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Abstract 

Infrastructure health monitoring (IHM) is a technology that has been developed for the 

detection and evaluation of changes that affect the performance of built infrastructure 

systems such as bridges and buildings. One of the employed methods for IHM is 

wireless sensors method which is based on sensors embedded in concrete or mounted 

on surface of structure during or after the construction to collect and report valuable 

monitoring data such as temperature, displacement, pressure, strain and moisture 

content, and information about defects such as cracks, voids, honeycombs, impact 

damages and delamination. The data and information can then be used to access the 

health of a structure during and/or after construction. Wireless embedded sensor 

technique is also a promising solution for decreasing the high installation and 

maintenance cost of the conventional wire based monitoring systems. However, 

several issues should be resolved at research and development stage in order to apply 

them widely in practice. One of these issues is that wireless sensors cannot operate for 

a long time due to limited lifetime of batteries. Once the sensors are embedded within 

a structure, they may not be easily accessible physically without damaging the 

structure.  

        The main aim of this research is to develop effective antennas for IHM 

applications such as detection of defects such as gaps representing cracks and 

delaminations, and wireless powering of embeddable sensors or recharging their 

batteries.  For this purpose, modelling of antennas based on conventional antipodal 

Vivaldi antennas (CAVA) and parametric studies are performed using a computational 

tool CST Studio (Studio 2015) including CST Microwave Studio and CST Design 

Studio, and experimental measurements are conducted using a performance network 

analyser.  Firstly, modified antipodal Vivaldi antenna (MAVA) at frequency range of 
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0.65 GHz – 6 GHz is designed and applied for numerical and experimental 

investigations of the reflection and transmission properties of concrete-based samples 

possessing air gap or rebars.  The results of gap detection demonstrate ability of the 

developed MAVA for detection of air gaps and delivery of power to embeddable 

antennas and sensors placed at any depth inside 350-mm thick concrete samples. The 

investigation into the influence of rebars show that the rebar cell can act as a shield for 

microwaves if mesh period parameter is less than the electrical half wavelength. At 

higher frequencies of the frequency range, microwaves can penetrate through the 

reinforced concrete samples. These results are used for the investigating the 

transmission of microwaves at the single frequency of 2.45 GHz between the MAVA 

and a microstrip patch antenna embedded inside reinforced concrete samples at the 

location of the rebar cell. It is shown that -15 dB coupling between the antennas can 

be achieved for the samples with rebar cell parameters used in practice. Secondly, a 

relatively small and high-gain resonant antipodal Vivaldi antenna (RAVA) as a 

transmitting antenna and modified microstrip patch antenna as an embeddable 

receiving antenna are designed to operate at 2.45 GHz for powering the sensors or 

recharging their batteries embedded in reinforced concrete members. These members 

included reinforced dry and saturated concrete slabs and columns with different values 

of mesh period of rebars and steel ratio, respectively. Parametric study on the most 

critical parameters, which affect electromagnetic (EM) wave propagation in these 

members, is performed. It is shown that there is a critical value of mesh period of 

rebars with respect to reflection and transmission properties of the slabs, which is 

related to a half wavelength in concrete. The maximum coupling between antennas 

can be achieved at this value. The investigation into reinforced concrete columns 

demonstrates that polarisation configuration of the two-antenna setup with respect to 
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rebars and steel ratios as well as losses in concrete are important parameters. It is 

observed that the coupling between the antennas reduces faster by increasing the value 

of steel ratio in parallel than in vertical configuration due to the increase of the 

interaction between electromagnetic waves and the rebars. This effect is more 

pronounced in the saturated than in dry reinforced concrete columns. 

         Finally, a relatively high gain 4-element RAVA array with a Wilkinson power 

divider, feeding network and an embeddable rectenna consisting of the microstrip 

patch antenna and a rectified circuit are developed. Two wireless power transmission 

systems, one with a single RAVA and another with the RAVA array, are designed for 

recharging batteries of sensors embedded inside reinforced concrete slabs and columns 

with different configurations and moisture content. Comparison between these 

systems shows that the DC output voltage for recharging commonly used batteries can 

be provided by the systems with the single RAVA and the system with the RAVA 

array at the distance between the transmitting antenna and the surface of reinforced 

concrete members of 0.12 m and 0.6 m, respectively, i.e. the distance achieved when 

the array is 5 times longer that the distance achieved with a single antenna.         
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Chapter 1 Introduction 

1.1 Background  

Infrastructure health monitoring (IHM) involves the use of sensing systems to monitor 

the performance of the structure and evaluate its health state (Chan & Thambiratnam 

2011). For large-scale concrete structures such as bridges, buildings and dams, various 

methods and systems of IHM have been applied. One of such methods is based on 

using sensors buried in concrete or mounted on surface of the structure during or after 

the construction to collect and report valuable volumetric data related to the health of 

the structure during and/or after construction. For example, embedded sensors can 

collect data, such as, temperature, displacement, pressure, strain, humidity, and detect 

cracks and rebar corrosion (Jiang & Georgakopoulos 2012). Therefore, embedded 

sensors are more suitable for many IHM applications. However, these sensors are 

connected through wires to a central station to collect and report data. The installation 

of wires represents up to 25% of the total system cost with over 75% of the installation 

time (Bernhard et al. 2003). Also, the wires restrict the sensors performance since if 

the wires get corroded during or after construction then these sensors become 

inoperative. Wireless sensors which communicate wirelessly as well as receive power 

remotely without being connected to any wires are one of the promising solutions to 

provide reliable operation and minimum installation cost. However, powering wireless 

embedded sensors presents an important and challenging problem since the wireless 

sensors cannot be used for a long time due to limited life time of batteries. It is 

impossible to change the batteries of the embedded sensors without damaging the 

structure. Therefore, new effective wireless powering methods, which can charge 
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rechargeable batteries wirelessly or can provide connection with passive wireless 

sensors for communication, are in demand. 

1.2 Research aims and objectives 

The main aim of this research is to develop antennas for IHM applications such as 

detection of defects and wireless powering of embeddable sensors or recharging their 

batteries. The challenge of developing and applying microwave techniques including 

antennas for IHM is their dependency on electromagnetic properties of structure 

materials in terms of the operating frequency and performance. Therefore, the 

objectives of this research are as follows: 

 Design a modified antipodal Vivaldi antenna operating at three frequency 

bands of the Industrial, Scientific and Medical band with improved gain at low 

frequencies;   

 Investigate the reflection and transmission properties of concrete-based 

samples possessing air gap or rebars;  

 Design a relatively small and high-gain resonant antipodal Vivaldi antenna and 

a modified embeddable microstrip patch antenna as a transmitting antenna and 

receiving antenna, respectively, for wireless power transmission in concrete 

structures; 

 Investigate the transmission and reflection properties of reinforced concrete 

slab and column with different values of steel ratio and moisture content using 

the developed two-antenna setup. 

 Design embeddable rectenna consisting of a microstrip patch antenna and a 

rectifier circuit satisfying requirements for recharging batteries of the 
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embedded sensors when using the developed resonant antipodal Vivaldi 

antenna as a transmitting antenna; 

 Develop a resonant antipodal Vivaldi antenna array with improved gain and 

efficiency to be used as a relatively long-distance transmitting antenna. 

 Provide a comparative investigation of wireless power transmission systems 

with the developed single antenna and antenna array for recharging batteries of 

sensors embedded in different reinforced concrete structures; 

1.3 Thesis organisation 

This thesis is organised into six chapters as follows: 

Chapter 1 Introduction 

A brief background of infrastructure health monitoring, the objectives, the outline of 

the thesis, and a list of publications based on this thesis are presented. 

Chapter 2 Literature review  

A comprehensive literature review on IHM techniques was performed. Mainly, 

different types of antennas used for IHM including WPT were reviewed.  

Chapter 3 Modified antipodal Vivaldi antenna 

A modified antipodal Vivaldi antenna are designed, fabricated and tested to be used 

for IHM techniques. The antenna is applied to investigate the reflection and 

transmission properties of concrete-based samples possessing air gap or rebars 

numerically and experimentally at frequency range of 0.65 GHz – 3.5 GHz. 

Chapter 4 Resonant antipodal Vivaldi antenna for wireless power transfer in concrete 
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A relatively small and high-gain resonant antipodal Vivaldi as a transmitting antenna 

and a modified embeddable microstrip patch antenna as a receiving antenna are 

designed to operate at 2.45 GHz in a two-antenna setup for WPT in concrete members. 

The structural members included reinforced dry and saturated concrete slabs and 

columns with different values of mesh period of rebars and steel ratio, respectively.  

Coupling between the antennas with different concrete members is studied. 

Chapter 5 Design of rectenna and RAVA array for recharging batteries of sensors 

embedded inside reinforced concrete 

Two WPT systems with the RAVA for recharging batteries of sensors embedded 

inside reinforced concrete slabs and columns, with different configurations and 

moisture content are developed. Then, a relatively high-gain 4-element RAVA array 

along with Wilkinson power divider feeding network are also developed in order to 

increase the distance between a transmitting antenna and concrete surface.   

Chapter 6 Conclusions and future work 

Concluding remarks of the thesis and some possible suggestions for future works are 

provided in the final chapter. 

1.4 List of publications 

The following papers either published by or submitted to peer-reviewed journals or 

conference proceedings, and the award are the outcomes of this thesis to date: 

1. Esmati, Z., Kharkovsky, S. and Samali, B., “Reflection and transmission of 

microwaves in reinforced concrete samples irradiated by modified antipodal 



5 

 

Vivaldi antenna”, IET Microwave Antennas and Propagation, revision 

submitted Nov. 2016, (under review).  

2. Esmati, Z., Kharkovsky, S. and Samali, B. “Wireless power transmission inside 

reinforced concrete slab using a resonant antipodal Vivaldi antenna”, 18th IEEE 

International Conference on Antennas Propagation in Wireless 

Communications (IEEE-APWC), September 19-23, 2016, Cairns, Australia.  

3. Esmati, Z. and Kharkovsky, S. “Modified antipodal Vivaldi antenna for 

infrastructure health monitoring techniques,” 15th IEEE International 

Conference on Ubiquitous Wireless Broadband (ICUWB 2015), October 4-7, 

2015, Montreal, Canada. 

 

Award: 

Travel award: International conference on electromagnetics in advanced applications 

(ICEAA 2016) and IEEE-APS topical conference on antennas and propagation in 

wireless Communications (IEEE-APWC 2016), 19-23 September, 2016, Cairns, 

Australia. 
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Chapter 2 Literature review 

2.1 Introduction 

This chapter provides the literature review for this research. It begins with the 

introduction of infrastructure health monitoring (IHM), followed by the description of 

wireless sensor network technologies for IHM applications. Wireless powering 

methods such as resonant coupling, strong resonant coupling and electromagnetic 

radiation method are presented and compared. Overviews of different types of 

antennas, which have been performed to highlight research gaps in the development 

and application of effective antennas for IHM including WPT in concrete members, 

are presented. 

2.2 Infrastructure health monitoring 

Infrastructure health monitoring (IHM) is defined as the use of non-structural sensing 

system to monitor the performance of the structure and evaluate its health state (Chan 

& Thambiratnam 2011). Traditionally, visual inspections of structures were the most 

popular method for inspecting the health of structure which was performed by trained 

or experienced individuals. Over time, various non-destructive testing and evaluation 

(NDT/E) methods such as eddy current, ultra sound and other wave propagation based 

methods (de Medeiros et al. 2015) have been developed. Development of effective, 

automated damage diagnosis techniques using sensor technology has become one of 

the major requirements. Wireless Sensor Networks (WSNs) are natural candidates for 

IHM systems (Xu, N et al. 2004). They are utilised to detect the presence, location, 

severity, and consequence of damage in structure. 
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2.3 Wireless sensors network for IHM applications 

Developing WSN represents effective and economically-viable solutions for a various 

applications such as industrial monitoring, medical monitoring, environmental 

monitoring, object tracking, fire forest detection and natural disaster prevention 

(Bhuiyan et al. 2015). Most of the available sensors which can be buried in concrete 

or mounted in surface of structure during or after the construction to collect and report 

valuable monitoring data such as temperature, displacement, pressure, strain, and 

humidity are operated by wire and cause practical limitations to be embedded into the 

structures (Deivasigamani et al. 2013). Wireless sensors can eliminate the wiring 

problem of the traditional IHM systems and reduce the maintenance costs associated 

with it (Wu, J et al. 2010). In addition, if the wires of sensors get corroded then these 

sensors become inoperative. Therefore,  the features of  the flexibility  and  the  

capability  of  self-organization of wireless sensors are the main motivation of using 

WSNs instead of  the  wired  sensor  networks  in  industry. Wireless monitoring 

systems for large structures can be categorised into the following two configurations 

(Wang, D-H & Liao 2006): (a) health monitoring systems with surface mounted 

wireless sensors and (b) IHM systems with wireless embedded sensors. First wireless 

embeddable sensor platform (WESP) and first installation of WESP devices in a bridge 

for detection of the corrosion of rebars in concrete is shown in Fig. 2.1. Moreover, the 

Stonecutters Bridge in Hong Kong has been monitored by more than 1500 wireless 

sensors mounted and embedded inside bridge as shown in Fig. 2.2. This IHM system 

constitutes the most rigorously monitored bridge in the world (Ni, Wong & Xia 2011). 
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Figure 2. 1 Wireless embeddable sensor platform unit in holder mounted to rebar in 

bridge (Carkhuff & Cain 2003). 

   

Figure 2. 2 IHM systems for Stonecutter bridges in Hong Kong (Ni, Wong & Xia 

2011). 

         The advantages of the WSNs can be summarised as follows: they store a limited 

source of energy, eliminate the wiring problem of the traditional IHM systems and 

reduce the deployment time and cost, work efficiently under the harsh conditions, and 

it has deployment up to large scale (Bhattacharyya, Kim & Pal 2010). Therefore, 

wireless embedded sensor networks become a practical tool for IHM of large, complex 

civil structures (Kijewski-Correa, Haenggi & Antsaklis 2006). 
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         Wireless embedded sensors monitoring systems represent many merits that can 

improve the construction industry. However, powering of the wireless sensors 

embedded inside concrete is a challenging problem since the batteries of the embedded 

sensors have a limited life-time. Replacement of the batteries of the sensors embedded 

inside concrete structure is difficult or even impossible without damaging the structure. 

Therefore, new effective wireless powering methods, which can charge rechargeable 

batteries wirelessly or can provide connection with passive wireless sensors for 

communication, need to be developed. 

2.4 Wireless powering methods  

Various wireless powering methods have been proposed previously and could be 

categorised into two types: (a) power scavenging from ambient energy sources and (b) 

power receiving from certain power sources through WPT methods (Wu, K, 

Choudhury & Matsumoto 2013).  

2.4.1 Power harvesting from ambient energy sources 

Energy harvesting gained significant interest in recent years due to the widespread 

availability of inexpensive and low-power RF chipsets and microcontrollers that could 

form the core of a self-powered sensor system (Sazonov et al. 2009). Solar energy is 

one of the most popular technologies for powering remote sensor nodes. As an 

example, in (Raghunathan et al. 2005), the issues which is arising from solar energy 

harvesting is studied. Unfortunately, solar energy is not the best solution for 

supplement battery supplies of some sensors such as bridge sensors, which quite often 

need to be located in places with extremely low light intensities. Other energies 
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targeted for harvesting usually include energy of vibration (Daniel Tomicek 2013) and 

wind (Priya 2005). Piezoelectric energy harvesters rely on the piezoelectric effect in 

which charge is generated on an active material when mechanically stressed. For 

instance, (Sazonov et al. 2009) proposed a generator capable of achieving 12.5 mW 

power in the resonant mode with the frequency of excitation at 3.1 Hz, with 10 mm 

displacement of the moving mass, which is sufficient to charge a wireless sensor on a 

bridge. However, the positioning of the sensors is significantly restricted by the 

vibration level that could be achieved by the piezoelectric materials for power 

conversion. One of the a considerable disadvantage of the piezoelectric sensors is their 

inability to respond to static loads (Akbari 2014). 

2.4.2 Wireless power transmission method 

Studies on WPT started as early as a century ago. The first practical WPT system 

developed by Nikola Tesla in 1904 (Tesla 1904). WPT involves the transferring power 

from a power source to an electrical load without synthetic conductor, across an air 

gap. All the WPT systems need a transmitting antenna to send signals and a receiving 

antenna to receive the signals. Various methods utilised in WPT technology mainly 

rely on the distance between the transmitting and the receiving antennas, amount of 

transmitted power and operating frequency. WPT systems are mainly divided into 

three main categories; inductive coupling, magnetic resonant coupling and 

electromagnetic radiation. 

         Inductive coupling technology can transfer several tens of kW with high 

efficiency (higher than 90%). However, the magnetic field energy and coupling 

coefficient are rapidly attenuated with the increasing distance which is being limited 

to centimetres, even millimetres level, due to the loose coupling between the coils. 
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Magnetic resonant coupling attract more attention than inductive coupling since it can 

support longer transfer distance. Two factors will tend to restrict the maximum transfer 

distance for any magnetic-field-based near-field WPT: the mutual inductance between 

the transmitting coil and the receiving coil, and the parasitic resistance of the coils. In 

contrast to previous methods, electromagnetic radiation system can transfer the energy 

more than several tens of meters, but transmitting power is small. 

          In (Andringa et al. 2005), an embedded wireless corrosion sensor was developed 

using non-invasive techniques and inductive coupling method was used to charge 

sensor. The sensor embedded inside concrete involving receiving coil which is 

magnetically coupled to a reader which connected to a power source outside the 

concrete.  In (Jonah & Georgakopoulos 2011), a coupling magnetic resonant method 

was used to power sensors embedded in concrete. The power transmission efficiency 

of approximately 59% and 5.3% was achieved when one coil in air was 10 cm from 

the air-to-concrete interface and another coil was embedded inside concrete within a 

7.5 cm × 7.5 cm air box at depth of 10 cm and 40 cm, respectively. The results reported 

in (Jonah & Georgakopoulos 2011) show that this method can be utilised to power 

embedded sensors in concrete structures. However, the size of the air-box needs to be 

reduced, since such large air gap inside concrete structure may reduce the strength of 

structure. Also, the results illustrated, the bandwidth of the system is narrow and cause 

significantly reduction of its efficiency.  

           Similar to two previous methods, also some researches have been done using 

electromagnetic radiation method for WPT to sensors which will be detailed in 

following sections. The wireless energy transfer with electromagnetic radiation needs 

a transmitter antenna to transmit the electromagnetic waves and a receiver antenna 

with a DC rectifier to transform the received energy into DC electrical power. 
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Antennas are key components of WPT and play the main roles to transmit and receive 

energy. The following section will give a brief introduction to antenna principles and 

concrete dielectric properties, and then various antenna types used for IHM application 

will be discussed. 

2.5 Antenna principles 

To describe the performance of any antenna, definitions of various antenna parameters 

are essential (Balanis 2016). The most important parameters of any antenna include 

the radiation pattern, directivity, efficiency factor, gain, effective aperture, polarsation 

and the bandwidth (Balanis 2016; Volakis & Johnson 1755). 

 Radiation pattern 

 

The radiation pattern is the graphical representation of the radiation properties of the 

antenna as a function position (spherical coordinates) (Balanis 2016; Gilbert & Volakis 

2007; Huang & Boyle 2008). The radiation pattern of antenna characterises how the 

antenna radiates energy out into space or how it receives energy. 

         Antenna patterns can be categorised to three types (Balanis 2016): 

i. Isotropic pattern: Antenna pattern which produced by an isotropic radiator, 

defined by uniform radiation in all directions. Antennas with isotropic radiation 

patterns don't exist in practice, but are sometimes discussed as a means of 

comparison with real antennas. 

ii. Directional pattern: having the property of radiating or receiving 

electromagnetic waves more effectively in some directions than in others.  
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iii. Omnidirectional pattern: Antenna pattern which is non-directional in a given 

plane and radiate the same pattern all around the antenna in a complete 360 

degrees pattern. 

         For a linearly polarised antenna, performance is often described in terms of its 

principal E- and H-plane patterns. The E-plane is defined as “the plane containing the 

electric field vector and the direction of maximum radiation,” and the H-plane as “the 

plane containing the magnetic-field vector and the direction of maximum radiation.” 

(Balanis 2016). The E-plane and H-plane radiation patterns are the most important 

patterns for an antenna (Huang & Boyle 2008). The 3D radiation pattern of an 

electrically short current element is illustrated in Fig. 2.3.  

 

Figure 2.3 The 3D radiation pattern of an electrically short current element (Huang & 

Boyle 2008). 

 Directivity 

 

Antenna directivity in the IEEE Standard Definitions of Terms for Antennas (Balanis 

2016; Gilbert & Volakis 2007) defined as: 

         “The ratio of the radiation intensity in a given direction from the antenna to the 

radiation intensity averaged over all directions. The average radiation intensity is equal 

to the total power radiated by the antenna divided by 4π. If the direction is not 

specified, the direction of the maximum radiation intensity is implied.” 
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        Directivity of antenna  can be defined as the ratio of its radiation intensity in a 

given direction over that of an isotropic source (Balanis 2016) as can be calculated by 

following equation: 

                                                            𝐷 =
𝑈

𝑈0
=

4𝜋𝑈

𝑃𝑟𝑎𝑑
                                                            (2.1) 

         where 

                   D = directivity 

                   U = radiation intensity (W/unit solid angle) 

                   U0 = radiation intensity of an isotropic source (W/unit solid angle) 

                  Prad = total radiated power by antenna (W) 

 Antenna efficiency 

 

Like other microwave components, antennas can suffer from losses. Antenna 

efficiency is used to consider losses at the input terminals and within the structure of 

the antenna which occurred because of reflection loss as a reason of mismatch between 

the transmission line and the antenna, and conduction and dielectric losses as shown 

in Fig. 2.4 (Balanis 2016).  

 

Figure 2.4 Reference terminals and losses of an antenna; (a) antenna reference 

terminals and (b) reflection, conduction and dielectric losses (Balanis 2016). 

       The total efficiency of antenna can defined by (Balanis 2016): 

Antenna  

(a)  (b)  

Input terminals 

(Gain reference)  

Output terminals 

(Directivity reference)  
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                                                         𝑒0 = 𝑒𝑟𝑒𝑐𝑒𝑑                                                   (2.2) 

         where 

                   𝑒0 = total efficiency (dimensionless) 

                 𝑒𝑟 = reflection (mismatch) efficiency = (1 − |ᴦ|2) (dimensionless) 

                 𝑒𝑐 = conduction efficiency (dimensionless) 

                 𝑒𝑑= dielectric efficiency (dimensionless) 

ᴦ is voltage reflection coefficient at the input terminals of the antenna. 

 Gain 

 

Gain is another useful parameter for describing performance of an antenna. It defines 

the efficiency and the directional capabilities of antenna at the same time, against the 

directivity which only describes properties of the antenna (Balanis 2016; Huang & 

Boyle 2008). Gain of an antenna can be calculated using the following equation 

(Balanis 2016; Huang & Boyle 2008): 

                                                   𝐺 =
4𝜋𝑈

𝑃𝑖𝑛
                                                               (2.3) 

       where  

               G = gain of antenna 

                U= radiation intensity (W/unit solid angle) 

                Pin= total input power accepted by the antenna (W) 

The relationship between gain and directivity is defined as (Huang & Boyle 2008): 

                                                  𝐺 =
𝑃𝑡

𝑃𝑖𝑛
𝐷 = 𝜂𝑒𝐷                                                   (2.4) 

     where 

               𝜂𝑒= radiation efficiency factor of the antenna 

                 𝑃𝑡= total radiated power by antenna 
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 Bandwidth 

 

The bandwidth of an antenna is defined as the range of frequencies within which the 

performance of the antenna, with respect to some characteristic (such as input 

impedance, pattern, beamwidth, polarsation, gain, beam direction, radiation 

efficiency), conforms to a specified standard (Balanis 2016). Different types of 

antennas have different bandwidth limitations. The bandwidth of antenna can be 

defined in terms of percentage of the centre frequency of the band: 

                                                    𝐵𝑊 = 100 ×
𝐹𝐻−𝐹𝐿

𝐹𝐶
                                             (2.5) 

     where 

             FH = the highest frequency in the band 

             FL= the lowest frequency in the band 

            FC= the centre frequency in the band      

 Polarisation 

 

The polarisation of an antenna refers to the orientation of the electric field vector of 

the radiated wave (Kraus 1988). Depending on the current moves in the antenna there 

are three types of polarisation (Balanis 2016): 

 Linear polarisation: the electric field of EM is confined to a single plane along 

the direction of propagation. 

 Circular polarsation: It can be obtained when the magnitudes of the two linear 

components are the same but have a phase difference of π/2.  

 Elliptical polarsation: It can be achieved when the combination of two linear 

components with different amplitudes and/or a phase difference that is not π/2. 
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 Linear polarsation mismatch 

 

In order to maximise the transfer power between a transmitter and a receiver antenna, 

both antennas must align properly with same polarisation. When the antenna are 

misaligned or do not have the same polarisation, power reduction will happen which 

will reduce the overall system efficiency and performance. 

         When the transmitter and receiver antenna are linearly polarised, physical 

misalignment of antennas will cause polarisation mismatch loss which can be defined 

by (Balanis 2016): 

                      Polarsation mismatch loss (dB) = 20 log (cos θ)                            (2.6) 

     where 

              θ = the misalignment angle between antennas 

2.6 Types of antennas 

There are numerous types of antennas developed for many different applications; 

they can be classified into four groups. 

 Wire antennas 

 

Wire antennas, linear or curved, are some of the oldest, simplest, cheapest, and in many 

cases the most versatile for many applications (Balanis 2016). Wire antennas can 

include dipoles, loops, helical, sleeve dipoles, Yagi-Uda arrays and commonly have a 

low gain and operate at lower frequencies (HF to UHF) (Huang & Boyle 2008). Wire 

antennas are probably the most recognisable, as they are ubiquitous and typified by 

TV aerials, car aerials etc.  
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 Aperture antennas 

 

Aperture antennas are most common at microwave frequencies (Balanis 2016; Huang 

& Boyle 2008). They may take the form of a waveguide or a horn whose aperture may 

be square, rectangular, circular, elliptical, or any other configuration (Balanis 2016; 

Bird 2016). The pattern has a narrow main beam which leads to high gain. For a fixed 

aperture size, the main beam pattern narrows down as frequency increases. These types 

of antennas are very useful in aerospace and spacecraft applications, because they can 

be flush mounted on the surface of the spacecraft or aircraft. Examples of these 

antennas include parabolic reflector, horn antennas, lenses antennas and Fabry–Pérot 

resonator antenna (Bird 2016; Huang & Boyle 2008). 

 Microstrip antennas  

 

Microstrip antennas received considerable attention starting in the 1970s, although the 

idea of a microstrip antenna can be traced to 1953 (Brown, J & Jull 1961). Microstrip 

antennas consist of a very thin metallic strip (patch) placed a small fraction of a 

wavelength above a ground plane. Microstrip antennas are low profile, simple and 

inexpensive to manufacture, conformable to planar and nonplanar surfaces, 

mechanically robust when mounted on rigid surfaces (Balanis 2016; Huang & Boyle 

2008). Microstip antennas also have some disadvantages such as low efficiency, low 

power, high Q, poor polarsation purity, spurious feed radiation and very narrow 

frequency bandwidth which which limit their application in certain specified areas 

(Balanis 2016; Gilbert & Volakis 2007). Microstrip antennas can be divided into four 

basic categories (Singh & Tripathi 2011): microstrip patch antennas, microstrip 

dipoles, printed slot antennas and microstrip travelling-wave antennas. Microstrip 

antennas are spreading widely in all the fields and areas. For instance, microstrip patch 

antenna has been used for several applications such as mobile and satellite 
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communication, Global Positioning System (GPS), Radio Frequency Identification 

(RFID), radar, medical and rectenna application. 

 Array antennas  

 

Many applications require radiation characteristics that may not be achievable by a 

single element (Balanis 2016; Huang & Boyle 2008). Array antenna is a set of two or 

more antennas which are arranged in a regular structure to achieve improved 

performance over that of a single antenna. Element spacing and the relative amplitudes 

and phases of the element excitation determine the array’s relative properties. Array 

antennas can be divided to four categories: Linear, circular, planar and conformal 

array. Typical elements in an array are dipoles, monopoles, slots in waveguides, open-

ended antennas and microstrip radiators. 

2.7 Concrete dielectric properties 

Concrete is a composite material with changeable properties. The ingredients mixing 

ratio of concrete is variable and depends on the properties of ingredients and mix 

design. Concrete is prepared by mixing three basic ingredients such as cement, 

aggregates and water. 

       Every material has a unique set of EM properties affecting the way in which the 

material interacts with the electric and the electromagnetic fields of the EM waves. 

The dielectric material can be characterised by two independent electromagnetic 

properties namely, complex permittivity 휀 and the complex permeability 𝜇∗. However, 

most common dielectric materials including concrete are nonmagnetic material, thus 

its complex permeability 𝜇∗ is almost equal to the permeability of free space (𝜇0 = 
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4𝜋 × 10
-7

 Henry/meter). Therefore, this research will focus on the effective complex 

permittivity which is defined as (Pozar 2012): 

                                   𝜖 = (𝜖′ − 𝑗𝜖𝑒𝑓𝑓
′′ ),                                                            

                                                  𝜖 = (𝜖𝑜𝜖𝑟 − 𝑗𝜖′′ + 𝜎/𝜔) or                

                                             𝜖 = (𝜖𝑜𝜖𝑟 − 𝑗𝜖0𝜖𝑟
′′  +

𝜎

𝜔
),                                            (2.7)  

where 

                    𝜖′= real part of the effective complex permittivity 

                   𝜖𝑒𝑓𝑓
′′  = imaginary part of the effective complex permittivity 

                   𝜖0 = permittivity of free space 

                  𝜖𝑟 = relative dielectric constant 

                  𝜖′′= effective loss factor of the material 

                  𝜖𝑟
′′ = relative loss factor 

                  σ = conductivity of the material (S/m) 

                  𝜔 = angular frequency (radian). 

           The dielectric constant is a measure of how much energy from an external 

electric field is stored in a material. The imaginary part of the relative complex 

permittivity εr
'' is a measure of how dissipative or lossy a material is to an external 

electric field and is referred to the relative loss factor. The loss factor, εr
'', is always > 

0 and is usually smaller than  εr 
'  for dielectric materials (Buyukozturk 1997).  

The ratio of the energy lost to the energy stored in a material is given as loss tangent: 

                                                   𝑡𝑎𝑛 𝛿 = 
𝜖′′+

𝜎

𝜔

𝜖′ =  
𝜀′′

𝑟

𝜀′
𝑟

.                                                     (2.8)                         
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 Velocity of the wave inside concrete 

 

In vacuum or air, EM waves travel at the velocity of light. The velocity is varied and 

specified by the medium through which the wave is propagating. Velocity of the waves 

within lossless material other than vacuum is lower than the velocity in free space as 

can be defined by (Shaari, Millard & Bungey 2004): 

                                                         𝑣 =
𝑐

√𝜀′
𝑟

                                                             (2.9) 

  where 

                v = the velocity of the wave inside material  

                c = the velocity of light in free space (3×108 m/sec) 

 Wavelength inside concrete 

The wavelength, λ, is a function of the oscillation frequency, f, and the wave velocity, 

which is determined by ε'
r of the medium as defined in Eq. 2.10:  

    𝜆 =  
𝑣

𝑓
= 

                                                                        =
𝑐

𝑓√휀′
𝑟

 .                                                (2.10) 

       In the lossy material effective wavelength can be defined by 

                                       𝜆𝑒𝑓𝑓 =  
𝑐

𝑓√휀0(휀𝑟
, − 𝑗 (휀𝑟

,, +
𝜎

휀0𝜔))

   .                                    (2.11) 

              

 Penetration depth in concrete 

 

Penetration depth is a measure of how deep light or any EM radiation can penetrate 

into a material. It is defined as a distance through a lossy dielectric over which the field 

strength falls by 1/e, where e is the natural logarithm constant, due to energy 
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absorption. For a given material, penetration depth will generally be a function of 

wavelength and it is defined as:  

                                                                        𝛿𝑝 =
1

𝛼
                                                           (2.12) 

where the 𝛿𝑝 is penetration depth and 𝛼 is attenuation. It determines the amplitude loss 

of the waves in a dielectric material and changes as a function of conductivity and real 

part of complex permittivity, which in term varies as frequency changes (Buyukozturk 

1997). The attenuation can be defined as (Shaari, Millard & Bungey 2004): 

                                           𝛼 = (
𝜔

𝑐
) [(

𝜀𝑟
′

2
)(√1 + (

𝜀𝑟
′′

𝜀𝑟
′ )2   − 1)]1/2                           (2.13) 

As can be seen from Eq. 2.13 the attenuation not only depends on 휀𝑟
′  and 휀𝑟

′′ of material, 

also depends on frequency (𝜔 = 2𝜋𝑓). Therefore, both of them should be consider at 

this case. It should be noted that higher moisture content has larger effective 

conductivity value. For example, as the moisture content of concrete increases from 

0.2% to 12%, effective conductivity of concrete increases almost 20 times at 2 GHz. 

The increase of effective conductivity leads to more power losses.  

2.8 Antennas for wireless power transmission to IHM sensors 

Antenna is a key component of any WPT system. In recent years, wireless transmission 

techniques have been developed using different types of antennas. The block diagram 

of the WPT system is shown in Fig. 2.5. WPT using EM radiation method requires a 

transmitting antenna as a source of EM radiation; a rectenna consists of a receiving 

antenna with a rectifier to transform the microwave energy into DC electrical power. 

It is necessary to design antennas with high directivity and gain to meet the demands 

of WPT links. In addition, the transmitting and receiving antennas must be compact, 
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lightweight and characterised by a gain stability and low distortion. The slotted 

waveguide antenna (Goto 1990), microstrip patch antenna (Airani et al. 2016), 

parabolic dish antenna (Biswas et al. 2012; Hsin-Loug & Ta-Lun 2001) and tapered 

slot antennas (Nikolaou et al. 2005; Wang, Y et al. 2016) are the most popular type of 

transmitting antenna (Dhake & Dandavate 2012).  

 

Figure 2.5 Functional block diagram of wireless power transmission. 

 Rectenna 

 
In the early of 1960s, the concept of rectenna (rectifying antenna), was conceived by 

W.C. Brown (Brown, WC 1980). Rectenna consists of a receiving antenna and rectifier 

circuit. It receives and converts microwave power to DC power. As a receiving 

terminal of the power transmission system, the rectenna is beneficial where power 

require to be delivered to a load through the space, where physical transmission lines 

are not feasible and also in applications where DC power needs to be distributed 

spatially. The power distribution is achieved by the dispersive nature of microwave 

energy in space, eliminating the need for physical interconnects to individual load 

elements (Epp et al. 2000). For instance, autonomous movement of the robots inside 

the pipes with energy supplied by microwaves in order to check the cracks (Shibata, 

 

Rectenna 
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Sasaya & Kawahara 2001) and space power satellite (Han, Park & Itoh 2004a, 2004b) 

are another applications of the rectenna systems. Rectennas are highly efficient at 

converting microwave energy to electricity. In laboratory environments, efficiencies 

of over 85% have been observed. There are many kinds of rectennas with different 

configuration, as shown in Fig. 2.6. 

 

Figure 2.6 Various rectennas: (a) 2.45 GHz Brown’s rectenna (Brown, WC 1976), (b) 

2.45 GHz Brown’s Thin-Film rectenna (Brown, WC 1986), (c) 35 GHz Texas A&M 

University’s rectenna (McSpadden, Fan & Chang 1997), (d) 2.45 GHz Kyoto 

University’s rectenna (Shinohara, N et al. 1998), (e) 8.5 GHz –12.2 GHz University 

of Colorado’s rectenna (Hagerty et al. 2000), and (f) 2.45 GHz Hokkaido University’s 

rectenna (Itoh, K 1984; Shinohara, Naoki 2011). 

         Lately, there are reports on powering the wireless sensors using rectennas (Ali, 

M, Yang, G & Dougal, R 2005; Zhang et al. 2014). The WPT by EM radiation method 

for IHM sensors was deployed in field experiments on the Alamosa Canyon Bridge in 

2007 (Farinholt, Park & Farrar 2009). Since a directional antenna is most amenable 

for the transmitting and receiving antennas, both parabolic grid reflector and Yagi-type 

antennas with 15 dBi and 19 dBi gain, respectively, were used as a transmitting 

antenna in (Farinholt, Park & Farrar 2009) and Eighteen and 36 element microstrip 

patch antenna arrays were utilised as a receiving antennas as shown in Fig. 2.7(a). The 

sensor node could be charged to 3.6 V in 27 s when the power source is 1 W and 1.2 

(c) 

(d) (e) (f) 

(a) (b) 
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m away. This power level was sufficient to power two piezoelectric sensors and 

transmit data back to a base station on the bridge. The energy transmission equipment 

was mounted within the mobile host vehicle, as shown in Fig. 2.7(b). While in 

(Mascareñas et al. 2008) a 14.5 dBi Yagi antenna transmits 1W power at 2.5 GHz to a 

19 dBi patch antenna 2 m away, in order to power the sensors mounted on the surface 

of Alamosa Canyon Bridge. The typical time for the 0.1F capacitor to be charged to 

3.5 V is 95 s.  

 

 Figure 2.7 (a) Eighteen and 36 element rectenna arrays and (b) wireless energy 

delivery system tested on Alamosa Canyon Bridge, NM (Farinholt, Park & Farrar 

2009). 

       The feasibility of sending wireless power to a buried rectenna within concrete was 

studied in (Shams & Ali 2007) using a 4×4 transmit patch antenna array with 13.6 dBi 

peak gain for operation at 5.7 GHz. The rectenna consisted of a stacked microstrip 

patch antenna as a receiving antenna and a half wave rectifier as a rectifying circuit, 

as shown in Fig. 2.8. Dry and wet concrete samples with various cover thicknesses and 

airgaps were considered in (Shams & Ali 2007), and maximum power of 10.37 mW 

was received at 0.6 m for input power of 7 W. However, by increasing the thickness 

and moisture of concrete the amount of received power was not sufficient for powering 

(b) (a) 
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an embedded sensor. Also, a U-slot microstrip patch antenna operating in the 2.4 GHz 

ISM frequency band embedded in concrete samples in (Bernhard et al. 2003) to  

develop a wireless embedded sensor system to monitor and assess corrosion in the 

tendons of prestressed concrete girders. 

   

Figure 2.8 Photograph of (a) the WPT setup, (b) rectenna and (c) transmitting patch 

antenna array (Shams & Ali 2007). 

         A circularly polarised microstrip patch antenna is designed for WPT in (Ali, 

Mohammod, Yang, G & Dougal, R 2005) to operate as a rectenna working at 5.5 GHz 

for data telemetry in the 5.15 GHz - 5.35 GHz WLAN band. Moreover, the 

characteristics of an embedded microstrip patch antenna such as return loss, 

transmission loss, radiation pattern and gain within concrete was studied in (Shams, 

Ali & Miah 2006; Shams, Miah & Ali 2007) as function of an air gap and the dielectric 

property of a concrete at frequency of 2.45 GHz. As can be seen from Fig. 2.9, for 

efficient operation of the patch antenna inside concrete the air gap of d = 15 mm was 

required since the thickness of the concrete cover (D) has minimal effect on the 

resonant frequency of the embedded antenna. However, such air gap inside concrete 

may cause significant reduction of its durability. Increasing concrete cover cause gain 

enhancement of the embedded antenna since the concrete cover act as a superstrate. 

However, the enhancement of the gain due to superstate effect will be reduced by the 

(b) (c) (a) 
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loss as concrete cover becomes thick. Also, the effect of concrete cover thickness on 

coupling between two patch antennas was investigated while antennas was tuned at 

2.45 GHz as shown in Fig. 2.9(b). Experimental transmission characteristics illustrated 

that the attenuation superseded antenna gain improvement as concrete cover became 

thicker. Also, in (Salama & Kharkovsky 2013) the performance of the embedded patch 

antenna inside concrete and feasibility of proposed embedded antenna along with a 

rectifier circuit for a wireless microwave power transmission was investigated. In (Jin 

& Ali 2009), the return loss and transmission characteristics of two dipole antennas 

and planar inverted-F antennas (PIFA) inside a sample of a dry and saturated concrete 

bridge pier with two rebars were investigated. The antennas represented transmit 

receive system inside a cylindrical concrete pier of 400 mm height and 228 mm radius. 

Separation between the two antennas inside concrete pier is about 251 mm as shown 

in Fig. 2.10. The 915 MHz frequency band was selected because of its applicability to 

RFID technology. It was found that when dipoles and PIFAs antennas are located 

inside concrete, antennas had desired return loss characteristics. However, dipoles 

antennas did not function properly in concrete samples with rebars. In overall, PIFAs 

antennas represented better results in comparison with dipoles antennas embedded 

inside dry and saturated concrete pier (Jin & Ali 2009). 
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Figure 2.9 (a) Patch antenna inside concrete slab and (b) effect of concrete cover 

thickness on S21 (Shams, Miah & Ali 2007). 

 

Figure 2.10 Vertical dipole antennas embedded (a) inside concrete, (b) inside 

reinforced concrete with steel rebars, and (c) location box of planar PIFAs adjacent to 

steel rebars (Jin & Ali 2009). 

        The return loss, gain, transmission loss and radiation patterns of a dipole, PIFA, 

a microstrip patch antenna and a loop antenna (see Fig. 2.11) are studied in (Jin & Ali 

2010) at around 2.45 GHz while antennas are embedded in concrete pier. Either the 

PIFA or the patch will be good candidates to enable effective communication among 

embedded sensors themselves. Although the loop antenna demonstrated fairly good  

(c) (a) (b) 

(a) 
(b) 
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Figure 2.11 Geometrical dimensions of the (a) dipole, (b) loop, (c) microstrip patch, 

and (d) PIFA antennas under consideration (Jin & Ali 2010). 

Performance, it required larger space in comparison with the other antennas and will 

degrade in performance as the number of embedded rebars increase inside concrete.  

         In (Jiang & Georgakopoulos 2010, 2012; Jiang, Georgakopoulos & Jin 2012; 

Jiang, Georgakopoulos & Jonah 2012) the optimisation of wireless powering of 

sensors embedded in concrete and the effects of reinforcing bars to RF power transfer 

are studied and analysed numerically. In (Jiang & Georgakopoulos 2010, 2012), 

transmission and propagation losses for normal and oblique incidences of 

electromagnetic plane waves on the air-to-concrete interface were numerically 

investigated. The analysis of results led to recognition of frequency range of 20 MHz 

- 80 MHz as an optimum one for wireless powering of sensors embedded in concrete 

and was validated through modelling and simulations of two dipole antennas coupling 

using full-wave electromagnetic formulation. However, one of the critical parameters 

of embedded antennas is their size. It is obvious that the embedded dipole used in 

(Jiang & Georgakopoulos 2010) was large and its application in practice is 

(b) (a) 

(c) (d) 
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questionable. In (Jiang & Georgakopoulos 2011; Jiang, Georgakopoulos & Jin 2012; 

Jiang, Georgakopoulos & Jonah 2012), the effects of reinforced bars on coupling 

between two patch antennas were investigated at three typical ISM frequencies and 

frequency of 915 MHz was recommended as an optimum frequency for WPT to 

sensors embedded in the reinforced concrete structures. However, experimental 

verification of these simulated results has not been provided in (Jiang & 

Georgakopoulos 2012; Jiang, Georgakopoulos & Jin 2012; Jiang, Georgakopoulos & 

Jonah 2012). 

        WPT is powering solution that has been widely used for powering wireless 

sensors. The powering system of sensors embedded in concrete includes air-to-

concrete transmission paths and the power receivers are buried inside lossy media. 

Designing powering systems for embedded sensors is extremely challenging because 

of the environmental effects, reduced power transmission efficiency and compact size 

required. As the literature review demonstrates patch antenna is proven to be more 

suitable for powering sensors embedded in plain and reinforced concrete since they 

offer larger coupling and they are less sensitive to the changes of concrete’s moisture 

conditions and rebars’ configurations (Jiang & Georgakopoulos 2011). However, there 

are some disadvantages for patch antennas such as relatively narrow impedance 

bandwidth, low efficiency and low gain.  

         The requirement for wide operational bandwidth, higher gain and efficiency  can 

be satisfied by travelling wave type antennas which belong to the category of endfire 

antennas (Waterhouse 2007). Tapered slot antenna (TSA) is one the prominent 

example of these types of antennas. It can offer an wide bandwidth and high directivity, 

and because of these features it is frequently utilised in ground penetrated radar, remote 

sensing, microwave imaging and ultra-wideband communications (Schaubert et al. 
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1985; Waterhouse 2007). TSA in comparison to traditional directional antennas such 

as ridged horn antenna (Bruns, Leuchtmann & Vahldieck 2003), log periodic antenna 

(Ro et al. 2014) and helical antenna (Milligan 2005) has the features of the planar 

structure, low profile, light weight and being directly integrated with radio frequency 

devices (Balanis 2016; Waterhouse 2007). TSA with exponentially tapered slot which 

also known as Vivaldi antenna was introduced by Gibson in 1979 (Gibson 1979) as 

shown in Fig. 2.12(a) . However, the lower and higher operational bandwidth of the 

Vivaldi antenna is restricted by the width of the antenna and transition structure from 

the microstrip to slotline, respectively. In order to improve bandwidth performance of 

the Vivaldi antenna, Antipodal Vivaldi antenna (AVA) was introduced by Gazit in 

1988 (Gazit 1988) (see Fig. 2.12(b)).  

 

Figure 2.12 (a) Top and bottom view of Vivaldi antenna  (Wang, Y & Fathy 2008) and 

(b) top view of antipodal Vivaldi antenna (Ba, Shirai & Ngoc 2014). 

          AVA has been developed for different applications in recent years. For instance, 

in (Li et al. 2016; Natarajan et al. 2016; Wang, Y et al. 2016), different techniques 

have been used to design AVA for UWB applications.  In (Ruvio et al. 2012) the AVA 

for both sensing and data transmission has been used for pipe telemetry applications. 

(a) 
(b) 

Top view 

Bottom view 

Bottom layer Top layer 
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A novel technique for through the wall imaging using AVA aimed at the detection of 

stationary target is presented in (Fioranelli et al. 2015; Wang, Y & Fathy 2008; Yang, 

Wang & Fathy 2008). Moreover, UWB Vivaldi antennas can be used for detection of 

defects such as voids and cracks in concrete (Moosazadeh & Kharkovsky 2015; Wang, 

Z & Xie 2012). Also, it has attracted more attention in microwave imaging applications 

(Kanjaa et al. 2015; Moosazadeh, Kharkovsky & Case 2016; Shao & Adams 2016). 

AVA is a good candidate for designing an effective external antenna (i.e., transmitting 

antenna) since it can provide high gain, narrow beam width and broadband 

characteristics. Moreover, this type of the antenna can be designed to operate as a 

resonant antenna and/or an ultra-wide band traveling wave radiator at selected 

frequency ranges (Gibson 1979; Nassar & Weller 2015). For instance,  for remote 

activation of an end device node of WSN, a 2.45 GHz rectenna consists of a Vivaldi 

antenna and an half wave voltage multiplier was proposed in (Congedo et al. 2013). 

However, Vivaldi antennas have not been used for WPT inside lossy materials for 

powering embedded sensors. 

2.9 Summary 

The literature review shows that our society depends heavily on infrastructure such as 

buildings, bridges and roadways. Unlike many of the disposable products of today’s 

culture, the civil infrastructure has a lifetime measured in decades of years. Monitoring 

health of these systems presents unique challenges due to their large size, continuous 

exposure to the environment, infrequent inspection, and long design life. Many of 

these important structures are built using steel reinforced concrete. WSNs technologies 

have enabled the development of sensors that can be mounted on surface or embedded 

in structure to monitor the structural health of infrastructure. Such sensors can collect 
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and report valuable volumetric data related to the health of a structure during and/or 

after construction. However, these wireless sensors cannot be used for a long time due 

to limited life time of batteries. Therefore, in order to enable longer operational life of 

wireless embedded sensors, novel wireless powering methods, which can charge the 

sensor’s rechargeable batteries wirelessly, need to be developed. Near field coupling, 

strongly coupled magnetic resonance and EM radiation methods were proposed for 

powering sensors embedded in concrete. However, these methods suffer from high 

losses, since the powering channel is established in heterogeneous media, i.e., concrete 

with air-to-concrete interface. The attenuation of power happens both at the air-to-

concrete interface and inside concrete. Also, in practice, reinforcing bars are embedded 

in concrete to improve its mechanical stability, but very limited work has been done 

to analyse the effects of rebars on WPT to reinforced concrete. Different shape and 

size of reinforcing bars in concrete may significantly affect the efficiency of a 

receiving antenna. Due to these reasons, the mature technology for wireless 

communications in air does not provide equal benefits in the complex heterogeneous 

media case. Therefore, rigorous analysis of rebar effects is necessary for the 

development of optimum wireless powering systems for embedded sensors. Rectenna 

inside concrete should be able to receive sufficient power from a transmitting antenna. 

The antennas which are used for IHM must be directive, have relatively small 

dimensions, low profile and high efficiency. 
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Chapter 3 Modified antipodal Vivaldi antenna 

3.1 Introduction 

In recent publications, several AVAs have been presented with different techniques to 

improve the performance and bandwidth of the antenna associated with fabrication 

complexity and cost. In order to increase the gain and the radiation performance of 

antenna at lower frequency operating band, two pairs of slots and circularly shaped 

loads are loaded on the two elliptically shaped arms of antenna in (Wang, Z et al. 

2016). A parasitic elliptical patch in the flare aperture is used in (Siddiqui et al. 2011) 

to improve the directivity of antenna. By using elliptical strip conductors described in 

(Ashraf et al. 2015; Siddiqui et al. 2011), the desired lower cutoff frequency has been 

achieved. It should be noted that ISM frequency band is very attractive for the 

investigation of concrete and for wireless powering of sensors embedded in concrete; 

however, most of the previously reported AVAs operating at ISM bands had a 

relatively low gain at lower frequencies. For instance, in (Siddiqui et al. 2011) the 

presented antenna covers the ISM bands, however, the gain of antenna is less than 2.5 

dB at lower frequencies although the size of antenna is large. 

          In this chapter, firstly, a compact conventional AVA (CAVA) is designed and 

optimised with CST MWS. Secondly, to improve the bandwidth, gain and radiation 

patterns of the CAVA, a modified antipodal Vivaldi antenna (MAVA) with frequency 

range of 0.65 GHz - 6 GHz is designed to be used for IHM techniques. The proposed 

antenna offers high gain and directive radiation patterns at the operating frequency 

range. This frequency range includes three frequency bands of the Industrial, Scientific 

and Medical band (ISM band); namely, from 902 MHz to 928 MHz, 2.400 GHz to 

2.4835 GHz and 5.725 GHz to 5.875 GHz. The feasibility of the designed antenna for 
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IHM is investigated by modelling a concrete block with an air gap representing a crack. 

Furthermore, a two-antenna setup including the MAVA as an external transmitting 

antenna, and a resonant microstrip patch antenna as a receiving antenna embedded in 

concrete have been developed to investigate into reflection and transmission of 

microwaves in reinforced concrete samples numerically and experimentally. 

Experimental measurements are conducted with an Agilent performance network 

analyser (PNA). 

3.2 Design and performance of modified antipodal Vivaldi antenna  

The geometry of the proposed CAVA is shown in Fig. 3.1(a). The designed antenna 

fed by a microstrip line with width of the Wf which is adjusted to be 1.53 mm in order 

to match 50-Ω. The antenna is designed on a Roger RT5880 substrate with thickness 

of 0.508 mm (ɛr = 2.2 and tanδ = 0.0009). The overall size of the presented antenna is 

171 × 202 mm2 which is approximately 0.5λ × 0.6λ, where λ is free-space wavelength 

at 0.9 GHz. In order to design the CAVA two symmetric elliptical tapered arms located 

on opposite sides of substrate are flared. The dimensions of inner and outer edges of 

the radiation flares can be determined by following equations: 

                                                          a1 = 
Wsub- Wf

2
                                                   (3.1) 

                                                       b1 = 5.713 × a1                                                       (3.2) 

                                                         a2 = a1 - Wf                                                     (3.3) 

                                                b2 = 0.812 × a2                                                 (3.4) 

where a2, b1 are major radii and a1, b2 are minor radii of four ellipses as shown in Fig. 

3.1(a).  
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Figure 3.1 Geometry of the proposed antennas; (a) CAVA and (b) MAVA.    

        The designing ground plane section of the antenna is formed from the intersection 

of a rectangular-shaped conductor with two antifaced quarter ellipses. In order to 

achieve optimal bandwidth, opening rate of aperture, R, is optimised to be 45 (no unit). 

It is worth to point that as the R increases, the lower cut-off frequency decreases; 

however, it causes a gain reduction of the proposed CAVA. Therefore, there is a trade-

off between cut-off frequency and gain of antenna. The AVA cut-off frequency is 

given by (Bai, Shi & Prather 2011):  

                                                   𝑓𝑐 =  
𝑐

2𝑊√𝜀𝑟
                                                     (3.5) 

          According to Eq. 3.5, the cut-off frequency is about 1.01 GHz at W = 100 mm. 

To achieve the lower cut-off frequency of 0.6 GHz, W and Lsub should be equal to 

168.5 mm and 337.1 mm, respectively, i.e., the size of antenna will be increased. 

Instead of this, the CAVA has been modified by adding the half ellipse with major 

radius of b4 and minor radius of a4 to extend the bandwidth without changing 

dimensions of the substrate. Influence of axis radii a4 on the magnitude of reflection 

(b) (a) 
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coefficient of the MAVA is shown at Fig. 3.2. It can be seen from Fig. 3.2 that the 

magnitude of the reflection coefficient decreases as a4 increases from 20 mm to 40 mm 

and it has acceptable value (< -10 dB) over desired frequency range (0.65 GHz- 6 GHz) 

at a4 = 35 mm and 40 mm, respectively. Equal gains and radiation patterns can be 

achieved at a4 = 35 mm and 40 mm. However, a4 = 35 mm is selected as an optimum 

dimension since it provides smaller dimensions of antenna than a4 = 40 mm. All 

optimised dimensions of the proposed antenna are shown in Table 3.1. It can be seen 

from Fig. 3.3 that the cut off frequency of CAVA and MAVA for S11 ≤ -10 dB is 1.62 

GHz and 0.65 GHz, respectively. Thus, MAVA operates over the frequency range from 

0.65 GHz to 6 GHz.  

 

Figure 3.2 Simulated S11 versus frequency of the proposed MAVA for the different 

values of a4 with b4 = 49 mm. 

Table 3.1 Optimal dimensions of the proposed antenna (units: mm) 

Parameter Value Parameter Value Parameter Value Parameter Value 

Lsub 202 Wf 1.53 a2 49.24 b1 290 

Wsub 171 Lf 62 L1 32 a3 84.24 

R 

48 (no 

unit) 

a1 50.77 b2 40 b3 30 

a4 35 b4 49 L2 32 W 100 
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Figure 3.3 Magnitude of the reflection coefficient versus frequency for the CAVA and 

MAVA. 

         The optimised antenna was fabricated and a photograph of the fabricated antenna 

is shown in Fig. 3.4. The measured and simulated magnitude of the reflection 

coefficient of the proposed antenna in free space is shown in Fig. 3.5. As the figure 

reveals, the measurement result is in good agreement with the simulation result and 

the differences may be due to the fabrication error.  

 

Figure 3.4 Top view (left) and bottom view (right) of the fabricated MAVA. 

 

 

1.62 dB 0.65 dB 
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Figure 3.5 Measured and simulated S11 (dB) of the MAVA. 

         The far-field radiation patterns of the proposed antenna at three frequencies are 

depicted in Fig. 3.6. It can be seen from Fig. 3.6 that the antenna exhibits end-fire 

characteristics at all frequencies. The Half Power Beamwidth (HPBW) is the angular 

separation in which the magnitude of the radiation pattern decrease by 50% (or -3 dB) 

from the peak of the main beam. The half power beamwidth of the antenna is wide at 

low frequency of 0.8 GHz, it becomes narrower as frequency increases. 
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Figure 3.6  E-plane (left) and H-plane (right) radiation patterns of the MAVA at (a) 

0.8 GHz, (b) 2.45 GHz and (c) 5.8 GHz. 

 

(b) 

(a) 

(c) 

(b) 
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          In order to achieve desired performance of the WPT in concrete, the antenna 

should operate at relatively low frequency and high gain to provide suitable penetration 

depth and power at the location of a receiving antenna embedded inside concrete. 

Table 3.2 shows gain of the proposed antenna compared with the referenced antennas 

at three different frequencies as well as their dimensions, εr of substrate and bandwidth. 

As can be seen from Table 3.2, some of the referenced antennas (e.g., in (Fioranelli et 

al. 2015)  and (Siddiqui et al. 2011))  have lower gain value compared with the 

proposed antenna at 0.9 GHz. For instance, in (Siddiqui et al. 2011) the antenna 

operated from 0.4 GHz to 9.8 GHz; however, the gain of antenna is zero at 0.9 GHz 

while this antenna has larger dimensions compared to the proposed antenna. 

Table 3.2 The specification and performance of the referenced antipodal Vivaldi 

antennas and MAVA 

Ref. No 

Gain in dB at frequency of Dimensions 

mm2 

𝜺𝒓 of 

substrate 

Bandwidth, 

GHz 0.9 GHz 2.45 GHz 5.8 GHz 

(Fioranelli et al. 

2015) 

1.5 6.5 - 185×260 10 0.5 - 2 

(Wang, Z et al. 

2016) 

- 4 6 90× 93.5 2.65 1.32 - >17 

(Siddiqui et al. 

2011) 

0 7.5 9 282×307.4 2.33 0.4 - 9.81 

(Ashraf et al. 

2015) 

- 6 8.5 160× 120 2.2 0.8 - 18 

MAVA 4 6.5 8.5 171× 202 2.2 0.67 - > 6 
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3.3 MAVA with concrete sample  

In this section, the MAVA is used for IHM techniques at frequency range from 0.65 

GHz to 3.5 GHz. The feasibility of the proposed antenna for IHM is investigated by 

modelling a concrete sample in CST. The proposed MAVA was located at the distance 

of d from the center of the front face of a concrete sample consisting of a cubic concrete 

block and a concrete slab as shown in Fig. 3.7(a). An air-dried concrete was considered 

with dielectric constant of 4.5 and loss tangent of 0.0111 (Shams & Ali 2007). The 

photograph of measurement set-up with concrete sample and fabricated antenna is 

shown in Fig. 3.7(b). The sample consists of a concrete block and concrete slab with 

the dimensions of 250 mm by 250 mm by 250 mm and 250 mm by 250 mm by 100 

mm, respectively, made of dry concrete. The PNA is used in the measurements. Firstly, 

magnitude of the reflection coefficient (S11) of the MAVA at the frequency range from 

0.6 GHz - 6 GHz was simulated and measured with and without concrete sample and 

the results are shown in Fig. 3.8. The results demonstrated changes related to the 

potential association with resonant wavelengths or standing waves in the concrete 

block(s). Also, Fig. 3.8 shows that there is a good agreement between simulation (c.f. 

Fig. 3.8(a)) and measured (Fig. 3.8(b)) results. Moreover, the results show that the 

magnitude of reflection coefficient of the antenna in free space (i.e., without concrete 

sample) periodical changes when frequency increases. It can be attributed to the 

reflection of waves from the aperture of antenna and their interference inside antenna. 
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Figure 3.7 (a) Model of the proposed MAVA with the concrete sample in CST and 

(b) measurement setup with the concrete sample and the fabricated antenna. 

 

Figure 3.8 (a) Simulated and (b) measured magnitude of the reflection coefficient 

versus frequency with and without concrete sample at d = 100 mm. 

Concrete block 

Concrete slab 

MAVA 
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d
3
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3.4 MAVA with concrete sample possessing air gap 

In this part, an air gap with thickness of d2 was created between the block and slab at 

depth of d1 as shown in Fig. 3.9. Extensive numerical study on magnitude of the 

reflection coefficient at different values of d, d1 and d2 at d1+d3 = 500 mm was 

performed. Fig. 3.10 shows the magnitude of reflection coefficient versus d with and 

without gap inside the concrete at 0.9 GHz. Thickness of the gap, d2, is 5 mm here. As 

Fig. 3.10 reveals, maximum change between two curves occurs at the minimum S11 

when d is approximately 70 mm. Magnitude of the reflection coefficient versus distance 

between the front face of concrete block and air gap (d2) is depicted at Fig. 3.11. As can 

be seen from Fig. 3.11, the magnitudes of reflection coefficient are -17.27 dB and -

9.71dB at 0.91 GHz and 2.37 GHz, respectively, while there is no air gap inside the 

concrete. When d1 changes from 10 mm to 450 mm the magnitude of reflection 

coefficient varies periodically indicating standing wave patterns with different 

wavelengths corresponding to different operating frequencies. 

 

Figure 3. 9 Model of the proposed MAVA with the concrete sample possessing air gap 

in CST. 

Front face 
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Figure 3.10 Magnitude of the reflection coefficient versus distance between MAVA 

and front face of the concrete sample, d, at f = 0.9 GHz without and with gap at d1 = 

10 mm and d2 = 5 mm. 

         It can be clearly seen from Fig. 3.11 that at each value of the d1 the magnitude of 

reflection coefficient is different for different values of gap thickness, i.e. 5 mm and 10 

mm, at each frequency, i.e. 0.91 GHz and 2.37 GHz. This result can be used for 

evaluation gap inside concrete. The changes of amplitude of these patterns can be 

attributed to the multiple reflections of waves from back and side faces of the concrete 

block.  

 

Figure 3.11 Magnitude of the reflection coefficient versus distance between the front 

face of concrete block and air gap, d1, at 0.91 GHz (dashed line) and 2.37 GHz (solid 

line) and at d2 = 5 mm and 10 mm.          

λ1/2 

λ2/2 
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         Fig. 3.12 shows the magnitude of reflection coefficient versus d2 at four 

frequencies. It can be clearly seen from Fig. 3.12 that a small gap (i.e., from 5 mm – 10 

mm) creates changes of S11 without ambiguity at 2.37 GHz. Overall, Fig. 3.12 

demonstrates that operating frequency can be selected for certain applications. 

 

Figure 3.12 Magnitude of the reflection coefficient versus thickness of air gap, d2, at: 

(I) f = 0.7 GHz, (II) f = 0.81 GHz, (III) f = 0.91 GHz and (IV) f = 2.37 GHz (d = 70 

mm and d1 = 45 mm). Dash lines show the value of the magnitude of reflection 

coefficient while there is no gap inside the concrete sample at the selected frequencies. 

         The electrical field distribution in the proposed antenna, free space and inside the 

concrete sample with and without gap at two frequencies is shown in Fig. 3.13 when 

the MAVA radiates EM waves toward the concrete sample. The wavelength inside the 

concrete, 𝜆𝑔, is 155.44 mm (59.64 mm) at frequency of 0.91 GHz (2.37 GHz). The size 

of the samples (d1+d3 = 500 mm) are almost 3 (8) times larger than the wavelength 

inside the concrete. Figs. 3.13(a)-(b) demonstrate standing waves inside the concrete 

sample with different wavelengths. It can also be clearly seen that air gap inside 

concrete changes the standing wave patterns at both frequencies. 
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Figure 3.13 Electrical field intensity distribution in the proposed antenna and the 

concrete sample (left) without and (right) with air gap at d = 70 mm and at two 

frequencies: (a) 0.91 GHz and (b) 2.37 GHz (d1 = 45 mm, d2 = 5 mm). 

         

 

 

 

(b) 

(a) 

Concrete sample 

Antenna 

d1+d3 
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          Measurements of magnitude and phase of the reflection coefficient versus 

frequency were conducted five times at each selected air gap which located between 

the concrete block and slab. Also, in order to provide reliably measurement results, the 

average magnitude and phase of reflection coefficient for each gap were calculated to 

reduce measurement error attributed to arrangement of the sample with the gap. 

Measurement setup is similar to that shown in Fig. 3.7(b). Average magnitude of 

reflection along with standard deviation (SD) versus gap value at four frequencies is 

shown in Fig. 3.14. It can be seen from Fig. 3.14 that S11 (d2) is almost linear at all 

frequencies and the maximum and minimum SDs occur at 0.87 GHz and 2.44 GHz, 

respectively. Fig. 3.15 the measured average phase of reflection coefficient along with 

SD. It can be seen from Fig. 3.15 that the phase of reflection coefficient versus d2 is not 

 

Figure 3.14 Measured average magnitude of the reflection coefficient with standard 

deviation versus gap value at (a) 0.87 GHz, (b) 1.73 GHz, (c) 2.44 GHz, and (d) 2.71 

GHz. 

(a) (b) 

(c) (d) 
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linear at all frequencies and the maximum and minimum SDs occur at 2.44 GHz and 

0.87 GHz, respectively. The results show that SD for the magnitude (phase) is >1 dB 

(<1 degree) and <0.5 dB (>1 degree) at the low and high frequencies, respectively.  

This different behavior of the measured magnitude and phase of reflection coefficient 

should be taken into account at certain application of this technique. 

 

Figure 3.15 Measured average phase (in degree) of the reflection coefficient with 

standard deviation versus gap value at (a) 1.73 GHz, (b) 2.33 GHz, (c) 2.44 GHz, and 

(d) 2.71GHz. 

3.5 MAVA with reinforced concrete sample 

In reality, reinforced bars (rebars) are embedded inside concrete in order to increase 

its mechanical stability. To investigate the influence of rebars on the reflection and 

transmission properties of concrete samples irradiated by MAVA, extensive 

(c) (d) 

(a) (b) 
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simulations using CST MWS and measurements with the fabricated MAVA and 

reinforced concrete samples have been performed. The most critical simulated and 

measured results at the entire frequency range from 0.6 GHz - 3.5 GHz and at selected 

single frequencies are presented in this section for two samples. One of them has two 

parallel rebars and another had a rebar cell. 

3.5.1 MAVA with concrete sample possessing two rebars   

Two parallel rebars in one of the samples can be arranged to be parallel or orthogonal 

to electric field polarsation vector of the MAVA (referred to as parallel or vertical 

configuration, respectively) as shown in Figs. 3.17(a)-(b). The rebars with diameter of 

16 mm and distance of g = 110 mm are embedded inside the concrete block with 

dimensions of 250 mm by 250 mm by 366 mm at depth of 100 mm. The MAVA is 

located at d = 50 mm above the air-to-concrete interface. The material of the rebars is 

steel-1008 (conductivity of 7.69×106 S/m). Fig. 3.16(c) shows the measurement setup. 

The sample used in this setup consists of a 100-mm thick concrete slab with 

dimensions of 250 mm by 250 mm, and a 250-mm concrete cubic block. The gap of 

16 mm between the slab and the block was filled by plasterboard pieces and the rebars 

as shown in Fig. 3.16(c). The complex reflection coefficient was measured using the 

PNA. 
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Figure 3.16 Model of the setup with concrete sample possessing two rebars: (a) parallel 

and (b) vertical configuration, and (c) photo of the measurement setup. 

        Simulated and measured magnitudes of the reflection coefficient versus 

frequency at two configurations are shown in Fig. 3.17(a)-(b), respectively. Overall, 

the magnitudes of the reflection coefficient of the concrete without and with two rebars 

at the vertical configuration represent similar trends but the rebars cause the increase 

of amplitude of ripples. It can be clearly seen in Fig. 3.17 that this increase is higher 

at the parallel configuration than at the vertical configuration at the most frequencies, 

as expected.  There is a good agreement between simulation and measurement results 

as shown in Fig. 3.17(a)-(b), respectively. Discrepancy between simulation and 

measurements can be attributed to the gap filled by plasterboard pieces in the 

experimental concrete sample. 

g g 

d E-field vector 
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Figure 3.17 Simulated and measured magnitude of the reflection coefficient without 

and with parallel rebars at two configurations: (a) simulated and (b) measured S11.  

3.5.2 MAVA with concrete sample possessing rebar cell 

Another reinforced concrete sample has an embedded rebar cell. Fig. 3.18(a) shows 

the model of the MAVA with the concrete sample. The sample has dimensions of 250 

mm by 250 mm by 382 mm and dielectric constant and loss tangent of the dry concrete. 

A 4-rebar cell with mesh period parameter g (c.f. Fig. 3.18(b) is embedded in concrete 

so that the distance between the top (bottom) surface of sample and the center of lower 

two rebars, d1 (d3), and upper two rebars, d4, are 132 mm (250 mm) and 100 mm, 

respectively. Each rebar has diameter of 16 mm and was made of steel-1008. 

(b) 

(a) 



53 

 

Measurement setup is similar to that shown in Fig. 3.16(c). The gap of 32 mm between 

the slab and the block was filled by plasterboard pieces and the rebar cell as shown in 

Fig. 3.16(c).  

 

Figure 3.18 MAVA and concrete sample with a rebar cell: (a) model in CST and (b) 

configuration of the rebar cell. 

        Simulated and measured magnitudes of the reflection coefficient at three 

distances between the antenna and the concrete samples with and without rebar cell at 

g = 110 mm are shown in Fig. 3.19 and Fig. 3.20. Firstly, the simulated magnitude of 

reflection coefficient with the concrete sample without rebars (c.f. Fig. 3.19) and in 

free space (c.f. Fig. 3.5) is compared. The comparison shows the following: 1) the 

presence of concrete sample increases reflection at some frequencies that can be 

attributed to the reflection from the sample boundaries, in particular from the top 

surface irradiated by the MAVA and 2) the magnitude of reflection coefficient with 

the concrete sample at some frequencies corresponding to the resonant dips is lower 

than in free space at the same frequencies; for instance, the reflection reduces 

significantly at frequencies from 0.6 GHz to 0.8 GHz at d = 0 and from 1.4 GHz - 1.7 

GHz at d = 0 and 100 mm. There is no gap between the MAVA and the surface of the 

concrete slab at d = 0. 

(a) 
(b) 

Concrete sample 

Upper rebars 

Lower rebars 

g 

Rebar cell 

MAVA 

d1 

d3 

d3 

d 

d4 

g 



54 

 

 

 

Figure 3.19 Simulated S11 (dB) versus frequency with concrete and reinforced concrete 

at g = 110 mm and (a) d = 0, (b) d = 50 mm, and (c) d = 100 mm.  

(b) 

(a) 

(c) 
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         Secondly, we considered the influence of rebars on the simulated magnitude of 

reflection coefficient. The main observation is that embedding the rebar cell leads to 

changes of magnitude of the dips and there are small shifts of the frequency 

corresponding to the peaks at all d values while no new peaks occur. The most 

significant changes can be seen at d = 0. Overall, the simulated results show that the 

reflection from the boundaries of the sample plays a dominant role in relative (to free 

space) changes of the magnitude of reflection coefficient. The measured results 

demonstrate a similar behavior of the magnitude of reflection coefficient. A slightly 

higher number of ripples and the resonant responses in measured results compared 

with the simulated results can be attributed to the reflection from the gap filled by 

plasterboard pieces in the experimental samples. It is worth mentioning that 

embedding the rebars increases the number of dips at d = 50 mm and 100 mm, 

respectively, compared with the case at d = 0. These dips occurred due to the influence 

of the rebars. In general, the results shown in Fig. 3.20 demonstrate that one of the 

main features of reinforced concrete samples irradiated by the MAVA is the indication 

of multiple ripples and the resonant responses at the reflection spectrum. Therefore, 

one of the advantages of wideband antennas, such as MAVA, is the opportunity to 

select a desired single frequency for a certain application.                   
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Figure 3. 20 Measured S11 (dB) versus frequency with concrete and reinforced concrete 

at g = 110 mm and (a) d = 0, (b) d = 50 mm, and (c) d = 100 mm.   

(b) 

(a) 

(c) 
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3.5.3 Electrical field intensity distribution  

Simulation and analysis of the electrical field intensity (referred to as E-field) 

distributions in the proposed MAVA and the finite samples as introduced in Fig. 3.7 

and Fig. 3.18 have been performed at several single frequencies over the operating 

frequency range to further investigate the reflection as well as propagation of 

microwaves in the samples irradiated by the MAVA. Fig. 3.21 shows selected results 

of E-field distributions obtained at d = 50 mm and at a few single frequencies at the 

same scale. Several observations can be made from Fig. 3.21. At all selected 

frequencies the antenna radiates toward the sample and the EM radiation is partly 

reflected from air-to-concrete interface, partly transmits into the sample and 

propagates through the sample. The propagation of the EM waves in the sample is a 

complex function of the operating frequency, polarisation of radiation of the antenna, 

and the presence of rebar cell. Moreover, the analysis of E-field distributions at low 

frequencies clearly shows that the electromagnetic waves are almost blocked by rebar 

cell as shown in Fig. 3.21 at 0.7 GHz. At this frequency, the influence of rebar cell on 

the reflection property of the sample is significant, i.e., it leads to appearance of the 

resonant peak at the simulated and measured reflection spectra as shown in Fig. 3.19(b) 

and Fig. 3.20(b). It happened because parameter g is equal half electrical wavelength 

(110 mm) at this frequency, and as a result microwaves at this frequency are 

significantly shielded by the rebar cell similar to the case described in (Jiang, 

Georgakopoulos & Jonah 2012). Another important observation can be made from 

Fig. 3.21 at frequency of 2.02 GHz, it can be seen that microwaves propagate through 

the rebar cell and the sample (c.f. Fig. 3.19 and Fig. 3.20) and there are no peaks, and 

the indication of the influence of the rebar cell on the reflection spectra (c.f. Fig. 

3.19(b) and Fig. 3.20(b)). 
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Figure 3.21 Electrical field intensity distribution in the concrete and reinforced 

concrete samples at (left) XY- plane and (right) ZY-plane, d = 50 mm, and frequency 

of (a) 0.70 GHz, (b) 2.02 GHz, (c) 2.45 GHz, and (d) 3.30 GHz. 
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         In this case, the rebar cell concentrates E-field in the area of the rebars 

localisation and is scattered by the rebars, i.e., the rebar cell affects propagation of 

microwaves through the sample. Similar effects of the concentration and scattering of 

E-field by the rebar cell can be seen in Fig. 3.21 at 2.45 GHz where the resonant peaks 

can been observed with and without rebars with a very small difference (c.f. Fig. 

3.19(b) and Fig. 3.20(b)). In addition, standing wave pattern inside the sample can be 

clearly seen in Fig. 3.21 at 2.45 GHz as a result of the reflection of microwaves from 

the bottom of the sample, and decreasing E-field intensity beyond the bottom, i.e., 

propagation of microwaves through the sample is reduced, due to the influence of the 

rebar cell. Finally, the consideration of E-field distributions at 3.3 GHz shows that the 

concentrations of E-field in the sample with rebar cell increases, and this can be 

attributed to resonant conditions in the areas between rebar cell and the top as well as 

the bottom of the sample. The magnitude of reflection coefficient is significantly 

changed at this frequency (i.e., 3.3 GHz) by introducing the rebar cell as can been seen 

in Fig. 3.19(b) and Fig. 3.20(b). 

3.6 Coupling between MAVA and a microstrip patch antenna 

embedded in concrete and reinforced concrete samples    

To investigate transmission of microwaves in the reinforced concrete sample, a 

microstrip patch antenna was embedded in the sample. The microstrip patch antenna 

consists of a rectangular patch of length, LP, and width, WP, which is imprinted on a 

rectangular substrate of thickness, h, with a rectangular ground plane as shown in Fig. 

3.22(a).  
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Figure 3.22 (a) Schematic of the microstrip patch antenna and (b) photograph of 

fabricated prototype (Salama & Kharkovsky 2013). 

         The first step of the design procedure of a rectangular patch antenna is to compute 

its physical dimensions. The physical width and length of the microstrip patch antenna 

is calculated using following equations (Balanis 2016): 

                                             𝑊𝑃  =
1
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√
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           εr = Dielectric constant of substrate 
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          ∆L = The extended incremental length of the patch 

        The microstrip patch antenna is designed with dimensions of copper patch of 

35×29×0.035 mm3 and substrate of 50×50×1.5 mm3 as shown in Fig. 3.22. The 

substrate is made of FR4 with 휀𝑟 = 4.3 and 𝑡𝑎𝑛𝛿= 0.025. Both sides of the patch 

antenna were covered by a foam sheet (as a superstrate) with dimensions of 55×55×10 

mm3 and was located in an air box with dimension of 55×55×10 mm3 inside the sample 

at d1 = 132 mm under the centre of the rebar cell. 

 Fig. 3.23(a) shows the model of the two-antenna setup in CST with MAVA as an 

external antenna and the microstrip patch antenna as an internal (embedded) antenna 

(referred to as the two-antenna system) operating at 2.45 GHz. Measurement setup 

included the reinforced concrete sample and arrangement of the MAVA used in the 

measurement described in the previous section. In addition, two air-filled grooves were 

made on the surface of the cube to locate the microstrip patch antenna with superstrate 

and a cable connecting the antenna and the PNA as shown in Fig. 3.23(c). Then, the 

cube with the antenna and cable was covered by the rebar cell, plasterboard pieces and 

concrete slab as described above.     
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Figure 3.23 Reinforced concrete sample with the two-antenna system, (a) cross-

sectional view of the model in CST, (b) picture of the measurement setup without (left) 

and with (right)  concrete slab and rebar cell and top view of the air-filled grooves. 

          In practice, a typical value of mesh period parameter g is in the range of 101.6 

mm to 304.8 mm (Jiang, Georgakopoulos & Jonah 2012). The simulated magnitude of 

the reflection coefficient of the patch antenna in free space, concrete and reinforced 

concrete samples at d = 50 mm and g = 110 mm is shown in Fig. 3.24(a). It can be 

seen from Fig. 3.24(a)  that embedding the patch antenna inside the concrete sample 

leads to an increase (relative to free space) of the resonant frequency and S22 (dB) of 

the antenna. These changes can be attributed to the influence of concrete in E-field of 

the embedded patch antenna since dimensions of the superstrate and air box are 

selected to be relatively small, i.e., less than wavelength, to avoid destruction of 
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concrete integrity. Then, applying the rebar cell in concrete does not change the 

resonant frequency and the magnitude of the reflection coefficient of the antenna. 

However, measured results which are shown in Fig. 3.24(b) demonstrate negligible 

shift of the resonant frequency under the influence of concrete and the rebar cell on 

the magnitude of the reflection coefficient. This discrepancy between simulated and 

measured results can be explained by the antenna fabrication errors and/or the 

influence of concrete and the rebar cell on radiation from a connector which is attached 

to the antenna and connected to the cable. 

 

Figure 3.24 Magnitude of the reflection coefficient of the patch antenna in free space, 

concrete and reinforced concrete samples (d = 50 mm) (a) simulated S22 (dB) and (b) 

measured S22 (dB). 

(b) 

(a) 
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        Fig. 3.25 and Fig. 3.26 show simulated and measured magnitude of the 

transmission coefficient, S21, in the two-antenna system in free space, and with 

concrete and reinforced concrete samples at three distances between the MAVA and 

the surface of concrete. It can be seen from Fig. 3.25 that maximum value of the 

simulated S21 in free space is -15 dB at ~2.45 GHz (i.e., at the resonant frequency) and 

embedding patch antenna in concrete and applying the rebar cell do not change it at d 

= 0 as shown in Fig. 3.25(a). The maximum magnitude with the concrete and 

reinforced concrete samples slightly decreases at d = 50 mm and a notable decrease of 

the magnitude is observed at d = 100 mm. Fig. 3.25 also shows that the changes of the 

magnitude in the concrete and reinforced concrete samples are almost the same. This 

observation leads to the conclusion that the influence of concrete boundaries, in 

particular, the top surface of the samples is the main contributing factor to changes of 

transmission property of the samples. The measured results shown in Fig. 3.26 confirm 

the main features and behavior of the maximum magnitude of the transmission 

coefficient, which have been observed from the simulated results. It should be noted 

that the magnitude of transmission coefficient is lower in the measurement than in the 

simulation (c.f. Fig. 3.25) and it can be attributed to losses in the cable, which were 

not taken into account in the simulation.    
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Figure 3.25 Simulated magnitudes of the transmission coefficient between antennas in 

free space, concrete and reinforced concrete at (a) d = 0, (b) d = 50 mm, and (c) d = 

100 mm. 

 

(a) 

(b) 

(c) 
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Figure 3.26 Measured magnitudes of the transmission coefficient between antennas in 

free space, concrete and reinforced concrete at (a) d = 0, (b) d = 50 mm, and (c) d =100 

mm. 

          

(a) 

(b) 

(c) 
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           The influence of parameter g of the rebar cell on the magnitude of the 

transmission coefficient has been investigated numerically at the range from 90 mm to 

170 mm and the results are shown in Figs. 3.27. It can be observed from Figs. 3.27 

that the decrease of g from 170 mm to 150 mm decreases the magnitude, then it 

increases gradually when g decreases from 150 mm to 90 mm, reaching the maximum 

value at g = 90 mm which, as expected, is equal to the simulated maximum magnitude 

shown in Fig. 3.25(b). The measurements were conducted with practical values of g = 

90 mm and 110 mm at three values of d as shown in Fig. 3.28. It can be seen from Fig. 

3.29 that the increase of d causes the decreasing of S21 while the change of g from 90 

mm to 110 mm leads to negligible changing of on the maximum magnitude of S21. The 

results also demonstrate that the measured maximum S21 in Fig. 3.28 is less than the 

simulated maximum S21 in Fig. 3.27, and the maximum S21 for each d in Fig. 3.29 

corresponds to the measured results shown in Fig. 3.26. 
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Figure 3.27 Simulated magnitude of the transmission coefficient of the two-antenna 

system with the reinforced concrete sample and different values of g (a) d = 0 mm, (b) 

d = 50 mm, and (c) d = 100 mm.  

 

(c) 

(a) 

(b) 
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Figure 3.28 Measured S21 at (a) d = 0, (b) d = 50 mm and (c) d = 100 mm at two values 

of g: 90 mm (solid line) and 110 mm (dash line). 

         

(c) 

(a) 

(b) 
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           Fig. 3.29 shows the simulated and measured magnitude of the transmission 

coefficient of the two-antenna system with the reinforced concrete sample possessing 

the rebar cell when an upper layer of rebars is parallel (case 1) or vertical (case 2) to 

the E-field polarisation vector of the antennas at d = 0 and 50 mm . The model for case 

1 is shown in Fig. 3.23(a). It can be seen from Fig. 3.29 that there is no difference 

between maximum values of S21 obtained at case 1 and case 2 for both the simulated 

and measured results. 

 

Figure 3.29 Magnitude of the transmission coefficient of the two-antenna system with 

the reinforced concrete sample possessing the rebar cell when an upper layer of rebars 

is parallel (case 1) or vertical (case 2) to the E-field polarisation vector of the antennas 

at d = 0 and 50 mm (a) simulated S21, and (b) measured S21. 

(b) 

(a) 
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3.7 Summary 

The modified antipodal Vivaldi antenna (MAVA) is designed, built and tested to be 

used for IHM techniques at frequency range from 0.65 GHz – 6 GHz. The antenna is 

applied to investigate the reflection and transmission properties of concrete-based 

samples possessing air gap or rebars numerically and experimentally at frequency 

range from 0.65 GHz - 3.5 GHz.  

It is shown that the reflection from the top of the samples with and without air gap or 

rebars provided the most critical effect on the change of reflection from or reduction 

of power transmission in the samples. The results show that the air gap of > 5 mm can 

be detected at any depth inside 500-mm thick concrete samples. The gap (not “crack”) 

was invisible to the naked eye and it was detected through concrete at different 

distances from the top of specimen to its location. 

The investigation into the influence of rebars show that it depended on the value of 

rebar cell parameter and the rebar cell mesh could act as a shield for microwaves if 

this parameter was less than the electrical half wavelength. At higher frequencies of 

the frequency range, microwaves could penetrate through the reinforced concrete 

samples with a rebar cell with the parameter used in practice. These results is used for 

the investigation into the transmission of microwaves at single frequency of 2.45 GHz 

between the MAVA and a microstrip patch antenna embedded inside dry reinforced 

concrete samples at the location of the rebar cell. It is shown that -15 dB coupling 

between the antennas can be achieved.  
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Chapter 4 Resonant antipodal Vivaldi antenna for wireless 

power transfer in concrete 

4.1 Introduction 

In this chapter, a relatively small resonant antipodal Vivaldi antenna (RAVA) was 

designed to operate as an external transmitting antenna for WPT in concrete at 2.45 

GHz. Feasibility of a two-antenna setup including the RAVA and a modified 

microstrip patch antenna as a receiving antenna embedded in reinforced concrete 

members is investigated numerically. Parametric study on the most critical parameters 

of the members such as reinforced concrete slab and column, which affect 

electromagnetic wave propagation in these members, is performed. 

4.2 Configuration and performance of RAVA and modified patch 

antenna in free space 

The proposed antennas are designed to operate at the resonant frequency of 2.45 GHz 

(i.e., at the ISM band) and their schematics are shown in Fig. 4.1. The RAVA is based 

on a relatively small broadband conventional AVA but a resonance is added to get to 

the operating frequency at 2.45 GHz with reduced dimensions of the antenna and for 

potential applications of higher frequency for wireless communication, sensing and/or 

power transmission in relatively low loss materials. Both antennas are printed on 

RO4003C with relative dielectric permittivity of 3.38 and loss tangent of 0.0027. The 

substrate thickness of the RAVA and the patch antenna are 0.813 mm and 1.524 mm, 

respectively. The RAVA and the patch antenna are fed by a microstrip line with width 

of Wf  and Wf1, respectively, in order to match 50 Ω, as shown in Fig. 4.1.  
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Figure 4.1 Schematic of the (a) RAVA and (b) microstrip patch antenna.     

        To design the exponential taper profile of the proposed RAVA (see Fig. 4.1(a)) 

the following equations were used:   

                                                      𝑋 =  ±(𝐶1𝑒𝑅𝑛𝑧  +  𝐶2)                                        (4.1) 

                                              𝐶1 =  
𝑥2−𝑥1

𝑒𝑅𝑛𝑧2−𝑒𝑅𝑛𝑧1
                                              (4.2) 

                                               𝐶2 =
𝑥1𝑒𝑅𝑛𝑧2−𝑥2𝑒𝑅𝑛𝑧1

𝑒𝑅𝑛𝑧2−𝑒𝑅𝑛𝑧1
                                        (4.3) 

where 𝑅𝑛 is the rate of opening, and (x1, z1) and (x2, z2) are the peak and bottom points 

of the exponential tapered curve. 

         To obtain the desired performance of the RAVA extensive parametric studies on 

the dimensions were performed. For example, the influence of changes of R1 on the 

magnitude of reflection coefficient and gain of the RAVA is shown at Fig. 4.2. It can 

be seen from Fig. 4.2(a) that the RAVA acts as a resonant antenna at lower frequency 

(< 3 GHz). The resonant frequencies increase as the R1 increases from 0.01 to 0.02 and 

it has acceptable value (<-10 dB) over desired 2.45 GHz resonant frequency at R1= 

(b) (a) 
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0.014. As shown in Fig. 4.2(b), at lower resonant frequencies the gain of the RAVA 

increases as the R1 increase.  

 

Figure 4.2 (a) Magnitude of the reflection coefficient and (b) gain of the RAVA with 

different R1 (no unit). 

         As a result, the optimised dimensions of the proposed RAVA are: Lsub = 202 mm, 

Wsub = 120 mm, Lp = 130 mm, Wg = 90 mm, Wf = 1.9 mm, Lf = Lg = 4 mm, R1 = 0.014 

and R2 = 0.051 (no unit). The magnitude of the reflection coefficient and gain of the 

RAVA at 2.45 GHz are shown in Fig. 4.3. The gain of the proposed RAVA at 2.45 

GHz is 8.05 dB. The simulated 3D radiation patterns and co-polarsation radiation 

patterns of the RAVA in both E- and H-planes at 2.45 GHz are presented in Fig. 4.4. 

(b) 

(a) 
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Figure 4. 3 Simulated magnitude of the reflection coefficient and gain of the proposed 

RAVA. 

 

Figure 4.4 (a) 3D, (b) E-plane, and (c) H-plane radiation patterns of the RAVA at 2.45 

GHz. 

         The width and length of the microstrip patch antenna is calculated using Eqs. 

3.6- 3.9. As a result, the optimized dimensions of the patch antenna are: Wsubp = Lsubp 

= 60 mm, WP = 41.4 mm, LP= 32.6 mm, LP1= 12 mm, WP1= 0.3 mm, Lf1=16 mm and 

Wf1=3.5 mm. Magnitude of the reflection coefficient (S22) and gain of the patch 

antenna in free space are shown in Fig. 4.5. A maximum gain of 6 dBi is observed. 

The simulated 3D, E- and H-plane radiation patterns of the patch antenna are shown 

in Fig. 4.6. 

(b) (a) (c) 
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Figure 4. 5 Simulated magnitude of the reflection coefficient and gain of the patch 

antenna. 

 

Figure 4.6 (a) 3D, (b) E-plane, and (c) H-plane radiation patterns of the patch antenna 

at 2.45GHz. 

         Magnitude of the reflection coefficients of the RAVA (S11) and the patch antenna 

(S22), and the gain of antennas in free space are shown in Fig. 4.7. It can be clearly 

seen from Fig. 4.7 that the both antennas resonate at 2.45 GHz. The results also show 

that the gain of the RAVA at the resonant frequency is almost 3.3 dB higher than the 

gain of the patch antenna. The RAVA provides higher bandwidth than the patch 

antenna and operates from 2.3 GHz to 2.6 GHz when using S11 = -10 dB as a criterion. 

(a) (b) 
(c) 
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Figure 4.7 (a) Magnitude of the reflection coefficient and (b) gain of the RAVA and 

patch antenna (without superstrate) from 2 GHz to 3 GHz at free space. 

         The patch antenna will be used as a receiving antenna embedded inside concrete. 

In order to reduce the influence of surrounding material on the performance of the 

embedded antenna, it is covered by two layers made of Teflon with relative dielectric 

permittivity of 2.1, loss tangent of 0.0002 and thickness of h1 bonded to top and bottom 

sides of the antenna substrate (referred to as superstrate). Firstly, a parametric study is 

performed to analyse the influence of different thicknesses of superstrate on the 

magnitude of the reflection and gain of the patch antenna while the patch antenna is 

located at free space as shown in Fig. 4.8. Secondly, a parametric study is performed 

to analyse the influence of concrete on the performance of embedded patch antenna 

(b) 

(a) 
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with different thicknesses of the superstrate, which will be discussed in the following 

section.   

 

Figure 4.8 (a) Influence of the different thicknesses of the superstate on magnitude of 

the reflection coefficient and (b) gain of the patch antenna at free space (LP = 32.6 

mm). 

         It can be seen from Fig. 4.8(a), the resonant frequency of the patch antenna is 

shifted to lower frequency by increasing the thickness of superstrate. For instance, at 

h1= 10 mm, the resonant frequency is 2.38 GHz. The results in Fig. 4.8 (b) show that 

the gain of the patch antenna at the resonant frequency is constant at any selected h1. 

In order to achieve the 2.45 GHz resonant frequency while the patch antenna covered 

by 10 mm superstrate, the parametric study on LP is performed as shown in Fig. 4.9. 

(b) 

(a) 
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As illustrated in Fig. 4.9, the resonant frequency of the patch antenna with superstrate 

is shifted toward 2.45 GHz by decreasing the LP. The 2.45 GHz resonant frequency is 

achieved while the LP is equal to 31.6 mm. Therefore, the proposed patch antenna 

covered by superstrate with Lp= 31.6 mm will be embedded inside concrete in the 

following section. Fig. 4.10 shows the simulated 3D pattern and radiation patterns at 

E- and H-planes of the patch antenna with the superstrate.  

 

Figure 4.9 Magnitude of the reflection coefficient of the patch antenna covered by 

superstrate with different values of the LP at free space (h1=10 mm). 

 

Figure 4.10 Radiation patterns of the patch antenna with superstrate at 2.45 GHz: (a) 

3D, (b) E-plane, and (c) H-plane. 

(a) (b) (c) 

Substrate of the 

patch antenna 

Superstrate 
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4.3 Reflection and transmission properties of reinforced concrete slab 

and column irradiated by RAVA 

4.3.1 Reinforced concrete slab 

Fig. 4.11 shows schematic of a reinforced concrete slab with two cross rebar layers 

which is widely used in building structures such as reinforced concrete walls and 

bridge decks. The metal rebars used for increasing strength and serviceability of 

concrete may affect the performance of the embedded antenna as well as the WPT in 

the reinforced concrete for IHM applications. In this investigation, the reinforced 

concrete slab and the two-antenna setup were modeled in CST as shown in Fig. 4.12 

and distances between the concrete surface and the RAVA (L1) and the microstrip 

patch antenna (L2), and mesh period (g) of rebar cell were parameters in numerical 

study. 

 

Figure 4.11 Reinforced concrete slab (Jiang & Georgakopoulos 2011) . 

          As previously mentioned, the complex permittivity of concrete varies with both 

the frequency and the moisture content. At any given frequency both dielectric 

constant and conductivity increase as moisture content increases (Buyukozturk 1997; 

Maierhofer & Wöstmann 1998; Shaari, Millard & Bungey 2004; Soutsos et al. 2001). 

Concrete 

Rebars 
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Figure 4.12 Model of the antennas and reinforced concrete slab in CST: (a) perspective 

view, (b) side view and (c) front view (L = 210 mm, L3 = 77 mm, L4 = 38 mm, d = 16 

mm).   

The dielectric permittivity of four different groups of concrete such as wet, saturated, 

air-dried and oven-dried are available in (Buyukozturk 1997). The air-dried and 

saturated concrete are chosen to be used in this section. The electromagnetic properties 

of air-dried and saturated concrete at 2.45 GHz are listed in Table 4.1. The term 

saturated means that the surface of concrete specimen is dry however there is moisture 

inside and it is significantly higher than air-dried concrete moisture content. 

Patch antenna 

Concrete 

RAVA 
Rebars 

L4 

L3 

g 

h1 

L 

d 

L2 L1 

(c) (b) 

(a) 

X 

Y 
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Table 4. 1 Measured relative permittivity of concrete at 2.45 GHz (Buyukozturk 

1997). 

Concrete Air-died Saturated 

Dielectric constant, 𝜺𝒓 4.5 8.1 

Conductivity, ϭ 0.013 0.13 

Loss tangent, tan 𝜹 0.0212 0.1178 

 

          A parametric study is performed to analyse the influence of concrete on the 

performance of embedded patch antenna. Figs. 4.13(b)-(c) show the resonant response 

of the patch antenna embedded in the dry and saturated concrete slabs, respectively, 

with different thicknesses of the superstrate, h1. It can be seen from Fig. 4.13 that the 

resonant frequency and magnitude of the reflection coefficient S22 change when h1 

increases from 0 mm to 15 mm. The changes of S22 can be attributed to changes of 

coupling between the patch antenna and the microstrip feed due to different losses in 

the antenna (i.e., its loaded Q factor changes) when h1 changes. The results demonstrate 

that when the embedded patch antenna is not covered by the superstrate (h1 = 0) its 

resonant frequency for the dry concrete is significantly lower than it is in free space 

(i.e., 2.45 GHz) as shown in Fig. 4.13(a) while there is no resonant response of the 

patch antenna in the saturated concrete. The effects of the dry and saturated concrete 

on the resonant frequency of the patch antenna were considered in detail and the results 

are shown in Fig. 4.14. It can be seen from Fig. 4.14 that a shift of the resonant 

frequency is larger for the saturated concrete than for the dry concrete at h1 from 1 mm 

to ~3 mm. Then, by increasing h1 from 3 mm to 9 mm, the resonant frequency is shifted 

gradually to 2.45 GHz, and remains constant at h1 from 9 mm to 15 mm for both the 

dry and saturated concrete. Therefore, the thickness of h1 is chosen to be 10 mm in 

following investigations. 
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Figure 4.13 Magnitude of the reflection coefficient of the patch antenna embedded in 

the (a) free space, (b) dry and (c) saturated concrete at different values of the 

superstate’s thickness. 

(b) 

(a) 

(c) 

Free space 

Dry concrete 

Saturated concrete 
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Figure 4.14 The resonant frequency of the patch antenna versus h1 in the free space, 

the dry and saturated concrete. 

         The effects of the concrete and rebars on magnitude of the reflection coefficients 

of the antennas and transmission coefficient between antennas at L2 = 82 mm and g = 

110 mm are demonstrated in Fig. 4.15. As can be seen from Fig. 4.15(a), the resonant 

frequency and magnitude of the reflection coefficient of the receiving patch antenna 

are slightly changed by applying the concrete and rebars, as expected (see Fig. 4.14). 

On the other hand, changes of the resonant frequency of the RAVA are negligible 

while its magnitude of the reflection coefficient changes under the influence of 

concrete and rebars are visible due to the reflection of EM waves from the interface 

between free space and concrete, and from the rebars. 

         Fig. 4.15(b) shows the magnitude of transmission coefficient related to coupling 

between the two antennas when the RAVA is in free space while the patch antenna is 

located in the free space, concrete slab or reinforced concrete slab. It can be seen from 

Fig. 4.15(b) that maximum S21 is achieved at the resonant frequency of RAVA at all 

cases. The coupling between antennas decreases when the concrete is applied, as 

expected; however, it increases when rebars are inserted inside concrete. To 

understand this behaviour of wave propagation in the reinforced concrete slab 

parametric study was performed and its results will be presented in the next sections.  
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Figure 4.15 Magnitude of the (a) reflection coefficients of the RAVA (S11) (shown by 

solid line) and the patch antenna (S22) (shown by dash line) and (b) the transmission 

coefficient between the antennas (S21) at L1 = 122.5 mm and L2 = 82 mm. 

4.3.1.1 Parametric study on value of mesh period 

In practice, a value of mesh period, g, in reinforced concrete slab design is in the range 

from 100 mm to 305 mm (Jiang & Georgakopoulos 2011). To analyse the influence of 

g on the resonant frequency of the antenna embedded in the dry and saturated concrete, 

and coupling between the antennas, a parametric study is performed when the g is in 

the range from 55 mm to 300 mm as shown in Fig. 4.16. Fig. 4.16(a) shows that at g 

= 55 mm - 85 mm the resonant frequency of the patch antenna embedded inside the 

(b) 

(a) 
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dry and saturated concrete reveals downward and upward sloping trends, respectively; 

and then from 95 mm to 300 mm, remains constant at slightly different levels, i.e., 

almost at 2.45 GHz for dry concrete and 2.48 GHz for saturated concrete. Fig. 4.16 

also shows that there is a similarity between the resonant frequency and the coupling 

trends. When the resonant frequency increases or decreases (c.f. Fig. 4.16(a)), there is 

also an increase or decrease in the coupling and maximum coupling is achieved at the 

highest and lowest resonant frequencies for the saturated and the dry concrete, 

respectively (c.f. Figs. 4.16(a)-(b)). As an overall view, it is clear that coupling 

between antennas is significantly lower in the saturated reinforced concrete slab than 

in the dry reinforced concrete slab. However, the Fig. 4.16(b) shows that maximum 

coupling is achieved for both the dry and saturated reinforced concrete at g = ~95 mm. 

These results would seem to contradict the idea that rebars may cause reduction of 

coupling between antennas since the material of rebars is steel. The results show that 

when the g is less than one and half wavelength, the antenna coupling dramatically 

reduces since an upper rebar layer drastically shields the electromagnetic waves. In 

summary, in order to provide an efficient wireless power transfer in a reinforced 

concrete slab, the electrical dimensions of rebar cells must be taken into account. 
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Figure 4.16 (a) Resonant frequency of the embedded patch antenna and (b) the 

magnitude of transmission coefficient (coupling between the antennas) versus mesh 

period g at dry and saturated reinforced concrete (L1 = λ = 122.45 mm, L2 = 107 mm, 

λ is wavelength in free space). 

         The electric field distributions in the RAVA, the concrete slab and reinforced 

concrete slab with the embedded patch antenna at three values of the mesh period at 

2.45 GHz are shown in Figs. 4.17 and 4.18. As can be seen from Fig. 4.17(a) that the 

RAVA radiates EM waves toward the concrete slab and EM waves partly reflect from 

a concrete-to-free space interface and partly transmit inside and through the concrete 

slab. Figs. 4.17(b-d) demonstrate that the presence of the rebars in the concrete slab 

significantly changes the electric field distribution in the slab, in particular when the 

(b) 

(a) 
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value of mesh period is equal to 95 mm as shown in Fig. 4.17(b). These changes 

decrease as the value of mesh period increase, as shown in Fig. 4.17(b-d). In addition, 

the comparison of the electrical field distributions at the three values of mesh periods 

clearly indicates that the highest electric field intensity near the location of the 

embedded patch antenna is at g = 95 mm (c.f. Fig. 4.17(b)).  

         Fig. 4.18 shows electrical field intensity distributions, when the patch antenna 

embedded in the slabs is a transmitting antenna. It can be clearly seen from Fig. 4.18 

that the embedded antenna radiates EM waves, which propagate through the part of 

the slabs and penetrate into free space. Compared the case of concrete slab (c.f. Fig. 

4.18(a)) electrical field intensity in the case of reinforced concrete slab is higher in the 

RAVA and free space, in particular at location K as designated in Figs. 4.18(b)-(d)). 

The highest intensity in these placed is observed at g = 95 mm. We can conclude that 

there is a similarity between this observation and the results for the resonant frequency 

of patch antenna, the coupling between antennas and electrical field intensity 

distributions shown in Fig. 4.16(a), Fig. 4.16(b) and 4.17, respectively. 
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Figure 4.17 Electrical field intensity distribution in the two-antenna setup and (a) the 

dry concrete slab, and dry reinforced concrete slab with: (b) g = 95 mm, (c) g = 115 

mm, and (d) g = 255 mm, when the RAVA is transmitting antenna. 
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Figure 4.18 Electrical field intensity distribution in the two-antenna setup and (a) the 

dry concrete slab, and dry reinforced concrete slab with: (b) g = 95 mm, (c) g = 115 

mm, and (d) g = 255 mm, when the patch antenna is transmitting antenna. 
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4.3.1.2 Parametric study on L2 

The investigation into the influence of locations of the patch antenna in the concrete 

and reinforced concrete slabs on the resonant frequency of the antenna and coupling 

between antennas for dry and saturated concrete was also performed. The results at 

different L2 at the range from 10 mm – 190 mm for the dry and saturated concrete are 

shown in Fig. 4.19. It can be seen from Fig. 4.19(a) that the increase of L2 causes a 

periodical change of the resonant frequency near 2.45 GHz and 2.48 GHz for the dry 

and saturated concrete slabs, respectively. This change monotonically decreases when 

L2 increases. Fig. 4.19(b) shows the highest value of the magnitude of transmission 

coefficient (i.e. level of coupling) between the antennas versus L2 in concrete and 

reinforced concrete slabs. Several observations can be made from Fig. 4.19(b). As 

expected, the coupling is higher in the dry concrete than in the saturated concrete for 

both the concrete and reinforced concrete slabs and coupling decreases with increasing 

L2 faster in saturated concrete slabs than in dry concrete slabs. Interestingly, coupling 

between antennas are higher in dry (saturated) reinforced concrete than in the dry 

(saturated) concrete. This observation confirms that the rebars cause increasing the 

coupling between antennas. It should be noted that maximum coupling (-13.5 dB) are 

achieved to dry reinforced concrete slab at the range of L2 from ~70 mm to ~110 mm. 

Therefore, this range of L2 can be considered as optimal for effective power transfer at 

the given two-antenna setup and reinforced concrete slab. 
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Figure 4.19 (a) Resonant frequency of the embedded patch antenna and (b) the 

magnitude of transmission coefficient (coupling between the antennas) versus L2 (g 

=110 mm, L1 = 122.45 mm = λ). 

4.3.1.3 Parametric study on L1 

Fig. 4.20(a) shows the resonant frequency of RAVA versus the distance between this 

antenna and the surface of concrete, L1, which changes from 0 mm to 245 mm (i.e., 

from 0 – 2λ. As an overall trend, the sharp fluctuations of the resonant frequency at 

small distances between the specimen and the antenna can be attributed to distortion 

of electric field distribution of the antenna by the specimen and the amplitude of 

fluctuations decreases when L1 changes from 25 mm -125 mm (~λ). The amplitude of 

fluctuations of the resonant frequency is higher when the concrete is saturated in 

(a) 

(b) 
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comparison with dry concrete because the saturated concrete has higher dielectric 

constant than the dry concrete.  

 

Figure 4.20 (a) Resonant frequency of the embedded patch antenna and (b) the 

magnitude of transmission coefficient (coupling between the antennas) versus L1 (g 

=110 mm, L2 = 107 mm). 

        Fig. 4.20(b) shows the magnitude of transmission coefficient versus L1. This 

figure demonstrates that the coupling between the antennas monotonically decreases 

with the increase of L1 in all four cases of concrete slabs, and it is higher for the dry 

concrete than in the saturated concrete. The highest coupling is achieved in the dry 

reinforced concrete. It should be noted that the decrease of coupling is almost -5 dB/ λ 

for all cases which can be attributed to free space loss.    

(b) 

(a) 
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         It is well known that both antennas have to be aligned properly to provide 

maximum coupling. It may happen that the embedded patch antenna is shifted from its 

correct position (i.e., the position aligned with the RAVA). Therefore, the reflection 

coefficient of the RAVA and coupling between the antennas at three locations of the 

two-antenna setup with respect to the rebars along X-axis, u1, (c.f. Fig. 4.12(c)) have 

been investigated and the results are shown in Fig. 4.21. It can be seen from Fig. 4.21 

that coupling between antennas reduced when u1 increases and the maximum 

(minimum) coupling are achieved at u1 = 0 (40 mm) when the embedded patch antenna 

is in the centre of rebar cell (the closest to one of the rebars). It is observed that the 

resonant frequency of the RAVA increase when u1 increases.  

 

Figure 4.21 Magnitude of the reflection coefficient of the RAVA (S11) and coupling 

between the antennas (S21) versus frequency at three locations of the two-antenna set 

up along X-axis (u1) in the dry reinforced concrete slab at g =110 mm, L1 = 110 mm 

and L2 = 107 mm. 

4.3.2 Reinforced concrete column 

A reinforced concrete column is a structural member designed to carry compressive 

loads. It consists of concrete column with an embedded steel frame to provide 

reinforcement. Reinforced concrete columns are categorised into five main types; a 



95 

 

rectangular tied column, rectangular spiral column, round tied column, round spiral 

column, and columns of other geometry (Hexagonal, L-shaped, T-Shaped, etc.) (Choi 

2002). Fig. 4.22 shows the rectangular tied and round spiral concrete columns. Tied 

columns have horizontal ties to enclose and hold in place longitudinal bars. Ties are 

commonly No. 3 or No.4 steel bars. Spiral columns have reinforced longitudinal bars 

that are enclosed by continuous steel spiral. The spiral is made up of either large 

diameter steel wire or steel rod and formed in the shape of helix. The spiral columns 

are slightly stronger than tied columns (Choi 2002). 

 

Figure 4.22 Column types (a) rectangular tied column and (b) round spiral column. 

         In practice, reinforced concrete column are constructed at different configuration 

with different values of steel ratio. In this section, a reinforced concrete column section 

with steel ratios of 1%, 2%, 3% and 4% has been studied. Diameter of column and 

rebars are 300 mm and 14 mm, respectively. Moreover, the distance between rebars 

and concrete column surface, Lc, and distance between rebars, l, should be more than 

50 mm and twice the diameter of the rebar. Steel ratio and number of rebars in the 

column are calculated by using the following equations:  

                                                    𝑆𝑡𝑒𝑒𝑙 𝑟𝑎𝑡𝑖𝑜 =  
𝐴𝑠

𝐴
                                                     (4.4) 

(b) (a) 
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                                       𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑏𝑎𝑟𝑠 =  
𝐴𝑠

𝐴𝑏
                                                (4.5) 

 where AS and A are total rebars area in column and cross section of the column,  

respectively, and Ab is area of one rebar. 

        A model of the setup including the cylindrical concrete column with different 

steel ratios and the RAVA as a transmitting antenna and the patch antenna as a 

receiving antenna located at distance L1 and L2 from the interface between free space 

and concrete surface, respectively, is created in CST MWS as shown in Fig. 4.23.  

 

Figure 4.23 Model of the antennas and reinforced concrete column with different 

values of steel ratio in CST: (a) cross-sectional side view of the model with 1% steel 

ratio, and (b) cross-sectional front view of the model with 1%, 2%, 3% and 4% (L1 = 

122.45 mm = λ, L2 = 85 mm, d = 16 mm and λ is free-space wavelength). 
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        Since material of rebars is metal, they may effect on the performance of 

transmitting and receiving antennas as well as WPT between the antennas. It is worth 

to mention that the polarisation of these antennas should be aligned properly in order 

to maximise coupling between antennas. With respect to rebars embedded inside 

column, the transmitting and receiving antennas polarisation can be aligned parallel or 

vertical to rebars. Therefore, the influences of reinforced concrete column with 

different steel ratios on reflection and coupling between antennas are investigated 

while electric field polarisations of these antennas are parallel or vertical to 

longitudinal rebars (referred to as parallel or vertical configuration, respectively).   

4.3.2.1 Reflection properties of reinforced concrete columns with different values 

of steel ratio 

Reflection properties of dry and saturated reinforced concrete columns with four 

values of steel ratio are studied here. Fig. 4.24 shows the resonant response of the 

RAVA in concrete and reinforced concrete columns at L1 = 122.5 mm (i.e., λ) and at 

two polarsation configurations. It can be clearly seen in Fig. 4.24 that increasing the 

steel ratio of the concrete column marginally affects the resonant frequency of the 

RAVA. However, changes of magnitude of the reflection coefficient at the resonant 

frequency can be observed in particular, at parallel configuration at 1% steel ratio. 

There are several factors that may contribute separately or in combination to this 

behaviour of the magnitude including the reflection of EM waves from free space-to-

concrete front and back interfaces, and from the rebars, as well as attenuation of EM 

waves in concrete. 
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Figure 4.24 S11 of the RAVA versus frequency at parallel (left) and vertical (right)  

configurations in the (a) dry and (b) saturated reinforced concrete columns with 

different values of the steel ratio at L1 = 122.5 mm and L2 = 85 mm. 

         Since the location of the patch antenna may be restricted by rebars when the 

value of the steel ratio increases, the resonant response of embedded patch antenna 

was investigated at three values of L2 as shown in Fig. 4.25 for the reinforced concrete 

column with the highest steel ratio (i.e., 4%). Fig. 4.26 and Fig. 4.27 show the 

magnitude of reflection coefficient of the antenna for different values of the steel ratio 

in dry and saturated reinforced concrete columns, respectively. 

(a) 

Dry concrete 
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Figure 4.25 Cross-sectional top view of the two-antenna setup at three locations of the 

patch antenna inside reinforced concrete column (steel ratio is 4%): (a) L2 = 45 mm, 

(b) L2 = 85 mm, and (c) L2 = 130 mm (parallel configuration). 

           It can be seen from  Fig. 4.26 that when the configuration of antennas are 

parallel and vertical, the resonant frequency of the patch antenna slightly shifted to the 

lower and higher frequencies, respectively, when the value of steel ratio increase. In 

particular, this effect is dominant at relatively high steel ratio (3% and 4%). The 

maximum change of the resonant frequency and magnitude of the reflection coefficient 

is observed at L2 = 85 mm and L2 = 130 mm, respectively, at 4% steel ratio and at the 

parallel configuration of antennas as shown in Figs. 4.26(b-c). 
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Figure 4.26 S22 of the patch antenna embedded inside dry concrete column at parallel 

(left) and vertical (right) configuration at (a) L2 = 45 mm, (b) L2 = 85 mm, and (c) L2 = 

130 mm. 

         Similar effects of steel ratio, L2, parallel and vertical configurations on the 

resonant response of the patch antenna can be observed in the saturated reinforced 

concrete but they are weaker than in the dry concrete as shown in Fig. 4.27. This can 

be attributed to the dominant influence of losses in saturated concrete due to its 

relatively high moisture content. 

(c) 

(a) 

 

(b) 

 



101 

 

  

Figure 4.27 S22 of the patch antenna inside saturated concrete column at parallel (left) 

and vertical (right) configuration at (a) L2 = 45 mm, (b) L2 = 85 mm, and (c) L2 =130 

mm. 

4.3.2.2 Coupling between the antennas with dry and saturated concrete columns 

Figs. 4.28 and 4.29 show magnitude of the transmission coefficient between the 

antennas versus frequency when the patch antenna embedded in (a) dry and (b) 

saturated reinforced concrete columns with different values of steel ratio and two 

polarsation configurations and at three values of L2. It can be seen from these figures 

that the coupling between the antennas at the resonant frequency decreases when L2 

increases for all cases or while value of steel ratio increases at L2 = 85 mm and 130 

(c) 

(b) 

(a) 



102 

 

mm. Changing of the steel ratio negligibly changes the coupling when the patch 

antenna locates at L2 = 45 mm (c.f. Figs. 4.28(a) and Figs. 4.29(a)) whilst the most 

significant changes are observed at parallel configuration. These changes are clearer 

and the resonant responses are smoother for the saturated concrete columns than for 

the dry concrete ones.   

 

Figure 4.28 Magnitude of the transmission coefficient between the antennas when the 

patch antenna embedded in the dry reinforced concrete columns with different values 

of steel ratio and two configurations at (a) L2 = 45 mm, (b) L2 = 85 mm, and (c) L2 =130 

mm. 
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Figure 4.29 Magnitude of the transmission coefficient between the antennas when the 

patch antenna embedded in the saturated reinforced concrete columns with different 

values of steel ratio and two configurations at (a) L2 = 45 mm, (b) L2 = 85 mm, and (c) 

L2 =130 mm.          

4.3.2.3 Electrical field distribution  

Figs. 4.30 and 4.31 show electric field intensity distribution when the antennas are 

aligned at parallel and vertical configurations for the dry and saturated reinforced 

concrete columns, respectively, at 1% steel ratio and L2 = 85 mm. It can be clearly 

Parallel configuration 

  

Vertical configuration 
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seen from these figures that electric field intensity in the embedded patch antenna is 

higher at parallel than at vertical configuration at both columns demonstrating 

enhancement of the coupling between antennas as was shown previously. In the case 

of dry concrete column EM waves propagate through the column and reflect from free 

space-to-concrete interfaces. Comparison between Fig. 4.30 and Fig. 4.31 illustrates 

different level of EM attenuation in the dry and saturated concrete columns; the 

attenuation of EM waves in saturated concrete is higher than in dry concrete, as 

expected. Overall, these results confirm our observations and interpretations of the 

results related to reflection and transmission properties of the considered columns.    

 

Figure 4.30 Cross-sectional top (left) and side (right) views of electrical field intensity 

distribution in the dry reinforced concrete column with 1% steel ratio at L1 = 85 mm, 

while the antennas are aligned at: (a) parallel and (b) vertical configuration. 

(a) 

(b) 

YZ plane (Side view) XY plane (Top view) 

Concrete column 
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Concrete column 
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Figure 4.31 Cross-sectional top (left) and side (right) views of electrical field intensity 

distribution in the saturated reinforced concrete column with 1% steel ratio at L1 = 85 

mm, while the antennas are aligned at: (a) parallel and (b) vertical configuration. 

4.4 Summary 

A relatively small and high-gain resonant antipodal Vivaldi antenna as a transmitting 

antenna and a modified embeddable microstrip patch antenna as a receiving antenna 

were designed to operate in a two-antenna setup at 2.45 GHz for WPT in concrete 

members.  These members included reinforced dry and saturated concrete slabs and 

columns with different values of mesh period of rebars and steel ratio, respectively. It 

was shown that there was a critical value of mesh period of rebars (i.e., 95 mm) with 

respect to reflection and transmission properties of the slabs which is related to 

wavelength in concrete. The maximum coupling between antennas was achieved at 

this value. The coupling between the antennas in the saturated concrete is always lower 

and reduces faster than in the dry concrete when the distance between the embedded 

patch antenna and the surface of concrete increases due to the increase of loss in 

(b) 

(a) 

XY plane (Top view) YZ plane (Side view) 

Concrete 
Concrete 

RAVA Patch antenna 
Rebar 

Rebar cross section 
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concrete.  On the other, the coupling between the antennas with the saturated concrete 

is always lower than with the dry concrete when the distance between the RAVA and 

the surface of concrete increases due to the increase of free space loss. In this 

investigation, the two-antenna setup was aligned with the center of the rebar cell and 

it was shown that the coupling decreased when it shifted towards one of the rebar.  

         The investigation into reinforced concrete columns showed that polarsation 

configuration of the two-antenna setup with respect to rebars and steel ratios as well 

as losses in concrete are important parameters. It was observed that the coupling 

between antennas reduced faster by increasing the value of steel ratio at parallel than 

in vertical configuration due to the increase of the interaction between EM waves and 

rebars. This effect is more prominent in the saturated than in dry reinforced concrete 

columns.  
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Chapter 5 Design of Rectenna and RAVA Array for 

Recharging Batteries of Sensors Embedded inside 

Reinforced Concrete 

5.1 Introduction 

One of the undertaking methods for IHM is using wireless embedded sensors which 

can be buried in concrete during the construction to collect and report valuable 

monitoring data. Several publications have considered recharging batteries of sensors 

embedded inside concrete members. However, limited works have been performed to 

recharge the batteries of sensors embedded inside reinforced concrete members as 

mentioned in chapter 2. The main purpose of this section is to develop a WPT system 

for recharging batteries of wireless sensors embedded inside reinforced concrete slab 

and reinforced concrete column with different configurations and moisture content.   

         Firstly, an embeddable rectenna is designed. It consists of the microstrip patch 

antenna developed in previous chapter and a rectifying circuit, and can be embedded 

inside the reinforced concrete slab and reinforced concrete column. A single RAVA is 

used as a transmitting antenna and the main challenge of this part of research is to 

provide desired output voltage of the rectenna while the microstrip patch antenna is a 

receiving antenna.  

       Secondly, a 4-element RAVA array with a Wilkinson power divider feeding 

network is developed in this part. The main motivation of this research and 

development is a demand of higher directivity and efficiency of a transmitting antenna 

since a single RAVA provides low values of directivity (gain) which do not allow 

increasing distances between antennas and concrete surface.  
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5.2 Rectenna design 

Rectenna is a key component of WPT system for recharging batteries of the embedded 

sensors. It receives microwave energy and converts it into DC voltage for the load. 

The impedance matching network is required to enable the rectifier to work at typical 

50 Ω RF platforms. The simpler rectification circuit designs are necessary for IHM 

sensors. Therefore different types of rectifying circuits such as series-diode half wave 

rectifier (Heljo et al. 2013), full wave bridge rectifier (Itoh, Kenji 2015), and full wave 

voltage doubler (Jiang & Georgakopoulos 2011) will be considered to select the most 

applicable one. Then, the rectenna with selected rectified circuit will be applied with 

a single RAVA and with a RAVA array to recharge the batteries. 

5.2.1 Series-diode half-wave rectifier 

The simplest and best known rectifier circuit is a half wave rectifier. It can be designed 

by using a diode and a load as shown in Fig. 5.1 (Dobkin 2008; Feucht 2014).  

 

Figure 5.1 Half-wave rectifier circuit (Dobkin 2008; Feucht 2014). 
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In order to produce a steady DC voltage from a rectified AC source, a filter or 

smoothing circuit is needed. In the simplest form this can be just a capacitor placed 

across the DC output of the rectifier. 5.2.2 Full-wave bridge rectifier 

5.2.2 Full-wave bridge rectifier 

A full-wave bridge rectifier is a circuit arrangement which converts both half cycles 

of input waveform (AC) to direct current (DC). Circuit diagram of full wave bridge 

rectifier circuit is composed of four diodes which arranged in the form of a bridge as 

shown in Fig. 5.2. The bridge rectifier circuit is nearly general in modern power 

supplies, but it has two disadvantages in signal detection applications; one being that 

it has two diode forward-voltages in the path to the load, and the other being that either 

the output or the input terminals must be allowed to float with respect to the system 

ground. 

 

Figure 5.2 Full wave bridge rectifier circuit (Feucht 2014; Savant 1987). 
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voltage across D2 is prevented from rising above Vin √2 by the clamping action of D1 

and vice versa. The same argument applies for D3 and D4 (Knight 1st Jan. 2016.). 

5.2.3 Full-wave voltage doubler 

The schematic in Fig. 5.3 represents one stage of voltage doubler rectifier circuit. This 

circuit is called a voltage doubler because in theory, the voltage that is received on the 

output is twice that at the input. The RF wave is rectified by D2 and CD in the positive 

half of the cycle, and then by D1 and CC in the negative cycle. But, during the positive 

half-cycle, the voltage stored on CC from the negative half-cycle is transferred to CD. 

Thus, the voltage on CD is roughly two times the peak voltage of the RF source minus 

the turn-on voltage of the diode, hence named voltage doubler (Harrist 2004). Note 

that since the diodes operate alternately, this detector conducts on both positive and 

negative half-cycles of Vin, which means that it is actually a type of full-wave rectifier. 

 

Figure 5.3 Full wave voltage doubler circuit (Feucht 2014). 

         Diodes are the main elements of a rectification circuit. Schottky barrier diode is 

used in most of microwave rectifiers because of its low forward voltage (e.g. Vf ~0.3V) 

and high frequency switching capability. HSMS-286x series Schottky diode is used in 

designing our rectifier circuit since it meets the requirements of the sensor charging 

system. The modelling parameters for HSMS-286x diodes are given by Agilent data 

sheets, and the SPICE parameters are shown in Table 5.1. SPICE parameters can be 
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applied in CST DS for simulation modelling since both of them perform simulation 

using Netlists (Harrist 2004). In Table 5.1, RS is the series resistance and CJ0 is the 

junction capacitance. RS and CJ0 have the most effect on the diode since these two 

factors determine the turn on voltage and rise time. Lower RS leads to lower voltage 

needed to turn on the diode, and lower CJ0 raises voltage faster. BV is the reverse 

breakdown voltage and EG represents the band-gap energy. IBV and IS are the current 

breakdown voltage and the saturation current, respectively. N is the emission 

coefficient, while M is the grading coefficient. These parameters are used in our 

simulation setups in CST. 

Table 5.1 HSMS-286x SPICE parameters 

Parameters Unit Value 

BV V 7.0 

CJ0 pF 0.18 

EG eV 0.69 

IBV A 1 E-5 

IS A 5 E-8 

N no units 1.08 

RS Ω 6.0 

PB V 0.65 

PT no units 2 

M no units 0.5 

 

5.3 Recharging of wireless sensor’s battery embedded inside 

reinforced concrete slab and reinforced concrete column using RAVA 

 In this section, wireless powering of embedded sensors is investigated; they are 

embedded inside 1) dry and saturated reinforced concrete slab (referred to as DRCS 

and SRCS, respectively) and 2) dry and saturated reinforced concrete column (referred 
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to as DRCC and SRCC, respectively). In order to recharge the battery, the two-antenna 

system including of the RAVA and the microstrip patch antenna operating at 2.45 GHz 

are designed at CST MW. The patch antenna is embedded at depth of L2 = 85 mm 

inside dry and saturated reinforced concrete, while the RAVA as a transmitting 

antenna is placed at 123 mm above the air-to-concrete interface. Then the rectifier 

circuit is designed at CST Design studio (CST DS) which enables the co-simulation of 

circuit with 3D MWS.  

         The three previous mentioned rectifier circuits have been analytically analysed. 

The half wave and voltage doubler rectifier circuits are chosen to be used in this 

investigation due to simplicity and efficiency to the load, respectively, as shown in 

Fig. 5.4. To optimise the efficiency of the wireless powering system, matching circuits 

for the antennas and the rectifier circuit are designed. In CST DS, the transmitter 

antenna is connected to 1W power source with 50 Ω internal resistances. The optimise 

parameters of half-wave and voltage doubler rectification circuits are illustrated at 

Table 5.2 and Table 5.3, respectively. In order to match two antennas to 50 Ω, the 

capacitors Cm1, Cm2 and inductor Lm1 Lm2 are used. Also, inductor Lm3 and 

capacitor Cm3 are used due to matching the rectification circuit to 50 Ω. 

Table 5.2 Half-wave rectifier circuit parameters. 

Parameter value Parameter value 

Lm1 24nH Cm2 5.8pF 

Lm2 14nH Cm3 0.47pF 

Lm3 3.5nH Cs 200pF 

Cm1 9.8 pF RL 120 Ω 
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Table 5.3 Voltage doubler rectifier circuit parameters. 

Parameter value Parameter value 

Lm1 24nH Cm2 5.8pF 

Lm2 14nH Cm3 0.47pF 

Lm3 7nH Cs 25pF 

Cm1 9.8 pF RL 1KΩ 

Cs1 5pF   

 

          The DC output voltage across the load at the half-wave rectifier circuit at dry 

reinforced concrete slab with different mesh periods are shown in Fig. 5.5. As 

illustrated by Fig. 5.5, there is a significant difference between DC output voltage of 

the half wave rectifier and the voltage doubler. As can be seen from Fig. 5.5, the DC 

output voltage decreased when the mesh period increase. As expected, the maximum 

voltage is achieved when the mesh period is 95 mm at DRCS.  

        To power an embedded sensor, we assumed to use an 100 mAH ML 2430 series 

Sanyo lithium coin cell battery which requires a charging voltage of 3.1 V and a 

charging current of 0.5 mA, respectively (Shams & Ali 2007). Such batteries are cheap 

and should be generally suitable for sensor applications. Sanyo manganese 

rechargeable lithium batteries are high-capacity rechargeable coin-type batteries. 

These batteries have a higher voltage (3 V) than Ni-Cd button cells (1.2V), with a low 

self-discharge rate and superior charge/discharge cycle characteristics. The DC 

voltage across the load at voltage doubler is sufficient to recharge such batteries as 

shown in Fig. 5.5 (b). It is worth to mention that the delivered DC voltages across the 

load by half wave rectifier is sufficient to recharge the 80 mAH Nickel-metal hydride 

button cell battery (Sodano et al. 2007). The power delivered to the load in the voltage 

doubler rectifier circuit and half wave rectifier for the DRCS with mesh period equal 



114 

 

to 95 mm is 45.4 mW and 33.1%, respectively, which is equivalent to a wireless power 

transfer efficiency of 4.54% and 3.31%. 

 

Figure 5.4 Model of the two-antenna setup and reinforced concrete (a) slab and (b) 

column, and schematic of the WPT system using (c) half wave rectifier, and (d) voltage 

doubler.    

 

(a) 

(d) 

(c) 

(b) 
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Figure 5.5 DC output voltage across the load at the (a) half wave rectifier and (b) 

voltage doubler embedded in dry reinforced concrete slab at different values of mesh 

period (g). 

         Moreover, the DC output voltage across the load inside the SRDS with different 

mesh periods is investigated, as shown in Table 5.4. It is clearly shown that the DC 

output voltage across the load at the half wave rectifier circuit is significantly lower 

than the DC output voltage at the voltage doubler. For instance, the DC voltage of 

voltage doubler in SRCS with g = 95 mm is almost four times higher than the DC 

voltage of the half wave rectifier. 

 

(b) 

(a) 
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Table 5.4 The DC output voltage across the load inside saturated reinforced concrete 

slab. 

Saturated concrete 

Half-wave Voltage doubler 

VDC (v) VDC (v) 

Concrete slab 0.64 2.8 

SRCS (g = 95mm) 0.7 3.2 

SRCS (g = 115mm) 0.66 2.9 

SRCS (g = 255mm) 0.6 2.8 

 

          In addition, the DC output voltage at dry and saturated reinforced concrete 

column with different values of steel ratios are investigated by using half wave and 

voltage doubler rectifier circuits. The values of the rectifier circuits parameters are the 

same as values are shown in Table 5.2 and Table 5.3. The results are shown in Fig. 5.6 

and Fig. 5.7. As can be clearly seen from Fig. 5.6 and Fig. 5.7, the DC voltages 

received in DRCC is higher when polarisation of the antennas is parallel to 

longitudinal rebars than it is vertical one. For instance, in parallel configuration with 

1% steel ratio the DC output voltage of the half wave rectifier and voltage doubler are 

0.5 V and 1.5 V higher than vertical configuration. The obtained results confirm the 

results that have been achieved in the previous chapter. As mentioned before, the 

rebars in specific configuration cause the enhancement of the coupling between 

antennas; as a result the DC output voltage increases. As a results, the output DC 

voltages of the half wave rectifier and voltage doubler are sufficient to recharge the 80 

mAH Nickel-metal hydride button cell battery and the 100 mAH ML 2430 series 

Sanyo lithium coin cell battery, respectively.  

        The DC output voltage of rectennas in SRCC is presented in Table 5.5. Similar 

to the SRCS, the received voltage at saturated concrete is significantly smaller than the 

ones for DRCC due to severe attenuation in saturated concrete. However, the Sanyo 

Rectifier circuit 
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lithium coin cell battery still can be recharged inside the SRCC while voltage doubler 

used as a rectifier circuit. 

 

Figure 5.6 DC output voltage using half wave rectifier at dry reinforced concrete 

column with different steel ratios while polarisation of antennas are (a) vertical and (b) 

parallel to longitudinal rebars. 

 

(a) 

(b) 

Vertical configuration 

Parallel configuration 
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Figure 5.7 DC output voltage using voltage doubler at dry reinforced concrete column 

with different steel ratios while polarisation of antennas is (a) vertical and (b) parallel 

to longitudinal rebars. 

Table 5.5 The DC output voltage across the load inside saturated reinforced concrete 

column. 

Saturated concrete  

Half-wave  Voltage doubler  

VDC (v) VDC (v) 

Parallel Vertical Parallel Vertical 

Concrete column 0.78 0.75 2.82 2.8 

SRCC (1%) 0.85 0.73 3.13 2.48 

SRCC (1.5%) 0.8 0.78 2.93 2.94 

SRCC (2%) 0.7 0.69 2.6 2.56 

(b) 

(a) 

Parallel configuration 

Vertical configuration 

Rectifier circuit 
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5.4 Resonant antipodal Vivaldi antenna array as a transmitting 

antenna 

In this part, in order to increase directivity and gain of a transmitting antenna, and, as 

a result, the distance between the transmitting antenna and concrete surface for 

recharging the embedded sensor’s battery, a 4-element resonant antipodal Vivaldi 

antenna array with a Wilkinson power divider feeding network is designed. 

5.4.1 Wilkinson power divider 

T-junction dividers, resistive dividers, and the Wilkinson power divider are three 

common power dividers featuring unique characteristics. These power dividers can be 

constructed using various types of transmission lines (i.e. waveguides, microstrip, or 

stripline) or using resistive networks. The advantages and disadvantages of these three 

dividers are summarised as follows (Kao et al. 2012; Zhou 2015): 

 T-junction power divider: advantage of this type of the power divider is being 

loss less; however, all ports are not match and there is not isolation between 

output ports; 

 Resistive power divider: advantage of this type of the power divider is that all 

ports can be matched; however, it is lossy, limited by resistor tolerance and 

there is not isolation between output ports; 

 Wilkinson power divider: High isolation and low loss are advantages of this 

type of power divider; however, reflected power can be dissipated through the 

isolation resistor if there is mismatching. 

        The Wilkinson power divider can satisfy the ideal three-port network conditions 

such as being lossless, matched output ports with high isolation, and reciprocal. 
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Therefore, the Wilkinson power divider is the best choice and will be used in the 

optimized design of the corporate-fed network for the array. 

       A 4-way Wilkinson power divider has been designed to feed a 4-element RAVA 

array. It provides signals with equal amplitudes and phases over the 2 GHz to 3 GHz 

bandwidth. Rogers’s 4003 substrate having a dielectric constant of 3.38, loss tangent 

of 0.0027 and thickness of 1.524mm was used to design the power divider. Fig. 5.8 

shows the configuration of the designed Wilkinson power divider.  

 

Figure 5.8 Designed Wilkinson power divider: (a) schematic and (b) layout.      

   

(b) 

W50 

W
70.7

 

Lf1 

L
f2
 

W1 

Quarter- wavelength section 

(a) 



121 

 

          The impedances of input and output ports of the proposed power divider are 50 

Ω and the isolation resistor is 2Zo = 100 Ω. The impedance of the quarter-lambda 

transmission line split section is √2Zo= 70.7 Ω. The optimised parameters of the 

designed power divider are as follows: W50 = 3.5 mm, W70.7= 1.9 mm, Lf1 = 30mm, 

W1= 91.95 mm, Lf2= 41.2 mm and the quarter-wavelength sections intended length is 

23.56 mm. Fig. 5.9(a) shows S11 of the proposed power divider and  Fig. 5.9(b) 

indicates its simulated isolation and insertion loss. As shown in Fig. 5.9, in the  

 

Figure 5.9 Simulated S-parameters of the designed Wilkinson power divider: (a) return 

loss (S11) and (b) isolation (S21) and insertion loss (S23). 

(b) 

(a) 
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operating band from 2 GHz to 3GHz, the S11is lower than −17 dB, in particular at 2.45 

GHz it is less than -40 dB and output ports have almost equal power level with 

insertion loss of -6.1dB. 

5.4.2 2.45 GHz antipodal Vivaldi antenna array 

This section presents the design of RAVA array antenna and study of its radiation 

characteristics. The configuration of the single RAVA is already shown in Fig 4.1. A 

4-element RAVA array was designed and connected to the proposed Wilkinson power 

divider forming a 4-element linear antenna array. According to the theory of the 

antenna array, the spacing between each element is a crucial parameter which 

determines the directivity of the array. Wide spacing may result in a small mutual 

coupling effect, narrow beam, but it becomes easier to generate grating lobe (Xu, H et 

al. 2012). Therefore, the separation distance between the antenna elements are chosen 

to be 0.76 λ at the 2.45 GHz to avoid grating lobes. 

 

Figure 5.10 4-Element RAVA array with Wilkinson power divider feeding network: 

(a) perspective view and (b) front view. 

(b) (a) 
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        S11 of the RAVA array with Wilkinson power divider feeding network is shown 

in Fig. 5.11. It indicates that the array can operate from 2.3 GHz to 2.7 GHz with a 

magnitude of the reflection coefficient < -10dB. 

   

Figure 5.11 S11 of the RAVA array with Wilkinson power divider feeding network. 

         E- and H-plane radiation patterns of the single RAVA and the 4-element RAVA 

array with the feeding network are shown in Figs. 5.11 and Fig. 5.12, respectively. The 

use of the 4-element antenna array should add theoretically about 6 dB over the single 

element maximum gain. It can be seen from Figs. 5.11 and 5.12 that the gain is 6 dB 

higher in the array antenna than in the single RAVA. 

 

Figure 5.12 H-plane radiation pattern of the single RAVA and the RAVA array at 

2.45 GHz. 
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Figure 5.13 Realized gain of the RAVA and the RAVA array at 2.45 GHz. 

5.5 Recharging battery of sensors embedded inside reinforced 

concrete slab and column using RAVA array 

In this part, the RAVA array will be used as a transmitting antenna for recharging 

batteries of sensors embedded inside reinforced concrete. The RAVA array feed by 

the Wilkinson power divider is located at L1 = 0.6 m and the rectenna consisting of the 

microstrip patch antenna along with a voltage doubler is placed at L2 = 85 mm. The 

setup of the WPT system using array antenna is shown in Fig. 5.14. In CST DS, the 

power divider is connected to 3W power source with 50 Ω internal resistances. The 

optimise parameters of the voltage doubler are shown at Table 5.6. 

       The DC output voltage across the load while the rectenna is embedded inside 

DRCS and DRCC with the mesh period of 95 mm and 1% steel ratio, respectively, 

(see Fig. 5.4) is shown in Table 5.7. As can be seen from Table 5.7, the sufficient 

power can be achieved by proposed WPT system to recharge a 100 mAH ML 2430 

series Sanyo lithium coin cell battery. 
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Figure 5.14 Simulated model of the WPT system in order to recharging battery of the 

sensor embedded inside reinforced concrete. 

Table 5.6 Optimised parameter of the voltage doubler. 

Parameter value Parameter value 

Lm2 14nH Cm3 0.2pF 

Lm3 4.5nH Cs 40pF 

Cm1 5.9 pF RL 600Ω 

Cs1 20pF   

 

Table 5.7 The DC output voltage across the load using the RAVA array. 

Dry concrete 

Voltage doubler 

VDC (v) Pout (mw) 

Concrete slab 3.4 19.26 

DRCS 5.44 49.32 

Concrete column 5.23 45.6 

DRCC (parallel) 5.4 46.8 

DRCC (Vertical) 4.5 33.75 

 

Rectifier circuit 
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5.6 Summary 

In this chapter, two WPT systems with the RAVA for recharging batteries of sensors 

embedded inside reinforced concrete slabs and columns with different configurations 

and moisture content were developed.  For these systems, an embeddable rectenna 

with a microstrip patch antenna and relatively high efficiency rectified circuits was 

designed and applied. It was shown that one of the systems including the single RAVA 

as a transmitting antenna provided the DC output voltage sufficient for recharging 

commonly used battery at the distance between the transmitting antenna and the 

surface of reinforced concrete members of 0.12 m which can be too small in practice. 

A relatively high gain 4-element RAVA array along with Wilkinson power divider 

feeding network have been developed in order to increase the distance between a 

transmitting antenna and concrete surface. The results of the investigation of another 

WPT system with this antenna array as a transmitting antenna showed that it provided 

the sufficient DC output voltage at the distance between the transmitting antenna and 

the surface of reinforced concrete members of 0.6 m, which is 5 times longer that the 

distance achieved with the single RAVA. Finally, it can be concluded that to design 

optimum WPT systems for recharging batteries of sensors embedded inside reinforced 

concrete, the position of rectanna inside concrete and the position transmitting antenna 

in free space, and selection of rectification circuit type should be carefully considered. 
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Chapter 6 Conclusions and future work 

6.1 Conclusions 

The results of this thesis show that the developed modified Vivaldi antennas can be an 

effective part of microwave systems for IHM applications including the detection of 

defects such as air gaps inside concrete and wireless powering sensors or recharging 

their batteries embedded in concrete members such as reinforced concrete slabs and 

columns. The design of antennas, the results of the investigation into the reflection and 

transmission properties and wireless power transmission in reinforced concrete 

samples irradiated by the developed antennas are the main contributions of this thesis. 

The major outcomes and recommendations are outlined as follows: 

1. A modified antipodal Vivaldi antenna (MAVA) operating at the frequency 

range of 0.65 GHz – 6 GHz, including three frequency bands of the Industrial, 

Scientific and Medical band with improved gain at low frequencies was 

developed, built and tested in free space and with concrete samples. There is a 

good agreement between measurement and simulation results. The developed 

antenna can be used for nondestructive testing and evaluation of construction 

materials and structures including concrete-based members, communication 

between wireless sensors and nodes, and for wireless powering sensors 

embedded in construction materials. 

2. The reflection and transmission properties of concrete-based samples 

possessing air gap or rebars and irradiated by the developed MAVA are 

investigated numerically and experimentally. It is shown that the magnitude of 

reflection coefficient changes linearly when gap value increases at selected 

frequencies. This result can be used for the detection and evaluation of gaps in 
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concrete. The investigation into the influence of rebars on the reflection and 

transmission properties shows that it depends on the value of rebar cell 

parameter and the cell can act as a shield for microwaves if this parameter was 

less than the electrical half wavelength. At higher frequencies of the frequency 

range, microwaves can penetrate through the reinforced concrete samples with 

a rebar cell parameter used in practice. These results have been used for the 

investigation into the transmission of microwaves between the MAVA and a 

microstrip patch antenna embedded inside dry reinforced concrete samples 

near the location of the rebar cell at 2.45 GHz. It is shown that -15-dB coupling 

between the antennas can be achieved. Overall, the results show that the 

reflection and transmission properties of reinforced concrete structures depend 

on an operating frequency, radiation performance of antennas, rebar cell 

configuration and parameter, electromagnetic properties of concrete and 

localization of antennas with respect to boundaries of concrete members and 

rebars. 

3. A relatively small and high-gain resonant antipodal Vivaldi antenna (RAVA) 

and a modified embeddable microstrip patch antenna as a transmitting and 

receiving antennas, respectively, were designed for wireless power 

transmission in concrete structures. The RAVA is based on a relatively small 

broadband conventional AVA but a resonance is added to get to the operating 

frequency at 2.45 GHz with reduced dimensions of the antenna and for 

potential applications such as wireless communication, sensing and/or power 

transmission. The two-antenna setup was used with reinforced dry and 

saturated concrete slabs and columns with different values of mesh period of 

rebars and steel ratio, respectively. It was shown that maximum coupling 
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between antennas is achieved at a practical value of mesh period of rebars in 

the slabs which is related to wavelength in concrete. The coupling between the 

antennas in the saturated concrete is always lower and reduces faster than in 

the dry concrete when the distance between the embedded patch antenna and 

the surface of concrete increases due to the increase of loss in concrete. It was 

also shown that in the case of reinforced concrete columns polarisation 

configuration of the two-antenna setup with respect to rebars and steel ratios 

as well as losses in concrete are the most important parameters. The coupling 

between antennas reduced faster by increasing the value of steel ratio at parallel 

than in vertical configuration due to the increase of the interaction between 

microwaves and rebars. This effect was more prominent in the saturated than 

in dry reinforced concrete columns.  

4. A relatively high-gain 4-element resonant antipodal Vivaldi antenna array with 

a Wilkinson power divider feeding network was developed to be used as a 

relatively long-distance transmitting antenna. To satisfy requirements for 

recharging batteries of the embedded sensors, embeddable rectenna consisting 

of the microstrip patch antenna and a rectifier circuit is developed.  

5. A comparative investigation of wireless power transmission systems with the 

developed single antenna and antenna array for recharging batteries of sensor 

embedded inside reinforced concrete slabs and columns with different 

configurations and moisture content was provided. The results show that the 

DC output voltagefor recharging a commonly used battery can be provided by 

the systems with the single RAVA and the system with the RAVA array at a 

distance between the transmitting antenna and the surface of reinforced 

concrete members of 0.12 m and 0.6 m, respectively, i.e. the distance achieved 
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with the array is 5 times longer than the distance achieved with the single 

antenna.  Therefore, the developed RAVA array has a good potential as a 

relatively long-distance transmitting antenna for wireless power transmission 

in concrete.       

6.2 Suggestions for future work 

The recommendations for future research in this area are as follows: 

1. The efficiency of wireless power transmission and/or depth of sensor 

localisation in concrete can be increased at the 902-928 MHz ISM band. For 

this purpose, the developed MAVA can be used or modified and a miniaturised 

embeddable rectenna should be developed.  

2. CMOS based multi-stage rectifiers could be utilised to increase the RF to DC 

conversion efficiency and decrease the rectenna size.  

3. This research can be extended to the development of systems involving 

communication with passive sensors without batteries using embedded 

integrated RFID tag antenna with sensory functions and an external reader with 

the developed antennas.  

4. The investigation into the possibility of increasing the distance between a 

transmitting antenna and surface of concrete would be useful.  

5. The developed antennas can be incorporated in microwave imaging systems 

for non-destructive testing and evaluation of concrete-based structures to detect 

flaws such as real cracks, impact damages and voids using their two- and three-

dimensional images. It can be a valuable addition to recently developed 

antipodal Vivaldi antennas such as one presented in (Moosazadeh, Kharkovsky 

& Case 2016). 
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