1,958 research outputs found

    System support for proactive adaptation

    Full text link
    Applications in our modern, pervasive computing environments have to adapt themselves or their context in order to cope with changes. In the process, these pervasive applications should be as unobtrusive as possible, i.e., their adaptation should be automatic. In dynamic multi-user systems with shared resources and interactive applications, such adaptations cannot be scripted in advance. Instead, they have to be calculated at runtime. However, the necessary calculations quickly exceed the complexity that can be handled in real-time, i.e., without causing significant delays. The concept of proactive adaptation allows to change applications and/or context based on prediction of context and user behavior. Hence, proactive adaptation can reduce adaptation delays and avoid context interferences by determining coordinated adaptation plans ahead of time, instead of reactively when adaptation becomes necessary. Further, it helps to provide a seamless service to the user, while optimizing the overall system utility. This thesis presents a general framework and middleware-based system support for coordinated proactive adaptation in dynamic multi-user pervasive systems. The framework consists of five major components. The context interaction model and corresponding context broker offers context information, prediction, as well as actuation in a uniform fashion. The application configuration model allows applications to specify their requirements towards their context, as well as detail user preferences and duration-dependent utility and cost functions for adaptation optimization. Configuration algorithms calculate and rate all adaptation alternatives of an application given a current or predicted context and the specified rating functions, before coordination algorithms find interference-free adaptation plans for situations in which multiple applications share a context space. Finally, the adaptation control component combines the individual components of the framework in a two-dimensional control loop for proactive and fallback reactive adaptation. The prototype framework is evaluated in real-time simulations of an interactive pervasive system using recorded user traces

    ETS (Efficient, Transparent, and Secured) Self-healing Service for Pervasive Computing Applications

    Get PDF
    To ensure smooth functioning of numerous handheld devices anywhere anytime, the importance of self-healing mechanism cannot be overlooked. Incorporation of efficient fault detection and recovery in device itself is the quest for long but there is no existing self-healing scheme for devices running in pervasive computing environments that can be claimed as the ultimate solution. Moreover, the highest degree of transparency, security and privacy attainability should also be maintained. ETS Self-healing service, an integral part of our developing middleware named MARKS (Middleware Adaptability for Resource discovery, Knowledge usability, and Self-healing), holds promise for offering all of those functionalities

    Integrated Support for Handoff Management and Context-Awareness in Heterogeneous Wireless Networks

    Get PDF
    The overwhelming success of mobile devices and wireless communications is stressing the need for the development of mobility-aware services. Device mobility requires services adapting their behavior to sudden context changes and being aware of handoffs, which introduce unpredictable delays and intermittent discontinuities. Heterogeneity of wireless technologies (Wi-Fi, Bluetooth, 3G) complicates the situation, since a different treatment of context-awareness and handoffs is required for each solution. This paper presents a middleware architecture designed to ease mobility-aware service development. The architecture hides technology-specific mechanisms and offers a set of facilities for context awareness and handoff management. The architecture prototype works with Bluetooth and Wi-Fi, which today represent two of the most widespread wireless technologies. In addition, the paper discusses motivations and design details in the challenging context of mobile multimedia streaming applications

    Fast dynamic deployment adaptation for mobile devices

    Get PDF
    Mobile devices that are limited in terms of CPU power, memory or battery power are only capable of executing simple applications. To be able to run advanced applications we introduce a framework to split up the application and execute parts on a remote server. In order to dynamically adapt the deployment at runtime, techniques are presented to keep the migration time as low as possible and to prevent performance loss while migrating. Also methods are presented and evaluated to cope with applications generating a variable load, which can lead to an unstable system

    Situational-Context: A Unified View of Everything Involved at a Particular Situation

    Get PDF
    As the interest in the Web of Things increases, specially for the general population, the barriers to entry for the use of these technologies should decrease. Current applications can be developed to adapt their behaviour to predefined conditions and users preferences, facilitating their use. In the future,Web of Things software should be able to automatically adjust its behaviour to non-predefined preferences or context of its users. In this vision paper we define the Situational-Context as the combination of the virtual profiles of the entities (things or people) that concur at a particular place and time. The computation of the Situational-Context allow us to predict the expected system behaviour and the required interaction between devices to meet the entities’ goals, achieving a better adjustment of the system to variable contexts.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    On the Design of Ambient Intelligent Systems in the Context of Assistive Technologies

    Get PDF
    The design of Ambient Intelligent Systems (AISs) is discussed in the context of assistive technologies. The main issues include ubiquitous communications, context awareness, natural interactions and heterogeneity, which are analyzed using some examples. A layered architecture is proposed for heterogeneous sub-systems integration with three levels of interactions that may be used as a framework to design assistive AISs.Ministerio de Ciencia y Tecnología TIC2001-1868-C0

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201
    corecore