30 research outputs found

    04101 Abstracts Collection -- Language Engineering for Model-Driven Software Development

    Get PDF
    From 29.02. to 05.03.04, the Dagstuhl Seminar 04101 ``Language Engineering for Model-Driven Software Development\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Reusable textual styles for domain-specific modeling languages

    Get PDF
    Domain-specific languages enable concise and precise formalization of domain concepts and promote direct employment by domain experts. Therefore, syntactic constructs are introduced to empower users to associate concepts and relationships with visual textual symbols. Model-based language engineering facilitates the description of concepts and relationships in an abstract manner. However, concrete representations are commonly attached to abstract domain representations, such as annotations in metamodels, or directly encoded into language grammar and thus introduce redundancy between metamodel elements and grammar elements. In this work we propose an approach that enables autonomous development and maintenance of domain concepts and textual language notations in a distinctive and metamodel-agnostic manner by employing style models containing grammar rule templates and injection-based property selection. We provide an implementation and showcase the proposed notationspecification language in a comparison with state of the art practices during the creation of notations for an executable domain-specific modeling language based on the Eclipse Modeling Framework and Xtext

    ProMeTA: A taxonomy for program metamodels in program reverse engineering

    Get PDF
    ABSTRACT: To support program comprehension, maintenance, and evolution, metamodels are frequently used during program reverse engineering activities to describe and analyze constituents of a program and their relations. Reverse engineering tools often define their own metamodels according to the intended purposes and features. Although each metamodel has its own advantages, its limitations may be addressed by other metamodels. Existing works have evaluated and compared metamodels and tools, but none have considered all the possible characteristics and limitations to provide a comprehensive guideline for classifying, comparing, reusing, and extending program metamodels. To aid practitioners and researchers in classifying, comparing, reusing, and extending program metamodels and their corresponding reverse engineering tools according to the intended goals, we establish a conceptual framework with definitions of program metamodels and related concepts. We confirmed that any reverse engineering activity can be clearly described as a pattern based on the framework from the viewpoint of program metamodels. Then the framework is used to provide a comprehensive taxonomy, named Program Metamodel TAxonomy (ProMeTA), which incorporates newly identified characteristics into those stated in previous works, which were identified via a systematic literature review (SLR) on program metamodels, while keeping the orthogonality of the entire taxonomy. Additionally, we validate the taxonomy in terms of its orthogonality and usefulness through the classification of popular metamodels

    Metamodelling a formal method : applying MDE to abstract state machines

    Get PDF
    This paper presents the AsmM, a metamodel for Abstract State Machines developed by following the guidelines of the Model Driven Engineering. The AsmM represents concepts and constructs of the ASM formal method in an abstract way, it is endowed with a standard visual notation, and it is intended easy to learn and understand by practitioners and students. From the AsmM a concrete syntax is also proposed and a standard interchange format for a systematic integration of a number of loosely-coupled ASM tools is derived. The metamodelling advantages for tool interoperability are shown by referring to the experience in making the ATGT, an existing tool supporting test case generation for ASMs, compliant to the AsmM

    Interoperability of Enterprise Software and Applications

    Get PDF

    Challenges and Directions in Formalizing the Semantics of Modeling Languages

    Get PDF
    Developing software from models is a growing practice and there exist many model-based tools (e.g., editors, interpreters, debuggers, and simulators) for supporting model-driven engineering. Even though these tools facilitate the automation of software engineering tasks and activities, such tools are typically engineered manually. However, many of these tools have a common semantic foundation centered around an underlying modeling language, which would make it possible to automate their development if the modeling language specification were formalized. Even though there has been much work in formalizing programming languages, with many successful tools constructed using such formalisms, there has been little work in formalizing modeling languages for the purpose of automation. This paper discusses possible semantics-based approaches for the formalization of modeling languages and describes how this formalism may be used to automate the construction of modeling tools

    From napkin sketches to reliable software

    Get PDF
    In the past few years, model-driven software engineering (MDSE) and domain-specific modeling languages (DSMLs) have received a lot of attention from both research and industry. The main goal of MDSE is generating software from models that describe systems on a high level of abstraction. DSMLs are languages specifically designed to create such models. High-level models are refined into models on lower levels of abstraction by means of model transformations. The ability to model systems on a high level of abstraction using graphical diagrams partially explains the popularity of the informal modeling language UML. However, even designing simple software systems using such graphical diagrams can lead to large models that are cumbersome to create. To deal with this problem, we investigated the integration of textual languages into large, existing modeling languages by comparing two approaches and designed a DSML with a concrete syntax consisting of both graphical and textual elements. The DSML, called the Simple Language of Communicating Objects (SLCO), is aimed at modeling the structure and behavior of concurrent, communicating objects and is used as a case study throughout this thesis. During the design of this language, we also designed and implemented a number of transformations to various other modeling languages, leading to an iterative evolution of the DSML, which was influenced by the problem domain, the target platforms, model quality, and model transformation quality. Traditionally, the state-space explosion problem in model checking is handled by applying abstractions and simplifications to the model that needs to be verified. As an alternative, we demonstrate a model-driven engineering approach that works the other way around using SLCO. Instead of making a concrete model more abstract, we refine abstract models by transformation to make them more concrete, aiming at the verification of models that are as close to the implementation as possible. The results show that it is possible to validate more concrete models when fine-grained transformations are applied instead of coarse-grained transformations. Semantics are a crucial part of the definition of a language, and to verify the correctness of model transformations, the semantics of both the input and the output language must be formalized. For these reasons, we implemented an executable prototype of the semantics of SLCO that can be used to transform SLCO models to labeled transition systems (LTSs), allowing us to apply existing tools for visualization and verification of LTSs to SLCO models. For given input models, we can use the prototype in combination with these tools to show, for each transformation that refines SLCO models, that the input and output models exhibit the same observable behavior. This, however, does not prove the correctness of these transformations in general. To prove this, we first formalized the semantics of SLCO in the form of structural operational semantics (SOS), based on the aforementioned prototype. Then, equivalence relations between LTSs were defined based on each transformation, and finally, these relations were shown to be either strong bisimulations or branching bisimulations. In addition to this approach, we studied property preservation of model transformations without restricting ourselves to a fixed set of transformations. Our technique takes a property and a transformation, and checks whether the transformation preserves the property. If a property holds for the initial model, which is often small and easy to analyze, and the property is preserved, then the refined model does not need to be analyzed too. Combining the MDSE techniques discussed in this thesis enables generating reliable and correct software by means of refining model transformations from concise, formal models specified on a high level of abstraction using DSMLs
    corecore