143,728 research outputs found

    The Oil Shale Transformation in the Presence of an Acidic BEA Zeolite under Microwave Irradiation

    Get PDF
    The transformation of an oil shale sample from the Autun Basin in the Massif Central, France, was studied using two different heating strategies: microwave irradiation and conventional heating. Microwave heating was performed using a single-mode cavity operating at a frequency of 2.45 GHz under an inert atmosphere. Heating of the sample generated liquid products of similar composition using either microwave or conventional heating. The yields of liquid products were similar in the two cases, while the overall energy requirements were much lower using microwave irradiation. The influence of water vapor on the oil shale decomposition was also studied under microwave energy. In order to simulate conversion of the organic fraction of the oil shale in the presence of an acidic zeolite catalyst, the oil shale sample was mixed with 5 wt % BEA zeolite and heated under microwave irradiation. It was found that the liquid products yield decreased along with an increase in the amount of coke produced. Gaseous and liquid products recovered showed a tendency for the production of lighter components in the presence of zeolite. The aromatic character of the oils was more important when microwaves were used, especially in the presence of zeolite

    Structural aspects of AlPO4-5 zeotypes synthesized by microwave-hydrothermal process. 1. Effect of heating time and microwave power

    Get PDF
    AlPO4-5 with AFI structure containing 12-membered rings was prepared using the aluminum isopropoxide precursor as a source of alumina and TEA as the structure directing agent via microwave technique. The influence of microwave power and heating time on the dimensions of AlPO4-5 crystals formed in the system Al2O3:P2O5:(C2H5)3N (or (C3H7)3N):H2O:HF has been studied systematically. It was found that the morphology of the AlPO4-5 depended on the microwave power and heating time. Several mechanisms of fast crystallization existed in the microwave radiation, due to increased dissolution of the gel by lonely water molecules in almost temperature gradient-free and convection-free in situ heating

    Microwave pyrolysis of oil palm fibres

    Get PDF
    Malaysia and Indonesia are generating millions of ton of oil palm fibres (OPF) from their oil palm mills as biomass solid wastes which needs proper waste utilization application. The main purpose of the present research was to pyrolyse the OPF biomass into bio-oil using microwave irradiation technique. A domestic microwave of 1000 W and 2.45 GHz frequency was modified to accommodate fluidized bed system. It was found that OPF showed poor microwave absorbing characteristics. Therefore, an appropriate microwave-absorbing material such as biomass char was added to initiate the pyrolysis process. Temperature profiles and bio-oil yield was investigated by varying the ratio of OPF to microwave absorber. It was found that the yield of bio-oil depended on the ratio of OPF to microwave absorber. Particular attention on the temperature profiles was also taken into account during microwave heating of OPF. It can be concluded that microwave technique can save significant time and energy through its rapid and volumetric heating characteristic

    Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites

    Get PDF
    Microwave processing of materials is a relatively new technology advancement alternative that provides new approaches for enhancing material properties as well as economic advantages through energy savings and accelerated product development. Factors that hinder the use of microwaves in materials processing are declining, so that prospect for the development of this technology seem to be very promising. The two mechanisms of orientation polarisation and interfacial space charge polarisation, together with dc conductivity, form the basis of high frequency heating. Clearly, advantages in utilising microwave technologies for processing materials include penetration radiation, controlled electric field distribution and selective and volumetric heating. However, the most commonly used facilities for microwave processing materials are of fixed frequency, e.g. 2.45 GHz. This paper presents a state-of-the-art review of microwave technologies, processing methods and industrial applications, using variable frequency microwave (VFM) facilities. This is a new alternative for microwave processing

    Experimental investigation of open-ended microwave oven assisted encapsulation process

    Get PDF
    An open ended microwave oven is presented with improved uniform heating, heating rates and power conversion efficiency. This next generation oven produces more uniform EM fields in the evanescent region forming part of the heating area of the oven. These fields are vital for the rapid and uniform heating of various electromagnetically lossy materials. A fibre optic temperature sensor and an IR pyrometer are used to measure in situ and in real-time the temperature of the curing materials. An automatic computer controlled closed feedback loop measures the temperature in the curing material and drives the microwave components to obtain predetermined curing temperature cycles for efficient curing. Uniform curing of the lossy encapsulants is achieved with this oven with typical cure cycle of 270 seconds with a ramp rate of 1oC/s and a hold period of 2 minutes. Differential scanning calorimeter based measurement for the pulsed microwave based curing of the polymer dielectric indicates a ~ 100% degree of cure

    Microwave assisted heterogeneous catalysis: effects of varying oxygen concentrations on the oxidative coupling of methane

    No full text
    The oxidative coupling of methane was investigated over alumina supported La2O3/CeO2 catalysts under microwave dielectric heating conditions at different oxygen concentrations. It was observed that, at a given temperature using microwave heating, selectivities for both ethane and ethylene were notably higher when oxygen was absent than that in oxygen/methane mixtures. The differences were attributed to the localised heating of microwave radiation resulting in temperature inhomogeneity in the catalyst bed. A simplified model was used to estimate the temperature inhomogeneity; the temperature at the centre of the catalyst bed was 85 °C greater than that at the periphery when the catalyst was heated by microwaves in a gas mixture with an oxygen concentration of 12.5% (v/v), and the temperature difference was estimated to be 168 °C in the absence of oxygen

    Assessment of Efficiency of Drying Grain Materials Using Microwave Heating

    Full text link
    We present results of experimental work on studying the drying of a dense layer of grain using microwave heating. We investigated a series of techniques to supply heat to grain to assess energy efficiency of a microwave field. We studied the following ways of drying: a microwave method, a pulsating microwave method, a microwave-convective cyclic method with blow of a layer with heated air flow and air without preheating, simultaneous microwave-convective drying method.Studying the kinetics of drying in a microwave field showed that we can divide the process into heating periods (zero drying rate), constant (first drying rate) and falling (second drying rate). These periods are characteristic for drying of colloidal capillary-porous bodies at other methods of heat supply. We obtained empirical relationships for the drying rate and the average temperature of grain in the first period based on the generalization of experimental data on the study on drying of grain of buckwheat, barley, oats, and wheat. We presented kinetic dependences in a dimensionless form. They summarize data on the studied grains. The aim of comprehensive studies of various methods of heat supply during drying was determination of the optimal method and rational operational parameters, which ensure high intensity of the process and the required quality of the finished product with minimal energy consumption.All studies took place under identical conditions and for the same grain (oats) to ensure the accuracy of the comparison. We determined that the most preferable method is a simultaneous microwave-convective energy supply without air preheating, which minimizes specific energy consumption. Experimental studies on drying using a microwave field made possible to select the required process parameters: power, heating rate, mass, and form of loading. We plan to develop a technology for drying of grain using microwave energy based on the study dat

    Assessment of Efficiency of Drying Grain Materials Using Microwave Heating

    Get PDF
    We present results of experimental work on studying the drying of a dense layer of grain using microwave heating. We investigated a series of techniques to supply heat to grain to assess energy efficiency of a microwave field. We studied the following ways of drying: a microwave method, a pulsating microwave method, a microwave-convective cyclic method with blow of a layer with heated air flow and air without preheating, simultaneous microwave-convective drying method.Studying the kinetics of drying in a microwave field showed that we can divide the process into heating periods (zero drying rate), constant (first drying rate) and falling (second drying rate). These periods are characteristic for drying of colloidal capillary-porous bodies at other methods of heat supply. We obtained empirical relationships for the drying rate and the average temperature of grain in the first period based on the generalization of experimental data on the study on drying of grain of buckwheat, barley, oats, and wheat. We presented kinetic dependences in a dimensionless form. They summarize data on the studied grains. The aim of comprehensive studies of various methods of heat supply during drying was determination of the optimal method and rational operational parameters, which ensure high intensity of the process and the required quality of the finished product with minimal energy consumption.All studies took place under identical conditions and for the same grain (oats) to ensure the accuracy of the comparison. We determined that the most preferable method is a simultaneous microwave-convective energy supply without air preheating, which minimizes specific energy consumption. Experimental studies on drying using a microwave field made possible to select the required process parameters: power, heating rate, mass, and form of loading. We plan to develop a technology for drying of grain using microwave energy based on the study dat
    corecore