41 research outputs found

    Ionic Electroactive Polymer Devices: Physics-Based Modeling with Experimental Investigation and Verification

    Full text link
    The primary focus of this study is to examine, understand, and model ionic electroactive polymer based systems in attempt to further develop this field of study. Physics-based modeling is utilized, as opposed to empirical modeling, to achieve a deeper insight to the underlying physics. The ionic electroactive polymer system of primary interest in this study is ionic polymer-metal composite (IPMC) devices. Other similar devices, such as anion-exchange membrane (AEM) type actuators and flow battery systems are also investigated using the developed model. The underlying physics are in the studies of transport phenomenon for describing the ionic flow within the polymer membrane, solid mechanics for describing deformation of the given devices, electric potential and electric currents physics for the voltage across the devices, and ion exchange along with chemical reaction in case of flow batteries. Specific details of these systems are analyzed, such as geometrical and electrode effects. The results in modeling IPMC actuators and sensors have been used to experimentally validate the modeling framework and have provided keen insight to the underlying physics behind these transduction phenomena. The developed models will benefit researchers in these fields and are expected to provide a better understanding of these systems. This study provides a framework for design and fabrication of advanced, highly integrated, ionic migration and exchange polymer-composite devices. In particular, this work focuses on finite element simulations of ionic electroactive polymers using COMSOL Multiphysics versions 4.3 through 5.2, with primary focus on ionic polymer-metal composite devices. The basic framework model for IPMCs is of greatest importance and is the initial focus of this work. This is covered in Chapter 3 in detail with experimental comparison of results. Other aspects of interest are geometrical and electrode effects of IPMCs, which are discussed in Chapter 3 and Chapter 4. Applications of the modeling framework, such as in modeling other electroactive polymer actuators is covered in Chapter 5 and Chapter 6, which includes simulations of electrodeless artificial cilia actuators in lithium chloride (LiCl) electrolyte, discussion and modeling of all-Vanadium oxidation reduction (redox) flow battery devices, fluid-structure interactions with IPMCs, and discussion of implementing the modeling framework for anion type IPMCs. Two publications from Journal of Applied Physics and one paper accepted for publication from the Marine Technology Society Journal are included herein, with publisher permission. These papers focus directly on topics of interest to this work. They underwent several revisions and are included in full or large excerpt form to provide the most accurate description and discussion of these topics. The author of this dissertation is first author and did much of the work of one of the three papers; specific author contributions for the other two papers are detailed before each paper is presented, in which the author of this dissertation was primarily responsible for finite element simulations, discussion, and revisions. Chapter 7 and Chapter 8 contain conclusions and recommendations for future work, respectively

    NOVEL ELECTROACTIVE SOFT ACTUATORS BASED ON IONIC GEL/GOLD NANOCOMPOSITES PRODUCED BY SUPERSONIC CLUSTER BEAM IMPLANTATION

    Get PDF
    Ionic electro-active polymers (IEAPs) constitute a promising solution for developing self-regulating, flexible and adaptive mechanical actuators in the area of soft robotics, micromanipulation and rehabilitation. These smart materials have the ability to undergo large bending deformations as a function of a low applied voltage (1 to 5 V), as a result of the ions migration through their inner structure when the network is liquid filled. Among this broad family of materials, ionic-polymer-metal composites (IPMC) based on DuPont\u2019s Nafion\uae have attracted an increasing interest for the production of light weight controllable soft machines due to their easiness to be metalized (e.g. by mean of electroless plating), fast response and capability of working exposed to air. However, the high cost of the material, its relatively low working density (i.e. the maximum mechanical work output per unit volume of active material that drives the actuation) and weak force output, as well as the considerable fatigue effects endured by the surface electrodes upon cycling, is limiting the performance of these IPMC actuators and hindering their implementation in traditional mechatronic and robotic systems. On the other hand, ionic hydrogels, such as poly(acrylic acid) (PAA) and poly-styrene sulfonate (PSS) based polymers, exhibit controllable mechanical properties and porosity and have shown to be excellent candidates to be used as electrically triggered artificial muscles and miniaturized robots operating in aqueous environments. Although the relatively low cost of these materials render them appealing for mass production scale up, the applicability of these polymeric actuators is limited to a liquid environment, which is intrinsically facilitating the solvent evaporation when the hydrogels are exposed to air. Furthermore, because of the difficulty encountered in fabricating stable and anchored metal structures on these polymer surfaces, these smart soft systems operate in a non-contact configuration with respect to the pilot electrodes, therefore increasing the actuators response time up to few tenths of seconds. In order to achieve an efficient electromechanical transduction along with a stable and durable performance for electro-active actuators operating in air, two main interplaying characteristics must be tailored when designing the system. On one hand side, the need of electrodes that are physically interpenetrating with the polymeric basis is of absolute priority, since the intercalation of ions into the electrode layers and the resulting material volumetric change are fundamental for strain generation. On the other hand, the formulation and engineering of new low cost materials able to merge highly elastic properties and efficient ionic transport features is of crucial importance. The present thesis work deals with the formulation, synthesis and manufacturing of a novel ionic gel/metal nanocomposite (IGMN) that was designed and developed to merge the advantageous properties of both IPMCs and ionic hydrogel actuators and to contextually overcome many of the above mentioned drawbacks characteristic of these two families of polymers. These composites were obtained by mean of Supersonic Cluster Beam Implantation (SCBI). This technique, developed in-house, relies on the use of supersonically accelerated gas-phase metal cluster beams directed onto a polymeric substrate in order to generate thin conductive layers (few tenths to few hundreds of nanometers thick) anchored to the polymer. This scalable approach already proved to be suitable for the manufacturing of elastomer/metal functional nanocomposites, and, as described in this work, it enabled the production of cluster-assembled gold electrodes (100 nm thick) interpenetrating with an engineered ionic gel matrix. This novel approach led to the fabrication of highly conductive metal nanostructures, large surface area for ions storage and providing minimal interfacial stresses between the metal layer and the polymeric basis upon deformation. The key features of this novel system comprise the control on the polymer elasticity, bending actuation in air from 0.1V to 5V, fast response time ( 5 cm), high work density ( >10 J/cm3), minimal electrodes fatigue upon cycling and low manufacturing costs. A bottom-up approach was firstly adopted to engineer and produce Uv photo-cross-linked ionic co-polymers (iongel) with tailored mechanical properties and provided with inorganic nano-structures embedded in the macromolecular matrix which show excellent long-term performance. The polymer is based on poly(acrylic acid)-co-poly(acrylonitrile) (PAA-co-PAN) co-polymers, which are chemically cross-linked in a hydrogel-like fashion and swollen with suitable imidazolium-based ionic liquid. The materials are produced as 100 um freestanding layers using a one-pot synthesis and a simple molding process. Due to the incommensurably low vapor pressure of the ionic liquid, issues concerning the shrinkage of traditional water swollen gels operating exposed to air could be avoided. An organic cation (tetraethyl ammonium, TEA+) is stably coordinated to the carboxyl groups of the PAA and free to move in the polymer sieve-like structure when a small voltage is applied at the electrodes. PAN was introduced to enhance the elastic properties of whole polymer. In the bulk polymer, halloysite nanoclays (HNC) are physically embedded into the gel in order to both improve the toughness of the gel and to improve the ionic conductivity of the system. In fact, the nanostructures interacts with the imidazolium cation of the ionic liquid through an oxygen reduction reaction, and therefore the latter is able to contribute to the charge transport phenomena induced by the electric field due to the solvent partial dissociation. Furthermore, the porosity of the polymer, tailored by the cross-linker, creates physical channels to favor the mobility of positive ions when an electric field is applied. The contribution of both the positive charged species (TEA+ and cations of ionic liquid) that accumulates at the nanostructured electrode in a double layer capacitance regime generates a differential swelling at the opposite sides of the actuator, which bends towards the anode. As it will be shown in the next sections, the actuation mechanism of the IGMN could be modeled according to both the material structure and design, as well as to the experimental data on its electrochemical and electro-mechanical properties.Comparing with traditional soft polymers incompatibility with current metallization processes, like electroless plating or surface silver laminated electrodes fabrication, which are not suitable to guarantee long-term actuation of the components, SCBI demonstrated to be a suitable technique for the production of next generation electro-active soft actuators. The IGMN-based actuators showed superior performance, such as large bending displacement, fast response time, long durability in a low voltage regime during the actuation process. The combination of the SCBI fabrication technology with the ionic gel synthesis and fabrication renders the manufacturing of these systems time-saving and costs-effective, and the unique properties of these actuators render them good candidates for potential scale up and for applications in micro-electromechanical systems, microfluidics, soft robotics, and rehabilitation

    Micro/Nano-Chip Electrokinetics

    Get PDF
    Micro/nanofluidic chips have found increasing applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics has become the method of choice in these micro/nano-chips for transporting, manipulating and sensing ions, (bio)molecules, fluids and (bio)particles, etc., due to the high maneuverability, scalability, sensitivity, and integrability. The involved phenomena, which cover electroosmosis, electrophoresis, dielectrophoresis, electrohydrodynamics, electrothermal flow, diffusioosmosis, diffusiophoresis, streaming potential, current, etc., arise from either the inherent or the induced surface charge on the solid-liquid interface under DC and/or AC electric fields. To review the state-of-the-art of micro/nanochip electrokinetics, we welcome, in this Special Issue of Micromachines, all original research or review articles on the fundamentals and applications of the variety of electrokinetic phenomena in both microfluidic and nanofluidic devices

    High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices

    Get PDF
    Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products’ mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications

    A microgripper for single cell manipulation

    Get PDF
    This thesis presents the development of an electrothermally actuated microgripper for the manipulation of cells and other biological particles. The microgripper has been fabricated using a combination of surface and bulk micromachining techniques in a three mask process. All of the fabrication details have been chosen to enable a tri-layer, polymer (SU8) - metal (Au) - polymer (SU8), membrane to be released from the substrate stress free and without the need for sacrificial layers. An actuator design, which completely eliminates the parasitic resistance of the cold arm, is presented. When compared to standard U-shaped actuators, it improves the thermal efficiency threefold. This enables larger displacements at lower voltages and temperatures. The microgripper is demonstrated in three different configurations: normally open mode, normally closed mode, and normally open/closed mode. It has-been modelled using two coupled analytical models - electrothermal and thermomechanical - which have been custom developed for this application. Unlike previously reported models, the electrothermal model presented here includes the heat exchange between hot and cold arms of the actuators that are separated by a small air gap. A detailed electrothermomechanical characterisation of selected devices has permitted the validation of the models (also performed using finite element analysis) and the assessment of device performance. The device testing includes electrical, deflection, and temperature measurements using infrared (IR) thermography, its use in polymeric actuators reported here for the first time. Successful manipulation experiments have been conducted in both air and liquid environments. Manipulation of live cells (mice oocytes) in a standard biomanipulation station has validated the microgripper as a complementary and unique tool for the single cell experiments that are to be conducted by future generations of biologists in the areas of human reproduction and stem cell research

    Développement d'un système de propulsion pour un biomicrorobot hexapode avec un ionomère perfluorosulfonique

    Get PDF
    Les travaux de recherche, décris dans cet ouvrage, démontrent un nouveau système de propulsion innovateur pour un BioMicroRobot (BMR) hexapode. Le BMR utilise un système de contrôle inspiré de la biologie d'un insecte à six pattes. Cette étude est divisée en trois grandes parties. La première vise à trouver un moyen de propulsion original. Celle-ci constitue, en partie, une revue littéraire des technologies utilisées pour la conception et la fabrication des moyens de propulsion. La deuxième partie porte sur la fabrication et la caractérisation de l'actionneur. Elle inclue le développement d'un nouveau procédé de fabrication chimique pour réaliser les micropattes du BMR. Les actionneurs électromécaniques (micropattes) sont composés d'un ionomère perfluorosulfonique à échange d'ions de type cationique et du platine, soit un IPMC (Ionic Polymer Metal-Composite ) Nafion-Pt. Leurs formes géométriques sont cylindriques ou tubulaires. Le procédé est effectué dans le laboratoire du département de chimie réservé à l'Institut des matériaux et des systèmes intelligents (IMSI) de la faculté des sciences".--Résumé abrégé par UMI

    Ioonsete elektroaktiivsete täiturite elektromehaaniline modelleerimine ja juhtimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneIoonsed elektroaktiivsed polümeerid e. tehislihased on polümeermaterjalid, mille oluline iseärasus on võime muuta elektrienergiat mehhaaniliseks energiaks. Elektroaktiivsetest polümeeridest valmistatud pehmetel täituritel on mitmed huvipakkuvad omadused, näiteks suur deformatsioon madala rakendatud pinge korral, märkimisväärne tekitatud jõu ja massi suhe ning võime töötada nii vesikeskkonnas kui õhus. Niisuguste täiturite kasutamine on paljutõotav eriti just miniatuursetes elusloodusest inspireeritud robootikarakendustes. Näiteks võib tuua aktiivsed mikro-manipulatsioonisüsteemid või isepainduvad pehmed kateetrid, mis on iseäranis nõutud meditsiini-tehnoloogias. Käesoleva väitekirja uurimissfääriks on sellistest materjalidest valmistatud täiturmehhanismide modelleerimine, valmistamine ja juhtimine, päädides sisuliselt ühes tükis valmistatud mitme vabadusastmega paralleelmanipulaatorite väljatöötamisega. Kasutades kompleksset füüsikalistel, elektrokeemilistel ning mehaanilistel alusteadmistel põhinevat mudelit kirjeldatakse ja ennustatakse sellist tüüpi täiturmehhanismide elektrilise sisendi ja mehhaanilise väljundi vahelisi seoseid. Mudel kirjeldab ioonide transpordi dünaamikat elektriväljas, kombineerides Nernst-Plancki ja Poissoni võrrandeid. Mitmekihilise polümeermaterjali mehhaaniline käitumine on seotud laengu- ja massitasakaalu poolt põhjustatud eri kihtide erineva ruumilise paisumisega ja kahanemisega. Kõike seda kokku võttes ning rakendades numbrilist modelleerimist lõplike elementide meetodil saadakse kvantitatiivsed tulemused, mis suudavad prognoosida täiturmehhanismi käitumist ja võimaldavad projekteerida, simuleerida ja optimeerida ka neil täituritel põhinevaid keerulisemaid mehhanisme. Koostatud mudeli valideerimiseks modelleeriti ja valmistati kaks tööpõhimõtteliselt sarnast, kuid erinevatel elektroaktiivsetel polümeermaterjalidel põhinevat ning eri metoodikatel valmistatud mitmest täiturist koosnevat mitme vabadusastmega mikromanipulaatorit. Väitekirjas demonstreeritakse, et koostatud mudel on suure täpsusega võimeline ennustama nii iga individuaalse täituri kui ka mõlema manipulaatori käitumist. Demonstreerimaks piisksadestusprintimismeetodil valmistatud manipulaatori efektiivsust, kirjeldatakse kahte erinevat kontrollrakendust. Esmalt näidatakse tagasisidestamata kontrollitavat seadet, kus pööratakse nelja täituri abil peeglit, suunates laserikiirt X-Y tasapinnas ettemääratud punktidele. Teiseks näidisrakenduseks on tagasisidestatud kontrollmetoodikaga juhitav mikroskoobi preparaadiliigutaja, mille abil saab preparaati nii tõsta-langetada kui ka pöörata. Manipulaatorite valmistamise käigus leiti, et piisksadestusprintimise meetodi täpsus, jõudlus ja skaleeritavus võimaldavad suure tootlikkusega valmistada identseid keerulisi mitmeosalisi manipulaatoreid. See tulemus näitab ilmekalt uue tehnoloogia eeliseid traditsiooniliste valmistamisviiside ees.Ionic electroactive polymers (IEAPs) actuators are kind of smart composite materials that have the ability to convert electrical energy into mechanical energy. The actuators fabricated using IEAP materials will benefit from attractive features such as high compliance, lightweight, large strain, low voltage, biocompatibility, high force to weight ratio, and ability to operate in an aqueous environment as well as in open air. The future of soft robotic actuation system with IEAP actuators is very promising especially in the microdomain for cutting edge applications such as micromanipulation systems, medical devices with higher dexterity, soft catheters with built-in actuation, bio-inspired robotics with better-mimicking properties and active compliant micromechanisms. This dissertation has introduced an effective modelling framework representing the complex electro-chemo-mechanical dynamics that can predict the electromechanical transduction in this kind of actuators. The model describes the ion transport dynamics under electric field by combining the Nernst-Planck and Poisson’s equation and the mechanical response is associated with the volumetric swelling caused by resulting charge and mass balance. The framework of this modelling method to predict the behavior of the actuator enabled to design, simulate and optimize compliant mechanism using IEAP actuators. As a result, a novel parallel manipulator with three degrees of freedom was modelled and fabricated with two different types of electrode materials and is characterized and compared with the simulation model. It is shown that the developed model was able to predict the behavior of the manipulator with a good agreement ensuring the high fidelity of the modelling framework. In the process of the fabrication, it is found that the manipulator fabricated through additive manufacturing method allows to fabricate multipart and intricate patterns with high throughput production capability and also opens the opportunity to print a matrix array of identical actuators over a wide size scale along with improved performance. Finally, to showcase the competence of the printed manipulator two different control application was demonstrated. At first, an open loop four-way optical switch showing the capability of optically triggering four switches in the X-Y plane in an automated sequence is shown followed by closed-loop micromanipulation of an active microscope stage using model predictive control system architecture is shown. The application of the manipulator can be extended to other potential applications such as a zoom lens, a microscope stage, laser steering, autofocusing systems, and micromirror. Overall this dissertation results in modelling, fabrication, and control of ionic electroactive polymer actuators leading to the development of a low cost, monolithic, flat, multi DOF parallel manipulator for micromanipulation application.https://www.ester.ee/record=b524351

    Carbon-Based Nanomaterials for (Bio)Sensors Development

    Get PDF
    Carbon-based nanomaterials have been increasingly used in sensors and biosensors design due to their advantageous intrinsic properties, which include, but are not limited to, high electrical and thermal conductivity, chemical stability, optical properties, large specific surface, biocompatibility, and easy functionalization. The most commonly applied carbonaceous nanomaterials are carbon nanotubes (single- or multi-walled nanotubes) and graphene, but promising data have been also reported for (bio)sensors based on carbon quantum dots and nanocomposites, among others. The incorporation of carbon-based nanomaterials, independent of the detection scheme and developed platform type (optical, chemical, and biological, etc.), has a major beneficial effect on the (bio)sensor sensitivity, specificity, and overall performance. As a consequence, carbon-based nanomaterials have been promoting a revolution in the field of (bio)sensors with the development of increasingly sensitive devices. This Special Issue presents original research data and review articles that focus on (experimental or theoretical) advances, challenges, and outlooks concerning the preparation, characterization, and application of carbon-based nanomaterials for (bio)sensor development
    corecore