987 research outputs found

    Microwave antennas for infrastructure health monitoring

    Get PDF
    Infrastructure health monitoring (IHM) is a technology that has been developed for the detection and evaluation of changes that affect the performance of built infrastructure systems such as bridges and buildings. One of the employed methods for IHM is wireless sensors method which is based on sensors embedded in concrete or mounted on surface of structure during or after the construction to collect and report valuable monitoring data such as temperature, displacement, pressure, strain and moisture content, and information about defects such as cracks, voids, honeycombs, impact damages and delamination. The data and information can then be used to access the health of a structure during and/or after construction. Wireless embedded sensor technique is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. However, several issues should be resolved at research and development stage in order to apply them widely in practice. One of these issues is that wireless sensors cannot operate for a long time due to limited lifetime of batteries. Once the sensors are embedded within a structure, they may not be easily accessible physically without damaging the structure. The main aim of this research is to develop effective antennas for IHM applications such as detection of defects such as gaps representing cracks and delaminations, and wireless powering of embeddable sensors or recharging their batteries. For this purpose, modelling of antennas based on conventional antipodal Vivaldi antennas (CAVA) and parametric studies are performed using a computational tool CST Studio (Studio 2015) including CST Microwave Studio and CST Design Studio, and experimental measurements are conducted using a performance network analyser. Firstly, modified antipodal Vivaldi antenna (MAVA) at frequency range of 0.65 GHz – 6 GHz is designed and applied for numerical and experimental investigations of the reflection and transmission properties of concrete-based samples possessing air gap or rebars. The results of gap detection demonstrate ability of the developed MAVA for detection of air gaps and delivery of power to embeddable antennas and sensors placed at any depth inside 350-mm thick concrete samples. The investigation into the influence of rebars show that the rebar cell can act as a shield for microwaves if mesh period parameter is less than the electrical half wavelength. At higher frequencies of the frequency range, microwaves can penetrate through the reinforced concrete samples. These results are used for the investigating the transmission of microwaves at the single frequency of 2.45 GHz between the MAVA and a microstrip patch antenna embedded inside reinforced concrete samples at the location of the rebar cell. It is shown that -15 dB coupling between the antennas can be achieved for the samples with rebar cell parameters used in practice. Secondly, a relatively small and high-gain resonant antipodal Vivaldi antenna (RAVA) as a transmitting antenna and modified microstrip patch antenna as an embeddable receiving antenna are designed to operate at 2.45 GHz for powering the sensors or recharging their batteries embedded in reinforced concrete members. These members included reinforced dry and saturated concrete slabs and columns with different values of mesh period of rebars and steel ratio, respectively. Parametric study on the most critical parameters, which affect electromagnetic (EM) wave propagation in these members, is performed. It is shown that there is a critical value of mesh period of rebars with respect to reflection and transmission properties of the slabs, which is related to a half wavelength in concrete. The maximum coupling between antennas can be achieved at this value. The investigation into reinforced concrete columns demonstrates that polarisation configuration of the two-antenna setup with respect to rebars and steel ratios as well as losses in concrete are important parameters. It is observed that the coupling between the antennas reduces faster by increasing the value of steel ratio in parallel than in vertical configuration due to the increase of the interaction between electromagnetic waves and the rebars. This effect is more pronounced in the saturated than in dry reinforced concrete columns. Finally, a relatively high gain 4-element RAVA array with a Wilkinson power divider, feeding network and an embeddable rectenna consisting of the microstrip patch antenna and a rectified circuit are developed. Two wireless power transmission systems, one with a single RAVA and another with the RAVA array, are designed for recharging batteries of sensors embedded inside reinforced concrete slabs and columns with different configurations and moisture content. Comparison between these systems shows that the DC output voltage for recharging commonly used batteries can be provided by the systems with the single RAVA and the system with the RAVA array at the distance between the transmitting antenna and the surface of reinforced concrete members of 0.12 m and 0.6 m, respectively, i.e. the distance achieved when the array is 5 times longer that the distance achieved with a single antenna

    Research activities of Spanish antenna groups

    Get PDF
    When we look at the history of electricity and electromagnetism in Spain we discover that the most important Spanish researchers are generally out of the official institutions or stable research groups until the 20th century [1] [2]. In the 20th century most of the scientific research is done in stable research institutions and universities and the most important electromagnetism research centres in Spain are located in the Faculty of Physics of the most important universities, the National Scientific Research Council (CSIC) and the School for Telecommunication Engineering created in 1923. But the greatest impulse of research in the antenna and radiowave propagation field is done after 1960 reaching the first national URSI conference in 1980. After that year, the relation between groups and the number of research groups is continuously growing and the relation to industry is also increasing. When Spain joins the European research organizations (COST, ERC...) and the European Union in 1985 the research support experience a fast growing and the participation in the European research structures. In the antenna design field, there exist some specializations although most of the groups have dome specific projects in almost all the antenna analysis and design fields. Here, we have selected the most important and characteristic area related to each of the research groups and institutions. The easiest way to classify the research work in antennas is the selection between antenna analysis, design and measurement. After that the selected frequency bands technology, the type of antennas and the related circuits can be a good criterion to describe the variety of research work and specialization between groups

    Debye frequency-extended waveguide permittivity extraction for high complex permittivity materials. Concrete setting process characterization

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A waveguide with central frequency 868 MHz is used in transmission/reflection operation regime to accurately measure the behaviour of the complex permittivity of high complex permittivity granular materials and it has been frequency-extended up to 3 GHz using the Debye fitted relaxation model. It is shown that for highly granular high permittivity materials a waveguide based transmission/reflection technique is necessary to reduce the uncertainty of the extracted permittivity values. The technique is first described and validated with isopropyl alcohol and then applied to the characterization of cement based materials. This paper provides accurate data on the evolution of the complex permittivity of concrete and mortar from the moment of pouring until air dried condition is achieved.Peer ReviewedPostprint (author's final draft

    Analysis and Design of Footwear Antennas

    Get PDF
    Wearable technologies are found in an increasing number of applications including sport and medical monitoring, gaming and consumer electronics. Sensors are used to monitor vital signs and are located on various parts of the body. Footwear sensors permit the collection of data relating to gait, running style, physiotherapy and research. The data is sent from sensors to on-body hubs, often using wired technology, which can impact gait characteristics. This thesis describes the design of footwear antennas for wireless sensor telemetry. The work addresses the challenges of placing antennas close to the foot as well as the proximity to the ground. Guidelines for polarization are presented. The channel link between footwear and wrist is investigated for both narrowband and wideband channels across different frequencies. The effects of the body proximity and movement were gauged for walking subjects and are described in terms of the Rician Distribution K-factor. Different antenna solutions are presented including UWB antennas on various footwear locations as well as 433 MHz integrated antennas in the insole. Both directional and omnidirectional antennas were considered for UWB and the evaluation was for both time-domain and frequencydomain. The research established new ideas that challenge the old paradigm of the waist as the best hub position, demonstrating that a hub on the footwear using directional antennas outperforms a hub on the waist using an omnidirectional antenna. The cumulative distribution functions of measured path gains are evaluated and the results are described in terms of the achievable minimum data rate considering the Body Area Network standard

    Synthetic aperture radar-based techniques and reconfigurable antenna design for microwave imaging of layered structures

    Get PDF
    In the past several decades, a number of microwave imaging techniques have been developed for detecting embedded objects (targets) in a homogeneous media. New applications such as nondestructive testing of layered composite structures, through-wall and medical imaging require more advanced imaging systems and image reconstruction algorithms (post-processing) suitable for imaging inhomogeneous (i.e., layered) media. Currently-available imaging algorithms are not always robust, easy to implement, and fast. Synthetic aperture radar (SAR) techniques are some of the more prominent approaches for image reconstruction when considering low loss and homogeneous media. To address limitations of SAR imaging, when interested in imaging an embedded object in an inhomogeneous media with loss, two different methods are introduced, namely; modified piecewise SAR (MPW-SAR) and Wiener filter-based layered SAR (WL-SAR). From imaging system hardware point-of-view, microwave imaging systems require suitable antennas for signal transmission and data collection. A reconfigurable antenna which its characteristics can be dynamically changed provide significant flexibility in terms of beam-forming, reduction in unwanted noise and multiplicity of use including for imaging applications. However, despite these potentially advantageous characteristics, the field of reconfigurable antenna design is fairly new and there is not a methodical design procedure. This issue is addressed by introducing an organized design method for a reconfigurable antenna capable of operating in several distinct frequency bands. The design constraints (e.g., size and gain) can also be included. Based on this method, a novel reconfigurable coplanar waveguide-fed slot antenna is designed to cover several different frequency bands while keeping the antenna size as small as possible --Abstract, page iii

    Novel Dual Band Frequency Selective Surface and its Applications on the Gain Improvements of Compact UWB Monopole Antenna

    Get PDF
    In this work, a highly directional ultra-wideband (UWB) microstrip patch antenna as a single-element is suggested. The proposed antenna’s gain is enhanced with a novel dual-band frequency selective surface (FSS) placed beneath it. The FSS design has a hexagonal structure with meander line inductances and a capacitance-like structure connecting all of the corners to the middle. There is no metallic layer on the other side of the substrate, which shows transmission zeros at 4.95 GHz and 12.7 GHz, and a modified U-shaped monopole antenna is developed. First, the performance characteristics of the antenna and FSS are analyzed from the simulation results, and they are validated experimentally after fabrication, followed by measurement. The compact configuration comprises an antenna loaded with the proposed FSS results S11 less than -10 dB from 3.15 GHz to 22.65 GHz, covering the UWB band together with the X, Ku-band with a bandwidth of 19.5 GHz (151.16% FBW). The antenna’s overall physical dimensions would be 38.8 mm×38.8 mm×25.2 mm (0.407λo×0.407λo×0.265λo), with λo denoting the lowest frequency’s free-space wavelength. The FSS loading results in a 9.9 dBi maximum gain at 10 GHz. The antenna’s small size increases bandwidth, and its high peak gain makes it ideal for use in real-time applications

    Imaging of buried utilities by ultra wideband sensory systems

    Get PDF
    Third-party damage to the buried infrastructure like natural gas pipelines, water distribution pipelines and fiber optic cables are estimated at 10billionannuallyacrosstheUS.Also,theneededinvestmentinupgradingourwaterandwastewaterinfrastructureoverthenext20yearsisestimatedbyEnvironmentalProtectionAgency(EPA)at10 billion annually across the US. Also, the needed investment in upgrading our water and wastewater infrastructure over the next 20 years is estimated by Environmental Protection Agency (EPA) at 400 billion, however, non-destructive condition assessment technologies capable of providing quantifiable data regarding the structural integrity of our buried assets in a cost-effective manner are lacking. Both of these areas were recently identified several U.S. federal agencies as \u27critical national need\u27. In this research ultra wideband (UWB) time-domain radar technology was adopted in the development of sensory systems for the imaging of buried utilities, with focus on two key applications. The first was the development of a sensory system for damage avoidance of buried pipes and conduits during excavations. A sensory system which can be accommodated within common excavator buckets was designed, fabricated and subjected to laboratory and full-scale testing. The sensor is located at the cutting edge (teeth), detecting the presence of buried utilities ahead of the cutting teeth. That information can be used to alert the operator in real-time, thus avoiding damage to the buried utility. The second application focused on a sensory system that is capable of detecting structural defects within the wall of buried structures as well as voids in the soil-envelope encasing the structure. This ultra wideband sensory system is designed to be mounted on the robotic transporter that travels within the pipeline while collecting data around the entire circumference. The proposed approach was validated via 3-D numerical simulation as well as full-scale experimental testing

    Microwave Photonic Applications - From Chip Level to System Level

    Get PDF
    Die Vermischung von Mikrowellen- und optischen Technologien – Mikrowellenphotonik – ist ein neu aufkommendes Feld mit hohem Potential. Durch die Nutzung der Vorzüge beider Welten hat die Mikrowellenphotonik viele Anwendungsfälle und ist gerade erst am Beginn ihrer Erfolgsgeschichte. Der Weg für neue Konzepte, neue Komponenten und neue Anwendungen wird dadurch geebnet, dass ein höherer Grad an Integration sowie neue Technologien wie Silicon Photonics verfügbar sind. In diesem Werk werden zuerst die notwendigen grundlegenden Basiskomponenten – optische Quelle, elektro-optische Wandlung, Übertragungsmedium und opto-elektrische Wandlung – eingeführt. Mithilfe spezifischer Anwendungsbeispiele, die von Chipebene bis hin zur Systemebene reichen, wird der elektrooptische Codesign-Prozess veranschaulicht. Schließlich werden zukünftige Ausrichtungen wie die Unterstützung von elektrischen Trägern im Millimeterwellen- und THz-Bereich sowie Realisierungsoptionen in integrierter Optik und Nanophotonik diskutiert.The hybridization between microwave and optical technologies – microwave photonics – is an emerging field with high potential. Benefitting from the best of both worlds, microwave photonics has many use cases and is just at the beginning of its success story. The availability of a higher degree of integration and new technologies such as silicon photonics paves the way for new concepts, new components and new applications. In this work, first, the necessary basic building blocks – optical source, electro-optical conversion, transmission medium and opto-electrical conversion – are introduced. With the help of specific application examples ranging from chip level to system level, the electro-optical co-design process for microwave photonic systems is illustrated. Finally, future directions such as the support of electrical carriers in the millimeter wave and THz range and realization options in integrated optics and nanophotonics are discussed
    • …
    corecore