
 

 

 

  

Abstract— This paper presents the dynamics modeling and 

the control & guidance architecture for specific target 

tracking indoors tasks using a miniature quad-rotor. Our 

objective is to develop a testbed using Matlab for 

experimentation and simulation of dynamics, control  and 

guidance methods within a strong interplay between the 

hardware on board and software provisioned.  

 

I. INTRODUCTION 

ecent progress in MEMS [1] sensor technology, data 

processing, and integrated actuators has made the 

development of miniature flying robots fully possible. 

Depending on the flying principle and the propulsion mode, 

those Micro or mini Aerial Vehicles-MAV can be classified 

into multiple categories: fixed, flapping, morphing and 

rotary wings are the most common mechanisms developed 

[2]. As usual, those mechanisms have a wingspan or rotor 

span less than 15cm with a total weight less than 100 

grams, and generally equipped with MEMS sensors (gyros, 

accelerometers) and miniature cameras.  

Depending of the size of the MAV, researches focus on 

different phenomena and new paradigms and challenges 

related to mechanical design, biological-inspired 

locomotion [3], [4], [5] and new approaches for gaining 

more level of autonomy (see Fig. 1 for a sneak peek at the 

MAV’s state-of-the-art). 

In this sense, the aim of this work is to present a complete 

testbed for miniature four rotor-wing aerial vehicles, which 

allows the testing of dynamics models, guidance, control 

strategies and hardware description (sensors on board) for 

making those mechanism even more autonomous. 

The testbed purpose is for prototype design matters or 

being used as a control mainframe station. For simulation 

results validation, we have constraint the experiment for 

target tracking tasks that require vision sensing for that 

purpose (the testbed can adopt other scenarios). 
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NanoFlyer 

Proxflyer Company 

-Rotor: 60 mm diameter  

-Weight: 3.3 grams  

-Flight time: Up to 1 minute 

-Tele-operated system. 

 

Mini Flying Robot 

EPSON Corporation 

- 12.3 g helicopter - Diameter: 

About 136 mm 

- Height: About 85 mm 

- Flight time: About 3 minutes 

 

Mesicopter 

Stanford University 

- 4 motor design  

- 1.5 cm rotor diameters  

- Weight of the 325mg  

 

Harvard University 

- 60-milligrams 

- Piezoelectric actuator 

 

MFI 

Berkeley University 

- 2 wing carbon fiber 

- 25mm (wingtip to wingtip) 

flapping wing micro 

 

Fig. 1 MAV sneak peek at the state-of-the-art 

II. MICRO QUAD-ROTOR MODELING 

This section presents some morphological characteristics of 

the mini quad-rotor system, going from the kinematics 

frames to the 6-DoF dynamics equation of motion. 

A. Kinematics Frames of Reference. 

The quadrotor is an underactuated mechanical system with 

6-DoF and only four actuators.  
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Fig. 2  (a) quad-rotor motion variables. (b) quad-rotor sense of motion. 
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The main forces and moments acting on it are those 

produced by the propellers. Those four propellers are in 

cross configuration, meaning that the two pair or propellers 

(1,3) and (2,4) showed in Fig.2-b, turn in opposite 

directions. By modifying the rotor speed, the lift force 

changes in order to generate motion. The rotation of a rigid 

body in space can be parameterized using several methods: 

Euler angles, quaternion, Tait-Bryan angles, etc. [6]. 

However, the most extensively used method in aerospace 

engineering is the Euler angles. Those angles, as well as the 

quad-rotor and inertial frames are shown in Fig. 3. 
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Fig. 3  Kinematics frames. 

 

The inertial frame f{i} is a ground fixed coordinate system 

and the vehicle frame f{v} is located at the center of mass 

of the quad-rotor. The complete rotation matrix, called 

Direct Cosine Matrix [7], consists in rotating a ‘!’ roll 

angle about x-axis, a ‘"’ pitch angle about y-axis, and a ‘#’ 

yaw angle about z-axis, then: 
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In addition, to obtain the time variation of the Euler angles 

 

˙ ! , ˙ " , ˙ # ( ) is necessary to relate the body angular rates 

measured with the gyroscope 

 

p,q,r( ).  

Since 

 

˙ ! , ˙ " , ˙ # ( ) rates are small values, and noting that: 

 

Rx
˙ ! ( ) = Ry

˙ " ( ) = Rz
˙ # ( ) = U , being U the identity operator, 
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B. Single Rigid Body Dynamics 

For defining the dynamics equation of motion, the mini 

quad-rotor is regarded as a single rigid body system with  

6-DoF. This body is free to move under the actions of the 

gravity, gyroscopic, moments, and aerodynamic forces. 

Likewise, we use the Newton-Euler formalism to define the 

dynamics of the rigid body under external forces applied to 

the center of mass expressed in the vehicle frame f{v}, as: 
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 Fig. 4  Rigid body diagram. 

 

Assuming from Fig. 4 that Oi and CM are two points 

located on the rigid body, which corresponds to the location 

of a motor propeller and the center of mass of the vehicle 

respectively, the 

 

s
oi,cm

!"
3  vector relate both points. 

Likewise, the translational and angular velocities (v, w) and 

forces (f, !) respectively at any point on a body in $3 
are 

related as:  

               

 

wcm = woi

vcm = voi + woi ! soi,cm

fcm = foi

" cm = " oi + foi ! soi,cm

                 (3) 

 

In terms of spatial algebra [8], the physical quantities from 

(3) are represented as a 6x1 column vectors, and each 

incorporates the appropriate angular and translational 

components stacked together. Those terms now in $6 
with 

respect to the CM of the body are: 
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Using this spatial notation, the acceleration in $6
 is: 
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Where 

 

S
oi,cm

!"
6x6  is the operator for relating translations 

from Oi to CM’s point. The term 

 

I
cm
!"

6x6 is the mass 

operator, and 

 

˙ S 
oi,cm

T
V

oi
 represents both coriolis and 

centrifugal acceleration terms. 

C. Quad-rotor dynamics. 

First of all, we define forces based on inertial effects and 

then we address aerodynamics and motor effects. In 
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addition, the 

 

F
oi
!"

6  term is composed by both thrust and 

drag moment, which are proportional to the square of the 

propeller rotation speed 

 

! . Finally, by using the kinematics 

transformations previously defined, and representing high-

level notation dynamics from (5) into low-level state-

equations: 

 

 

˙ ̇ P x = Fcm,x
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m
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m
             ˙ ̇ # =
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˙ ! ˙ " + J
cm,z

$1 % cm,z

(6) 

 

The rolling torque is produced by the forces of the right and 

left motors: !2 and !4 respectively (see Fig. 2b) and 

similarly, the pitching torque is produced by the forces of 

the front and back actuators: !3 and !1.            

III. SENSORS ON BOARD 

A. Camera modeling 

The camera model (shown in Fig. 5) is used for tracking the 

target on ground in order to control altitude and 

forward/backward motion. The position of the target is 

given by the vector P[xyz], which corresponds to the pixel 

location on image plane: ("x,"y). The objective is to project 

the target position onto the frame of reference of the 

camera. These relationship is obtained by relating the 

camera field-of-view (FoV): #, the height above ground -Pz, 

the lateral position error Py, the roll angle !, and the total 

number of pixels along the lateral axis of the camera: Mx 

and My. 
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Fig. 5  Camera model for ground target tracking.  

 

This target/image plane relation is: 
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     (7) 

B. MEMS Gyro and Accelerometers 

The most commonly used MEMS gyroscopes are the 

hemispherical resonant type [9], also known as wine glass 

gyro, in which a current passing through the conducting 

legs creates a force that resonates the ring. Induced voltages 

detect this Coriolis-induced ring motion as the legs cut the 

magnetic field. Simple equation can be used to describe 

how the Coriolis effect changes the frequency of the 

vibration, thus detecting the rotation. Likewise, the most 

successful accelerometer types are based on capacitive 

transduction; the reasons are the simplicity of the sensor 

element itself. Those ones contain a small plate attached to 

torsion levers. The plate rotates under acceleration and 

changes the capacitance between the plate and the 

surrounding walls. Both analog output of gyros and 

accelerometers are given by:  

 

 

!gyro = kgyro" + #gyro + $gyro

!accel = kaccelA + #accel + $accel

             (8) 

 

The v term is the output of the gyro/accel (volts), k is a gain 

constant, $ is the bias term strongly dependent on 

temperature, and finally the # is the zero mean white noise.  

IV. ARCHITECTURE FOR CONTROL & GUIDANCE 

As shown in Fig 7, three main modules compose the quad-

rotor Matlab testbed architecture: The vehicle model: which 

incorporates the dynamics equations, camera model, 

sensors and filtering stage. The control Module and the 

estimation Module, which uses the Kalman filtering theory 

[10] for state observation, and the Frenet Serret theory [11] 

as a complement for setting accuracy attitude references. 

A. Kalman Filtering and Frenet Serret Formulas 

The Extended Kalman Filter –EKF is basically composed 

by four stages named as: Prediction, Observation, 

Comparison, and Correction, as depicted in Fig. 6. 

 

 
Fig. 6 Extended Kalman filter for state estimation.  

 

The rate gyros and accelerometers will be used to drive the 

Prediction stage, and the camera and an optic sensor (to  
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Fig. 7 Testbed architecture for Miniature Quad-rotor guidance & Control.   

 

measure altitude) will be used in the Correction stage. The 

propagation model

 

f ˆ X ,U( ) is defined from the partial 

derivatives of the non-linear model from (8). Using the 

EKF, we also estimate the attitude of the vehicle. However, 

when the target on ground performs aggressive changes in 

orientation and speed motion, the estimation of the roll, 

pitch and yaw angles of the vehicle is not enough reliable. 

To solve this issue, we introduce the use of the Serret-

Frenet formulas, allowing the estimation of the attitude as a 

function of the speed and acceleration of the vehicle. From 

Fig. 3, the Frenet frame - f{r} and the rotated Frenet frame 

- f{c}, (both useful for the definition of the Euler angles) are 

shown. In vector calculus the Frenet–Serret formulas 

describe the kinematic properties of a particle that moves 

along a continuous, differentiable curve in three-

dimensional Euclidian space $3
. More specifically, the 

formulas describe the derivatives of the so-called tangent 

(et), normal (en), and binormal (eb) unit vectors in terms of 

each other (see Fig 3). The position and magnitude of the 

velocity vector at any point of the trajectory are given by: 

 

     

 

Vp = ˙ P = ˙ P x
2

+ ˙ P y
2

+ ˙ P z
2

           (9) 

 

To every point of the curve we can associate an 

orthonormal triad of vectors namely the tangent, the normal 

and the bio-normal (see Fig. 3). The Frenet-Serret theory 

says that by properly arranging these vectors in a matrix, 

we obtain a description of the curve orientation due to the 

position, velocity and acceleration of the vehicle while 

tracing out the path. The unit vectors are then defined as: 

 

 

et =

˙ P 

Vp

,     eb =
˙ P ! ˙ ̇ P 

˙ P ! ˙ ̇ P 
,    en = eb ! et         (10) 

According to the notation of rotational transformations used 

in robotics literature, we can express the coordinates of a 

vector given in the rotated Frenet-Frame f{c} to the f{i} 

frame with the matrixes:  
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Where $ is the sideslip angle and % the angle of attack. The 

overall rotation is composed by a rotation about the f{b} z-

axis through the angle $, followed by a rotation about the 

f{b} y-axis through the angle %, as expressed in (11). 

Finally, from the transformation Ri
r
, the attitude estimation 

is given by (ri,j  refers to its components): 

 

 

! = atan2 r
23
,r
33( ),

" = atan2 #r
13
, r

23

2
+ r

33

2( ),
$ = atan2 r

12
,r
11( )

              (12) 

B. The Control Module. 

This sub-section introduces the control strategies used to 

command the Mini quad-rotor while tracking the target on 

ground. The control design proceeds by developing PID 

control equations in order to control: target position 

tracking, altitude, and attitude (roll, pitch, yaw). First of all 
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we describe the control design derived directly after 

simplifying (6). For control purposes, we assume that both 

" and ! are small, and the Coriolis effect terms are also 

negligible, then, we define: 

 

 

˙ ̇ P x = ux = !c"s#
F

m
,    ˙ ̇ P y = uy = s"

F

m
,    ˙ ̇ P z = uz = g ! c"c#

F

m
 (13) 

 

Cartesian position control: ux, uy and altitude control: uz are 

non-coupled, however, attitude control (u!"#) requires the 

computation of ux ,uy ,uz. Hence, we develop PID strategies 

for that. First, we treat altitude hovering based on the size 

of the target within the camera frame.  

 

Altitude Hovering Control: the control objective is to 

maintain the vehicle in a constant altitude (Pz) while tracing 

the trajectory defined by the target on ground. This 

controller is based on the vision tracking provided by the 

on-board mini camera, as shown in Fig. 8.  
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Fig. 8  Front view of the scenario for regulating the Altitude. 

 

The idea is to establish an equation that relates the real size 

of the target (L), the size of the target projected in the 

image plane $ (given in pixels), the focal distance fd and the 

altitude to hold Pz.. This equation is easily found using 

simple triangles relation as: 
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        (14) 

Now, we drive the size of the target $ to the desired one $d
 

by using the following PID control equation: 

 

     

 

PID = Kp,z !
d " !( ) " Kd ,z

˙ ! + Ki,z ! d " !( )d#$      (15) 

Equaling terms from (15) and (14), and solving for uz: 
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Attitude Control: As shown in the Testbed architecture 

from Fig. 7, the attitude set-point commands depends on 

the ground motion of the target. In order to find the desired 

force to define those commands, we isolated the F/m term 

from uz equation in (13), and replace that term within ux and 

uy, then we obtain: 

 

F

m
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Then the desired pitch and roll profile, as a function of 

target’s motion is: 
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V. TESTBED SIMULATION RESULTS 

For testing the whole architecture within simulation we 

used Matlab. The conditions of the tracking scenario are: 

! The trajectory of the target on ground is known. The 

velocity of the target is max. 1m/s. 

! The constant mini quad-rotor altitude over target is one 

meter (1m) from ground. 

! The mini quad-rotor wingspan is 10cm. 

! The mini quad-rotor weight is 100 grams. 

 
Fig. 9 Testbed scenario for tracking simulation. 

 

Figure 9 shows the Matlab scenario, where the yellow 

square represents the field-of-view of the camera, and the 

green arrow on ground is the target to be tracked. The black 

line is the given target trajectory, and the right plot of each 

simulation stage represents how the camera captures the 

target. 
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Fig. 10. System response with wind disturbances of 0.45m/s and 0.15m/s 

in both northing and easting directions. 

 

For simulation results, two test cases are included: 1). The 

first one consists on verifying if the Micro-copter is capable 

of tracking the target on ground given a specific trajectory 

regarding performance based on accurate VS target speed 

tracking criterion (see Fig. 11). The idea of incorporate the 

Frenet-Serret formulas within the estimation module, as a 

complement to the EKF was based on achieving accuracy 

attitude profile during flight, when the target is performing 

aggressive orientation changes to approaching speeds up to 

1 m/s. 2). In the second test, the control system is capable 

of fixing wind disturbances up to 0.55m/s in both northing 

or easting directions (see Fig. 10). 
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Fig. 11 Incremental Tracking Error percentage at diverse target’s speeds  

VI. CONCLUSIONS 

The Inclusion of the Frenet formulas within the guidance 

module  allowed  the  MAV improving tracking of  the  

target  going from  0.5m/s to  1m/s  target speed.  This  was  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

achieved due to attitude references were set as a function of 

the speed and acceleration of the vehicle. On the other 

hand, the controller module also demonstrates to be robust. 

Figure 10 shows how the MAV is capable of regulating 

external air disturbances up to 0.5m/s airspeed.   
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