9,663 research outputs found

    Towards concept analysis in categories: limit inferior as algebra, limit superior as coalgebra

    Get PDF
    While computer programs and logical theories begin by declaring the concepts of interest, be it as data types or as predicates, network computation does not allow such global declarations, and requires *concept mining* and *concept analysis* to extract shared semantics for different network nodes. Powerful semantic analysis systems have been the drivers of nearly all paradigm shifts on the web. In categorical terms, most of them can be described as bicompletions of enriched matrices, generalizing the Dedekind-MacNeille-style completions from posets to suitably enriched categories. Yet it has been well known for more than 40 years that ordinary categories themselves in general do not permit such completions. Armed with this new semantical view of Dedekind-MacNeille completions, and of matrix bicompletions, we take another look at this ancient mystery. It turns out that simple categorical versions of the *limit superior* and *limit inferior* operations characterize a general notion of Dedekind-MacNeille completion, that seems to be appropriate for ordinary categories, and boils down to the more familiar enriched versions when the limits inferior and superior coincide. This explains away the apparent gap among the completions of ordinary categories, and broadens the path towards categorical concept mining and analysis, opened in previous work.Comment: 22 pages, 5 figures and 9 diagram

    On some pro-p groups from infinite-dimensional Lie theory

    Full text link
    We initiate the study of some pro-p-groups arising from infinite-dimensional Lie theory. These groups are completions of some subgroups of incomplete Kac-Moody groups over finite fields, with respect to various completions of algebraic or geometric origin. We show topological finite generation for the pro-p Sylow subgroups in many complete Kac-Moody groups. This implies abstract simplicity of the latter groups. We also discuss with the question of (non-)linearity of these pro-p groups.Comment: 16 page

    Exploring Subexponential Parameterized Complexity of Completion Problems

    Get PDF
    Let F{\cal F} be a family of graphs. In the F{\cal F}-Completion problem, we are given a graph GG and an integer kk as input, and asked whether at most kk edges can be added to GG so that the resulting graph does not contain a graph from F{\cal F} as an induced subgraph. It appeared recently that special cases of F{\cal F}-Completion, the problem of completing into a chordal graph known as Minimum Fill-in, corresponding to the case of F={C4,C5,C6,}{\cal F}=\{C_4,C_5,C_6,\ldots\}, and the problem of completing into a split graph, i.e., the case of F={C4,2K2,C5}{\cal F}=\{C_4, 2K_2, C_5\}, are solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}. The exploration of this phenomenon is the main motivation for our research on F{\cal F}-Completion. In this paper we prove that completions into several well studied classes of graphs without long induced cycles also admit parameterized subexponential time algorithms by showing that: - The problem Trivially Perfect Completion is solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}, that is F{\cal F}-Completion for F={C4,P4}{\cal F} =\{C_4, P_4\}, a cycle and a path on four vertices. - The problems known in the literature as Pseudosplit Completion, the case where F={2K2,C4}{\cal F} = \{2K_2, C_4\}, and Threshold Completion, where F={2K2,P4,C4}{\cal F} = \{2K_2, P_4, C_4\}, are also solvable in time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})} n^{O(1)}. We complement our algorithms for F{\cal F}-Completion with the following lower bounds: - For F={2K2}{\cal F} = \{2K_2\}, F={C4}{\cal F} = \{C_4\}, F={P4}{\cal F} = \{P_4\}, and F={2K2,P4}{\cal F} = \{2K_2, P_4\}, F{\cal F}-Completion cannot be solved in time 2o(k)nO(1)2^{o(k)} n^{O(1)} unless the Exponential Time Hypothesis (ETH) fails. Our upper and lower bounds provide a complete picture of the subexponential parameterized complexity of F{\cal F}-Completion problems for F{2K2,C4,P4}{\cal F}\subseteq\{2K_2, C_4, P_4\}.Comment: 32 pages, 16 figures, A preliminary version of this paper appeared in the proceedings of STACS'1

    Fr\'echet completions of moderate growth old and (somewhat) new results

    Full text link
    This article has two objectives. The first is to give a guide to the proof of the (so-called) Casselman-Wallach theorem as it appears in Real Reductive Groups II. The emphasis will be on one aspect of the original proof that leads to the new result in this paper which is the second objective. We show how a theorem of van der Noort combined with a clarification of the original argument in my book lead to a theorem with parameters (an alternative is one announced by Berstein and Kr\"otz). This result gives a new proof of the meromorphic continulation of the smooth Eisenstein series

    Remarks on Rational Points of Universal Curves

    Full text link
    In this notes, we will give some remarks on the results in Rational points of universal curves by Hain. In particular, we consider the universal curves Mg,n+1Mg,n\mathcal{M}_{g,n+1}\to \mathcal{M}_{g,n} and the sections of their algebraic fundamental groups.Comment: 14 pages. The section of the unipotent section conjecture in positive characteristic has been removed from this version. It will be a separate paper due to the nature of the conten

    Composite Higgs models in disguise

    Full text link
    We present a mechanism for disguising one composite Higgs model as another. Allowing the global symmetry of the strong sector to be broken by large mixings with elementary fields, we show that we can disguise one coset G/H\mathcal G/\mathcal H such that at low energies the phenomenology of the model is better described with a different coset G/H\mathcal G'/\mathcal H'. Extra scalar fields acquire masses comparable to the rest of the strong sector resonances and therefore are no longer considered pNGBs. Following this procedure we demonstrate that two models with promising UV-completions can be disguised as the more minimal SO(5)/SO(4)SO(5)/SO(4) coset

    The index complex of a maximal subalgebra of a Lie algebra.

    Get PDF
    Let M be a maximal subalgebra of the Lie algebra L. A subalgebra C of L is said to be a completion for M if C is not contained in M but every proper subalgebra of C that is an ideal of L is contained in M. The set I(M) of all completions of M is called the index complex of M in L. We use this concept to investigate the influence of the maximal subalgebras on the structure of a Lie algebra, in particular finding new characterisations of solvable and supersolvable Lie algebras
    corecore