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Abstract. Context-awareness is a key to enabling intelligent adaptation in 
pervasive computing applications that need to cope with dynamic and uncertain 
environments. Addressing uncertainty is one of the major issues in context-
based situation modeling and reasoning approaches. Uncertainty can be caused 
by inaccuracy, ambiguity or incompleteness of sensed context. However, there 
is another aspect of uncertainty that is associated with human concepts and real-
world situations. In this paper we propose and validate a Fuzzy Situation 
Inference (FSI) technique that is able to represent uncertain situations and 
reflect delta changes of context in the situation inference results. The FSI model 
integrates fuzzy logic principles into the Context Spaces (CS) model, a formal 
and general context reasoning and modeling technique for pervasive computing 
environments. The strengths of fuzzy logic for modeling and reasoning of 
imperfect context and vague situations are combined with the CS model’s 
underlying theoretical basis for supporting context-aware pervasive computing 
scenarios. An implementation and evaluation of the FSI model are presented to 
highlight the benefits of the FSI technique for context reasoning under 
uncertainty. 

Keywords: context, fuzzy logic and pervasive computing 

1   Introduction 

In pervasive computing environments, applications need to be aware of the changes in 
their environment and adapt their behavior according to these changes. Pervasive 
systems use context-awareness to perform their tasks in an intelligent and efficient 
manner and maintain consistency and continuity of their operations. Context is a very 
broad term that encompasses different aspects and characteristics [1]. Context can be 
related to a network, application, environment, process, user or device. Contextual 
information collected from every single sensor or data source represents a partial view 
of the real-world. Aggregation of data from multiple sensors and sources provides a 
wider and more general view of surrounding environment and situations of interest 
[2]. For example, in a smart room scenario, rather than monitoring sensed context 
from light, noise and motion sensors individually, this information can be used to 
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reason about situations such as ‘meeting’, ‘presentation’ or ‘study’ which provides a 
better understanding of the environment. As a meta-level concept over context, we 
define the notion of a situation that is inferred from contextual information [2]. 
Situation-awareness provides applications with a more abstract view of their 
environment rather than focusing on individual pieces of context.  

One of the main challenges in enabling situation-awareness in pervasive 
applications is managing uncertainty. Uncertainty can be related to context 
imperfection such as sensors’ inaccuracy, missing information or imperfect 
observations [3-4]. However, there is another dimension of uncertainty that is inherent 
in human concepts and every day situations. In real-world, situations evolve and 
change into other situations (e.g. ‘walking’ changes to ‘running’). Changes that occur 
between situations of ‘walking’ and ’running’ are also good indicators of situations 
that may emerge – albeit with some vagueness and uncertainty. These uncertain 
situations can be of high importance to certain applications such as a health 
monitoring application that needs to monitor details of changes in a patient’s health 
situation. To model real-world situations, reasoning approaches need to be able to 
reflect this aspect of uncertainty in the situation reasoning results.  

Reviewing recent works [5-14] in context reasoning under uncertainty reveals that 
these works have limited capability in dealing with vagueness of real-life situations 
and reflecting gradual and delta changes in the results of situation inference. More 
importantly, they lack a rich theoretical basic for supporting pervasive computing 
scenarios. A formal and general context modeling and reasoning approach that is 
specifically developed for context-aware computing environments and can deal with 
uncertain context and vague situations is still an open issue in this area of research.  

In this paper we present a novel approach called Fuzzy Situation Inference (FSI) 
for situation modeling and reasoning under uncertainty. The FSI model integrates 
fuzzy logic principles into the Context Spaces (CS) model [2], a theoretical approach 
for modeling context and situations. The CS model provides heuristically-based 
sensor data fusion algorithm, specifically developed for pervasive computing 
environments to deal with inaccuracies of sensory originated information (i.e. 
reliability and error of reading) and characteristics of context [15-16]. The FSI 
technique incorporates the CS model’s underlying theoretical basis for supporting 
context-aware and pervasive computing environments while using fuzzy logic to 
model and reason about vague and uncertain situations.  

This paper is structured as follows. Section 2 reviews the current state-of-the-art in 
context modeling and reasoning under uncertainty. Section 3 briefly discusses the 
Context Spaces (CS) model. Section 4 describes integration of fuzzy logic into the CS 
model as the FSI model. Section 5 and 6 present the implementation and evaluation of 
the FSI model respectively. Section 7 concludes the paper and discusses future work. 

2 Related Work 

Situation modeling and reasoning can range from simple conditional rules to more 
complex techniques. In a simple and basic way, Goslar and Schill [17] model context 
and situations using Topic Maps or Context Maps that represent real-world objects as 



topics. Schillit [18] captures the situational context using vectors that describe “the 
condition of situation, the sensing device, the required accuracy and update rate”. In 
an object-oriented way, CoCo [19] represents context and situations using a graphical 
language and abstractions such as class, object, scales and factory. In the Context 
Modeling Language (CML) model, Henricksen [20-21] defines situations using 
predicate logic. Predicates are evaluated against a set of variable bindings and a 
context but the results are restricted to ‘true’, ‘false’ or ‘possibly true’.  

Situations are high level context that are inferred from low level context based on 
rules or reasoning algorithms. One of the major challenges in the situation reasoning 
is dealing with uncertainty. Bayesian reasoning is one of the methods used for dealing 
with uncertainty. In [5], Bayesian technique is applied for location tracking where 
location is computed by integrating readings of inaccurate sensors and in [6] it is used 
for estimation of indoor locations of devices. The probability model proposed in [7] 
extends an ontology-based model that uses Bayesian networks to reason about 
uncertainty. Applying Bayesian reasoning has the limitation of knowing prior 
probabilities in advance and this knowledge might not always be available.   

The Dempster-Shafer theory is a well-known technique used for addressing 
uncertainty in context-aware computing. In [8], a weighted Dempster-Shafer evidence 
combining rule is introduced based on the historically-estimated correctness rate of 
sensors. A different approach proposed in [9] applies the Demspter-Shafer algorithm 
for context reasoning and the rough set technique for context aggregation.  

Compared with other reasoning methods, the use of multi-value logic is appealing 
feature of the fuzzy logic for modeling uncertainty. In [10], a fuzzy representation of 
context is introduced for adaptation of user interface application on mobile devices 
and the same fuzzy concept has been used in [11] for providing the user with an 
explicit and meaningful explanation for the system’s proactive behavior. 
Alternatively, in [12-13] fuzzy logic is used for defining the ‘context situations’ and 
the rules for adaptation of the service policies according to their fitness degree. The 
concept of situational computing using fuzzy logic presented in [1] is based on pre-
developed ontologies and a similarity-based situation reasoning. Ranganathan et al. in 
[14] apply probabilistic logic when there is precise knowledge of event probabilities 
and fuzzy logic when this knowledge is not available.  

Review of context modeling and reasoning approaches shows that most of these 
works do not provide a general approach that can be applied to different domains and 
have limited support for context-aware pervasive computing scenarios. A formal and 
unified context modeling and reasoning approach that can address different aspects of 
uncertainty in pervasive computing environments has not been introduced in the 
current state-of-the-art. The next section discusses the Context Spaces (CS) model 
and its underlying concepts and introduces the heuristics of CS for context reasoning.  

3   The Context Spaces (CS) Model 

The CS model represents contextual information as geometrical objects in 
multidimensional space called situations [2]. The basic concepts of the CS model are 
the context attribute, application space, context state and situation space.  



A ‘context attribute’ describes any data used in the situation reasoning. The term 
‘application space’ defines the universe of discourse and ‘context state’ refers to a 
collection of context values in CS. The concept of a ‘situation space’ is characterized 
by a set of regions. Each ‘region’ is a set of acceptable values of a context attribute 
that satisfies a predicate. A region is a crisp or conventional set of context attribute 
values such that any element is its member or not.  

For example, a situation space called ‘healthy’ can be defined with a context 
attribute of heart rate. The region of values of heart rate can be between 45 and 85 
bpm that satisfy two predicates of �45 bpm and �85 bpm. A context state with the 
value of 78 for heart rate is contained in the situation space of healthy and a context 
state with the value of 104 is not contained in that situation space.  

In addition to basic concepts and techniques for situation modeling and reasoning, 
the CS model provides heuristics developed specifically for addressing context-
awareness under uncertainty. These heuristics are integrated into reasoning techniques 
that are utility-based data fusion algorithms and compute the confidence level in the 
occurrence of a situation [14-15]. The two main heuristics of the CS model are as 
follows:   
1. Individual significance (i.e. weight) and contribution of context attributes in the 

situation space  
2. Inaccuracies of sensory originated information 

These two heuristics deal with importance of each context attribute and sensors’ 
inaccuracies. To enable situation-awareness in pervasive applications, it is imperative 
to address the issue of uncertainty. The CS deals with uncertainty mainly associated 
with sensors’ inaccuracies. Yet there is another aspect of uncertainty in human 
concepts and real-world situations that needs to be represented in a context model and 
reflected in the results of situation reasoning. Fuzzy logic has the benefit of 
representing this level of uncertainty using membership degree of values.  

The next section introduces the FSI model and discusses the CS model’s heuristics 
in more detail.  

4   The Fuzzy Situation Inference (FSI)  

The FSI model maps situation modeling concepts and reasoning methods of the CS 
model into a fuzzy structure and tailors them to conform to fuzzy logic principles. The 
following subsections discuss situation modeling and reasoning in the FSI model. 

4.1    Modeling Situations 

In the FSI model, the term linguistic variable is used to express a ‘context attribute’. 
Unlike context attributes, values that linguistic variables take are not numeric and are 
called terms (also known as fuzzy variables) [22]. Each term of a linguistic variable 
represents a fuzzy set that takes a pair of numeric values (i.e. a value and its 
membership degree). In a fuzzy set, unlike a region, membership of an item is gradual 
and is represented by a membership degree between 0 and 1 [23-25]. 



Definitions of ‘application space’ and ‘context state’ are applied similarly to the 
FSI model but the ‘situation space’ is differently defined. In FSI, a situation is defined 
by a set of fuzzy sets that are expressed as a FSI rule. Unlike CS, a situation can also 
be defined using multiple rules that have dependent or overlapping conditions to 
provide more flexibility in representing situations.  

A FSI rule consists of multiple conditions joined with the AND operator where 
each condition can itself be a disjunction of conditions (i.e. using the OR operator) 
[26]. Each condition tests the input value using a membership function that 
corresponds to a fuzzy term. The consequent of the rule represents the output that 
suggests the degree of confidence in the occurrence of a situation. If the output of a 
rule evaluation for the ‘hypertension’ situation yields the value of 0.885, we can 
suggest that the level of confidence in the occurrence of ‘hypertension’ is 0.885. This 
value can be compared to a confidence threshold � between 0 and 1 (i.e. predefined by 
the application’s designers) to determine whether a situation is occurring.    

4.2    Situation Reasoning  

The two reasoning methods of the CS model that we discuss here are based on the 
first and second heuristics introduced in Section 3.  

Situation reasoning based on weights and contribution level. The first heuristic of 
CS deals with the weights of context attributes and the level of confidence of 
attributes’ values. Weights are values between 0 and 1 that are assigned to context 
attributes and represent relative importance of each context attribute for inferring a 
situation. A level of confidence is assigned to each element and reflects how that 
element relates to the modeled situation. The reasoning computation method based on 
weights and contribution levels of elements is as follows. 
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where iw  presents the weight assigned to context attributes and ic  denotes the 

confidence level of a context attribute. The contribution function that assigns the 
confidence values is proposed at a conceptual level and its implementation is later 
introduced in the second reasoning method based on sensors’ inaccuracy.           

In FSI, the concept of weights is associated with the conditions of a rule but the 
concept of a contribution level is implemented in a different way. The FSI equivalent 
to the equation (1) is a rule evaluation method that computes a level of certainty 
between 0 and 1 using membership functions and presented as follows. 
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where )( ixµ  denotes the membership degree of the element ix  and iw   

represents a weight assigned to a condition. If the OR operator is used it will be 
evaluated using the maximum function. The result of )( ii xw µ  represents a weighted 

membership degree of ix  and n represents the number of conditions in a rule (1�i�n).  

Situation reasoning based on sensors’ inaccuracy. To provide automatic 
computation of the contribution level at run-time, the second reasoning technique of 
CS incorporates the heuristic of sensors’ inaccuracy presented as follows. 
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where )ˆPr( i

t
i Aa ∈  presents the confidence level of a context attribute value by 

computing the probability of a context attribute correct value t
iâ  being contained in 

the region iA . To compute the probability value based on the reliability of a sensor, 
the reliability of reading (e.g. 95%) is used to represent the probability value (i.e. 

)ˆPr( i
t
i Aa ∈ =0.95). Second option to compute the probability value is to integrate the 

sensors’ inaccuracy of reading rather than the reliability of reading. Using this option, 
the probability value is calculated in the following format: 
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where t

ia  denotes the sensed value of the context attribute, je  denotes the sensor 

reading error (i.e. t
ia  - t

iâ ) and )min( j
iA  and )max( j

iA  represent minimum and 
maximum values of the region. This reasoning technique requires the estimation of 
the reading error distribution of sensors.  

The CS equation (3) deals with uncertainty factoring in inaccuracies of sensors 
however this equation does not reflect delta changes of values in the equation and is 
not adequate to reason about vague situations. The FSI equivalent to the CS equation 
(3) not only incorporates the contribution level associated with sensors’ inaccuracy 
but includes the membership of the values as another factor affecting the contribution 
level. In the FSI model, we first calculate the correct value based on the reliability or 
error rate and then pass it to the membership function as follows. 
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where iw  represents a weight assigned to a condition and )),(( ii exfµ  denotes the 

membership degree of the element ix  . The function f calculates the correct value of 

the context based on the inaccuracy value ie . If ie  is a reliability rate, the sensed 
value is multiplied by it and if it is an error rate (i.e. ±) it is added to the sensed value. 

Although the CS model’s heuristics and reasoning techniques deal with sensors’ 
inaccuracy and characteristics of context attributes (i.e. not discussed in this paper), 
they are inadequate to represent the uncertainty associated with real-life and human 
concepts which tend to be abstract and imprecise.  

The CS model computes a contribution level of context attribute values based on 
sensors’ inaccuracy. This information might not be always available and obtainable 
but, more importantly, it is not sufficient for computing contribution levels of 
continuous values. This is due to the fact that there is an uncertainty factor related to 
the values that are near the boundaries of a region (i.e. maximum and minimum 
values). Using a fuzzy approach, this type of uncertainty can be represented and 
reflected in the situation reasoning results [3, 24-25]. The next section presents the 
implementation of the FSI model. 

 5   Implementation  

We have implemented a prototype of health monitoring application based on FSI in 
J2ME and deployed it on a Nokia N95 (shown in Fig.1). The prototype reasons about 
situations of ‘normal’, ‘pre-hypotension’, ‘hypotension’, ‘pre-hypertension’ and 
‘hypertension’. This application can be used by patients who suffer from blood 
pressure fluctuations. A trapezoidal membership function is used to compute 
membership degree of context values. Contextual information used for reasoning 
includes systolic and diastolic blood pressure (SBP and DBP) and heart rate (HR). 

 

Fig. 1. The prototype of a FSI-based health monitoring application running on a Nokia N95 
with an ECG biosensor 



To capture the patient’s heart rate, we have used a two lead ECG biosensor from 
Alive Technologies [27] that transmits ECG signals using Bluetooth to the mobile 
phone. For the blood pressure, we have used randomly generated data that simulates 
blood pressure fluctuations. The health monitoring application performs situation 
reasoning in real-time on the mobile device. Status bars on the mobile phone displays 
the level of certainty and confidence in the occurrence of each situation. 

To evaluate the FSI model we have conducted a comparative evaluation of the FSI, 
CS and Dempster-Shafer techniques that is presented in the next section.  

6   A Comparative Evaluation  

To evaluate the FSI model, we have compared the FSI situation reasoning technique 
to the CS and Dempster-Shafer (hereafter DS) reasoning approaches. The purpose of 
this evaluation is first to validate the FSI model against a well-known reasoning 
technique such as DS and a context model developed for pervasive computing 
environments such as the CS model. The second objective of the evaluation is to 
highlight the benefits of the FSI for reasoning about uncertain situations.  

In this evaluation, we have considered situations of ‘hypotension’, ‘normal’ and 
‘hypertension’. These situations are defined using context attributes of systolic blood 
pressure (SBP) with the scale of 40-170 mm Hg, diastolic blood pressure (DBP) with 
the scale of 20-150 mm Hg and heart rate (HR) with the range of 20-150 bpm.  

Table 1 depicts modeling of the three situations in the CS model including the 
weights of attributes and their corresponding regions of values. Unlike FSI, the CS 
model uses crisp boundary for regions. To provide a similar and balanced range of 
data for evaluation of these approaches, the boundaries of regions are selected in a 
way that they match the values of fuzzy sets with membership degree of 0.5. 

Table 1.  Situation definitions in the CS model.  

Situation Context attribute Region of values Weight 
Hypotension 

 
 

1=SBP 
2=DBP 
3=HR 

�85 
�60  
�45 

0.4 
0.4 
0.2 

Normal  1=SBP 
2=DBP 
3=HR 

>85 and �135 
>60 and �110 
>45 and �85 

0.4 
0.4 
0.2 

Hypertension 1=SBP 
2=DBP 
3=HR 

>135 
>110 
>85 

0.4 
0.4 
0.2 

 
Although FSI can represent a situation with multiple rules and each condition can 

be joined by the OR operator, we use one rule to define a situation and do not include 
the OR operator so that both models can be closely compared. The modeling of the 
three situations in the FSI model is presented in Table 2. Weights of conditions for the 
FSI rules conform to the weights specified for the context attributes in the CS model. 



Table 2.  Situation definitions in the FSI model. 

Situation Linguistic 
Variable 

Terms Fuzzy set 

represented 
below via  FSI 
rules 

 

1=SBP 
2=DBP 
3=HR 

low, normal, high 
low, normal, high 
slow, normal, fast 

trapezoidal 
membership 
functions used 

Rule1: if SBP is low and DBP is low and HR is low then situation is hypotension 
Rule2: if SBP is normal and DBP is normal and HR is normal then situation is normal 
Rule3: if SBP is high and DBP is high and HR is high then situation is hypertension  

 
To apply the DS algorithm for reasoning about situations, we use the Dempster’s 

rule of combination. The normalized version of the combination rule is as follows. 
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where m(R) denotes the mass value computed for a proposition R given the 

evidences i and j. If R represents a situation, considering all existing propositions, the  
intersection of some of these propositions denoted as P and Q results in the 
proposition R (i.e. RQP =∩ ) and the intersection of other combinations of 
propositions results in an empty set. 

To model the three situations of Hypotension (L), Normal (N) and Hypertension 
(H) with DS, we first need to define propositions and events. Since all three situations 
are incompatible we include a proposition of Unknown (U) that would consist of three 
situations. Then we identify the events and mass values that reflect the association of 
an event with the occurrences of each proposition. An example of the events and mass 
values are depicted in Table 3. Mass values are assigned in a way that they reflect to 
what degree each event indicates a situation.  

Table 3.  Definitions of events and mass values.  

Event Mass values  
for Normal 

Mass values  
for Hypotension 

Mass values 
For Hypertension 

Mass values  
for unknown 

Total 
mass 

SBPLow (40-85) 0 0.7 0 0.3 1 
SBPMed(86-135)  0.7 0 0 0.3 1 
SBPHigh(136-170)  0 0 0.7 0.3 1 
DBPLow(20-60)  0 0.7 0 0.3 1 
DBPMed(61-110)  0.7 0 0 0.3 1 
DBPHigh(110-150) 0 0 0.7 0.3 1 
HRSlow(20-45)  0.2 0.4 0 0.4 1 
HRMed(46-85)  0.4 0.2 0.2 0.2 1 
HRFast(86-150)  0.2 0 0.4 0.4 1 

 



Since we have based our situations on three context attributes, we define three 
mass functions of 1m , 2m  and 3m corresponding to each context attribute. Then we 
apply DS combination over all propositions and available evidence. For example, if 
we have the context values of 82 for SBP, 52 for DBP and 58 for HR, we combine 
evidence for the occurrence of hypotension (L) as follows.  
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The same DS reasoning computation presented above is used in our evaluation. 

Although, the DS theory has the strength of representing unknown or uncertainty, 
determination of mass values for propositions can be a difficult task, particularly that 
they can have impact on the other situations. For evaluation of CS and FSI, we use the 
equations (1) and (2) (discussed earlier). These techniques do not include the sensor’s 
inaccuracy and could be compared to the DS method more accurately.  

The dataset used for evaluation is generated continuously (data rate is 30 re-
cords/minute) in ascending order. For this set of experiments, we have used our data 
synthesizer to represent the different events defined in Table 3 that contribute to the 
occurrence of each pre-defined situation as well as the uncertain situations. Table 4 
depicts a snapshot of 131 context states that is used along with their scales. 



Table 4.  The data used for the comparative evaluation.  

Context attribute scales Corresponding DS events 
SBP:40-65, DBP: 20-45, HR: 20-45 SBPLow, DBPLow, HRSlow 
SBP:66-80, DBP: 46-60, HR: 46-60 SBPLow, DBPLow, HRMed 
SBP:81-85, DBP: 61-65, HR: 61-65 SBPLow, DBPMed, HRMed 
SBP:86-105, DBP: 66-85, HR: 66-85 SBPMed, DBPMed, HRMed 
SBP:106-130, DBP: 86-110, HR: 86-110 SBPMed, DBPMed, HRHigh 
SBP:131-135, DBP: 111-115, HR: 111-115 SBPLow, DBPHigh, HRHigh 
SBP:136-170, DBP: 116-150, HR: 116-150 SBPHigh, DBPHigh, HRHigh 

 
Fig. 2 presents the results of comparative evaluation of three reasoning approaches 

of CS, DS and FSI for situations of ‘hypotension’, ‘normal’ and ‘hypertension’.  
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Fig. 2. Results of the comparative evaluation of the CS, DS and FSI reasoning approaches  



 
Fig. 2 shows three approaches of CS, DS and FSI have a relatively similar trend 

according to context changes. When the data corresponds to a pre-defined situation 
the results of three approaches almost overlap. This overlapping is more noticeable 
with the CS and FSI models as they are based on similar heuristics.  

However, when changes of data indicate the occurrence of an unknown and 
uncertain situation, differences of reasoning results between CS, DS and FSI are more 
apparent. Compared to FSI, the results of situation reasoning by the CS and DS 
methods show sudden rises and falls with sharp edges when situations change which 
do not match the real-life situations. This is because the DS and CS approaches do not 
deal with delta changes of the values and are not able to reflect the gradual evolution 
of one situation to another situation. When the value of context attributes decreases or 
increases, its membership degree also increases and decreases accordingly and 
gradually. This enables FSI to provide more accurate situation reasoning results in 
terms of reflecting very minor changes of context.  

The evaluation validates the accuracy of the FSI model for situation modeling and 
reasoning and it also shows that FSI is able to reflect very minor changes of context in 
situation inference and represent changes in a more gradual and smooth manner. 

The evaluation shows that the FSI model is more appropriate approach for 
representation of human concepts and for reasoning about the real-world situations 
that are defined by continuous values. Health-related situations are examples of these 
types of scenarios where FSI can prove to be more fitting approach compared to the 
DS and CS reasoning approaches.  

 

7   Conclusion 

Situation modeling and reasoning under uncertainty are challenging research tasks in 
context-aware pervasive computing. Fuzzy logic has the potential to represent the 
fuzziness and uncertainty that is associated with real-world situations. However, 
application of a fuzzy approach per se can not be adequate for situation modeling and 
reasoning in pervasive computing environments. Therefore, it is imperative that a 
fuzzy modeling and reasoning method to be combined with a rich theoretical basis for 
supporting context-aware scenarios.  

In this paper, we proposed a Fuzzy Situation inference (FSI) model that integrates 
fuzzy logic into the CS model, a formal and general context reasoning and modeling 
technique for pervasive computing environments. The strengths of fuzzy logic for 
modeling imperfect context and reasoning about vague situations are combined with 
the CS model’s underlying theoretical basis for supporting context-aware and 
pervasive computing scenarios. An implementation and evaluation of the FSI model 
were presented through a scenario in health monitoring to highlight the benefits of the 
FSI technique for context reasoning under uncertainty.  

The FSI model is a part of our architecture for adaptive mobile data stream mining. 
In this project, we use the results of FSI for gradual tuning of parameters of data 
stream mining algorithms and perform intelligent and real-time analysis of data 



stream generated from sensors on mobile devices. The analysis is underpinned using 
situation-aware adaptation. In the future, we intend to explore and model relationships 
between situations, and extend FSI with learning capabilities so the system can 
predict  situations. 
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