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Abstract. Domain-specific languages enable concise and precise formalization
of domain concepts and promote direct employment by domain experts. There-
fore, syntactic constructs are introduced to empower users to associate concepts
and relationships with visual textual symbols. Model-based language engineer-
ing facilitates the description of concepts and relationships in an abstract man-
ner. However, concrete representations are commonly attached to abstract do-
main representations, such as annotations in metamodels, or directly encoded
into language grammar and thus introduce redundancy betweenmetamodel ele-
ments and grammar elements. In this work we propose an approach that enables
autonomous development and maintenance of domain concepts and textual lan-
guage notations in a distinctive and metamodel-agnostic manner by employing
style models containing grammar rule templates and injection-based property
selection. We provide an implementation and showcase the proposed notation-
specification language in a comparison with state of the art practices during
the creation of notations for an executable domain-specific modeling language
based on the Eclipse Modeling Framework and Xtext.

Keywords: Domain-Specific Language · Model-Driven Engineering · Language
Engineering · Concrete Syntax · Notation · Domain-Specific Modeling

1 Introduction

The engineering of a domain-specific language (DSL) is usually initiated by the con-
struction of an artifact that captures concepts and relationships inherent to the do-
main being represented. Typical artifact types include variations of grammars and
⋆ Copyright ©2019 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).
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metamodels—each inherently of different nature [15]. In general, grammars are em-
ployed to describe domain concepts and their textual representation utilizing produc-
tion rules and terminal rules, respectively. Contrarily, metamodels are used to capture
concepts and relationships of a domain but not their syntactic constructs. Although
state of the art language workbenches, such as Xtext [5], provide means to generate
grammars from metamodels and vice-versa, they provide a single (default) notation,
i.e. either graphical, textual, or a combination thereof, that has to fit the needs of all
types of domain experts or requires dedicated language engineering skills for adap-
tation and extension. The construction of a bridge between metamodel and grammar,
and in particular from metamodel to grammar, is commonly approached by introduc-
ing annotations in metamodels or metamodel-to-grammar transformations [2]. How-
ever, construction and maintenance of such bridges is inherently complex and error-
prone due to fundamental differences between metamodels and grammars. Moreover,
such bridges are often metamodel-dependent and are thus not universally applicable
to arbitrary domains.

In thiswork, we present the EcoreConcrete Syntax Specification (Ecss) frame-
work5—a novel textual notation description language and toolkit that enables the
definition of both metamodel-dependent and metamodel-agnostic representations for
Ecore-based languages—and employ it for automating the generation of textual mod-
eling languages with supporting editors and tools from Ecore metamodels. In sum-
mary, Ecss facilitates (i) the creation, extension, and reuse of textual notations (sub-
sequently also referred to as “style models” and “Ecss models”) and (ii) the generation
of grammar and executable implementation of domain-specific modeling languages
(DSMLs) from pairs that consist of domain metamodel and style model. We show-
case the implementation of our approach in a comparison with the state of the art in
model-driven language engineering the results in the manifestation of a DSML.
Roadmap. The remaining sections of this paper present (i) a brief overview of method-
ologies and techniques upon which this work is build, (ii) a motivating example, (iii)
the conceptual and technical characteristics of our approach alongside state-of-the-art
solutions and in particular Xtext and the Eclipse Modeling Framework (EMF), (iv) a
selection of related work, and finally (v) a conclusion and outline of future work.

2 Background

Model-Driven Engineering and Domain-Specific Languages. In this workwe specifically
focus on the construction and maintenance of Domain-Specific Modeling Languages
(DSML), i.e. the employment of Model-Driven Engineering (MDE) in the context of
Domain-Specific Languages (DSLs) [7], and in particular by constructing our approach
on top of the Xtext language workbench that is built on the EMF [5, 25]. More specif-
ically, EMF is the quasi-reference implementation of the Essential Meta-Object Facil-
ity (EMOF) standard [20] and provides a closed and strict metamodeling architecture,
which defines the model on the uppermost layer to conform to itself as well as the
correspondence of every model element with a model element of the layer above, re-
spectively. EMOF, as well as the Extended Backus-Naur Form (EBNF) [27], represent
5 The source code of Ecss is published at https://github.com/patrickneubauer/ECSS.
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DSLs to define languages in form of metamodels and context-free grammars (CFGs),
i.e. also referred to as “text-based concrete syntaxes” and “notations”, respectively. In
the EMF, an Ecore model—also referred to as EMF-based “metamodel” or “abstract
syntax”—corresponds to the M2-layer in EMOF and acts as an abstract representation
for concepts, properties, and relationships that are embodied by a real-world system.
Further, the M1-layer in EMOF represents instances that specify actual values for con-
cepts, properties, and relationships as defined in their corresponding M2-layer Ecore
model.

Language Engineering and Workbenches. Language workbenches [6], such as Xtext,
are tools that provide a range of features, such as dedicated editors, model transforma-
tions and validations, for DSML specifications. In general, Xtext employs the ANTLR
parser generator [23] for the production of implementation artifacts, such as lexers
and parsers, and offers two different DSML construction-mechanisms, i.e. typically
selected as a result of an engineer’s familiarity with the technical spaces6 of gram-
marware and modelware [26]. On one hand, grammarware engineers, which are more
familiar with traditional CFGs, may construct CFGs and employ the Xtext mechanism
for deriving EMF-based metamodels. On the other hand, modelware engineers, which
are most familiar with MDE-based technologies, may develop EMF-based metamod-
els and derive CFGs by employing metamodel-to-grammar transformations. Although
Xtext supports both, the main focus is to provide grammars at the front-end and meta-
models at the back-end to facilitate tool interoperability [22, 28].

3 Motivating Example

Within this section, we present a typical language engineering use case [16, 14] that
involves the construction of a DSML by employing Xtext and the EMF and in particu-
lar a metamodel for capturing the concepts and relationships of a language for space
transportation services. Moreover, this metamodel formulates the foundation upon
which state-of-the-art practices, such as model-to-text transformations and grammar
adaptation, as well as our approach may create, modify, and apply notations.

Language Structure. The metamodel of our exemplary language (cf. Figure 1) instan-
tiates the core components of the Ecore metamodeling language, such as (abstract)
classes, attributes, (containment) references, and enumerations. More specifically, the
following concepts and relationships are defined: a SpaceTransportationService can
own launch sites, spacecrafts, and engine types; a Spacecraft is defined by name, re-
launch-cost, stages, manufacturer, country of origin, physical properties, functions,
such as be an orbital launcher or intercontinental transport vehicle, and launch sites
from where it can start; a Stage is defined by name, such as booster or spaceship, an
engine type, and physical properties; a PhysicalProperty is defined by a type, such as
length, volume or mass, unit, and value; and a LaunchSite is defined by name, location,
operator, number of launchpads, operational status, and physical properties.
6 Technical space refers to a working context with a set of associated concepts, body of knowl-
edge, tools, required skills, and possibilities often associated to a given user community with
shared know-how, educational support, common literature, and scientific venues [17].
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LaunchSite

[0..*] launchSites

[0..*] physicalProperties

Spacecraft

[0..*] functions: Function

manufacturer : String

countryOfOrigin : String

relaunchCostInMioUSD : Integer

<< abstract >>
NamedElement

name : String

LaunchSite

locationLatitude : Double

locationLongitude : Double

operator : String

numberOfLaunchpads : Integer

operational : Boolean

PhysicalProperty

type : PhysicalPropertyType

unit : String

value : Double

[0..*] stages

Stage

engineAmount : Integer

EngineType

fuelKind : String

[0..*] engineTypes
SpaceTransportationService

[0..*] launchSites

[0..*] spacecrafts

[1..1] engineType
[0..*] physicalProperties

[0..*] physicalProperties

First Stage

Intermediate
Stage

Second
Stage

Fig. 1. Space Transportation Service language metamodel.

Notational Requirements. The requirements on the textual notation of the language
to be constructed include (i) indentation-based layout, i.e. also referred to as offside-
rules [18, 1] and represents the determination of code block-structure by means of
indentation and layout based on the concept of layout-sensitive languages [18, 1], such
as Python, Haskell, CoffeeScript, and YAML Ain’t Markup Language (YAML) [3], and
(ii) comma-separated arbitrary order of declaration, i.e. flexible or unordered sequence
of instantiation. Listing 1.1 presents an excerpt of a space transportation service (cf.
metamodel in Figure 1) that is built on both indentation-based layout and comma-
separated arbitrary order of declaration. The former allows the use of hidden tokens,
such as whitespace, as separators instead of visible tokens, such as curly brackets. The
latter enables the use of sequences, e.g. location coordinates at the end of a launch
site definition, that differentiate from those defined in the metamodel, e.g. location
coordinates at the beginning of a launch site definition.

1 SpaceTransportationService:
2 launchSites:
3 name: KennedySpaceCenter,

4 operator: NASA,

5 operational: true,
6 numberOfLaunchpads: 3,

7 locationLatitude: 28.524058,

8 locationLongitude: 80.65085

Listing 1.1. Instance of a space transportation service (excerpt).
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4 Approach

Within this section our contribution is outlined alongside its application to the pre-
viously introduced example. First, the state-of-the-art model-first and grammar-first
approach is showcased. Secondly, design principles, structural components, and selec-
tion modes of the style specification language are introduced. Thirdly, the style speci-
fication language is employed to model a DSML that fulfils the requirements presented
in Section 3. Finally, the mechanism that generates executable DSML implementations
from tuples that consist of style model and domain-specific metamodel is presented.

Language implementation

Legend

Component

Subcomp. A Subcomp. B

reference

Grammar-first

ECSS Model-first

transformation

Language

Structure Style

Grammar

generate

Metamodel

reference
generate generate

Metamodel

StyleModel

Grammar
generate

generate

Metamodel

generate

Grammar

reference

G1

#

Step

G2

G3

M1

M2

E1a

E1b E2

E3

adapt

M4

M3

Fig. 2.Overview of DSML creation steps within ECSS, model-first, and grammar-first approach.

4.1 Model-first approach
The model-first approach [21] of constructing a DSML (cf. top-right gray area of Fig-
ure 2) is typically applied by developers most familiar with MDE and composed of the
steps M1, i.e. construction of a domain-specific metamodel (cf. Figure 1), M2, i.e. ap-
plication of a generic metamodel-to-grammar transformation (cf. Listing 1.2),M3, i.e.
adaptation of generated grammar to fulfill the notational requirements stated above,
and M4, i.e. generation of language implementation (cf. center gray area of Figure 2).

1 Stage returns Service::Stage

2 'Stage' name=ID '{'

3 'engineAmount' engineAmount=EInt

4 'engineType' engineType=[EngineType]

5 ('physicalProperties' '{'

6 physicalProperties+=PhysicalProperty

7 ( "," physicalProperties+=PhysicalProperty)*
8 '}' )?

9 '}';

Listing 1.2. Result of step M2—generated domain-specific grammar (excerpt).

71



To yield a DSML that supports indentation-based layout that prescribes that all
non-whitespace tokens of a structure must be further to the right than the token that
starts the structure, as well as flexible order of specification, the following adapta-
tions on the generated grammar are performed. First, synthetic tokens, i.e. offering
the specification of whitespace-semantics employing synthetic terminal rules, for the
beginning and the end of a line as well as new lines are introduced (cf. lines 1-3 in
Listing 1.3). Next, production rules are adapted to use the specified synthetic tokens
(cf. lines 8-13 in Listing 1.3). Secondly, to support arbitrary order of declaration along-
side whitespace-semantics, all possible occurring sequences need to be depicted by
the grammar, which is accomplished by intermediating rule assignments with a ver-
tical line, i.e. indicating a logical or, and enclosing them with brackets ending with a
star-character, i.e. indicating zero or multiple occurrences. However, the combination
of flexible sequences and whitespace-semantics requires to state all possible occurring
sequences explicitly and thus causes the size of production rules to multiply by the
number of structural features occurring in the containing classes.

1 terminal BEGIN: 'synthetic:BEGIN';

2 terminal NEWLINE: 'synthetic:NEWLINE';

3 terminal END: 'synthetic:END';

4

5 Stage returns Stage: SINGLESPACE

6 'name' ':' name=EString

7 (NEWLINE 'engineAmount' ':' engineAmount=EInt) &

8 (NEWLINE 'engineType' ':' engineType=[EngineType|EString])

9 (NEWLINE 'physicalProperties' ':' BEGIN

10 physicalProperties+=PhysicalProperty

11 (NEWLINE physicalProperties+=PhysicalProperty)*
12 END)?;

Listing 1.3. Result of step M3—adapted domain-specific grammar (excerpt).

4.2 Grammar-first approach

The grammar-first approach [21] (cf. bottom-left gray area of Figure 2), i.e. usually
applied by developers most acquainted with grammar-based language engineering, of
constructing a DSML is composed of the construction of a domain-specific grammar
(cf. step G1), the application of a generic grammar-to-metamodel transformation (cf.
step G2), i.e. also referred to as metamodel-derivation, and (iii) the generation of the
language implementation (cf. center gray area of Figure 2). Although step G2 may be
performed as a background process in Xtext, i.e. alongside step G3, and thus possibly
to the unawareness of language developers, it a process that is required to yielding
executable DSML implementations.

Our approach is primarily intended to be applied within the context of model-first lan-
guage engineering (cf. Section 4.1) due to the facilitation of metamodels for capturing
domain-specific structural semantics and constraints. However, it is also applicable
for use cases in which metamodels are derived from domain-specific grammar and
employed alongside style models to generate modernized DSML implementations.
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4.3 Style Specification Language

Design principles. The aim of the Ecore Concrete Syntax Specification (Ecss) lan-
guage to capture common styles of textual syntaxes (e.g. YAML-like, JSON-like, XML-
like) and to support the automated generation of Xtext grammars for such syntaxes7.
Ecss is inspired by CSS, which allows to style HTML code and offers straightforward
composition, and thus aims for similar composability and parameterizability. For ex-
ample, developers should be able to reuse, extend, and adapt existing language nota-
tions through composition with other language notations.

StyleModel

PropertyRule TemplateRule

Selector Property

TemplateMatch SlotMatch

SingleSelector

Condition FormalExpression

PropertyValue

ForEachExpression

IfExpression

SlotCall

EvaluationCall

TemplateFunctionCall

TemplateParameterValue

0..* properties

0..* templates

0..1 selector 0..1 property
0..1 propertyValue

0..1 slotMatch

0..1 templateMatch

0..* selectors

0..1 selector 0..1 first 0..1 second

0..1 condition 0..1 expression

0..1 expression 0..* parameterValue

0..* imports

Fig. 3. Overview of Ecss language core components (simplified metamodel).

Structural Components. The core component of the Ecss language (cf. Figure 3) is a
StyleModel that may extend other instances of style models through imports and con-
tains a set of rules defining properties and templates. PropertyRules may be composed
of a selector and property. Selectors may be composed of SingleSelector instances that
may contain a Condition, i.e. defined by a FormalExpression such as an OCL expression.
Each single selector selects a particular rule application instance. Selectors may define
a name and thereby select rule applications with matching names. More specifically,
the name for a rule that has a single feature as parameter refers to the name of the
feature, i.e. the name of the class in case of a single class. Additionally, a selector may
select subclasses by specifying the name of the rule that is named by its superclasses.
Similarly to HTML, a sequence of single selectors choose rule applications based on
their hierarchy. In detail, a rule application is chosen for a sequence of selectors if (i)
it matches the last single selector itself and (ii) a direct or indirect parent matches the
7 An initial catalogue of reusable Ecss styles is available online at http://bit.ly/ecss-styles.
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remaining selectors. In addition to basic names, selectors may also specify that all rule
applications are admissible and may restrict the applications using OCL expressions.

Instances of Property may be composed of a TemplateMatch, a SlotMatch, and a
PropertyValue. A template match contains a name and associates a priority for using
the template name for the rule application under consideration. A slot match contains
a pair (attributename, slotname), specifying the priority that an attribute is matched
to a slot. A property value simply associates a property of the rule application to a
certain value, which may be a constant or an OCL expression evaluation result. The
application of all properties may further be restricted by OCL expressions.

TemplateRulesmanifest as expressions, such as ForEachExpression and IfExpression,
or calls, such as EvaluationCall and TemplateFunctionCall, and may contain static ex-
ecuted code parts and static outputs. A ForEachExpression triggers the generation of
code for each object in a parameter of the rule application. A TemplateFunctionCall pro-
vides an opportunity to create a subsequent rule (subrule) application and may own
instances of TemplateParameterValue that originate from rule application parameters,
values calculated from property rules, and values of a slot, i.e. defined by a multiplicity
determining the minimum andmaximum amount of subsequent features (subfeatures)
that are distributed in this slot. An EvaluationCall produces output based on a prop-
erty value. A TemplateFunctionCall produces output either as part of the parent rule,
i.e. acting as the container, or as a reference identifier, i.e. triggering content genera-
tion outside the parent rule.

Syntactic Components. The primary syntactic components used within the context of
an Ecss model include pronounceable keywords such as import , template, rule, for,
and if, as well as template-activating character sequences such as [%=…%] for value
insertion through variable access or function calls, [%…%] for (local) evaluation call or
value call, and ::ruleName() and ruleName() for Java calls.

4.4 Style modeling

The requirements imposed on the language introduced in Section 3 are fulfilled by
supplying the Ecss grammar creator with the Ecore metamodel and Ecss model cre-
ated in step E1a and E1b of Figure 2, respectively. In more detail, the style model
ws-aware.ecss and arbitrary-order.ecss is created to fulfill the first and second require-
ment, respectively.The rulewhitespaceClassRule in Listing 1.4 defines that the features
of a class are indented, i.e. with respect to the class itself. More specifically, line 6 pro-
duces the grammar rule header. Next, if the class being processed has no associated
attribute, classname followed by an empty space and colon is produced as initial con-
tent of a class (cf. lines 7-8). Alternatively, if a class owns a set of attributes, a rule call
to the rule group nameDistRules is performed (cf. lines 9-11), i.e. selecting a subrule.
Next, additional indentation is created for feature definitions that are returned by rule
call attributeDistRules.The property ruleNamedElement+ is metamodel-dependent and
specifies that the classname of classes that extend the class NamedElement have to ap-
pear in uppercase characters (cf. lines 14-15). The global property rule, i.e. indicated by
a star-selector, is metamodel-agnostic and specifies that the classname of (any match-
ing) class is defined by its name (cf. line 17) or, in other words, the name of a class in its
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metamodel. Note that due to the (higher) priority of 2.0 that is defined by property rule
NamedElement+, the global property rule with (lower) priority of 1.0 is only matched
by classes that do not extend the class NamedElement.

The rule arbitraryAttributeDistr in Listing 1.5 defines a style that fulfills the second
notational requirement, i.e. comma-separated arbitrary order of declaration, that is not
feasible by the use of (simple) unordered groups and causes a quadratic increase in the
size of a grammar rule. In more detail, lines 7-9 define the initially occurring feature as
arbitrary, i.e. any feature from the set of features of a class may occur first. Next, lines
10-11 encapsulate Java code that computes a list of remaining class features that is
subsequently being iterated for the production of individual feature occurrences that
are prefixed by comma separators (cf. lines 13-15).

1 import "default.ecss";

2

3 templateGen classGenTemplate extends classTemplate;

4

5 rule whitespaceClassRule :classGenTemplate :: classRules:

6 class.name " returns " class.name ":" "{" class.name "}"

7 [% if (slot_name.getValues().isEmpty()) {%]

8 " '" classname "' " " ':' "

9 [% } else {%]

10 nameDistRules(~name[0 .. 1])

11 [% }%]

12 ::BEGIN() " (" attributeDistRules(~other[ 0 .. 99]) ")" ::END() ';' ;

13

14 NamedElement+

15 { classname: ocl "rule.class.name.toUpperCase()" priority(2.0); }

16

17 * { classname: ocl "rule.class.name" priority(1.0); slot(name,name): 2.0;}

Listing 1.4. Ecss model for indentation-based layout (excerpt of ws-aware.ecss).

1 import "wsaware.ecss";

2

3 template attributeTemplate: uk.ac.york.cs.ecss.newproc.AttributeXtendRule;

4 templateGen attributeGenTemplate extends attributeTemplate

5

6 rule arbitraryAttributeDistr: attributeGenTemplate :: attributeDistRules:

7 "("

8 for esf: features join ") | (" {

9 attributeRule(esf)

10 [% List<EStructuralFeature> subFeat = new ArrayList(features); %]

11 [% subFeat.remove(esf); boolean first = true; %]

12 "(("

13 for EStructuralFeature sub: subFeat join ") & (" {

14 "','" attributeRule(sub)

15 } "))"

16 } ")";

Listing 1.5. Ecss model for arbitrary order of declaration (excerpt of arbitrary-order.ecss).
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4.5 Generation of Grammar and Language implementation

In this section, the process of generating grammars (cf. step E2 in Figure 2) that is
followed by the final step (cf. E3), i.e. the generation of executable DSML implemen-
tations as illustrated in Figure 4, is described in detail. The Ecss DSML grammar cre-
ator generates grammars based onmodels by substituting template parameters in style
models with actual values and suitable subsequent values.

Complete Subrule Assocation

Rule Template

Parameter Values

Rule Value Assignment Process

Rule Template Application

Parameter Values

Rule Template

Rule template association
property rules

select root
rule template

Value
property rules

Value Slots

Rule Slots

Value Slot Association

Rule Slot Association

Complete Subrule Assocation

Rule Template

Parameter Values

Subrule Parameter Values

Rule-specific subrule Parameter extraction

select values for slots

Slot association
property rules

Distribute Parameters to Slots

For each rule slot
association

Rule template association
property rulese.g. features, classes

Generated Grammar
Rule (Part)

rule
generation

Class

Fig. 4. Overview of DSML grammar generation workflow.

Ecss is built on template rules that act as code generating classes that produce
code based on values assigned to class fields. Class fields can manifest as (i) directly
assigned fields, i.e. field values determined by constructor parameters, (ii) styled fields,
i.e. field values determined by property selectors, and (iii) slot fields, i.e. field values
derived from directly assigned fields that are distributed in slots based on priorities
computed from the set of available associations between slot and value. Moreover,
directly assigned fields may refer to model elements in the input metamodel; the value
of styled fields is the result of determining a rule template from the set of available
priorities in associations between slot and rule template. The root rule application is
selected using template property rules with their root class as a single parameter. In
case no root class has been specified, it is automatically determined by selecting the
class that contains most other other classes. Next, the variable associations of the rule
application are established depending on the rule application class and subsequent
parameters may be derived from parameters of the rule. Then, property rules assign
property values to rule properties. Next, the priority of slot parameters is calculated
using slot value property rules and specific subsequent parameters that are distributed
among rule slot priorities and slot multiplicities. Next, the output generating function
of the rule application, i.e. defined by values computed in the previous step, is executed
and dynamically calls subrules. In detail, most suitable subrule templates, i.e. based on
property rules and parameter types, are selected and similarly processed.

Priority Computation. Assuming that the class Stage in our motivating example rep-
resents the root class and is converted by employing the rule whitespaceClassRule (cf.
Listing 1.4). As a result of the definition of classGenTemplate, the variable class is set
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to the class parameters and all class features are distributed to slots as follows. First,
values for non-slot fields, i.e. classname in this case, are computed. Although Stage is a
subclass of NamedElement and therefore both associations for classname are possible,
the association defined by the NamedElement property rule is chosen due to its higher
priority value. Secondly, features are assigned to slots based on defined priority values,
i.e. 1.0 if undefined. In our example, the rule slot(name,name) defines a priority of 2.0
and thus causes the attribute name and remaining attributes to be associated with the
slot name and the slot other, respectively. Next, the generation process in our example
continueswith a call to the rule group nameDistRules, i.e. with feature name as parame-
ter, for the non-empty slot name. Finally, the rule arbitraryDistrRule is prioritised over
the rule defaultAttributeDistr, i.e. imported from default.ecss, due to its priority value
being higher by 0.5. Thus, establishing attributeDistRules([engineAmount, engineType,
physicalProperties]) as a new rule call that is similarly executed.

5 Related Work

In this section we present existing literature on the specification of visual textual rep-
resentations and differentiate them with our approach.

In [12], concrete textual representations are defined usingmodel annotations spec-
ified in terms of a dedicated DSL. This approach represents an effort towards reduc-
ing redundancy between the specification of metamodels and grammars, e.g., intro-
duced by the duplicated definition of element-multiplicity, by employing a sequence
of transformations on Textual Concrete Syntax (TCS) models and metamodels. Com-
pared to our approach, the definition of a DSL is achieved utilizing TCS models that
are similarly employed alongside metamodels for the generation of textual grammar.
However, as a result of TCS models specifying associations to individual metamodel
elements, this approach does not enable the definition of domain metamodel-agnostic
styles and thus is limited by its application of styles to particular metamodels.

Further, [8] presents a classification of existing concrete textual syntax mapping
approaches and identifies a set of issues associated with incremental parsing, model
updating, and partial and federated views.This classification distinguishes between (i)
manual development or auto-generation of metamodels from existing language gram-
mars, (ii) manual development of grammars based on existing metamodels, and (iii)
manual development of mappings between existing metamodels and grammars. Ac-
cordingly, our approach fits both classification (i) and (ii) and thus can neglect (iii).

TCSSL [19] represents an approach to establish bidirectional mappings between
abstract syntax trees and concrete syntax trees by defining EBNF-like rules, which
differ from EBNF rules by having sub-rules that are triggered based on the inheritance
hierarchy depicted in abstract syntax trees. Compared to our approach, TCSSL also
allows to define multiple different mappings based on the same metamodel to pro-
vide different concrete representations of the same abstract concepts, i.e. fitting the
needs of different stakeholders, it does not allow to define concrete representations
applicable to different metamodels. Moreover, TCSSL requires to language engineers
to manually specify mapping rules for each metamodel element as well as concrete
representation thereof, instead of employing structure-agnostic style models on arbi-
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trary domain metamodels. Further, multiple pass-analysis checks need to be manually
implemented to address challenges, such as type checking and reference resolution
mechanisms, that are raised during the compiler construction process.

The Textual Editing Framework (TEF) [24] presents an approach to embed gen-
erated EMF-based textual model editors into graphical editors created with GMF and
tree-based editors generated with EMF. Compared to our approach, TEF also offers the
capability to create style specifications for domainmetamodels. However, TEF requires
language engineers to manually implement complete style definitions for elements in
the domain metamodel that are intended to be instantiated within the context of the
embedded textual editor.

Moreover, an approach that offers library-based syntactic extensibility based on
the Spoofax language workbench has been presented in [13] and offers support for the
host languages Java, Haskell, and Prolog. In comparison, grammar-dependent trans-
formations weave and unweave “syntactic sugar” into and out of host language no-
tations, respectively, instead of decoupling style information from abstract domain-
specific concepts. Consequently, requiring construction and maintenance of domain
metamodel-dependent bi-directional transformations to enable grammar backward-
compatibility instead of liberating language engineers from creation and maintenance
of such complex transformations.

EMFText [9, 10] presents an approach for the definition of textual representations
and the generation of editors from Ecore-based metamodels. Compared to our ap-
proach, concrete syntax rules in EMFText are defined based on concrete metaclasses
or metaclass attributes instead of, additionally, enabling the definition of metamodel-
agnostic notations, i.e. based on types of a metamodeling language such as Ecore.

A dedicated DSL for the construction of (complex) bridges between grammars and
metamodels is presented in [11, 4]. In general, their work differs to our approach by
promoting the facilitation of bridge-specifications between dedicated metamodels and
grammars instead of metamodel-agnostic notations. Thus, effective construction of
valid bridges between domainmetamodels and grammars requires language engineers
to be fully aware of actions and tool specifications available on both sides of a bridge.

6 Conclusion and Future Work

In this work, we proposed an approach for the definition and maintenance of textual
notations distinctively and autonomously and implemented the approach through a
template language and toolkit for textual style definitions based on EMF and Xtext.
Moreover, we showcased the application of our implementation, i.e. involving the cre-
ation of domain metamodel-agnostic notational definitions, in a comparison with the
model-first approach, i.e. involving the adaptation of (generated) grammar, and indi-
cate usability based on conciseness and expressiveness. Future work includes (i) the
application of style models to the set of open-source DSML projects available on open-
source software providers, such as Github, to extend findings in regard to the expres-
siveness and conciseness, (ii) the iterative extension of our notational-specification
language in regards to the findings in (i), and (iii) the conduction of an empirical user
study expanding our findings in regards to the usability of the proposed language.
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