and larger space requirements can
be alleviated to some degree by using tendon-transmission systems
to transmit forces which leads to a reduced inertia at the end effector
and a higher flexibility in the placement of actuators [115, 206].

In the context of this work, the walking motors are interesting
candidates for a bioinspired actuation with a redundant number of
actuators due to their small size and high force-generation capability
(see chapt. 1). Also the fact that the motors directly produce transla-
tional motion, enhances the muscle analogy as shown in Fig. 68. Two
motors can be arranged in an antagonistic setup and rotate the joint
by transmitting pulling forces via tendons connected to the joint.2 The
backward (to the left in Fig. 68) movement of a motor corresponds to
the shortening of a muscle and generation of pulling forces on the
joint. This 1-DOF arrangement with a pulley of constant radius is
probably the simplest possible realization of an antagonistic actuation
principle. The literature is abundant in similar antagonistic arrange-
ments. Bicchi et al. [22] use pneumatic McKibben artificial muscles

1Co-contraction per se does not change the net torque acting on a joint and is a
waste of metabolic energy from this point of view. However, co-contraction together
with non-linear stiffness characteristics of the antagonistic muscles modulates the
stiffness of the joint.

2In the actual implementation (see Fig. 72) the pulley joint consists of two “reels”
with tendons wound around them and tendon ends fixed to the pulley.
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Figure 68: Basic antagonistic actuation concept. (a) Schematic depiction
of a 1-DOF rotatory joint driven by two antagonistic muscles
connected to a pulley via tendons. θ is the actual angular position
of the joint and [θmin, θmax] its operating range. (b) Technical
realization of (a). A piezoelectric motor equipped with position
and force sensors plays the role of a force generator. The motor is
connected to a joint via a tendon. The second, antagonistic motor
is left out in this depiction.

as actuators, Migliore [147] designs a mechanical non-linear spring
element which can be compared to the passive stiffness characteris-
tics of a muscle [230] and Grebenstein et al. [84] combine mechanical
elements with active impedance control strategies. In the last two
approaches, electromagnetic rotary motors are used. The common
denominator of these approaches is the introduction of non-linear
stiffness characteristics either to the series elasticities or the actuators
in order to modulate the overall stiffness of the joint [183, 147]. This
objective, however, is not further considered in this work. Specifically,
although an antagonistic arrangement of actuators according to the
depiction in Fig. 68 with non-linear muscle characteristics is employed,
co-contraction as the prerequisite for stiffness modulation is not con-
sidered in this work. The originality of this chapter consists in the fact
that no other work known to the author mentions piezoelectric motors
in an antagonistic arrangement as described above and no other work
uses piezoelectric actuators to mimic muscle characteristics by means
of control. This chapter is meant as an experimental proof-of-concept
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that a small-sized piezoelectric motor can be successfully applied as a
force generator in a biologically inspired robot joint.

Specifically, in this chapter an antagonistic joint according to the
idea from Fig. 68 is actuated with two piezoelectric force generators
as introduced in chapt. 7. The reference force signal for the force
controllers is computed according to the muscle model by Hill, whose
particular implementation is described in sect. 8.2. The overall joint
architecture together with the concept of a virtual tendon used to
prevent tendon slack are presented in sect. 8.3. Finally, sect. 8.4 shows
that the antagonistic setup with piezoelectric “virtual muscles” can
be successfully employed in a simple position-control scenario. The
discussion follows in sect. 8.5.

8.2 virtual muscles

Classical studies of isolated muscles have described well the quasistatic
force-length and force-velocity relations of the areflexive muscle [101].3

Already in 1938, Hill proposed a muscle model [102] which is still
the dominant model today. The model assumes that the muscle force
depends on the length, velocity of shortening and level of activation
of the muscle. The total force according to [2] can be calculated as

F = [aFL(L)FV(V) + P(L)]Fmax (154)

with a being the muscle activation level, FL the force from the force-
length relation, FV the force from the force-velocity relation and P
the passive force of a muscle extended beyond its resting length. As
these are normalized values, they have to be additionally scaled with
Fmax – the maximal force that can be generated by a given muscle.
A system view of Hill’s muscle model can be seen in Fig. 69. The
particular implementation of the above relations followed in this work
is adapted from [79]. Specifically, only the FL(L) relation is used
to show the general feasibility of the presented approach. FV and
passive characteristics of the muscle are not considered. The role of
particular terms in (154), muscle parameters and joint geometry in
the production of movement and stiffness modulation can be found
elsewhere [23, 38, 37, 230, 6]. The FL(L) relation is defined according
to

FL(L) = exp
[

C ·
∣∣∣∣L− L0

ωL0

∣∣∣∣3 ] (155)

which describes a bell-shaped curve. In the above equation, L0 and L
are the muscle resting length and the actual muscle length, respectively.
The parameters C and ω have the values log 0.05 and 0.4 according

3An areflexive muscle is devoid of its reflexes, like for example the stretch
reflex [120], through deafferentation – the interruption of afferent connections of
nerve cells.
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Figure 69: Hill’s muscle model consisting of the force-length FL(L),
force-velocity FV(V) and passive P(L) characteristics of a muscle
(dashed line in the force-length box). The normalized muscle
force (Fmax = 1) in dependency of its normalized length and ve-
locity of shortening is depicted on the right side for two different
levels of activation. Only the FL relation is considered in this
chapter.

to [79]. For L < L0, the characteristics of the muscle on the ascending
slope of the bell-shaped curve can be approximated with a linear
spring [103]. Note, however, that the slope of this spring varies with
the activation signal a in (154). Thus, by modifying the activation levels
of the muscles in time, effectively a non-linear stiffness characteristics
can be obtained. The activation signal in (154) can be issued either
directly as a numerical value or originate from motoneuron activity
measurement of a real muscle which can be converted to a numerical
value in the activation dynamics box as shown in Fig. 69.4 The FL(L)
relation is characterized by L0. Additionally, a muscle has a minimum
length Lmin to which it can contract and a maximum length Lmax

to which it can extend. In the following, these values are given as
unit-less fractions of the resting length L0 of a muscle. For a particular
choice of these values and the joint geometry from Fig. 68, a mapping
between the work space of the joint and the length of the antagonistic
muscles has to be defined. Setting the radius of the pulley joint to a
constant R of 1 cm, using θ to indicate its actual angular position and
θmin together with θmax to define the operating range of the joint, the
lengths of the muscles can be computed via a geometric transformation
from the actual joint position. For the pulley joint, assuming stiff

4In order to describe the activation dynamics, a second order system can be used
as in [230].
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tendons connecting the motors to the joint, the transformation has the
following form

L0(1) =
θmax − θmin

Lmax(1) − Lmin(1)
R

L0(2) =
θmax − θmin

Lmax(2) − Lmin(2)
R

(156)

where the numbers in parentheses correspond to the upper (1) or
lower (2) muscle in Fig. 68.5 The actual lengths of the muscles for a
given position θ of the joint equal

L(1) = L0(1)Lmin(1) − (θmin − θ)R

L(2) = L0(2)Lmin(2) + (θmax − θ)R.
(157)

L(1), L(2) are the actual and L0(1), L0(2) the resting lengths of the
muscles. Lmin and Lmax are unit-less numbers expressing the minimal
and maximal muscle lengths as fractions of L0(1) and L0(2). The
numbers in parentheses referring to particular muscles in (157) are
omitted from Lmin and Lmax since theses values are in the following
assumed equal for both antagonistic muscles (i.e. Lmin(1) = Lmin(2)
and Lmax(1) = Lmax(2)). For a force-length relation as defined in (155),
the actual muscle lengths have to be normalized by dividing them by
their corresponding resting lengths. The normalized muscles lengths
L∗ are computed as

L∗(1) = L(1)/L0(1),

L∗(2) = L(2)/L0(2).
(158)

Given the particular geometry of the pulley joint and the measurement
of its actual position θ, equations (156)-(158) together with the muscle
characteristics from (154) and (155) can be already used to compute
reference forces for the muscle-like force generation. Fig. 70 illustrates
how such virtual muscles can be used in a position control scenario.
A position controller suitable for an antagonistic drive [109] is used
to generate activation signals a1 and a2 (no co-activation, see below)
according to the sign and magnitude of the position error θref − θ.
Depending on the level of these activations and the actual (normalized)
muscle lengths L∗(1) and L∗(2), the FL(L) relations are computed and
forwarded to the corresponding force generators (see Fig. 71). The
muscle models together with the technical force generators and the
sensory length feedback act as virtual muscles in this setup. The

5Note that the elasticity of the tendon is neglected in this transformation which
simplifies the mathematical treatment. As far as biological systems are concerned,
tendons are usually used as energy storage elements to generate force economically
and play an important role for example in the hooping of a kangaroo. Muscles used
for a pure production of mechanical power, like in the wings of a dove, are virtually
devoid of tendons [23].
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Figure 70: Schematic depiction of the position control loop employing two
antagonistic force generators which mimic muscle characteristics
and act as virtual muscles. The muscle co-activation block can be
used to modulate the stiffness of the joint and is shown here for
the sake of completeness but is not considered in this work.

activation signals a1 and a2 may also contain additional co-activation
components which can be used in order to modulate the stiffness of
the joint but this is not further considered in this work. For a detailed
treatment of this topic, the reader is referred to [5].

In a tendon-driven joint, as the one in Fig. 68, the tendons have
to maintain a certain minimal level of tension, since slack tendons
cannot transmit forces. This requirement could be realized by adding
a positive offset (bias) to muscle activations. However, this strategy
is not followed here, since it obscures the actual role of co-activation
in stiffness modulation and since the effect of such an offset varies in
dependency of the actual activation level and muscle length. Moreover,
tendon slack is a general problem in tendon-driven systems and as
such should be solved independently of a bioinspired control strategy.
These arguments speak for a solution on the level of the force controller.
Fig. 71 shows how the force controller of chapt. 7 is extended in order
to prevent tendon slack in the pulley joint of Fig. 68. In contrast
to the force control scenario of chapt. 7, the sensor-tendon complex
is not connected to a fixed wall but to the pulley joint and thus
vext corresponds now to the tangential velocity of the points on the
circumference of the moving pulley, i.e. the velocity of the tendon
end at the pulley. Starting from an initial situation in which a tendon
is under tension and integrating the velocity of the motor and the
tangential velocity of the pulley, the displacements of the tendon
ends at the motor xm and at the pulley xj can be computed. A slack
condition is encountered if

xm(1) + xj < 0 or xm(2) − xj < 0, (159)

for a positive motor displacement defined in the direction of vm in
Fig. 68(b) and a positive clockwise rotation of the joint. For some
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Figure 71: Force control architecture together with the concept of a virtual
tendon (shaded area) preventing tendons from going slack. The
above architecture is used as a force generator in Fig. 70. The
actual force controller can be seen in Fig. 64.

initial angular joint position θ0 in which tendons were under a minimal
tension, xj can be computed according to

xj = R
π

180
(θ − θ0) (160)

in order to compensate for numerical integration errors. The positions
of the motors can be also obtained directly, if position sensors are
used. If a slack tendon is detected, the reference force for the force
controller is modified by an additional term

Fvirtual(i) = (xm(i) − xj)kv. (161)

The additional force term has a negative value by definition and causes
the corresponding motor (i) to follow the movement of the joint as if
pushing forces could be transmitted through tendons from the joint
to the motor. Since no such tendons exist, this mechanism is called
in the following a virtual tendon. The spring constant kv of the virtual
tendon determines how strong slack prevention is.

8.3 antagonistic joint architecture

The position control architecture employing virtual muscles presented
in the previous section has been so far considered from the concep-
tual point of view. This section addresses its practical realization
and describes the actual technical implementation of an antagonis-
tic tendon-driven joint with virtual muscles. The photograph of the
complete setup is shown in Fig. 72. The setup consists of a pulley
joint driven by two walking motors. Each motor is equipped with
a non-contact linear position sensor/encoder (NANOS-Instruments
GmbH, Hamburg, Germany). The sensor consists of a magnetic bar
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PiezoLEGS
motor

pulley joint

Figure 72: Photograph of the 1-DOF rotatory joint consisting of a pulley
actuated by two walking motors in an antagonistic arrangement.
The sensory equipment providing signals necessary for slack
prevention and muscle-like control is indicated. The second
motor on the back side is not visible.

fixed to the drive rod and the sensor electronics mounted next to the
bar on the motor housing. The encoder allows measurements of the
drive rod position with an accuracy of 61 nm. Velocity measurements
are obtained by numerical derivation. The amount of force acting
on the drive rod is measured with a force sensor (ME-Meßsysteme
GmbH, Hennigsdorf, Germany) with an accuracy of 0.1 N. The force
sensor can measure pulling forces up to 25 N and has two mechan-
ical connectors, one on each side. Additional elastic elements can
be integrated into the actuators by connecting them in series to the
force sensor. The direct tendon connection to the joint is realized
with a high-performance polyethylene cord (DSM Dyneema B.V., EL
Urmond, The Netherlands). The angular position of the joint is mea-
sured with a magnetic absolute position sensor (iC-Haus Germany,
Bodenheim, Germany) with the resolution below 0.1 deg. The same
architecture is also shown schematically in Fig 73. The hardware
components consist of the pulley joint, two walking motors and the
sensory equipment as well as the motor drive electronics (see chapt. 6

and appendix C). Formally, also the implementation of the waveform
generator (see sect. 6.2) on the FPGA chip belongs to the hardware.
The high level commands for setting joint position or muscle force
are realized in an external application and transferred to the µC via a
bus controller. The platform software on the µC is mainly responsible
for bus communication, sensor reading, digital signal processing and
force control. Note that if an analog power unit is used two motor
drive electronics for each motor have to be used. With the digital
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power unit which can generate 8 motor phases (cf. chapt. 6), one drive
electronics is sufficient for the whole antagonistic setup.
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Figure 73: Iconic depiction of the different layers of the sensorized joint
drive architecture. The hardware layer consists of the rotary joint
actuated by two walking motors equipped with position and force
sensors as well as the motor drive electronics indicated with some
of its main components and the communication interfaces. The
software consists of the low-level platform software in the µC and
external application software transmitting commands to the µC
through a bus.
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8.4 position control scenario

The proof-of-concept that a small-sized piezoelectric motor can be
successfully applied as a force generator in a biologically inspired
robot joint consists in a simple positioning scenario. Specifically, the
antagonistic joint is commanded to move to several reference positions
in a stepwise manner. The position controller on top of the virtual
muscles is implemented as a proportional controller with a constant
gain G of 1. However, some adjustments to the simple proportional
control scheme are necessary.

First, the output of the controller consists of two activations a1 and
a2 in the domain [0, 1] with 1 corresponding to full activation and 0 to
no activation. Accordingly, the activations need to be limited to the
valid range.

Second, the analog force sensors used in the joint are of the same
type, but they are still two distinct entities suffering from manufac-
turing tolerances and measurement noise. This results in different
sensory outputs even after a careful calibration. Accordingly, small
position errors should not be weighted by the controller as much as
large errors.6

And third, for a pure position control with no co-activation of the an-
tagonistic muscles, the muscles should not work “against each other”.
Accordingly, only one muscle should be activated in dependency of
the sign of the error.

Obviously, the position error is computed as

ε1 = θref − θ. (162)

This value is then transformed according to

ε2(ε1) = ε1
(
1− e−(ε1)

2)
. (163)

The net effect of the above transformation is the identity mapping for
large errors and a flat smooth increase in error for small ε1 values. In
a next step, the transformed error is saturated

ε3(ε2) =


1, if ε2 > 1,
−1, if ε2 < −1,

ε2 otherwise,
(164)

and muscle activations computed as

a1(ε3) =

{
0, for ε3 ≥ 0,
−Gε3 otherwise,

(165)

a2(ε3) =

{
0, for ε3 ≤ 0,
Gε3 otherwise.

(166)

6Proportional weighting results in oscillations around the reference position
due to noise and differences in sensor readings. To some degree, this is a natural
phenomenon which can be observed for example when trying to keep one’s own
finger pointing precisely at a given point.

172



20

10

0

-10

-20

-30

0 5 10 15 20 25 30

jo
in

tp
os

iti
on

[d
eg

re
e]

time [s]

reference
experiment

Figure 74: Step responses of the position controller acting on muscle-like
force generators in a positioning task. The reference positions are
indicated by a light-shaded while the experimental results by a
dark-shaded curve.

Effectively, the simple proportional controller becomes adaptive in
terms of error magnitude.
The computed levels of activation a1 and a2 are forwarded to the
virtual muscles which generate pulling forces according to the FL(L)
characteristics. Conceptually, it is clear that the joint will move in the
direction of the larger of the two pulling forces. Since the propor-
tional controller activates only one of the virtual muscles according
to the sign of the position error, the joint has to approach the com-
manded positions.7 Fig. 74 illustrates the results of the positioning
tasks according to the control architecture from Fig. 70, if only the
basic force-length relationship of the muscle model from sect. 8.2 is
considered. Fmax in (154) was set to 10 N which is the approximate
stall force limit of the walking motor driven with the force waveform.
As operating ranges for the muscles, Lmin of 0.5 and Lmax of 1.5 were
chosen.8

The overall tracking performance is surprisingly good considering
the fact that a proportional control was used and that the controller
cannot influence the position of the joint directly but only through
force generation with non-linear muscle characteristics. Relatively

7The not-activated virtual muscle still follows the movement of the joint keeping
its tendon under minimal tension to prevent tendon slack, according to the concept
of a virtual tendon in sect. 8.2.

8The operating ranges of in vivo muscles vary strongly depending on their func-
tion and the considered animal species. Burkholder [38] gives an exhaustive overview
for vertebrate animals during movement. The values chosen for the experiment in
this work are realistic but do not have any special meaning.

173



small overshoots can be observed in the measured data since there
are no derivative nor damping terms in the controller. Also note that
for the largest angular step from 20 deg to –30 deg it takes about 1 s
for the joint to reach the new reference position. This observation
is to be attributed to the finite speed of the motors. Nevertheless, a
better positioning performance could be achieved with a pure posi-
tion control scheme, not obscured by the intermediate muscle-like
force generation, and possibly a more sophisticated position controller.
However, neither a superb tracking performance, nor the role of mus-
cle characteristics in the particular positioning task was the purpose of
the experiment. In fact, the above experiment may be a starting point
for further investigations concerning bioinspired control approaches
utilizing small-sized piezoelectric motors.

8.5 discussion

This chapter presented an antagonistic 1-DOF robot joint driven by two
virtual muscles. The joint consists of a pulley geometry with constant
radius. The forces generated by the virtual muscles are transmitted to
the joint via tendons. Each virtual muscle consists of a piezoelectric
walking motor together with a force controller and a muscle model
according to Hill [101]. The force controller, as introduced in chapt. 7,
is augmented with the concept of a virtual tendon which prevents the
tendons from going slack. It has been shown that a simple positioning
task can be successfully realized with this setup even with a simple
proportional position control acting on the virtual muscles.

The approach presented in this chapter was aimed at achieving a
minimalistic robot joint actuated by two virtual muscles. This aim
has motivated the choice of joint geometry which differs from natu-
ral geometries but offers a convenient mathematical treatment and
does not obscure the influence of non-linear muscle properties on
torque generation by variation in the length of lever arms [230]. Also
the operating ranges of the muscles in the positioning experiment
were not chosen referring to biological data for any particular species.
These ranges were chosen to be symmetric about the muscle resting
length and same for both muscles. It should be stressed that with the
given technical system a positioning task could have been achieved
in a better way by employing a direct position control without mus-
cle mimetic. However, the presented approach was not meant as an
evaluation of bioinspired control strategies but as a proof-of-concept
that the walking piezoelectric motor can be used as a force gener-
ator in a feasible bioinspired control scenario – in contrast to the
predominant application of piezoelectric motors in high precision
positioning stages [117, 133, 145]. The feasibility of the presented
approach is motivated by the small-size and high-force characteristics
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of the walking motor which are especially important if a redundant
number of actuators is used in an antagonistic setup. As far as the
aspect of muscle-like bioinspired actuation is concerned, the author
believes that the presented strategy offers substantial advantages over
classical approaches when seen in the light of neurobionic control
strategies [79, 182] or direct application of EMG-signals in prosthetic
applications.

The concepts presented in this chapter are a foundation for further
research. A natural extension of the simple control scheme would be
to activate the muscles simultaneously. By these means, the overall
stiffness of the joint could be modulated in addition to its position [103,
147]. In a future work, also the role of different muscle properties (like
the force-velocity relationship) on positioning accuracy and stability
could be examined.
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9 DISCUSS ION

abstract

In this thesis, two novel motor models have been derived based on the analytic
and experimental approach. Both models incorporate the effects of external
loading on the performance of a walking piezoelectric motor. The analytic
model was used in order to investigate an alternative drive strategy based
on a bioinspired approach which significantly improves motor characteristics
in terms of its force generation capabilities or maximal drive velocity. The
experimental model was used to develop a load compensation strategy based
on force feedback which restores the linearity in motor operation even under
load. Based on the linearized model, an explicit force controller was designed
whose theoretical and practical performance have been evaluated. In a next
step, the walking motor together with the developed force control architecture
was applied as a “virtual muscle” in a small-sized 1-DOF robot joint and
tested in a simple positioning task. The feasibility of this kind of application
has been confirmed. This chapter summarizes the main contributions of this
thesis with regard to the objectives from chapt. 1. Additionally, this chapter
contains recommendations for future research and possible applications of the
walking piezoelectric motor, especially in the field of medical robotics.

9.1 contributions of the thesis

The focus of this thesis was put on the development of dynamic models
and bioinspired control strategies for the walking piezoelectric motor.
In a broad sense three different use scenarios can be distinguished for
dynamic models of a system [121], which have all been considered to
a certain degree in this work. These are

• analysis,

• identification

• and synthesis.

As far as analysis is concerned, an analytic model has been developed
as means to predict the future output of the walking motor, given its
current state and the future inputs.
With regard to identification, an experimental model has been devel-
oped as means to identify the dynamics of the motor based on the
measurements of its past inputs and outputs.
Finally, synthesis is concerned with the search for a new model which
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can produce a desired output given a certain input. In this context, the
creation of an antagonistic joint, a virtual muscle, a force controller or a
bioinspired waveform generator can be seen as means to engineer new
systems which are able to produce a desired output in terms of their
tracking performance, force generation or stall-force maximization.

As far as the specific contributions of this work are concerned, these
are recapitulated in this section together with the main objectives of
this thesis according to their order defined in sect. 1.2.

Development of a motor model
The main objective of this work was to develop a model of the walking
piezoelectric motor which can faithfully reproduce its dynamic behav-
ior, especially under the influence of an external load. This objective
was motivated by the desire to employ the motor in a force control sce-
nario and the lack of any publicly available motor models of this kind.
Macroscopically, the motor exhibits several non-linear phenomena
including changing motor characteristics due to the choice of driving
signals, frequency-dependent stall-force limits and decreasing drive
velocity under load. Since the working principle of the motor relies
on discontinuous frictional interaction between piezoelectric bimorph
elements (legs) and a ceramic bar (drive rod), the practical derivation
of a motor model is hampered by the difficulty to obtain experimen-
tal data of this interaction from a fully-assembled motor during its
operation. In fact, the only measurements available to the author
were the tangential position of the drive rod and the magnitude of
the tangential load. Based on these measurements, two motor models
have been developed within the scope of this thesis.

The first model (see chapt. 3) is based on the analytic approach and
describes the low-level frictional interactions between the legs and the
drive rod by means of several physically meaningful assumptions with
ten unknown model parameters (see sect. 3.5). The feasibility of the
modeling assumptions is confirmed in a global optimization process
in which the unknown model parameters are identified and result in
a motor model which can fully explain the experimentally measured
data. Furthermore, clusters of physically meaningful parameter values
are found as a side effect of the optimization process which is a strong
indicator for a meaningful choice of model parameters.
The derived model is capable of reproducing the observed non-linear
phenomena in the operation of the walking motor within the full
bandwidth of its rated operation. In particular, the velocity of the
motor does not change proportionally to the level of deflection of
the legs when different driving signals are used. This phenomenon
is explained by the introduction of a hysteretic nonlinearity, which
is motivated by the existence of ferroelectric hysteresis in the piezo-
electric material (see sect. 3.3.3). Also the frequency-dependent stall
force limits and non-linear velocity decrease under load is faithfully
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reproduced by the motor model. The nature of these phenomena is
more complex since it involves frictional interactions in both the static
and dynamic domains. For this reason, the choice of a suitable friction
model is of paramount importance for the analytic motor model. Sev-
eral extensions of the Coulomb friction model have been considered
but could not reproduce the experimental data. These models incor-
porate a discontinuity at zero velocity crossing resulting in a strong
variation of the frictional forces due to the transition between the static
and dynamic part of the friction model. However, this behavior is an
artifact of the oversimplified models. The transition between the static
and dynamic regimes has been shown to be rather displacement- than
velocity-dependent [168]. Furthermore, the increased level of static
friction as compared to dynamic friction depends on the contact time
between the surfaces [160]. These findings speak for the inapplicability
of the discontinues models to describe the frictional phenomena in
the walking motor, especially under high-frequency operation. The
final choice of the LuGre friction model seems to be appropriate since
the LuGre model reproduces the stick-slip transitions in a continuous
manner. In this work, the LuGre model was extended in order to
include the impact dynamics of the legs and the changing friction
levels during the contact with the drive rod. The extended model
accurately reproduces the non-linear velocity decrease under load
which is to be attributed to the prevailing motor operation in the
slipping regime. The nature of the frequency-dependent stall-force
limits, although well reproduced by the model, is more difficult to
explain. Hess and Soom [99], in their studies on the dynamic behavior
of friction, show that the friction force is lower for decreasing than
for increasing velocities. This leads to a hysteresis loop in friction
force with varying velocity. The loop becomes wider at higher rates
of velocity change. This effect corresponds to energy loss which is
more severe for high driving frequencies and is reproduced well by
the LuGre model. The macroscopic effect of decreasing stall-force
limits in the walking motor could be attributed to this phenomenon.
Beside reproducing the non-linear phenomena in motor operation, the
analytic model also sheds light on other aspects affecting the perfor-
mance of the motor. These include the resonant effects above 3 kHz
drive frequency and the relationship between the shape of the driving
signals and the maximal level of motor preload. The new insights
can be utilized in order to develop an alternative motor-drive strategy
beyond the region of rated operation (see next section) and improve
the force generation characteristics of the motor. Furthermore, the
analytic modeling strategy resulted in a collection of linear subsys-
tems not exceeding second order with a clear indication of non-linear
influences. The modular structure of the overall model allows an easy
extension of the model to cover additional aspects of motor operation
(cf. sect. 3.6), especially if low-level experimental data were provided.
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Finally, the reproduction of low-level interactions between the legs
and the drive rod in the physical model allows for its application in
the optimization of driving signals [146] and the investigation of the
feasibility of a biologically inspired drive approach (see below).

The second motor model derived in this work (see chapt. 4) is
based on the experimental approach. Although the analytic model
accurately describes the dynamics of the walking motor and the non-
linear phenomena in motor operation, its disadvantage lies in its
complexity and non-linear nature. This renders its online application
in the prediction of motor response and in the design of a suitable
force control strategy difficult. The experimental model is meant to
address these issues. For this reason, several simplifying assumptions
were made. First, only the holistic motor behavior in x dimension
is considered. Second, the experimental model is valid only for one
particular driving waveform (force). Third, the model is constrained to
drive frequencies up to 2 kHz. These simplifications result in a linear
model as long as a constant load is applied to the motor. However,
since the main purpose of this model is the design of a linear force
controller for the application in a force control scenario, the load
cannot be assumed constant. The experimental model addresses this
issue by including the non-linear load-velocity dependency with help
of a frequency-normalized polynomial fit on the experimental data.
The final model is non-linear but its linearity is eventually restored
in chapt. 7 with help of a feedback linearization technique in the
context of force controller design. Although the generality of the
analytic model is lost, the experimental approach is well suited to
describe the dynamics of the motor in most practical scenarios. The
final model accurately describes motor behavior for drive frequencies
below 2 kHz and load levels below 10 N. Finally, the simple structure
of the experimental model allows for its application in the design of a
linear force controller in chapt. 7.

Feasibility of a bioinspired drive approach
The second objective of this thesis was to investigate the feasibility of
a bioinspired drive approach based on leg coordination mechanisms
found in insects. This objective is motivated by the fact, that the
motor in its current form can only be driven according to the walking
principle (see sect. 2.4.1) in which the legs move in pairs receiving
the same driving signals. This drive strategy is hard-wired in the
motor and is supposed to ascertain a stable operation of the motor
by always providing the drive rod with two supporting contacts to
the legs. However, two reasons speak against this strategy. First, if
more legs were allowed to contact the drive rod, the force generation
capacity of the motor could be improved. This goal harmonizes with
the application of the walking motor as a force generator followed
in this work. Second, the waveform optimization strategy proposed
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by Merry et al. [146] indirectly shows that even with a considerable
flexibility in the design of the shape of the driving waveforms, only
small improvements in the performance of the motor are possible.
Thus Merry’s approach can be seen as an evidence of the inherent
limitations of the pairwise drive strategy. If a coordination mechanism
existed which would ascertain a stable operation of the motor (i.e. at
least two leg contacts at any given time) but would not rely on fixed
pairwise relations among the legs, more legs could contact the drive
rod resulting in a possibly stronger motor. This thesis has shown that
such a mechanism exists and that the performance of the motor can
be significantly improved not only in terms of force generation (up
to 50 % higher stall force limits) but also in terms of maximal motor
velocity (up to 100 % higher velocity, see chapt. 5). The proposed
bioinspired solution relies on leg coordination mechanisms found in
stick insects by Cruse et al. [47, 49]. Beside the idea of a non-standard
application of the biological findings, the contribution of this work
lies in a successful architectural mapping between the different mor-
phologies of the original six-legged model and the walking motor.
Moreover, a new strategy for waveform generation has been proposed
which is intuitive and respects the admissible work area of the legs.
The evaluation of the bioinspired approach would not be possible
without the physical model of motor dynamics developed in chapt. 3

of this thesis. In fact, the superiority of the bioinspired approach
could only be shown in computer simulation since the real motor
is hard-wired for the pairwise drive strategy. The necessary adjust-
ments in the motor allowing the independent operation of all legs
are minimal. The only component which has to be modified is the
flex circuit connecting the external electrical phases to the legs of the
motor. Unfortunately, this simple adjustment has to be done during
the manufacturing process and was not possible for the author. Never-
theless, the theoretical results obtained in this work are reliable. This
is motivated as follows. First, the biologically inspired coordination
mechanism guarantees the stable operation of the motor. This can be
easily seen by considering the number of legs contacting the drive rod
at any time which is always greater than or equal two. Second, for low
and moderate drive frequencies there are at least three or four legs
contacting the drive rod most of the time which has to improve the
load characteristics of the motor. Third, the shape of the waveforms
can be varied flexibly which in the combination with independent
control of the legs results in the largest possible waveform design
flexibility. This fact should again be compared to the work by Merry
et al. [146] since the motor model proposed by Merry, and used to
evaluate the waveforms designed for the pairwise drive strategy, is
less general than the physical motor model developed in this work.
However, even with the less general model, Merry could show the
accordance between the simulation and real experiment for the newly
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designed waveforms. The new degree of freedom gained through
the independent control of all legs can hardly result in a worse per-
formance of the motor. In fact, the optimization process has shown
that the performance of the motor improves rapidly even for a simple
choice of the objective function. Considering the fact, that only two
optimization criteria were pursued in this work – both resulting in a
significant improvement in the performance of the motor – and that
only one particular architectural mapping between the motor and the
biological model with one particular selection of coordination rules
were investigated, the proposed approach has the potential to further
improve other aspects of motor performance.

Development of a force control strategy
The third objective of this work was the development of a force control
strategy suitable for the application in a biologically inspired robot
joint. In this context, two goals were followed. First, the experimen-
tal motor model from chapt. 4 was to be linearized in order to take
advantage of the rich repertoire of mathematical tools for the design
of a linear controller. Second, the controller to be developed was to
consider the influence of series elasticity on force transmission.
The first goal was addressed by developing a load-compensation
strategy based on force feedback in chapt. 7. The proposed strategy
restores the linearity of motor operation even under load if moderate
drive velocities up to 1 kHz and load levels up to 5 N are not exceeded.
The experiments with active load compensation have shown that even
though the effect of external force cannot be compensated completely
for the whole operating range, the compensation keeps the motor
velocity at a constant level for moderate drive frequencies and force
levels. The above limits apply since the drive frequency of the motor
cannot grow infinitely in order to maintain the desired drive velocity.
Furthermore, for high levels of load the non-linear effects in motor op-
eration due to friction gain in importance and cannot be compensated
easily. For the moderate levels of load force, the compensated motor
model can be considered linear.
The fulfillment of the second goal – design of a force controller –
was based on the linearized motor model with load compensation.
Although model based approaches were applicable, the actually de-
signed controller is of PI type due to its better robustness against
model uncertainties. The influence of series elasticities on force trans-
mission was considered through the development of a sensor-tendon
model incorporating the dynamics of the force sensor in series with
an elastic tendon modeled as linear spring of a given stiffness. The
designed controller was tested in the simulation and in real-world ex-
periments by pulling on tendons of different elasticities and showing a
good agreement between the model and the reality. It has been shown
that the designed controller can be successfully applied in a force con-
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trol scenario as long as the series elasticity remains at the effective level
of 10 N/mm or above and the rate of change in the reference force
does not exceed 10 Hz. It should be noted, that depending on the point
of view, the designed force controller is either a linear PI type acting
on a linearized motor or a non-linear adaptive controller incorporating
the load compensation strategy acting on a non-linear motor. As an
additional contribution of this work, the limits on the performance
of a perfect force controller have been investigated theoretically in
dependency of the effective stiffness of the force transmitting tendons.
The performance of the designed controller lies at the level of 55 % of
the theoretical limit.

Feasibility of a muscle-like force generation
The fourth objective of this work was to test the feasibility of a bioin-
spired application of the walking motor as a force generator in a
small-sized robot joint. Two motors were supposed to actuate an
antagonistic joint by transmitting pulling forces through tendons ac-
cording to the concept in Fig. 3. The approach is bioinspired due to
the antagonistic arrangement of the actuators and due to the idea that
the motor together with a force controller and a suitable sensory feed-
back can mimic the force generation characteristics of a muscle. The
long-term objective of such an approach is the possibility to control
the technical actuators by means of myoelectric activity in prosthetic
devices. Accordingly, a simple 1-DOF joint was built allowing for
an antagonistic arrangement of the motors and the integration of po-
sition and force sensors as the pre-requirement for muscle mimicry
based on the model by Hill (see chapt. 8). Additionally, in order to
prevent tendons from going slack the force control architecture from
chapt. 7 was extended with the concept of a virtual tendon. The
force controllers were supposed to track reference forces according
to the force-length relationship of a muscle for the given geometry
of the joint, position of the “virtual muscles” and the levels of their
activation. The final mechanical setup together with motor-drive elec-
tronics and control algorithms was tested in a simple position control
scenario. Beside the audible operation of the motors, which could
possibly be alleviated through damming in a practical application, the
feasibility of the proposed strategy was confirmed. The joint could
track the commanded positions with the largest overshoot below 5 %
of the reference step signal which is a good result considering the
complexity of the approach chosen. In fact, with the given technical
system a positioning task could have been achieved in a better way
by employing a direct position control without muscle mimetic. How-
ever, the strength of the proposed approach lies in the possibilities
of its extension with regard to future applications and neurobionic
control strategies. The contribution of this work lies in the novelty
of the presented approach since piezoelectric motors have not been
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employed as technical muscles or even force generators in any other
work known to the author. This work confirms the feasibility of such
application. The feasibility of muscle mimetic by means of control
of technical actuators in general is a much broader question beyond
the scope of this thesis. Presumably, a pure control-based approach
without the integration of real elastic elements is not sufficient since
no controller is fast enough to counteract a shock. Moreover, the exact
role of joint geometry, co-activation of antagonistic muscles, non-linear
muscle characteristics and reflexes in the generation of movement is
still not sufficiently understood. Some of these open questions have
been addressed recently in [5, 6]. The simplistic architecture with
“virtual muscles” as presented in this work is a framework for further
investigation of these topics.

Beside the above contributions, a small-sized motor-drive electron-
ics as introduced in chapt. 6 has been developed within the scope of
this work and the diploma thesis of Daniel Basa [14] as well as the
Bachelor thesis of Tim Walther [219]. The newly developed electronics
supersedes the commercially-available products due to its compact-
ness and the possibility of waveform generation at much higher drive
frequencies, above 50 kHz, as compared to commercial products. The
latter feature is the foundation for the development of an alternative
motor-drive strategy in overdrive mode (see next section). The circuit
diagrams and the PCB layout images of the new electronics are in-
cluded in appendix C.
Other minor contributions of this work are the development of an algo-
rithmic and a practical approach for waveform generation at a desired
drive frequency and of a motor direction switching strategy which is
compatible with the bioinspired waveform generation approach (see
chapt. 6).

9.2 future work

Beside the development of motor-drive electronics, the antagonistic
joint and the practical control algorithms, the focus of this work
was put on theoretical investigations with regard to motor model
derivation and its bioinspired control. Accordingly, the focus of the
future work is supposed to shift to practical work. Building on the
investigations in this thesis the future work focuses on motor design
and control improvements and practical applications of the motor.

Motor design and control improvements
The force generation capabilities of the walking motor are exceptional
for a motor of its size and weight. However, at the same time the
motor produces disturbing noises in the audible range and is relatively
slow as compared to other motors of similar size. This impedes its
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Figure 75: Motor velocity increase in the overdrive region of operation above
3 kHz for a sine-shaped driving waveform. Three sample mea-
surements (red points) were done for a short-time operation at
10, 15 and 20 kHz resulting in up to ten times higher drive veloc-
ity as compared to the measurements in the nominal region of
operation – black curve in the gray-shaded region. The locations
of three resonant regions R1-R3 at 3, 6 and 12 kHz are indicated
with arrows.

broader application. Based on the findings from the physical model
of motor dynamics (see sect. 3.4.1) both of these deficiencies could
be alleviated if the motor was operated at higher drive frequencies
beyond the resonance region – i.e. in the overdrive region. Fig. 75

illustrates the idea which is supported by experimental data. If the
motor is driven with drive frequencies above 10 kHz and the resonant
regions, as predicted by the physical motor model and observed in
the operation of the real motor, are avoided, the measured motor
velocity is even ten times higher than the maximal rated velocity.
Additionally, at such high drive frequencies no audible noises are
generated. The difficulty in this kind of operation lies in the increased
current consumption which leads to an increased temperature of the
piezoelectric ceramics and may cause a permanent damage to the
driving elements.1 However, an intelligent control strategy is likely to
allow the operation in the overdrive region. The high drive frequencies
could be applied to the motor burst-wise for short periods of time.
In addition, an integral current control or temperature monitoring
strategy could be employed.

The performance of the motor can also be improved by allowing
all legs to be driven independently according to the findings from

1In the ideal electrical approximation a piezoelectric element is a capacitor. The
AC current flowing through a capacitor is proportional to its capacitance and to the
rate of voltage change – i.e. the drive frequency in case of the walking motor. An
increase in current flow results in temperature increase of the piezoelectric ceramics
which leads to further current increase and further temperature increase. This positive
coupling may lead to the loss of piezoelectric properties.
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chapt. 5 and the discussion from the previous section. The theoretical
framework is already given in this work and its practical realization
depends only on a simple modification of the flex circuit within the
production process of the motor. In this context, also alternative
motor designs are possible which bear a stronger resemblance to the
morphology of a stick insect. A six-legged motor with two rows of
legs would not only be stronger but would additionally allow for a
direct mapping between the leg coordination rules found in the stick
insect and the legs in the motor. Further, as already mentioned in the
discussion of chapt. 5, the direct piezoelectric effect could be used in
order to actually sense the contact condition between the legs and the
drive rod. In such case, the true feedback information would allow
for the application of Rule 5 and a better load sharing among the legs.

Practical applications of the motor
The construction of the 1-DOF rotary joint in this work was motivated
by the possibility of a future bioinspired application in prosthetics,
especially for small-sized prostheses of the hand. The size and weight
of the motor allows for the integration of multiple motors in the
forearm of an artificial hand and the force generation capabilities of
the motor are sufficient to actuate artificial fingers. If motor-drive
electronics could be miniaturized further (cf. digital amplification unit
in chapt. 6), the characteristics of the motor improved (cf. stall-force
maximization, overdrive region) and – most importantly – suitable bio-
logical control approaches developed, this kind of practical application
becomes realistic.

Although the application of a piezoelectric motor in a force genera-
tion scenario is non-standard, it does not conflict with a more classical
application which takes advantage of the precise positioning capa-
bilities of piezoelectric motors. This feature is especially important
in the field of medical robotics where the surgeon equipped with a
high-magnification camera needs to precisely control the displacement
of surgical tools. Fig. 76 illustrates several state-of-art robotic systems
for minimally invasive (MI) surgery and the concept of an alternative
system equipped with passively compliant arms and multiple-DOF
tool holders. Each of these systems consists of several robotic arms
which either hold surgical tools or a camera and enter the body of a
subject through small openings called incision points. The entry point
needs to be kept constant independently of the orientation of the tool
in order not to further damage the organic tissue. The disadvantage
of the systems (a) to (c) of Fig. 76 lies in the fact that a change in the
orientation or immersion depth of the tool requires a new inverse
kinematic solution and reconfiguration of a whole arm. This bears
the risk of inter-arm collisions and makes a close placement of the
different incision points difficult. Moreover, in order to keep the in-
cision points constant, often a technically demanding, non-intuitive
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Figure 76: Robotic minimally invasive surgical systems including (a) the
commercially available DaVinci [137] telerobotic system and a
selection of research projects: (b) the MiroSurge [92] of DLR (Ger-
many) and (c) the RobinHeart mc2 [151] of the Foundation for
Cardiac Surgery Development (Poland). (d) shows the concep-
tion of a surgical robot consisting of passively positionable arms
and 6-DOF platforms for holding and adjusting the positions of
laparoscopic tools.

calibration procedure has to be carried out. Some of these problems
can be mediated e.g. by pre-operational planning and/or use of re-
dundant arms. But this solutions depend on an increased complexity
either on the hardware or the software side and do not support a more
intuitive approach to the surgery. An alternative approach is shown
in Fig. 76(d) where the MI-surgery robot consists as before of a few
robotic arms, each of which holds now a 6-DOF platform to which
a surgical tool is attached. In this setup the arms function mainly as
passive holders for the actual tool holders. In other words, not the
arms but the tool holders are responsible for orientation or immersion
depth change of the tools. The main advantage of this setup lies in the
absence of any large or unintuitive movements of the arms. In fact, a
completely passive system with only a few degrees of freedom whose
position could be fixed at a suitable location close to the incision point
is sufficient for this kind of application. Any DOFs required for the
tools are covered by the tool holders directly at the points of interest.
The surgeon can shape the passive or actively compliant [3] arm into
a suitable ergonomic configuration without the need of any special
configuration procedure. From this point on, any additional move-
ment of a relatively small magnitude is performed by the tool holder
directly at the patient’s body. The link between the idea of a surgical
scenario as described above and the walking motor lies in the fact that
the tool holder needs to be actuated. For this purpose small-sized and
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Figure 77: Concept and mechanical realization of a 6-DOF platform driven
by the walking motors. (a) shows the passive mechanical con-
struction of the platform supported by six “legs”. (b) illustrates
the principle of operation of an extensible platform leg when ac-
tuated by the walking motor. Each leg is equipped with position
and force measuring sensors.

lightweight actuators are necessary in order not to increase the inertia
of the robotic arm. Moreover, the actuators have to be able to generate
large enough forces in order to hold the surgical tools together with
their actuation units and allow for precise displacements. The velocity
of the actuators is of second-rank importance. The walking motor is
likely to fulfill this kind of practical requirements and offers the addi-
tional advantage of EMR-compatibility which is important in medical
applications. In fact, a small-sized 6-DOF platform has been already
built by the author and is depicted in Fig.77. The platform can change
its orientation and position in all dimensions of the six-dimensional
space by changing the length of the platform legs according to the
inverse kinematic solution of a 6-UPS Stewart platform [52]. The
passive mechanical construction shown in Fig.77(a) can be actuated
by the walking motors according to the idea shown in Fig.77(b). Each
platform leg is equipped with a force sensor. This makes this setup
capable of a six-dimensional force measurement which can be used
for example to prevent an extensive stress on the tissue at the incision
point or to implement an impedance controller. The implementation
of suitable control strategies for the 6-DOF platform is the actual work
in progress.
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A APPENDIX A

abstract

This appendix contains a detailed description of the manufacturing processes
involved in the production of the piezoelectric legs which are used as driving
elements in the walking piezoelectric motor. The description is based on
an extensive literature research. The actual production process may differ
marginally.

The production process of the driving elements of the walking
piezoelectric motor consists of several steps depicted schematically
in Fig. 78. The following textual description is based on an extensive
literature research carried out by the author [209, 203, 208, 185, 186,
132].

In a first step of the production process, an appropriate PZT ceramic
powder composition (see sect. 2.2.2) has to be obtained. For this
purpose relevant amounts of PbO, ZrO2 and TiO2 oxides together
with other additives (doping) are weighed, mixed in water with a ball
mill, dried and calcined at a high temperature of 800-1000

◦ C.1 Then a
ball mill is used again to grind the mixed material into fine powder.
Particle shape, size, distribution and compositional uniformity are
the key factors to be controlled in the raw powder in order to realize
reproducibility of piezoelectric characteristics [208]. The difficulty in
the oxide-mixing and subsequent milling technique lies in the fact
that particle sizes below 1 µm cannot be obtained, contamination by
milling media occurs and compositional uniformity is inferior to e.g.
wet chemical methods [208]. However, this method has proved to
be a good compromise between low costs, reproducibility and good
piezoelectric properties [203, 208]. For the walking piezo motor, soft-
type PZT powder (EDO EC-76) with the grain size of 1.5 µm is used.

In a next step, the ceramic powder is mixed with a solvent (toluene)
and dispersant/plasticizer (Ferro 704SMO1201 PT) to prevent settling,
and is then ball-milled for 16 hours. Subsequently, a polymer binder
(Ferro resin solution B74001) is added and the solution ball-milled
again for 1 hour. In this way a ceramic slurry is obtained in which
the powder body accounts for 50− 60 % of the overall volume in the
polymerized matrix [209]. The slurry is passed through a fine-mesh
fabric and cast on a glass plate coated with an adhesive plastic film

1Calcination refers in this context to a thermal treatment process in the presence
of oxygen with the goal to purify the ceramic powder from chemical impurities.
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Figure 78: Flowchart of the fabrication process of a multilayer actuator ac-
cording to a variation of the tape-casting method. Boldface text
indicates the fabrication stages and italic text the processes in-
volved in the transition from one stage to another.

(Nitto tape SWT20). Either a tape caster or a special straight blade
(doctor blade) is used to distribute the slurry evenly over the surface
of the carrier. The normal distance to the carrier determines film
thickness of the deposited layer. In case of the walking piezo motor
the thickness is 56 µm. The casted layer is then dried at an elevated
temperature and the solver evaporates. The layer becomes rubber-like
(i.e. it has the elastic flexibility of a rubber or synthetic leather) and
is called a green sheet. An electrode pattern is screen-printed on the
green sheet using Au/Pd paste (Ferro E-1192) through a mask (screen).
The paste consists of a fine metallic powder, polymeric binder and
solver. The mask is a woven polyester screen (Saatilene Hitech 120.34)
which can be penetrated only at certain spots. The paste is printed by
a squeegee which presses it through the mask. Then the paste is dried
and forms an additional 5 µm layer on the green sheet. This layer is
milled with a fine milling tool to a desired shape (patterning) and
forms an internal electrode.

The process is repeated and new green sheet and electrode layers
are deposited on top of each other. However, the electrode patterns
alternate with every layer between the ground and phase electrodes,
whereas the phase electrodes are partitioned into two bimorph halves.
Different electrode patterning techniques exist [209]. In case of the
walking piezoelectric motor, conventional interdigital electrodes are
used. After several (up to 100) PZT and electrode layers have been
deposited the green sheet is cut into an appropriate shape – the green
chips. Multiple green chips are laminated and pressed together using
a hot press. The pressure of 47 MPa is applied for 2 minutes at room
temperature followed by another 2 minutes at 60◦ C and 21 MPa. The
obtained green elements are then heated to about 500◦ C to let the
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binder evaporate in a N-rich atmosphere. After debinding the green
elements are sintered at 1200− 1300◦ C for 1-2 hours in a furnace
in Pb-saturated air.2 During this process, the atoms in the powder
particles diffuse across the boundaries of the particles, fusing the
particles together and promoting crystal bonding without significant
distortion of the molded shape. The process eliminates pores and
increases ceramic density leading to a greater structural stiffness
and fracture toughness [208]. The properties of the ceramic strongly
depend on the number of pores and the grain size, as the grains
grow and change shapes during sintering, besides the actual powder
composition. Grain size of about 4 µm is considered optimal [203].
After sintering, the multilayer elements are not called green anymore.
An Ag-paste (Cerdec) with a polymeric binder is deposited on the
sidewalls connecting to the internal electrodes and sintered at a lower
temperature (650◦ C) forming the external electrodes. The other faces
are coated with a water-proof spray to prevent flash over. Four of
the multilayer elements are glued to an aluminum holder with an
adhesive (Epo-Tek 353ND) and diamond-polished to an equal height.
A flexible circuit board is soldered with a Pb/Sn solder (Multicore
Sn62RA10BAS86) to the external electrodes. Then the multilayer
elements are poled by applying a 50 V voltage to all phases for 10

minutes at room temperature. Due to the remanent strain after poling,
the by now multilayer actuators (legs) are diamond-polished again
and aluminum oxide plates (caps) are glued on top of them to serve
as wear resistant contact surfaces (friction pads) against the slider.

At this point the drive unit with four legs is ready and can be placed
inside the motor housing. Before assembling the motor completely
as described at the beginning of this section, an additional step is
taken. The space between the legs in the basin of the lower housing,
is filled with a resin-like substance to protect the drive elements from
dust and humidity as well as to provide an additional support for the
glued legs. Besides its protective function this resin-like substance has
a strong effect on the damping characteristics of the moving legs as
shown in sect. 3.5 of chapt. 3.

2After debinding the green bodies are sometimes called brown.
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B APPENDIX B

abstract

This appendix shows the derivation of the algorithm for the computation of
a solution to the Bézout’s identity. The algorithm can be used to compute
an exact solution in finite time if all coefficients in the identity are integer
numbers. It delivers an approximative integer solution for real coefficients.

b.1 bézout’s identity

Bézout’s identity is named after the French mathematician Étienne
Bézout and is a special case of a linear Diophantine equation. It states
that for two integer numbers a and b with a or b 6= 0 and (a, b)
being the greatest common divider of a and b, there exist two integer
numbers ξ and η such that the following identity holds

(a, b) = aξ + bη. (167)

Proof 1

Let D be a set of all natural numbers 2 having the form ax + by. The
set is not empty since assuming e.g. a 6= 0, it has to contain at least
one positive number out of

a = a · 1 + b · 0, −a = a · (−1) + b · 0. (168)

Let d be the smallest number in D, then for some ξ and η

d = aξ + bη (169)

and it holds that n ≥ d for any other number n in D. To show that
ax + by is divisible by d without a remainder for all integer x and y,
let the opposite be assumed. This means that for some x0 and y0 the
following equality has to be true

k = qd + r = ax0 + by0, (170)

where r ∈ {1, 2, . . . , d− 1} is the remainder and q the quotient. From
(169) and (170) it follows that r is a natural number smaller than d and

r = k− qd = ax0 + by0 − q(aξ + bη) = ax + by (171)

1The proof is compiled from [184].
2Adapting the traditional definition of natural numbers as positive integers.
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for x = x0 − qξ and y = y0 − qη. But this means that r belongs to D
and is smaller than d which contradicts the definition of D. Thus the
expression ax + by is divisible by d for all integer x and y. Further,
both

a = a · 1 + b · 0 and b = a · 0 + b · 1
are divisible by d so d is their common divider. To proof that d is in
fact their greatest common divider, let δ be a common divider of a
and b. In this case there exist integer numbers t and u such that a = tδ
and b = uδ. It follows that

d = aξ + bη = (tξ + uη)δ (172)

and thus δ|d, i.e. δ is a divider of d. So d is divisible by any other
common divider of a and b. And because d > 0 a and b cannot have
any common divider greater than d, i.e. d = (a, b).

The above considerations show that for integer numbers a, b and m

ax + by = m (173)

m has to be a multiple of d = (a, b) if (173) is to be solvable in integer
numbers. To show that this condition is not only necessary but also
sufficient, let

a = a′d, b = b′d and m = m′d.

a′ and b′ are obviously coprime integers and we have

a′ξ + b′η = 1. (174)

If we can find ξ and η which solve (174) (see next section) and set

x0 = m′ξ, y0 = m′η (175)

it follows that

ax0 + by0 = a′dm′ξ + b′dm′η = (a′ξ + b′η)m = m (176)

which shows (a, b)|m.
QED

b.2 euclidean algorithm and continued frac-
tions

From the previous section we know that to solve the Bézout identity it
is sufficient to find integer numbers ξ and η which satisfy (174). Note
that if one integer solution can be found, infinitely many other integer
solutions follow from equating (173) and (176).
The question remains how to find ξ and η. This can be done by
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employing the Euclidean algorithm or equivalently finding the contin-
ued fraction representation of a/b and performing some additional
computations. This method is sketched shortly below. Later in this
section, the continued fraction representation is used as a formal way
of deriving the solution formulae. Finally, a simple algorithm for
solving (174) is given in sect. B.3 as a Matlab 3 program.

The Euclidean algorithm is a method for finding the greatest com-
mon divider (a, b) of two integer numbers a and b and is named after
the Greek mathematician Euclid who first described it in books 7

and 10 of his Elements [93]. Although well known, the algorithm is
sketched here shortly in order to set up the notation and show its
relation to finding the continued fraction expansion of a number. Let
a, b ∈ Z, q the quotient and r the remainder of the a by b division

a = qb + r. (177)

From (177) it follows that every common divider of a and b has to be
a divider of r as well. Thus (a, b) = (b, r). By setting

a = n0, b = n1, r = n2,

we have the following equalities for successive divisions

(n0, n1) = (n1, n2),

(n1, n2) = (n2, n3),

............

(nk−1, nk) = (nk, nk+1),

(178)

where n3 is the remainder from the division of n1 by n2 and so on.
Because n1 > n2 > . . . ≥ 0, this series of integers has to be finite. The
last number nk 6= 0 in the series (i.e. the following nk+1 = 0) is the
greatest common divider of n0 and n1 (or a and b).

By memorizing the successive quotients q1, q2, . . . , qk in the divisions
of (178) according to

n0 = q1n1 + n2,

n1 = q2n2 + n3,

..........

nk−1 = qknk

(179)

or equivalently

n0

n1
= q1 +

1
n1
n2

,

n1

n2
= q2 +

1
n2
n3

,

..........
nk−1

nk
= qk.

(180)

3The MathWorks Inc., Natick, MA, USA.
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we also find the continued fraction expansion of n0/n1 = a/b as

n0

n1
= q1 +

1

q2 +
1

q3 +
1

. . . +
1

qk−1 +
1
qk

. (181)

Clearly, we can express every rational number n0/n1 in the above
form with a finite number of terms [184]. In a more compact notation
we can also write

q1 +
1|
|q2

+
1|
|q3

+ . . . +
1|
|qk

(182)

or
[q1; q2, q3, . . . , qk]. (183)

Note that the fractional terms show up after a semicolon in the latter
representation. Turning back to (174), setting n0 = a′ and n1 = b′,
and computing either the series of quotients or the continued fraction
expansion of n0/n1 we find at step k that nk = 1. We can write

nk = nk−2 − qk−1nk−1 = 1 (184)

and by successive reduction of terms as in

nk−1 = nk−3 − qk−2nk−2

we realize that

nk = −qk−1nk−3 + (1 + qk−1qk−2)nk−2

which after a series of further substitutions leads in the end to

nk = 1 = n0ξ + n1η

for some ξ and η consisting of a combination of quotients qi ∈ {1, . . . , k− 1}.
This solves the Bézout’s identity with integer coefficients.

Let us express the above findings in a more general framework
related to continued fractions. Continuants or continuant polynomials
are the key to the study of continued fractions [83]. The continuant
polynomial Kn(x1, x2, . . . , xn) having n parameters is defined by the
following recurrence

K0() = 1;

K1(x1) = x1;

Kn(x1, x2, . . . , xn) = xnKn−1(x1, . . . , xn−1) + Kn−2(x1, . . . , xn−2).
(185)
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It can be easily shown by induction [184] that the continued fraction

[a0; a1, a2, . . . , an] (186)

can be equivalently expressed as

Kn+1(a0, a1, . . . , an)/Kn(a1, a2, . . . , an) =
Pn

Qn
= Rn (187)

where Rn is called the n-th convergent to the continued fraction (186)
and n ∈N∪ 0. We also have [184]

(−1)k = Pk−1Qk −Qk−1Pk for k ∈ {1, 2, . . . , n}. (188)

We will use relations (185)-(188) in showing how continued fraction
expansion can be used to (approximatively) solve the Bézout’s identity
with arbitrary real coefficients. But first, let us introduce an alternative
way of finding the continued fraction expansion of a rational number q
to the one shown in (179)-(180). Assume that we know the expansion
to be

q = [a0; a1, a2, . . . , an]. (189)

By defining
xk = [ak; ak+1, . . . , an] (190)

for k ∈N∪ {0} (i.e. x0 = w and xn = an) and knowing that a1, . . . , an

are natural numbers we see that ak < xk and xk > 1. We also see from
the above definition that (190) can be expressed as

xk = ak +
1

xk+1
. (191)

Thus, from ak < xk < ak + 1 and xk+1 > 1 we conclude that ak = bxkc 4

and
xk+1 =

1
xk − bxkc

. (192)

Using (192) and the equality ak = bxkc we can compute all terms in
(189). For a rational number the number of terms in (189), or in other
words the series {an}, is finite (see above). Sierpiński [184] also shows
that the expansion (192) has an unique normal form, i.e. there is only
one possible finite expansion of q with an > 1. Now, if a real number
p is irrational, the series {xn} and {an} have to be infinite since we
always have

xk+1 > 1

due to (192) and 0 < xk−bxkc < 1. Let us show that Rn = [a0; a1, a2, . . . , an]

converges to p for n→ ∞. From (191) we can show that

x0 = [a0; a1, a2, . . . , an−1, xn]. (193)

4With bxkc being the greatest integer not larger than xk; also called the entier or
floor function.
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Recalling (185) and (187) we have

Rn =
Pn−1an + Pn−2

Qn−1an + Qn−2

which after substituting an by xn transforms to

x0 =
Pn−1xn + Pn−2

Qn−1xn + Qn−2
(194)

in accordance with (193). Because (194) is valid for all natural n we
also have

x0 =
Pnxn+1 + Pn−1

Qnxn+1 + Qn−1

and thus
x0 − Rn =

Pnxn+1 + Pn−1

Qnxn+1 + Qn−1
− Pn

Qn
.

Together with (188) we arrive at

x0 − Rn =
(−1)n

(Qnxn+1 + Qn−1)Qn
. (195)

Because xn+1 > an+1 we may conclude

|x0 − Rn| <
1

(Qnan+1 + Qn−1)Qn
=

1
Qn+1Qn

. (196)

To show the convergence of Rn to p = x0 (or of the left-side term in
(196) to 0), let us show that Qk ≥ k. For k = 1 it is trivial because
Q1 = a1 is a natural number. The same holds true for k = 2 according
to (185) and (187). Now, let us assume Qk ≥ k for k = n and n ∈ N.
Because Qn−1 and an+1 are natural numbers we have

Qn+1 = Qnan+1 + Qn−1 ≥ Qn + 1 ≥ n + 1,

which proves Qk ≥ k for k = n + 1. Thus, by induction Qk ≥ k is true
for all natural k and we finally conclude that

|x0 − Rn| <
1

n(n + 1)
(197)

which shows that Rn converges to p for n→ ∞.
In order to find a solution to (174) and thus to the Bézout’s identity,
let us write

Pn

Qn
=

a′

b′
.

Since a′ and b′ are coprime, it has to be

Pn = ±a′, Qn = ±b′, (198)

where the upper sign is taken for a positive b and the lower sign
otherwise. This follows from the fact that the expansion (189) has a
negative coefficient a0 for w < 0, i.e. sign(a′/b′) = −1 and in this case
Pn is negative. On the other hand, Qn is always positive since it does
not contain the term a0.
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Knowing the sign of a′ and b′ beforehand we may sketch the follow-
ing sign table

a′ + + - -
b′ + - + -
Pn + -© - +©
Qn + +© + +©

where the encircled signs do not correspond to their counterparts in
the first two rows. A multiplication of Pn and Qn with sign b restores
the missing correspondence. From (188) we find out now that

±(−1)nPn−1b′ ∓ (−1)nQn−1a′ = 1, (199)

which shows that

ξ = ∓(−1)nQn−1 and η = ±(−1)nPn−1 (200)

and solves (174). However, note that so far we have no explicit knowl-
edge about the quality of this solution for irrational numbers. For
issues connected with irrational numbers, the interested reader is
referred to the theory of Diophantine approximations [128] and Padé
approximants [12].

b.3 algorithmic solution to bézout’s iden-
tity

The computation of an approximative solution to (174) is given below
in form of a simple Matlab program. The algorithms used below
are kept in a simple (not optimized) form in order to retain a clear
correspondence to the mathematical theory from the previous sections.
Let us redefine (174) as

ax + by = 1 (201)

in order to contain ASCII characters only (i.e. x = ξ and y = η). The
program consists of two function: cfe() which computes the first n
coefficients in the continued fraction expansion of a/b and bezout()
which uses the values returned by cfe() in order to solve (201) in integer
numbers.
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1 function as = c f e ( a , b , n )
2 %% c f e − f i n d s n f i r s t c o e f f i c i e n t s o f t h e
3 % t h e c o n t i n u e d f r a c t i o n s e x p a n s i o n
4 % o f a / b
5 %
6 % as = c f e ( a , b , n ) r e t u r n s t h e nmax c o e f f i c i e n t s
7 % in a row v e c t o r a s . For a r a t i o n a l a / b
8 % l e n g t h ( a s ) may be < n .
9 %

10 % Examples
11 % c f e ( 1 0 7 1 , 4 6 2 , 1 0 ) r e t u r n s [ 2 , 3 , 7 ]
12 % c f e ( 0 , 5 , 1 0 ) r e t u r n s 0
13 % c f e ( 2 3 . 4 , p i , 5 ) r e t u r n s [ 7 , 2 , 4 , 1 , 2 ]
14 %
15 % See a l s o f l o o r .
16

17 a s s e r t ( b ˜=0 , ’ Divis ion by 0 . ’ ) ;
18

19 % i n i t i a l i z e s t h e f i r s t t e rms
20 xp = a/b ;
21 ap = f l o o r ( xp ) ;
22 as = [ ap ] ;
23

24 % s e t s t h r e s h o l d f o r f i n i t e p r e c i s i o n c o m p u t a t i o n
25 eps = 1e−6;
26

27 idx = 1 ;
28 while ( idx<n )
29 tmp = xp−f l o o r ( xp ) ;
30

31 % f i n i t e s o l u t i o n found
32 i f tmp<eps , break ; end
33

34 xn = 1/tmp ;
35 an = f l o o r ( xn ) ;
36 xp = xn ;
37 idx = idx +1 ;
38 as ( idx ) = an ;
39 end
40

41 % g e t s t h e normal e x p a n s i o n
42 i f ( idx >1) && ( as ( idx )==1 ) ,
43 as ( idx−1)=as ( idx −1)+1 ; as ( idx ) = [ ] ;
44 end
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1 function [ x , y , e ] = bezout ( a , b , n )
2 %% b e z o u t − f i n d s an a p p r o x i m a t i v e s o l u t i o n
3 % t o ax+by=1 in maximal ly n s t e p s
4 %
5 % [ x , y , e ] = b e z o u t ( a , b , n ) r e t u r n s t h e i n t e g e r s
6 % x , y and an e r r o r e f o r which
7 % ax+by−1 = e .
8 %
9 % Examples

10 % [ x , y , e ] = b e z o u t ( 4 2 1 , 1 1 1 , 1 0 )
11 % r e t u r n s [−29 ,110 ,0 ]
12 % [ x , y , e ] = b e z o u t (771 ,−23 ,5 )
13 % r e t u r n s [ 2 , 6 7 , 0 ]
14 %
15 % See a l s o c f e .
16

17 % g e t t h e f i r s t n or l e s s c o e f f i c i e n t s from c f e
18 as = c f e ( a , b , n ) ;
19 n = numel ( as ) ;
20

21 % s i g n ( b ) d e t e r m i n e s t h e s o l u t i o n c a s e
22 sb = sign ( b ) ;
23

24 % a l l o c a t e memory f o r P and Q
25 ps = zeros ( 1 , n ) ;
26 qs = zeros ( 1 , n ) ;
27

28 % n o t e t h e 1−b a s e d i n d e x i n g in Matlab
29 ps ( 1 ) = as ( 1 ) ;
30 qs ( 1 ) = 1 ;
31

32 x = sb∗qs ( 1 ) ;
33 y = (−sb )∗ ps ( 1 ) ;
34

35 i f n>1

36 ps ( 2 ) = as ( 1 )∗ as ( 2 ) + 1 ;
37 qs ( 2 ) = as ( 2 ) ;
38 x = −(sb )∗ qs ( 1 ) ;
39 y = sb∗ps ( 1 ) ;
40 end
41

42 i f n>2

43 for i x =3 :n ,
44 ps ( i x ) = ps ( ix −1)∗as ( i x ) + ps ( ix −2) ;
45 qs ( i x ) = qs ( ix −1)∗as ( i x ) + qs ( ix −2) ;
46 end
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47 x = (−sb )∗ ( −1 ) ˆ ( n−1)∗qs ( n−1) ;
48 y = ( sb )∗ ( −1 ) ˆ ( n−1)∗ps ( n−1) ;
49 end
50

51 e = a∗x+b∗y−1;

For practical applications upper bounds on the solution (x, y) have to
be set in order to terminate the computation for an irrational a/b since
then Qn and Pn grow infinitely for n → ∞. Furthermore, a solution
to (174) can be obtained more efficiently using a fast implementation
of the Extended Euclidean Algorithm [124] which solves the Bézout’s
identity using the relation (184).
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C APPENDIX C

abstract

This appendix contains the circuit diagrams and PCB layout images of the
motor drive electronics which has been developed within the scope of this
thesis and the final theses of Daniel Basa and Tim Walther [14, 219].
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Figure 79: Circuit diagram: FPGA I/O configuration after [14].
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Figure 80: Circuit diagram: power supplies and clock generation after [14].
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Figure 81: Circuit diagram: Microcontroller I/O and SD interface after [14].

206



P
D

I-I
nt

er
fa

ce
R

S
48

5
JT

A
G

R
S

48
5 

Tr
an

sc
ei

ve
r

B
yp

as
s 

fo
r R

S
48

5 
Tr

an
sc

ei
ve

r

S
lim

S
ta

ck
 P

lu
g 

(C
on

tro
lle

r B
oa

rd
)

S
lim

S
ta

ck
 R

ec
ep

ta
cl

e 
(D

ig
ita

l A
M

P
)

S
lim

S
ta

ck
 R

ec
ep

ta
cl

e 
(A

na
lo

g 
A

M
P

)

G
N

D
G

N
D

G
N

D0.
1u

12
0

SLIMSTACK040-0808PLUG

SLIMSTACK040-0808RECEPTACLE

SLIMSTACK040-0808-RECEPTACLE

P
IC

O
B

LA
D

E
-3

P
IN

S
ID

E

LT
C

28
50

H
D

D

1k

C
67

R
18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4041

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

CON2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4041

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

CON4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4041

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

CON3

123C
O

N
1

R
O

1

R
E

2

D
E

3

D
I

4
G

N
D

5

A
6

B
7

V
C

C
8

IC
5

1 2 3 4 5 6

1 2 3 4

R41

G
N

D
G

N
D

G
N

D

GND

V
C

C
3V

3

V
C

C
3V

3

V
C

C
3V

3
V

C
C

3V
3

R
S

42
2_

R
X0

R
S

42
2_

TX
0

R
S

42
2_

TX
0_

E
N

B
U

S
_U

C
2P

C
_B

B
U

S
_U

C
2P

C
_B

B
U

S
_U

C
2P

C
_A

B
U

S
_U

C
2P

C
_A

R
E

S
E

T_
P

D
I_

C
LK

P
D

I_
D

AT
A

JT
A

G
_T

M
S

JT
A

G
_T

D
I

JT
A

G
_T

C
K

P34
P35
P36

P40
P41

P47
P48
P49

P54

P62

P27

P32
P33

P24

P18

P18

P17
P16

P15

P15

P22

P61

P53

P57

P66

P12
P11

FB

N$42

LIB.2
HIB.2
N$49
LID.2
HID.2
N$52

N$52

LIB.1
HIB.1
LID.1

HID.1
HIC.1

N$59
HIA.1
LIA.1
N$62
HIC.2
LIC.2
N$65

HIA.2

N$72

LIC.1

LIA.2

N$46
N$47

N$50

N$51

N$51

N$53
N$54

N$56

N$60

TD
O

_P
F

N$30

N$55

N$58

N$61
N$63

N$57

DB4
DB5

DB6
DB7

DB2
DB1

DB0

WR
A1

A0

LDAC
DB3

A B C D

1
2

3
4

5
6

A B C D

1
2

3
4

5
6

R
X 

&
 T

X

Figure 82: Circuit diagram: inter-board connectors and communication in-
terface after [14]. 207



IC
12

 P
ow

er
 S

up
pl

y
B

yp
as

s 
C

ap
ac

ito
r f

or
 IC

14
 &

 IC
15

In
st

r. 
A

m
p 

fo
r F

or
ce

 S
en

so
r 0

In
st

r. 
A

m
p 

fo
r F

or
ce

 S
en

so
r 1

P
re

ci
si

on
 V

ol
ta

ge
 R

ef
er

en
ce

IN
P

U
TS

O
U

TP
U

TS

P
re

ci
si

on
 V

ol
ta

ge
 R

ef
er

en
ce

R
ef

er
en

ce
 V

ol
ta

ge
 fo

r I
A

U
se

 1
k 

fo
r 2

V
 a

nd
 2

.6
k 

fo
r 1

.5
V

Vo
ut

 =
 V

in
* R

2/
(R

1+
R

2)
 

G
 =

 2
*R

37
/R

36

A
ct

ua
l G

 is
 2

60
7 

(s
ui

ta
bl

e 
fo

r u
ni

di
re

ct
io

na
l a

nd
 s

ym
m

et
ric

 a
m

pl
ifi

ca
tio

n)

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

GND

V
C

C
3V

3

V
C

C
5V

0

3.
92

k

3.
92

k

2.
4k

2.
32

k
4.

42
k

2.
4k

2.
32

k
4.

42
k

56
0p

56
0p

0.
1u

0.
1u

0.
1u

0.
1u

0.
1u

0.
1u

0.
1u

0.
1u

47
n

47
n

LM
41

25

0.
1u

22
n

V
R

E
F

FS
0

FS
1

1u
1u

A
D

85
53

A
D

85
53

O
PA

43
54

A
IP

W
T

O
PA

43
54

A
IP

W
T

O
PA

43
54

A
IP

W
T

O
PA

43
54

A
IP

W
T

1u

LM
41

25

0.
1u

22
n

1k

G
N

D

3.92k

5.
11

M

5.
11

M

R
36

R
39

R
42

R
43

R
44

R
45

R
46

R
47

C
92

C
93

C
91

C
10

0

C
10

1
C

10
2

C
94

C
95

C
97

C
98

C
96

C
99

G
N

D
2

V
IN

4
V

O
U

T
5

IC
13

C
10

4

C
10

7

C
10

5
C

10
6

IC
14 R

G
A

1

V
IN

+
2

V
C

C
3

V
O

4

V
FB

5
E

N
A

B
LE

6

V
R

E
F

7

G
N

D
8

V
IN

-
9

R
G

B
10

IC
15 R

G
A

1

V
IN

+
2

V
C

C
3

V
O

4

V
FB

5
E

N
A

B
LE

6

V
R

E
F

7

G
N

D
8

V
IN

-
9

R
G

B
10

23
1

IC
12

A

65
7

IC
12

B

910
8

IC
12

C

1312
14

IC
12

D

114
V-V+

C
10

3
G

N
D

2

V
IN

4
V

O
U

T
5

IC
30

C
16

1

C
16

2

1 2 3 4

1 2 3 4

R99 R100

R
37

R
38

A
G

N
D

A
G

N
D

A
G

N
D

A
G

N
D

A
G

N
D

V
R

E
F

V
R

E
F

V
R

E
F

V
C

C
3V

3
V

C
C

3V
3

V
C

C
3V

3
V

C
C

3V
3

V
C

C
3V

3

V
C

C
3V

3

V
C

C
3V

3

V
C

C
3V

3

V
C

C
3V

3

V
C

C
3V

3

V
C

C
3V

3

V
IN

+_
0

V
IN

+_
0

V
IN

-_
0

V
IN

-_
0

V
IN

+_
1

V
IN

+_
1

V
IN

-_
1

V
IN

-_
1

V
O

_0

V
O

_0

V
O

_1

V
O

_1

FS
0

FS
1

G
N

D

V
R

E
F_

IA

V
R

E
F_

IA

V
R

E
F_

IA

+

+

+

A B C D

1
2

3
4

5
6

A B C D

1
2

3
4

5
6

Figure 83: Circuit diagram: instrumentation amplifier and low pass filtering
after [14].208



S
C

K
 <

->
 M

A
M

IS
O

 <
->

 S
LO

M
O

S
I <

->
 S

LI

IC
M

H
 P

in
s

S
en

so
r c

on
ne

ct
or

s

Vo
lta

ge
 T

ra
ns

la
tio

n 
fo

r Q
C

0

Vo
lta

ge
 T

ra
ns

la
tio

n 
fo

r Q
C

1

Vo
lta

ge
 T

ra
ns

la
tio

n 
fo

r I
C

M
H

1

cl
oc

ki
ng

 fo
r q

ua
dr

at
ur

e 
co

un
te

r

qu
ad

ra
tu

re
 c

ou
nt

er
 0

qu
ad

ra
tu

re
 c

ou
nt

er
 1

P
W

R
 4

 V
ol

ta
ge

 T
ra

ns
la

tio
n

P
W

R
 4

 In
ve

rte
r

In
ve

rte
r f

or
 Z

-S
ig

na
l (

3.
3V

)

Vo
lta

ge
 T

ra
ns

la
tio

n 
fo

r I
C

M
H

0

IN
P

U
TS

O
U

TP
U

TS

V
C

C
A

V
C

C
B

V
C

C
A

V
C

C
B

V
C

C
A

V
C

C
B

V
C

C
A

V
C

C
B

V
C

C
A

V
C

C
B

V
C

C
A

V
C

C
B

V
C

C
A

V
C

C
B

V
C

C
A

V
C

C
B

V
C

C
3V

3

V
C

C
3V

3

GNDGND

A
S

F1
 2

0M
H

z

Q
ua

d.
 C

ou
nt

er
 0

Q
ua

d.
 C

ou
nt

er
 1

S
N

74
LV

C
8T

24
5

S
N

74
LV

C
8T

24
5

S
N

74
LV

C
8T

24
5

S
N

74
LV

C
8T

24
5

S
N

74
LV

C
8T

24
5

S
N

74
LV

C
8T

24
5

S
N

74
LV

C
8T

24
5

S
N

74
LV

C
8T

24
5

S
N

74
LV

C
2G

U
04

S
N

74
LV

C
2G

U
04

10k

10k

10k

G
N

D

10k

10k

10k

G
N

D

10k

G
N

D

V
C

C
3V

3

V
C

C
5V

0

S
P

IF
_S

C
K

S
P

IF
_M

O
S

I

S
P

IF
_S

S

S
P

IF
_S

S

S
P

IE
_S

S

S
P

ID
_S

S

S
P

IE
_S

C
K

S
P

IE
_M

O
S

I

S
P

IE
_S

S

S
P

ID
_S

C
K

S
P

ID
_M

O
S

I

S
P

ID
_S

S
0.

1u

10k

G
N

D

24

3

Q
8 G
N

D

V
C

C
1

FOO
E

FC
K

O
1

FC
K

I
2

V
S

S
3

S
S

4

S
C

K
5

M
IS

O
6

M
O

S
I

7

V
D

D
14

C
N

T_
E

N
13

A
12

B
11

IN
D

E
X

10

D
FL

A
G

9

LF
LA

G
8

LS7366R

IC
11

FC
K

O
1

FC
K

I
2

V
S

S
3

S
S

4

S
C

K
5

M
IS

O
6

M
O

S
I

7

V
D

D
14

C
N

T_
E

N
13

A
12

B
11

IN
D

E
X

10

D
FL

A
G

9

LF
LA

G
8

LS7366R

IC
16

3
21

IC
17

A

4
20

IC
17

B

5
19

IC
17

C

6
18

IC
17

D

7
17

IC
17

E

8
16

IC
17

F

9
15

IC
17

G

10
14

IC
17

H

11
1

IC17PWR

G
N

D
V

C
C

A
24

V
C

C
B

D
IR

12

V
C

C
B

23
13

G
N

D

2G
N

D

O
E22

A
1

A
2

IC
18

A

C
1

C
2

IC
18

B

B1B2 IC
18

P
W

R

GNDVCC

R48

R49

R50

R51

R52

R53

R54

C
15

5 12345

12345

1 2 3 4

1 2 3 4

R101

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D

G
N

D
G

N
D

Q
C

LK

Q
C

LK

Q
C

LK

Q
C

0_
B

Q
C

0_
B

Q
C

0_
A

Q
C

0_
A

V
C

C
5V

0
V

C
C

5V
0

V
C

C
5V

0
V

C
C

5V
0

V
C

C
5V

0

V
C

C
5V

0
Q

C
1_

B
Q

C
1_

B

Q
C

1_
A

Q
C

1_
A

S
P

IE
_M

O
S

I

S
P

IE
_M

IS
O

S
P

IE
_S

C
K

S
P

IE
_S

S

Q
C

0_
B

_5
V

Q
C

0_
B

_5
V

Q
C

0_
A

_5
V

Q
C

0_
A

_5
V

Q
C

1_
B

_5
V

Q
C

1_
B

_5
V

Q
C

1_
A

_5
V

Q
C

1_
A

_5
V

Q
C

0_
ID

X
Q

C
0_

ID
X

Q
C

1_
ID

X

Q
C

1_
ID

X

IC
M

H
1_

M
IS

O
_5

V

IC
M

H
1_

M
IS

O
_5

V

S
P

IF
_S

C
K

Q
C

0_
ID

X

Q
C

0_
ID

X

Q
C

0_
ID

X_
5V

Q
C

0_
ID

X_
5V

Q
C

1_
ID

X_
5V

Q
C

1_
ID

X_
5V

Q
C

1_
ID

X

Q
C

1_
ID

X

V
C

C
3V

3

V
C

C
3V

3

V
C

C
3V

3

S
P

IF
_M

IS
O

S
P

ID
_M

O
S

I

S
P

ID
_M

IS
O

S
P

ID
_S

C
K

S
P

ID
_S

S

P
C

1_
S

C
K

IC
M

H
0_

M
IS

O
_5

V

IC
M

H
0_

M
IS

O
_5

V
P

C
2_

M
IS

O

A B C D

1
2

3
4

5
6

A B C D

1
2

3
4

5
6

Figure 84: Circuit diagram: quadrature counters and voltage translators
after [14]. 209
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Figure 86: Circuit diagram: digital amplification unit (8 phases) after [14].
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Figure 87: Layout of the top layer (layer 1) of the motor drive electronics.
From the top: analog power unit, digital power unit and control
unit. Scale 1.875 to 1.
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Figure 88: Layout of the intermediate layer (layer 2) of the motor drive
electronics. From the top: analog power unit, digital power unit
and control unit. Scale 1.875 to 1.
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Figure 89: Layout of the intermediate layer (layer 3) of the motor drive
electronics. From the top: analog power unit, digital power unit
and control unit. Scale 1.875 to 1.
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Figure 90: Layout of the bottom layer (layer 4) of the motor drive electronics.
From the top: analog power unit, digital power unit and control
unit. Scale 1.875 to 1.
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Figure 91: RTL schematic of the waveform generator compatible with the
analog power unit designed in VHDL. Each RAM block contains
one specific waveform (e.g. sine or force). Depiction after [14].
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D APPENDIX D

abstract

This appendix is a rudimentary introduction into the bond graph methodology
for modeling of dynamic system based on [121, 29]. It provides a foundation
for the understanding of the derivation of state equations for the sensor-tendon
complex in chapt. 7.

d.1 bond graphs

Bond graphs are graphical means for representing the dynamics of
energy-exchanging systems. The fact that interacting physical systems
must transmit power is used to unify the description of interconnected
systems independently of their particular domain. Electrical, mechani-
cal, hydraulic, pneumatic, thermal and other systems can be modeled
using one common methodology using a small set of ideal lumped
elements. A bond graph consists of a number of subsystems or compo-
nents connected by bonds which represent two generalized variables
effort (e) and flow ( f ).

S1 S2

e�ort

�ow

These variables are forced to be identical on the bond and indirectly
correspond to energy flow between the interconnected subsystems S1

and S2. Effort and flow are also called power variables since their product
at a given time is the instantaneous power P(t) flowing between the
subsystems

P(t) = e(t) f (t).

The energy exchanged between the subsystems is the time integral of
the power

E(t) =
∫ t

P(t)dt.

Since power could flow in either direction between the subsystems,
a power convention needs to be established. The bonds are then
augmented with half-arrows indicating a time-invariant reference
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direction for power flow if the product e(t) f (t) in is positive.1

S1 S2

e�ort

�ow

In the above case, positive power flows from S1 to S2. Beside the power
variables, two other generalized variables are used in the description of
dynamic systems – momentum p and displacement q. In the differential
form, these are defined as

dp(t)
dt

= e(t),

dq(t)
dt

= f (t).

For mechanical translational systems, which are of interest here, the
power and energy variables are placeholders for the following physical
quantities:

Generalized variables Mechanical Translation SI Units
Effort e Force F N,
Flow f Velocity V m/s,
Momentum p Momentum P N-s,
Displacement q Displacement X m.

Bonds are used to connect components of which there are four basic
generalized types – S(ource), C(ompliance), I(nertia) and R(esistance).
The meaning of these components depends on the particular physical
domain. Sources can be seen as inputs which provide a way of
injecting energy into the system.2 An ideal flow source S f provides
the given flow measure independently of the effort. Similarly, an
ideal effort source Se provides the given effort while the flow may be
arbitrary. In case of linear mechanical systems S f is a velocity and Se

a force source. The other basic components C, I, R are linear spring,
mass and linear damper, respectively.

C :  1/k I :  m R :  bSf  

Se

dV = X

X

F F

k
V = X

X

F F

F

V

F

V

F

V
�ow given,
e�ort arbitrary

e�ort given,
�ow arbitrary m

F V

They are also called 1-port elements since only one bond connects to
them. The basic 1-port elements define how effort and flow relate to

1Full arrows are commonly used for the indication of signal flows whose influence
on the system in terms of power is negligible – e.g. ideal sensors.

2Negative “sources” (sinks) draining energy from the system can also be defined.
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each other on the corresponding bond. In other words, they define
the constitutive laws governing the relationship between the power
variables.3 For the basic linear components of mechanical translation,
these relationships are

F = kX, P = mV and F = dV,

for the spring, mass and damper, respectively.
Beside the 1-port elements there are also 2-port elements which include

the transformer TK and gyrator GY.

TF
e1 e2

f1 f2

GY
e1 e2

f1 f2

They are defined by the following constitutive laws

e1 = me2, m f1 = f2

for the transformer and

e1 = r f2, r f1 = e2

for the gyrator.
Thus, both of these ideal elements are power conservative. A me-
chanical example of a transformer is a rigid lever and of a gyrator, a
gyroscope. The factors m and r do not have to be constant - in such
case one speaks of a modulated transformer or gyrator. However, 2-port
elements are not further considered here.

The last class of bond graph components to be mentioned in this
appendix are 3-port junction elements. They are especially important
because they connect other components. One distinguishes between
two types of junctions – a 0 or common effort junction and a 1 or common
flow junction. All bonds connected to these junctions have the same
effort or flow variable, respectively. This holds true independent of the
sign convention.

0
f1 f3

f2

1
e1 e3

e2

0 0

0

common e�ort
junction

common �ow
junction

=^

However, the sign convention is important to properly add the differ-
ent flows or efforts connected to the respective 0 or 1-junction. For the
0-junction it holds true

± f1 ± f2 ± f3 = 0 and e1 = e2 = e3,

3The constitutive laws can also be defined in terms of energy variables or a combi-
nation of both types. Also note, that these relationships may in general be not linear
but only linear laws are considered here.
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while for the 1-junction it has to be

±e1 ± e2 ± e3 = 0 and f1 = f2 = f3.

Note, that 2-port junctions are possible and that n-port junctions can be
represented as a concatenation of the respective 3-port junction types.

At this point, almost all basic elements required for the derivation
of state equations of the sensor-tendon complex have been introduced.
But before proceeding to the next section, the issue of causality in
bond graphs needs to be explained. Causality defines the cause and
effect relationship within a bond graph. Graphically, a perpendicular
line is made at one end of a bond. This line is called causal stroke and
represents the direction in which the effort signal is directed.

S1 S2

S2  imposes e�ort on S1

From this definition, the representation of flow and effort sources can
be automatically adjusted.

TF

TF

TF

TF 0 1
Sf  

Se

sources 2-ports junctions

It is also clear, that there can only be one causal stroke at a 0-junction
and that all but one bonds have to have causal strokes in case of a
1-junction. In case of the 2-port elements there are two valid combi-
nations as illustrated above. As soon as an effort or a flow has been
assigned as an input, the assignment at the output is fixed. In case of
the other 1-port elements, there are two possible choices of causalities
– the integral and the derivative causality – depending on the causal
formulation of the constitutive law as listed below

Element Causal form Causal formulation
Resistance e = ΦR( f )

f = Φ−1
R (e)

Compliance e = Φ−1
C

( ∫ t f dt
)

f = d
dt ΦC(e)

Inertia f = Φ−1
I
( ∫ t edt

)
e = d

dt ΦI( f )

where Φ is a function defining the corresponding law. In the linear
case, R is indifferent to the causality imposed upon it since the formu-
lations e = R f or f = (1/R)e differ only in the form of the constant
coefficient and do not form a differential equation. However, in case
of C and I the formulation is important because it affects the further
processing of a bond graph. A bond graph which is augmented with
causal relations – a causally complete bond graph – can be used to
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automatically derive the dynamic equations of the system which is
described by it. In this context, integral causalities are preferred since
they can be processed more easily.4

d.2 state equations of the sensor-tendon
complex

The sensor-tendon model from sect. 7.3 is shown in the schematic il-
lustration below. It consists of a mass and three linear spring elements,
whereas the two springs on the right-hand side can be seen as one
spring having the effective spring constant kte f f =

kskt
ks+kt

.

m

vextvs

ks

xs

ks kt

kteff

vm

resting
length

This system is clearly mechanical, translational and linear. The di-
rections for positive velocities (flows) are indicated. vm and vext are
system inputs and vs is the velocity of the moving mass (the sensor).
In order for the power convention to be well-defined, it has to be
stated whether the force (effort) generating element, i.e. the spring, is
positive in tension or compression. In the derivation below, tension
is assumed to be positive. The construction procedure for the bond
graph is in this case as follows. First, 1-junctions are identified to
represent each distinct velocity.

1 1 1
vm vs vext

Second, every element which relates to the absolute velocity repre-
sented by the particular junction needs to be attached to this junction.
vm and vext are system velocity inputs and thus are represented by
flow sources. The mass m is an inertia element moving at the velocity
vs and thus is attached to the corresponding 1-junction.

4If all components of a bond graph can be defined in the integral causal for-
mulation, a set of ordinary differential equations (ODE) can be derived from the
bond graph. If there is a mixture of integral and derivative causalities, the resulting
mathematical model is, in general, a differential algebraic equation (DAE).
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1 1 1
vm

I :  m

Sf  :  vm Sf  :  vext

vs vext

Third, 0-junctions are inserted in order to establish proper relative
velocities among the remaining elements. At this point, the half-arrows
can be added to the bonds according to the power convention.

1 1 10 0
vm

C :  ks I :  m C :  kte�

Sf  :  vm Sf  :  vext

vs vext

A positive vm stretches the springs and since the springs are assumed
positive in tension the power has to flow from S f associated with vm

into the system. Similarly, a positive vext compresses the springs, so
according to the power convention the half-arrow shows this time into
the flow source S f . The other half-arrows at 0-junctions can be easily
deduced by considering the relative velocities across the junctions and
their effect on the corresponding spring elements. The half-arrow at
the remaining inertia element is directed toward the element since
power flows into the element for a positive force acting in the same
direction as the positive velocity. The last step consists in augmenting
the bond graph with causal strokes.

1 1 10 0
1 2

vm

C :  ks I :  m C :  kte�

Sf  :  vm Sf  :  vext

vs vext4 6 8

3 5 7

9

The augmentation with causal relations begins by assigning the re-
quired causality to all sources. Then any energy storage element (C or
I) is chosen and assigned the (preferred) integral causality. After this
step some causal relations may already follow by implication when
considering the allowable causal forms of the junctions. In case of the
sensor-tendon complex, by assigning the integral causality to the mass
element I, all causal relations become fully defined.

Once a bond graph representation augmented with causal strokes
is given, the bonds are labeled with numbers. The derivation of the
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dynamic system equations follows now automatically according to
three steps:

1. selection of inputs and energy state variables;

2. formulation of the initial set of equations;

3. reduction of these equations to state-space form.

For the above bond graph, the inputs are vm and vext. For integral
causalities, the energy state variables are p-variables on I-elements and
q-variables on C-elements. In case of the sensor-tendon complex the
state variables are q3, p5 and q7. The initial set of equations can be
found by equating the rate of change of a state variable to an effort or
flow. Accordingly,

q̇3 = f3 = f2 − f4 = vm − f5 = vm −
p5

m
.

The transition from f3 to f2 − f4 is given by the summation of flows
at the 0-junction. The proper signs are given by the half-arrows. f2

resolves into the input vm. f4 equals f5 and f6 but is caused by f5. f5

can be resolved into p5/m according to the corresponding constitutive
law. Similar procedure holds for the remaining two equations.

ṗ5 = e5 = e4 − e6 = e3 − e7 = ksq3 − kte f f q7

and
q̇7 = f7 = f6 − f8 = f6 − f9 = f5 − vext =

p5

m
− vext.

By substituting the physical quantities for mechanical translation
against the generalized variables and subscripts against corresponding
numbers, a set of ordinary differential equations follows

ẋs = − pm
m + vm

ẋte f f = pm
m − vext

ṗm = ksxs − kte f f xte f f

The state-space representation is given by the following state and
input matrices ẋs

ẋte f f
ṗm

 =

 0 0 −1
m

0 0 1
m

ks −kte f f 0

 xs

xte f f
pm

+

 1 0
0 −1
0 0

( vm

vext

)
,

and the following output matrix (cf. sect. 7.3)

x f =
(

1 1
1+ ks

kt

0
) xs

xte f f
pm

 .

x f is the overall elongation of the force sensor. This relation can be
derived in the following way. The elongation of the effective spring
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on the right-hand side of the force sensor is xte f f and equals x∗s + x∗t .5

But it must also hold true x∗s ks = x∗t kt and thus xte f f = x∗s + x∗s
ks
kt

.
Accordingly, x∗s =

xte f f
(1+ks/kt)

and x f = xs + x∗s .

5Stars are added to emphasize the fact, that these are components of the effective
spring.
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[184] Wacław Sierpiński. Teoria liczb. Instytut Matematyczny Polskiej
Akademi Nauk, 1950.

[185] U Simu and S Johansson. Fabrication of monolithic piezoelectric
drive units for a miniature robot. Journal Of Micromechanics And
Microengineering, 12(5):582–589, 2002.

[186] Urban Simu and Stefan Johansson. Analysis of quasi-static and
dynamic motion mechanisms for piezoelectric miniature robots.
Sensors And Actuators A-Physical, 132(2):632–642, 2006.
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