363 research outputs found

    Miniature Quad-rotor Dynamics Modeling & Guidance for Vision-based Target Tracking Control Tasks

    Get PDF
    This paper presents the dynamics modeling and the control & guidance architecture for specific target tracking indoors tasks using a miniature quad-rotor. Our objective is to develop a testbed using Matlab for experimentation and simulation of dynamics, control and guidance methods within a strong interplay between the hardware on board and software provisioned

    Homography-based pose estimation to guide a miniature helicopter during 3D-trajectory tracking

    Get PDF
    This work proposes a pose-based visual servoing control, through using planar homography, to estimate the position and orientation of a miniature helicopter relative to a known pattern. Once having the current flight information, the nonlinear underactuated controller presented in one of our previous works, which attends all flight phases, is used to guide the rotorcraft during a 3Dtrajectory tracking task. In the sequel, the simulation framework and the results obtained using it are presented and discussed, validating the proposed controller when a visual system is used to determine the helicopter pose information.Fil: BrandĂŁo, Alexandre . Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; BrasilFil: Sarapura, Jorge Antonio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico San Juan. Instituto de AutomĂĄtica; Argentina. Universidad Nacional de San Juan; ArgentinaFil: Sarcinelli Filho, Mario . Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; BrasilFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico San Juan. Instituto de AutomĂĄtica; Argentina. Universidad Nacional de San Juan; Argentin

    Towards MAV Autonomous Flight: A Modeling and Control Approach

    Full text link
    This thesis is about modeling and control of miniature rotary-wing flying vehicles, with a special emphasis on quadrotor and coaxial systems. Mathematical models for simulation and nonlinear control approaches are introduced and subsequently applied to commercial aircrafts: the DraganFlyer and the Hummingbird quadrotors, which have been hardware-modified in order to perform experimental autonomous flying. Furthermore, a first-ever approach for modeling commercial micro coaxial mechanism is presented using a flying-toy called the Micro-mosquito

    A novel approach to the control of quad-rotor helicopters using fuzzy-neural networks

    Get PDF
    Quad-rotor helicopters are agile aircraft which are lifted and propelled by four rotors. Unlike traditional helicopters, they do not require a tail-rotor to control yaw, but can use four smaller fixed-pitch rotors. However, without an intelligent control system it is very difficult for a human to successfully fly and manoeuvre such a vehicle. Thus, most of recent research has focused on small unmanned aerial vehicles, such that advanced embedded control systems could be developed to control these aircrafts. Vehicles of this nature are very useful when it comes to situations that require unmanned operations, for instance performing tasks in dangerous and/or inaccessible environments that could put human lives at risk. This research demonstrates a consistent way of developing a robust adaptive controller for quad-rotor helicopters, using fuzzy-neural networks; creating an intelligent system that is able to monitor and control the non-linear multi-variable flying states of the quad-rotor, enabling it to adapt to the changing environmental situations and learn from past missions. Firstly, an analytical dynamic model of the quad-rotor helicopter was developed and simulated using Matlab/Simulink software, where the behaviour of the quad-rotor helicopter was assessed due to voltage excitation. Secondly, a 3-D model with the same parameter values as that of the analytical dynamic model was developed using Solidworks software. Computational Fluid Dynamics (CFD) was then used to simulate and analyse the effects of the external disturbance on the control and performance of the quad-rotor helicopter. Verification and validation of the two models were carried out by comparing the simulation results with real flight experiment results. The need for more reliable and accurate simulation data led to the development of a neural network error compensation system, which was embedded in the simulation system to correct the minor discrepancies found between the simulation and experiment results. Data obtained from the simulations were then used to train a fuzzy-neural system, made up of a hierarchy of controllers to control the attitude and position of the quad-rotor helicopter. The success of the project was measured against the quad-rotor’s ability to adapt to wind speeds of different magnitudes and directions by re-arranging the speeds of the rotors to compensate for any disturbance. From the simulation results, the fuzzy-neural controller is sufficient to achieve attitude and position control of the quad-rotor helicopter in different weather conditions, paving way for future real time applications

    Implementation of adaptive nonlinear model predictive control on a PX4-enabled quad-rotor platform

    Get PDF
    This thesis aims at developing an adaptive and nonlinear model predictive control Simulink scheme and interfacing it with the popular PX4 drone system. PX4 is one of the most used drone \ac{RTOS} in the context of research, it has many safety and sensor management features, it is open source, and has an extensive and active community of developers making it an excellent platform for \ac{UAVs} control development. The advantages of interfacing it with Matlab/Simulink running on a companion computer are mainly twofold. The first is simplicity: the Simulink block scheme language is easy to use for complex control schemes, also supported by a great collection of libraries and by the baked-in management of PX4 of sensor data that can directly be used as feedback for the controls without additional estimators. The second is the possibility of moving the computational complexity away from the onboard embedded platform to a much more powerful ground station PC. \ac{NMPC} is an excellent example as it makes use of both, there are many implementations available that require only some setup and the model of the plant, it gives great control performance but is computationally expensive and therefore not always usable directly of low-end embedded hardware without some optimizations, which would require a competent and experienced user. Since model predictive control is susceptible to modeling errors that are especially common when dealing with low-cost drone platforms it is paired with a lightweight adaptive scheme that complements the control action to make up for modeling mismatches. The whole infrastructure is then validated through \ac{SITL} simulations across a variety of tasks and conditions, confirming that the interface between Matlab/Simulink works, the \ac{NMPC} scheme is usable in real-time with good trajectory tracking performance and that adaptive control provides a much greater degree of robustness to the system

    Comparative Study of Indoor Navigation Systems for Autonomous Flight

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) have attracted the society and researchers due to the capability to perform in economic, scientific and emergency scenarios, and are being employed in large number of applications especially during the hostile environments. They can operate autonomously for both indoor and outdoor applications mainly including search and rescue, manufacturing, forest fire tracking, remote sensing etc. For both environments, precise localization plays a critical role in order to achieve high performance flight and interacting with the surrounding objects. However, for indoor areas with degraded or denied Global Navigation Satellite System (GNSS) situation, it becomes challenging to control UAV autonomously especially where obstacles are unidentified. A large number of techniques by using various technologies are proposed to get rid of these limits. This paper provides a comparison of such existing solutions and technologies available for this purpose with their strengths and limitations. Further, a summary of current research status with unresolved issues and opportunities is provided that would provide research directions to the researchers of the similar interests

    Structural Design and Non-linear Modeling of a Highly Stable Multi-Rotor Hovercraft

    Get PDF
    This paper presents a new design for a Multi-rotor Unmanned Air Vehicle (UAV). The design is based on the requirement of highly stable hover capability other than typical requirements of vertical takeoff and landing (VTOL), forward and sidewise motions etc. Initially a typical Tri-rotor hovercraft is selected for modeling and analysis. Then design modifications are done to improve the hover stability, with special emphasis on compensating air drag moments that exist at steady state hover. The modified structure is modeled and dynamic equations are derived for it. These equations are analyzed to verify that our structural modifications have the intended stability improvement effect during steady state hover. Keywords: Multi-rotor Crafts, T-Copter, Rotational Matrix, Pseudo Inertial Matrix, Coriolis Acceleration, Air drag moment, Swash Plat

    Modeling the Human Visuo-Motor System for Remote-Control Operation

    Get PDF
    University of Minnesota Ph.D. dissertation. 2018. Major: Computer Science. Advisors: Nikolaos Papanikolopoulos, Berenice Mettler. 1 computer file (PDF); 172 pages.Successful operation of a teleoperated miniature rotorcraft relies on capabilities including guidance, trajectory following, feedback control, and environmental perception. For many operating scenarios fragile automation systems are unable to provide adequate performance. In contrast, human-in-the-loop systems demonstrate an ability to adapt to changing and complex environments, stability in control response, high level goal selection and planning, and the ability to perceive and process large amounts of information. Modeling the perceptual processes of the human operator provides the foundation necessary for a systems based approach to the design of control and display systems used by remotely operated vehicles. In this work we consider flight tasks for remotely controlled miniature rotorcraft operating in indoor environments. Operation of agile robotic systems in three dimensional spaces requires a detailed understanding of the perceptual aspects of the problem as well as knowledge of the task and models of the operator response. When modeling the human-in-the-loop the dynamics of the vehicle, environment, and human perception-action are tightly coupled in space and time. The dynamic response of the overall system emerges from the interplay of perception and action. The main questions to be answered in this work are: i) what approach does the human operator implement when generating a control and guidance response? ii) how is information about the vehicle and environment extracted by the human? iii) can the gaze patterns of the pilot be decoded to provide information for estimation and control? In relation to existing research this work differs by focusing on fast acting dynamic systems in multiple dimensions and investigating how the gaze can be exploited to provide action-relevant information. To study human-in-the-loop systems the development and integration of the experimental infrastructure is described. Utilizing the infrastructure, a theoretical framework for computational modeling of the human pilot’s perception-action is proposed and verified experimentally. The benefits of the human visuo-motor model are demonstrated through application examples where the perceptual and control functions of a teleoperation system are augmented to reduce workload and provide a more natural human-machine interface
    • 

    corecore