
Exploring Subexponential Parameterized
Complexity of Completion Problems∗

Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and
Yngve Villanger

University of Bergen, Norway
{Pal.Drange|Fedor.Fomin|Michal.Pilipczuk|Yngve.Villanger}@ii.uib.no

Abstract
Let F be a family of graphs. In the F-Completion problem, we are given an n-vertex graph
G and an integer k as input, and asked whether at most k edges can be added to G so that the
resulting graph does not contain a graph from F as an induced subgraph. It appeared recently
that special cases of F-Completion, the problem of completing into a chordal graph known
as Minimum Fill-in, corresponding to the case of F = {C4, C5, C6, . . .}, and the problem of
completing into a split graph, i.e., the case of F = {C4, 2K2, C5}, are solvable in parameterized
subexponential time 2O(

√
k log k)nO(1). The exploration of this phenomenon is the main motivation

for our research on F-Completion.
In this paper we prove that completions into several well studied classes of graphs without

long induced cycles also admit parameterized subexponential time algorithms by showing that:

The problem Trivially Perfect Completion is solvable in parameterized subexponential
time 2O(

√
k log k)nO(1), that is F-Completion for F = {C4, P4}, a cycle and a path on four

vertices.
The problems known in the literature as Pseudosplit Completion, the case where F =
{2K2, C4}, and Threshold Completion, where F = {2K2, P4, C4}, are also solvable in
time 2O(

√
k log k)nO(1).

We complement our algorithms for F-Completion with the following lower bounds:

For F = {2K2}, F = {C4}, F = {P4}, and F = {2K2, P4}, F-Completion cannot be
solved in time 2o(k)nO(1) unless the Exponential Time Hypothesis (ETH) fails.

Our upper and lower bounds provide a complete picture of the subexponential parameterized
complexity of F-Completion problems for F ⊆ {2K2, C4, P4}.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases edge completion, modification, subexponential parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.288

1 Introduction

Let F be a family of graphs. In this paper we study the following F-Completion problem.

F-Completion Parameter: k

Input: A graph G = (V, E) and a non-negative integer k.
Question: Does there exist a supergraph H = (V, E ∪ S) of G, such that |S| ≤ k and H

contains no graph from F as an induced subgraph?

∗ The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959.

© Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and
Yngve Villanger;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 288–299

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30927538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.288
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 289

The F-Completion problems form a subclass of graph modification problems where one
is asked to apply a bounded number of changes to an input graph to obtain a graph with
some property. Graph modification problems arise naturally in many branches of science and
have been studied extensively during the past 40 years. Interestingly enough, despite the
long study of the problem, there is no known dichotomy classification of F-Completion
explaining for which classes F the problem is solvable in polynomial time and for which the
problem is NP-complete.

One of the motivations to study completion problems in graph algorithms comes from
their intimate connections to different width parameters. For example, the treewidth of a
graph, one of the most fundamental graph parameters, is the minimum over all possible
completions into a chordal graph of the maximum clique size minus one [2]. The treedepth of
a graph, also known as the vertex ranking number, the ordered chromatic number, and the
minimum elimination tree height, plays a crucial role in the theory of sparse graphs developed
by Nešetřil and Ossona de Mendez [20]. Mirroring the connection between treewidth and
chordal graphs, the treedepth of a graph can be defined as the largest clique size in a
completion to a trivially perfect graph. Similarly, the vertex cover number of a graph is equal
to the minimum of the largest clique size taken over all completions to a threshold graph,
minus one.
Parameterized algorithms for completion problems. For a long time in parameterized
complexity the main focus of studies in F-Completion was for the case when F was an
infinite family of graphs, e.g., Minimum Fill-in or Interval Completion [15, 19, 21].
This was mainly due to the fact that when F is a finite family, F-Completion is solvable on
an n-vertex graph in time f(k) · nO(1) for some function f by a simple branching argument;
this was first observed by Cai [4]. More precisely, if the maximum number of non-edges in a
graph from F is d, then the corresponding F-Completion is solvable in time dk ·nO(1). The
interest in F-Completion problems started to increase with the advance of kernelization.
It appeared that from the perspective of kernelization, even for the case of finite families F
the problem is far from trivial. Guo [12] initiated the study of kernelization algorithms
for F-Completion in the case when the forbidden set F contains the graph C4, see
Figure 1. (In fact, Guo considered edge deletion problems, but they are polynomial time
equivalent to completion problems to the complements of the forbidden induced subgraphs.)
In the literature, the most studied graph classes containing no induced C4 are the split
graphs, i.e., {2K2, C4, C5}-free graphs, threshold graphs, i.e., {2K2, P4, C4}-free graphs,
and {C4, P4}-free graphs, that is, trivially perfect graphs [3]. Guo obtained polynomial
kernels for the completion problems for chain graphs, split graphs, threshold graphs and
trivially perfect graphs and concluded that, as a consequence of his polynomial kernelization,
the corresponding F-Completion problems: Chain Completion, Split Completion,
Threshold Completion and Trivially Perfect Completion are solvable in times
O(2k + mnk), O(5k + m4n), O(4k + kn4), and O(4k + kn4), respectively.

(a) P4 (b) C4 (c) 2K2 = C4

Figure 1 Forbidden induced subgraphs. Trivially perfect graphs are {C4, P4}-free, threshold
graphs are {2K2, P4, C4}-free, and cographs are P4-free.

STACS’14

290 Exploring Subexponential Parameterized Complexity of Completion Problems

Obstruction set F Graph class name Complexity
C4, C5, C6, . . . Chordal SUBEPT [9]
C4, P4 Trivially Perfect SUBEPT (Theorem 1)
2K2, C4, C5 Split SUBEPT [10]
2K2, C4, P4 Threshold SUBEPT (Theorem 10)
2K2, C4 Pseudosplit SUBEPT (Theorem 11)
P3, Kt, t = o(k) Co-t-cluster SUBEPT [8]
P3 Co-cluster E [16]
2K2 2K2-free E (Theorem 12)
C4 C4-free E (Theorem 12)
P4 Cograph E (Theorem 12)
2K2, P4 Co-Trivially Perfect E (Theorem 12)

Figure 2 Known subexponential complexity of F-Completion for different sets F . SUBEPT
means the problem is solvable in subexponential time 2o(k)nO(1) and E means that the problem is
not solvable in subexponential time unless ETH fails.

The work on kernelization of F-Completion problems was continued by Kratsch and
Wahlström [17] who showed that there exists a set F consisting of one graph on seven vertices
for which F-Completion does not admit a polynomial kernel. Guillemot et al. [11] showed
that Cograph Completion, i.e., the case F = {P4}, admits a polynomial kernel, while for
F = {P13}, the complement of a path on 13 vertices, F-Completion has no polynomial
kernel. These results were significantly improved by Cai and Cai [5]: For F = {P`} or
F = {C`}, the problems F-Completion and F-Edge Deletion admit a polynomial kernel
if and only if the forbidden graph has at most three edges.

It appeared recently that for some choices of F , F-Completion is solvable in sub-
exponential time. The exploration of this phenomenon is the main motivation for our
research on this problem. The last chapter of Flum and Grohe’s textbook on parameterized
complexity theory [7, Chapter 16] concerns subexponential fixed parameter tractability, the
complexity class SUBEPT, which, loosely speaking—we skip here some technical conditions—
is the class of problems solvable in time 2o(k)nO(1), where n is the input length and k is
the parameter. Until recently, the only notable examples of problems in SUBEPT were
problems on planar graphs, and more generally, on graphs excluding some fixed graph as a
minor [6]. In 2009, Alon et al. [1] used a novel application of color coding, dubbed chromatic
coding, to show that parameterized Feedback Arc Set in Tournaments is in SUBEPT.
As Flum and Grohe [7] observed, for most of the natural parameterized problems, already
the classical NP-hardness reductions can be used to refute the existence of subexponential
parameterized algorithms, unless the following well-known complexity hypothesis formulated
by Impagliazzo, Paturi, and Zane [14] fails.

I Exponential Time Hypothesis (ETH). There exists a positive real number s such that
3-CNF-SAT with n variables cannot be solved in time 2sn.

Thus, it is most likely that the majority of parameterized problems are not solvable
in subexponential parameterized time and until very recently no natural parameterized
problem solvable in subexponential parameterized time on general graphs was known. A
subset of the authors recently showed that Minimum Fill-in, also known as Chordal
Completion, which is equivalent to F-Completion with F consisting of cycles of length at
least four, is in SUBEPT [9], simultaneously establishing that Chain Completion is solvable
in subexponential time. Later, Ghosh et al. [10] showed that Split Completion is solvable

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 291

in subexponential time. On the other hand, Komusiewicz and Uhlmann [16], showed that
an edge modification problem known as Cluster Deletion, does not belong to SUBEPT
unless ETH fails. Let us note that Cluster Deletion is equivalent to F-Completion
when F = {P3}, the complement of the path P3. On the other hand, it is interesting to
note that by the result of Fomin et al. [8], Cluster Deletion into t Clusters, i.e., the
complement problem for F-Completion for F = {P3, Kt}, is in SUBEPT for t = o(k).

Our results. In this work we extend the class of F-Completion problems admitting
subexponential time algorithms, see Figure 2. Our main algorithmic result is the following:

Trivially Perfect Completion is solvable in time 2O(
√

k log k)nO(1) and is thus in
SUBEPT. This problem is the F-Completion problem for F = {C4, P4}.

On a very high level, our algorithm is based on the same strategy as the algorithm for
completion into chordal graphs [9]. Just like in that algorithm, we enumerate in parameterized
subexponential time special structures called potential maximal cliques which are the maximal
cliques in some minimal completion into a trivially perfect graph that uses at most k edges.
As far as we succeed in enumerating these objects, we do dynamic programming to find an
optimal completion. But here the similarities end. To enumerate potential maximal cliques
for trivially perfect graphs, we have to use completely different structural properties from
those used for the case of chordal graphs.

We also show that within the same running time the F-Completion problem is solvable
for F = {2K2, C4}, and F = {2K2, P4, C4}. This corresponds to completion into threshold
and pseudosplit graphs, respectively. Let us note that combined with the results of Fomin
and Villanger [9] and Ghosh et al. [10], this implies that all four problems considered by Guo
in [12] are in SUBEPT, in addition to admitting a polynomial kernel. We finally complement
our algorithmic findings by showing the following:

For F = {2K2}, F = {C4}, F = {P4} and F = {2K2, P4}, the F-Completion
problem cannot be solved in time 2o(k)nO(1) unless ETH fails.

Thus, we obtain a complete classification for all F ⊆ {2K2, P4, C4}.

Organization of the paper. In Section 2 we give structural results about trivially perfect
graphs and their completions, and give the main result of the paper: an algorithm solving
Trivially Perfect Completion in subexponential time. In Section 3 we briefly discuss
the tools needed to obtain subexponential time algorithms for Threshold Completion and
Pseudosplit Completion. Due to space constraints, full expositions of these algorithms
have been deferred to the full version. In Section 4, we mention the lower bounds on F-
Completion when F is {2K2}, {C4}, {P4}, or {2K2, P4}. Full proofs for the lower bounds
have also been deferred to the full version, where, in addition, proofs for results marked
with ♠ can be found. Finally, in Section 5 we give some concluding remarks and state some
interesting remaining questions.

Notation. We consider only finite simple undirected graphs. We use n to denote the number
of vertices and m the number of edges in a graph G. If G = (V, E) is a graph, and A, B ⊆ V ,
we write E(A, B) for the edges with one endpoint in A and the other in B, and we write
E(A) = E(A, A) for the edges inside A and mA for |E(A)|.

We write N(U) for U ⊆ V (G) to denote the open neighborhood
⋃

v∈U (N(v)) \ U , and
N [U] = N(U) ∪ U to denote the closed neighborhood. For a graph G and a set of edges S,
we write G + S = (V, E ∪ S) and G− S = (V, E \ S), and if U ⊆ V is a set of vertices, then
G− U = G[V \ U]. A universal vertex in a graph is a vertex v such that N [v] = V (G). Let

STACS’14

292 Exploring Subexponential Parameterized Complexity of Completion Problems

uni(G) denote the set of universal vertices of G. Observe that uni(G), when non-empty, is
always a clique, and we will refer to it as the (maximal) universal clique.

2 Completion to trivially perfect graphs

In this section we study the Trivially Perfect Completion problem which is the special
case of F-Completion for F = {C4, P4}. The decision version of the problem was shown
to be NP-complete by Yannakakis [22]. Since trivially perfect graphs are characterized by a
finite set of forbidden induced subgraphs, it follows from Cai [4] that the problem also is
fixed parameter tractable, i.e., it belongs to the class FPT.

The main result of this section is the following theorem.

I Theorem 1. For an input (G, k), Trivially Perfect Completion is solvable in time
2O(
√

k log k) +O(kn4).

Throughout this section, an edge set S is called a completion for G if G + S is trivially
perfect. Furthermore, a set S is called a minimal completion for G if no proper subset of S

is a completion for G. The main outline of the algorithm is as follows:

Step A: On input (G, k), we first apply the algorithm by Guo [12] to obtain a kernel of size
O(k3). The running time of this algorithm is O(kn4).

Step B: Assuming our input instance is of size O(k3), we show how to generate all special
vertex subsets of the kernel which we call vital potential maximal cliques in time
2O(
√

k log k). A vital potential maximal clique Ω ⊆ V (G) is a vertex subset which is
a maximal clique in some minimal completion of size at most k.

Step C: Using dynamic programming, we show how to compute an optimal solution or to
conclude that (G, k) is a no instance, in time polynomial in the number of vital
potential maximal cliques.

2.1 Structure of trivially perfect graphs
Apart from the aforementioned characterization by forbidden induced subgraphs, several other
equivalent definitions of trivially perfect graphs are known. These definitions reveal more
structural properties of this graph class which will be essential in our algorithm. Therefore,
before proceeding with the proof of Theorem 1, we establish a number of results on the
structure of trivially perfect graphs and minimal completions which will be useful.

The trivially perfect graphs have a decomposition tree which we call a universal clique
decomposition, in which each node in the tree corresponds to a maximal set of vertices that
all are universal for the graph induced by the vertices in the subtree.

Let T be a rooted tree and t be a node of T . We denote by Tt the maximal subtree
of T rooted in t. We can now use the universal clique uni(G) of a trivially perfect graph
G = (V, E) to make a decomposition structure.

I Definition 2 (Universal clique decomposition). A universal clique decomposition of a con-
nected trivially perfect graph G = (V, E) is a pair (T = (VT , ET),B = {Bt}t∈VT

), where T is
a rooted tree and B is a partition of the vertex set V into disjoint non-empty subsets, such that

if vw ∈ E(G) and v ∈ Bt and w ∈ Bs, then s and t are on a path from a leaf to the root,
with possibly s = t, and
for every node t ∈ VT , the set of vertices Bt is the maximal universal clique in the
subgraph G[

⋃
s∈V (Tt) Bs].

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 293

We call the vertices of T nodes and the sets in B bags of the universal clique decomposition
(T,B). By slightly abusing the notation, we often do not distinguish between nodes and bags.
Note that by the definition, in a universal clique decomposition every non-leaf node has at
least two children, since otherwise the universal clique contained in the corresponding bag
would not be maximal.

I Lemma 3 (♠). A connected graph G admits a universal clique decomposition if and only
if it is trivially perfect. Moreover, such a decomposition is unique up to isomorphisms.

For the purposes of the dynamic programming procedure, we define the following notion.

I Definition 4 (Block). Let (T = (VT , ET),B = {Bt}t∈VT
) be the universal clique decompos-

ition of a connected trivially perfect graph G = (V, E). For each node t ∈ VT , we associate a
block Lt = (Bt, Dt), where

Bt is the subset of V contained in the bag corresponding to t, and
Dt is the set of vertices of V contained in the bags corresponding to the nodes of the
subtree Tt.

The tail of a block Lt is the set of vertices Qt contained in the bags corresponding to the
nodes of the path from t to r in T , where r is the root of T .

When t is a leaf of T , we have that Bt = Dt and we call the block Lt = (Bt, Dt) a leaf
block. If t is the root, we have that Dt = V (G) and we call Lt the root block. Otherwise, we
call Lt an internal block.

Observe that for every block Lt = (Bt, Dt) with tail Qt we have that Bt ⊆ Qt, Bt ⊆ Dt,
and Dt ∩ Qt = Bt. Note also that Qt is a clique and the vertices of Qt are universal to
Dt \Bt. The following lemma summarizes the properties of universal clique decompositions,
maximal cliques, and blocks used in our proof.

I Lemma 5 (♠). Let (T,B) be the universal clique decomposition of a connected trivially
perfect graph G and let L = (B, D) be a block with Q as its tail.
(i) If L is a leaf block, then Q = NG[v] for every v ∈ B.
(ii) The following are equivalent:

1. L is a leaf block,
2. D = B, and
3. Q is a maximal clique of G.

(iii) If L is a non-leaf block, then for every two vertices u, v from different connected
components of G[D \B], we have that Q = NG(u) ∩NG(v).

2.2 Structure of minimal completions
Before we proceed with the algorithm, we provide some properties of minimal completions.
The following lemma gives insight to the structure of a yes instance.

I Lemma 6 (♠). Let G = (V, E) be a connected graph, S a minimal completion and
H = G + S. Suppose L = (B, D) is a block in some universal clique decomposition of H and
denote by D1, D2, . . . , D` the connected components of H[D]−B.
(i) If L is not a leaf block, then ` > 1;
(ii) if ` > 1, then in G every vertex v ∈ B has at least one neighbor in each set

D1, D2, . . . , D`;
(iii) the graph G[Di] is connected for every i ∈ {1, . . . , `}; and
(iv) for every i ∈ {1, . . . , `}, B ⊆ NG(D \ (B ∪Di)).

STACS’14

294 Exploring Subexponential Parameterized Complexity of Completion Problems

2.3 The algorithm
As has been already mentioned, the following concept is crucial for our algorithm. Recall
that when Ω is a set of vertices in a graph G, by mΩ we mean the number of edges in G[Ω].

I Definition 7 (Vital potential maximal clique). Let (G, k) be an instance of Trivially
Perfect Completion. A vertex set Ω ⊆ V (G) is a potential maximal clique if Ω is a
maximal clique in some minimal trivially perfect completion of G. If moreover this trivially
perfect completion contains at most k edges, then the potential maximal clique is called vital.

Observe that given a yes instance (G, k) and a minimal completion S of size at most k,
every maximal clique in G + S is a vital potential maximal clique in G. Note also that in
particular, any vital potential maximal clique contains at most k non-edges.

The following definition will be useful:

I Definition 8 (Fill number). Let G = (V, E) be a graph, S a completion and H = G + S.
We define the fill of a vertex v, denoted by fnG

H(v) as the number of edges incident to v in S.

Let us observe that there are at most 2
√

k vertices v such that fnG
H(v) >

√
k. It follows that

for every set U ⊆ V such that |U | > 2
√

k, there is a vertex u ∈ U with fnG
H(u) ≤

√
k. Any

vertex u such that fnG
H(u) ≤

√
k will be referred to as a cheap vertex.

Everything is settled to start the proof of Theorem 1. Our algorithm proceeds in three
steps. We first compress the instance to an instance of size O(k3), then we enumerate all
(subexponentially many) vital potential cliques in this new instance, and finally we do a
dynamic programming procedure on these objects.

Step A. Kernelization. For a given input (G, k), we start by applying the kernelization
algorithm by Guo [12] to construct in time O(kn4) an equivalent instance (G′, k′), where
G′ has O(k3) vertices and k′ ≤ k. Therefore, from now on we can simply assume that the
input graph G has O(k3) vertices. Without loss of generality, we can also assume that G is
connected, since we may treat each connected component of G separately.

Step B. Enumeration. In this step, we give an algorithm that in time 2O(
√

k log k) outputs
a family C of vertex subsets of G such that

the size of C is 2O(
√

k log k), and
every vital potential maximal clique belongs to C.

We identify five different types of vital potential maximal cliques. For each type i,
1 ≤ i ≤ 5, we list a family Ci of 2O(

√
k log k) subsets containing all vital potential maximal

cliques of this type. Finally, C = C1 ∪ · · · ∪ C5. We show that every vital potential maximal
clique of (G, k) is of at least one type and that all objects of each type can be enumerated in
2O(
√

k log k) time.
Let Ω be a vital potential maximal clique. By the definition of Ω, there exists a minimal

completion with at most k edges into a trivially perfect graph H such that Ω is a maximal
clique in H. Let (T = (VT , ET),B = {Bt}t∈VT

) be the universal clique decomposition of H.
Recall that by Lemma 5, Ω corresponds to a path Prt = Bt0Bt1 · · ·Btq

in T from the root
r = t0 to a leaf t = tq. Then for the corresponding leaf block (Bt, Dt) with tail Qt, we have
that Ω = Qt. To simplify the notation, we use Bi for Bti

.
Note that the algorithm does not know neither the clique Ω nor the completed trivially

perfect graph H. However, in the analysis we may partition all the vital potential maximal
cliques Ω with respect to structural properties of Ω and H, and then provide simple enu-
meration rules that ensure that all vital potential maximal cliques of each type are indeed
enumerated. We proceed to description of the types and enumeration rules.

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 295

Type 1. Potential maximal cliques of the first type are such that |V \ Ω| ≤ 2
√

k + 2. The
family C1 consists of all sets W ⊆ V such that |V \W | ≤ 2

√
k + 2. There are

(O(k3)
2
√

k+2

)
such

sets and we can find all of them in time 2O(
√

k log k) by the brute-force algorithm trying all
vertex subsets of size at least |V | − 2

√
k + 2. Thus every Type 1 vital potential maximal

clique is in C1.

Type 2. By Lemma 5 (1), we have that Ω = Qt = NH [v] for each vertex v ∈ Dt = Bt. Vital
potential maximal cliques of the second type are such that |Bt| > 2

√
k. Observe that then

at least one vertex v ∈ Bt should be cheap, i.e., fnG
H(v) ≤

√
k. We generate the family C2

as follows. Every set in C2 is of the form W1 ∪W2, where W1 = NG[v] for some v ∈ V ,
and |W2| ≤

√
k. There are at most O(

(O(k3)√
k

)
k3) such sets and they can be enumerated by

computing for every vertex v the set W1 = NG[v] and adding to each such set all possible
subsets of size at most

√
k. Hence every Type 2 vital potential maximal clique is in C2.

Thus if Ω is not of Types 1 or 2, then |V \ Ω| > 2
√

k + 2 and for the corresponding leaf
block we have |Bt| ≤ 2

√
k. Since |V \Ω| > 2

√
k + 2 it follows that if (G, k) is a yes instance,

then V \ Ω contains at least two cheap vertices, i.e., vertices with fill number at most
√

k.
We partition the nodes of T that are not on the path B0, B1, . . . , Bq into q disjoint sets

Z0, Z1, . . . , Zq−1 according to the nodes of the path Prt. Node x /∈ V (Prt) belongs to Zi,
i ∈ {0, . . . , q − 1}, if i is the largest integer such that ti is an ancestor of x in T . In other
words, Zi consists of bags of subtrees outside Prt attached below ti.

Let j be the maximum index such that a bag from Zj contains a cheap vertex. We
define the set of vertices Z>j =

⋃q−1
i=j+1 Zi. Observe that since Z>j does not contain cheap

vertices, then |Z>j | ≤ 2
√

k. We also define V0,j as the set of vertices contained in the bags
corresponding to nodes B0, B1, . . . , Bj of Prt and set Vj+1,q as the set of vertices contained
in bags Bj+1, . . . , Bq = Bt. Observe also that Ω = V0,j ∪ Vj+1,q and by the definition of a
block, V0,j is exactly the tail Qj of the block (Bj , Dj). From Lemma 6 (1, 4) we have that
Vj+1,q ⊆ Bt ∪NG(Z>j) ⊆ Ω. This follows from the fact that every vertex in B` for ` < q

has at least one neighbor in G in Z`.
Let v be a cheap vertex belonging to Zj . The remaining types of vital potential maximal

cliques are defined according to the existence and locations in T of a few other cheap vertices.
We use Cv to denote the connected component of G[Dj]−Bj containing v.

Type 3. For vital potential maximal cliques of this type there is a cheap vertex u 6= v

belonging to Zj but not belonging to Cv. Since V0,j = Qj , by Lemma 5 (3), we have
that V0,j = NH(u) ∩ NH(v) and Vj+1,q ⊆ Bq ∪ NG(Z>j) ⊆ Ω. Hence we arrive at Ω =
V0,j ∪ Vj+1,q =

(
NH(u) ∩NH(v)

)
∪Bt ∪NG(Z>j).

The family C3 consists of all sets of the form W1 ∪W2 ∪W3, where:
|W1| ≤ 2

√
k. Enumerating sets W1 corresponds to guessing Bt.

W2 is the open neighborhood in G of a set of size at most 2
√

k. The set W2 corresponds
to NG(Z>j).
W3 is the intersection of the sets NG(x) ∪A and NG(y) ∪B, where x, y ∈ V , and A, B

are sets of size at most
√

k. The set W3 corresponds to intersection of two neighborhoods
in H of two cheap vertices u, v.

It is clear that the size of the family C3 is 2O(
√

k log k) and that all sets from C3 can be listed
using 2O(

√
k log k) time. It follows from the construction that every Type 3 vital potential

maximal clique is in C3.

Type 4. Let Z be the set of vertices of V \ Ω which do not belong to Cv. In other words,
Z = (V \Ω) \ V (Cv). Vital potential maximal cliques of Type 4 are such that Z contains no

STACS’14

296 Exploring Subexponential Parameterized Complexity of Completion Problems

cheap vertices. Thus the only cheap vertices among vertices of V \ Ω belong to Cv. In this
case, we have that |Z| ≤ 2

√
k.

Recall that Ω = V0,j ∪ Vj+1,q, where V0,j and Vj+1,q are the vertices contained in
bags of paths from r to tj , and correspondingly, from tj+1 to t in T . By Lemma 6, we
have that Vj+1,t = (Bt ∪NG(Z>j)) \NH(v). Furthermore, by Lemma 6 (4) we infer that
V0,j = NG(Z ∪ Vj+1,t), so it follows that Ω = V0,j ∪ Vj+1,t =

(
NG(Z ∪ ((Bt ∪ NG(Z>j)) \

NH(v)))
)
∪
(
(Bt ∪NG(Z>j)) \NH(v)

)
.

We therefore let the family C4 consist of all sets of W1 ∪W2, where
W1 = (X1 ∪ NG(X2)) \ (NG(v) ∪ X3) and the sets X1, X2, and X3 are sets of size at
most 2

√
k and v ∈ V . The set W1 corresponds to guessing Vj+1,t, X1 to Bt, X2 to Z>j ,

and NG(v) ∪X3 to NH(v), and
W2 = NG(X4 ∪W1), where X4 is of size at most 2

√
k and corresponds to guessing Z.

By the construction, the size of C4 is 2O(
√

k log k) and all sets from C4 can be listed in time
2O(
√

k log k). It also follows from the construction that every Type 4 vital potential maximal
clique is in C4.

Type 5. The only remaining type of vital potential maximal cliques are such that a cheap
vertex u 6= v is in Z. If Ω is not of Type 3, then we know that at least one cheap vertex is in
some bag of Zi, i < j. Let j′ < j be the largest index smaller than j such that Zj′ contains
a cheap vertex. Let u be such a vertex.

Let V0,j′ be the set of vertices contained in the B0, B1, . . . , Bj′ . Then V0,j′ = Qj′ and by
Item (3) of Lemma 5, V0,j′ = NH(u) ∩NH(v). Let Z ′ =

⋃j
i=j′+1 Zi \ Cv.

There is no cheap vertex in Z ′, hence |Z ′| ≤ 2
√

k. On the other hand, by Item (4)
of Lemma 6, Vj′+1,j , that is, vertices contained in the bags Bj′+1, . . . , Bj , is contained in
NG(Vj+1,t ∪ Z>j) ∪ NG(Z ′) ⊆ Ω. Thus Ω = Vj+1,t ∪ V0,j′ ∪ Vj′+1,j = Vj+1,t ∪

(
NH(u) ∩

NH(v)
)
∪
(
NG(Vj+1,t ∪ Z>j) ∪NG(Z ′)

)
.

Finally, as in Type 4 we have that Vj+1,t = (Bt ∪NG(Z>j)) \NH(v). Therefore, we let
C5 consist of all sets of the form W1 ∪W2 ∪W3, where

W1 = (X1 ∪NG(X2)) \ (NG(v) ∪X3) and sets X1, X2, and X3 are sets of size at most
2
√

k and v ∈ V . As in the previous case for Type 4 vital potential maximal cliques, the
set W1 corresponds to Vj+1,t.
W2 = (NG(u) ∪ X4) ∩ (NG(v) ∪ X5). Here X4, X5, are sets of size at most

√
k and

u, v ∈ V . The set W2 corresponds to V0,j′ , while NG(u) ∪X4 and NG(v) ∪X5 to NH(u)
and NH(v) respectively.
W3 = NG(W1∪X2)∪NG(X6), where X6 is a set of size at most 2

√
k that was corresponds

to Z ′, while X2 was already chosen before and corresponds to Z>j .

From the construction it immediately follows that the size of family C5 is 2O(
√

k log k), that
its elements can be enumerated in the same amount of time, and that every Type 5 vital
potential maximal clique is in C5. Since every vital potential maximal clique is of Type 1, 2,
3, 4, or 5, we can infer the following lemma that formalizes the result of Step B.

I Lemma 9 (Enumeration Lemma). Let (G, k) be an instance of Trivially Perfect
Completion such that |V (G)| = O(k3). Then in time 2O(

√
k log k), we can construct a family

C consisting of 2O(
√

k log k) subsets of V (G) such that every vital potential maximal clique of
(G, k) is in C.

Step C. Dynamic programming. At this point we assume that we have the family C
containing all vital potential maximal cliques of (G, k). We start by generating in time

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 297

2O(
√

k log k) a family S of pairs (X, Y), where X, Y ⊆ V (G), such that for every minimal
completion S of size at most k, and the corresponding universal clique decomposition (T,B)
of H = G + S, it holds that every block (B, D) is in S, and the size of S is 2O(

√
k log k). The

construction of S is based on the following observations about blocks and vital potential
maximal cliques: Let G be a graph, S a minimal completion and L = (B, D) a block of the
universal clique decomposition of H = G + S, where H is not a complete graph, with Q

being its tail. Then the following holds:

If L is a leaf block, then B = Ω1 \ Ω2 for some vital potential maximal cliques Ω1 and
Ω2, and D = B.
If L is the root block, then the tail of L is B, B = Ω1 ∩ Ω2 for some vital potential
maximal cliques Ω1 and Ω2, and D = V .
If L is an internal block, then Q is the intersection of two vital potential maximal cliques
Ω1 and Ω2 of G, B = Q \ Ω3 for some vital potential maximal clique Ω3, and D is the
connected component of G− (Q \B) containing B.

From this observation, we can conclude that by going through all triples Ω1, Ω2, Ω3, we
can compute the set S consisting of all blocks (B, D) of minimal completions. We now define
value dp(B, D) as the minimum number of edges needed to be added to G[D] to make it a
trivially perfect graph with B being the universal clique contained in the root of the universal
clique decomposition. It is easy to derive recurrence equations that enable us to compute
all the relevant values of dp(·, ·) using dynamic programming. Finally, the minimum cost of
completing G to a trivially perfect graph is equal to min(B,V (G))∈S dp(B, V (G)).

3 Completion to threshold and pseudosplit graphs

I Theorem 10 (♠). Threshold Completion is solvable in time 2O(
√

k log k) +O(kn4).

The proof of Theorem 10 is a combination of the following known techniques: the
kernelization algorithm by Guo [12], the chromatic coding technique of Alon et al. [1], also
used in the subexponential algorithm of Ghosh et al. [10] for split graphs, and the algorithm
of Fomin and Villanger for chain completion [9].

I Theorem 11 (♠). Pseudosplit Completion is solvable in time 2O(
√

k log k)nO(1).

The crucial property of pseudosplit graphs that will be of use is that a pseudosplit graph
is either a split graph, or a split graph containing one induced C5 which is completely
non-adjacent to the independent set of the split graph, and completely adjacent to the clique
set of the split graph [18]. Hence, assuming we are looking for the latter type of a pseudosplit
graph, we can with O(n5) overhead guess the correct set that will become the S = C5, and
after some preprocessing we can apply the subexponential algorithm of Ghosh et al. [10]
solving Split Completion.

4 Lower bounds

To complete our study, we provide lower bounds based on the Exponential Time Hypothesis
for the remaining subsets of {2K2, P4, C4}. More precisely, we prove the following theorem:

I Theorem 12 (♠). Unless the Exponential Time Hypothesis (ETH) fails, none of the
following problems are solvable in 2o(k)nO(1) time:

STACS’14

298 Exploring Subexponential Parameterized Complexity of Completion Problems

2K2-Free Completion,
C4-Free Completion,
P4-Free Completion,
{2K2, P4}-Free Completion (also known as Co-Trivially Perfect Completion).

To prove each of the lower bounds above we give a linear reduction from 3Sat. That
is, we provide an algorithm that, given a 3-CNF formula ϕ on n variables and m clauses,
produces in polynomial-time an equivalent instance of the problem at hand with parameter
k = O(n+m). Then pipelining the reduction with the assumed subexponential parameterized
algorithm for the problem would give an algorithm for 3Sat working in 2o(n+m) time. The
existence of such an algorithm, however, would contradict ETH by the sparsification lemma
of Impagliazzo et al. [14].

Our reductions follow in spirit those of, for instance Komusiewicz and Uhlmann [16], or
Fomin et al. [8]: we create a gadget graph for each variable and each clause, and carefully
wire the gadgets together so that they encode the input instance. However, since we are
dealing with very particular graph classes with a lot of structure, the design and analysis of
the gadgets requires a number of non-trivial ideas.

5 Conclusion and open problems

In this paper, we provided several upper and lower subexponential parameterized bounds for
F-Completion. The most natural open question would be to ask for a dichotomy type of
result characterizing for which sets F , F-Completion problems are in P, in SUBEPT, and
not in SUBEPT (under ETH). Keeping in mind the lack of such characterization concerning
classes P and NP, an answer to this question can be very non-trivial. Even a more modest
task—deriving general arguments explaining what causes a completion problem to be in
SUBEPT—is an important open question.

Similarly, from an algorithmic perspective obtaining generic subexponential algorithms
for completion problems would be a big step forwards. With the current knowledge, for
different cases of F , the algorithms are built on different ideas like chromatic coding, potential
maximal cliques, k-cuts, etc. and each new case requires special treatment.

Finally, some concrete problems. We have the chain of graph classes

threshold ⊂ trivially perfect ⊂ interval ⊂ chordal,

corresponding to the parameters vertex cover, treedepth, pathwidth, and treewidth, in the
sense that the width parameter is the minimum, over all completions to the graph class
mentioned, of the size of the maximum clique (±1). We know that all of these problems
have subexponential completion problems, except for Interval Completion. The problem
is known to be in FPT [21]. It is natural to ask whether or not this problem also belongs
to SUBEPT. Another chain connecting graph classes to width parameters is the chain
corresponding to bandwidth, pathwidth and treewidth, proper interval ⊂ interval ⊂
chordal. The existence of a subexponential algorithm for Proper Interval Completion
is also open.

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 299

References
1 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In ICALP 2009, volume

5555 of LNCS, pages 49–58. Springer, 2009.
2 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretial

Computer Science, 209(1-2):1–45, 1998.
3 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes. A Survey.

SIAM Monographs on Discrete Mathematics and Applications. Philadelphia, USA, 1999.
4 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary

properties. Information Processing Letters, 58(4):171–176, 1996.
5 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. In

IPEC 2013. To appear.
6 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.

Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

7 Jörg Flum and Martin Grohe. Parameterized complexity theory. Springer-Verlag New York
Inc, 2006.

8 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing. In STACS 2013, volume 20
of LIPIcs, pages 32–43, 2013.

9 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for min-
imum fill-in. In SODA 2012, pages 1737–1746. SIAM, 2012.

10 Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh
Rai, and M.S. Ramanujan. Faster parameterized algorithms for deletion to split graphs. In
SWAT 2012, volume 7357 of LNCS, pages 107–118. Springer, 2012.

11 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the
(non-)existence of polynomial kernels for Pl-free edge modification problems. Algorithmica,
65(4):900–926, 2013.

12 Jiong Guo. Problem kernels for NP-complete edge deletion problems: Split and related
graphs. In ISAAC 2007, volume 4835 of LNCS, pages 915–926. Springer, 2007.

13 Pinar Heggernes, and Federico Mancini. Minimal split completions. Discrete Applied Math-
ematics, 157(12):2659—2669, 2009.

14 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

15 Haim Kaplan, Ron Shamir, and Robert E. Tarjan. Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on
Computing, 28:1906–1922, May 1999.

16 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modi-
fications. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

17 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polyno-
mial kernels. In IWPEC 2009, volume 5917 of LNCS, pages 264–275. Springer, 2009.

18 Frédéric Maffray and Myriam Preissmann. Linear recognition of pseudo-split graphs. Dis-
crete Applied Mathematics, 52(3):307–312, 1994.

19 Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm
for the minimum fill-in problem. SIAM Journal on Computing, 30:1067–1079, 2000.

20 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

21 Yngve Villanger, Pinar Heggernes, Christophe Paul, and Jan Arne Telle. Interval comple-
tion is fixed parameter tractable. SIAM Journal on Computing, 38(5):2007–2020, 2009.

22 Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 2(1):77–79, 1981.

STACS’14

	Introduction
	Completion to trivially perfect graphs
	Structure of trivially perfect graphs
	Structure of minimal completions
	The algorithm

	Completion to threshold and pseudosplit graphs
	Lower bounds
	Conclusion and open problems

