763 research outputs found

    House price volatility metamodel for managing house price volatility knowledge

    Get PDF
    A change in house price is a situation that is very dynamic and unpredictable. The study found that changes in house price volatility are more dynamic than the changes in the price of goods or household income. Demographic changes, market forces and the rise of speculation are among the factors that influence the volatility in house prices. Through this research all the determining factors associated with changes in house price volatility were identified because the changes on the determinant factors have an impact on the pattern of the house price market. For the purposes of showing a comprehensive relationship between the determinants of house price with house price volatility, the methods in modelling the concept in software engineering known as metamodelling has been adapted. Through metamodelling, an artifact known as 'metamodel' is produced. Specifically for this study, the metamodel is known as House Price Volatility Metamodel (HPVM). By combining qualitative and quantitative methods, the development of HPVM implemented using 8 Step Metamodelling Creation process, where HPVM is capable of modeling the determinant factors that determine the volatility in house prices in three major categories: i) Socio-Economic view, ii) Economic view and iii) HPV Significant Value view. Three types of validation technique, Expert Review (Face to Face Validation), Frequency-Base Selection and Tracing (Case Study) in three states in Malaysia, namely Penang, Johor and Kuala Lumpur have been used to assess the effectiveness of the metamodel. Metamodel development is believed to be beneficial to various stakeholders in the domain of property market such as the government like from Ministry of Finance, real estate investors, economists, buyers and real estate practitioners where they are able to get a variety of views and considerations in assessing house price market and house price volatility. These considerations are very important in evaluating the real estate market, as it will be an input in decisionmaking basis for this field

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    Design Pattern Modeling with Constraint Relaxation

    Get PDF
    Metamodeling is a widely applied technique in the field of graphical language engineering. Environments supporting metamodeling aid rapid and flexible domain-specific modeling language (DSML) definition and utilization. In software engineering, design patterns are efficient solutions for recurring problems. With the proliferation of DSMLs, there is a need for domain-specific design patterns to offer solutions to problems recurring in different domains. The aim of this paper is to illustrate a concept that integrates modeling patterns into a metamodeling environment. The introduced approach utilizes the modeling functionalities of the environment; a visual design pattern metamodel, a system architectural metamodel extended with textual constraints are introduced. Furthermore, design patterns are validated against relaxed constraints defined in the metamodel to only allow the creation of patterns that can be extended to valid instance models

    A Domain-Specific Modeling approach for a simulation-driven validation of gamified learning environments Case study about teaching the mimicry of emotions to children with autism

    Get PDF
    Game elements are rarely explicit when designing serious games or gamified learning activities. We think that the overall design, including instructional design aspects and gamification elements, should be validate by involved experts in the earlier stage of the general design & develop process. We tackle this challenge by proposing a Domain-specific Modeling orientation to our proposals: a metamodeling formalism to capture the gamified instructional design model, and a specific validation process involving domain experts. The validation includes a static verification , by using this formalism to model concrete learning sessions based on concrete informations from real situations described by experts, and a dynamic verification, by developing a simplified simulator for 'execut-ing' the learning sessions scenarios with experts. This propositions are part of the EmoTED research project about a learning application, the mimicry of emotions, for children with ASD. It aims at reinforce face-to-face teaching sessions with therapists by training sessions at home with the supervision of the children's parents. This case-study will ground our proposals and their experimentations

    An Open Platform for Modeling Method Conceptualization: The OMiLAB Digital Ecosystem

    Get PDF
    This paper motivates, describes, demonstrates in use, and evaluates the Open Models Laboratory (OMiLAB)—an open digital ecosystem designed to help one conceptualize and operationalize conceptual modeling methods. The OMiLAB ecosystem, which a generalized understanding of “model value” motivates, targets research and education stakeholders who fulfill various roles in a modeling method\u27s lifecycle. While we have many reports on novel modeling methods and tools for various domains, we lack knowledge on conceptualizing such methods via a full-fledged dedicated open ecosystem and a methodology that facilitates entry points for novices and an open innovation space for experienced stakeholders. This gap continues due to the lack of an open process and platform for 1) conducting research in the field of modeling method design, 2) developing agile modeling tools and model-driven digital products, and 3) experimenting with and disseminating such methods and related prototypes. OMiLAB incorporates principles, practices, procedures, tools, and services required to address the issues above since it focuses on being the operational deployment for a conceptualization and operationalization process built on several pillars: 1) a granularly defined “modeling method” concept whose building blocks one can customize for the domain of choice, 2) an “agile modeling method engineering” framework that helps one quickly prototype modeling tools, 3) a model-aware “digital product design lab”, and 4) dissemination channels for reaching a global community. In this paper, we demonstrate and evaluate the OMiLAB in research with two selected application cases for domain- and case-specific requirements. Besides these exemplary cases, OMiLAB has proven to effectively satisfy requirements that almost 50 modeling methods raise and, thus, to support researchers in designing novel modeling methods, developing tools, and disseminating outcomes. We also measured OMiLAB’s educational impact

    Science & engineering software migration: moving from desktop to mobile applications

    Get PDF
    The proliferation of mobile devices over the last years provides opportunities and challenges for solving problems in Science & Engineering. Among other novel features, mobile devices contain global positioning sensors, wireless connectivity, built-in web browsers and photo/video/voice capabilities that allow providing highly localized, context aware applications. Mobile phones have become as powerful as any desktop computer in terms of applications they can run. However, the software development in mobile computing is still not as mature as it is for desktop computer and the whole potential of mobile devices is wasted. A current problem in the engineering community is the adaptation of desktop applications for mobile technologies. To take advantage of new platform technologies, existing software must evolve. A number of solutions have been proposed to deal with this problem such as redevelopment, which rewrites existing applications, or migration, which moves the existing system to a more flexible environment while retaining the original system data and functionality. A good solution should be to restore the value of the existing software, extracting knowledge and exploiting investment in order to migrate to new software that incorporates the new technologies. On the one hand, traditional reverse engineering techniques can help in the software migration to mobile applications. They are related to the process of analyzing available software with the objective of extracting information and providing high-level views on the underlying code. On the other hand, to achieve interoperability with multiple platforms the migration needs of technical frameworks for information integration and tool interoperability such as the initiative of the Object Management Group (OMG) called Model Driven Architecture (MDA). The outstanding ideas behind MDA are separating the specification of the system functionality from its implementation on specific platforms and managing the software evolution from abstract models to implementations increasing the degree of automation. The objective of this paper is to describe a reengineering process that allow moving existing desktop applications for solving engineering problems of multidisciplinary character to mobile platforms. Our research aims to simplify the creation of applications for mobile platforms by integrating traditional reverse engineering techniques, such static and dynamic analysis, with MDA. We validated our approach by using the open source application platform Eclipse, EMF (Eclipse Modeling Framework), EMP (Eclipse Modeling Project) and the Android platform

    Science & engineering software migration: moving from desktop to mobile applications

    Get PDF
    The proliferation of mobile devices over the last years provides opportunities and challenges for solving problems in science and engineering. Among other novel features, mobile devices contain global positioning sensors, wireless connectivity, built-in web browsers and photo/video/voice capabilities that allow providing highly localized, context aware applications. Mobile phones have become as powerful as any desktop computer in terms of applications they can run. However, the software development in mobile computing is still not as mature as it is for desktop computer and the whole potential of mobile devices is wasted [7, 8]

    CRISTAL: A practical study in designing systems to cope with change

    Get PDF
    Software engineers frequently face the challenge of developing systems whose requirements are likely to change in order to adapt to organizational reconfigurations or other external pressures. Evolving requirements present difficulties, especially in environments in which business agility demands shorter development times and responsive prototyping. This paper uses a study from CERN in Geneva to address these research questions by employing a 'description-driven' approach that is responsive to changes in user requirements and that facilitates dynamic system reconfiguration. The study describes how handling descriptions of objects in practice alongside their instances (making the objects self-describing) can mediate the effects of evolving user requirements on system development. This paper reports on and draws lessons from the practical use of a description-driven system over time. It also identifies lessons that can be learned from adopting such a self-describing description-driven approach in future software development. © 2014 Elsevier Ltd

    Managing Evolutionary Method Engineering by Method Rationale

    Get PDF
    This paper explores how to integrate formal meta-models with an informal method rationale to support evolutionary (continuous) method development. While the former provides an exact and computer-executable specification of a method, the latter enables concurrent learning, expansion, and refinement of method use (instances of meta-models) and meta-models (evolution of method specifications). We explain the need for method rationale by observing the criticality of evolving method knowledge in helping software organizations to learn, as well as by the recurrent failure to introduce rigid and stable methods. Like a design rationale, a method rationale establishes a systematic and organized trace of method evolution. Method rationale is located at two levels of type-instance hierarchy depending on its type of use and the scope of the changes traced. A method construction rationale garners a history of method knowledge evolution as part of the method engineering process, which designs and adapts the method to a given organizational context. A method use rationale maintains knowledge of concrete use contexts and their history and justifies further method deployment in alternative contexts, reveals limitations in its past use, and enables sharing of method use experience. The paper suggests how a method rationale helps share knowledge of methods between method users and engineers, explores how method engineers coordinate the evolution of the existing method base through it, and suggests ways to improve learning through method rationale
    • …
    corecore