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Abstract To support program comprehension, maintenance, and evolution, metamodels are

frequently used during program reverse engineering activities to describe and analyze con-

stituents of a program and their relations. Reverse engineering tools often define their own

metamodels according to the intended purposes and features. Although each metamodel

has its own advantages, its limitations may be addressed by other metamodels. Existing

works have evaluated and compared metamodels and tools, but none have considered all

the possible characteristics and limitations to provide a comprehensive guideline for clas-

sifying, comparing, reusing, and extending program metamodels. To aid practitioners and

researchers in classifying, comparing, reusing, and extending program metamodels and their

corresponding reverse engineering tools according to the intended goals, we establish a

conceptual framework with definitions of program metamodels and related concepts. We

confirmed that any reverse engineering activity can be clearly described as a pattern based

on the framework from the viewpoint of program metamodels. Then the framework is used
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to provide a comprehensive taxonomy, named Program Metamodel TAxonomy (ProMeTA),

which incorporates newly identified characteristics into those stated in previous works,

which were identified via a systematic literature review (SLR) on program metamodels,

while keeping the orthogonality of the entire taxonomy. Additionally, we validate the tax-

onomy in terms of its orthogonality and usefulness through the classification of popular

metamodels.

Keywords Reverse engineering · Program metamodels · Program comprehension and

analysis · Taxonomy

1 Introduction

Program reverse engineering plays an important role during software maintenance and evo-

lution activities. This is because reliable information is often only embedded in the source

code when maintaining and–or evolving a software system (Canfora et al. 2011). Program

reverse engineering is the process of analyzing the program source code written in general

purpose programming languages (Garwick 1968; Buchner and Matthes 2006), to iden-

tify program code elements and create representations of a program at a certain level of

abstraction.

Metamodels exist to describe and process software programs in program reverse engi-

neering for program comprehension, maintenance, and evolution. They are essential for

developing reverse engineering tools because they define constituents and relations to be

identified in programs, enabling and circumscribing the features of the tools.

Reverse engineering tools often define their own metamodels according to their purposes

and intended features (Ebert et al. 2002). The code representation (i.e., metamodel) depends

on the actual reverse engineering problem and the aspired program analysis technique. Each

reverse engineering tool must choose the appropriate abstraction level of the metamodel.

For many reverse engineering activities, only a broad overview of the system is necessary.

Consequently, the amount of extracted data by language analyzers (like compilers based

on low-level metamodels) may become too large to comprehend or analyze in a reasonable

amount of time (Sim and Koschke 2001). On the other hand, some analysis requires details

to ensure high precision and recall in the analysis results.

Each metamodel has advantages as well as limitations, which may be resolved by other

metamodels. By conducting a systematic literature review (SLR) as a rigorous survey on

program metamodels, we found that metamodels can be characterized by the following

exhaustive orthogonal features: target language, abstraction level, meta-metamodel, exchange

format, processing environment, definition, program metadata and history data, and quality.

Regarding the abstraction level, low-level metamodels represent the complete code

syntax, high-level ones represent abstract architectural constituents, while mid-level

ones represent neither the complete code syntax nor the architectural constituents (Leth-

bridge et al. 2004). Due to the differences between the metamodels, it is difficult to compare

reverse engineering tools. These differences also lead to problems when exchanging infor-

mation among tools (Lin and Holt 2004). For example, fact extractors often disagree and

emit different facts for the same source program, undermining the users’ understanding

of the program and decreasing their confidence in the extractor (Lin and Holt 2004). For

example, FAMOOS Information Exchange Model (FAMIX) (Demeyer et al. 1999) and

Knowledge Discovery Metamodel (KDM) (OMG 2011b), which are popular metamodels,

are applicable to the same programs, but have slightly different structures.
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To assist practitioners and researchers in classifying, comparing, reusing, and extending

program metamodels and the corresponding reverse engineering tools according to their

goals, some works have evaluated and compared metamodels and tools (Jin and Cordy 2006;

Izquierdo and Molina 2014). However, the comparisons and evaluations were conducted

independently and do not provide a comprehensive guide of all the possible characteristics

and limitations of metamodels.

The goal of this paper is to provide a comprehensive taxonomy and use this taxonomy to

classify some popular metamodels. Our taxonomy, named Program Metamodel TAxonomy

(ProMeTA), and the classification results support the classification, comparison, reuse, and

extension of program metamodels and reverse engineering tools in various usage scenar-

ios. To make the taxonomy and classification results consistent, we establish a conceptual

framework with definitions of program metamodels and related concepts. The framework

allows our taxonomy to incorporate newly identified characteristics into existing ones while

keeping the orthogonality of the entire taxonomy.

We address the following research questions.

RQ1 Does ProMeTA cover all possible characteristics and limitations in existing works

that evaluate and compare program metamodels?

RQ2 Does ProMeTA have orthogonality in its classification features?

RQ3 Is ProMeTA useful for guiding practitioners and researchers? Possible usecases

include creating or choosing reverse engineering tools, and, communicating or research-

ing program metamodels and reverse engineering tools.

This paper is an extended version of a paper presented at the 32nd International Confer-

ence on Software Maintenance and Evolution (ICSME) (Washizaki et al. 2016a). We have

substantially added explanations on the taxonomy construction process and all of program

metamodels found in the SLR. Moreover, we have added a reverse engineering pattern to

make the conceptual framework and related terminology comprehensive. We summarize

our contributions as follows:

– We developed a conceptual framework along with a pattern for program reverse

engineering from the viewpoint of metamodels.

– Using a SLR to identify necessary features, we created a comprehensive taxonomy

called ProMeTA. ProMeTA characterizes program metamodels in reverse engineering

based on our framework.

– We classified existing popular program metamodels based on our taxonomy.

The remainder of this paper is organized as follows. Section 2 provides the background.

Section 3 proposes our conceptual framework together with a program reverse engineering

pattern, while we show the taxonomy construction process in Section 4. Section 5 shows our

taxonomy. Section 6 validates and discusses our work. Finally, we provide our conclusion

and future work in Section 7.

2 Background

2.1 Program Reverse Engineering

Reverse engineering is the process of analyzing a subject system in order to identify the

system’s constituents and create representations in other forms or at higher levels of abstrac-

tion (Chikofsky and Cross 1990). Although reverse engineering can be initiated from any
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level of abstraction, this paper focuses on program reverse engineering, i.e., the process of

analyzing a program source code to identify the program’s constituents and create a rep-

resentation of the program. This work is motivated by the fact that, when maintaining a

software system, only the source code of the program often contains reliable information

(Canfora et al. 2011).

Moreover, this paper limits the target program codes to those written in general purpose

programming languages (GPLs) (Garwick 1968), such as C and Java. Compared to domain

specific languages (DSLs), which are used for a specific problem, GPLs are used to solve a

broad spectrum of problems (Buchner and Matthes 2006). DSLs usually offer higher-level

constructs (e.g., rules) in comparison to GPLs (Jouault et al. 2006). Thus, it is challenging

for metamodels to describe GPL programs at appropriate abstraction levels according to

specific purposes, such as program analysis (Washizaki and Fukazawa 2005), visualization

(Ishizue et al. 2016), etc.

For example, the first author developed an automatic component-extraction system with its

visualization (shown in Fig. 1) targeting Java source code (Washizaki and Fukazawa 2005),

which parses the Java source code, and selects only basic structural data such as classes,

methods, fields, and dependencies among them with respect to a Java program metamodel.

Due to the above mentioned limitation, metamodels only handling domain specific lan-

guages (DLSs) such as SQL and XML are out of scope of this paper. Moreover the limitation

leads to include metamodels and relevant reverse engineering approaches handling program

source codes into the SLR, and exclude those handling only program bytecodes since byte-

codes are not written in GPLs but machine-executable language specifications such as Java

bytecode instructions.1

2.2 Program Metamodel

Fact extraction from source codes aims to find pieces of information about a program (e.g., the

name of a class or what function calls what function) (Knodel and Calderon-Meza 2004). Fact

extraction is often the first step when analyzing a software system during reverse engineer-

ing. Before performing any high-level reverse engineering activity, the available information

(i.e., facts) must be extracted and aggregated in a fact base or repository (Knodel and

Calderon-Meza 2004). The metamodel (i.e., schema), which specifies the constituents and

relations to be extracted, is essential to a fact extractor (Knodel and Calderon-Meza 2004).

In addition, schemas are crucial to develop reverse engineering tools since they also

specify the underlying semantic model of various analysis services (Favre et al. 2003). From

the viewpoint of modeling technology, herein schemas for fact extraction from programs

are regarded as program metamodels while the extracted facts are regarded as models of the

programs that conform to the corresponding schemas used for the extraction.

3 Terminology and Conceptual Framework

Although program metamodels are used under various contexts (e.g., forward engineer-

ing and reverse engineering) and at different abstraction levels from architecture to code,

the concept of metamodels is not clearly defined. Indeed, there are many synonyms for

1Another reason to exclude those handling only bytecodes is because bytecodes often do not contain all the

source code information. For example, Java bytecodes lack information on type parameters in generic types

due to a mechanism called “Type Erasure”.
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Fig. 1 Example of a view of our component-extraction system

“metamodel” including “schema”, “representation”, “format”, and “form”. Moreover, meta-

models are often discussed along with standard exchange formats (SEFs) without a clear

distinction between the two. For example, Sim and Koschke (2001) report that the workshop

focused on SEFs had a presentation addressing “a family of related SEFs including MOF,

XMI, UML, XML and CDIF”. However, a Meta Object Facility (MOF) (OMG 2015a) is a

meta-metamodel, whereas the others are SEFs, although a UML can also serve as a program

metamodel.

3.1 Terminology

To establish a common vocabulary, we first define the following core concepts:

– A model is a simplification of a system with an intended goal (Favre and Nguyen 2005).

For example, a diagram showing only the program modules and their dependencies is

a model of a program created with the goal of understanding the basic structure.

– A metamodel is a model of the language that captures the essential properties and fea-

tures of a model (Clark et al. 2015). In this context, a model is an abstraction of an

aspect of the real world, while a metamodel is a further abstraction to describe the

model. Although metamodels have primarily been developed and advertised by the

Object Management Group (OMG) with its MOF standard (Alanen and Porres 2003) in

the context of modelware, metamodels are not limited to MOF-based models. Examples

of metamodels include Program metamodels in modelware, schemas (or exchange for-

mat) in dataware, and grammars in grammarware (Favre and Nguyen 2005), which are

models of program modeling languages, data languages, and programming languages,

respectively in different technological spaces (Kurtev et al. 2002; Wimmer and Kram-

ler 2005). By referring to the ISO/IEC 42010:2011 terminology (ISO/IEC/IEEE 2011),

a model is a “view” conforming to a “viewpoint” (i.e., metamodel) (Bruneliėre et al.

2014).2

2Usually a single viewpoint corresponds to a single metamodel. However, KDM is a multi-viewpoint meta-

model because a KDM specification provides a set of viewpoints that define a set of metamodel elements.
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Fig. 2 Conceptual framework of program metamodels

3.2 Conceptual Framework

According to the above concepts, program metamodels and related concepts are defined

below. Figure 2 shows the relationships among them following the OMG four-layer meta-

model hierarchy (OMG 2015a; Kurtev et al. 2002) with some modifications to make it

comparable with other model-driven engineering frameworks and views.

– A program metamodel is a model of a programming language grammar, which repre-

sents target programs according to a specific purpose. The elements of any program

metamodel must be mapped to (a set of) elements of the corresponding grammar. As

shown in Fig. 2, “Program metamodel” is mapped by “Grammar”. A program model

must conform to its program metamodel. In Fig. 2, “Program model” conforms to

“Program metamodel”. Examples include KDM, FAMIX, and UML.

– A program metalanguage is a language to describe program metamodels. In Fig. 2,

“Program metamodel” conforms to “Metalanguage”. Metalanguages can be classified

as metasyntaxes of grammar such as Extended BNF (EBNF) (ISO/IEC 1996) in textual

presentation or meta-metamodels of metamodels at certain abstraction levels such as

MOF and Eclipse Modeling Framework (EMF) meta model Ecore (Steinberg et al.

2008) usually in a graphic presentation.3

– A context-free grammar (or simply grammar) is a formal device to specify which

strings are part of the language, where the language is a set of strings over a finite set

of symbols (Earley 1970).

– A concrete syntax tree (CST) is a parse tree that pictorially shows how a string in a

language is derived from the start symbol of the grammar (Aho et al. 2006).

3In some environments (Amelunxen et al. 2008; Minas 2006; Pedro et al. 2009), a graphical (i.e., visual)

syntax can be used to define meta-models. However, such graphical syntax is usually intended to define

domain specific modeling languages, which are graphical DSLs.
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– An abstract syntax tree (AST), is a simplified syntactic representation of the source

code, excluding superficial distinctions of form and constituents that are unimportant

for translation from the tree (Aho et al. 2006). An AST follows an abstract gram-

mar, which is a representation of the original concrete grammar at a higher-level of

abstraction.

– An abstract syntax model is a graphical representation of an abstract syntax (tree).

Abstract syntax models can be seen as low-level program metamodels. Exam-

ples include programming-language-independent AST models such as ASTM (OMG

2011a)4 and programming-language-specific AST models such as Java Metamodel

(Kollmann and Gogolla 2001).

– A standard exchange format (SEF) (or simply an exchange format) is a metamodel

(i.e., schema) of model data used to store the program models exchangeable among

different tools (Fig. 2). For example, “Model data” conforms to “Exchange format”.

Most of the elements in the exchange format can be mapped to (a set of) elements in

the corresponding program metamodel. The exchange format may contain additional

information (e.g., visual layout information) that is not included in the corresponding

program model. Thus, “Exchange format” might be mapped by “Program metamodel”

in Fig. 2. Examples include XML, XML Metadata Interchange format (XMI), Resource

Descriptor Format (RDF), Rigi Standard Form (RSF), Tuple-Attribute Language (TA),

GraX (Sim and Koschke 2001), CASE Data Interchange Format (CDIF) (Imber 1991)

and MSE (Ducasse et al. 2011). Some of these (e.g., XMI and RDF) are general-purpose

exchange formats that can be adapted to software, while others are specific to software

(Sim and Koschke 2001).

3.3 Program Reverse Engineering as a Pattern

Based on the conceptual framework, now we can clearly explain any program reverse engi-

neering activity and tool from the viewpoint of program metamodels. Program reverse

engineering consists of various transformations such as extraction and abstraction.

Table 1 shows the pattern Transformation to higher abstraction levels that describes a

common fundamental process of software transformation in any reverse engineering activ-

ity (Washizaki et al. 2016b). The pattern is described in the pattern form consisting of an

Alias name (if necessary), a specific Context, a recurrent Problem under the context, its

corresponding Solution, and a Known implementation.

The pattern gives specific reverse engineering activities (i.e., Integrated program

reverse engineering, Fact extraction and Architecture recovery Washizaki et al. 2016b)

a common context, problem, and solution. By referring to this pattern, practitioners and

researchers can recognize when, why, and how to perform reverse engineering together with

underlying metamodels (Fig. 3).

For example, by referring to the pattern, maintainers may develop a new tool or use an

existing tool environment such as MOOSE (Ducasse et al. 2000) to comprehend Java source

code. MOOSE can extract program entities and their relationships from Java source code by

dealing with the abstract grammar of Java and FAMIX as a Lower-meta and a Higher-meta,

respectively. MOOSE can visualize the extracted information in various forms such as the

graph representation. Moreover, MOOSE can store the information in the form a compact

serialization format called MSE.

4ASTM can also be a basis for deriving programming-language-specific AST models.
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Table 1 Pattern: Transformation to higher abstraction levels

Section Description

Name Transformation to higher abstraction levels

Context You are analyzing software to comprehend or maintain it.

Problem The description of the software contains too much data to be compre-

hended or analyzed in a reasonable amount of time. You have some

interest in certain aspects on the software; however, its description is

too complex to focus on particular aspects of the interest.

Solution Transform the software (i.e., Lower-base in Fig. 3) as a source to

another as a target at a higher or the same level of abstraction (Higher-

base). This is usually done by defining rules mapping from a meta-

model at a lower level (i.e., Lower-meta) as the domain to another

metamodel at a higher or the same level (i.e., Higher-meta) as the

range. Figure 3 shows the elements involved in the transformation.

Concrete transformations can be classified into four types: Extraction,

Abstraction, View and Store.

– Extraction transforms code artifacts based on a certain grammar to a

set of program facts based on a certain program metamodel. It is usually

done by a parser that parses code artifacts.

– Abstraction transforms program models based on a certain lower

metamodel to another model based on a certain higher metamodel.

It is usually done by a filter component that queries, selects, and

joins necessary data with respect to the higher metamodel; target

higher metamodels are sometimes implicitly declared for the purpose

of interactive ad hoc abstraction.

– View transforms program models based on a metamodel to another

model based on another visualization metamodel at a similar or almost

the same abstraction level. The transformation results are then dis-

played. Typical examples are HTML tables, UML diagrams, and any

general graph representation.

– Store transforms program models based on a metamodel to model

data according to an exchange format at a similar or almost the same

abstraction level. Then the results are stored in a repository. Typical

examples are XMI files, RDF files, and relational database.

Known implementation Any reverse engineering tool.

Related patterns The following patterns are based on combinations of multiple concrete

transformations.

– Integrated program reverse engineering performs Extraction,

Abstraction, Store, and View in its solution.

– Fact extraction performs Extraction and Store in its solution.

– Architecture recovery performs Extraction, Abstraction and View in

its solution.

4 Taxonomy Construction

Based on the background described in Section 2 and the vocabulary presented in Section 3,

we identify various characteristics to distinguish existing program metamodels. We pro-

pose a comprehensive taxonomy, called the Program Metamodel TAxonomy (ProMeTA),

to classify program metamodels in the form of feature diagrams based on our concep-

tual framework. ProMeTA integrates the characteristics stated in existing works with those
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Fig. 3 Structure of Transformation to higher abstraction levels

newly identified, while maintaining the orthogonality of the entire taxonomy. Below its

construction process is described in detail.

4.1 Construction Process

The development of a taxonomy can be approached in two different ways: top-down

and bottom-up (Unterkalmsteiner et al. 2014; Glass 2002). In the top-down approach,

the taxonomy is built upon existing knowledge structures, allowing established defini-

tions and categorizations to be reused, increasing the probability of achieving an objective

classification procedure (Unterkalmsteiner et al. 2014).

As previously mentioned, existing works have evaluated and compared program meta-

models and tools, but none have provided a comprehensive guide that takes all possible

characteristics into account. Therefore, we adopt a top-down approach to design ProMeTA

based on our conceptual framework as follows. Figure 4 outlines the process.

1. A specific taxonomy is designed to accommodate a single, well-defined purpose,

which is applicable to various circumstances (Unterkalmsteiner et al. 2014). First, we

clearly define the specific purpose of ProMeTA – to support stakeholders in classifying,

comparing, reusing, and extending program metamodels in program reverse engineer-

ing. Additionally, the taxonomy should support communications among stakeholders,

improving the accessibility of the research results in program metamodels and reverse

engineering.

2. Evidence-based Software Engineering (EBSE) (Kitchenham et al. 2004) has been

used to provide detailed insights regarding different topics in software engineering

research and practice. A Systematic Literature Review (SLR) is known as the rec-

ommended EBSE method for aggregating evidence (Kitchenham et al. 2009). Using

a SLR, existing works on classification and quality properties of program metamod-

els and tools are identified. Regarding the paper selection process within the SLR,

we referred to the process adopted in another successful SLR (Sharafi et al. 2015).

The aim of an SLR is to aggregate existing evidence on the research questions and to

support the development of evidence-based guidelines for researchers and practition-

ers (Kitchenham et al. 2009). During the SLR, several popular metamodels are also

identified.
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Fig. 4 Overview of taxonomy construction process

3. Then, existing classifications, comparisons of program metamodels and related con-

cepts (Lethbridge et al. 2004; Jin and Cordy 2006; Izquierdo and Molina 2014; Bellay

and Gall 1997; Armstrong and Trudeau 1998; Lethbridge 1998; Sim et al. 2000; Fer-

enc et al. 2001, 2002; Arcelli et al. 2005; Amelunxen et al. 2006) are analyzed. This

information is merged into one structure in the form of feature diagrams (Kang et al.

1990) by referring to the basic term classification defined in our conceptual frame-

work. Feature diagrams are trees that visualize the following relationships between

a parent feature and its subfeatures (i.e., child features): “Mandatory”, “Optional”,

“Or”, and “Alternative”. Mandatory means that subfeatures are required. Optional indi-

cates subfeatuers do not have to be selected. Or implies at least one subfeature must

be selected. Alternative denotes only one subfeature must be selected. A feature dia-

gram essentially defines a taxonomy (Czarnecki and Helsen 2003). Additionally, the

quality properties of program metamodels and related concepts discussed in papers

(Favre et al. 2003; Kurtev et al. 2002; Clark et al. 2015; Sim et al. 2000; Ferenc et

al. 2002; Tilley et al. 1994; Saint-Denis et al. 2000; Jin 2001, Jin et al. 2002; Czar-

necki and Helsen 2003; Christopher 2006; Wu 2010) as identified by the SLR are

combined.

4. Then by referring to the basic term classification defined in the framework, all the

identified characteristics in existing metamodels are added to the taxonomy while

maintaining the orthogonality.

5. Finally, the taxonomy is validated in terms of its orthogonality, coverage, and usefulness

by using it to classify the five popular metamodels identified in the SLR.

4.2 Systematic Literature Review

We searched for papers about program metamodels in reverse engineering using Engi-

neering Village,5 which is a search platform providing access to 12 trusted engineering

document databases, such as Ei Compendex and Inspec. The Engineering Village gives

us the ability to search in all recognized scholarly engineering journals, conference, and

workshop proceedings over different databases with a unique search query. Moreover the

5http://www.engineeringvillage.com/.

http://www.engineeringvillage.com/
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Fig. 5 Search query

Engineering Village allows us to detect and remove most of duplicates in the search results

automatically.

Because our main goal is to study characteristics of GPL-based program metamodels,

and advantages and limitations that they offer to reverse engineering tools, metamodels

dealing with program source code are regarded as study subjects while performing reverse

engineering tasks processing program source codes as stimuli. Thus, we define the follow-

ing three sets of keywords for defining our search query shown in Fig. 5. In our search query,

“*” at the end of each word is a truncation and can be replaced with zero or more characters.

– Subject: “meta model”6 OR “meta models” OR metamodel* . We use this category to

find papers that define and/or use a metamodel.

– Stimuli: “source code” OR “source codes” OR program* . We define this set to find

studies based on the types of stimuli that are usually use in program metamodels studies.

– Task: extract* OR transform* OR generat* . These are simple yet sufficient to identify

relevant papers since any reverse engineering objective and application must employ

some sort of transformation; For example, extraction and generation can be regarded as

types of vertical transformations (Gray et al. 2004).

4.3 Inclusion and Exclusion Criteria

We defined the following inclusion and exclusion criteria for the SLR. The relevance was

verified by reviewing the title, the abstract, and if necessary, the body.

Inclusion criteria:

a). Studies published in journals or conference proceedings in the form of papers employ-

ing metamodels for program reverse engineering targeting program source code

written in GPLs. For example, we included studies on program reengineering such

as modernization and refactoring only if they employed program metamodels for the

explicit reverse engineering phase as part of the entire reengineering process.

b). Studies that present details and–or complete results if a group reported more than one

study on the same topic.

Exclusion criteria:

a). Studies that do not employ a program metamodel.

b). Studies that are not directly related to program reverse engineering targeting program

source codes written in GPLs. For example, we exclude studies on model refactoring

6It also finds papers having a keyword “meta-model”.
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or transformation if they do not include any reverse engineering phase in the pro-

posed refactoring or transformation process. We also exclude studies on parsers just

for program compilation even though these parsers such as javac and the Eclipse Java

Development Tools (JDT) in Java have internal metamodels (Heidenreich et al. 2010).

For the same reason, we exclude studies just focusing on program transformations such

as (Bravenboer et al. 2008). None of these implementations does provide an integra-

tion with standard metamodelling tools (Heidenreich et al. 2010); i.e., these are not

originally intended for program reverse engineering objectives.

c). Elements of “grey” literature that are not published by trusted, well-known publishers,

and do not use a well-defined referee process (Budgen et al. 2011).

d). Articles not published in English.

4.4 Paper Selection Process

The process that we adopt to select the relevant papers is presented in Fig. 6. In the figure,

we present the set of activities that we undertook on the left while we present the number

of remaining papers after each activity on the right as of October 13th 2015. In below, we

explain each activity in detail.

a). Initial search: we execute our query in the Engineering Village. The search engine

searches into the title, the abstract, and the keywords section of the papers looking for

the keywords that are defined in our query to find the matching papers. The original

set of papers provided by our proposed search query contains 1587 papers.

Fig. 6 The selection process

with numbers showing number of

papers remaining after each

activity a

b

c

d

e

f
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b). Automatic duplicate removal: we apply the Engineering Village’s duplicate removal

feature to automatically find and remove duplicate papers for first 1000 results.7

1462 papers remain in the list.

c). Manual duplicate removal: we find and remove duplicates manually. Looking at the

title, abstract and source (such as the conference name), we check whether the paper

is duplicated or not. Although the Engineering Village search engine performed the

duplicate removal process, there are still some duplicates in the result because different

publishers use different formats to save and display the name of the authors, e.g., using

initials instead of full names.

1234 papers remain in the list.

d). Apply inclusion and exclusion criteria: we perform this activity to check whether the

paper is relevant or not by using the criteria. For each selected paper, one author con-

ducts the initial check, while another author confirms the result of the initial check. In

case of disagreement, there is a discussion among all authors until agreement.

We apply the inclusion/exclusion criteria and reduce the number of papers to 50.

We use the title, the abstract and the body of the papers to remove irrelevant papers

such as model-driven development works without any program metamodels for reverse

engineering. 51 non-English papers are removed. 11 proceedings and books are also

removed, because they list all of the accepted papers or chapters; we have already

selected those related to the study.

e). Full analysis: we check whether there are multiple papers on the same approach

reported by authors belonging a same group; in that case we include only a paper

that represents most details. Moreover, we replace work summary papers such as a

summary of a Ph.D. work with their complete version papers.

We perform the full analysis and remove 6 more papers from the list, leaving 44

papers (Ebert 2008; Bergmayr and Wimmer 2013; Naik and Bahulkar 2004; Chirila

and Jebelean 2010; Izquierdo and Molina 2010, 2014; Martinez et al. 2014: Owens

and Anderson 2013; Soden and Eichler 2007; Antoniol et al. 2003; Vidács 2009; Strein

et al. 2006; Lethbridge et al. 2004; Lin and Holt 2004; Knodel and Calderon-Meza

2004; Brühlmann et al. 2008; Tripathi et al. 2009; Lanza 2003; Pinzger et al. 2005;

Mens and Lanza 2002; Tichelaar et al. 2000; Antoniol et al. 2005; Gȯmez et al. 2009;

Reus et al. 2006; Reus et al. 2004; Cho 2005; Heidenreich et al. 2010; Kollmann and

Gogolla 2001; Favre 2008; Pėrez-Castillo et al. 2013; Santibȧnėz et al. 2015; Durelli

et al. 2014; Izquierdo and Molina 2010; Martinez et al. 2014; Arcelli et al. 2010;

Guėhėneuc and Albin-Amiot 2001; Harmer and Wilkie 2002; Wu 2010; Gȯmez and

Ducasse 2012; Alikacem and Sahraoui 2009; Ossher et al. 2009; Keller et al. 2001;

Abdi et al. 2006; Krasovec and Howell 1995; Sora 2012a, b). We remove two papers

because (Chirila and Jebelean 2010) presents details about the proposed reverse engi-

neering approach employing the logic-based program representation that is common

in those three papers. We also remove Izquierdo and Molina (2009) because Izquierdo

and Molina (2014) is its corresponding complete journal paper. There are three papers

whose text we could not find online.

f). Perform the focused-snowballing process: for each selected paper, one author is

assigned to go through the list of all references in order to find additional papers about

classifications and quality properties of program metamodels.

7The Engineering Village performs duplicate removal only for first 1000 results.
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Fig. 7 Feature diagram for the program metamodels

By performing the snowballing process, we additionally identified 9 papers about

classification and comparisons of program metamodels and related concepts (Jin and

Cordy 2006; Izquierdo and Molina 2014; Bellay and Gall 1997; Armstrong and

Trudeau 1998; Sim et al. 2000; Ferenc et al. 2001; Ferenc et al. 2002; Arcelli et al.

2005; Amelunxen et al. 2006) and 11 about quality properties (Favre et al. 2003;

Clark et al. 2015; Kurtev et al. 2002; Sim et al. 2000; Ferenc et al. 2002; Tilley et al.

1994; Saint-Denis et al. 2000; Jin 2001; Jin et al. 2002; Czarnecki and Helsen 2003;

Christopher 2006).

5 Program Metamodel TAxonomy (ProMeTA)

ProMeTA consists of nine features that represent major points of variation (Fig. 7). Each

feature is described below. Some of the features are designed to include concrete artifacts

such as concrete programming languages if those are well known and accepted.

5.1 Feature: Target Language

Language independence varies by metamodel; it depends on what kind of “Grammars” are

supported and mapped by the “Program metamodel” as shown in Fig. 2. Some metamod-

els only handle a certain language, while others handle multiple languages in a specific or

any category; In later case, usually only common concepts among multiple languages are

addressed. Even if a metamodel is stated to be “language independent”, our analysis reveals

that it often supports only a very limited number of languages. To define these characteris-

tics precisely, the target language feature consists of two parts: language independence and

current supported languages (Fig. 8).8

5.2 Feature: Abstraction Level

A representation (i.e., model) conforming to a metamodel must be as abstract as possible

(Kunert 2008) within the limits of its reverse engineering objectives. Metamodels can be

8For simplification and comprehension, possible exclusion dependencies between subfeatures of Category

Specific and subfeatures of Supported Language are omitted. For example, if Java is selected as the Supported

Language and Category Specific is selected as the Language Independence, then Object-Oriented must be

also selected as Category Specific. However, listing all such dependencies makes the taxonomy complex.
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Fig. 8 Feature diagram for the target languages

classified into three abstraction levels (Fig. 9): 1) low where the metamodel represents the

complete syntax of a code, 2) high where the metamodel represents abstract architectural

elements, and 3) middle where the metamodel represents neither of the above (Lethbridge

et al. 2004). In Fig. 2, “Grammar metamodel” corresponds to 1), while “Architecture /

design metamodel” corresponds to 2) and 3).

According to the requirements (Lethbridge 1998), SEFs should address classes (i.e.,

modules),9 associations (i.e., relationships), and attributes. The same requirements can com-

monly be applied to high- or mid-level program metamodels; the domain ontology for

integrating several reverse engineering tools (based on high- or mid-level metamodels) (Jin

and Cordy 2006) specifies these characteristics. The ontology also contains other concepts

such as System, Module (i.e., self-contained entity), SubProgram (i.e., non-self-contained

entity), Variable, Containment relationship, and Use relationship (Jin and Cordy 2006),

which are applicable to mid-level metamodels.

Regarding low-level metamodels, we follow the three representation aspects (Ferenc

et al. 2001): Lexical Structure, Syntax, and Semantics. Moreover, we add Dialects such as

non-standard language specifiers as well as Preprocessor Artifacts (Ferenc et al. 2002) and

Static/Dynamic semantics (Amelunxen et al. 2006), taken from existing schema compar-

isons (Ferenc et al. 2002; Amelunxen et al. 2006). For example, ASTM supports creating

AST models for specific general purpose languages and DSLs as well as dialects and

preprocessor artifacts of these languages.

5.3 Feature: Metalanguage

The data structures of SEFs used to represent software are classified as a Tree, a Graph,

or Structured Data (i.e., data that is not a tree or a graph) (Jin 2001). We adopt the same

classification for classifying metalanguages with our conceptual framework.

Based on the classification shown in Fig. 10, several well-accepted standard meta-

metamodels together with the metasyntax of grammar, including MOF, EMF/Ecore, Kernel

MetaMetaModel (KM3) (Jouault and Bezivin 2006), UML, and EBNF, are listed. In

Fig. 2, EBNF corresponds to “Metasyntax of grammar”, while others correspond to “Meta-

metamodel”. KM3 is a meta-metamodel that has concepts similar to those found in MOF

but is simpler than MOF (Jouault et al. 2006). Although UML is originally a modeling lan-

guage classified in the M2 layer of the OMG four-layer metamodel hierarchy, it is often

used to model program metamodels.

9“Abstraction level” does not discriminate methods and classes from functions and modules since the former

pair is applied on objects; “language independent” specifies whether metamodels cope with objects.
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Fig. 9 Feature diagram for the abstraction levels

5.4 Feature: Exchange Format

Program metamodels may depend on or have a high affinity with specific SEFs (i.e.,

“Exchange format” in Fig. 2). However, it is preferable if program metamodels are inde-

pendent from any SEF in order to exchange models among tools. For example, a reverse

engineering tool environment called MOOSE (Ducasse et al. 2000) defines its own pro-

gram metamodel called FAMIX, but it adopts CDIF (and later XMI and MSE) to exchange

FAMIX-based information between different tools (Nierstrasz et al. 1998; Jin 2001).

Figure 11 shows the characteristic properties and considerations of SEFs (Jin 2001;

Jin et al. 2002). Among them, most quality characteristics, including scalability, simplic-

ity, neutrality, formality, flexibility, evolvability, identity, solution reuse, and legibility, are

examined according to the exchange patterns (Jin et al. 2002) (i.e., combinations of clarity

and locality of the exchange format on which the metamodel depends).

The exchange format satisfies integrity only if a special mechanism to ensure an error-

less exchange is provided (Jin et al. 2002). If supported by many different tools, it satisfies

popularity (Jin et al. 2002). The exchange format satisfies completeness only if all the infor-

mation in the metamodel can be included. On the other hand, the exchange format satisfies

transparency only if no loss, alteration, or gain in the transferred information occurs due to

the use of encoders and decoders (Jin et al. 2002).

As for the Abstract Syntax property, we list well-accepted SEFs, including Annotated

Terms (ATerms) (van den Brand and Klint 2007), InterMediate Language (IML), and

Resource Graph (RG) (Czeranski et al. 2000), Multi-Layer, and Multi-Edge-Set (MLMES)

Fig. 10 Feature diagram for the metalanguages



Empir Software Eng (2018) 23:2323–2358 2339

Fig. 11 Feature diagram for the exchange formats

graph (Lin et al. 1998), CASE Data Interchange Format (CDIF) (Imber 1991), Tuple-

Attribute Language (TA) (Holt 1998), TA++ (Lethbridge 1998), and Datrix-TA (Lapierre

et al. 2001), PROgramming with Graph Rewriting Systems (PROGRES) graph specifica-

tion (Schu̇rr 1997), GraX/TGraph (Ebert et al. 1999), Graph Exchange Language (GXL)

(Holt et al. 2006), Rigi Standard Form (RSF) (Kienle and Mu̇ller 2010), and MSE (Ducasse

et al. 2011), along with general-purpose exchange formats, including XML (W3C 2000)

and XMI (OMG 2015b).

5.5 Feature: Processing Environment

By providing mechanisms to query (i.e., navigate) and transform program models, language

toolkits, including reverse engineering tools, can fulfill analysis and comprehension tasks

as well as maintenance and source code transformation tasks (Antoniol et al. 2003). All

these tasks follow the fundamental process of transformation as described in the Transfor-

mation to higher abstraction levels pattern. Specific processing environments to provide

such mechanisms for navigation, transformation, analysis, and extraction are often provided

together with the program metamodels. Figure 12 represents the major points of variations

in the processing environment.

5.6 Feature: Definition

Typically, program metamodels are defined manually. Some approaches exist to automati-

cally generate program metamodels from grammars (Kunert 2008; Bergmayr and Wimmer

2013), but they were originally intended for DSLs. Regarding the clarity and locality of the

definitions, program metamodels can be classified into four exchange patterns similar to
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Fig. 12 Feature diagram for the processing environments

SEFs (Jin 2001; Jin et al. 2002): implicitly-internally defined, implicitly-externally defined,

explicitly-internally defined, and explicitly-externally defined (Fig. 13).

5.7 Feature: Program Metadata and History Data

According to the requirements for SEFs (Lethbridge 1998), they should be able to store

basic data (i.e., metadata) about the software systems they represent, including program-

ming language versions, software system versions, file creation dates, and file versions. We

believe that program metamodels should handle such metadata together with the name of

the programming languages.

Moreover, several program metamodels such as Ring (Gȯmez and Ducasse 2012)

directly support the history data, allowing reverse engineering tools to work easily with

source code versioning systems to conduct history analysis at some abstraction level.

Figure 14 shows these characteristic properties.

5.8 Feature: Quality

We use the standard quality model ISO/IEC 25010:2011 (ISO/IEC 2011) as the basis to

specify the quality properties of the program metamodels in a comprehensive and consistent

manner. During the SLR, we found 12 papers discussing quality properties that are applica-

ble to program metamodels. They are requirements for SEFs (Saint-Denis et al. 2000; Jin

Fig. 13 Feature diagram for the definition
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Fig. 14 Feature diagram for the program metadata and history data

2001; Jin et al. 2002), requirements for C++ schemas (Ferenc et al. 2002), requirements

for reverse engineering tools enabled by schemas (Favre et al. 2003; Tilley et al. 1994),

comparative considerations for program comprehension tools (Sim et al. 2000), evaluation

properties for static analysis frameworks (Christopher 2006), comparative issues for tech-

nological spaces (Kurtev et al. 2002), tracing features for model transformations (Czarnecki

and Helsen 2003), formality levels of metamodeling (Clark et al. 2015), and correctness of

metamodels (Wu 2010).

We categorized these properties along with those newly identified such as available form

and verification into seven quality characteristics and their sub-characteristics defined in

the ISO/IEC 25010:2011 quality model. Figure 15 shows the feature diagram for functional

suitability, while Fig. 16 shows the feature diagram for the other quality characteristics.

They can be summarized as follows:

– Functional suitability consists of three sub-characteristics: 1) functional appropriate-

ness, which is mostly concerned with traceability (Kurtev et al. 2002; Czarnecki and

Helsen 2003) from model elements to the corresponding portion of the source code,

2) functional correctness regarding how the program metamodel is verified (Wu 2010),

and 3) functional completeness regarding the applicability of the metamodel (i.e.,

Fig. 15 Feature diagram for the functional suitability



2342 Empir Software Eng (2018) 23:2323–2358

Fig. 16 Feature diagram for the performance efficiency, compatibility, usability, reliability, maintainability,

and portability

general purpose metamodels or task-specific ones) (Tilley et al. 1994). In general, low-

level metamodels are good for executability since any GPL should provide executable

semantics, whereas most mid- or high-level metamodels lack executable semantics.

– Performance efficiency addresses the quantity of extracted data (Sim et al. 2000) and

primarily depends on the granularity of the metamodel. A metamodel sacrifices such

resource utilization if the ratio of the extracted information to code is very high.

– Compatibility addresses the interoperability among different tools and environments,

which is broken down into several concrete properties. The identity (i.e., the identity

preservation during transformation), solution reuse, and neutrality are primarily deter-

mined by the exchange patterns (Jin et al. 2002). A metamodel satisfies integrity only

if some special mechanism to ensure an errorless exchange has been provided with the

metamodel (Jin et al. 2002). A metamodel satisfies the instance representation (Ferenc

et al. 2002) if a model can be easily represented in any SEF. This property is almost

identical to the content-presentation separation (Kurtev et al. 2002).

– Usability addresses the learnability that is supported by the existence of documenta-

tions, samples, and user communities (Christopher 2006).

– Reliability addresses the availability of the program metamodel in terms of licensing

(Christopher 2006). Although metamodels should be fully available through websites

or other means, sometimes only parts of a metamodel are provided.

– Maintainability encompasses five sub-characteristics. Among them, simplicity and

evolvability are primarily determined by the exchange patterns (Jin et al. 2002). Some

metamodels have specific modularity mechanisms (such as packages) and–or reuse

mechanisms (such as the inheritance and logical composition of metamodel elements)

(Czarnecki and Helsen 2003) to improve maintainability. The formality is specified
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as partially formalized or completely formalized (Clark et al. 2015) according to the

available metamodel definition.

– Portability addresses adaptability and is composed of three concrete properties: flexi-

bility and scalability are primarily determined by the exchange patterns (Jin et al. 2002).

A metamodel satisfies popularity if many different organizations beside the original

developers have used it.

6 Validation of ProMeTA

A taxonomy can be validated by demonstrating the orthogonality of its classification fea-

tures, benchmarking against existing classification schemes, and demonstrating its utility

to classify existing knowledge (Smite et al. 2014). In our case, orthogonality means that a

metamodel is classified as only one category of possible combinations of concrete features

in the feature diagram. For example, the feature diagram of Definition yields 12 possible

combinations of concrete features.10 Each metamodel is classified into only one category

such as (Manually, Implicit, Internal). We validated ProMeTA by classifying the popular

metamodels identified in the SLR.

6.1 Target Popular Metamodels

For the concrete reverse engineering techniques or tools described in the set of 44 original

papers obtained during the SLR, a total of 35 named and unnamed program metamodels

were adopted.11 Table 2 shows the list of the metamodels and corresponding papers. Sur-

prisingly, most of papers adopted their own metamodels although there is not so much

difference in characteristics and objectives. For example, there are seven similar AST-based

metamodels (i.e., “Abstract Syntax *” in the table) defined independently. Moreover, there

are four similar metamodels specific to the Java language (i.e., “Java * Model” in the table)

but defined independently.

In Table 2, we identified that there are five program metamodels adopted in multiple

papers:12

– M1. Abstract Syntax Tree Metamodel (ASTM): four papers (Izquierdo and Molina

2010, 2014; Martinez et al. 2014; Owens and Anderson 2013)

– M2. Knowledge Discovery Meta-Model (KDM): five papers (Pėrez-Castillo et al. 2013;

Santibȧṅez et al. 2015; Durelli et al. 2014; Izquierdo and Molina 2010; Martinez et al.

2014)

– M3. FAMOOS Information Exchange Model (FAMIX): eight papers (Bru̇hlmann et al.

2008; Tripathi et al. 2009; Lanza 2003; Pinzger et al. 2005; Mens and Lanza 2002;

Tichelaar et al. 2000; Antoniol et al. 2005; Gȯmez et al. 2009)

10These are the product of three subfeature sets: { Automatically, Manually, Automatically & Manually } ×

{ Implicit, Explicit } × { Internal, External }.

11For illustrative purposes, we named the “unnamed” metamodels by a combination of concepts in our

conceptual framework and metalanguages such as the “Abstract Syntax Tree Model in UML” in Table 2.

12This selection does not necessarily reflect actual adoption in program reverse engineering tools and

projects.
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Table 2 List of metamodels found in SLR

Metamodel List of papers

Abstract Syntax Graph in TGraph (Ebert 2008)

Abstract Syntax Metamodel in ECORE/EMF (Bergmayr and Wimmer 2013)

Abstract Syntax Model in a graph grammar (Naik and Bahulkar 2004)

Abstract Syntax Tree in logic representation (Chirila and Jebelean 2010)

Abstract Syntax Tree Metamodel (ASTM) (Izquierdo and Molina 2010, 2014;

Martinez et al. 2014; Owens and

Anderson 2013)

Abstract Syntax Tree Model in MOF (Soden and Eichler 2007)

Abstract Syntax Tree Model in UML (Antoniol et al. 2003)

Architecture Model in TGraph (Ebert 2008)

Columbus Schema (Vidȧcs 2009)

Common Meta-Model in common tree grammar (Strein et al. 2006)

Daghstul Middle Metamodel (Lethbridge et al. 2004)

Datrix schema (Lin and Holt 2004)

Delphi metamodel in UML (Knodel and Calderon-Meza 2004)

Generic AST model in MOF (Reus et al. 2006)

Grammar by EBNF (Bergmayr and Wimmer 2013)

GXL schema in UML (Meng and Wong 2004)

Hismo (Gȯmez et al. 2009)

Integrated Meta-model of Reengineering in UML (Cho 2005)

JaMoPP Java Model (Heidenreich et al. 2010)

Java Meta Model in UML (Kollmann and Gogolla 2001)

Java MetaModel in grUML (Ebert 2008)

Java Metamodel in MOF (Favre 2008)

KDM (Pėrez-Castillo et al. 2013; San-

tibȧṅez et al. 2015; Durelli et al.

2014; Izquierdo and Molina 2010;

Martinez et al. 2014)

FAMIX (Bru̇hlmann et al. 2008; Tripathi

et al. 2009; Lanza 2003; Pinzger

et al. 2005; Mens and Lanza 2002;

Tichelaar et al. 2000; Antoniol et al.

2005; Gȯmez et al. 2009)

MARPLE model in ECORE/EMF (Arcelli et al. 2010)

Meta-model for design patterns and source code (Guėhėneuc and Albin-Amiot 2001)

Program entities and relationships in RDB (Harmer and Wilkie 2002)

Program Metamodel in UML (Wu 2010)

Ring meta-model (Gȯmez and Ducasse 2012)

Source Code Meta-Model in UML (Alikacem and Sahraoui 2009)

SourcererDB Metamodel (Ossher et al. 2009)

SPOOL repository schema (Keller et al. 2001; Abdi et al. 2006)

System Engineering Technology Interface metamodel (Krasovec and Howell 1995)

UNIQ-ART Meta-model (Sora 2012a, b)
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Fig. 17 Classification results using ProMeTA (M1: ASTM, M2: KDM, M3: FAMIX, M4: SPOOL Meta-

model, M5: UNIQ-ART Metamodel, X: supports the characteristic indicated, ++: particularly satisfies the

characteristic/requirement indicated, +: satisfies the characteristic/requirement indicated, -: sacrifices or does

not satisfy the characteristic/requirement indicated, Exp: Explicit, Imp: Implicit, Ext: External, Int: Internal)

– M4. SPOOL Metamodel: two papers (Keller et al. 2001; Abdi et al. 2006)13

– M5. UNIQ-ART Metamodel: two papers (Sora 2012a, b)14

6.2 Classification Results

We classified the aforementioned metamodels M1–M5 using ProMeTA (Fig. 17). The find-

ings and corresponding suggestions for practitioners and researchers are summarized as

follows:

– Target language: Of the five metamodels, three are language independent, while two

handle object-oriented source code. Regardless of the language independence, all sup-

port the Java language since it seems to be the most common, especially in the context

of reverse engineering research and practice. The second most common language is

C++.

13A more comprehensive paper (Schauer et al. 2002) using the SPOOL Metamodel that is excluded from the

SLR result.

14Some recent papers (Sora 2015; Sora and Todinca 2016) using the UNIQ-ART Metamodel are not included

in the SLR result.
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If the target language is a major one like Java or C++, existing program metamod-

els and their corresponding reverse engineering tools may be reused, but if the target

language is a minor one, a specific metamodel must be selected or a new one must be

created.

– Abstraction level: All of the five metamodels can be used as mid-level metamodels, but

only one metamodel (M2) can be used as a high-level one. According to the coverage

of the low-level metamodel features, M1 and M2 are more useful even though they still

miss some lexical structure features such as Token, Separator, and Layout. There are

limited supports for language dialects.

Practitioners and researchers can choose an appropriate metamodel and its corre-

sponding reverse engineering tool according to their abstraction level requirements.

However, our classification results indicate that none of the existing metamodels sup-

ports all of the required features at certain abstraction levels; in this case, it may

be necessary to extend existing metamodels or create new one to cover the missing

features.

– Metalanguage: Four of the five metamodels adopt the standard meta-metamodel MOF

or the unified language UML, which are explicitly and externally defined, while only

M5 adopts a specific implicitly-internally definition.

If practitioners and researchers adopt various tools for long-term usage, it may

be better to choose or create program metamodels (like M1–M4) defined by widely

accepted, explicitly-externally defined metalanguages (especially MOF and UML).

In addition, the existence of user communities of metamodels could contribute to the

ease of usage of their metalanguages; for example, since M3 has a large user community

as identified regarding the feature Q9: Learnability, its metalanguage UML could be a

good choice for creating (or selecting) program metamodels.

– Exchange format: Corresponding to the metalanguage used, three of the five metamod-

els adopt standard SEFs such as XMI, which are explicitly-externally defined, while

M5 supports a specific binary-based implicitly-internally defined data exchange.

If practitioners and researchers consider utilizing various tools for long-term usage,

selecting or creating program metamodels with a good exchange format quality (like

M1, M2 and M4), which support the widely accepted, explicitly-externally defined

SEFs (especially XMI) may be a better choice; however, its impact on selection or cre-

ation could be less than those of other features (such as the abstraction level) since

specific exchange formats can be additionally supported by preparing convertors among

exchange formats, unless the metamodel originally supports explicitly-externally

defined SEFs.

– Processing environment: Due to their popularity, all of the five metamodels have

dedicated extractors and navigation supports. It is obvious that extractors and nav-

igation supports should be prepared to improve the ease of use of any program

metamodels.

There are dedicated transformation supports including refactoring facilities for

three of five. Most of the metamodels (except for M5) are suitable for transforma-

tions and program analysis. Practitioners and researchers should check whether the

processing environment and facilities are available to meet their reverse engineering

objectives.

– Definition: All of the five metamodels are manually defined. All except M5 are

explicitly defined, leading to high quality metamodels with high compatibility,
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maintainability, and portability. Three of which are externally and fully formalized. The

other two (M4 and M5) are internally defined.

If practitioners and researchers utilize various tools for long-term usage, selecting or

creating explicitly-externally defined metamodels (like M1–M3) is a better choice.

– Program metadata and history data: There are few supports to describe meta and history

data in metamodels; only the programming language name and the file version are

supported by M1 and M2, respectively.15

During the SLR, several history-aware metamodels were found to explicitly address

the version history: Ring (Gȯmez and Ducasse 2012), Hismo (Gı̂rba and Ducasse

2006; Gȯmez et al. 2009), FAMIX-based RHDB code model (Antoniol et al. 2005)

and FAMIX-based ArchEvoDB schema (Pinzger et al. 2005). If practitioners and

researchers conduct reverse engineering in which history analysis is taken into account,

selecting a history-aware metamodel, especially the RHDB code model and the

ArchEvoDB schema, may be better since these are defined as extensions of FAMIX,

which is a widely accepted popular metamodel.

– Functionality: Two metamodels (M1 and M2) support most of the functional suitability

features, including executability, traceability, and transformability, since these are low-

level metamodels supporting static and dynamic semantics shown in the abstraction

level features. None explicitly state how these have been verified. Although most can be

used for various purposes, only M5 is for several specific tasks such as the dependency

analysis.

Practitioners and researchers should verify whether the potential program meta-

models satisfy their reverse engineering functionality requirements. If a metamodel is

used for various reverse engineering purposes, selecting a general one (like M1–M4) is

better.

– Non-functionality: Only M1 sacrifices the performance efficiency since it contains all

of the statement-level code descriptions. Three (M1–M3) have a good usability since

documents and samples with communities are well prepared. These three metamodels

also have good compatibility, maintainability, and portability since these are explicitly-

externally defined, fully formalized, and fully available. Unfortunately the definitions

of M4 and M5 seem to be unavailable elsewhere on the Internet or in the literature.

Most of the metamodels (except M5) support inheritance and logical composition as

reuse mechanism. However, only M2 supports the dedicated modularity mechanism.

Practitioners and researchers should check whether potential program metamodels

satisfy their non-functionality requirements. If existing metamodels are to be reused,

they must select fully available and formalized metamodels (like M1–M3).

The above-mentioned findings and suggestions can be summarized as follows. Existing

program metamodels can be reused for major languages such as Java and C++. It is better

to choose and/or create program metamodels defined by explicitly-externally defined major

metalanguages. It is better to choose and/or create program metamodels associated with

explicitly-externally defined SEFs. Most of popular program metamodels are suitable for

transformations and program analysis; however, few support to describe meta and history

data.

15Some of the metamodels (especially M1) can be extended to include metadata and history data.
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6.3 Discussions

RQ1: Does ProMeTA cover all possible characteristics and limitations
in existing works that evaluate and compare program metamodels?

During the construction process of ProMeTA, the important characteristics from existing

classification schemes/frameworks and comparisons (Lethbridge et al. 2004; Jin and Cordy

2006; Izquierdo and Molina 2014; Bellay and Gall 1997; Armstrong and Trudeau 1998;

Lethbridge 1998; Sim et al. 2000; Ferenc et al. 2001, 2002; Arcelli et al. 2005; Amelunxen

et al. 2006) as well as discussions on quality properties (Favre et al. 2003; Clark et al.

2015; Kurtev et al. 2002; Sim et al. 2000; Ferenc et al. 2002; Tilley et al. 1994; Saint-Denis

et al. 2000; Jin 2001; Jin et al. 2002; Czarnecki and Helsen 2003; Christopher 2006; Wu

2010) for program metamodels and related concepts identified by the SLR were included or

mapped to the items, implying that it has adequate coverage. Thus, ProMeTA is implicitly

benchmarked against existing classification schemes.

RQ2: Does ProMeTA have orthogonality in its classification features?

We successfully classified popular program metamodels from the SLR according to the

characteristics defined in ProMeTA and show how it can help classify program metamodels.

Moreover, the classification did not result in the characteristics fitting into more than one

category, demonstrating the orthogonality of the classification features.

RQ3: Is ProMeTA useful for guiding practitioners and researchers?

ProMeTA can guide practitioners and researchers in the following possible usecases UC1–

UC3.

– UC1. Developing new reverse engineering tools: When engineers want to build their

own reverse engineering tools, they must define the requirements in program meta-

models that enable and circumscribe the features of the tools. ProMeTA supports the

requirements definition and guides reuse, extension, or creation of metamodels because

engineers can recognize features included in ProMeTA as possible requirement items.

Moreover, if a ProMeTA-based classification result of a potential metamodel for reuse

or extension is available like M1–M5 in the above validation, engineers can easily

determine whether the metamodel satisfies their requirements.

– UC2. Choosing existing reverse engineering tools: When engineers want to reuse and

eventually extend existing reverse engineering tools, they must compare and then select

the appropriate one according to how the underlying program metamodels meet their

objectives. ProMeTA can help by comparing criteria and the metamodels according to

the characteristics defined in ProMeTA. Moreover, ProMeTA may help by comparing

existing classification results of metamodels (if available).

– UC3. Communicating or researching program metamodels and reverse engineering

tools: ProMeTA can serve as a reference for the reverse engineering community,

including practitioners and researchers. It can be extended by peers, providing the

community with an important body of knowledge to guide future communications

and research on program metamodels and the corresponding reverse engineering tools
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since it incorporates the characteristics of metamodels into a single orthogonal struc-

ture based on a conceptual framework that defines common terminology. For example,

ProMeTA can serve as the basis for building an open repository of information of

existing program metamodels (and corresponding tools) by accumulating classifica-

tion results. The above-mentioned classification results of M1–M5 can be a starting

point.

6.4 Limitations

Five popular metamodels are identified solely on their adoption in papers selected by the

SLR. It is plausible that such “popularity” does not reflect actual popularity in program

reverse engineering tools and projects. In the future, we will investigate actual adoptions of

metamodels in active projects on reverse engineering tools and classify these metamodels

using ProMeTA.

The classification of the five popular metamodels based on ProMeTA was conducted by

the first author of this paper and reviewed by the second and third authors. Therefore, it is

possible that our classification results may not be completely correct. To mitigate this threat

to validity, we have opened the classification results and ProMeTA to the public and call

for comments at our Website.16 In particular, we did contact the original developers of the

metamodels addressed in the paper and request a review.

Thus, we received six sets of complementary information regarding the metamodels

ASTM/KDM, FAMIX, SPOOL, and UNIQ-ART. These sets validated our findings, as

reported in the previous sections, but also confirmed the known limitation of this and any

SLR: the limitation due to circumscribing the review and thus missing interesting papers.

For example, our discussions with the colleagues working on FAMIX pointed us to works

in which FAMIX was used to model program metadata and related data, including, but not

limited to: Evolizer to analyze source code and software project data (Gall et al. 2009),

ChEOPS to represent changes as first-class entities for change-oriented software engineer-

ing (Ebraert et al. 2007), and Orion to model simultaneous versions in a software version

repository (Laval et al. 2011). We did not include these works in our review because they

were beyond the borders of our review. These discussions with colleagues show the rele-

vance of our review and taxonomy and the need to open the taxonomy so that it can be

augmented incrementally to encompass more metamodels and usages thereof, even beyond

program reverse engineering.

Our taxonomy also does not include infrastructure such as srcML17 (Collard et al. 2011),

which describes source code in an alternative, well specified format, because such infras-

tructure at are a lower-level of abstraction that the metamodels described in our taxonomy.

Indeed, srcML, although useful and well used in research, does not directly provide a

metamodel abstracting source code elements but rather describe source code elements sys-

tematically, using a XML format. Thus, it is not included in our taxonomy although well

worth mentioning here.

We used Engineering Village as the initial document base of the SLR. Although it is

adopted in other SLRs (Sharafi et al. 2015), relevant papers may be missed. Additionally,

we may have missed relevant papers even after double-checking the paper selection results.

16http://www.washi.cs.waseda.ac.jp/prometa/.

17http://www.srcml.org/about.html.

http://www.washi.cs.waseda.ac.jp/prometa/
http://www.srcml.org/about.html
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To mitigate these threats, we plan to use other databases, extend our SLR, and elicit public

review of the revised results.

Although our rigorous systematic literature survey identified the characteristics of pro-

gram metamodels, other characteristics to be used for classification of metamodels may be

omitted. ProMeTA is expected to efficiently incorporate such missing characteristics into

the single structure because the form of feature diagrams should make such an extension of

the taxonomy easy.

Any taxonomy can only unleash its full potential through widespread awareness and a

large number of contributions (Engstrȯm and Petersen 2015). Therefore, our future work is

to follow a popularization strategy (Engstrȯm and Petersen 2015).

7 Conclusion and Future Work

In this paper, we propose a conceptual framework with definitions of program metamodels

and related concepts as well as build a comprehensive taxonomy named ProMeTA based

on this framework. ProMeTA incorporates newly identified characteristics into those stated

in existing works via a systematic literature survey on program metamodels, while main-

taining the orthogonality of the entire taxonomy. This feat is accomplished by referring to

the basic term classification defined in the framework. Additionally, we validate the taxon-

omy in terms of its orthogonality and usefulness through the classification of five popular

metamodels from the survey. We have made ProMeTA available to the reverse engineering

community, including practitioners and researchers, through our Website.

In the near future, we plan to validate ProMeTA by conducting experiments involving

the three usecases (UC1–UC3) in Section 6. This should provide improved answers to the

research questions, especially RQ3. We are also planning a collaborative Wiki to let the

community refine or modify ProMeTA online.

Over the long term, we plan to extend our SLR using additional databases and share

the revised results to obtain reviews from the public. We expect that the research com-

munity will further validate ProMeTA as well as the SLR results from the viewpoints of

practitioners and researchers. Public input should not only lead to standard terminology and

classification characteristics in the taxonomy, but also extend the taxonomy to include new

categories and datasets that reflect its usage.
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