1,764 research outputs found

    System level modeling of dynamic reconfigurable system-on-chip

    Get PDF
    In this paper methods of dynamically reconfigurable multi-core System-on-chip (SoC) design are discussed, the approaches of system modeling for evaluation of these systems are presented. The dynamically reconfigurable SoC can be developed using the FPGA and the ASIC technologies. The implementations of dynamic reconfiguration using these approaches are essentially different. The system level modeling is used to evaluate the performance of dynamically reconfigured systems in the early stage of their development. The models of dynamically reconfigurable systems have very significant differences from the models of systems without a dynamical reconfiguration. The development of such models may require extensions of existing tools and specification of mechanisms functionality. In this paper the existing tools for SoC system design and the requirements for it to allow modeling of reconfigurable systems are considered. We propose mechanisms for system level modeling of the dynamically reconfigurable Networks-on-Chip (NoC) implemented on the ASIC technology

    High level modeling of Partially Dynamically Reconfigurable FPGAs based on MDE and MARTE

    Get PDF
    International audienceSystem-on-Chip (SoC) architectures are becoming the preferred solution for implementing modern embedded systems. However their design complexity continues to augment due to the increase in integrated hardware resources requiring new design methodologies and tools. In this paper we present a novel SoC co-design methodology based on aModel Driven Engineering framework while utilizing the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology permits us to model fine grain reconfigurable architectures such as FPGAs and allows to extend the standard for integrating new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The overall objective is to carry out modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformations of these models, automatically generate the necessary specifications required for FPGA implementation

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Design Space Exploration for Partially Reconfigurable Architectures in Real-Time Systems

    Get PDF
    International audienceIn this paper, we introduce FoRTReSS (Flow for Reconfigurable archiTectures in Real-time SystemS), a methodology for the generation of partially reconfigurable architectures with real-time constraints, enabling Design Space Exploration (DSE) at the early stages of the development. FoRTReSS can be completely integrated into existing partial reconfiguration flows to generate physical constraints describing the architecture in terms of reconfigurable regions that are used to floorplan the design, with key metrics such as partially reconfigurable area, real-time or external fragmentation. The flow is based upon our SystemC simulator for real-time systems that helps develop and validate scheduling algorithms with respect to application timing constraints and partial reconfiguration physical behaviour. We tested our approach with a video stream encryption/decryption application together with Error Correcting Code and showed that partial reconfiguration may lead to an area improvement up to 38% on some resources without compromising application performance, in a very small amount of time: less than 30 s

    ReSP: A Nonintrusive Transaction-Level Reflective MPSoC Simulation Platform for Design Space Exploration

    Full text link

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    A High-level Methodology for Automatically Generating Dynamic Partially Reconfigurable Systems using IP-XACT and the UML MARTE Profile

    Get PDF
    International audienceDynamic Partial Reconfiguration (DPR) has been introduced in recent years as a method to increase the flexibility of FPGA designs. However, using DPR for building com- plex systems remains a daunting task. Recently, approaches based on Model-Driven Engi- neering (MDE) and UML MARTE standard have emerged which aim to simplify the design of complex SoCs, and in some cases, DPR systems. Nevertheless, many of these approaches lacked a standard intermediate representation to pass from high-levels of descriptions to ex- ecutable models. However, with the recent standardization of the IP-XACT specification, there is an increasing interest to use it in MDE methodologies to ease system integration and to enable design flow automation. In this paper we propose an MARTE/MDE approach which exploits the capabilities of IP-XACT to model and automatically generate DPR SoC designs. We present the MARTE modeling concepts and how these models are mapped to IP-XACT objects; the emphasis is given to the generation of IP cores that can be used in the Xilinx EDK (Embedded Design Kit) environment, since we aim to develop a complete flow around their Dynamic Partial Reconfiguration design flow. Finally, we present a case study integrating the presented concepts, showing the benefits in design efforts compared with a purely VHDL approach and using solely EDK. Experimental results show a reduction of the design efforts required to obtain the netlist required for the DPR design flow from hours required in VHDL and Xilinx EDK, to less the one hour and minutes for IP integration

    Sustainable Living Factories for Next Generation Manufacturing

    Get PDF
    To be profitable and to generate sustainable value for all stakeholders, next generation manufacturers must develop capabilities to rapidly and economically respond to changing market needs while at the same time minimizing adverse impacts on the environment and benefiting society. 6R-based (Reduce, Reuse, Recycle, Recover, Redesign and Remanufacturing) sustainable manufacturing practices enable closed-loop and multi-life cycle material flow; they facilitate producing more sustainable products using manufacturing processes and systems that are more sustainable. Reconfigurable Manufacturing Systems (RMS) and its characteristics of scalability, convertibility, diagnosability, customization, modularity and integrability have emerged as a basis for living factories for next generation manufacturing that can significantly enhance the system sustainability by quickly adjusting system configuration and production processes to meet the market needs, and maintain the system values for generations of products. This paper examines the significance of developing such next generation manufacturing systems as the basis for futuristic sustainable living factories by adapting, integrating and implementing the RMS characteristics with the principles of sustainable manufacturing to achieve value creation for all stakeholders
    corecore