
Technical Report

Metamodelling a Formal Method:

Applying MDE to Abstract State Machines

Angelo Gargantini1, Elvinia Riccobene2, Patrizia Scandurra2

1 Università di Bergamo, Dip. di Ingegneria Informatica e Gestionale, V.le Marconi, 5 � 24044 Dalmine, Italy
2 Università di Milano, Dip. di Tecnologie dell'Informazione, via Bramante, 65 � 26013 Crema, Italy

Abstract This paper presents the AsmM, a metamodel for Abstract State Machines developed by following the
guidelines of the Model Driven Engineering. The AsmM represents concepts and constructs of the ASM formal
method in an abstract way, it is endowed with a standard visual notation, and it is intended easy to learn and
understand by practitioners and students.

From the AsmM a concrete syntax is also proposed and a standard interchange format for a systematic integration
of a number of loosely-coupled ASM tools is derived. The metamodelling advantages for tool interoperability are
shown by referring to the experience in making the ATGT, an existing tool supporting test case generation for
ASMs, compliant to the AsmM.

Contents

1 Introduction . 2
2 Metamodelling for Language De�nition . 3
3 Abstract State Machines . 6
4 The ASM Metamodel (AsmM) . 7
5 Metamodelling ASM States . 7
6 Metamodelling ASM Transition Rules . 11
7 Metamodelling Basic ASMs . 15
8 Metamodelling Turbo ASMs . 18
9 Metamodelling Multi-agent ASMs . 21
10 Metamodel Architecture . 23
11 Further Concepts . 24
12 AsmM derivatives . 33
13 ASM Tool Interoperability . 40
14 The AsmM in Practice: modifying an ASM Test Generator . 41
15 Related Work . 41
16 Conclusions and Future Directions . 42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187803336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Angelo Gargantini et al.

1 Introduction

The success of the Abstract State Machines (ASMs) as
a system engineering method able to guide the develop-
ment of hardware and software systems, from require-
ments capture to their implementation, is nowadays wi-
dely acknowledged [16,15]. The increasing application
of the ASM formal method for academic and industrial
projects has caused a rapid development of tools around
ASMs of various complexity and goals: tools for mechani-
cally verifying properties using theorem provers or model
checkers [45,22,26,18,54], and execution engines for sim-
ulation and testing purposes [46,10,9,17,27].

Since each tool usually covers well only one aspect of
the whole system development process, at di�erent steps
modelers and practitioners would like to switch tools to
make the best of them while reusing information already
entered about their models. As already discussed in [43],
a standard interchange format is of particular interest for
the ASMs community, since ASM tools have been usu-
ally developed by individual research groups, are loosely
coupled and have syntaxes strictly depending on the im-
plementation environment (compare, for example, sim-
ulation environments like AsmGofer [46], ASM-SL [17],
XASM [9], and AsmL [10]). This makes the integration of
tools hard to accomplish and prevents ASMs from being
used in an e�cient and tool supported manner during
the software development life-cycle.

A general framework for a wide interoperability of
ASM tools, based on metamodelling, is suggested by the
Model-Driven Engineering (MDE) [13,33,36], an emerg-
ing approach for software development and analysis whe-
re models play the fundamental role of �rst-class arti-
facts. In MDE, metamodelling is intended as a modular
and layered way to endow a language or a formalism with
an abstract notation, so separating the abstract syntax
and semantics of the language constructs from their dif-
ferent concrete notations. A language has to be equipped
by at least a proper metamodel-based abstract syntax,
an easy to learn concrete syntax, possibly graphic, a well-
founded semantics, and a XML-based [57] model inter-
change format.

In [14], the problem of tool interoperability in the
context of bug tracing systems is tackled through meta-
models and model transformations. The metamodel of
each tool is linked to those of other tools by a logi-
cal pivot metamodel which abstracts a certain number
of general concepts about bug-tracking. Model transfor-
mations based on these metamodels to the pivot and
from the pivot to the metamodels are de�ned and im-
plemented. The approach allows a relatively easy addi-
tion of new tools that have to operate with the existing
ones by: creating the associated metamodel; building the
bridge (composed of two transformations) between this
metamodel and the logical pivot metamodel; making the
XML injector/extractor for this metamodel.

In this paper, we introduce the Abstract State Ma-
chine Metamodel (AsmM), a metamodel for ASMs [11].
The AsmM can be seen as the pivot metamodel towards a
de�nition of a standard family of languages for the ASM
formal method and a systematic integration of a number
of loosely-coupled ASM tools based upon metamodelling
techniques.

The AsmM comprises: a metamodel de�nition (the
abstract syntax) conforming to the Meta Object Facility
(MOF)[2] metalanguage and representing in an abstract
and visual way the ASMs related concepts and con-
structs (abstract machines, signatures, terms, rules, etc.)
as described in [16]; an interchange syntax, i.e a stan-
dard XMI-based [55] format automatically derived from
the AsmM for the interchange of ASM models among
tools; and a concrete syntax, namely an EBNF (extended
Backus-Naur Form) grammar derived from the AsmM as
textual notation to write ASM models conforming to the
AsmM. For the AsmM semantics, we assume the ASM
semantics in [16].

Tool interoperability is only one of the bene�ts of us-
ing the metamodelling approach. We identify other two
signi�cant advantages. First, a metamodel could serve
as standard representation of a formal notation, estab-
lishing a common terminology to discriminate pertinent
elements to be discussed, and therefore, helps to com-
municate understandings, especially if � as in the case of
the ASMs � the formal method is still evolving and the
community is too much heterogeneous to easily come to
an agreement on the further development of the method.
Second, people often claim that formal methods are too
di�cult to put in practice due to their mathematical-
based foundation. In this direction an abstract and vi-
sual representation, like the one provided by a MOF-
compliant metamodel, delivers a more readable view of
the modelling primitives o�ered by a formal method, es-
pecially for people, like students, who do not deal well
with mathematics but are familiar with the standard
MOF/UML. Indeed, the AsmM can be considered a com-
plementary approach to [28,16] for the presentation of
the ASMs.

Although the task (possibly iterative) of de�ning a
metamodel for a language is not trivial and its com-
plexity closely matches that of the language being con-
sidered, we like to remark that the e�ort of developing
from scratch a new EBNF grammar for a complex for-
malism, like the ASMs, would not be less than the e�ort
of de�ning a MOF-compliant metamodel for the ASMs,
and then deriving a EBNF grammar from it. Moreover,
the metamodel-based approach has the advantage of be-
ing suitable to derive from the same metamodel (through
mappings or projections) di�erent alternative concrete
notations, textual or graphical or both, for various scopes
like graphical rendering, model interchange, standard en-
coding in programming languages, and so on.

The paper is organized as follows. Basic metamod-
elling notions are sketched out in section 2 where the

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 3

MOF and XMI standards are also presented. Section 3
introduces basic concepts underlying ASMs. Sections 4 -
10 present the AsmM in a modular and incremental way.
In Section 12 some derivative artifacts obtained from
the AsmM abstract syntax are introduced: the AsmM
concrete syntax and the MOF-to-EBNF mapping rules
applied to derive it; the AsmM-speci�c Java Metadata
Interfaces used to access and manipulate models; the
AsmM-speci�c XMI interchange format; the parser which
processes the ASMmodels written in the AsmM concrete
syntax and creates the corresponding AsmM instances.
The role of this parser and of the XMI interchange for-
mat is discussed in Section 13. Section 14 shows how an
existing tool for ASMs can be easily modi�ed to make it
AsmM-compliant. Related and future work are given in
sections 15 and 16, respectively.

2 Metamodelling for Language De�nition

This section outlines some basic notions on metamod-
elling and some MDE standards to allow a reader not
familiar with these concepts to understand the AsmM
and the derivative artifacts obtained from the AsmM.
Readers expert in this area can skip the section.

In the MDE, where models are �rst class entities and
any software artifact is a model or a model element, lan-
guages or formalisms enabling to express models are de-
�ned in terms of metamodels.

A metamodel describes the various kinds of model el-
ements, and the way they are arranged, related, and con-
strained. Metamodel elements (or metaelements) pro-
vide a typing scheme for model elements expressed by
the meta relation between a model element and its meta-
element. It is said that a model element is typed by its
metaelement. A model is said to conform to its meta-
model if and only if each model element has its metaele-
ment de�ned within the metamodel. In the same way
models are de�ned in conformance with their metamodel,
metamodels are de�ned by means of a common base
formalism called meta-metamodel or metalanguage. A
metamodel conforms to the meta-metamodel if and only
if each of its elements has its metaelement de�ned in the
meta-metamodel.

Among the objectives pursued by the MDE approach,
one may list (i) the separation from system-neutral de-
scriptions and platform dependent implementations, (ii)
the identi�cation, precise speci�cation, separation and
combination of speci�c aspects of a system under de-
velopment with domain-speci�c languages (DSLs), and,
more importantly, (iii) the establishment of precise brid-
ges (or projections) between these di�erent languages
in a �global framework� to automatically execute model
transformations. The importance of metamodelling is
that it settles such a �global framework� to enable oth-
erwise dissimilar languages (representing di�erent do-
mains) to be used in an interoperable manner in di�erent
technical spaces [34].

The OMG's Model Driven Architecture (MDA) [35]
was historically one of the original proposals to support
MDE principles. The primary goal of the MDA initiative
is preserving the IT investments of companies through
the constant and rapid evolution of platforms. The idea
consists into keeping separate the design of the system
functionality � the platform independent model (PIM),
usually written in a general purpose language like UML
� from its implementation on a speci�c platform � the
platform speci�c model (PSM). Moreover, PSMs should
be obtained by re�ning the original PIMs through auto-
matic transformation bridges.

At the core of MDA, there is a set of OMG stan-
dards like the Meta-Object Facility (MOF), the UML
(Uni�ed Modeling Language)[50], XMI (XML Metadata
Interchange) [55,56], the OCL (Object Constraint Lan-
guage) [37], QVT (Query/Views/Transformations) [42],
to name a few.

The classical OMG's metamodelling framework is ba-
sed on an four-layered architecture ([2], Sect. 2.2.1), whe-
re the relation between a model and its metamodel is
characterized by a instanceOf relation rather than the
conformsTo relation as proposed in MDE:

M0 (Data) The data (or information) layer comprises
data of the real world that we wish to describe, i.e.
it refers to actual instances of information.

M1 (Model) The model (or metadata) layer comprises
metadata that describes (in format and semantics)
data in the information layer. This is the level at
which system modelling takes place.

M2 (Metamodel) Themetamodel (ormeta-metadata) la-
yer contains the language speci�cation, or the meta-
model. It comprises the description of the structure
and semantics of metadata in an abstract way.

M3 (Meta-metamodel) The meta-metamodel layer com-
prises the description of the structure and semantics
of meta-metadata. It is the common meta-language
for de�ning di�erent kinds of metamodels.

The MOF is the OMG proposal for metamodel de�ni-
tion, namely a meta-metamodel. It resides at layer M3

of the metamodelling architecture and, as there is no
higher abstraction layer, it is de�ned in terms of itself.

One of the best-known metamodels is the UML meta-
model [50], which stays at layer M2. The proposed AsmM
lies at layer M2 as well. Any ASM model conforms to
the AsmM lies at layer M1 and when initialized (data
are supplied) it lies at layer M0 (see Fig. 1).

The MOF is able to capture object organizations as
well as other organizations. As model of a language or
formalism, a metamodel is the result of a process of ab-
straction, classi�cation, and generalization on the lan-
guage domain, not necessarily object oriented.

Several projections towards other technical spaces are
associated to the MOF and may be seen as additional
facilities of level M3 to handle models. Among these:

4 Angelo Gargantini et al.

Figure 1 Four-layered architecture

� XMI (XML Metadata Interchange) [55,56] for bridg-
ing with the XML Document space for interchange
of models between tools;

� JMI (Java Metadata Interface) [32] for bridging with
the Java space, to access model elements in a meta-
data repository (where models are understood to be
instances of some particular metamodel) for model
construction, discovery, traversal, and update;

� CMI (CORBA Metadata Interface) [19] for bridging
with the middleware CORBA space;

� HUTN (Human Usable Textual Notation) [30] and
the anti-Yacc proposal by DSTC [21], for bridging
with the textual �at-�le technical space.

Many other standard projections could be useful as well,
like the one on rendering spaces like SVG [5], for exam-
ple.

2.1 The Metamodelling Process using MOF

The MOF de�nes a set of modelling constructs that a
modeler can use to de�ne and manipulate metamodels.
The MOF concepts described below refers to the version
1.4 [2] that we used to de�ne a metamodel for the ASMs
formalism. A reader familiar with the UML is already
familiar with the most important concepts of the MOF1.
These include types (classes, primitive types, and type
constructors), associations, packages, constraints.

Classes are type descriptions of MOF meta-objects [2].
Classes de�ned at the M2 layer (i.e. into a metamodel)

1 The MOF 1.4 (and prior versions) supports basic object
oriented concepts, most of which are a subset of the UML.

have their instances with an object identity, state, and
behaviour at the M1 layer. Structural features of classes
can be described by Attributes and Operations. Derived
attributes (preceded by a �/�) are determined by the ob-
ject state. Operations do not actually specify the be-
haviour or the methods implementing that behaviour,
but only the name and various signatures by which the
behaviour is invoked.

Classes can inherit their structure from other classes
by Generalization relations (the common class inheri-
tance concept of the object-oriented paradigm). Abstract
classes are classes that must not have instances. A sin-
gleton class is one for which only one instance may ex-
ist. A class can contain references to associations (see
below). Classes can also contain Exceptions, Constants,
and other elements (see [2] for more details).

Primitive types and constructors represent attributes
and operation parameter values which do not have an ob-
ject identity. Primitive types stand for primitive data like
Boolean, Integer, String, etc. Type constructors allow
modelers to introduce more complex types like enumer-
ation types, structure types, collection types, and alias
types.

Associations are the primary construct for expressing
binary relationships between class instances. At the M1

layer, a binary M2 layer association de�nes relationships,
called links, between pairs of instances of the related
classes. Both ends of an association may specify a mul-
tiplicity which indicates the number of objects that, at
run-time, may participate in the association. Common
multiplicity values are the following:
� 1: exactly one object will participate;
� a number n > 0: exactly n objects will participate;
� 0..1: 0 or 1 object will participate;
� n..m: the number of participating objects is between
n and m;
� *: zero or more objects will participate.

A name string, referred as role name, near the end of
an association indicates the role played by the class at-
tached to the association end. The role name is optional
but not suppressible. Associations ends can also specify
aggregation semantics2 and structural constraints on the
ordering (if the multiplicity is greater than one, then the
set of related elements can be ordered or � the default
case � unordered), navigability (whenever navigation is
supported in a given direction), and uniqueness.

Association References An instance of a class may be de-
�ned to be �aware� of being in a relationship with other

2 An association may represent an aggregation (i.e., a
whole/part relationship). An aggregation can be also com-
posite to denote a strong form of aggregation that requires
a part instance be included in at most one composite at a
time. If a composite is deleted, all of its parts are normally
deleted with it.

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 5

objects via an association. This awareness is expressed
as an association reference contained as named property
in the class, and results in link navigation and update
operations being made available in the MOF object's in-
terface. The referenced association end determines what
ends of what kinds of links an instance is �aware� of.

Packages are MOF constructs to group elements (clas-
ses and associations) within a metamodel for partition-
ing and modularization purposes. Packages can be com-
posed by importing other packages or by inheriting from
them. They can also be nested, to provide information
hiding.

Constraints specify consistency rules, called well-formed-
ness rules, to additionally argument models described by
the constructs in the metamodel. Constraints are usually
written as formula in the Object Constraint Language
(OCL) [37] and can be evaluated against the metamodel
to decide if a given model conforms to it.

The above metamodelling constructs are su�cient to
de�ne the so called abstract syntax of a language, i.e. the
structure of a language, separated from its concrete no-
tation. To be precise, a metamodel-based language de�-
nition is in general articulated into the speci�cation of:

� an abstract syntax, de�ned by a MOF-compliant meta-
model, for the de�nition of the modelling constructs
of the language, plus well-formedness rules in OCL
to capture the static semantics of the language;

� a concrete syntax in which to write models, generally
based on a diagrammatic notation (shapes, connec-
tors, layout, etc.) or a textual syntax, or both;

� the semantics, i.e. the abstract logical space in which
models �nd their meaning3.

2.2 Model Constraints using OCL

The Object Constraint Language [37] is a language of
typed expressions, used to specify constraints on objects
in the MOF/UML. A constraint is a valid OCL expres-
sion of type Boolean that states a restriction on one or
more values of (part of) an object-oriented model or sys-
tem. There are a number of constraint types: class in-
variants, i.e. constraints that must always be met by all
instances of a speci�ed class, and pre/post-conditions on
operations. The mostly used here in class diagrams are
invariants.

An OCL expression can be built using the basic OCL
types (Boolean, Integer, Real, ...), the MOF/UML data

3 The MOF lacks � as often signaled in literature by pro-
posals which aim at formalizing the UML semantics � of any
formality to express the dynamic semantics of languages,
which is generally given in natural language or, more for-
mally, through the use of formal methods.

types, and prede�ned operators, as well as classes (con-
sidered as OCL types) from the MOF/UML model, asso-
ciations, attributes and query operations de�ned inside
classes, i.e. operations that simply return a value but
do not change the state of the system (since all OCL
expressions must be side e�ect free).

There are di�erent operations to treat and analyze
classes at the meta-level. The mostly used here are the
following:

� the operation o.oclIsTypeOf(T) returns true when
a given instance o is a direct instance of a certain
class T (and not of one of its subclasses or of other
classes);

� the operation o.oclAsType(C)::C casts the object o
to an instance of class C;

� the operation C.allInstances() returns all instances
of a given class C.

Any OCL expression can navigate through the model
by following the �path� of associations. The constraint
context is the starting point for navigating and the ob-
ject(s) on the other side of the association are identi�ed
by the role name. In an OCL expression one may there-
fore put constraints also on the associated object(s) or on
attributes of the associated object(s). To this end, there
are a large number of prede�ned operations on collec-
tions, e.g. isEmpty, size, includes, forAll, exists,
etc. An arrow, instead of a dot, before the operation in-
dicates the use of one of these collection operations.

2.3 Model Interchange using XMI

The XML Metadata Interchange (XMI) [55,56] is an
OMG standard developed as a tool-independent medium
for exchanging models at any level of the metamodelling
hierarchy. It maps the MOF to the W3C's eXtensible
Markup Language (XML) [57] de�ning rules to repre-
sent serialized MOF concepts in XML tags.

In XMI, a XML Document Type De�nition (DTD) or
a schema can be de�ned at any level Mx of the metamod-
elling hierarchy, using rules appropriate for that layer
(see Fig. 2). This DTD or schema can then be used to
transport data at layer Mx−1 in the form of XML doc-
uments that conform to the DTD or schema de�ned at
layer Mx. A DTD or schema is de�ned by the OMG at
the M3 for the MOF itself, and it is used to transport
metamodels at layer M2 in XML documents conforming
to the MOF DTD or schema.

Whenever a language or formalism is speci�ed in
terms of a MOF-compliant metamodel, the MOF en-
ables a standard way to generate an interchange format
for models in that language; indeed, a DTD or a schema
is de�ned at layer M2 for the metamodel of the given lan-
guage. This metamodel-speci�c DTD or schema is then
used for models written in the given language at layer
M1 in XML format.

6 Angelo Gargantini et al.

Figure 2 XMI in the four-layer metamodelling hierarchy

The capability of XMI (and of XML, in general) to
communicate both metaelements (tags) and model ele-
ments (element content) in the same document, enables
applications to easily recover information about models
via their metaelements, making the XMI format an op-
timal solution for interoperability.

In Section 12.2 we present the XMI format for the
AsmM, and in Section 13 we discuss its use for inter-
changing ASM models among tools.

2.4 Java Metadata Interface

Within the open Java Community Process (JCP) [31], a
number of Java speci�cations are currently under devel-
opment that represent formal mappings of OMG's MDA
standards on Java technologies. The most important one
is the Java Metadata Interface (JMI) [32]: a pure Java
API, which provides a natural and easy-to-use mapping
from the MOF to the Java programming language for
creating, storing, accessing, and interchanging metadata.
Applications and tools endowed with MOF-compliant
metamodels, can have their JMI automatically gener-
ated. Further, metamodel and metadata interchange via
XML is enabled by JMI's use of the XMI speci�cation.
Java applications can create, update, delete, and retrieve
information contained in a JMI compliant metadata ser-
vice.

In Section 12.1 we show how to use JMI to access
AsmM data.

3 Abstract State Machines

Abstract State Machines (ASMs) are a system engineer-
ing method that guides the development of software and
embedded hardware-software systems seamlessly from
requirements capture to their implementation.

The three constituents of the ASM method are: the
concept of abstract state machines for system speci�-
cation, the ground model method to faithfully capture

informal requirements through precise but concise high-
level system blueprints (system contracts) formulated in
domain-speci�c terms, using an application-oriented lan-
guage which can be understood by all stakeholders, and
the re�nement method for turning ground models by in-
cremental steps into executable code in a traceable and
documented way, providing explicit description of the
software structure and of the major design decisions.

Even if the ASM method comes with a rigourous sci-
enti�c foundation [28,16], the practitioner needs no spe-
cial training to use it since Abstract State Machines are
a simple extension of Finite State Machines, and can be
understood correctly as pseudo-code or Virtual Machines
working over abstract data structures. The computation
of a machine is determined by �ring transition rules de-
scribing the modi�cation of the functions from one state
to the next. The notion of ASMs moves from a de�ni-
tion which formalizes simultaneous parallel actions of a
single agent, either in an atomic way, Basic ASMs, and
in a structured and recursive way, Structured or Turbo
ASMs, to a generalization where multiple agents interact
in a synchronous way, or asynchronous agents proceed in
parallel at their own speed and whose communications
may provide the only logical ordering between their ac-
tions, Synchronous/Asynchronous Multi-agent ASMs.

Within a single conceptual framework, ASMs allow
a nowadays widely-requested modelling technique which
integrates dynamic (operational) and static (declarative)
descriptions. Analysis techniques that combine valida-
tion (by simulation and testing) and veri�cation can be
performed at any desired level of detail. A number of
ASM tools have been developed for model simulation [46,
10,9,17], model-based testing [27], veri�cation of model
properties by proof techniques (i.e. by KIV [45] or PVS
[22,26]), or model checkers [18,54].

A complete introduction on the ASM method can be
found in [16], together with a presentation of the great
variety of its successful application in di�erent �elds such
as: de�nition of industrial standards for programming
and modelling languages, design and re-engineering of
industrial control systems, modelling e-commerce and
web services, design and analysis of protocols, architec-
tural design, language design, veri�cation of compilation
schemas and compiler back-ends, etc.

For our purposes, we quote here only the essential
working de�nitions of the ASMs, i.e. in a form which
justi�es their intuitive understanding as �pseudo-code�
over �abstract data�, as stated in [16], and we show how
to turn these de�nitions into metamodelling constructs.

For a more detailed mathematical de�nition of the
semantics of the ASMs, and explanation of the ASM
ground models and the notion of ASM re�nement we
refer the reader to [16].

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 7

4 The ASM Metamodel (AsmM)

According to the metamodel-based language de�nition
guidelines, the speci�cation of an Abstract State Ma-
chines Metamodel (AsmM) [11] comprises:

� an abstract syntax, i.e. a MOF-compliant metamodel
and OCL constraints (see Sect. 5 - 10) representing in
an abstract (and visual) way concepts and constructs
of the ASM formalism as described in [16];

� a concrete syntax Asm2L (AsmM Language), namely
an EBNF (Extended Backus-Naur Form) grammar
(see Sect. 12.3) derived from the AsmM as a textual
notation to be used by modelers to e�ectively write
ASM models in a textual form;

� an interchange syntax, i.e. a standard XMI-based for-
mat automatically derived from the AsmM, for the
interchange of ASM models (see Sect. 13).

For the metamodel semantics, we adopt the ASM se-
mantics given in [16].

In the following sections, a complete meta-level rep-
resentation of ASMs concepts is formulated, based on
the MOF metalanguage. We develop the metamodel in
a modular way re�ecting the natural classi�cation of ab-
stract state machines in Basic ASMs, Turbo ASMs, and
Multi-Agent (Sync/Async) ASMs. Metamodelling rep-
resentation results into class diagrams (a natural visual
rendering of MOF models). Each class is also equipped
with a set of relevant constraints, OCL invariants writ-
ten to �x how to meaningfully connect an instance of
a construct to other instances, whenever this cannot be
directly derived from the class diagrams.

Further concepts which enrich and complete the spec-
i�cation of the AsmM (like particular forms of domains,
special terms and derived rule schemes of an ASM) are
reported in Section 11, while a standard AsmM library
containing pre-de�ned ASM domains and functions (in-
stances of the AsmM classes Domain and Function , see
Sections 5.1 and 5.2) can be found in the AsmM website
[11].

We have drawn the AsmM with the Poseidon UML
(v.3.0) [41] empowered with an ancillary tool UML2MOF
which transforms UML models to MOF 1.4 and is pro-
vided by the MDR Netbeans framework [4].

5 Metamodelling ASM States

ASMs extend the Finite State Machines replacing un-
structured �internal� control states by states comprising
arbitrary complex data. An ASM state models a ma-
chine state, i.e. the collection of elements and objects
the machine �knows�, and the functions and predicates
it uses to manipulate them. Mathematically, a state is
de�ned as an algebraic structure, where data come as
abstract objects, i.e. as elements of sets (also called do-
mains or universes, one for each category of data) which

are equipped with basic operations (partial functions)
and predicates (attributes or relations). The set of func-
tion and domain names (declaration) is indicated as the
signature or vocabulary of the ASM, while the collec-
tion of all state elements is called the superuniverse of
the state. Part of the superuniverse is the set reserve
which is used to increase, providing new elements when-
ever needed, the working space of an ASM. Usually it is
supposed to be in�nite and to be part of the state, but
without any structure.

For the evaluation of terms and formulae in an ASM
state, the standard interpretation of function symbols
by the corresponding functions in that state is used.
Without loss of generality we usually treat predicates
as characteristic functions and constants as 0-ary func-
tions. Partial functions are turned into total functions
by interpreting f(x) = undef with a �xed special value
undef as f(x) being unde�ned. The reader who is not
familiar with this notion of structure may view a state as
a �database of functions" (read: a set of function tables).

Pairs of a function name f , which is �xed by the
signature, and an optional argument (v1, . . . , vn), which
is formed by a list of dynamic parameter values vi of
whatever type, are called locations. They represent the
abstract ASM concept of basic object containers (mem-
ory units), which abstracts from particular memory ad-
dressing and object referencing mechanisms.

In this section we describe how to formalize domains,
functions and terms in a MOF-compliant metamodel.

5.1 Metamodelling Domains

The abstract4 class Domain represents the ASM notion
of domain (or universe). The class is subclassed by Type-
Domain and ConcreteDomain (see Fig. 3).

In practical applications, the superuniverse of an ASM
state can be thought as partitioned into smaller uni-
verses. In the AsmM, these smaller super domains are
called type-domains and they are represented by the ab-
stract class TypeDomain . All user-named sub-domains of
type-domains are represented by the class ConcreteDo-
main. The association end with role name typeDomain

between classes TypeDomain and ConcreteDomain binds
a concrete domain to its corresponding type-domain. A
concrete domain must be explicitly declared in the sig-
nature of a given ASM, and the boolean attribute isDy-
namic speci�es if the domain is static (never changes),
or dynamic (its content can change during the computa-
tion by e�ect of transition rules). By default, a concrete
domain is considered static (isDynamic=false).

4 The name of an abstract class is shown in Italics. An ab-
stract class, in contrast to an ordinary (concrete) class, can-
not be instantiated. Typically, instances are created from its
concrete sub-classes. The generalization relationship is shown
as a line with an hollow triangle between the sub-class and the
super-class with the arrowhead pointing to the super-class.

8 Angelo Gargantini et al.

Figure 3 Domains (Part 1)

Figure 4 Domains (Part 2) � Structured domains

The class TypeDomain is further classi�ed in: Ba-
sicTypeDomain , for primitive data values; Structured-
TypeDomain , representing type-domain constructors for
structured data (like �nite maps, sets and tuples); Ab-
stractTypeDomain, modeling user named domains whose
elements have no precise structure. Abstract type do-
mains can be (by the boolean attribute isDynamic, which
is false by default) static, i.e. never change, or dynamic,
i.e. new elements can be added during the computation
by e�ect of transition rules (see the extend rule in Sect.
6).

As basic type-domains, we have: BooleanDomain, rep-
resenting the set {true, false}; RuleDomain, whose uni-
que instance is the universe of all transition rules; and
UndefDomain having as instance the set {undef}. This
last set is assumed to be subset of every other type-
domain or concrete-domain. All these three classes are
singleton, and the OCL constraints D1, D2, and D3 in
Tab. 1 assure this.

The subclass ReserveDomain of AbstractTypeDo-

main is a singleton class (D4) whose unique instance rep-
resents the notion of ASM reserve. It is dynamic, since
we assume it is updated automatically upon (and only
by) execution of an extend rule (see Sect. 6) as stated
by the OCL constraint D5.

The StructuredTypeDomain is subclassed as shown
in Fig. 4. The class ProductDomain represents the Carte-
sian product of two or more type-domains listed in the

context BooleanDomain inv:

D1: allIstances->size()=1

context RuleDomain inv:

D2: allIstances->size()=1

context UndefDomain inv:

D3: allIstances->size()=1

context ReserveDomain inv:

D4: allIstances->size()=1

D5: isDynamic = true

Table 1 Domain Constraints

Figure 5 Functions

attribute domains; the class PowersetDomain represents
the powerset of a type-domain speci�ed by the associa-
tion end baseDomain.

Section 11.0.1 introduces several other domains: ba-
sic type-domains for primitive data values like reals, in-
tegers, naturals, strings, etc., structured type-domains
for sequences, bags and maps, and enum-domains.

5.2 Metamodelling Functions

The abstract class Function and its hierarchy (see Fig.
5) models the notion of function and function classi�ca-
tion in ASMs. Functions are systematically distinguished
between basic functions which are taken for granted
(typically those forming the basic signature of an ASM)
and derived ones (auxiliary functions coming with a
speci�cation or computation mechanism given in terms
of basic functions), together with a classi�cation of ba-
sic functions into static and dynamic ones and of the
dynamic ones into monitored (only read), controlled
(read and write), shared and output (only write) func-
tions.

Static Functions never change during any run of
the machine so that their values for given arguments
do not depend on the states of the machine. Whether

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 9

the meaning of these functions is determined by a mere
signature de�nition, or by axiomatic constraints, or by
an abstract speci�cation, or by an explicit or recursive
de�nition, depends on the degree of information-hiding
the speci�er wants to realize. Dynamic Functions may
change as a consequence of agent actions (or updates, see
de�nition in Sect. 6) or by the environment, so that their
values may depend on the states of the machine. Static 0-
ary functions represent constants, whereas with dynamic
0-ary functions one can model variables of programming
(not to be confused with logical variables, see Sect. 5.3).

Controlled Functions are dynamic functions which
are directly updatable by and only by the machine in-
structions (better called transition rules, see Sect. 6).
Therefore, these functions are the ones which constitute
the internally controlled part of the dynamic state of the
machine; they are not updatable by the environment (or
more generally by another agent in the case of a multi-
agent machine).

Monitored Functions (also called in functions) are
dynamic functions which are read but not updated by
a machine and directly updatable only by the environ-
ment (or more generally by other agents). These moni-
tored functions constitute the externally controlled part
of a machine state. As with static functions, the speci�-
cation of monitored functions is open to any appropriate
method. The only (but crucial) assumption made is that
in a given state the values of all monitored functions are
determined.

Combinations of internal and external control are
captured by interaction or Shared Functions that can
be read and are directly updatable by more than one ma-
chine (so that typically a protocol is needed to guarantee
consistency of updates).

Out Functions are updated but not read by a ma-
chine and are typically monitored by other machines or
by the environment.

Function domain and codomain are de�ned by the
association ends domain and codomain to Domain . The
arity of a function is derived from the function de�ni-
tion (Tab. 2). A constant is a function which is not linked
to any instance of the class Domain via the association
end domain, and its arity is 0 (F1). If the function do-
main is a Cartesian product of n domains then the arity
of the function is equal to n (F2). If the function domain
is a concrete domain with type-domain a Cartesian prod-
uct of n domains, then the arity of the function is again
equal to n (F3). Otherwise the arity of the function is 1
(F4).

5.3 Metamodelling Terms

As �rst-order structures, ASMs admit the use of pred-
icate logic terms (variables, constants and function ap-
plications) and formulae. Terms can be interpreted in an
ASM state if a variable assignment is provided, i.e. if ele-

Figure 6 Terms

ments of the super-universe are assigned to the variables
of the terms.

In the metamodel, we introduce the class Term (see
Fig. 32) to model the concept of �rst-order logic terms.
The association between classes Term and Domain spec-
i�es the domain to which the value of a term belongs.

We de�ne an OCL query compatible() (Tab. 3) be-
tween two domains D1 and D2 to check wether the sub-
stitution of a term with domain D1 by a term with do-
main D2 is syntactically correct. A domain self is com-
patible with another domain d if and only if they are
equals, or d is the UndefDomain5, or if self is a concrete
domain with type domain d or vice-versa, or if both self
and d are both PowersetDomain and their baseDomains
are compatible, or if they are ProductDomain and their
component domains are compatible.

Two terms are compatible if and only if their domains
are compatible (T1 in Tab. 4).

The class Term is subclassed by BasicTerm , for rep-
resenting variables, constants and functions terms, and
ExtendedTerm , for structured terms like sets, tuples, etc.
(see Fig. 32).

The subclass ConstantTerm of BasicTerm models
constants. It is slit in BooleanTerm, for the constant
boolean terms true and false (T2, T3,T4), and UndefTerm,
a singleton class whose unique instance represents the
value undef (T5,T6,T7).

The class FunctionTerm, subclass of BasicTerm , rep-
resents a function application f(t1, . . . , tn) where the
function f is given by the association end function and
(t1, . . . , tn) is a tuple of terms speci�ed by the association
end arguments with the TupleTerm class (see below).

For function terms, we need to guarantee that the
domain of a function term is equal to the associated
function codomain (T8), and that if the associated func-
tion arity is greater than 0, the function term is linked
to a TupleTerm instance which speci�es the actual argu-
ments of the function application (T9). Note that, the

5 Note that if self is undef, then d must be undef as well
to be equal; i.e. the relation is not symmetric.

10 Angelo Gargantini et al.

context Function inv :

F1: if domain->isEmpty() then arity = 0

F2: else if domain.oclIsTypeOf(ProductDomain)

then arity = domain.oclAsType(ProductDomain).domains.items->size()

F3: else if domain.oclIsTypeOf(ConcreteDomain) and

domain.oclAsType(ConcreteDomain).typeDomain.oclIsTypeOf(ProductDomain)

then arity =

domain.oclAsType(ConcreteDomain).typeDomain.oclAsType(ProductDomain).domains.items->size()

F4: else arity = 1

endif endif endif

Table 2 Function Arity

context Domain def: let compatible(d : Domain): Boolean =

-- self and d are equals or d is Undef

self = d or d.oclIsTypeOf(UndefDomain) or

-- one is a ConcreteDomain and the other is its type-domain

(self.oclIsTypeOf(ConcreteDomain) and d.oclIsTypeOf(TypeDomain) and

d = self.oclAsType(ConcreteDomain).typeDomain) or

(d.oclIsTypeOf(ConcreteDomain) and self.oclIsTypeOf(TypeDomain) and

self = d.oclAsType(ConcreteDomain).typeDomain) or

-- two PowersetDomain: their base domain must be compatible

(self.oclIsTypeOf(PowersetDomain) and d.oclIsTypeOf(PowersetDomain) and

self.oclAsType(PowersetDomain).baseDomain.compatible(d.oclAsType(PowersetDomain).baseDomain)) or

-- two ProductDomain: their size must be equal and their domains must be compatible

(self.oclIsTypeOf(ProductDomain) and d.oclIsTypeOf(ProductDomain) and

(let selfDoms:DomainCollection = self.oclAsType(ProductDomain).domains in

let dDoms:DomainCollection = d.oclAsType(ProductDomain).domains in

let nDoms = selfDoms.items->size()in nDoms = dDoms.items->size() and

Sequence1..nDoms->forAll(i:Integer | selfDoms.items->at(i).compatible(dDoms.items->at(i)))))

Table 3 Domain Compatibility De�nition

relationship between a FunctionTerm and its arguments
of TupleTerm class is modelled (graphically shown by a
solid �lled diamond) as composite aggregations6.

FunctionTerm has subclass LocationTerm to repre-
sent location terms, i.e. function applications f(t1, . . . , tn)
with f a dynamic (T10) function �xed by the signature
of the ASM.

VariableTerm class models logical variables which
should not be confused with variables of programming
de�ned as dynamic 0-ary functions in the ASM signa-
ture. Logical variables are typically used as formal pa-
rameters in function de�nitions or initializations, quan-
ti�ed expressions, and in rule declarations (see Sect. 7).

In ASMs, we have to distinguish logical variables
from location variables, which also appear as formal pa-
rameters in a rule declaration, but can be used only in
the rule body on the left-hand side of an update rule, and
rule variables used at places where transition rules are
expected (we better explain the role of these variables
in Sect. 6). The attribute kind of type VariableKind

6 A composition or composite aggregation is a special form
of binary association that speci�es a whole-part relationship
between the aggregate (whole) and a component part. It re-
quires that a part instance is included in at most one com-
posite at a time, and that the composite object is responsible
for the creation and destruction of the parts.

context Term::compatible(t: Term) : Boolean

T1: body: domain.compatible(t.domain)

context BooleanTerm inv:

T2: domain.oclIsTypeOf(BooleanDomain)

T3: BooleanTerm.allInstances()->size()=2

T4: BooleanTerm.allInstances()->exists(symbol

= `true') and BooleanTerm.allInstances()->

exists(symbol = `false')

context UndefTerm inv:

T5: domain.oclIsTypeOf(UndefDomain)

T6: UndefTerm.allInstances()->size()=1

T7: UndefTerm.allInstances()->

exist(symbol = `undef')

context FunctionTerm inv:

T8: domain = function.codomain

T9: if function.arity = 0

then arguments->isEmpty()

else arguments->notEmpty() and

arguments.domain.compatible(function.domain)

endif

context LocationTerm inv:

T10: function.oclIsTypeOf(DynamicFunction)

context VariableTerm inv:

T11: domain.oclIsTypeOf(RuleDomain) =

(kind = VariableKind::ruleVar)

Table 4 Term Constraints

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 11

Figure 7 Extended Terms

allows to set the nature of a VariableTerm instance.
VariableKind has been de�ned as enumeration class of
values locationVar for location variables, ruleVar for
rule variables, and logicalVar for logical variables. Lo-
cation variables can be replaced only by location terms,
rule variables only by rule terms, and logical variables by
all kind of terms, except location terms and rule terms.
These constraints are guaranteed by suitable OCL rules
on classes MacroCallRule and TurboCallRule (see Sect.
6).

The variable kind is determined by the context in
which the variable is assigned to a term, except for rule
variables. In fact, if (and only if) the domain of a Vari-

ableTerm is the RuleDomain, then the variable is a rule
variable (T11).

The class ExtendedTerm is the abstract root-class of
the class hierarchy (see Fig. 7) introduced to represent
special terms like tuples, collections, set terms, etc.

The class TupleTerm represents terms which are tu-
ples of terms (listed in terms). The arity of a tuple is
a derived attribute equal to the number (greater than
0 by de�nition of TermCollection) of composing terms
(E1 in Tab. 5). If the arity of a tuple is 1, then the do-
main of the tuple is that of the component term (E2) ;
otherwise, if the arity is greater than 1, the domain of
the tuple is the Cartesian product of the domains of the
corresponding component terms (E3).

Another subclass of ExtendedTerm is RuleAsTerm.
It models special terms, called rule terms, used to rep-
resent a transition rule (linked by rule) where a term is
expected (e.g as actual parameter in a rule application
to represent a transition rule, see Sect. 6). The domain
of a rule term must be RuleDomain (E4).

The class DomainTerm represents a term that appears
where the identi�er (or name) of a domain D �xed by the
ASM signature, or the expression of a structured type-
domain is expected. Usually, this term is combined with
other terms to construct more complex terms to be used,
for example, in a domain de�nition or initialization (see
Sect. 7). The domain of a DomainTerm dt is a powerset
(E5) whose baseDomain is the domain dt represents.

The abstract class CollectionTerm models types
which are collection of terms, as set, bag, sequence, and
map. The subclass SetTerm represents a mathematical
set {t1, . . . , tn} where t1, . . . , tn are terms of the same
type. A set does not contain duplicate elements, and has
no order de�ned on it. The derived attribute size of a
set term is the number of terms ti it contains (E6). The
domain of a set term must be a powerset domain over
the domain D associated to all terms ti (E7). Note that,
if the set is empty, then D can be any type domain. D
is generally set during the creation of the empty set de-
pending on the type of the elements the set is going to
contain.

In order to enrich the language of terms, Section
11.0.2 introduces other terms including numerical terms,
collection terms (maps, sequences and bags), condition
and case terms, and variable binding terms.

6 Metamodelling ASM Transition Rules

As extension of Finite State Machines, the ASMs are
transition systems. The transition relation is speci�ed by
rules which update abstract states, namely they describe
the modi�cation of (dynamic) functions from one state
to the next.

The computation of an ASM is modelled through a
�nite or in�nite sequence S0, S1, . . . , Sn, . . . of states of
the machine, where S0 is an initial state and each Sn+1

is obtained from Sn by �ring simultaneously all rules
which are enabled in Sn.

The abstract class Rule (see Fig. 8) models transi-
tion rules. We describe here one of its subclasses, the
class BasicRule which represents the rule constructors
for the basic model of ASMs, whereas more complex
forms of ASM transition rules are later introduced to
model Turbo ASM (see Sect. 8).

Let l = (f, (v1, . . . , vn)) be a location and v be a
value. Pairs (l, v) are called updates and they represent
the basic form of state change. To �re an update (rule)

f(t1, . . . , tn) := t

where f is a function symbol and t1, . . . , tn, t are terms,
�rst all parameters ti, t are evaluated in the current state
of the ASM yielding to values vi and v, respectively,
then the value of f at v1, . . . , vn is updated to v which
represents the value of f(t1, ..., tn) in the next state.

The class UpdateRule (see Fig. 8) represents an up-
date rule as in l := t, where the right-hand side t is a
generic term and it is linked by the association end up-

datingTerm, while the left-hand side l is linked by the
association end location. Term l must be compatible
with t (R1 in Tab. 6).

The term l is either a location term f(t1, . . . , tn) or
a location variable term x (R2). Note that in the latter
case, the update x := t occurs inside a rule R(x) having
x as parameter. When R(x) is called as R(l), with l a

12 Angelo Gargantini et al.

context TupleTerm inv:

let size:Integer = terms.items->size() in

E1: arity = size and

E2: if size = 1 then domain = terms.items->at(1).domain

E3: else domain.oclIsTypeOf(ProductDomain) and domain.oclAsType(ProductDomain).domains.items->size() =

size and Sequence{1..size}->forAll(i:Integer |

domain.oclAsType(ProductDomain).domains.items->at(i) = terms.items->at(i).domain) endif

E4: context RuleAsTerm inv: domain.oclIsTypeOf(RuleDomain)

E5: context DomainTerm inv: domain.oclIsTypeOf(PowersetDomain)

context SetTerm inv:

E6: size = term->size()

E7: domain.oclIsTypeOf(PowersetDomain) and

term->forAll(t:Term|domain.oclAsType(PowersetDomain).baseDomain = t.domain)

Table 5 Extended Term Constraints

location term, then x is replaced by l which is updated
as explained before.

An update rule is the basic form of a transition rule.
There are some rule constructors which are represented
by subclasses of the class BasicRule as shown in Fig. 8
and 9.

Typically, an ASM transition system appears as a set
of guarded updates

if cond then updates

All function updates are simultaneously executed when
the condition cond is true.

A more general schema is the conditional rule (mod-
elled by the subclass ConditionalRule) of the form

if ϕ then R1 else R2 endif

where ϕ, the guard, is a term representing a boolean
condition (R3), R1 (thenRule) and R2 (elseRule) are
transition rules. The meaning is: if the value resulting
from the evaluation of the guard ϕ is true then execute
R1, otherwise execute R2. If R2 is omitted (since it is
optional), from a semantic view it is assumed that R2

≡ skip, where skip is the empty rule whose meaning is:
do nothing. The skip rule is represented by the subclass
SkipRule.

If a set of transition rules have to be executed simul-
taneously, a block rule is used (modelled by BlockRule).
It has the form

par R1 . . . Rn endpar

and the meaning is: execute in parallel the transition
rules R1 . . . Rn, listed in the rules attribute. In case of
inconsistency (e.g. a set of updates with clashing ele-
ments) the computation does not yield the next state
and an error message should be reported by the execut-
ing engine.

To construct new elements and to add them to do-
mains, we use an extend rule of the form

extend D with x1, . . . , xn do R

where D is the (usually user-de�ned) domain to extend,
x1, . . . , xn are logical variables which are bound to the
new elements imported in D from the reserve, and R
is a transition rule. The meaning is: choose the elements
x1, . . . , xn from the reserve, delete them from the reserve,
add them to the domain D and execute R. The class Ex-
tendRule models an extend rule. The domain to extend
(extendedDomain) must be dynamic (R4) and the vari-
ables xi (linked by the association end boundVar) must
be logical variables ranging in D (R5).

Non determinism is a convenient way to abstract
from details of scheduling of rule executions. It can be
expressed by a choose rule of the form

choose x1 in D1, . . . , xn in Dn with ϕ(x1, . . . , xn)
do R1 ifnone R2

where x1, . . . , xn are variables, D1, ..., Dn are terms rep-
resenting the domains where variables xi take their value,
ϕ is a term representing a boolean condition over the
variables xi, R1 is a transition rule containing occur-
rences of the variables xi, and R2 is a transition rule.
The meaning is: choose arbitrary x1 in D1, . . . , xn in
Dn satisfying the condition ϕ and then execute R1. If
no such a set of variables exists execute R2. If R2 is
omitted, it is assumed R2 ≡ skip.
The subclass ChooseRule models a choose rule. Vari-
ables xi are all di�erent and are linked via the associa-
tion end variable. Di are listed in the attribute ranges
(in which the same domain may occur several times). We
assume that each Di is a term: it may be either a domain
(as DomainTerm) or a generic set (including but not lim-
ited to a SetTerm or a ComprehensionTerm introduced
in Section 11.0.6). The domain of Di must be a Pow-

ersetDomain (R6) whose base domain must be equal to
the domain of xi (R7). The term ϕ denoting the selection
criteria must be boolean (R8). The number of variables
xi is equal to the number of terms Di (R9).

Simultaneous execution allows to abstract from se-
quentiality where it is irrelevant for an intended design.
This synchronous parallelism is expressed by a forall rule
which has form

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 13

context UpdateRule inv:

R1: location.compatible(updatingTerm)

R2: location.oclIsTypeOf(LocationTerm) or (location.oclIsTypeOf(VariableTerm) and

location.oclAsType(VariableTerm).kind = VariableKind::locationVar)

R3: context ConditionalRule inv: guard.domain.oclIsTypeOf(BooleanDomain)

context ExtendRule inv:

R4: extendedDomain.isDynamic=true

R5: boundVar->forAll(v:VariableTerm | v.domain = extendedDomain and v.kind=VariableKind::logicalVar)

context ChooseRule inv:

Sequence{1..variable->size()}-> forAll(i:Integer |

R6: ranges.items->at(i).domain.oclIsTypeOf(PowersetDomain) and

R7: variable->at(i).domain = ranges.items->at(i).domain.oclAsType(PowersetDomain).baseDomain)

R8: guard.domain.oclIsTypeOf(BooleanDomain)

R9: variable->size() = ranges.items->size()

context ForallRule inv:

Sequence{1..variable->size()}-> forAll(i:Integer |

R10: ranges.items->at(i).domain.oclIsTypeOf(PowersetDomain) and

R11: variable->at(i).domain = ranges.items->at(i).domain.oclAsType(PowersetDomain).baseDomain)

R12: guard.domain.oclIsTypeOf(BooleanDomain)

R13: variable->size() = ranges.items->size()

context LetRule inv:

R14: initExpression->size() = variable->size() and Sequence{1..variable->size()}->

forAll(i:Integer| variable->at(i).domain = initExpression->at(i).domain)

context RuleDeclaration inv:

R15: arity = variable->size()

context MacroCallRule inv:

R16: parameter->size() = calledMacro.arity

let arity:Integer = parameters->size() in

Sequence{1..arity}->forAll(i:Integer |

R17: calledMacro.variable->at(i).compatible(parameters.items->at(i)) and

R18: calledMacro.variable->at(i).kind=VariableKind::locationVar implies

(parameters.items->at(i).oclIsTypeOf(LocationTerm)

or (parameters.items->at(i).oclIsTypeOf(VariableTerm) and

parameters.items->at(i).oclAsType(VariableTerm).kind = VariableKind::locationVar))

Table 6 Rule Constraints

Figure 8 Basic transition rules (Part1)

14 Angelo Gargantini et al.

Figure 9 Basic transition rules (Part 2)

forall x1 in D1, . . . , xn in Dn with ϕ do R

where x1, . . . , xn are variables, D1, ..., Dn are terms rep-
resenting the domains where variables xi take their value,
ϕ is a term representing a boolean condition over the
variables xi, R is a transition rule containing occur-
rences of the variables xi bound by the quanti�er. The
meaning is: execute in parallel R for each set of variables
x1, . . . , xn satisfying the given condition ϕ.

In a forall rule, modelled by the class ForallRule,
the terms Di are listed in the ranges attribute, while
variables xi are linked by the association end variable.
The type-domain of every term Di must be a power set
domain (R10). The domain of xi must be set accordingly
(R11). The guard ϕ must be boolean (R12). The number
of variables xi is equal to the number of Di (R13).

When abbreviation on terms or rules is necessary, in
ASMs we can make use of let rules and macros, respec-
tively. The class LetRule represents a let rule as in

let (x = t) in R endlet

where x is a variable, t is a term, R is a transition rule
which contains occurrences of the variable x. The mean-
ing is: assign the value of the term t to the variable x
and then execute R. This rule scheme can be generalized
by the following reduction schema

let (x1 = t1, . . . , xn = tn) in R endlet ≡
let (x1 = t1) in let (x2 = t2) in . . .

let (xn = tn) in R endlet . . . endlet endlet

In a let rule, terms ti are linked by the association
end initExpression and variables xi are linked by the

association end variable. The number of terms ti must
be equal to the number of variables xi, and the type-
domain associated to each variable xi must be equal to
the one associated to each term ti (R14).

Variables appearing in rules such as let, forall and
choose are not free variable occurrences, but they are
bound to the scope determined by the rule portion in
which they are used. These variables are not part of the
ASM state.

In order to structure large ASMs, one can introduce
reusable rules, also called macro, by rule declarations
modelled by the class RuleDeclaration. A rule declara-
tion for a rule name r of arity n is an expression

r(x1 in D1, . . . , xn in Dn) = R

where R is a transition rule, the free variable of R are
contained in the list x1 . . . xn, and Di are the domains
where variables xi take their value. In a RuleDecla-

ration, R is given by the association end ruleBody,
x1 . . . xn are linked by the association end variable, r
is given by the name attribute, and n by the arity de-
rived attribute (set by the constraint R15). Formal pa-
rameters xi can be logical variables or location variables
or rule variables and they are the only freely occurring
variables in the rule body R.
A RuleDeclaration refers to a macro rule or to a Turbo
submachine which will be introduced in Sect. 8. The sub-
class MacroDeclaration models a rule declaration of a
macro.

The class MacroCallRule (see Fig. 9) represents the
application of a named macro rule r as in r[t1, . . . , tn].
Its meaning is: expand r[t1, . . . , tn] with the body of

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 15

[[skip]]Aζ = ∅

[[f(t1, . . . , tn) := t]]Aζ = {(l, v)}
where l = f〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉, v = [[t]]Aζ

[[par R1 R2 endpar]]
A
ζ = [[R1]]

A
ζ ∪ [[R2]]

A
ζ

[[if ϕ then R1 else R2 endif]]
A
ζ = [[R1]]

A
ζ if [[ϕ]]Aζ = true

[[if ϕ then R1 else R2 endif]]
A
ζ = [[R2]]

A
ζ if [[ϕ]]Aζ = false

[[let (x = t) in R endlet]]Aζ = [[R]]Aζ[x→a] where a = [[t]]Aζ

[[forall x in D with ϕ do R]]Aζ =
S

v∈V [[R]]Aζ[x→v]

where V = {v ∈ [[D]]Aζ | [[ϕ]]Aζ[x→v] = true}

[[choose x in D with ϕ do R1 ifnone R2]]
A
ζ = [[R1]]

A
ζ[x→a]

if a ∈ {v ∈ [[D]]Aζ | [[ϕ]]Aζ[x→v] = true}

[[choose x in D with ϕ do R1 ifnone R2]]
A
ζ = [[R2]]

A
ζ

if {v ∈ [[D]]Aζ | [[ϕ]]Aζ[x→v] = true} = ∅

[[r[t1, . . . , tn]]]Aζ = [[body t1,...,tn
x1,...,xn

]]Aζ if a macro de�nition

r(t1, . . . , tn) = body exists

[[r[]]]Aζ = [[body]]Aζ if a macro de�nition r = body exists

[[extend D with x do R]]Aζ = [[R]]Aζ[x→a] ∪ {(D〈a〉, true)}
∪ {(Reserve〈a〉, false)} if a ∈ Res(A) \ ran(ζ),
where Res(A) = {a ∈ |A| | ReserveA〈a〉 = true}

Table 7 Update Sets of Basic ASMs. [[R]]Aζ is the set of
updates de�ned by rule R in state A with variable assignment
ζ of range ran(ζ). Updates are pairs (l, v) of locations l and
values v, to which the location is intended to be updated.
Locations l = f〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉 consist of an n-ary function
name f with a sequence of length n of elements in the domain
of A. The value fA〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉 is the content of the
location in A.

r replacing the occurrences of the formal parameters
x1, . . . , xn of r with the values of the corresponding ac-
tual parameters t1, . . . , tn, and then execute it. The rule
to apply is linked by the association end calledMacro.
The number of actual parameters t1, . . . , tn must be
equal to the arity of the rule to apply (R16) and formal
parameters xi must be compatible with the correspond-
ing terms ti(R17).

If a formal parameter of a macro rule declaration is
a location variable, then it can be replaced only by an
actual parameter which is either a location term or a
location variable (R18).

The semantics of all transition Basic ASM rules is
summarized by the calculus in Tab. 7 inspired by [16].

7 Metamodelling Basic ASMs

According to the working de�nition given in [16], a basic
ASM has a name and is de�ned by a header (to en-

context Asm inv:

A1: mainrule->notEmpty() implies mainrule.arity=0

context ExportClause inv:

A2: exportedDomain->notEmpty() or

exportedFunction->notEmpty() or

exportedRule->notEmpty()

Table 8 Basic Asm Constraints (Part 1)

stablish the signature) and a body (to de�ne domains,
functions, and rules). Executing a basic ASM means ex-
ecuting its main rule starting from one speci�ed initial
state.

Fig. 10 shows the MOF model of a Basic ASM de-
�ned by a name, a Header, a Body, a mainrule and an
Initialization.

The class Asm is a root element (just like a root node
in a graph) from which all the other elements of the
metamodel can be reached. An instance of this class rep-
resents an entire ASM speci�cation. Note that, the com-
posite relationships between the class Asm (the whole)
and its component classes (the parts) assures that each
part is included in at most one Asm instance.

Since ASM allows structured model construction, a
notion of library module is also supported to syntacti-
cally structure large speci�cations. An ASM module is
an ASM without a main rule and without a set of initial
states 7.

The mainrule is a named transition rule which usu-
ally takes the same name of the ASM. It is closed, i.e.
it does not contain free variables (A1 in Tab. 8), so that
its semantics depends on the state of the machine only.

The header, modelled by the class Header (see Fig. 11),
consists of some import clauses and an optional ex-
port clause to specify the names which are imported
from or exported to other ASMs (or ASM modules), and
of its signature containing the declarations of the ASM
domains and functions. Every ASM is allowed to use only
identi�ers (for domains, functions and transition rules)
which are de�ned within its signature or imported from
other ASMs or ASM modules.

The class ImportClause provides names of domains,
functions and transition rules that are imported from
other ASMs. The imported domains and functions

will be statically added to the signature of the ASM8,
while the imported transition rules will enrich its body
interface. If an ASM (or ASM module) is imported with-
out specifying the imported domains, functions and rules
names, we assume that all the content of the export
clause of the imported ASM is imported. Moreover, do-

7 This de�nition of module di�ers slightly from the module
concept outlined in Chap. 2 of [16]; but, it has been accorded
with the authors.
8 We assume that there are no name clashes in the signa-

ture. However, we admit function overloading provided that
their domains are di�erent.

16 Angelo Gargantini et al.

Figure 10 Backbone

Figure 11 Header

mains and codomains of imported functions are auto-
matically added to the signature, although their names
are not explicitly speci�ed in the import clause.

The class ExportClause provides names of domains,
functions, and transition rules that can be imported by
other ASMs or ASM modules. If it exists, then it must
contain at least one domain, or one function, or one rule
to export (A2).

The class Signature is a �nite collection of function
and domain names (declarations).

The initialization of an ASM consists of a set of initial
states. The class Initialization (see Fig. 12) models
the notion of an initial state. All possible initial states
are linked (see Fig. 10) to an ASM by the association
end initialstate and one initial state is elected as
default (designed by the association end defaultIni-

tialState). Each initial state has a name and is de�ned
specifying an initial value for dynamic functions and dy-
namic concrete domains declared in the signature of the
ASM. The class DomainInizialization models the ini-
tialization of a dynamic concrete domain and the class
FunctionInitialization models the initialization of a
dynamic function. An Initialization consists of a set
of DomainInizialization linked by the association end
domainInizialization and a set of FunctionInitial-
ization linked by the association end functionIni-

tialization. Within an initial state of an ASM there
must be at least one domain or function initialization
(I1 in Tab. 9), and a dynamic concrete domain and a
dynamic function can be initialized only once (I2 and
I3).

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 17

context Initialization inv:

I1: domainInitialization->notEmpty() or functionInitialization->notEmpty()

I2: domainInitialization->forAll(d1,d2:DomainInitialization | d1<>d2 implies

d1.initializedDomain<>d2.initializedDomain)

I3: functionInitialization->forAll(f1,f2:FunctionInitialization|f1<>f2 implies

f1.initializedFunction<>f2.initializedFunction)

context DomainInizialization inv:

I4: initializedDomain.isDynamic = true

I5: body.domain.oclIsTypeOf(PowersetDomain) and

body.domain.oclAsType(PowersetDomain).baseDomain = initializedDomain.typeDomain

context FunctionInitialization inv:

I6: variable->size() = initializedFunction.arity

let size:Integer = self.variable->size() in let D:Domain = self.initializedFunction.domain in

I7: if size = 1 then variable->at(1).domain = D

else if size > 1 then

I8: (D.oclIsTypeOf(ProductDomain) and Sequence{1..size}-> forAll(i:Integer |

variable->at(i).domain = D.oclAsType(ProductDomain).domains.items->at(i))) or

I9: (D.oclIsTypeOf(ConcreteDomain) and

D.oclAsType(ConcreteDomain).typeDomain.oclIsTypeOf(ProductDomain) and Sequence{1..size}->

forAll(i:Integer | variable->at(i).domain = D.oclAsType(ConcreteDomain).typeDomain.

oclAsType(ProductDomain).domains.items->at(i))) endif endif

I10: initializedFunction.codomain.compatible(body.domain)

Table 9 Initialization Constraints

Figure 12 Initialization

The concrete domain initialized by a DomainInizial-
ization is linked by the association end initialized-

Domain and must be dynamic(I4). The term body spec-
i�es the elements initially belonging to the domain. The
domain of body must be a powerset domain over D,
where D is the type-domain of the concrete domain to
initialize (I5).

The function initialized by a FunctionInitializa-

tion is linked by the association end initializedFunc-

tion and must be dynamic. A function initialization, has
form

f(x1 in D1, . . . , xn in Dn) = body

where x1, . . . , xn are the formal parameters of the func-
tion linked by the association end variable, D1, . . . , Dn

are the domains where x1, . . . , xn take their value9, and
body is the term de�ning the function. A dynamic func-
tion can be initialized either by declaring the associa-
tions between elements of domain(f) with elements of
codomain(f) by means of a map term (see Sect. 11.0.2),
or by specifying an initialization law which has not to

9 The association end domain in Fig. 32 on page 38 links
the variable xi to its domain Di

18 Angelo Gargantini et al.

be intended as a function law, like for a static function,
but a concise form for function initialization.

In a function initialization, the number n of formal
parameters xi must be equal to the arity of the function
to initialize (I6). If the function to initialize has:

� only one formal parameter x, then the domain D
where x takes its value must be equal to the domain
Df of the function (I7).

� more than one formal parameter x1, .., xn taking value
in D1, .., Dn, then the domain D of the function is ei-
ther directly a product domain D1 × . . . ×Dn (case
I8), or D is a concrete domain whose type-domain is
a product domain A1 × . . . × An, and each domain
Ai is equal to Di for i = 1..n (case I9).

For the function body, which is a generic term, we re-
quire that its domain is compatible with the function
codomain (I10).

The Body (see Fig. 13) of an ASM consists of (static)
domain and (static/derived) function de�nitions accord-
ing to domain and function declarations in the signature
of the ASM. It also contains declarations of transition
rules and de�nitions of axioms for constraints one wants
to assume for some domains, functions, and transition
rules of the ASM.

The class DomainDefinition de�nes a concrete static
domain (B1 in Tab. 10 on the next page) . The term body

speci�es the elements of the concrete domain. The body
domain must be the power set domain over the domain
D, being D the type-domain associated to the concrete
domain (B2).

The class FunctionDefinition represents the de�-
nition of a static/derived function (B3) declared in the
ASM signature. A function de�nition, which speci�es the
virtual table that associates domain elements to codomain
elements, is similar to function initialization. Therefore,
it has form

f(x1 in D1, . . . , xn in Dn) = body

where variables x1, . . . , xn are the formal parameters
of the function, D1, . . . , Dn are the domains where x1, . . . ,
xn take their value, and body is the term de�ning the
function. If the function is static, it can be de�ned either
explicitly declaring the associations between elements of
domain(f) with elements of codomain(f) by means of
a map term, or specifying the function law. A derived
function is always given specifying its law since it is de-
�ned in terms of other functions.

Besides the constraint B3, the FunctionDefinition
class has OCL constraints similar to those de�ned for
the FunctionInitialization class above.

The class Axiom is detailed in Fig. 14. It represents a
constraint one wants to assume for functions (typically
dynamic monitored functions), domains �xed by the sig-
nature, and rules. The expression of an axiom is given
by a term, speci�ed by the association end body, which
yields a boolean value (B4) when valuated in a state of

the ASM. An axiom must refer to at least one rule, or
one function or one domain (B5).

Note that axioms, domains, functions, and rule decla-
rations are all represented by sub-classes of the abstract
class Classifier (see Fig. 14 on the facing page).

8 Metamodelling Turbo ASMs

The characteristics of basic ASMs (simultaneous execu-
tion of multiple atomic actions in a global state) come
at a price, namely the lack of direct support for practical
composition and structuring principles. Turbo ASMs of-
fer as building blocks sequential composition, iteration,
and parameterized (possibly recursive) sub-machines ex-
tending the macro notation used with basic ASMs. They
capture the sub-machine notion in a black-box view hid-
ing the internals of subcomputations by compressing them
into one step.

A Turbo ASM can be obtained from basic ASMs
by applying �nitely often and in any order the opera-
tors of sequential composition, iteration and submachine
call. Therefore, we need to extend the abstract syntax of
Basic ASMs (Sect. 7) by introducing in the metamodel
Turbo ASM operators, shown in Fig. 15 and 16.

The class SeqRule (see Fig. 15) denotes the sequen-
tial composition seq R1 R2 endseq of two transition
rules R1 and R2. The semantics is: �rst execute R1 in
the current state A and then R2 in the resulting state
A + U (if de�ned), where U is the set of updates pro-
duced by R1 in A. Note that R2 may overwrite a location
which has been updated by R1 (merging of two update
sets). Moreover, this de�nition implies that a sequen-
tial computation gets stuck to U once an inconsistency
is encountered in its �rst part R1. This semantics can
be straightforwardly generalized to a sequential compo-
sition of n rules as in seq R1 . . . Rn endseq. Rules
R1 . . . Rn are listed in the attribute rules which may
contain the same rule several times.

The class IterateRule (see Fig. 15) denotes an iter-
ated rule application of form iterate R enditerate. Its
semantics can be given in terms of the semantics of a se-
quence rule according to the following scheme: R0 = skip
and Rn+1 = seq Rn R endseq. Denote by An the state
(if de�ned) obtained by �ring the update set produced
by Rn in state A. There are two natural stop situations
for iterations without a priori �xed bound, namely when
the update set produced by Rn becomes empty (the case
of successful termination) and when it becomes incon-
sistent (the case of failure). The rule R to be iterated is
denoted by the association end rule.

The submachine concept is de�ned by means of turbo
submachines which are named parameterized rule calls
r(t1, . . . , tn) with actual parameters t1, . . . , tn, coming
with a rule de�nition of the form r(x1, . . . , xn) = R,
where R is a rule called body. The subclass TurboDecla-
ration of the class RuleDeclaration (see Fig. 9) models

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 19

Figure 13 Body

context DomainDefinition inv:

B1: definedDomain.isDynamic = false

B2: body.domain.oclIsTypeOf(PowersetDomain) and

body.domain.oclAsType(PowersetDomain).baseDomain = definedDomain.typeDomain

context FunctionDefinition inv:

B3: definedFunction.oclIsTypeOf(StaticFunction) or definedFunction.oclIsTypeOf(DerivedFunction)

�- constraints I6,I7, I8, I9, and I10

context Axiom inv:

B4: body.domain.oclIsTypeOf(BooleanDomain)

B5: constrainedRule->notEmpty() or constrainedFunction->notEmpty() or constrainedDomain->notEmpty()

Table 10 Basic Asm Constraints (Part 2)

Figure 14 Common ASM de�nitions

20 Angelo Gargantini et al.

the declaration of a Turbo submachine whose semantics
is di�erent from the one of a macro. A macro rule, as
presented in Sect. 6, represents a reusable unit which is
replaced by its de�nition whenever used. A Turbo sub-
machine implies internal hidden subcomputations which
are compressed in one step executable in parallel with
the other rules. The declaration of a turbo submachine
may specify also the domain of the returned result (if
any) in the association end resultType.

We distinguish a macro rule application r[t1, . . . , tn]
(see Sect. 6) from a turbo rule application r(t1, . . . , tn).
The class TurboCallRule (see Fig. 15) represents the
application r(t1, . . . , tn) of a named rule r (calledRule)
with a turbo submachine semantics to express in abstract
form the usual imperative calling mechanism, including
recursive invocations of rules. Nested calls of a recursive
rule r are unfolded into a sequence R1, R2, . . . of rule
incarnations, where each Ri may trigger one more exe-
cution of r, by relegating the interpretation of possibly
yet another call of r to the next incarnation Ri+1. This
may produce an in�nite sequence. If, however, a basis
for the recursion does exist, say Rn, it yields a well-
de�ned value for the semantics of r through the chain
of successive calls of Ri; otherwise the semantics of the
rule application is unde�ned. The rule body is executed
substituting the occurrences of the formal parameters xi

with the actual arguments ti in a call-by-name fashion,
i.e. the formal parameters are substituted by the actual
parameters' expressions which are evaluated only later
when they are used (not in the current state when the
rule is applied). A call-by-value evaluation, however, can
be achieved (as suggested in [16], Sect. 4.1.2) by com-
bining the rule r with a let rule as follows:

r(y1, . . . , yn) =
let (x1 = y1, . . . , xn = yn) in body endlet

In a TurboCallRule the number n of actual param-
eters t1, . . . , tn must be equal to the arity of the rule
(U1 in Table 11), and each actual parameter ti must be
compatible with the corresponding formal parameter xi

(U2). Furthermore, location variables which appear as
formal parameters of a rule declaration can be replaced
only by actual parameters which are location terms or
location variables (U3).

The class TryCatchRule (see Fig. 16) represents a
try-catch rule of form try P catch l1, . . . , ln Q, where
P and Q (denoted in the diagram by the association ends
tryRule and catchRule, respectively) are rules, and li
are locations terms or location variables (denoted by the
association end location). A try-catch rule is used to
separate error handling from normal execution. Produc-
ing an inconsistent update set has to be considered here
as an abstract form of throwing an exception. The ex-
ecution of a try-catch rule results in the update set of
P , if this update set is consistent on the locations li,
otherwise � if P fails but without inconsistency over li
or if P succeeds without inconsistency � it removes the
e�ects of executing P and yields the resulting update set

Figure 17 Local Function

of Q. Note that, since the rule enclosed by the try-block
is executed either completely or not at all, there is no
need for a sort of �nally clause to remove trash.

For the class TryCatchRule we impose the constraint
that at least one location or location variable must oc-
cur in the location set {l1, . . . , ln} and the location set
{l1, . . . , ln} contains only location variables or location
terms (U4).

The class TurboReturnRule (see Fig. 16) represents
the special assignment l ←− r(t1, . . . , tn) where l is a
location (linked by the association end location) and
r(t1, . . . , tn) is a turbo submachine (linked by the asso-
ciation end updateRule) which returns a value to be as-
signed to l. The location l in which to store the intended
return value can be either a location variable term or a
location term (U5), and the domain of l must be com-
patible with the domain of the returned value (U6). A
turbo-return rule has the overall e�ect of executing the
body of r, where the location l has been substituted for
a reserved 0-ary function result, which acts as place-
holder for the location in which to store the return value.
A good encapsulation discipline should take care that r
does not modify the values of terms appearing in l, since
they contribute to determining the location where the
caller expects to �nd the return value.

The class TurboLocalStateRule (see Fig. 16) rep-
resents a turbo submachine with locally visible parts of
the state. These submachines are obtained from named
turbo rules by allowing some dynamic functions to be
declared locally to the rule. In order to model local dy-
namic functions, the classi�cation of dynamic functions
shown in Fig. 5 must be modi�ed by adding the class
LocalFunction (see Fig. 17). Furthermore we must add
a constraint to the class Signature to guarantee that
it does not contain declarations of local functions (U7),
since function names declared in it have a global visibil-
ity within the scope of the entire ASM.

A named turbo submachine r(x1, . . . , xn) with local
state can be de�ned as:

r(x1, . . . , xn) = local f1 : D1 → C1[Init1]
. . .
local fk : Dk → Ck[Initk]
body

where body and Initi are rules linked by the associa-
tion ends body and init, fi are local dynamic functions
from domain Di to domain Ci and linked by the asso-
ciation end localFunction. The number k of functions

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 21

Figure 15 Turbo transition rules (Part 1)

Figure 16 Turbo transition rules (Part 2)

declared locally must be equal to the number of the ini-
tializing rules (U8). Each application of r works with its
own incarnation of the local dynamic functions fi. Each
local function fi is initialized by the corresponding rule
Initi before the body rule is executed. The update set for
the local functions are collected together with all other
function updates made in body, including the updates of
the initializing rules Initi. The restriction of the scope
of the local functions to the rule de�nition is obtained
then by removing from the update set available after the
execution of body the set of updates concerning the local
functions fi.

The calculus Table 12 inspired by [16] summarizes
the semantics of all transition rules for Turbo ASM.

9 Metamodelling Multi-agent ASMs

A multi-agent synchronous ASM is de�ned as a set of
agents executing their own ASMs in parallel, synchro-
nized using an implicit global system clock. Semantically
a sync ASM is equivalent to the set of all its constituent
single-agent ASMs, operating in the global states over
the union of the signatures of each component.

Anmulti-agent asynchronous ASM is given by a fam-
ily of pairs (a,ASM(a)) of pairwise di�erent agents, ele-

22 Angelo Gargantini et al.

context TurboCallRule inv:

U1: parameters->size() = calledRule.arity

Sequence{1..parameters->size()}->forAll(i:Integer |

U2: calledRule.variable->at(i).compatible(parameters.items->at(i))) and

U3: (calledRule.variable->at(i).kind=VariableKind::locationVar implies

(parameters.items->at(i).oclIsTypeOf(LocationTerm)

or (parameters.items->at(i).oclIsTypeOf(VariableTerm)

and parameters.items->at(i).oclAsType(VariableTerm).kind = VariableKind::locationVar)))

context TryCatchRule inv:

U4: location->forAll(t:Term | t.oclIsTypeOf(LocationTerm) or (oclIsTypeOf(VariableTerm) and

t.oclAsType(VariableTerm).kind=VariableKind::locationVar))

context TurboReturnRule inv:

U5: location.oclIsTypeOf(LocationTerm) or (location.oclIsTypeOf(VariableTerm) and

location.oclAsType(VariableTerm).kind=VariableKind::locationVar))

U6: and (location.domain.compatible(updateRule.calledRule.resultType))

U7: context Signature inv: function->forAll(f:Function| not f.oclIsTypeOf(LocalFunction))

U8: context TurboLocalStateRule inv: localFunction->size() = init->size()

Table 11 Turbo ASM Constraints

[[seq R1 R2 endseq]]Aζ = [[R1]]
A
ζ ⊕ [[R2]]

A+[[R1]]Aζ
ζ where

the notation ⊕ indicates the merging of two update sets
U ⊕ V = {(l, v) ∈ U | l /∈ locs(V)} ∪ V , if U is consistent,
U ⊕ V = U , otherwise

[[iterate R enditerate]]Aζ = limn→+∞[[Rn]]Aζ , if for some

n ≥ 0 it holds that [[R]]An
ζ = ∅ or [[R]]An

ζ is incosistent

[[r(t1, . . . , tn)]]Aζ = [[body [t1/x1, . . . , tn/xn]]]Aζ if a turbo
submachine de�nition r(t1, . . . , tn) = body exists

[[r()]]Aζ = [[body]]Aζ if a turbo submachine de�nition r =
body exists

[[try P cacth l1, . . . , ln Q]]Aζ = [[P]]Aζ , if [[P]]Aζ is consistent
on the locations determined by the set {l1, . . . , ln}

[[try P cacth l1, . . . , ln Q]]Aζ = [[Q]]Aζ , if [[P]]Aζ is not con-
sistent on the locations determined by the set {l1, . . . , ln}

l← [[r(t1, ..., tn)]]Aζ = [[body [l/result, t1/x1, ..., tn/xn]]]Aζ
if a turbo submachine de�nition r(t1, ..., tn) = body exists

[[r(t1, . . . , tn)]]Aζ = [[({Init1 . . . Initk} seq body) [t1/x1, ...,

tn/xn]]]Aζ \U where U is the update set concerning the
local functions fi, if a turbo submachine de�nition

r(x1, . . . , xn) =
localf1 : [D1]→ C1[Init1]
. . .
localfk : [Dk]→ Ck[Initk]
body

exists

Table 12 Update Sets of Turbo ASMs. [[R]]Aζ is the set of
updates de�ned by rule R in state A with variable assignment
ζ. Updates are pairs (l, v) of locations l and values v, to
which the location is intended to be updated. Locations l =
f〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉 consist of an n-ary function name f with
a sequence of length n of elements in the domain of A.

ments of a possibly dynamic �nite set Agent, each exe-
cuting its (possibly the same but di�erently instantiated)
basic, structured or sync ASM ASM(a). Similar to the
use of this in OO programming to denote the object for
which the currently executed instance method has been
invoked, the relation between global and local states is
supported by the use of a reserved word self in functions
and rules to denote the agents.

A multi-agent ASM with synchronous agents has qua-
si-sequential runs, namely a sequence of states where
each state is obtained from the previous state by �ring
in parallel the rules of all agents.

A multi-agent ASM with asynchronous agents has
partially ordered runs, namely a partially ordered set
(M,<) of moves m (read: rule applications) of its agents
satisfying the following conditions: (a) �nite history : each
move has only �nitely many predecessors, i.e. for each
m ∈M the set {m′ | m′ < m} is �nite; (b) sequentiality
of agents: the set of moves {m | m ∈ M,a performs m}
of every agent a ∈ Agent is linearly ordered by <; (c)
coherence: each �nite initial segment (downward closed
subset) X of (M,<) has an associated state σ(X) � think
of it as the result of all moves in X with m executed
before m′ if m < m′ � which for every maximal ele-
ment m ∈ X is the result of applying move m in state
σ(X−{m}). In this section the abstract syntax presented
in Sect. 7 is extended to support multi-agent ASMs.

As shown in Fig. 18, the Asm class is endowed with
a further attribute isAsynchr of type Boolean (false by
default) which indicates whether the machine is asyn-
chronous multi-agent or not. For single-agent ASMs it
has no meaning.

Agents are identi�ed with the elements of a prede-
�ned abstract domain Agent represented (see Fig. 18) by
the class AgentDomain, which is a singleton class (M1 in

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 23

Figure 18 Re�nements for Multi-agent ASMs

Tab. 13) whose unique instance is Agent and is dynamic
(M2).

Two prede�ned functions, id : Agent → String and
program : Agent → Rule, are de�ned (as instances of
the class Function in the AsmM standard library) to
indicate the id name of the agent and the program, i.e
a transition rule, respectively. The transition rule asso-
ciated as program to an agent can be either a named
transition rule or an unnamed transition rule of the ASM
(M3).

Within transition rules, each agent can identify it-
self by means of a special reserved 0-ary function self :
Agent (de�ned in the AsmM standard library as instance
of the class Function), which is interpreted by each
agent a as a. Usually, for a function f de�ned from X
to Y , both the expressions (function application terms)
f(self, x) and self.f(x) denote the private version of
f(x) of the agent self .

An initial state of a multi-agent ASM should also
specify an initial set of running agents. This is done via
some initialization clauses represented in the metamodel
by instances of the class AgentInitialization (see Fig.
19). In case the initial state of the ASM does not specify
these clauses, it is assumed that the ASM is single-agent,
and that the name and the main rule of the ASM are
respectively the identi�er and the program of the single
running agent.

Executing a multi-agent ASM means executing its
main rule starting from one speci�ed initial state. If the
ASM has no main rule, by default, the ASM is started
executing in parallel the agents' programs as speci�ed
by the agent initialization clauses. If neither the main
rule nor the agent initialization clauses are provided, the
ASM is considered a library module.

The OCL constraint I1 within the context Initial-
ization de�ned in Sect. 7 must be rede�ned as in M4
to guarantee that an ASM initial state contains at least
one domain initialization, or function initialization, or
agent initialization.

10 Metamodel Architecture

The complete metamodel is organized in one package
called ASMETA, which is further divided into four pack-
ages as shown in Fig. 20. Each package covers di�erent
aspects of the ASMs. The dashed gray ovals in Fig. 20

Figure 19 Agent Initialization

context AgentDomain inv:

M1: AgentDomain.allIstances->size() = 1

M2: AgentDomain.isDynamic = true

context AgentInitialization inv:

M3: program->notEmpty() xor

namedProgram->notEmpty()

context Initialization inv:

M4: domainInitialization->notEmpty() or

functionInitialization->notEmpty() or

agentInitialization->notEmpty()

Table 13 Multi Agent ASM Constraints

denote the packages representing the notions of State
and Transition System, respectively.

� the Structure package (or the structural language)
de�nes the architectural constructs (modules and ma-
chines) required to specify the backbone of an ASM
model. This package contains the root class Asm.

� the Definitions package (or the de�nitional langua-
ge) contains all basic constructs (functions, domains,
constraints, rule declarations, etc..) which character-
ize algebraic speci�cations. The content of this pack-
age is mainly reported in Fig. 14 (Fig. 3 and 4 report
other specialized sub-classes representing speci�c do-
mains). Under the root abstract class Classifier ,
here we �nd classes Domains , Function , RuleDec-
laration , Axiom. The hierarchy of classes rooted by
the class Domain is contained in the sub-package Do-
mains.

� the Terms package (or the language of terms) pro-
vides all kinds of syntactic expressions which can be
evaluated in a state of an ASM. It is divided in two
packages: BasicTerms and FurtherTerms. The �rst
sub-package contains the hierarchy of classes rooted
by the class Term for all elementary terms presented
in Section 5.3. The second sub-package contains, in-
stead, other special terms (see next section) like nu-
merical terms, collection terms (maps, sequences and

24 Angelo Gargantini et al.

Figure 20 Package structure of the ASM Metamodel

bags), conditional and case terms, and variable bind-
ing terms.

� the TransitionRules package (or the language of
rules) contains all possible transition rules schemes of
Basic and Turbo ASMs. It is divided in tree packages:
BasicTransitionRules, TurboTransitionRules and
DerivedTransitionRules. The BasicTransition-

Rules package contains the abstract class Rule and
the hierarchy of classes rooted by the subclass Ba-

sicRule . The TurboTransitionRules package con-
tains the hierarchy of classes rooted by the class Tur-
boRule , also sub-class of Rule . Finally, all derived
transition rules are contained in the DerivedTransi-
tionRules package under the hierarchy of the class
DerivedRule , sub-class of Rule ; this last package is
described in the next section.

Further MOF types are used to de�ne the AsmM
itself (for typing classes attributes), in particular to ex-
tend or simply rename some MOF data types. These
types are (see Fig. 10): the enumeration VariableKind,
the class Arity (which represents non-negative integer
values) used to type the attribute indicating the arity of
a function or rule, and the classes DomainCollection,
TermCollection, and RuleCollection representing or-
dered MOF collections of type-domains, terms and rules,
respectively. Note that, these data types do not represent
the type system of the ASMs at model level.

11 Further Concepts

This section provides concepts which serve to enrich and
complete the AsmM speci�cation. New forms of type-
domains, terms and derived rules are introduced as new
classes in the corresponding packages of the metamodel.

11.0.1 The Definitions::Domains Package We com-
plete here the domain classi�cation providing new type-
domains: basic type-domains (supported by the AsmM
standard library) for primitive data values like reals, in-
tegers, naturals, strings, etc.; structured type-domains
for sequences and bags; and enum-domains to allow the
user to introduce new concepts of type through �nite
enumerations. In addition, we introduce a notion of generic
type-domain (see the class AnyDomain below) i.e. a do-
main which stands for any other type-domain.

The class model re�ecting the complete domain clas-
si�cation is shown in Fig. 32 and 23. A detailed descrip-
tion of the new classes follows.

ComplexDomain is a singleton class (X1 in Tab. 14)
whose unique instance represents the universe of all com-
plex numbers. Similarly, the class RealDomain represents
the universe of all real numbers; the class IntegerDo-

main represents the universe of all integer numbers; the
class NaturalDomain represents the universe of all natu-
ral numbers; the class CharDomain represents the uni-
verse of all characters ASCII and Unicode; the class
StringDomain represents the universe of all strings over
a standard alphabet (like ASCII or Unicode). All these
classes are singleton too, and this is stated by OCL rules
similar to the rule X1, not reported here for the sake of
brevity.

An instance of the class EnumTD represents a type-
domain de�ned by the user in terms of a �nite enumera-
tion. Elements of an enumeration are represented by in-
stances of the class EnumElement. For example, one may
de�ne the enumeration Color = {Red,Green,Blue} to
introduce the new concept of �color�. The enumeration
elements red, blue and green are EnumElement instances.

An instance of the class SequenceDomain represents
the set of all sequences over a speci�ed type-domain D,

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 25

Figure 21 Extended MOF datatypes for the AsmM

Figure 22 Domains (Part 1)

Figure 23 Domains (Part 2) � Structured domains

i.e. the set D∗ of all sequences over D. A sequence is
here considered like a mathematical ordered set which
may contain duplicates.

An instance of the class BagDomain represents the
domain of all �nite bags over a speci�c type-domain D.
A bag is like a mathematical set, which may contain

duplicates; that is, the same element may be in a bag
twice or more.

The class MapDomain represents the set of all �nite
maps between two speci�ed type-domains (from source-

Domain to targetDomain).

26 Angelo Gargantini et al.

context ComplexDomain inv:

X1: allIstances->size() = 1

...

Table 14 Basic Domain Constraint

context AnyDomain inv:

A1: allIstances->exist(e|e.name=`Any')

context SetTerm inv:

A2: if size = 0

then domain.oclAsType(PowersetDomain).

baseDomain.oclIsTypeOf(AnyDomain)

Table 15 Any Domain Constraints

An instance of the class AnyDomain represents a generic
domain, i.e. a domain which stands for any other type-
domain. A prede�ned AnyDomain instance named Any

(de�ned in the AsmM standard library) is always in-
stantiated (A1 in Tab. 15) and it is considered, among
all type-domains, the most generic one. This genericity
notion is used to abstract from the structure of speci�c
domains when one wants to declare and use, for example,
just one function for expressing a concept which applies
to objects of various types, or also to specify the type-
domain (which is mandatory) of empty collections like
the empty set (A2 in Tab. 15). This abstraction mech-
anism is used to de�ne many functions of the standard
AsmM library. To declare, for example, a function at
which returns the i-th element of a tuple, we can write
as follows:

static at : Prod(Prod(D1, D2), Natural) → Any
where D1 and D2 are two di�erent generic domains,
while Any stands for any domain (including D1 and D2).
The introduction of new domains causes the rede�ni-
tion of the query compatible() originally presented in
Tab. 3 on page 10. Tab. 16 reports the new constraints
to be added in order to deal with the domains intro-
duced in this section. The compatibility is recursively
checked taking into account the containment hierarchy
of the structured type-domains (if any). The basic type-
domains, enum type-domains, abstract type-domains, and
instances of the AnyDomain class are considered as basis
of the recursion. It is assumed, in particular, that the
Any instance of the AnyDomain class is compatible to
any domain.

During the parsing process all instances of the Any-
Domain class are turned in speci�c type domain instances.
These controlled side e�ects are carried out by the lin-
guistic analyzer after checking the compatibility. For ex-
ample, the compatibility test for the two domains Prod(-
Powerset(D), D) and Prod(Powerset(Integer), Integer)
would yield true with D set to Integer at the end.

11.0.2 The Terms::FurtherTerms Package Other con-
stant terms, collection terms (maps, sequences, and bags),

context ComplexTerm inv:

T10: domain.oclIsTypeOf(ComplexDomain)

context RealTerm inv:

T11: domain.oclIsTypeOf(RealDomain)

context IntegerTerm inv:

T12: domain.oclIsTypeOf(IntegerDomain)

context NaturalTerm Inv:

T13: domain.oclIsTypeOf(NaturalDomain)

context CharTerm inv:

T14: domain.oclIsTypeOf(CharDomain)

context StringTerm inv:

T15: domain.oclIsTypeOf(StringDomain)

context EnumTerm inv

T16: domain.oclIsTypeOf(EnumTD)

T17: domain.oclAsType(EnumTD).element ->

exist(e:EnumElement | e.symbol = symbol)

context ConditionalTerm inv:

T18: self.compatible(thenTerm) and

(elseTerm -> notEmpty() implies

self.compatible(elseTerm))

T19: guard.domain.oclIsTypeOf(BooleanDomain)

context CaseTerm inv:

T20: comparingTerm->size() = resultTerm->size()

T21: resultTerms->forAll(t:Term|self.compatible(t))

and self.compatible(otherwiseTerm)

T22: comparingTerm->forAll(t:Term |

comparedTerm.compatible(t))

Table 17 Term Constraints (Part 2)

variable-binding terms (let-terms, comprehension terms,
and �nite quanti�cation terms), etc., are here provided
as concrete subclasses of the Term class.

11.0.3 Further Constant Terms An instance of the class
ComplexTerm (see Fig. 24) represents a constant term
which is interpreted as a complex number and belongs
to the ComplexDomain (T10 in Tab. 17). Similarly, an
instance of the class RealTerm is a constant term inter-
preted as a real number, an instance of the class In-

tegerTerm is a constant term interpreted as an integer
number, an instance of the class NaturalTerm is a con-
stant term interpreted as a natural number, an instance
of the class CharTerm is a constant term interpreted as
a character (ASCII or Unicode), and an instance of the
class StringTerm is a constant term interpreted as a
string over a standard alphabet (ASCII or Unicode).

An instance of the class EnumTerm is a constant term
denoting an element of an enumeration type-domain (the
interpretation of such a term yields the denoted element
of that enumeration). The symbol denoted by an enum
constant term is an element of the enumeration type-
domain associated to the enum constant term (T17).

11.0.4 Further Extended Terms The class Condition-
alTerm (see Fig. 25) represents a conditional term of
form �if ϕ then tthen else telse endif�, where ϕ (de-
noted by the association end guard) is a term represent-

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 27

context Domain def: let compatible(d : Domain): Boolean =

-- as the previous version in Table 3 on page 10 plus

-- one is the predefined AnyDomain instance `Any'

let any= AnyDomain.allIstances->select(e|e.name=`Any') in self = any or d = any or

-- two SequenceDomain

(self.oclIsTypeOf(SequenceDomain) and d.oclIsTypeOf(SequenceDomain) and

self.oclAsType(SequenceDomain).domain.compatible(d.oclAsType(SequenceDomain).domain)) or

-- two BagDomain

(self.oclIsTypeOf(BagDomain) and d.oclIsTypeOf(BagDomain) and

self.oclAsType(BagDomain).domain.compatible(d.oclAsType(BagDomain).domain)) or

-- two MapDomain

(self.oclIsTypeOf(MapDomain) and d.oclIsTypeOf(MapDomain) and

self.oclAsType(MapDomain).sourceDomain.compatible(d.oclAsType(MapDomain).sourceDomain) and

self.oclAsType(MapDomain).targetDomain.compatible(d.oclAsType(MapDomain).targetDomain))

Table 16 Rede�nition of compatible

Figure 24 Constant Terms

Figure 25 Extended Terms

ing the condition, and tthen and telse are terms denoted
by the association ends thenTerm and elseTerm, respec-
tively. If telse is omitted it is assumed by default that
telse ≡ undef . A conditional term must be compatible
to the term tthen, and to telse (if any) (T18), and the
type-domain of the term denoting the condition is the
boolean domain (T19).

The class CaseTerm (see Fig. 25) represents a case
term of the form

switch t
case t1 : s1 . . . case tn : sn otherwise sn+1

endswitch

where t (denoted by the association end comparedTerm),
t1, . . . , tn (denoted by the association end comparingTerm),

28 Angelo Gargantini et al.

s1, . . . , sn (denoted by the attribute resultTerms), and
sn+1 (denoted by the association end otherwiseTerm)
are terms. If sn+1 is omitted it is assumed that sn+1 ≡
undef . The number of left-hand side terms ti of the case-
clauses must be equal to the number of right-hand side
terms si (T20). Moreover, a case term must be compat-
ible to the right-hand side terms si of the case-clauses,
and to the term sn+1 of the otherwise-clause (T21), and
the term t to match is compatible to the left-hand terms
ti of the case-clauses (T22).

11.0.5 Further Collection Terms The class BagTerm (see
Fig. 26) represents a bag < t1, . . . , tn > where t1, . . . , tn
(denoted by the association end term) are terms of the
same type representing the elements of the bag. A bag
may be empty and may contain duplicates. The size of
a bag term is the number of terms ti (E10 in Tab. 18).
A bag term has domain a BagDomain (E11). Let D the
domain of the BagDomain associated to a bag term. D
must be compatible with the domain of every bag item
ti (E12). Note that, if the bag is empty, then D can be
any type domain.

The class SequenceTerm (see Fig. 26) represents a
sequence [t1, .., tn], i.e. a collection of elements t1, .., tn
(denoted by the association end term) of the same type
with some order de�ned on it. A sequence may be empty
and may contain duplicates. The size of a sequence is the
number of terms ti (E13). A sequence term has domain
a SequenceDomain (E14). Let D the domain of the Se-
quenceDomain associated to a sequence term. D must
be compatible with the domain of every sequence item
ti (E15). Note that, if the sequence is empty, then D can
be any type domain.

The subclass MapTerm represents a map term {s1 →
t1, . . . , sn → tn} as composition of pairs (si, ti) of terms.
Every term denoting the association si → ti is a Tu-

pleTerm and must be a pair (E16). The size of the map
term is the number of pairs (si, ti) (E17), and its domain
is a MapDomain (E18).

In a map term, all terms s1, . . . , sn are of the same
type, as well as all terms t1, . . . , tn. Let the Cartesian
product Si × Ti be the domain of the i -th pair (si, ti)
of a map term. The domain of the map term is a map
domain from a type-domain DS to a type-domain DT ,
where DS is compatible to Si and DT is compatible to
Ti for every pair within the map (E19). If the map term
is empty, DS and DT can be any type domain.

Note that a function initialization body (see Fig. 12)
can be a MapTerm. If the body is a map term from domain
M1 to domain M2, and the function to initialize is not
0-ary, M1 must be compatible to the function domain,
and M2 must be compatible to the function codomain
(E20). A similar constraint must be introduced for the
FunctionDefiniton class.

11.0.6 VariableBindingTerm The abstract class Finite-
QuantificationTerm (see Fig. 27) models the basic struc-

context FiniteQuantificationTerm inv:

Q1: domain.oclIsTypeOf(BooleanDomain)

Sequence{1..variable->size()}->forAll(i:Integer|

Q2: ranges.items->at(i).oclIsTypeOf(PowersetDomain)

and

Q3: variable->at(i).domain = ranges.items->at(i).

oclAsType(PowersetDomain).baseDomain)

Q4: if self.guard->notEmpty() then

guard.domain.oclIsTypeOf(BooleanDomain) endif

Table 19 Finite Quanti�cation Term Constraints

ture of quanti�cation terms ∃, ∃!, and ∀. Basically, a
quanti�cation term is characterized by a list of vari-
ables xi (all di�erent and denoted by the association
end variable), by a collection of terms Di (listed in
the ranges attribute) representing the sets in which xi

varies, and an optional term ϕx1,...,xn
(denoted by the as-

sociation end guard) representing a boolean-valued ex-
pression with occurrences of the variables xi. If the con-
dition ϕx1,...,xn

is omitted, it is assumed that ϕx1,...,xn
≡

true.

A �nite quanti�cation term is a boolean (Q1 in Tab.
19). The domain of each term Di is a powerset (Q2)
and the domain of xi is set to the baseDomain of Di

(Q3). The domain of the term ϕx1,...,xn
representing the

selection criteria (if any) must be the boolean domain
(Q4).

The concrete subclasses ExistTerm, ExistUnique-
Term and ForallTerm inherit the structure and the con-
straints of the class FiniteQuantificationTerm to rep-
resent �nite existential quanti�cations and �nite univer-
sal quanti�cations of the form, respectively:

exist x1 in D1, ..., xn in Dn with ϕx1,...,xn ,

exist unique x1 in D1, ..., xn in Dn with ϕx1,...,xn
,

forall x1 in D1, ..., xn in Dn with ϕx1,...,xn .

The class LetTerm (see Fig. 27) represents a let-term.
The basic form of such a term is �let (x = t) in tx
endlet�. It is used to allow the evaluation of the term
tx (given by the association end body) with the given
variable x (denoted by the association end variable)
bound to the value resulting from the interpretation of
the term t (denoted by the association end assignment-

Term). This semantics can be easily generalized to a let-
term of the form

let (x1 = t1, . . . , xn = tn) in tx1,...,xn
endlet,

according to the following reduction rule

let (x1 = t1, . . . , xn = tn) in tx1,...,xn endlet ≡
let (x1 = t1) in let (x2 = t2) in
. . . let (xn = tn) in tx1,...,xn

endlet . . . endlet endlet.

The type-domain of a let-term is the type-domain of
the term tx1,...,xn (L1 in Tab. 20). Moreover, the number
of terms ti must be equal to the number of variables xi

(L2), and each variable xi must be compatible to each
term ti (L3).

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 29

Figure 26 Collection Terms

context BagTerm inv:

E10: size = term->size()

E11: domain.oclIsTypeOf(BagDomain)

E12: if size = 0

then domain.oclAsType(BagDomain).domain.oclIsTypeOf(AnyDomain)

else term->forAll(t:Term | t.domain.compatible(domain.oclAsType(BagDomain).domain))

endif

context SequenceTerm inv:

E13: size = term->size()

E14: domain.oclIsTypeOf(SequenceDomain)

E15: if size = 0

then domain.oclAsType(SequenceDomain).domain.oclIsTypeOf(AnyDomain)

else term->forAll(t:Term | t.domain.compatible(domain.oclAsType(SequenceDomain).domain))

endif

context MapTerm inv:

E16: pair->forAll(p:TupleTerm | p.term->size()= 2)

E17: size = pair->size()

E18: domain.oclIsTypeOf(MapDomain)

E19: if size = 0

then domain.oclAsType(MapDomain).sourceDomain.oclIsTypeOf(AnyDomain) and

domain.oclAsType(MapDomain).targetDomain.oclIsTypeOf(AnyDomain)

else pair->forAll(p:TupleTerm | domain.oclAsType(MapDomain).sourceDomain.

compatible(p.domain.oclAsType(ProductDomain).domain->at(1)) and

domain.oclAsType(MapDomain).targetDomain.compatible(p.domain.oclAsType(ProductDomain).

domain->at(2)))

endif

context FunctionInitialization inv:

E20: let M: Domain = body.domain in

if (M.oclIsTypeOf(MapDomain)) then initializedFunction.domain->notEmpty() and

M.oclAsType(MapDomain).sourceDomain.compatible(initializedFunction.domain) and

M.oclAsType(MapDomain).targetDomain.compatible(initializedFunction.codomain)

endif

Table 18 Collection Term Constraints

30 Angelo Gargantini et al.

Figure 27 Variable Binding Terms

context LetTerm inv:

L1: domain = body.domain

L2: assignmentTerm->size() = variable->size()

L3: Sequence1..variable->size()->forAll(i:Integer|

variable->at(i).compatible(assignmentTerm->at(i))

Table 20 LetTerm Constraints

To represent a collection of elements in a given recip-
rocal relationship and satisfying a certain property, we
introduce comprehension terms (borrowing several con-
structs already used in ASM-SL [17]). The class Com-

prehensionTerm (see Fig. 27) is abstract. Its concrete
subclasses SetCT, BagCT, SequenceCT and MapCT inherit
its structure and constraints to represent comprehension
terms respectively for sets, bags, sequences and maps. A
comprehension term has the following forms:

{tx1,...,xn
| x1 in D1, . . . , xn in Dn with ϕx1,...,xn

}
denotes a set comprehension term, which yields a set;

< tx1,...,xn
| x1 in B1, . . . , xn in Bn with ϕx1,...,xn

>
denotes a bag comprehension term, which yields a
bag;

[tx1,...,xn
| x1 in S1, . . . , xn in Sn with ϕx1,...,xn

]
denotes a sequence comprehension term, which yields
a sequence;

{sx1,...,xn
→ tx1,...,xn

| x1 in D1, . . . , xn in Dn with
ϕx1,...,xn}
denotes a map comprehension terms, which yields a
map.

The main term tx1,...,xn
(determined by the association

end term) denotes the relationship existing among ele-
ments of the collection. It contains occurrences of the
variables xi, which are linked by the association end
variable. Di, Bi, and Si are terms whose interpreta-
tion yields the collections in which variables vary and
are listed in the ranges attribute, and ϕx1,...,xn is a
term (denoted by the association end guard) represent-
ing a boolean-valued expression with occurrences of the
variables xi. If ϕx1,...,xn

is omitted it is assumed that
ϕx1,...,xn

≡ true.

The following OCL constraints must hold for the ab-
stract class ComprehensionTerm (and therefore for any
sub-class). The type-domain of the term ϕx1,...,xn repre-
senting the selection criteria is the boolean domain (H1
in Tab. 21). The number of variables xi is equal to the
number of terms Di in ranges (H2).

The type-domain of a set (resp. bag, resp. sequence)
comprehension term is the powerset domain (resp. bag
domain, resp. sequence domain) over the type-domain of
the main term tx1,...,xn (H3) (resp. (H5), resp. (H7)).

We assume (as in [17]) that the type of the collection
terms in ranges, Di, Bi, and Si, is equal to the type of
the comprehension term: Di is a set for a set comprehen-
sion term and its domain is therefore the Powerset (H4),
Bi is a bag for a bag comprehension term and its domain
is therefore the BagDomain (H6), and Si is a sequence for
a sequence comprehension term and its domain is there-
fore the SequenceDomain (H8). The domains of variables
xi must be set accordingly.

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 31

context ComprehensionTerm inv:

H1: if guard->notEmpty() then guard.domain.oclIsTypeOf(BooleanDomain) endif

H2: variable->size() = ranges.items->size()

context SetComprehensionTerm inv:

H3: domain.oclIsTypeOf(PowersetDomain) and domain.oclAsType(PowersetDomain).domain = term.domain

H4: Sequence{1..variable->size()}-> forAll(i:Integer |

ranges.items->at(i).oclIsTypeOf(PowersetDomain) and

variable->at(i).domain = ranges.items->at(i).oclAsType(PowersetDomain).baseDomain)

context BagComprehensionTerm inv:

H5: domain.oclIsTypeOf(BagDomain) and domain.oclAsType(BagDomain).domain = term.domain

H6: Sequence{1..variable->size()}-> forAll(i:Integer |

ranges.items->at(i).oclIsTypeOf(BagDomain) and

variable->at(i).domain = ranges.items->at(i).oclAsType(BagDomain).domain)

context SequenceComprehensionTerm inv:

H7: domain.oclIsTypeOf(SequenceDomain) and domain.oclAsType(SequenceDomain).domain = term.domain

H8: Sequence{1..variable->size()}-> forAll(i:Integer |

ranges.items->at(i).oclIsTypeOf(SequenceDomain) and

variable->at(i).domain = ranges.items->at(i).oclAsType(SequenceDomain).domain)

context MapComprehensionTerm inv:

H9: term.oclIsTypeOf(TupleTerm) and term.oclAsType(TupleTerm).term->size()=2

H10: domain.oclIsTypeOf(MapDomain) and

domain.oclAsType(MapDomain).sourceDomain = term.domain.oclAsType(ProductDomain).domains->at(1) and

domain.oclAsType(MapDomain).targetDomain = term.domain.oclAsType(ProductDomain).domains->at(2)

H11: Sequence{1..variable->size()}-> forAll(i:Integer |

ranges.items->at(i).oclIsTypeOf(PowersetDomain) and

variable->at(i).domain = ranges.items->at(i).oclAsType(PowersetDomain).baseDomain)

context TupleTerm inv:

H12: terms -> forAll(t: Term | not t.domain.oclIsTypeOf(FiniteQuantificationTerm) and

not t.domain.oclIsTypeOf(LetTerm) and

not t.domain.oclIsTypeOf(ConditionalTerm) and not t.domain.oclIsTypeOf(CaseTerm)

Table 21 Comprehension Terms Constraints

For a map comprehension term, sx1,...,xn
and tx1,...,xn

are modelled by an unique tuple term which is still ref-
erenced by the association end term and which must be
a pair of terms (to represent the two terms sx1,...,xn and
tx1,...,xn , respectively) (H9). Let the Cartesian product
A×B be the type-domain of the pair (sx1,...,xn

, tx1,...,xn
).

The type-domain of a map comprehension term is there-
fore a map domain from A to B (H10). Terms in ranges,
Di, representing where variables xi vary, must be pow-
ersets and the domains of variables xi must be set ac-
cordingly (H11).

The only terms allowed in a tuple term are basic
terms, collection terms, and extended terms except Con-
ditionalTerms, CaseTerms, FiniteQuantificationTerm,
and LetTerm. The only terms allowed in map terms,
sequence terms, set terms, bag terms, and comprehen-
sion terms (bags, sets, sequences, and maps) are ba-
sic terms, collection terms, and extended terms except
ConditionalTerms, CaseTerms, and all VariableBin-
dingTerms. For this reason we write several OCL con-
straints as the following one given for a TupleTerm (H12).

11.0.7 The TransitionRules::DerivedTransitionRu-

les Package Other transition rule schemes, derived
from the basic and the turbo ones, are de�ned (see Fig.

28) as subclasses of two abstract classes called Derive-

dRule and DerivedTurboRule , respectively. Although
they could be easily expressed at model level in terms of
other existing rule schemes, we decided to include them
in the metamodel for their wide spread use.

The class CaseRule models a case rule as in
switch t

case t1 : P1, . . . , case tn : Pn

otherwise Pn+1

endswitch
where t, t1, . . . , tn are terms (linked by the association
ends term and caseTerm) and P1, . . . , Pn, Pn+1 are rules
(listed in caseBranches). If Pn+1 is omitted, then it
is assumed that Pn+1 ≡ skip. This rule scheme allows
to select the rule to execute according to the following:
execute the rule Pi corresponding to the �rst term ti ,
for i = 1..n, such that the value of t is equal to the value
of ti; if no match is found, execute Pn+1. A case-rule is a
derived rule, since it is easily reducible to a combination
of conditional rules.

In a case rule, the number of terms ti must be equal
to the number of rules Pi (K1 in Tab. 22), and the term
t is compatible to every term ti of the case-clauses (K2).

The class IterativeWhileRule represents a rule of
form �while ϕ do R� where ϕ is a term representing a

32 Angelo Gargantini et al.

Figure 28 Derived transition rules

context CaseRule inv:

K1: caseTerm->size() = caseBranches.items->size()

K2: caseTerm->forAll(t:Term |term.compatible(t))

context IterativeWhileRule inv:

K3: guard.domain.oclIsTypeOf(BooleanDomain)

context RecursiveWhileRule inv:

K4: guard.domain.oclIsTypeOf(BooleanDomain)

K5: context TermAsRule inv:

term.domain.oclIsTypeOf(RuleDomain)

Table 22 Rule Constraints (Part 3)

guard, which must be a boolean (K3), and R is a transi-
tion rule (linked by the association end rule). It means:
repeat the execution of the rule R as long as it produces
a non-empty update set and the condition ϕ holds. If the
iteration of R reaches an inconsistent update set or yields
an in�nite sequence of consistent non-empty update sets,
then the state resulting from executing the while loop is
not de�ned (the case of divergence of the while loop).
An iterative-while rule is a derived rule since it can be
de�ned in terms of a turbo iterate rule as follows: while
ϕ do R ≡ iterate if ϕ then R endif enditerate.

The class RecursiveWhileRule represents a rule of
form �whileRec ϕ do R� where ϕ is a term represent-
ing a guard, which must be a boolean (K4), and R is
a transition rule (linked by the association end rule).
It means: repeat the execution of the rule R as long as
the condition ϕ holds. This rule leads to a termination
(success) only if the condition ϕ eventually become false
and R does not diverge. A recursive-while rule is consid-
ered a derived rule since it can be de�ned in terms of a
seq-rule as follows:

whileRec ϕ do R ≡
if ϕ then seq

R
whileRec ϕ do R

endseq
endif.

In addition to the derived rules presented above, a
special transition rule, represented by the class TermAs-
Rule (see Fig. 29), has been introduced as wrapper for
terms which are interpreted as transition rules (like a
rule variable, or a function application which yields a
transition rule as value) to be used in places where a
rule body is expected. For example, consider the two
following scenarios.

� A rule variable r is a formal parameter of a rule decla-
ration as in P(r) = body. The variable r, which is a
term, will eventually appear within the body of P(r)
where a rule is expected. In this case it is converted
from VariableTerm to Rule by a TermAsRule.

� In order to obtain the main rule of an agent, the
function program : Agent → Rule can be applied.
For an agent a, program(a) is an application of the
function program, thus it is a FunctionTerm whose
domain is the RuleDomain. To use program(a) as a
rule, it is converted from FunctionTerm to Rule by
a TermAsRule.

In both cases, a term t � a variable term r in the �rst
case, and the function term program(a) in the second
case � is considered a TermAsRule rule, say Rt. A Ter-

mAsRule is linked to its term t by the association end
term and t must be an actual rule, i.e. its domain must
be the RuleDomain (K5). The e�ect is that, when the
rule Rt is �red, it is substituted by t , i.e. the term rep-

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 33

resenting the actual rule to be �red � rule variable term
r, in the �rst case, and program(a), in the second case.

Fig. 29 shows the complete classi�cation of the ASM
transition rules under the root class Rule .

Figure 29 All transition rules

12 AsmM derivatives

In this section we present some derivative artifacts ob-
tained from the AsmM: the AsmM-speci�c Java Meta-
data Interfaces used to access and manipulate models;
the AsmM-speci�c XMI interchange format; the AsmM
concrete syntax and the MOF-to-EBNF mapping rules
applied to derive it; the parser which processes ASM
models written in the AsmM concrete syntax and cre-
ates objects of the corresponding AsmM abstract syntax
in a MOF-based model repository.

12.1 Generation of speci�c JMI APIs

The JMI standard, already presented in Section 2.4, is
based on the MOF 1.4 speci�cation and de�nes a Java
application program interface (API) for managing and
accessing metadata. It implements a dynamic, platform-
neutral infrastructure that enables the creation, storage,
access, discovery, and exchange of metadata, that in our
case are ASM models. It can be used in client programs
written in Java which want to manipulate ASM models:
to read model structure, to modify parts of the speci�-
cation and create new elements. It can be used by tool
developers to speed up the creation of tools supporting
ASMs and by researchers to experiment algorithms over
ASMs.

The JMI for the AsmM was obtained automatically
by the following steps. First, we have drawn the AsmM
with the Poseidon UML tool and saved it in the UML
XMI format (without graphic information). Then, we
have converted it to the MOF 1.4 XMI by means of the
UML2MOF transformation tool provided by the Net-
beans MDR project. Finally, we have loaded the MOF
model in the MDR framework of Netbeans and gener-
ated the JMI interfaces from it.

MOF packages, classes and associations are mapped
to JMI as speci�ed by [32]. For every package P in the
metamodel a package proxy interface PPackage is gener-
ated which gives access to all the metaobjects within the
package P. It contains methods for accessing all proxy
objects for all directly nested or clustered packages and
contained classes and associations. In particular, the out-
ermost package of the metamodel represents the root
package which serves as entry point to access and create
all the other objects. In our case, we have the root AS-
METAPackage which can be created by calling the getAS-
META() method of the MDRConnector provided by the
MDR framework10. Through the ASMETAPackage, reported
in Fig. 30, one can access to every sub package and
through sub packages to every object in a AsmM model.

For every class X in the metamodel two interfaces are
generated, one, XClass, representing a static context of
the class or class proxy interface, and the other, X, repre-
senting individual instances of the class or instance inter-
face. The class proxy interface XClass contains factory
methods for creating new instances of X and methods for
accessing/invoking classi�er-level attributes/operations.
The instance interface X contains getter and setter meth-
ods for accessing instance-level attributes and references
(i.e. association ends), and invoking instance-level oper-
ations. For example, for the class Asm of the AsmM, JMI
introduces the proxy interface AsmClass (which contains
a factory method createAsm() that creates a new Asm

object) and the Asm instance interface, shown in Fig. 30.
Another kind of interfaces are the association proxy

interfaces. They are generated for each association in the
metamodel and provide operations for querying and up-
dating the links that belong to the given association. For
example, the association between an Asm and its main-
rule is mapped by the class AAsmMainrule reported in
Fig. 30.The associations may be viewed (and updated)
also on one or other of the ends, and there may be some
form of order and cardinality constraints.

The implementation of all of these interfaces is pro-
vided by the MDR MOF repository at runtime automat-
ically. All the metadata are stored and managed by MDR
in a pluggable storage (typically a b-tree database). For
more usage details and for the MOF's general computa-
tional semantics of the MOF to Java mapping, see [32].

12.2 Generation of a speci�c XMI format

The XMI format (see Section 2.3) has been also gener-
ated automatically from the AsmM in the MDR frame-
work. According to the rules speci�ed by the MOF 1.4
to XMI 1.2 mapping speci�cation [55], a XML docu-
ment type de�nition �le, commonly named DTD, has
been generated from the AsmM.

10 The reference to the root package proxy is obtained in
a vendor speci�c way, typically using some kind of lookup
mechanism.

34 Angelo Gargantini et al.

/** ASMETAPackage interface **/

public interface AsmetaPackage extends javax.jmi.reflect.RefPackage{

public asmeta.terms.TermsPackage getTerms();

public asmeta.structure.StructurePackage getStructure();

public asmeta.transitionrules.TransitionRulesPackage getTransitionRules();

public asmeta.definitions.DefinitionsPackage getDefinitions();

}

/** Asm class proxy interface **/

public interface AsmClass extends javax.jmi.reflect.RefClass {

public Asm createAsm();

public Asm createAsm(String name, boolean isAsynchr);

}

/** Asm object instance interface **/

public interface Asm extends javax.jmi.reflect.RefObject{

public java.lang.String getName();

public void setName(java.lang.String newValue);

/* methods to set and get the isAsynch attribute, the Header, the InitialStates, the default

InitialState, the mainRule, and the Body */

}

/** AAsmMainrule association proxy interface. **/

public interface AAsmMainrule extends javax.jmi.reflect.RefAssociation {

public boolean exists(asm.asmdefinitions.RuleDeclaration mainrule, asm.asmstructure.Asm asm);

/* methods getMainrule to get the main rule of an Asm, getAsm to obtain the Asm of a main rule,

add, and remove */

}

Figure 30 JMI fragments for the AsmM

The XMI representation depends on the AsmMmeta-
model. Document generation is based on XML element
containment. For each object the element start tag is
generated from the object's metaclass name, and the el-
ement attribute xmi.id provides a unique identi�er for
it in the entire document. Long names of XMI elements
with several dots may seem less legible than an usual tex-
tual notation adopted to write speci�cation; but clearly
the XMI format is not for human consumption. It has
not to be confused with the �concrete syntax� used by
modelers to write their models. It has to be intended,
instead, as an e�ective hard code to be automatically
generated for interchanging purposes only.

A XMI-based model interchange format has more ad-
vantages than a pure XML interchange format:

� only a slight knowledge of XML is required since the
ASM DTD/schema is automatically derived from the
MOF-compliant metamodel;

� several XML-based technologies and frameworks al-
ready exist, and are capable of producing automat-
ically the corresponding XMI DTD/schema from a
MOF compliant metamodel, signi�cantly reducing
the time spent to design or simply update a XML
DTD/schema;

� the de�nition of a XMI DTD or schema is guided by
a more abstract and standard process with clear-cut
separation of technology dependent concepts from
the independent concepts;

� the graphical diagrams representing the MOF com-
pliant metamodel provide a more faithful readable
format than a purely textual XML DTD or schema,
because they are written in the style of the widely
used and standardized object oriented notation;

� the standard MOF has more capability to represent
complex, semantically rich, hierarchical metadata.

12.3 From MOF to EBNF: derivation of a concrete
syntax for the AsmM

A MOF-compliant metamodel provides an abstract syn-
tax for a language with the advantage of deriving (through
mappings or projections) di�erent alternative concrete
notations, textual or graphical. We believe that a map-
ping from MOF-based metamodels to EBNF grammars
(forward engineering) is more demanding than the op-
posite (reverse engineering). The reason is that MOF-
based metamodels inherently contain more information
than EBNF grammars. An EBNF grammar can be pre-
sented as a tree of nodes and directed edges, but the
edges themselves do not contain as much information
as properties in a metamodel. Metamodels instead are
graphs with special edges that specify di�erent nodes re-
lationships (generalizations, aggregations, compositions,
and so on). A mapping from EBNF grammars to meta-
models uses only a subset of the capabilities of meta-
models, and the generated metamodel may need to be
further enriched in order to make it more abstract.

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 35

In this section, we give mapping rules to derive an
EBNF grammar from a MOF metamodel. Even if they
have been used to provide the ASM formal method with
a textual notation conforming to the AsmM, they are
general enough and do not rely on the speci�c domain
language.

In the sequel, we call Asm2L (AsmM Language) a
concrete syntax derived from the AsmM as a tex-
tual notation. A preliminary version of the Asm2L lan-
guage can be found in [44], under the name of AsmM-CS
(AsmM Concrete Syntax). Its EBNF speci�cation is a
set of derivation (or production) rules of the form <sym-
bol> ::= <expression with symbols> where <symbol> is
a nonterminal, and the expression consists of sequences
of symbols and/or sequences separated by the vertical
bar, '|', indicating a choice, the whole being a possible
substitution for the symbol on the left. Symbols that
never appear on a left side are terminals, or keywords,
which we convey to denote as literal symbols enclosed in
double quotes.

For the MOF to EBNF mapping, we take into ac-
count all MOF constructs which bring information about
the domain knowledge, except constructs like operations
and exceptions which are related to the execution se-
mantics of MOF-based repositories rather than to the
concepts being meta-modelled, and packages which are
used to group elements within a metamodel for parti-
tioning and modularization purposes only. These con-
structs, however, and, in general, the whole structure of
the metamodel are taken into account inside the parser
to instantiate and query the content of a MOF reposi-
tory.

We also provide guidance on how to assemble a JavaCC
�le given in input to the JavaCC [1] parser generator to
automatically produce a parser for the EBNF grammar
of the Asm2L language. This parser is more than a gram-
mar checker: it is able to process ASM models written in
Asm2L and to create instances of the AsmM in a MDR
MOF repository trough the use of the AsmM JMIs.

A JavaCC �le contains a sequence of Java-like method
declarations each representing the EBNF production rule
for a non terminal symbol and corresponding to an iden-
tically named method in the �nal generated Java parser.
Each JavaCC method begins with a set of Java declara-
tions and code (to access the MOF repository, create in-
stances of the classes of the metamodel using the AsmM
JMIs), which become the initial declarations and code
of the generated Java method and hence are executed
every time the non-terminal is parsed.

A JavaCC method continues with the expansion unit
statement, or parser actions, to instruct the generated
parser on how to parse symbols and make choices. The
expansion unit corresponds to the <expression with sym-
bols>of the EBNF rule and may contain Java code within
braces to perform actions like set attributes and refer-
ences. The expansion unit can also include lookaheads of
various types � local, syntactic, and semantic � (see [1]

for details). Lexical and syntactical analysis errors can
be caught and reported using standard Java exception
handling. The JavaCC grammar �le for the Asm-CS can
be found in [11] and consists of about 6852 lines of code.
We report here some fragments of it in typewriter font.

Note that, the grammar and the input �le for the
parser generator obtained with this process can be fur-
ther optimized and enriched. For example, suitable meth-
ods were added to the Asm2L language in order to allow
alternative representations of the same concepts (i.e. a
class instance in the metamodel can admit many equiv-
alent notations) such as the interval notation for sets/-
sequences/bags of reals, special expressions to support
the in�x notation for some functions on basic domains
(like plus, minus, mult, etc.), and so on.

In the following sections, we give the set of rules
on how to map MOF constructs into EBNF and into
JavaCC.

12.3.1 Class A MOF class acts as the namespace for
attributes and outgoing role names on associations.

Rule 1: A class C is always mapped to a non terminal
symbol C. User-de�ned keywords � optional and chosen
depending on how one wants the target textual notation
appears � delimit the expression with symbols in the
derivation rule for C. The expression represents the ac-
tual content of the class and is determined by the full de-
scriptor11 of the class according to the other rules below.
For each class C, we introduce in JavaCC one method
which has the following schema.

C C(): { // create result,

// a new instance of C in the repository

// temp variables for attributes and references

}{ // expansion unit

<startC> // expression starting delimiter

// read content of C and fill result

<endC> // expression ending delimiter

{ return result ;} }

The method has signature C() and returns a JMI in-
stance of the class C. When executed to parse the gram-
mar symbol C, it creates a new instance of C called result

and initializes a list of variables to store attributes and
references of C. Then it starts parsing the content of C
enclosed between the keywords <startC> and <endC>, i.e.
it reads attributes and references of C, as explained in
the following sections, and sets the attributes and refer-
ences of result. In the end it returns result.

Rule 2: The start symbol of the grammar is the non-
terminal symbol corresponding to the root class of the
metamodel, i.e. the class from which all the other ele-
ments of the metamodel can be reached.

11 A full descriptor is the full description needed to describe
an object. It contains a description of all of the attributes,
associations, etc. that the object contains, including features
inherited from ancestor classes.

36 Angelo Gargantini et al.

Figure 31 Example of class with attributes, references and associations

Example Fig. 31 shows the MOF model of an ASM de-
�ned by a name, a Header (to establish the signature), a
Body (to de�ne domains, functions, and rules), a main-
rule, an Initialization (for the set of initial states), and one
initial state elected as default (designed by the associa-
tion end defaultInitialState). For this class we introduce
a non terminal Asm in the grammar and a method Asm

Asm() in JavaCC. The derivation rule of the non termi-
nal Asm has the keyword "asm" as starting delimiter and
no ending delimiter (<EOF> in JavaCC code). The class
Asm is the root element of the metamodel, therefore its
corresponding non terminal is chosen as start symbol of
the grammar.

12.3.2 Multiplicity Rule 3:Multiplicity values are map-
ped to repetition ranges. A 0..1 multiplicity (zero or one)
is mapped to brackets [] or a question mark ?. A * mul-
tiplicity (zero or more) corresponds to the application of
the Kleene star operator *. A 1..* multiplicity (one or
more) corresponds to the the Kleene cross operator +.
A n multiplicity (exactly n) corresponds to the opera-
tor {n}. A n..* (n or more) multiplicity corresponds to
the operator {n,}, a n..m multiplicity (at least n but not
more than m) corresponds to the operator {n,m}.

12.4 Data Type

MOF supports two kinds of data type: primitive data
types like Boolean, Integer, and String; constructors like
enumeration types, structure types, collection types, and
alias types to de�ne more complex types. Primitive data
types do not have a direct representation in terms of

EBNF elements, while in JavaCC are mapped to the
correspondent primitive data types. However, they are
used to transform attributes in EBNF concepts (see the
next section for details). For structured data types, we
do not introduce new EBNF rules, since each attribute
of structured type can be turned in an attribute of Class
type by replacing the structured data type with a class
de�nition in the metamodel.

12.4.1 Attribute (instance-level) The representation of
attributes of a class C within the expression on the
right-hand of the derivation rule of the nonterminal C
depends on the type (a MOF data type or a class of the
metamodel) of the attribute and on its multiplicity (op-
tional, single-valued, or multi-valued). Usually, optional
attributes are represented when their value is present,
and are not represented when their value is absent.
Rule 4: Attributes of Boolean type are represented as
keywords (terminal symbols) re�ecting the name of the
attribute and followed by a question mark ? to indi-
cate it is optional. At instance level, the presence of the
keyword in a textual speci�cation indicates that the at-
tribute value is true, and vice-versa.
Rule 5: Attributes of String type are represented by a
string literal value <STRING> preceded by an optional
keyword which re�ects the name of the attribute. If a
class has an attribute �name� of String type, then that
attribute is used as identi�er for objects of the class. We
represent the identi�er for a class C in EBNF by a non
terminal <ID_C> which is a sequence of string literals
(optional constraints can be given on characters in an
identi�er). The identi�er can be used to retrieve an in-
stance of C when needed. In the following, we refer to an

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 37

object by name, if we use its name to univocally refer to
it. In JavaCC we introduce a function C getCByName()

which reads the string ID_C and retrieves the instance
of C with that name.

No restrictions are placed on the order of the at-
tribute and reference representations (see sec. 12.4.3)
within the production for the non terminal of a class.
Although it is expected that the produced grammar has
a consistent ordering of the syntactic parts, such order-
ing is �xed during the derivation process of the grammar
from the metamodel (e.g. through interactive wizards),
but no extensions (like stereotypes or special tags) are
imposed on the MOF-based metamodel in order to re-
�ect the linear order of EBNF.

Example 1 For the attributes of the Asm class in Fig.
31, by rule 4 and rule 5, we introduce the following
EBNF derivation rule and JavaCC method:

Asm ::= ("asyncr")? "asm" <ID_Asm>

Asm Asm(): {

Asm result = structurePack.getAsm().createAsm();

String name;

boolean isAsyncr = false;

} { [�asyncr� { result.setAsynchr(true);}] �asm�

name = <ID_Asm> { result.setName(name);}

//read the header, body, ...

<EOF>

{ return result;}}

Rule 6: Attributes of Enumeration type are represented
as a choice group of keywords which re�ect the name of
the enum literals.
Rule 7: Attributes of Integer type are represented by an
optional keyword for the name of the attribute followed
by a literal representation of the attribute value.
Rule 8: Attributes of Collection data type are repre-
sented by an optional keyword which re�ect the name
of the attribute, followed by a representation of the ele-
ments of the collection. Each element can be represented
either by-value, i.e. by an occurrence of the non terminal
of the typing class, or by-name, i.e. an occurrence of the
identi�er if any. Moreover, elements of the collection can
be optionally enclosed within parentheses (and), and
separated by comma.

Example 2 The class ProductDomain in Fig. 32 has an
attribute which is a collection of type-domains. By rule
1, we use the initial keyword Prod as delimiter for Pro-
ductDomain. We apply rule 8 omitting the keyword for
the attribute domains and we choose to represent the ele-
ments of the collection in a by-name fashion (TypeDomain
inherits the attribute name from the ancestor class Do-
main), separated by comma. The feature ordered is re-
�ected by the ordering in the EBNF. The multiplicity
2..* corresponds to the operator {2,}, which is turned
into the form a(a)+ with a a syntactic part.

ProductDomain ::= "Prod" "("<ID_Domain> ("," <ID_-
Domain>)+ ")"
The following method in JavaCC is associated to the
class ProductDomain. It creates a new ProductDomain,
read the delimiters in keyword form and read the list
of type-domains by the method getTypeDomainByName(),
adding them to a new list domains. In the end, domains
is assigned to the domains attribute.

ProductDomain ProductDomain(): {

ProductDomain result =

definitionsPack.getDomains().getProductDomain().

createProductDomain();

Collection domains = new LinkedList();

TypeDomain td;

}{"Prod" "(" td = getTypeDomainByName()

{// add td to the domain list

domains.add(td);}

("," td = getTypeDomainByName()

{// add td to the domain list

domains.add(td); })+ ")"

{ // set the domains

result.setDomains(domains);}

{ return result;}}

Rule 9: Attributes whose type is a class of the meta-
model are represented by keywords which re�ect the
name of the attribute, followed by either a full represen-
tation of the instance (or by-value), i.e. an occurrence of
the non terminal of the typing class, or by-name, taking
into account the multiplicity.
Rule 10: Attributes of Alias type are represented de-
pending on the aliased type.
Rule 11: Derived attributes12 are not mapped to EBNF
concepts, since the parser can infer them, and then in-
stantiate them in a MOFlet, from other existing elements
(which are instead expressed at EBNF level). In JavaCC
they are set at the end of the method, just before return-
ing the result.
Rule 12: Other MOF features like visibility, isLeaf, is-
Root, changeability, and default values are not consid-
ered for an EBNF representation.

12.4.2 Association and Association End Associations
are represented in terms of their ends, and association
ends are represented in EBNF in terms of their cor-
responding references (see next section). Only eligible
association ends are represented (Rule 13). An asso-
ciation end is considered eligible13 if it is navigable, if
there is no explicit MOF reference for that end within

12 The MOF �ag isDerived determines whether the con-
tents of the notional value holder is part of the explicit state
of a class instance, or is derived from other state. Derived
attributes or association ends are denoted with a slash (/)
preceding the name.
13 We take this de�nition from the UML pro�le for MOF
1.4 by the MDR framework [4]. It is used to automatically
imply MOF references by association ends. MOF references
are implied, in fact, by each eligible UML association end.

38 Angelo Gargantini et al.

Figure 32 Example of a collection data type and of a multi-valued reference

the same outermost package, and if the association of
the end is owned by the same package that owns the
type of its opposite end (to avoid circular package de-
pendencies). Moreover, similarly to attributes, derived
association ends (even if eligible) are ignored.

12.4.3 Reference MOF references are a means for classes
to be aware of class instances that play a part in an as-
sociation, by providing a view into the association as it
pertains to the observing instance. Here, MOF references
are inferred by each eligible association end. Therefore,
the EBNF representation of a reference depends on the
nature (simple, shared aggregation, composite aggrega-
tion) of the association to which it refers.

Rule 14: A reference in a simple association (that is,
the associated instance can exist outside the scope of the
other instance) is represented by an optional keyword,
which re�ects the name of the reference or the role name
of the association end, followed by either a by-value or
a by-name representation if any, taking into account the
multiplicity. Moreover, referenced collections can be op-
tionally enclosed within parentheses, and the syntactic
parts for its elements are separated by comma.

Example 1 In Fig. 32, MOF references are shown as
attributes with �reference� stereotype, as implied by
each eligible association end. By rule 1 for the class Pow-
ersetDomain we decided to use the initial keyword Pow-
erset as delimiter, while by rule 14 we omit the keyword
for the reference baseDomain. This last is represented by-
name, and the elements of the referenced collection (in
this case just one element) are enclosed within parenthe-
ses (and).

EBNF: PowersetDomain ::= "Powerset" "(" <ID_Type-
Domain> ")"

In JavaCC we introduce a new method PowersetDomain,
which reads the delimiters in keyword form and read the

type-domain by name calling the method TypeDomain

getTypeDomainByName().

PowersetDomain PowersetDomain(): {

PowersetDomain result =

definitionsPack.getDomains()

.getPowersetDomain().createPowersetDomain();

TypeDomain baseDomain;

}{ "Powerset" "("

baseDomain = getTypeDomainByName() ")"

{ //set the baseDomain

result.setBaseDomain(baseDomain);}

{ return result;}}

Rule 15: In a shared aggregation (white-diamond, weak
ownership, i.e. the part may be included in several aggre-
gates) or in a composite aggregation (black-diamond, the
contained instance does not exist outside the scope of the
whole instance), the reference to the contained instance
is represented in the production rule of the non terminal
corresponding to the whole class in a by-value fashion,
i.e. as a non terminal (corresponding to the class of the
contained instance) preceded by an optional keyword 14

re�ecting the name of the reference or of the role end,
and combined with other parts of the production taking
into account the multiplicity. Moreover, referenced col-
lections can be optionally enclosed within parentheses,
and the syntactic parts for its elements are separated by
comma. A reference to the whole instance (if any) is not
represented.

Example 2 By rule 1 for the class SetTerm in Fig. 32
we decided to use the keywords { and } as delimiters,
while by rule 15 we omit the keyword for the refer-
ence term. This last is represented in a by-value fashion,
and the elements of the referenced collection are not en-
closed within parentheses, but are separated by comma.

14 Note that for shared/composite aggregations, the initial
keyword for the reference is necessary in case of more than
one reference (with di�erent roles) to the same (aggregated)
class.

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 39

Finally, by rule 11 the derived attribute size is not rep-
resented at EBNF level; however (see the JavaCC code
below) inside the parser its value is calculated and set
accordingly.

EBNF: SetTerm ::= "{" Term ("," Term)* "}"

The term reference in the SetTerm class is a multi-valued
reference. In this case the reference is set by adding
elements to the collection returned by the JMI opera-
tion public java.util.Collection getTerm(). This JMI
method returns the value of the reference term, i.e. the
collection of elements (as terms) of the set-term.

SetTerm SetTerm():{

SetTerm result = termsPack.getBasicTerms().

getSetTerm().createSetTerm();

Collection term = result.getTerm();

Term t;

}{ "{" t=Term() { term.add(t); }

("," t=Term() { term.add(t);})* "}"

{ //sets the derived attribute size

result.setSize(term.size());}

{return result;}}

Example 3 By the rules above, the production rule for
the Asm class in Fig. 31 can be completed as follows.

EBNF: Asm ::= ("isAsyncr")? "asm" <ID_Asm> Header
Body ("main" RuleDeclaration)? (Initialization)* ("default"
Initialization)?

Asm Asm() : {

Asm result = structurePack.getAsm().createAsm();

String name;

boolean isAsyncr = false;

Header headerSection;

Initialization initialState;

Body bodySection;

RuleDeclaration mainrule;

}{ ["asyncr" {result.setAsynchr(true);}] "asm"

name = <ID_Asm> {result.setName(name);}]

//reads and sets the header reference

headerSection = Header()

{ result.setHeaderSection(headerSection);}

//reads the body

...

//reads and sets the main rule reference

["main" mainrule = RuleDeclaration()

{ result.setMainrule(mainrule);}]

//reads the initial states

...

<EOF>

{ return result;}}

12.4.4 Generalization Hierarchies of MOF classes are
modeled by generalizations. We have to distinguish be-
tween a generalization from an abstract class and a gen-
eralization from a concrete class.

Figure 33 Example of Generalization from an abstract class

Rule 16: In case classes C1, .., Cn inherit from an ab-
stract class C, the production rule for the non terminal C
is a choice group C::=C1|..|Cn. Attributes and references
inherited by classes Ci from the class C are represented
in the same way in all production rules for the corre-
sponding non terminals Ci.

Example Fig. 33 presents an example of generalization
from an abstract class. It shows the complete classi�ca-
tion of the ASM transition rules under the abstract class
Rule. The production rule for the non terminal Rule fol-
lows.

EBNF : Rule ::= TermAsRule | BasicRule | TurboRule |
DerivedRule

In JavaCC we introduce the following method, where
(...|...) denotes the choice operator.

Rule Rule(): { Rule result;

}{ // expansion unit

(result = TermAsRule() | ... |

result = DerivedRule)

{ return result;}}

Rule 17: In case classes C1, .., Cn inherit from a con-
crete class C, we introduce a production rule C::= Cc

| C1|. . .|Cn to capture the choice in the class hierarchy,
and a production rule for the new non terminal symbol
Cc built according to the content (attributes and refer-
ences) of the superclass C. We assume that attributes
and references of C inherited by classes Ci are repre-
sented in the production rules for the non terminals Ci

as in that for Cc.

12.4.5 Constraint OCL constraints are not mapped to
EBNF concepts. Appropriate parser actions, instead, are
added to the JavaCC code to instruct the generated
parser on how to check whether the input model is well-
formed or not according to the OCL constraints de�ned
on the top of the metamodel. In our case, we explicitly
implemented in Java an OCL checker by hard-encoding
the OCL rules of AsmM. Constraint incompatibility er-
rors are detected and reported using standard Java ex-
ception handling. Alternatively, an OCL compiler could
be connected to the generated parser for the constraint
consistency check.

40 Angelo Gargantini et al.

asm FLIP_FLOP import STDL/StandardLibrary

signature:

domain State subsetofNatural

controlled ctl_state : State

monitored high : Boolean

monitored low : Boolean

definitions:

domain State = {0,1}

macro r_Fsm ($ctl_state in State, $i in State,

$j in State, $cond in Boolean, $rule in Rule) =

if $ctl_state=$i and $cond

then par

$rule

$ctl_state := $j

endpar

endif

axiom over high(),low(): not(high and low)

main rule r_flip_flop = par

r_Fsm(ctl_state,0,1,high,< <skip> >)

r_Fsm(ctl_state,1,0,low,< <skip> >)

endpar

default init initial_state:

function ctl_state = 0

function high = false

function low = false

Figure 34 Flip-Flop Speci�cation

The complete Asm2L grammar derived from the AsmM
is reported in appendix. Fig. 34 shows the speci�cation
written in Asm2L of a Flip-Flop device. The model orig-
inally presented in [16, page 47] contains two rules: the
�rst one (Fsm) models a generic �nite state machine and
the second one (FlipFlop) instantiates the Fsm for a
Flip-Flop:

Fsm(i,cond,rule,j) =
if ctl_state = i and cond
then {rule, ctl_state := j}
endif
FlipFlop = {Fsm(0,high,skip,1),Fsm(1, low,skip,0)}

13 ASM Tool Interoperability

The combination of standards like MOF, XMI, and JMIs
provides a global infrastructure for interoperability and
integration of ASM tools.

The main purpose of XMI is to provide an easy in-
terchange of data and metadata between modelling tools
and metadata repositories in distributed heterogeneous
environments [55]. In the ASM context, these application
tools include: ASM model editors, ASM model reposito-
ries, ASM model validators, ASM model veri�ers, ASM
simulators, ASM-to-Any code generators, etc. Without a
common metamodel for creating and accessing data, de-
velopers must hard-wire discrete interfaces between ap-
plications in order to allow model exchange and storage,
thereby limiting interoperability and increasing the cost
of developing and maintaining heterogeneous systems.

Fig. 35 shows a scenario of interoperability among
ASM tools as suggested by our approach. According to
the rules speci�ed by the MOF-XMI mapping speci�ca-
tion, a XML DTD has been generated from the AsmM.
ASM tools (like Tool X in the �gure) can exchange ASM
models in the XML/XMI standard format and verify
their validity with respect to the given AsmMXMI DTD.
Products-speci�c internal representations of ASM mod-
els can remain as they are. Tool providers only need to
agree on the AsmM and supply their tools with appro-
priate plug-ins capable of importing and/or exporting
the XMI format for the AsmM (using XML-based tech-
nologies like SAX or DOM libraries or XSLT).

Some tools (like Tool Y in the �gure) may keep their
input data formats: in this case walkers must be devel-
oped to translate ASM models from the repository to the
tool proprietary formats. From the repository, any kind
of �transformation� (text-To-MOF, MOF-To-text, XMI-
To-MOF, MOF-To-XMI, etc.) towards various technical
spaces can be carried out.

A modeler can also start writing her/his ASM speci-
�cation in the textual Asm2L and then, trough the con-
nection to the repository provided by the parser, trans-
form it, for example, in the XMI interchange format.

Tools (like Tool Z in the �gure) embracing the AsmM
can access ASMmodels through the APIs (like the AsmM
JMIs) in a MOF repository (like the SUN MDR [4])
where ASM models reside. XMI reader and writer pro-
vided by MDR can be used to load/save an ASM model
from/into a XML �le.

Currently, we have been working also to the imple-
mentation of an ASM simulator, written in Java, to make
the AsmM models executable. This tool is an example
of Tool Z since essentially it is an interpreter which nav-
igates through the MOF repository where ASM models
are instantiated (as instances of the AsmM metamodel)
to make its computations. The main advantage of such
approach is that the simulator environment including ba-
sic functionalities such as parsing, abstract syntax trees,
type checking, etc., is already provided by the MOF-
environment.

Mixed approaches are also possible, as the one adopted
by our group in modifying the ATGT tool, as explained
in Section 14.

14 The AsmM in Practice: modifying an ASM
Test Generator

We have applied the AsmM in practice by modifying
ATGT [12], an existing tool supporting test case genera-
tion for ASMs, originally presented in [27]. ATGT takes
an ASM speci�cation (written using the AsmGofer syn-
tax) and produces a set of test predicates, translates the
original ASM speci�cation to Promela (the language of
the SPIN model checker used to generate tests), and gen-
erates a set of test sequences by exploiting the counter
example generation of the model checker.

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 41

Figure 35 ASM model interchange trough XMI and APIs

We made ATGT AsmM-compliant for several rea-
sons. First, we wanted to have a tool for test generation,
able to read ASM speci�cations in the AsmM XMI stan-
dard format, making ATGT integrated with other tools
as suggested in Sect. 13. Moreover, we wanted to test the
metamodelling approach in practice, to show that it is
applicable even to existing tools, since it requires a mod-
est e�ort in modifying existing code. Our experience can
provide guidance to people willing to write new tools or
modify existing ones in order to support metamodelling
approaches. Indeed, the approach presented in this sec-
tion may be applied to any existing tool supporting any
formal method for which there exists a MOF metamodel.

ATGT is written in Java. It already (see Fig. 36) has
its own parser for AsmGofer �les, which reads a speci�ca-
tion and builds an internal representation of the model in
terms of Java objects. For example, ASM rules are rep-
resented in ATGT as instances of the class Rule, with
subclasses Skip and IfThenElse which correspond to
the SkipRule and the ConditionalRule classes in the
AsmM. The tool functionalities are delegated to three
components (Test predicate generator, Tests generator,
ASM to Promela) which read the data of the loaded ASM
speci�cation and perform their tasks.

In our approach, ATGT keeps its own data structures
to represent the ASM models and other information nec-
essary for the services it provides. In this way we do not
modify the three most critical components, which con-
tinue to process data in the old representation.

To make ATGT capable of reading AsmMmodels, we
�rst added a new component, the JMI/XMI reader, which
is automatically derived from the metamodel by using
MDR Netbeans. This JMI/XMI reader parses a XMI �le
containing the ASM speci�cation the user wants to load
and produces the JMI objects representing the loaded
ASM. Then we added a module, called JMI queries, which
queries those JMI objects and builds the equivalent model
in terms of ATGT internal data. The JMI queries are

very similar to the AsmGofer parser already in ATGT,
except that they read the information about the ASM
model from JMI data instead of from a �le.

Although we did not exploit the power of the meta-
model inside ATGT and we simply made ATGT AsmM-
compliant, the result is worthwhile and the e�ort is lim-
ited: adding this new feature to ATGT required about
two man-months. If we started today from scratch to
develop ATGT, we would use directly JMI to repre-
sent ASM models, since JMI o�ers a stable and clean
interface that is derived from the metamodel. The use of
JMI would avoid the burden of writing internal libraries
for representing ASM models. For this reason, we have
started working on making the internal representation of
ASM models ATGT adopts equivalent to the JMI, in or-
der to eventually integrate JMI directly in ATGT (work
in progress in Fig. 36).

Further advances in the MDE direction [14] would be
replacing the ASM to Promela and the AsmGofer parser
components by model transformations from the AsmM
(as pivot metamodel) to Promela metamodel and from
Gofer metamodel to the AsmM, provided that such meta-
models for Promela and Gofer (linked to their concrete
syntax) exist.

15 Related Work

In the ASM context, no other explicit proposals exist
concerning what presented in this paper. We can only
cite the work in [8] as a �rst attempt in this respect, but
unfortunately it has never been completed. This work
is an attempt to realize an interchange format for ASM
speci�cations strictly dependent on those aspects typical
of functional languages, and it is technically based on the
use of a pure XML format.

Concerning the de�nition of a concrete language for
ASMs, other previous proposals exist. The Abstract State
Machine Language (AsmL) [10] developed by the Foun-
dation Software Engineering group at Microsoft is the
greatest e�ort in this respect. AsmL is a rich executable
speci�cation language, based on the theory of Abstract
State Machines, expression- and object- oriented, and
fully integrated into the .NET framework and Microsoft
development tools. However, AsmL does not provide a
semantic structure targeted for the ASM method. �One
can see it as a fusion of the Abstract State Machine
paradigm and the .NET type system, in�uenced to an
extent by other speci�cation languages like VDM or Z�
[58]. Adopting a terminology currently used in the MDA
vision, AsmL is a platform-speci�c modelling language
for the .NET type system. A similar consideration can
be made also for the AsmGofer language [46]. An As-
mGofer speci�cation can be thought, in fact, as a PSM
(platform-speci�c model) for the Gofer environment.

Other speci�c languages for the ASMs, no longer
maintained, are ASM-SL [17], which adopts a functional

42 Angelo Gargantini et al.

Figure 36 Adapting ATGT to the AsmM

style being developed in ML and which has inspired us in
the language of terms, and XASM [9] which is integrated
in Montages, an environment generally used for de�ning
semantics and grammar of programming languages.

A platform-independent modelling language for ASMs,
as the one de�ned by the AsmM, could allow the de�-
nition of precise transformation bridges in order to au-
tomatically map an ASM PIM (platform-independent
model) into an AsmGofer-PSM, or into an AsmL-PSM,
and so on. In the same manner, we may �compile� ASMs
models into programming languages such as C++, C#,
Java and so on, to provide e�cient code generation ca-
pabilities and reverse engineering (or back annotation)
facilities as well.

Concerning the metamodelling technique for the def-
inition of languages, we can mention the o�cial meta-
models supported by the OMG [38] for MOF itself [2],
for UML [50], for OCL [37], and for CWM [20]. Academic
communities like the Graph Transformation community
[29,49,51,47,52] and the Petri Net community [40,23],
have also started to settle their tools on general meta-
models and XML-based formats.

Recently, a metamodel for the ITU language SDL-
2000 [48] was developed [25]. The authors presents also
a semi-automatic reverse engineering methodology that
allows the derivation of a metamodel from a formal syn-
tax de�nition of an existing language. The SDL meta-
model has been derived from the SDL grammar using
this methodology. A very similar method to bridge gram-
marware and modelware is also proposed by other au-
thors in [7] and in [53]. These approaches are comple-
mentary to the derivation process presented in Sect. 12.3.
Our approach has to be considered a forward engineering
process consisting in deriving a concrete textual notation
from an abstract metamodel.

Other more complex MOF-to-text tools, capable of
generating text grammars from speci�c MOF based repos-
itories, exist [30,21]. These tools render the content of a
MOF-based repository (known as a MOFlet) in textual
form, conforming to some syntactic rules (grammar).
However, although automatic, since they are designed
to work with any MOF model and generate their target

grammar based on prede�ned patterns, they do not per-
mit a detailed customization of the generated language.

16 Conclusions and Future Directions

Taking advantage of the metamodel-based approach of
the MDE, we propose the AsmM, a metamodel for Ab-
stract State Machines. The AsmM delivers a standard
graphical view of the ASM modelling primitives, use-
ful specially for those people who do not deal well with
�mathematics�, but are familiar with the standards UML
and MOF. This abstract syntax can easily match up to
all the existing ASM tool's languages (or so called �con-
crete syntaxes�) providing tool interoperability through
the XMI format derived from the AsmM. From the AsmM
we derived an EBNF grammar for a textual notation or
concrete syntax for ASMs, called Asm2L (AsmM Lan-
guage), and developed a parser which processes Asm2L
speci�cations, checks for their consistency with the meta-
model, and translates them into XMI format. We have
applied this framework, which includes several tools and
libraries, like MDR, JMI and others, to an existing ASM
tool to show the viability of the proposed approach.

In future, we want to provide the Asm2L parser in-
troduced in Sect. 13 with a proper modelling environ-
ment which acts as front-end for the modeler. We also
plan to provide the AsmM with some animation capabil-
ities (e.g. simulation). Moreover, we intend to upgrade
the AsmM to MOF 2.0 and we are evaluating the pos-
sibility to exploit other metamodelling frameworks to
better support model transformations such as the ATL
project [3], the Xactium XMF Mosaic [6], to name a
few, and model evolution activities [24] such as code gen-
eration, reverse engineering, model re�nement, model
refactoring, model inconsistency management, etc. To-
day, only limited support is available in Model-driven
development tools for these activities, but a lot of re-
search is being carried out in this particular �eld to es-
tablish synergies between model-driven approaches like
MDE and many other areas of software engineering in-
cluding software reverse and re-engineering, Generative

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 43

techniques, generic language technology, Grammar-
ware, Aspect-oriented software development, to name a
few.

The AsmM speci�cation is still evolving because, in
order to make it a �standard�, one of our main goals is
to modify existing constructs and add (or even remove)
concepts to meet the needs of the ASM community.

We believe that bene�ts provided by a standard-
ized notation for the ASMs may contribute to increase
the practical use of the ASMs formal method and pro-
vide an e�cient interoperability among ASM tools for
a higher quality design based on the ASM formalism.
Moreover, we believe the proposed metamodel can con-
stitute the basics for formal methods integration [39]
providing bridges from the AsmM to metamodels for
other formal notations in a meta-method approach.

Acknowledgements We thank Claudia and Tiziana Genovese
for helping us in developing the AsmM and its grammar
Asm2L, and Egon Börger, Andreas Prinz, and Uwe Glässer
for valuable comments on early drafts of the metamodel.

44 Angelo Gargantini et al.

References

1. Java Compiler Compiler. https://javacc.dev.java.net/.
2. OMG. The Meta Object Facility Speci�cation, document formal/2002-04-03, version 1.4.
3. The ATL model transformation language. http://www.sciences.univ-nantes.fr/lina/atl/.
4. The MDR (Model Driven Repository) for NetBeans. http://mdr.netbeans.org/.
5. The Scalable Vector Graphics home page at the World Wide Web Consortium. www.w3.org/Graphics/SVG/.
6. The Xactium XMF Mosaic tool suite. http://www.modelbased.net/www.xactium.com/.
7. M. Alanen and I. Porres. A relation between context-free grammars and meta object facility metamodels. Technical

report, Turku Centre for Computer Science, 2003.
8. M. Anlau�, G. Del Castillo, J. Huggins, J. Janneck, J. Schmid, and W. Schulte. The ASM-Interchange Format XML

Document Type De�nition (ASM-DTD). http://www.first.gmd.de/~ma/asmdtd.html.
9. M. Anlau� and P. Kutter. Xasm: The Open Source ASM Language. http://www.xasm.org.
10. The Abstract State Machine Language. http://research.microsoft.com/foundations/AsmL/.
11. The Abstract State Machine Metamodel website. http://asmeta.sf.net/.
12. ATGT: ASM Tests Generation Tool. http://www.dmi.unict.it/garganti/atgt/.
13. J. Bézivin. On the Uni�cation Power of Models. Software and System Modeling (SoSym), 4(2):171�188, 2005.
14. J. Bézivin, H. Bruneliére, F. J. Jouault, and I. Kurtev. Model Engineering Support for Tool Interoperability. In The 4th

Workshop in Software Model Engineering (WiSME'05), Montego Bay, Jamaica, 2005.
15. E. Börger. The Origins and the Development of the ASM Method for High Level System Design and Analysis. J.UCS

(Journal of Universal Computer Science), 8(1):2�74, Jan. 2002.
16. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. Springer Verlag,

2003.
17. G. D. Castillo. The ASM Workbench - A Tool Environment for Computer-Aided Analysis and Validation of Abstract

State Machine Models. In Proc. of TACAS, volume 2031 of LNCS, pages 578�581. Springer, 2001.
18. G. D. Castillo and K. Winter. Model checking support for the ASM high-level language. In Tools and Algorithms for

Construction and Analysis of Systems, pages 331�346, 2000.
19. OMG, The Common Object Request Broker Architecture. http://www.corba.org/.
20. OMG, The Common Warehouse Metamodel. http://www.omg.org/cwm/.
21. D. Hearnden and K. Raymond and J. Steel. Anti-Yacc: MOF-to-text. In Proc. of EDOC, pages 200�211, 2002.
22. A. Dold. A Formal Representation of Abstract State Machines Using PVS. Veri�x Technical Report Ulm/6.2, Universitat

Ulm, July 1998.
23. J. B. E. Breton. Towards an Understanding of Model Executability. In FOIS, 2001.
24. T. M. et all. Challenges in software evolution. In International Workshop on Principles of Software Evolution (IWPSE'05),

2005.
25. J. Fischer, M. Piefel, and M. Scheidgen. A Metamodel for SDL-2000 in the Context of Metamodelling ULF. In Fourth

SDL And MSC Workshop (SAM'04), pages 208�223, 2004.
26. A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS. In Y. Gurevich, P. Kutter, M. Odersky, and

L. Thiele, editors, Abstract State Machines: Theory and Applications, volume 1912 of LNCS, pages 303�322. Springer-
Verlag, 2000.

27. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to Generate Tests from ASM Speci�cations. In E. Böger,
A. Gargantini, and E. Riccobene, editors, Abstract State Machines, Advances in Theory and Practice, number 2589 in
LNCS, pages 263�277. Springer, 2003.

28. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Speci�cation and Validation Methods, pages
9�36. Oxford University Press, 1995.

29. R. Holt, A. Schürr, S. E. Sim, and A. Winter. Graph eXchange Language. http://www.gupro.de/GXL/index.html.
30. OMG, Human-Usable Textual Notation, v1.0. Document formal/04-08-01. http://www.uml.org/.
31. Java Community Process. http://java.sun.com/aboutJava/communityprocess/.
32. Java Metadata Interface Speci�cation, Version 1.0. http://java.sun.com/products/jmi/, 2002.
33. S. Kent. Model driven engineering. In IFM '02: Proc. of the Third International Conference on Integrated Formal Methods,

pages 286�298. Springer-Verlag, 2002.
34. I. Kurtev, J. Bézivin, and M. Aksit. Technical Spaces: An Initial Appraisal. In CoopIS, DOA'2002, Federated Conferences,

Industrial track, Irvine, 2002.
35. OMG. The Model Driven Architecture (MDA). http://www.omg.org/mda/.
36. J. P. Nytun, A. Prinz, and M. S. Tveit. Automatic generation of modelling tools. In Proc. of ECMDA-FA, pages 268�283,

2006.
37. OMG. UML 2.0 OCL Speci�cation, ptc/03-10-14.
38. The Object Managment Group (OMG). http://www.omg.org.
39. R. F. Paige. A meta-method for formal method integration. In In Proc. of Industrial Applications and Strengthened

Foundations of Formal Methods (FME'97), volume 1313 of LNCS, pages 473�494. Springer, 1997.
40. Petri Net Markup Laguage (PNML). http://www.informatik.hu-berlin.de/top/pnml.
41. Poseidon UML Tool. http://www.gentleware.com.
42. OMG, Request For Proposal: MOF 2.0/QVT, ad/2002-04-10. http:www.omg.org.

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 45

43. E. Riccobene and P. Scandurra. Towards an Interchange Language for ASMs. In W. Zimmermann and B. Thalheim,
editors, Abstract State Machines. Advances in Theory and Practice, LNCS 3052, pages 111 � 126. Springer, 2004.

44. P. Scandurra, A. Gargantini, C. Genovese, T. Genovese, and E. Riccobene. A Concrete Syntax derived from the Abstract
State Machine Metamodel. In 12th International Workshop on Abstract State Machines (ASM'05), 8-11 March 2005,
Paris, France, 2005.

45. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The WAM Case Study. Journal of Universal
Computer Science (J.UCS), 3(4):377�413, 1997.

46. J. Schmid. AsmGofer. http://www.tydo.de/AsmGofer.
47. A. Schürr, A. J. Winter, and A. Zündorf. Handbook on Graph Grammars and Computing by Graph Transformation, vol.

2: Applications, Languages and Tools, chapter The PROGRES Approach: Language and Environment, pages 487�550.
World Scienti�c, 1999.

48. SDL (Speci�cation and Description Language. ITU Reccomandation Z.100. http://www.itu.int.
49. G. Taentzer. Towards common exchange formats for graphs and graph transformation systems. In J. Padberg (Ed.),

UNIGRA 2001: Uniform Approaches to Graphical Process Speci�cation Techniques, satellite workshop of ETAPS, 2001.
50. OMG. The Uni�ed Modeling Language (UML). http://www.uml.org.
51. D. Varró, G. Varró, and A. Pataricza. Towards an XMI�based model interchange format for graph transformation systems.

Technical report, Budapest University of Technology and Economics, Dept. of Measurement and Information Systems,
September 2000.

52. D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation of visual languages. Science of Computer
Programming, 44(2):205�227, August 2002.

53. M. Wimmer and G. Kramler. Bridging grammarware and modelware. In Proc. of the 4th Workshop in Software Model
Engineering (WiSME'05), Montego Bay, Jamaica, 2005.

54. K. Winter. Model Checking for Abstract State Machines. Journal of Universal Computer Science (J.UCS), 3(5):689�701,
1997.

55. OMG, XMI Speci�cation, v1.2. http://www.omg.org/cgi-bin/doc?formal/2002-01-01.
56. OMG. XMI Speci�cation, v2.0. http://www.omg.org/cgi-bin/doc?formal/2003-05-02.
57. W3C, The Extensible Markup Language (XML). http://http://www.w3.org/xml/.
58. Y. Gurevich and B. Rossman and W. Schulte. Semantic Essence of AsmL. Microsoft Research Technical Report MSR-

TR-2004-27, March 2004 .

46 Angelo Gargantini et al.

Appendix A � the Asm2L language

In the EBNF grammar reported below, nonterminals are plain and literal symbols are enclosed in double quotes. In
addition, words enclosed in angle brackets indicate a placeholder for a literal value that must be substituted with an
actual value (e.g., <DIGIT> ::= [0" - "9"]").

The structural language

Asm ::= (<ASYNCR>)? (<ASM> | <MODULE>) ID Header Body (<MAIN> MacroDeclaration)? ((Initialization)*

<DEFAULT> Initialization (Initialization)*)? <EOF>

Header ::= (ImportClause)* (ExportClause)? Signature

ImportClause ::= <IMPORT> MOD_ID ("(" (ID_DOMAIN | ID_FUNCTION | ID_RULE) ("," (ID_DOMAIN | ID_FUNCTION

| ID_RULE))* ")")?

ExportClause ::= <EXPORT> (((ID_DOMAIN | ID_FUNCTION | ID_RULE) ("," (ID_DOMAIN | ID_FUNCTION | ID_RULE

))*) | "*")

Signature ::= <SIGNATURE> ":" (Domain)* (Function)*

Initialization ::= <INIT> ID ":" (DomainInitialization)* (FunctionInitialization)* (AgentInitialization

)*

DomainInitialization ::= <DOMAIN> ID_DOMAIN "=" Term

FunctionInitialization ::= <FUNCTION> ID_FUNCTION ("(" VariableTerm IN getDomainByID ("," VariableTerm IN

getDomainByID)* ")")? "=" Term

AgentInitialization ::= <AGENT> "<" ID_AGENT ">" ":" "<" (ID_RULE | Rule) ">"

Body ::= <DEFINITIONS> ":" (DomainDefinition)* (FunctionDefinition)* (RuleDeclaration)* (Axiom)*

DomainDefinition ::= <DOMAIN> ID_DOMAIN "=" Term

FunctionDefinition ::= <FUNCTION> ID_FUNCTION ("(" VariableTerm IN getDomainByID ("," VariableTerm IN

getDomainByID)* ")")? "="

Term RuleDeclaration ::= (MacroDeclaration | TurboDeclaration)

MacroDeclaration ::= (<MACRO>)? <RULE> ID_RULE ("(" VariableTerm IN getDomainByID ("," VariableTerm IN

getDomainByID)* ")")? "=" Rule

TurboDeclaration ::= <TURBO> <RULE> ID_RULE ("(" VariableTerm IN getDomainByID ("," VariableTerm IN

getDomainByID)* ")")? (IN getDomainByID)? "=" Rule

Axiom ::= <AXIOM> (ID)? <OVER> (ID_DOMAIN | ID_FUNCTION ("(" (getDomainByID)? ")")? | ID_RULE) ("," (

ID_DOMAIN |ID_FUNCTION ("(" (getDomainByID)? ")")? | ID_RULE))* ":" Term

The de�nitional language

Domain ::= (ConcreteDomain | TypeDomain)

ConcreteDomain ::= (<DYNAMIC>)? <DOMAIN> ID_DOMAIN <SUBSETOF> getDomainByID

TypeDomain ::= (AnyDomain | StructuredTD | EnumTD | AbstractTD | BasicTD)

AnyDomain ::= <ANYDOMAIN> ID_DOMAIN

BasicTD ::= <BASIC> <DOMAIN> ID_DOMAIN

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 47

AbstractTD ::= (<DYNAMIC>)? <ABSTRACT> <DOMAIN> ID_DOMAIN

EnumTD ::= <ENUM> <DOMAIN> ID_DOMAIN "=" "{" EnumElement ("|" EnumElement)* "}"

EnumElement ::= ID_ENUM

StructuredTD ::= (ProductDomain | SequenceDomain | PowersetDomain | BagDomain | MapDomain)

ProductDomain ::= <PROD> "(" getDomainByID ("," getDomainByID)+ ")"

SequenceDomain ::= <SEQ> "(" getDomainByID ")"

PowersetDomain ::= <POWERSET> "(" getDomainByID ")"

BagDomain ::= <BAG> "(" getDomainByID ")"

MapDomain ::= <MAP> "(" getDomainByID "," getDomainByID ")"

getDomainByID ::= (ID_DOMAIN | StructuredTD)

Function ::= (BasicFunction | DerivedFunction)

BasicFunction ::= (StaticFunction | DynamicFunction)

DerivedFunction ::= <DERIVED> ID_FUNCTION ":" (getDomainByID "->")? getDomainByID

StaticFunction ::= <STATIC> ID_FUNCTION ":" (getDomainByID "->")? getDomainByID

DynamicFunction ::= (OutFunction | MonitoredFunction | SharedFunction | ControlledFunction | LocalFunction)

ControlledFunction ::= (<DYNAMIC>)? <CONTROLLED> ID_FUNCTION ":" (getDomainByID "->")? getDomainByID

SharedFunction ::= (<DYNAMIC>)? <SHARED> ID_FUNCTION ":" (getDomainByID "->")? getDomainByID

MonitoredFunction ::= (<DYNAMIC>)? <MONITORED> ID_FUNCTION ":" (getDomainByID "->")? getDomainByID

OutFunction ::= (<DYNAMIC>)? <OUT> ID_FUNCTION ":" (getDomainByID "->")? getDomainByID

LocalFunction ::= (<DYNAMIC>)? <LOCAL> ID_FUNCTION ":" (getDomainByID "->")? getDomainByID

The language of terms

Term ::= (Expression | ExtendedTerm)

Expression ::= or_xorLogicExpr ((<ID_FUNCTION> or_xorLogicExpr | <ID_FUNCTION> or_xorLogicExpr))*

or_xorLogicExpr ::= andLogicExpr ((<ID_FUNCTION> | <ID_FUNCTION>) andLogicExpr)*

andLogicExpr ::= notLogicExpr (<ID_FUNCTION> notLogicExpr)*

notLogicExpr ::= (<ID_FUNCTION> includesExpr | includesExpr)

includesExpr ::= relationalExpr ((<ID_FUNCTION> relationalExpr | <ID_FUNCTION> relationalExpr))?

relationalExpr ::= additiveExpr ((<EQ> additiveExpr | <NEQ> additiveExpr | <LT> additiveExpr | <LE>

additiveExpr | <GT> additiveExpr | <GE> additiveExpr))*

additiveExpr ::= multiplicativeExpr ((<PLUS> multiplicativeExpr | <MINUS> multiplicativeExpr))*

multiplicativeExpr ::= powerExpr ((<MULT> powerExpr | <DIV> powerExpr | <ID_FUNCTION> powerExpr))*

48 Angelo Gargantini et al.

powerExpr ::= unaryExpr (<PWR> unaryExpr)*

unaryExpr ::= ((<PLUS> unaryExpr | <MINUS> unaryExpr) | basicExpr)

basicExpr ::= (BasicTerm | DomainTerm | "(" Expression ")")

BasicTerm ::= (ConstantTerm | VariableTerm | FunctionTerm)

FunctionTerm ::= (ID_AGENT ".")? ID_FUNCTION (TupleTerm)?

LocationTerm ::= (ID_AGENT ".")? ID_FUNCTION (TupleTerm)?

VariableTerm ::= ID_VARIABLE

ConstantTerm ::= (ComplexTerm | RealTerm | IntegerTerm | NaturalTerm | CharTerm | StringTerm | BooleanTerm |

UndefTerm | EnumTerm)

ComplexTerm ::= <COMPLEX_NUMBER>

RealTerm ::= (<REAL_NUMBER>)

IntegerTerm ::= <NUMBER>

NaturalTerm ::= <NATNUMBER>

CharTerm ::= <CHAR_LITERAL>

StringTerm ::= <STRING_LITERAL>

BooleanTerm ::= (<TRUE> | <FALSE>)

UndefTerm ::= <UNDEF>

EnumTerm ::= ID_ENUM

ExtendedTerm ::= (ConditionalTerm | CaseTerm | TupleTerm | VariableBindingTerm | CollectionTerm | RuleAsTerm

| DomainTerm)

ConditionalTerm ::= <IF> Term <THEN> Term (<ELSE> Term)? <ENDIF>

CaseTerm ::= <SWITCH> Term (<CASE> Term ":" Term)+ (<OTHERWISE>

Term)? <END_SWITCH>

TupleTerm ::= "(" Term ("," Term)* ")"

CollectionTerm ::= (SequenceTerm | MapTerm | SetTerm | BagTerm)

SequenceTerm ::= "[" (Term (("," Term)+ | (".." Term ("," (Term))?))?)? "]"

SetTerm ::= "{" (Term (("," Term)+ | (".." Term ("," (Term

))?))?)? "}"

MapTerm ::= "{" ("->" | (Term "->" Term ("," Term "->" Term)*

)) "}"

BagTerm ::= "<" (Term (("," Term)+ | (".." Term ("," (Term

))?))?)? ">"

VariableBindingTerm ::= (LetTerm | FiniteQuantificationTerm | ComprehensionTerm)

FiniteQuantificationTerm ::= (ForallTerm | ExistUniqueTerm | ExistTerm)

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 49

ExistTerm ::= "(" <EXIST> VariableTerm IN Term ("," VariableTerm IN Term)* (<WITH> Term)? ")"

ExistUniqueTerm ::= "(" <EXIST> <UNIQUE> VariableTerm IN Term ("," VariableTerm IN Term)* (<WITH> Term)?

")"

ForallTerm ::= "(" <FORALL> VariableTerm IN Term ("," VariableTerm IN Term)* (<WITH> Term)? ")"

LetTerm ::= <LET> "(" VariableTerm "=" Term ("," VariableTerm "=" Term)* ")" IN Term <ENDLET>

ComprehensionTerm ::= (SetCT | MapCT | SequenceCT | BagCT)

SetCT ::= "{" Term "|" VariableTerm IN Term ("," VariableTerm IN Term)* (<WITH> Term)? "}"

MapCT ::= "{" Term "->" Term "|" VariableTerm IN Term ("," VariableTerm IN Term)* (<WITH> Term)? "}"

SequenceCT ::= "[" Term "|" VariableTerm IN Term ("," VariableTerm IN Term)* (<WITH> Term)? "]"

BagCT ::= "<" Term "|" VariableTerm IN Term ("," VariableTerm IN Term)* (<WITH> Term)? ">"

DomainTerm ::= getDomainByID

RuleAsTerm ::= "<<" Rule ">>"

The language of rules

Rule ::= (BasicRule | TurboRule | UpdateRule | TurboReturnRule | TermAsRule | DerivedRule)

TermAsRule ::= (FunctionTerm | VariableTerm)

BasicRule ::= (SkipRule | MacroCallRule | BlockRule | ConditionalRule | ChooseRule | ForallRule | LetRule |

ExtendRule)

SkipRule ::= <Skip>

UpdateRule ::= (LocationTerm | VariableTerm) ":=" Term

BlockRule ::= <PAR> Rule (Rule)+ <ENDPAR>

ConditionalRule ::= <IF> Term <THEN> Rule (<ELSE> Rule)? <ENDIF>

ChooseRule ::= <CHOOSE> VariableTerm IN Term ("," VariableTerm IN Term)* <WITH> Term <DO> Rule (<IFNONE>

Rule)?

ForallRule ::= <FORALL> VariableTerm IN Term ("," VariableTerm IN Term)* <WITH> Term <DO> Rule

LetRule ::= <LET> "(" VariableTerm "=" Term ("," VariableTerm "=" Term)* ")" IN Rule <ENDLET>

MacroCallRule ::= ID_RULE "[" (Term ("," Term)*)? "]"

ExtendRule ::= <EXTEND> ID_DOMAIN <WITH> VariableTerm ("," VariableTerm)* <DO> Rule

TurboRule ::= (SeqRule | IterateRule | TurboCallRule | TurboLocalStateRule)

SeqRule ::= <seq> Rule (Rule)+ <ENDSEQ>

IterateRule ::= <ITERATE> Rule <ENDITERATE>

TurboCallRule ::= ID_RULE "(" (Term ("," Term)*)? ")"

50 Angelo Gargantini et al.

TurboReturnRule ::= (LocationTerm | VariableTerm) "<-" TurboCallRule

TurboLocalStateRule ::= LocalFunction "[" Rule "]" (LocalFunction "[" Rule "]")* Rule

TryCatchRule ::= <TRY> Rule <CATCH> (Term) ("," (Term))* Rule

DerivedRule ::= (BasicDerivedRule | TurboDerivedRule)

BasicDerivedRule ::= CaseRule

CaseRule ::= <SWITCH> Term (<CASE> Term ":" Rule)+ (<OTHERWISE> Rule)? <END_SWITCH>

TurboDerivedRule ::= (RecursiveWhileRule | IterativeWhileRule)

RecursiveWhileRule ::= <WHILEREC> Term <DO> Rule

IterativeWhileRule ::= <WHILE> Term <DO> Rule

Metamodelling a Formal Method: Applying MDE to Abstract State Machines 51

Final terminals

ID_VARIABLE ::= <ID_VARIABLE>

ID_ENUM ::= <ID_ENUM>

ID_DOMAIN ::= <ID_DOMAIN>

ID_RULE ::= <ID_RULE>

ID_FUNCTION ::= <ID_FUNCTION>

ID_AGENT ::= <ID_FUNCTION>

ID ::= (<ID>)

MOD_ID ::= (<MOD_ID>)

IN ::= <IN>

<ASM> ::="asm"

<MODULE> ::="module"

<ASYNCR> ::="asyncr"

<IMPORT> ::="import"

<EXPORT> ::="export"

<SIGNATURE> ::="signature"

<INIT> ::="init"

<DEFAULT> ::="default"

<AGENT> ::="agent"

<AXIOM> ::="axiom"

<OVER> ::="over"

<DEFINITIONS> ::= "definitions"

<FUNCTION> ::="function"

<STATIC> ::= "static"

<DYNAMIC> ::= "dynamic"

<DERIVED> ::= "derived"

<MONITORED> ::= "monitored"

<CONTROLLED> ::= "controlled"

<SHARED> ::= "shared"

<OUT> ::="out"

<DOMAIN> ::= "domain"

<ANYDOMAIN> ::= "anydomain"

<BASIC> ::= "basic"

<ABSTRACT> ::= "abstract"

<ENUM> ::= "enum"

<SUBSETOF> ::="subsetof"

<PROD> ::= "Prod"

<SEQ> ::= "Seq"

<POWERSET> ::= "Powerset"

<BAG> ::= "Bag"

<MAP> ::= "Map"

<TRUE> ::= "true"

<FALSE> ::= "false"

<UNDEF> ::= "undef"

<IF> ::= "if"

<THEN> "then"

<ELSE> ::= "else"

<ENDIF> ::="endif"

<SWITCH> ::= "switch"

<END_SWITCH> ::= "endswitch"

<CASE> ::= "case"

<OTHERWISE> ::= "otherwise"

<ENDCASE> ::= "endcase"

<LET> ::="let"

<ENDLET> ::="endlet"

<EXIST> ::="exist"

<UNIQUE> ::="unique"

<WITH> ::= "with"

<FORALL> ::= "forall"

<Skip> ::= "skip"

<RULE> ::= "rule"

<MACRO> ::= "macro"

52 Angelo Gargantini et al.

<TURBO> ::= "turbo"

<MAIN> ::= "main"

<PAR> ::= "par"

<ENDPAR> ::= "endpar"

<CHOOSE> ::= "choose"

<DO> ::= "do"

<IFNONE> ::="ifnone"

<EXTEND> ::= "extend"

<seq> ::= "seq"

<ENDSEQ> ::="endseq"

<ITERATE> ::="iterate"

<ENDITERATE> ::="enditerate"

<LOCAL> ::= "local"

<TRY> ::= "try"

<CATCH> ::= "catch"

<WHILE> ::= "while"

<WHILEREC> ::= "whilerec"

<IN> ::= "in"

<EQ> ::= "="

<LT> ::= "<"

<LE> ::= "<="

<GT> ::= ">"

<GE> ::= ">="

<NEQ ::= "!="

<PLUS> ::= "+"

<MINUS> ::= "-"

<MULT> ::= "*"

<DIV> ::= "/"

<PWR> ::= "^"

<NUMBER> ::= (<DIGIT>)+

<NATNUMBER> ::= (<DIGIT>)+"n"

<REAL_NUMBER> ::= (<DIGIT>)+ "." (<DIGIT>)+

<COMPLEX_NUMBER> ::= ((["+","-"])? (<DIGIT>)+ ("."

(<DIGIT>)+)?)?(["+","-"])? "i" ((<DIGIT>)+ ("." (

<DIGIT>)+)?)?

<ID_VARIABLE> ::= "$" <LETTER> (<LETTER>|<DIGIT>)*

<ID_ENUM> ::= ["A"-"Z"] ["A"-"Z"] ("_"|["A"-"Z"]

|<DIGIT>)*

<ID_DOMAIN> ::= ["A"-"Z"] ("_"|["a"-"z"]|["A"-"Z"]

|<DIGIT>)*

<ID_RULE> ::= "r_" (<LETTER>|<DIGIT>)+

<ID_FUNCTION> ::= (["a"-"z"]) (<LETTER>|<DIGIT>)*

<LETTER> ::= ["_","a"-"z","A"-"Z"]

<DIGIT> ::= ["0"-"9"]

<CHAR_LITERAL> ::= "'" ((~["'","\\","\n","\r"]) |

("\\"

(["n","t","b","r","f","\\","'","\""]

| ["0"-"7"] (["0"-"7"])?

| ["0"-"3"] ["0"-"7"] ["0"-"7"]

)))* "'"

<STRING_LITERAL> ::= "\"" ((~["\"","\\","\n","\r"]) |

("\\"

(["n","t","b","r","f","\\","'"

,"\""] | ["0"-"7"] (["0"-"7"])?

| ["0"-"3"]["0"-"7"] ["0"-"7"])

))* "\"" >

<GENERIC_ID> ::= ID : <LETTER> (<LETTER>|<DIGIT>)*

<MOD_ID> ::= (<LETTER>|"."|"/"|"\\")

(<LETTER>|<DIGIT>|"."|"/"|"\\"|":")*

