
Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 356

RESEARCH ARTICLE

Managing Evolutionary Method Engineering by Method

Rationale∗

Matti Rossi
Helsinki School of Economics

mrossi@hkkk.fi

Balasubramaniam Ramesh
CIS Department

Georgia State University
bramesh@gsu.edu

Kalle Lyytinen

Case Western Reserve University
kalle@po.cwru.edu

Juha-Pekka Tolvanen

MetaCase Consulting ltd
jpt@metacase.com

Abstract

This paper explores how to integrate formal meta-models with an informal method
rationale to support evolutionary (continuous) method development. While the former
provides an exact and computer-executable specification of a method, the latter enables
concurrent learning, expansion, and refinement of method use (instances of meta-
models) and meta-models (evolution of method specifications). We explain the need for
method rationale by observing the criticality of evolving method knowledge in helping
software organizations to learn, as well as by the recurrent failure to introduce rigid and
stable methods. Like a design rationale, a method rationale establishes a systematic and
organized trace of method evolution. Method rationale is located at two levels of type-
instance hierarchy depending on its type of use and the scope of the changes traced. A
method construction rationale garners a history of method knowledge evolution as part
of the method engineering process, which designs and adapts the method to a given

∗ Matthias Jarke was the accepting senior editor for this paper. Jan Pries-Heje and Ralf Klamma
were reviewers for this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301382925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 357

organizational context. A method use rationale maintains knowledge of concrete use
contexts and their history and justifies further method deployment in alternative contexts,
reveals limitations in its past use, and enables sharing of method use experience. The
paper suggests how a method rationale helps share knowledge of methods between
method users and engineers, explores how method engineers coordinate the evolution
of the existing method base through it, and suggests ways to improve learning through
method rationale.

Introduction

Information systems developers face an unprecedented pace of change as seen in the
simultaneous rise of standardized object-oriented method (UML) (OMG, 2003), new
visual programming environments, Web services, and new implementation platforms
(e.g. mobile clients, distributed group technologies, and plug-in components). This has
led to a situation where methods of yesterday provide a poor match for emerging
development practices and radically new technical platforms. At the process level,
increased outsourcing and new development contexts create unforeseen needs for
method management and deployment. For example, Internet developers struggle
constantly to invent and adopt practices that scale to the complexity, size, and agility of
the business processes being supported as well as to the novel characteristics of
development processes (such as speed, variation) (Rose and Lyytinen, 2003). Likewise,
the construction of software-enabled products is increasingly supported by tailored
method families that make possible rapid delivery of product variants1 (Tolvanen and
Kelly, 2000; Weiss and Lai, 1999). At the level of method use, method change forms a
complex and reflective endeavor, where contents of the method, its justification, and its
scope and style change continuously (Russo and Wynekoop, 1995). The abundance of
UML variants is a prime example of constant method modifications that emerge as a
response to new contingencies and diverse use experience (see e.g. Conallen, 1999;
Desmond et al., 1998; Heberling et al., 2002).2

The criticality of adapting, developing, and maintaining methods and related computer-
aided support environments is increasingly recognized as a crucial development process
in its own right (Brinkkemper, 1996; Harmsen et al., 1994b; Hidding et al., 1993;
Hofstede and Verhoef, 1996; Kumar and Welke, 1992; Odell, 1996; Tolvanen et al.,
1996). This process -- denoted widely as method engineering (ME) -- is a (meta-level)
systems development process applied to IS development practices and supporting tools.
There is an increasing stream of study about how to engineer new methods (Floyd,
1986; Hidding et al., 1993; Odell, 1996; Russo and Wynekoop, 1995; Tolvanen et al.,
1996), but there is a paucity of research on how methods in use evolve and can be

1 For example Nokia and several other companies have used specialized methods to specify and
manage functionality in software for phones that allows rapid generation of new phone models
(Kelly and Tolvanen, 2000, Tolvanen and Kelly, 2000)

2 These modifications are also becoming increasingly critical for effective system development so
that tool vendors now offer extensible CASE tools to accommodate such modifications. For
example, Microsoft will offer as a part of its forthcoming .Net CASE-tool functionalities that make
possible non-standard UML extensions. (Randell and Lhotka, 2004)

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 358

supported with and by method engineering. Yet, as noted, methods change
incrementally in response to changing technical and organizational contingencies (Floyd,
1986; Hidding et al., 1993; Russo and Wynekoop, 1995). In light of this, we suggest that
method engineering needs to be analyzed as a continuous, evolutionary process that
supports the adaptation of methods to changing technical and organizational
contingencies and new development needs.

In this paper we analyze a particular facet of evolutionary method engineering. We
demonstrate that a continuous stream of new methods or method variants and their
explicit justification can become a crucial means for organizational memory and learning
in system development. Recording method changes and their reasons enables and
promotes learning and knowledge sharing within the community of designers, especially
in rapidly changing environments. We call a trace of evolutionary method changes and
associated use experiences a method rationale (MR). Method rationale involves both
organizational and technical management of a set of dependencies across method use
situations and method (meta) models.

The specific goal of this paper is to explore how organizations can build up and benefit
from an explicit method rationale that can support evolutionary method engineering. We
show how method rationale leads to new ways of applying methods and provides a
systematic means to communicate and learn from method use. We illustrate method
rationale construction and use processes by analyzing a concrete example that has
been implemented with a metaCASE environment (MetaEdit+). It exemplifies building
and using a method rationale when adopting and implementing a new standard version
(e.g. 2.0) of UML and its extensions into a CASE tool.

The remainder of the paper is organized as follows. In the next section we motivate a
method rationale first by demonstrating the inevitability of method change in two areas of
method research: process improvement and agile development research. In the next
section we define method development --method engineering (ME) -- and identify
weaknesses in the past ME research in how it has viewed method knowledge and its
changes. In section 4 we offer a sketch of an evolutionary ME process and discuss the
architecture of a method rationale and related tool support. Section 5 exemplifies how a
method rationale can be implemented and used in a metaCASE environment when
designers consider adopting a new version of the UML method. In the last section we
discuss remaining research challenges in developing truly reflective and evolutionary
support environments that can improve fast-changing development practices.

Inevitability of Method Change

Development methods and processes and related capabilities have been long regarded
as valuable assets of development organizations. Optimization and effective reuse of
methods and processes can significantly enhance development productivity and quality
(Holdsworth, 1999). At the same time, software development is not a standardized
manufacturing process in that the same process can be repeated for every aspect of a
project outcome as well as across multiple projects. For example, methods used in
developing even successive versions of the same software vary considerably. The need
to find a good fit between specific project circumstances and generic methods has been
recognized as one key challenge in software development (Cockburn, 2000; Karlsson et

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 359

al., 2001; Kraiem et al., 2000; Zmud, 1980), as building methods from scratch for each
development situation is risky and creates significant overhead. Therefore, existing
methods are normally adapted to meet the increasingly varying needs. There are several
different contexts where this challenge has been recognized, including two extremely
topical areas: process tailoring and agile methods.3 An exploration of these areas will
justify our call for managing better method change and offering a more systematic way to
do it through evolutionary ME and method rationale.

Process Tailoring

Process tailoring can be defined as the “act of adjusting the definition and/or
particularizing the terms of a general description to derive a description applicable to an
alternate (less general) environment” (Ginsberg and Quinn, 1995). The need for process
tailoring has been identified in the “post modern” view of IS development (Baskerville et
al., 1992), which argues that human organizations are emergent and continually adapt to
a set of goals. Consequently, development processes will be unique and emergent in
light of the constantly shifting requirements that confront an organization. Though
standardized software process models are regarded to represent “best practices” within
the industry, some of their elements do not meet the shifting requirements of emergent
processes. Therefore, a host of elements have to be constantly tailored to meet the
goals of each project (Ramesh and Jarke, 2001).

Ginsberg and Quinn (1995) made two empirical observations that support this view.
First, they found that similar projects require different levels of tailoring due to differences
in the organizational structure. For example, different contractors for the same
government agency have to adjust their processes differently due to organizational
differences. Second, they found that a single organization may contain environments
having significantly different characteristics, and therefore it needs to employ different
development processes. Hence, almost every organization or project must carry out
tailoring in order to apply effectively “best” standard practices. A similar result was
observed in a detailed study of traceability practices in large scale software development
efforts (Ramesh and Jarke, 2001). The study highlighted the need to adapt practices to
suit the varying needs of projects and organizations. The authors argue that
organizations need to explicitly represent the conditions under which various process
steps are executed in order to enhance the reusability and tailorability of these
processes. They also illustrated the need of tracing method and process changes in
order to improve the effectiveness of reusing system development processes. In light of
this, Ramesh and Jarke propose a set of reference models to organize design rationale
at different levels of granularity to depict contexts in which software development
artifacts and processes are created and used.

The necessity of tailoring has also been recognized in multiple process improvement

3 We could have adopted nearly any area of method use and deployment but these were chosen
based on the suggestions of reviewers and the SE. For example, a similar need for method
change and adaptability has been recognized in studies of method use and adaptation in user
experience reports (Odell, 1996), surveys (Russo and Wynekoop, 1995, Tolvanen et al., 1996),
and in methodological discussions of method research (Fitzgerald, 1991). This can be also
generalized to the specific relationships between plans and situations as studied by Suchman
(Suchman, 1987).

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 360

frameworks. Because all standardized software development process models such as
ISO/IEC 12207 (IEEE/EIA, 1998a; IEEE/EIA, 1998b; IEEE/EIA, 1998c), IEEE/IEA 12207
(IEEE/EIA, 1998a; IEEE/EIA, 1998b; IEEE/EIA, 1998c) and RUP® (Kruchten, 2000)
have been developed with a broad scope of situations in mind, they are too generic to be
readily applied “as such” in a specific software project. As noted by Ginsberg and Quinn
(1995), the SW-CMM model they studied defines only a generic set of practices that
reflect “best” organizational practices of organizations that develop large software
systems for government agencies. Yet, in order to appropriate these practices,
organizations must significantly tailor them prior to their application (Ginsberg and Quinn,
1995). As they note, these generic practices provide only a fruitful starting point for
improving software development processes. In fact, a growing amount of recent process
improvement literature suggests that standardized methods are never adopted faithfully
or followed rigorously (Holdsworth, 1999). Rather, their specific elements are selected
and tailored flexibly to suit specific project needs. Such tailoring activities include,
typically: eliminating unnecessary elements from reference models, adding new
elements, and/or changing workflows,4 For example, ISO 12207 and IEEE/EIA 12207
standards dedicate a whole section to specify activities and tasks for tailoring them for a
software project or an organization. Tailoring standardized processes also offers several
benefits. It reduces delays, increases productivity, and improves quality (Hollenbach and
Frakes, 1996). It also helps transfer method knowledge between projects, and thereby
reduces training and planning costs (Holdsworth, 1999).

At the same time, empirical studies of process improvement show that process tailoring
is difficult in that it involves intensive knowledge generation and deployment (Demirors et
al., 2000; Ginsberg and Quinn, 1995; Machado et al., 1999; Polo et al., 1999a; Polo et
al., 1999b). Guidelines associated with managing and adopting process models are not
detailed enough to guide developers through the (meta) process, even though a number
of studies have proposed sets of factors that will influence process tailoring, including:
domain characteristics, project characteristics, project goals and assumptions,
organizational structure, corporate size, maturity level, etc (Ginsberg and Quinn, 1995;
Holdsworth, 1999; Machado et al., 1999). For example Holdsworth (1999) extended the
Capability Maturity Model (CMM) by adding an inventory phase to evaluate the current
state of the project and the organization (taking stock of such variables as product
portfolio, clients, suppliers, and staff). He also suggested mechanisms for identifying and
tracing resulting modifications in the software development process (Holdsworth, 1999).
On the downside, Holdsworth does not propose any systematic theoretical base for
directing or managing such change. Another downside in process tailoring is that it
demands large amounts of work to make the methods fit (Demirors et al., 2000; Polo et
al., 1999a; Polo et al., 1999b). To address this, Avrilioni and Cunin (2001) have
proposed the OPSIS approach to effectively reuse process assets. Their approach
matches component interfaces with the process parameters and checks the consistency
of the resulting processes. Karlsson et al. (2002, 2001) proposed a method to adapt
software development methods by configuring a standard process model. Under their
methodology, when a project’s characteristics matched one of the recurring patterns of

4 For example, Demirors et al. (Demirors et al., 2000) tailored ISO/IEC 12207 for instructional
software development in small software development organizations. Polo et al. (Polo et al.,
1999a) tailored ISO/IEC 12207 for maintenance. Machado et al. (Machado et al., 1999) applied
ISO/IEC 12207 and CMM model to improve processes for service development.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 361

project characteristics, it could employ a predefined process configuration. This
approach seeks to create reusable process configurations based on experience from
earlier projects (Karlsson, 2002, 2001). The approach leads to questions about whether
each task/activity/step should be performed as it is, reduced, skipped, or extended. Yet
they do not suggest any clear mechanisms for how such knowledge is obtained,
managed, or shared as part of the process modification method.

Agile methods

The need for changing and adapting methods and managing related knowledge is not
only necessary for organizations that employ formal/mature software processes, but also
for those that use agile methods. In fact, the importance of the adaptability of methods
has been increasingly emphasized when organizations have started to move to agile
development. Proponents of agile methodologies that address needs of high velocity
software development claim that traditional methodologies cannot be tailored to new
environments, are bureaucratic, and therefore slow down the pace of development
(Highsmith, 1999). In contrast to ‘heavy' or 'monumental methodologies', 'light-weight
methodologies' need to be "adaptive rather than predictive" (Beck and Fowler, 2000).
Unlike heavy methodologies that plan in great detail over a long span of time, light
methods "adapt and thrive on change, even to the point of changing themselves." In this
environment, the ability to tailor and evolve a method across projects, and even across
various phases of a project, becomes critical (Baskerville et al., 2001). Examples of this
trend abound: Agile Software Process (ASP) addresses the accelerated pace of
software development within geographically distributed teams by maintaining flexibility.
Similarly, Conallen’s (Conallen, 1999) methodology refines, extends and conflates the
Rational Unified Process (RUP) (Kruchten, 2000) and the ICONIX process (Rosenberg
and Scott, 1999). Likewise, Rising and Janoff (2000) claim that Scrum5 can only be
effective in projects where requirements are evolving and “chaotic conditions are
anticipated throughout the product development life cycle."

By recognizing this trend, method developers for agile environments increasingly
emphasize the tailorability of their methods to provide a “customized roadmap to
development success” (Kruchten, 2000). However, adaptation and tailoring of methods
is challenging for high velocity software organizations. Even with the flexibility of a
tailored methodology, there is no guarantee that a stable process can be established.
Even during the development of successive versions of the same software product, the
methods followed can vary widely (Ramesh et al., 2002) depending on the composition
of the project team and the nature of the product. Exceptions are made for team
members with similar software development experience, due to the (time) criticality of
the software, and the expected life span of software. Managers allow experienced
designers to skip detailed designs or reviews as they have an established track record of
quality output. As the products and development organizations mature, the methods
have to evolve to meet the new demands for quality and stability. For example, when a
product has matured and attained critical market share, the demands for quality (e.g.,
scalability, robustness, security, etc.) increase (often, dramatically), requiring changes in

5 This is a method that uses small teams working on time-boxed development. The description
fits Netscape’s development effort for its early browser, where rapidly evolving requirements
necessitated changes in the development methods throughout the product development (Iansiti
and MacCormack, 1997).

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 362

the development methods. A major difficulty faced by developing organizations is that
there are very few knowledgeable and experienced developers. Research suggests that
most designers lack experience, and thus their ability to establish 'home grown'
development methods, or to tailor existing methods, is limited. Research also suggests
that when an organization gains experience in the use of ‘new’ methods, its ability to
adapt and tailor them improves. In fact, such ability contributes toward increased product
development agility (Thomke and Reinertsen, 1998).

Need for managing method change

The review of these two streams of method literature suggests that continually identifying
and carrying out method changes in development environments is necessary in software
development as it provides significant benefits, including:

• Improved performance, predictability, and reliability of methods,
• Faster and easier adoption of methods through better training of project

personnel,
• Improved adaptability and agility of methods to changing needs of the

development,
• More scalable, transferable, and measurable software development practices,
• Increased control of software development, in that teams consistently apply

methods that help achieve more consistent outcomes, and
• Improved communications among team members.

Next, we shall look at how these benefits can be achieved. We suggest that software
development organizations need to implement an integrated environment for method
rationale that records method changes and their reasons. The environment involves both
organizational and technical management of a set of dependencies across method use
situations, and method (meta) models and can thus be best maintained with a
metaCASE tool that supports evolutionary method engineering.

Method Engineering and Method Rationale

System development and method development = method engineering

Two separate domains of inquiry can be identified in information systems development:
the problem system and the problem-solving system (Checkland, 1981). We call the
problem system the object system under development, or the target system. This system
embodies the technical sub-system being built the supported business system, and its
environment. The problem-solving system consists of components that enable
developers to identify, design, and carry out changes in the object system. One part of
this is the development support environment, which consists of a set of tools, mental
frames, and notations that are enacted during the change process (Lyytinen et al.,
1989). Modeling languages and associated methods are an important element of the
environment that dictate when, how, and by whom a notation like UML Class Diagram is
to be used. Thus, IS methods provide a means and an environment for linguistic
communication and technical problem-solving that encompasses the use, nature,
content, context, and form of signs included and processed in the problem system, the
information system (Lyytinen, 1987). A method can be defined as a set of techniques
(e.g. procedures, associated possibly with a prescribed notation) to carry out a

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 363

development activity. A combination of these techniques is called an ISD method.

When the problem-solving-system is regarded to be an object of inquiry, we call this
activity method development, or method engineering (Kumar and Welke, 1992). We
depict the relationships among these different levels of inquiry in Figure 1. Method
engineering provides methods and processes to specify, make explicit, codify, and
communicate method knowledge, as well as technical tools to enact such processes
effectively. These two inquiry processes are normally separated in time and space so
that methods are just imported from a separate generic problem-solving environment
and installed into the problem-solving system. After Orlikowski (1996), we call such a
situation time-space disjuncture in method engineering. Most traditional method
engineering literature assumes a sharp time-space disjuncture (Harmsen et al., 1994a;
Kumar and Welke, 1992; Tolvanen and Rossi, 1996) and assumes a "one shot" blueprint
method engineering approach where “method cowboys” ride into the organization,
diagnose current problems, and develop a method and its process instructions that
match with the observed contingencies (Harmsen, 1997). Thereafter, designers follow
the steps enlisted in the manuals, or for the better, enact automated steps specified into
a CASE tool. Yet in practice, as shown above, these two processes co-evolve, are
intertwined and interdependent, resulting in evolutionary method engineering processes.

In order to model methods, we need a set of concepts that can capture the content and
form of a method into a meta-model (see Figure 1). In its simplest form, a meta-model is
a conceptual model of a method (Brinkkemper, 1990), and exhibits a type-instance
relationship between the meta-model and its instantiation, the IS model. This can also be
seen as the development of a domain ontology or a set of domain ontologies for the
target domain (Jarke et al., 1998). Consequently, meta-modeling can be defined as a
modeling process within the problem-solving system, which takes place on one level of
abstraction and logic higher than the primary modeling process (Gigch, 1991). Every
modeling process in the problem-solving system implies a meta-modeling process
because a meta-model captures concepts and representation forms that are necessary
for the use of a method as part of the problem-solving system. How to formalize some
parts of the knowledge within the problem-solving system into a set of formal method

Figure 1 The relationships between modeling and metamodeling

Metamodeling

Model of a method,
metamodel Modeling

Model of a system A system to be
modeled

Perceives

Perceives

Develops

Determines Develops

Represents

Represents

Uses

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 364

specifications and how to make such method knowledge explicit, consistent, and
systematic has been a subject of intensive research in method engineering (Tolvanen et
al., 1996). In contrast, knowledge about decisions and processes that leads to a specific
meta-model -- the situation analyses and the warrants for such decisions -- a method
rationale has not been explored due sharp time-space disjuncture.

When method changes within the problem-solving system are slow, or when the time-
space disjuncture can be maintained without any difficulties (i.e. the method users
understand how to use the method without understanding all the contextual knowledge
that leads to this form of method knowledge), the need for explicit method rationale is
relatively low and relates to some changes in the problem-solving system (e.g. turnover
of developers). The situation is different when meta-model change is continuous due to
rapid changes in the problem-solving system, or due to its fast internal learning that
results from trial and error processes (with little or no time-space disjuncture). In such
situations, meta-models are constantly modified and extended in response to emerging
needs and learning outcomes, leading to evolutionary method engineering. This
increases the need to track changes in the meta-models contextually within the problem-
solving system. Formal meta-models and their informal “change histories” help collect,
organize, and analyze experiences related to the performance of the problem-solving
system. These changes increase the "fit" of the method to a given situation in the
problem-solving system, and ease its learning and applicability (i.e. the method
overcomes with less friction barriers related to time-space disjuncture). This requires that
explicit formal meta-modeling and method engineering must be extended with a more
explicit concept and implementation of method rationale in the method development
environment. In the following, we clarify first the idea of formal “one-shot” method
engineering that maintains a sharp time-space disjuncture, and then contrast this with
ideas of a reflective development practice leading to the notion of contextual and
evolutionary method engineering, which lowers or removes the time-space disjuncture
leading to incremental or agile method development. In the latter, the need for a method
rationale becomes pronounced.

Blueprint Method Engineering and Evolutionary Method
Engineering

The dominant approach underpinning ME and most ISD methods can be characterized
as what Schön (1983) calls “technical rationality”: situations in practice can be
scientifically categorized, problems are firmly bounded, and they can be solved by using
standardized principles (Tolvanen, 1995). The main goal of method development in this
blueprint view of ME is to provide complete knowledge about systems development that
can be deployed without friction in the problem-solving system. Moreover, this
knowledge is explicit and well defined. This goal, however, has been difficult to achieve
due to the complexity and emergent nature of system development situations. Therefore
more “relaxed” versions of blueprint method engineering have emerged. An earliest
example of the increased situation dependency of the method choice was the
formulation of contingency models that included, among others, the HECTOR project
(Savolainen et al., 1990), Davis’ contingency model for requirements determination
(Davis, 1982), or the Euromethod (Franckson, 1994).

During the 1990s FRISCO conferences dealt extensively with method matching and

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 365

adaptation (Falkenberg et al., 1996; Lindgreen, 1990; Stamper 1990). At the same time,
within the method engineering community, situational methods received increased
attention. For example, Harmsen’s proposal for "situational method engineering"
(Harmsen et al., 1994b) assumes that the developer first garners detailed knowledge
about the situation (i.e. the needs of projects and organizations), and thereafter decides
on the applicable method, choosing it from among a set of alternative method “frames”.
Recently, Ralyte and Rolland (2001) have proposed a meta-model for method fragment
reuse based on capturing knowledge about the application domain and design activity.
Similarly, Kraiem et al. (2000) and Punter (1996) have proposed similar meta-models for
situational methods, including “contingency factors” that characterize a project and its
environment. These approaches expect that all necessary knowledge about the method,
either tacit or explicit, is made available during the method development phase. Methods
embody enactable routines for development organizations, and therefore frequent
method use is assumed to lead to repeatable processes. The key problem for method
engineers is to select the right method rather than being concerned about how designers
actually use it.

As the experience reported above shows, there is very little evidence that software
development will become routine in, for example, a manufacturing process. In contrast, it
will remain similar to the field of architecture,6 where situational knowledge about the
design is necessary and aids designers to gradually build appropriate design strategies
organized around formalized method knowledge. Hence, method engineering involves a
situated learning process in which the current level of expertise and the situation
influence the use outcomes (Hughes and Reviron, 1996). During system development,
such learning takes place at two levels; in the domain of a target system (IS), and in the
domain of a problem-solving system (ISD). The former denotes learning about
successful (or unsuccessful) ISs and their domains. The latter connotes that any
organization that builds ISs not only delivers systems they also learn how to carry out
system development and to mobilize associated knowledge (methods), and as a result
know how to improve their problem-solving system (learning by doing).

Hence, during ISD process, an organization -- or rather its members -- gains
experiences about the applicability of the method, its use situation, and how it “talks”
back to the user. These experiences complement the formal method knowledge the
organization already possesses, and lead to new insights of the method’s applicability.
To our knowledge, only some learning-based approaches to method development
(Checkland, 1981; Mathiassen et al., 2000; Wood-Harper, 1985) identify the importance
of experience and learning from method use as a key mechanism that helps evaluate
and refine methods. Early on, Checkland (1981) advocated a learning-based approach
to method development by introducing a cycle of action research in which the
experience of method use provides a main source for method modification. In light of this
cycle, evolutionary ME can be viewed as a continuous and never-ending process, in
which experience is continually elicited from the method use.7 Unfortunately,

6 Note the significance of this analogy, as there is both standardized architecture as in the design
of a mall or an apartment house, and the designs of great architects like Le Corbusier, Aalto,
Gaudi, Lloyd-Wright or Gehry.
7 This view parallels with the goals of process improvement movement that have focused on
improving the repeatability and optimization of processes by learning by doing and continuous

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 366

organizations often fail to record and reuse their internal experience. As Lyytinen and
Robey argue (1999), a majority of this experience is lost because development
experiences are never collected and interpreted. They live only as "war stories" that are
narrated as part of the organizational culture (Orr, 1990).

In real situations it is never possible to have full knowledge about the problem system
(and thus the applicable method), nor can pre-defined methods ever cover all possible
situations. Furthermore, part of the methodical ISD knowledge remains tacit and cannot
be fully specified. Therefore, development efforts that are carried out by faithfully
following a set of pre-defined methods are impossible and, if followed, would be doomed
to fail. A better way to understand the role of methods, while at the same time honoring
our incomplete knowledge of ISD situations, is to view them from the organizational
learning perspective. This perspective analyzes system development situations and the
role of methods through a lens of what Schön (1983) calls “reflection-in-action.” In
Schön’s theory, each situation is unique, and developers draw upon the tacit and
experiential nature of their knowledge that emerges as the situation “speaks” to the
developer (Nonaka, 1994). Accordingly, part of a designer’s knowledge of ISD is a result
of his or her reflections of the situation, rather than being determined by predefined
methods (transmitted formally to him or her through time-space disjuncture). In real
situations, true “working” methods are appropriated and interpreted by designers based
on their reflections of the situation. At the same time, methods are outcomes of those
reflections in that designers’ tacit understandings are made explicit so that they can be
conveyed to others (Nonaka, 1994).

ISD is complex and depends on the influence of many stakeholders. Accordingly,
designers cannot develop systems by merely drawing upon their experience-based and
tacit knowledge. Reflection-in-action and technical-rationality are complementary in that
both explicit and tacit knowledge are necessary to understand system development. A
good method that talks to the situation should cover both aspects: it should provide
cognitive frames and norms that designers can use as a resource (Suchman, 1987), but
it should also invite them to use their experiential knowledge (Argyris and Schön, 1978).
This inspires them to expand their experiential knowledge and make it explicit. When
designers adopt such a learning view toward method development, we call it
evolutionary method engineering (Tolvanen, 1998).

Because evolutionary ME aims to continually improve ISD methods, it can be regarded
as a learning process in which individuals (Schön, 1983), communities, and
organizations (Nonaka, 1994), create, memorize, and share knowledge about system
development (in methods) and how to apply it.8 It involves a process of double-loop
learning in which “error is detected and corrected in ways that involve the modification of
an organization’s underlying norms, policies and objectives” (Argyris and Schön, 1978)9

feedback (1988).
8 This is quite similar to Curtis et al. (1988) who suggested that both the developer and user learn
through the dialectic approach.
9 Similarly, (Floyd 1987, Fitzgerald, 1991; Oinas-Kukkonen, 1996; Schipper and Joosten, 1996)
advocated a second-order learning process in which past experiences guide the use of the
method. Her early emphasis on learning was important, because it allowed us to motivate and
contextualize method rationale better.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 367

leading to continuous modification and augmentation of an organization’s methods.

Design Rationale in Method Engineering= Method rationale

Typically, an evolutionary ME process includes the following steps: problem definition,
model formulation, model solution, model interpretation, and model maintenance.
Thereby, evolutionary ME forms an iterative process that involves a second-level level
loop of modification, elaboration, and refinement of methods. Operational scenarios,
requirements, and assumptions that underlie methods evolve, necessitating continued
reformulation of methods. This process is normally error prone and involves a significant
amount of rework. This rework can be decreased by effective organizational memory
that traces critical method decisions and records information about trade-offs that were
made during method choices. Therefore, it is essential to capture process knowledge
about the development and evolution of methods (i.e., method rationale) in order to
facilitate their effective use and evolution.

In light of this, we define method rationale as a characteristic of evolutionary method
engineering in which the methods are linked to their intellectual sources (backward
traceability) and to the method engineering outputs created during a meta-model life
cycle (forward traceability) (Ramesh and Jarke, 2001). We distinguish method rationale
from design rationale (Ramesh and Jarke, 2001) in that the focus of method rationale is
on capturing the “design” rationale behind ME artifacts, rather than ISD artifacts.
Formally speaking, a method rationale system can be defined as a semantic network of
dependencies where nodes represent conceptual and physical objects of the ISD
domain and its context as they are continually produced during the ME process. A
method rationale trace is established through different types of semantic links that
connect diachronically or synchronically specific meta-model elements and their
instances.

Through establishing such dependencies, a method rationale documents the reasons for
the specific evolutionary steps in method knowledge that lead to the subsequent
creation, modification, and alternative uses of the method. For each step in the method
evolution, the trace can:

• Offer justifications for the creation and modification of methods,
• Record important decisions and assumptions,
• Identify the context in which method objects are created,
• Provide transparency into the decision process, including a trace of discarded

alternatives, in order to provide a thorough understanding of the current solution,
• Facilitate maintenance and reuse by providing access to the history and context

of different ME objects, and
• Manage method development in line with organizational needs and objectives.

Due to their “one-shot” focus, most current ME approaches fall short in addressing the
maintenance, justification, and analysis of different method versions. Typically, only the
final (in the true meaning of the word) product of the ME process is documented, but not
the process of arriving at the solution. The only level where rationale enters the
discussion is at the level of modeling decisions. A variety of design rationale approaches
have been proposed to capture and reuse rationale behind critical design decisions
(Lee, 1993; Ramesh and Dhar, 1992; Ramesh and Sengupta, 1995). The aim of these

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 368

approaches is to record and organize design decisions made using a predefined schema
(meta-model) to represent the context in which they were made (Ramesh and Dhar,
1992). Hence these approaches focus on the decisions behind designs (e.g., the
selection of one of the several possible ways to create an inheritance hierarchy in an
application domain), but not on the decisions behind methods -- for example, why an
inheritance between two classes is defined as virtual. Not surprisingly, most of these
approaches have developed separate meta-models of design decisions outside specific
modeling notations and process models, which are normal products of ME. Suggested
tools are standalone tools and are integrated into CASE tools only in an ad hoc manner
(see Kaipala (1997) for a different approach).

When a design rationale is expanded to support evolutionary method engineering, the
recorded method “design” rationale can be used at least in two ways: record decisions
and experiences related to method use and trace decisions related to method
construction. An example of the former could be an IS developer’s justification on why
the concept of multiple inheritance is used in some specific inheritance structures.
Approaches of this type focus on decisions related to method use within the ISD
process. For example, Jarke et al. (1994) proposed a traceability model for following
processes defined in a process guidance model. In contrast, during the construction or
tailoring of a method for use in this ISD, the decision to support multiple inheritance
should be based on an elaborate consideration of the implications of the method
component choice for possible implementation languages and target platforms. Method
construction rationale in this decision refers thus to knowledge that is critical for
understanding the appropriate use of the method in future.

Support for learning and change using Method Rationale

In evolutionary ME, method evolution is seen as necessary, as organizations have to
deal with different method versions for different implementation targets and development
contexts (as for example with UML (OMG, 2003)), introduce new method types (such as
object-oriented methods) based on vicarious learning, expand existing methods based
on trial and error learning, and abandon old methods (unlearning). For example, we
anticipate that after the introduction of profiles and extension mechanisms into UML 2.0,
organizations are likely to experience these situations almost on a continuous basis.

Basically, two different types of method evolution can be distinguished: those reflecting
general requirements of changed technical and business needs (vicarious learning), and
those relevant to the ISD situation at hand (learning by doing). The former relates to the
general genealogy of methodical knowledge within the IS (method) community, and the
latter with how these general evolutions are adapted into local situations and affect
development practices. In addition, we can observe specific evolutions that have political
and power implications. These are often related to the need for downward compatibility
to a specific technology that dominates the market or utilizing an installed base for
specific methods for method expansion and refinement (e.g. a move from OMT to UML).

To meet the diverse needs of these method evolution types, we need a general
framework for evolutionary ME tools that can support method evolution by maintaining a
method rationale. This will trace and justify changes in methods, as well as method
development processes, and integrate emerging feedback from user situations for

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 369

double-loop learning (Hidding et al., 1993).

Current State-of-the Art in Method Rationale

In current practice, method rationale lies in the heads of the people who have developed
methods and accompanying tools. Other stakeholders such as method users cannot
easily contribute to method construction because of communication problems related to
time or place disjuncture as discussed earlier.10 Consequently, important parts of the
method rationale are typically lost and therefore, local method and tool adaptations can
only be done partially and in ad-hoc fashion. One reason for this is the lack of tool
support for collecting, integrating, and organizing method rationale systematically, which
leads into ignoring available experience (Lyytinen and Robey, 1999). While some
researchers have formulated conceptual aspects of method rationale (see e.g. Tolvanen,
1998; Kaipala, 1997; Ralyte and Rolland, 2001), no comprehensive analysis of the
requirements for tool support has been made. Moreover, the rationale should be
captured and integrated in a designer’s natural use-context (Fischer et al., 1991). This
implies that the capture of the evolving method knowledge must be supported with
method engineering and design tools that are available in the CASE environment.

Overall, method rationale and method use experiences can be represented at different
levels of formality. The most informal approach considers rationale as a free form textual
annotation (e.g. Reeves and Shipman, 1992), which can be indexed for retrieval and
analysis. Formality of the design is increased rationally in approaches where it is
modeled as an argumentation process organized into specific discourse structures (e.g.
IBIS (Conklin and Begeman, 1988), DRL (Lee, 1991), QOC (MacLean et al., 1991)) that
are defined through appropriate semi-formal meta-models. In developed stand-alone
design rationale tools (like gIBIS (Conklin and Begeman, 1988)), a fixed conceptual
meta-model of the argumentation structure is represented as a directed graph. Additional
functionality to analyze the argumentation structure includes manipulation of graph
nodes and links (e.g. transitivity, weighting of arguments) and making queries of node
contents across a graph. Unfortunately, most such tools like gIBIS do not adequately
capture the context in which decisions are made (in ME). In addition, their poor
interoperability with CASE and method engineering environments constrains their
usefulness in supporting method rationale, as the method use decision rationale
captured in these environments is mostly lost when it is separate from the contextual
design knowledge stored in ME environments.

Within CASE tools, some mechanisms to capture design rationale both as annotations
and as argumentations have been developed (e.g. Bigelow, 1988; Cybulski and Reed,
1992; JinXiang and Griggs, 1994; Oinas-Kukkonen, 1996; Pohl et al., 1994; Ramesh
and Dhar, 1992). These tools focus on capturing and using the rationale behind the
creation of artifacts during the design process. None of these tools, however, supports
method rationale simultaneously during method engineering and method use.
Consequently, these tools provide limited support to access knowledge of method use at
the modeling level from within method modeling tools, and vice versa. Yet, as noted, this

10 This happens in some specific cases like pilot tests, joint development projects with method
developers, or in action learning (Checkland 1981, Mathiassen et al 2000)

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 370

is critical for evolutionary method engineering, which enables designers to engage in
double- loop learning. To this end, one goal of this essay is to demonstrate that such an
environment can be built and used to maintain all method knowledge within one unified
CASE and Computer Aided Method Engineering (CAME) tool.

Evolutionary Method Engineering and A Proposed Method
Rationale Architecture

Evolutionary method engineering lifecycle

The evolutionary process of developing and refining method definitions (evolutionary
ME) is outlined in the data flow diagram in Figure 2. According to the model, evolutionary
ME steps can be divided into setting up ME goals, constructing and adapting a method
for a given situation, gathering use experience, analyzing method use, and further
refining the method. This process should not be regarded as a “waterfall” like sequence
but as an outline of a set of iterative activities in which gradual method improvements
take place based on different method stakeholders’ experience (cf. Checkland, 1981).
During method selection developers make, high-level method decisions by choosing an
appropriate method “frame” for each IS-envisioned development situation based on
scenarios and domain analysis (Harmsen, 1997). In the next phase, method
construction, a formal meta-model is specified to render available method knowledge
explicit. Formal meta-models in this view provide a mechanism to collect and organize
development experience and make it explicit and analyzable. Method stakeholders’
comments, observations, and change requests can now be related to the types and
constraints of the proposed formal meta-model. Formal meta-models also allow
identification of those parts of the method, which may be in need of further analysis (e.g.
assumptions, nature of the entities being analyzed).

Alternative method refinement strategies can be pursued and their outcomes compared
by using meta-modeling constructs and development scenarios. When a formal meta-
model is stabilized, it is adapted into a tool environment (step 3), or at least formalized
into a method handbook (by-passing step 3).

Process steps 1 - 3 in Figure 2 have been the primary focus of meta-modeling and ME
research in the past two decades. Most of this literature has ignored continued method
refinement processes during method use and how it is driven by use experience (steps
4-6). This means that method engineers need to probe the ISD environment
continuously, not just during the initial method construction, and use this knowledge to
improve specific methods. Previous research has also ignored the new challenge of
managing such a dynamic method portfolio in fast changing environments as discussed
in section 2. As a consequence, the literature has not recognized the need for method
rationale and how it relates to the desired functionality of both a CAME and a Computer
Aided System Engineering (CASE) tool. Based on the concept of evolutionary ME, we
claim that the collection of experiences and the introduction of incremental changes to
methods are critical for supporting experience-based learning. This will lead to improved
acceptance and effectiveness of methods and a better managed process for maintaining

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 371

the method portfolio. Relating method use experience to meta-models and method
construction decisions also enhances organizational learning about methods and
development situations. By organizing models and meta-models into explicit and well-
defined relationships (CAME/CASE relationship in Figure 1), garnering development
experience, relating it to formal models, and interviewing stakeholders will all increase

Figure 2 A Data Flow Diagram Specifying the Incremental Method Engineering
Process

5
Analysis of
method use

6

Method
refinement

2

Method
construction

3

Tool
adaptation

ISD
environment ISD project CAME tool

ME criteria

CASE tool

1

Method
selection

4
Collection of
experiences

Method rationale

ME criteria

selected method

available method
specifications

method changes

experiences

experiences

ME criteria on
- contingencies
- development
 problems
- stakeholders’
 values

characteristics

Method
components

constructed method

method
supporting
tool

tool related
specifications

models and
methods

updated criteria
project outcomes

refined
method

Method
components

Rationale for
refinements

past construction
rationale

constructed
method:
- manuals
- tutorials
- etc.

Method rationale

method construction
rationale

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 372

the availability, and therefore the relevancy, of method use experience.11 Because of
the complexity and scope of this task, we also believe that maintaining method rationale
should be regarded as an integral part of ME methods and supported by appropriate
tools. This necessitates integration of both CAME and CASE12 functionality with method
rationale capability.

Kaipala (1997) was the first to suggest a set of such tools, using the IBIS model (Conklin
and Begeman, 1988) for recording design decisions and collecting method use
experience. We expand his model by recognizing that, in addition to the model-based
ME deliverables, other improvements or refinements of the methods need to be captured
in a method rationale as well. These deal with collecting information about ISD
processes that change or improve the problem situation. Typically, a request for method
change only becomes apparent through designers’ observations of the limitations of the
current method in use. Unfortunately, current CAME tools do not adequately support
recording use situations, and it is largely done in an ad-hoc fashion through annotations
and written memos that accompany formal meta-models. The availability of integrated
tools to comment on method use and support designers’ reflecting-in-action would
greatly enhance the method development process, and also contribute to easier
collection of change requests.

In evolutionary ME, experience-based meta-model refinements can be operationalized
as method construction decisions “on-the-fly”13, which necessitate simultaneous and in
many cases instant modifications in the accompanying CASE tools and method
documentation.14 This change process is goal driven, as method changes are carried
out to better satisfy some stated (or un-stated) ME criteria (see Figure 2). This validation
may: 1) confirm or reject the currently applied criteria in the method construction, or 2)
add totally new criteria.15 Paradoxically, blueprint ME approaches, which specifically
have aimed to follow specific criteria for ME, have neither discussed how to validate
resulting methods against such criteria, nor analyzed how information about methods’
situational applicability could be used in tailoring them to satisfy stated goals (e.g.
Brinkkemper et al., 1995; Harmsen et al., 1994b).

11 The approach to collect data and comments in an incremental ME process has similarities with
ideas proposed by Fitzgerald and others when they talk about improving method use (Fitzgerald,
1991, Oinas-Kukkonen, 1997, Schipper and Joosten, 1996)
12 These two environments are normally separate functionally and relate by simple data pipes so
that a CAME tool compiles a specification used in a CASE tool. The can also be totally integrated
which offers new way of relating meta-models and system models. We will discuss this more in
next sub-section.
13 This is in fact a (meta) level enhancement process in relation to method environments.
14 As noted above, this process many times leads also to the new ME knowledge for future ME
efforts.
15 This is an example of ME-based learning too.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 373

An Architecture for Method rationale in evolutionary method
engineering

Method rationale is located at two levels depending on the type of users and the scope
of method changes implied (Jarke et al., 1994; Oinas-Kukkonen, 1996). These we call
the method construction rationale, and the method use rationale, depending on whether
the primary users and/or producers of the method rationale components are system
developers or method engineers, respectively. These two parts of method rationale
impose and assume different types of type-instance relationships within the CAME and
the CASE environments, and also convey different types of semantics for these
relationships.

We present a general architecture for method rationale, its modeling types, and the
semantics of embedded relationships in Figure 3. For method engineers, method
rationale offers a type system and associated semantics that help explain why certain
meta-model components (objects or constraints) are included in the constructed meta-
model. Method rationale during method construction relates explanations both to the
meta-model as a whole and to its specific constructs. Method construction rationale
helps understand the reasons and effects of method modifications: what capabilities are
gained or lost when a specific method element is added or removed. It also helps trace
discussions of possible new method components that have been discarded so far.

Designers (method users) understand method rationale differently through models,
which we called method use rationale. From their perspective, a method rationale
contains a set of models that explains why certain types or constraints of the method
exist, why and how they are used, and what are their specific strengths and
weaknesses. In low maturity software organizations (say, at CMM level 1), all such
knowledge is tacit/implicit, and shared unevenly among developers who have garnered it
by trial-and-error learning. At higher levels of maturity, more and more such knowledge
is made explicit, standardized, and thereby shared.16 If all ISD knowledge could be
specified at a suitable level of formality and generality so that it could be taught as a
step-wise formalized process, writing up one generic meta-model and the associated
method use rationale would offer a one-time, one-size fits all solution. Unfortunately, as
noted above, process models and method use are far from uniform across different use
contexts. Therefore, the need to explicitly collect a method use rationale across different
use contexts and populations is of utmost importance. Whilst this reduces the
“subjective” bias in method use and makes method use decisions more explicit for
different contexts, it simultaneously allows users to directly relate their situated method
experience to formalized method knowledge. This is important, as individuals have
different goals and work styles. Therefore, they can have contradictory opinions of the
need to use the method in a specific way. Method use rationale also gives inexperienced
developers a way to learn about best practices related to a specific method.

The juxtaposition of the situational knowledge with formalized meta-models increases

16 This covers mostly however process specifications and process attributes and process and
tool interactions. CMM is less specific about meta-models that deal with representations of object
systems.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 374

the applicability of meta-models for different contexts and domains.17 This combination
of situated and generic method knowledge helps erect methodical “pattern” repositories
from which designers can seek and match method chunks or components (Harmsen et
al., 1994a) for a given situation (Hidding et al., 1993). Finally, part of the method
rationale is design rationale, which records the choice of specific design solutions
created while working within the confines of a selected method. For example, the design
rationale helps track good or bad outcomes of using the method or how it was used to
arrive at a specific solution. A further discussion of how design rationale relates to
evolutionary method engineering is however outside the scope of this study.18

Example of Method Rationale

In this section we describe a meta-model-based tool that can support method rationale
capture and use. The model draws upon models of argumentation and helps represent
the method rationale of different method design choices. The tool is implemented in the
MetaEdit+ CAME tool and was mainly derived from the earlier REMAP model (Ramesh
and Dhar, 1992) that was developed for capturing design decisions.

Method engineering environment

MetaEdit+ (Kelly and Smolander, 1996) is a customizable CASE environment that
simultaneously supports both CASE and metaCASE functions for multiple users within a
completely integrated environment. A method can be developed and simultaneously
tested in method engineers’ workstations much the same way as described in Hedin
(1992). MetaEdit+ also supports building and integration of multiple methods (their meta-
models) and offers multiple editors for diagrams, matrices, and tables and a number of
analysis and reporting tools for checking model consistency and forward engineering
(code generation). MetaEdit+’s architecture forms a “chain” of client-server
environments. The server side contains a centralized meta-engine that uses object
repository services (as a client) and acts as a server for modeling tools (diagramming,
matrix, etc.). The object repository is implemented as an object database running on a
central server. All editors (clients) and other tools communicate only through shared data
and state information on the server that are maintained by the meta-engine. Due to this
level of integration MetaEdit+ offers a high level of interoperability between its tools and
"pluggable" tools. For example Kelly (1994) shows how simple it is to extend MetaEdit+
with a new tool-a matrix editor-while the information model, repository engine, and
database do not change at all during the addition.

17 In architecture this naturally takes longer periods of time and different architects and schools
can have quite different ideas what the actual methods need to be.
18 A detailed treatment of design rationale can be found in (Lee, 1993, Moran and Carroll, 1996,
Ramesh and Dhar, 1992, Ramesh and Sengupta, 1995)

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 375

Figure 3. Method rationale and evolution

Method

Use

Method
Instances At t1

Method
Instances At tk

Meta-

model

Method
Use
Situations

Method
Engineering Meta-model

At t1
Meta-model
At t1

e

Instantiation

Design
Rationale

Method
Rationale

Justification of
method choices
Limitations
Explanations
for use

Experiences
Problems
Opportunities

Method
Use
Rationale

Experience
and pattern
based
method
discovery

Method
Construction
Rationale

Business
Changes
and
Demands

Technology
Changes

Design
Rationale

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 376

All information in MetaEdit+ is stored in the same object repository, including methods
specification (meta-models), and instances of methods in the form of diagrams, matrices,
or specific design objects, properties, and even font selections. Hence, modification of
system designs (or methods) in one MetaEdit+ client is automatically propagated to
other clients. A design repository is composed of one or more projects, each of which
contains a set of graphs that describe a particular system or application, and possibly
some meta-models tailored for that application. The repository definition (i.e. the set of
meta-models for each project) forms the centralized representation from which
modifications to both designs and methods are derived for that project, as MetaEdit+
ensures that data in repository remains consistent at all times with the defined repository
schema. Because MetaEdit+ is fully object-oriented, it can organize and flexibly reuse
any component in the environment from any project.

The core conceptual types of a method in MetaEdit+ are defined in the same repository,
but on a higher level, and can thus be modified by the method developers and users on
the fly depending on access constraints. To support visualization of designs, MetaEdit+
offers easy ways to define how each component of a method is visually represented.
MetaEdit+ also offers sub-views that help customize presentations of the components
and change styles of interaction (for example, domain experts can just look at the high-
level descriptions of attributes, while designers can see the implementation details as
well).

As MetaEdit+ allows incremental specification of methods, it also allows for incomplete
meta-models, thus allowing users to model systems by using only partial method
specifications. Hence, method engineers can change components of a method even
while system developers are working with older versions of the method. The data
continuity, (i.e. that specification data that remains usable even after method schema
changes), is confirmed by a number of checks and limitations that MetaEdit+ poses to
the method evolution possibilities. The idea is that the user can always be guaranteed
data continuity while working with partial methods.

Method construction rationale

For this study, we defined a simplified version of the REMAP model using MetaEdit+’s
method-specification language – GOPRR (Kelly et al., 1996). REMAP extended the
Issue Based Information Systems (IBIS) framework for modeling argumentation
processes (Conklin and Begeman, 1988). In REMAP, issues represent questions or
concerns of interest. Alternatives or positions represent different ways of responding to
an issue. Arguments that either support or oppose these alternatives need also to be
identified. In addition, the model explicitly captures any assumption behind the above
primitives. REMAP demands that each user represents the context in which the design
decision was made. These decisions select one or more alternatives that can resolve the
issue at hand. The REMAP model has been successfully used in a wide variety of
complex organizational problem-solving situations and has been incorporated into
several CASE tools (Ramesh and Jarke, 2001). Its formal meta-model helps in building
tool support for design rationale. As its meta-model can be defined using the same
formalism that is used to model the design methods, the linking of method components
to the design rationale is normally straightforward.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 377

In this section we build a simple set of examples of method modification decisions
around the evolution of UML. We offer the examples to illustrate how method rationale,
when modeled as a REMAP process within MetaEdit+, can be helpful in supporting UML
deployment evolution in an organization. Though the examples are relatively small and
partial, we feel that they demonstrate the applicability of recording method rationale and
how to better support it with a CAME/CASE tool environment. Even in these small
examples, there is a good chance that the organization will lose its former method
experience, and therefore be unable to fully exploit the new possibilities, when the
rationale is not recorded.

Figure 4. REMAP meta-model connecting to part of a UML Class Diagram meta
model (simplified)

REMAP Model

Object model

Inheritance

!

Discriminator

string

Attributes

collection

Attribute

Subclass

Supercl

ass

Default value

string

Class

Data type

string

Attribute

string

Class name

string

 REMAP
Object

Issue

Position

Assumption

Argument

Decision

Artefact

Name

string

Documentatio

string

Selects

Sel

Dec

Rationale

1,1

0,M

1,1

id

0,M

Name

id

Name

id

Uniqu

e

explode

explode

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 378

We assume that most parts of the UML method have been modeled previously by using
the MetaEdit+ tool and are in use. Figure 4 shows a part of the current UML Class
Diagram (UML 1.2 notation) specification using the GOPRR meta-modeling language
(Kelly et al., 1996). The model is very similar to role based entity modeling and should be
self-descriptive. Assume that the organization is now considering a move to a new
implementation environment that uses Java programming language and web
development tools for implementing web services. When hearing of the plans, designers
immediately raise the issue that the current version of UML (1.2) does not support code
generation for Java very well. At the same time, they know that a new 1.5 version of
UML has been proposed as a standard, which would support better code generation for
Java. Furthermore, they know that (not yet standardized) UML 2.0 will offer improved
support for local variants of methods, called profiles. At the same time, UML’s constraint
checking mechanisms-called object constraint language (OCL) are undergoing
standardization at OMG (2003).19 These changes proposed for UML will together offer
better support for architectural design of design components, as several inconsistencies
in the earlier versions of the method will have been rectified. A key issue for designers is
also to better support model exchanges between tools using XML-based data
interchange formats.20 However, there will be a major discontinuity and re-learning effort
when the new method version is put into use.

Figure 5 shows how this situation would be reflected in the method construction
rationale. The exclamation mark in the UML meta-model that deals with the inheritance
model connects the current version of the meta-model to a decision whether to stick with
the single inheritance for the time being, as there are also other ways to model the
inheritance. The associated part of the method rationale for the meta-model is shown in
the upper part of the figure. The REMAP model (Ramesh and Dhar, 1992) represents
the associated method rationale behind the use of single inheritance as a constellation
of issues, alternatives, supporting and objecting arguments for each alternative, and
specific assumptions related to the decision about inheritance. Table 1 provides the
legend for REMAP primitives shown in Figure 5. After a careful consideration of the pros
and cons of using single or multiple inheritance, developers returned to the original
decision to use single inheritance based on the assumption that the organization will
continue to use Smalltalk programming language that does not support multiple
inheritance. We show outcomes of this process n Figure 6. This figure shows an
instantiation of the REMAP meta-model represented in Figure 5. This example also
highlights how external factors can force or constrain changes to methods. In this case, it
is the technical possibility of using multiple inheritance by switching to another
programming language that may make invalid the original decision that assumed the use
of Smalltalk.

19 For a fuller treatment of the evolution of UML and its standardization odyssey examine

(Kobryn, 1999).

20 We will elaborate the use of method rationale by showing discussions related to these issues.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 379

Table 1. Symbols used in Method Rationale models in Figures 5, 6 and 7
Shape Shade Method Rationale Component
Oval White Issue
Diamond White Alternative
Circle White Argument
Rectangle White Assumption
Rectangle Gray Decision (Draft)
Rectangle Green Decision (Frozen)
Rectangle with
border

White Artefact (e.g., method component)

Figure 5. Rationale for a single inheritance

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 380

Method Use Rationale

The original goal of UML was to standardize object-oriented modeling methods. Yet,
recently its developers have recognized the need to locally modify these methods, in
particular to better serve different target domains and development environments. This is
especially relevant for UML since it seeks to provide a design-oriented language that
provides a higher level of abstraction over implementation detail presented in programs.
To allow for specialization for different implementation platforms, UML 1.5 defines two
new mechanisms: extensions and profiles. The extensions allow specializing or
extending certain types, such as classes, by sub-typing them. Profiles allow for the
development of domain-or organization-specific extensions of the method. Some of the
more advanced developers would want to change the current UML standard so that it
would also allow for the use of profiles during design time. These profiles could be used
to formalize the use of special conventions and processes within each adopting
organization. Figure 6 below shows the ongoing rationale for this.

Figure 6. Rationale for own profile

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 381

The issue is unresolved at this point, and for the time being, the old method has been
kept as it is. However, if a new construct- profile- were to be developed as part of the
official UML meta-model, this would entail significant changes to the current meta-model.
Arguably, it would start a new method development cycle. This is notified by several
arguments in the lower left corner of the model.

Figure 7. Multiple inheritance and rationale for using it

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 382

Now, consider a situation wherein the constructed UML version has been used in the
organization with single inheritance. The developers who are familiar with multiple
inheritance begin to question the original decision and would like to add support for
multiple inheritance into the method. The resulting discussion is depicted in Figure 7.
Here, the designers comment on a design fragment, stating how easy it would be to add
more flexibility to the system if the method allowed for multiple inheritance. Thereafter, a
heated argument is under way about the pros and cons of multiple inheritance. The
designers finally resolve the issue by allowing for two different variants of the method
(shown as part of the method rationale) that the choice of use of either single or multiple
inheritance has to be made on a project-by-project basis, and the decisions and
rationale for the choice have to be recorded in the project method specification.

Discussion

Method rationale and system development

The examples in the previous section offer a small glimpse of how both method
construction and use rationale are built and how method use leads into a reflection about
desirable method properties. If such experience receives enough attention, it can raise
the need to change the method, and thus change the method construction rationale.
These examples also illustrate how feedback mechanisms can be built into the
CAME/CASE tools supporting rationale-based learning and method evolution.

These small examples reveal a significant gap between currently proposed ME criteria
and their linkages to produced meta-models: none of them adequately relate ME
requirements to individual types or constraints of a method. Some of the ME approaches
support linking information about method use situations and contingencies to meta-
models based on predefined coarse schemata (Harmsen et al., 1994b; Kaipala, 1997).
These approaches fail, however, to explain how such detailed descriptions are obtained,
nor do they relate to meta-models or their parts, which would offer enough detail to
understand method change.

We deliberately chose the studied examples to illustrate what could happen when the
method rationale is not kept. In increasingly complex development situations it can
become impossible to understand and manage the method evolution locally when
method changes are frequent. This situation is likely to become worse if and when local
method variants emerge, as is now being suggested through UML extension
mechanisms. One area where the evolution has already become critical is in managing
knowledge assets that relate to the evolution of complex and embedded software-
intensive systems, which often draw upon domain-specific modeling languages (e.g.
telecommunications, web development, etc.). There is a growing number of studies that
raise the issue of how to address the evolution of domain-specific methods and their
variants (Kelly and Tolvanen, 2000; Weiss and Lai, 1999). To address such concerns,
Microsoft, for example, is currently developing a meta development tool called
WhiteHorse (Randell and Lhotka, 2004). Microsoft expects this tool to offer improved
support for the use of UML class diagrams that align better with the evolving .Net
framework (Randell and Lhotka, 2004). In most of these approaches, the method
evolution is still typically viewed as a natural and uncontrolled process, or even drift. Our
claim is that organizations can benefit more by making their whole method rationale

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 383

explicit, and thereby carefully managing evolutionary method engineering and
associated method portfolios.

Implications of Method Rationale for Came/Case Support

In general, method rationale can be represented in a variety of ways, from
mathematically formal representations (e.g., transformations that derive one method
instance from another) to very informal representations (e.g., design notebooks in
natural language) (Lee, 1993). Formal and informal representations of method rationale
complement each other due to their respective strengths and weaknesses. Informal
method rationale is easy to acquire, whereas formal representations can support
automated reasoning. As observed in recent studies of design rationale (Shum and
Hammond, 1994), effective schemes for the capture and use of method rationale can
benefit by combining both forms of representations. A tight integration of formal and
informal aspects of method rationale knowledge not only facilitates acquisition of various
types of information in a format that is most appropriate, but also helps use/reuse the
captured information. The semi-formal representation used in the proposed tool sought
to achieve this objective.

Comprehensive representation of knowledge about MR also requires that many method
rationale components need to be formally specified and linked to informal knowledge
components that are unsuitable for formal reasoning. Management of this type of
method rationale knowledge requires tools for constructing, querying, and maintaining
structured knowledge bases. A method rationale tool with automatic inferencing
capability can help to access specific knowledge and maintain the integrity of the
knowledge base. Such a knowledge base can be incrementally defined and modified,
thus offering additional benefits. Additional support for aggregation, classification and
generalization of knowledge components will be necessary in such environments in
future.

The basic premise of our work is that method engineers and method users can be better
supported in their daily tasks with MR information. Services that could be provided to
support these groups include facilities for easy capture of MR knowledge, management
of method evolution with and to changing situations (represented as say, changes in
assumptions), replay of method construction and use histories, and dependency
management between different use contexts and design contexts. In large projects, the
overhead involved in the detailed representation of method rationale can be
considerable. Facilities to link any ME object (say, a method fragment or a decision) to
its sources (originally captured in documents, meeting minutes, e-mail exchanges, etc.)
can minimize the overhead. Further, this needs to be achieved in a non-intrusive
manner. As the overhead involved in capturing MR knowledge can be significant,
mechanisms to support automated collection and use of this information will be
necessary. For example, a tool to manage the dependencies among MR components
could be used to identify appropriate method components for a given situation, or to alert
the method users about the changes in the situation that necessitate the re-examination
of the used method. A hypermedia interface for browsing the contents of the knowledge
base is helpful for providing easier access and more user-friendly presentation.
Furthermore, a concept map that visually depicts the relationships among informal
knowledge components would facilitate navigation through related fragments of method

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 384

knowledge.

Our implementation illustrated in the previous section provides some of these facilities
within the context of a totally integrated CAME/CASE environment. Specifically, the
environment currently supports the definition of queries, several graphical and textual
views, and model browsing. We believe that the modular approach chosen in the
MetaEdit+ tool will allow in the future to add more complex tools for MR maintenance
and use, if that would be needed..

Conclusions

The paper suggests that method rationale can act as a powerful mechanism to maintain
systems development knowledge in an organization. In most cases each time a method
is changed or new technology is introduced, most of the knowledge relating to the old
version or the need for a change is lost. Yet, when method rationale is maintained, it can
provide guidance for future decisions and aid method users to become better familiar
with the method. Regular method users can also benefit from this kind of method
knowledge, because it makes the peculiarities and limitations of the currently used
method more understandable. If method rationale was routinely recorded and if it could
be used while using the method, it could aid in a dialectical exchange of ideas for
modifying the method and thus improving the ISD process. This should be useful for
organizations that aim at continuous development of their ISD processes and which want
to learn from their experience (Lyytinen and Robey, 1999).

Our framework for method rationale improves in several ways the state of the art in
computer support for systems development. First, it is a first comprehensive treatment of
the aspects of method evolution and its management within a CAME/CASE tool.
Second, we have outlined several ways of using and maintaining the knowledge about a
development method and its use. As the development methods form one of the main
asset of software organizations, increased method knowledge should be valuable to
them in maintaining their knowledge about the tools and methods in use.

There are negatives to acquiring comprehensive method rationale as well. One of them
is that it increases the work that is not seen as directly productive and therefore method
traces are not necessarily easily recorded. Furthermore, in the absence of proper
incentives schemes designers may hesitate to expose their knowledge and expertise the
larger community of practice. Successful implementation of MR in practice may require
changes both in the incentives and culture of the development organizations as well as
in organizational processes. Clearly there is room for empirical research on the topic and
we are planning to engage ourselves in such initiatives. We are especially interested in
empirical studies of domain specific method evolution and maintenance.

Acknowledgements

Thanks go to senior editor Matthias Jarke and two anonymous reviewers for their
thoughtful comments. One of the author’s works was supported by grants from the Office
of Naval Research and Air Force Research Laboratory. We are also indebted to our
colleagues Steven Kelly, Pentti Marttiin, Zheying Zhang and Janne Kaipala for their

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 385

ideas and continued support. All the remaining errors remain ours.

References

Argyris, C. and D. Schön (1978) Organizational Learning, A theory of action perspective:

Addison-Wesley.
Avrilioni, D. and P.-Y. Cunin. (2001) “Process Model Reuse Support - The OPSIS

Approach.” 10th International Software Process Workshop, 2001.
Baskerville, R., L. Levine, J. Pries-Heje, B. Ramesh et al. (2001) "How Internet Software

Companies Negotiate Quality," IEEE Computer (34) 5, pp. 51-57.
Baskerville, R., J. Travis, and D. Truex (1992) “Systems Without a Method: The Impact

of New Technologies on Information Systems Development Projects,” in K. E.
Kendall, K. Lyytinen, and J. I. DeGross (Eds.) The Impact of Computer
Supported Technologies on Information Systems Development, Amsterdam:
North-Holland, pp. 61-93.

Beck, K. and M. Fowler (2000) Planning Extreme Programming. New York, NY: Addison
Wesley Longman.

Bigelow, J. (1988) "Hypertext and CASE," IEEE Software (14) 3, pp. 23-27.
Brinkkemper, S. (1990) Formalisation of Information Systems Modelling. Ph.D. Thesis,

Univ. of Nijmegen.
Brinkkemper, S. (1996) "Method engineering: engineering of information systems

development methods and tools," Information & Software Technology (38) 6, pp.
275-280.

Brinkkemper, S., F. Harmsen, and H. Oei. (1995) “Configuration of Situational Process
Models: an Information Systems Engineering Perspective.” European Workshop
on Software Process Technology, 1995, pp. 193-196.

Checkland, P. B. (1981) Systems Thinking, Systems Practice. New York: J. Wiley.
Cockburn, A. (2000) "Selecting a Project’s Methodology," IEEE SOFTWARE (July.
Conallen, J. (1999) "Modeling Web Application Architectures with UML,"

Communications of the ACM (42) 10, pp. 63-71.
Conklin, J. and M. L. Begeman (1988) "gIBIS: A Hypertext Tool for Exploratory Policy

Discussion," ACM Transactions on Office Information Systems (6) 4, pp. 303-
331.

Curtis, B., H. Krasner, and N. Iscoe (1988) "A field study of the software design process
for large systems," Communications of the ACM (31) 11, pp. 1268-1287.

Cybulski, J. L. and K. Reed (1992) "A Hypertext-Based Software Engineering
Environment," IEEE Software (18) 3, pp. 62-68.

Davis, G. B. (1982) "Strategies for information requirements determination," IBM
Systems Journal (21) 1, pp. 4-30.

Demirors, O., E. Demirors, A. Tarhan, and A. Yildiz. (2000) “Tailoring ISO/IEC 12207 for
instructional software development.” The 26th Euromicro Conference, 2000 2.

Desmond, F., A. D'Souza, and W. Cameron (1998) Objects, Components, and
Frameworks With Uml : The Catalysis Approach: Addison Wesley Publishing
Company.

Falkenberg, E. D., W. Hessa, P. Lindgreen, B. Nilsson et al. (1996) A Framework of
Information System Concepts: Summary of the FRISCO Report. The IFIP WG
8.1 Task Group FRISCO.

Fischer, G., A. G. Lemke, R. McCall, and A. I. Morch (1991) "Making Argumentation
Serve Design," Human-Computer Interaction (6) 3&4, pp. 393-419.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 386

Fitzgerald, G. (1991) “Validating new information systems techniques: a retrospective
analysis,” in H.-E. Nissen, H. K. Klein, and R. Hirschheim (Eds.) Information
Systems Research: Contemporary Approaches and Emergent Traditions:
Elsevier Science Publishers B.V., pp. 657-672.

Floyd, C. (1986) “A comparative evaluation of systems development methods.” IFIP WG
8.1 Working Conference on Comparative Review of Information Systems Design
Methodologies: Improving the Practice, Amsterdam, 1986.

Floyd, C. (1987) “Outline of the paradigm change in software engineering,” in G.
Bjerknes, P. Ehn, and M. King (Eds.) Computers and Democracy: A
Scandinavian Challenge, Brookfield Vermont: Avebury Gower.

Franckson, M. (1994) “The Euromethod Deliverable Model and its contribution to the
objectives of Euromethod,” in A. A. Verrijn-Stuart and T. W. Olle (Eds.) Methods
and Associated Tools for the Information Systems Life Cycle: Elsevier, pp. 131-
149.

Gigch, J. v. (1991) Systems design and modeling and metamodeling. New York: Plenum
Press.

Ginsberg, M. P. and L. H. Quinn. (1995) Process Tailoring and the Software Capability
Maturity Model. Software Engineering Institute CMU/SEI-94-TR-024.

Harmsen, F. (1997) Situational Method Engineering. PhD Thesis, University of Twente.
Harmsen, F., S. Brinkkemper, and H. Oei. (1994a) “A Language and Tool for the

Engineering of Situational Methods for Information Systems Development.”
Fourth International Conference on Information Systems Development, Kranj,
Slovenia, 1994a, pp. 206-214.

Harmsen, F., S. Brinkkemper, and H. Oei (1994b) “Situational Method Engineering for
Information System Project Approaches,” in A. A. Verrijn-Stuart and T. W. Olle
(Eds.) Methods and Associated Tools for the Information Systems Life Cycle (A-
55): Elsevier Science B.V. (North-Holland), pp. 169-194.

Heberling, M., C. Maier, and T. Tensi. (2002) “Visual Modelling and Managing the
Software Architecture Landscape in a large Enterprise by an Extension of the
UML.” Second Domain-specific Modeling Languages Workshop, Seattle, WA,
2002.

Hedin, G. (1992) Incremental Semantic Analysis. PhD Thesis, Lund University.
Hidding, G. J., J. K. Joseph, and G. M. Freund (1993) “Method Engineering at Andersen

Consulting: Task Packages, Job Aids and Work Objects,” in 2nd International
Summerschool on Method Engineering and Meta Modelling conference binder,
Enschede, the Netherlands: Univ. of Twente.

Highsmith, J. (1999) Beyond RAD: Reducing cycle time through innovative
management. Arlington, MA: Cutter Information Corp.

Hofstede, A. H. M. t. and T. F. Verhoef (1996) "Meta-CASE: Is the Game Worth the
Candle?," Information Systems Journal) 6, pp. 41-68.

Holdsworth, J. (1999) Software Process Design: out of the tar pit. London, U.K.:
McGraw-Hill International (UK) Limited.

Hollenbach, C. and W. Frakes. (1996) “Software Prosess Reuse in an Industrial Setting.”
the 4th International Conference on Software Reuse, 1996.

Hughes, J. and E. Reviron (1996) “Selection and evaluation of information system
development methodologies: The gap between the theory and practice,” in N.
Jayaratna and B. Fitzgerald (Eds.) Lessons learned from the use of
methodologies, pp. 309-319.

Iansiti, M. and A. MacCormack (1997) "Developing Products on Internet Time," Harvard
Business Review) October, pp. 108-117.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 387

IEEE/EIA (1998a) "Industry implementation of International Standard ISO/IEC 12207.0:
1995. (ISO/IEC 12207 standard for information technology - software life cycle
processes - implementation considerations," IEEE/EIA.

IEEE/EIA (1998b) "Industry implementation of International Standard ISO/IEC 12207.1:
1995. (ISO/IEC 12207 standard for information technology - software life cycle
processes - implementation considerations," IEEE/EIA.

IEEE/EIA (1998c) "Industry implementation of International Standard ISO/IEC 12207.2:
1995. (ISO/IEC 12207 standard for information technology - software life cycle
processes - implementation considerations," IEEE/EIA.

Jarke, M., K. Pohl, C. Rolland, and J.-R. Schmitt (1994) “Experience-Based Method
Evaluation and Improvement: A Process Modelling Approach,” in A. A. Verrijn-
Stuart and T. W. Olle (Eds.) Methods and Associated Tools for the Information
Systems Life Cycle (A-55): Elsevier Science B.V. (North-Holland), pp. 1-27.

Jarke, M., K. Pohl, K. Weidenhaupt, K. Lyytinen et al. (1998) “Meta Modeling: A Formal
Basis for Interoperability and Adaptability,” in B. Krämer and M. Papazoglou
(Eds.) Information Systems Interoperability: John Wiley Research Science Press,
pp. 229-263.

JinXiang and Griggs. (1994) “A Tool for Hypertext-based Systems Analysis and Dynamic
Evaluation.” The 27th Annual Hawaii International Conference on system
Sciences, Hawaii, 1994.

Kaipala, J. (1997) “Augmenting CASE Tools with Hypertext: Desired Functionality and
Implementation Issues.” Advanced Information Systems Engineering, Barcelona,
Spain, 1997, pp. 217-230 1250.

Karlsson, F. (2002) “Bridging the Gap - between Method for Method Configuration and
Situational Method Engineering.” The Second Annual Knowledge Foundation
Conference for the Promotion of Research in IT, Stockholm, Sweden, 2002.

Karlsson, F., P. J. Agerfalk, and A. Hjalmarsson. (2001) “Method configuration with
development tracks and generic project types.” The 6th CAiSE/IFIP8.1
International Workshop on Evaluation of Modeling Methods in System Analysis
and Design, Switzerland, 2001.

Kelly, S. (1994) "A Matrix Editor for a MetaCASE Environment," Information & Software
Technology (36) 6, pp. 361-371.

Kelly, S., K. Lyytinen, and M. Rossi (1996) “MetaEdit+: A Fully Configurable Multi-User
and Multi-Tool CASE and CAME Environment,” in P. Constapoulos, J.
Mylopoulos, and Y. Vassiliou (Eds.) Advanced Information Systems Engineering,
proceedings of the 8th International Conference CAISE'96, Berlin: Springer-
Verlag, pp. 1-21.

Kelly, S. and K. Smolander (1996) "Evolution and Issues in MetaCASE," Information &
Software Technology (38) 4, pp. 261-266.

Kelly, S. and J.-P. Tolvanen. (2000) “Visual domain-specific modeling: Benefits and
experiences of using metaCASE tools.” International workshop on Model
Engineering, 2000.

Kobryn, C. (1999) "UML 2001: A Standardization Odyssey," Communications of the
ACM (42) 10, pp. 29 - 37.

Kraiem, N., I. Bourguiba, and S. Selmi. (2000) “Situational Method For Information
System Project.” International Conference on Advances in Infrastructure for e-
Business, e-Education, e-Science, and e-Medicine on the Internet, 2000.

Kruchten, P. (2000) The Rational Unified Process: An Introduction, 2nd edition. Reading,
MA: Addison-Wesley.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 388

Kumar, K. and R. J. Welke (1992) “Methodology Engineering: A Proposal for Situation
Specific Methodology Construction,” in W. W. Kottermann and J. A. Senn (Eds.)
Challenges and Strategies for Research in Systems Development, Washington:
John Wiley & Sons, pp. 257-269.

Lee, J. (1991) “A Qualitative Decision Management System,” in P. Winston and S.
Shellard (Eds.) Artificial intelligence at MIT:Expanding Frontiers: MIT Press:
Cambridge, Massachusetts.

Lee, J. (1993) “Design Rationale Capture and Use,” in AI Magazine, vol. 14, pp. 24-26.
Lindgreen, P. (1990) A Framework of Information Systems Concepts, Interim report of

the IFIP WG8.1 Task Group FRISCO.
Lyytinen, K. (1987) "Different Perspectives on Information Systems: Problems and

Solutions," ACM Computing Surveys (19) 1, pp. 5-46.
Lyytinen, K. and D. Robey (1999) "Learning Failure in Information System

Development," Information Systems Journal (9) 2, pp. 85-101.
Lyytinen, K., K. Smolander, and V.-P. Tahvanainen. (1989) “Modelling CASE

Environments in Systems Development.” First Nordic Conference on Advanced
Systems, Stockholm, 1989.

Machado, C. F., L. C. d. Oliveira, and R. A. Fernandes. (1999) “Experience Report -
Restructure of Processes based on ISO/IEC 12207 and SW-CMM in CELEPAR.”
Fourth IEEE International Symposium and Forum on Software Engineering
Standards, 1999.

MacLean, A., R. Young, V. Bellotti, and T. Moran (1991) "Questions, Options, and
Criteria: Elements of A Design Rationale for User Interfaces," Journal of Human
Computer Interaction (6pp. 201-250.

Mathiassen, L., A. Munk-Madsen, P. A. Nielsen, and J. Stage (2000) Object Oriented
Analysis & Design, 1 edition. Aalborg: Marko Publishers.

Moran, T. P. and J. M. Carroll (1996) Design Rationale: concepts, techniques and use.
New Jersey: Lawrence Erlbaum Associates.

Nonaka, I. (1994) "A dynamic theory of organizational knowledge creation," Organization
Science (5) 1, pp. 14-37.

Odell, J. J. (1996) “A Primer to Method Engineering,” in S. Brinkkemper, K. Lyytinen, and
R. J. Welke (Eds.) Method Engineering: Principles of Method Construction and
Tool Support: Chapman & Hall, pp. 1 - 7.

Oinas-Kukkonen, H. (1996) “Method Rationale in Method Engineering and Use,” in S.
Brinkkemper, K. Lyytinen, and R. Welke (Eds.) Method Engineering, Principles of
Method Construction and Support: Chapman-Hall, pp. 87-93.

Oinas-Kukkonen, H. (1997) Improving the Functionality of Software Design
Environments by Using Hypertext Technology. PhD Thesis, University of Oulu.

OMG (2003) "Unified Modeling Language," Object Management Group,
http://www.uml.org/ (20.06.2003, 2003).

Orlikowski, W. (1996) "Improvising Organizational Transformation Over Time: A Situated
Change Perspective," Information Systems Research (7) 1, pp. 63 - 92.

Orr, J. (1990) “Sharing knowledge, celebrating identity: War stories and community
memory in a service culture,” in D. S. Middleton and D. Edwards (Eds.)
Remembering: Memory in Society, London: SAGE, pp. 169-189.

Pohl, K., R. Dömges, and M. Jarke (1994) “PRO-ART: PROcess based Approach to
Requirements Traceability,” in Poster Outlines: 6th Conference on Advanced
Information Systems Engineering, Utrecht, Netherlands, June 1994.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 389

Polo, M., M. Piattini, F. Ruiz, and C. Calero. (1999a) “MANTEMA: a Complete Rigorous
Methodology for Supporting Maintenance based on The ISO/IEC 12207
Standard.” The Third European Conference on Software Maintenance and
Reengineering, 1999a.

Polo, M., M. Piattini, F. Ruiz, and C. Calero. (1999b) “MANTEMA: a Software
Maintenance Methodology Based on the ISO/IEC 12207 Standard’.” Fourth IEEE
International Symposium and Forum on Software Engineering Standards, 1999b.

Punter, T. and K. Lemmen (1996) "The MEMA-model: towards a new approach for
Method Engineering," Information and Software Technology (38.

Ralyte, J. and C. Rolland. (2001) “An approach for method reengineering.” ER, 2001.
Ramesh, B., R. Baskerville, and J. Pries-Heje (2002) "Internet Software Engineering : A

different class of Processes," Annals of Software Engineering (14) 1-4, pp. 169-
195.

Ramesh, B. and V. Dhar (1992) "Supporting Systems Development by capturing
Deliberations during Requirements Engineering," IEEE Transactions on
Software Engineering (18pp. 498-510.

Ramesh, B. and M. Jarke (2001) "Toward Reference Models for Requirements
Traceability," IEEE Transactions on Software Engineering (27) 1, pp. 58-93.

Ramesh, B. and K.Sengupta (1995) "Multimedia in a Design Rationale Decision Support
System," Decision Support Systems (15.

Randell, B. A. and R. Lhotka (2004) “Bridge the Gap Between Development and
Operations with Whitehorse,” in MSDN Journal, vol. 19.

Reeves, B. and F. Shipman. (1992) “Making It Easy for Designers to Provide Design
Rationale.” AAAI’92 Workshop on Design Rationale Capture and Use, San Jose,
CA, 1992.

Rising, L. and N. S. Janoff (2000) "The Scrum software development process for small
teams," IEEE Software (17) 4, pp. 26 -32.

Rose, G. and K. Lyytinen (2003) "The Disruptive Nature of Information Technology
Innovations: The Case of Internet Computing in Systems Development
Organizations," MIS Quarterly (27) 4, pp. 557-595.

Rosenberg, D. and K. Scott (1999) Use Case Driven Object Modeling with UML: A
Practical Approach. Reading, MA: Addison-Wesley.

Russo, N. L. and J. L. Wynekoop (1995) “The Use and Adaptation of System
Development Methodologies,” in M. Khosrowpour (Ed.) Managing Information &
Communications in a Changing Global Environment: Proceedings of the
Information Resources Management Association International Conference,
Atlanta: Idea Group Publishing.

Savolainen, V., J. Geels, and J. Niemeier. (1990) SESAM, the HECTOR Methods and
Tools Database Report of ESPRIT 2082 Project HECTOR: Harmonized
Concepts and Tools for Organizational Information Systems. Fraunhofer Institute
for Industrial Engineering.

Schipper, M. and S. Joosten. (1996) “A Validation Procedure for Information Systems
Modeling Techniques.” Workshop of Evaluation of Modeling Methods in Systems
Analysis and Design EMMSAD'96, 1996.

Schön, D. (1983) The Reflectice Practitioner. New York: Basic Books Inc.
Shum, S. and N. Hammond (1994) "Argumentation-Based Design Rationale: What use

and What Cost?," International Journal on Computer Studies (40pp. 603-652.
Stamper, R. K. (1990) A Semantic Analysis of Basic Concepts A contribution to FRISCO

Task Group of IFIP.

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 390

Suchman, L. (1987) Plans and Situated Actions: The Problem of Human-Machine
Communication. Cambridge: Cambridge University Press.

Thomke, S. and D. Reinertsen (1998) "Agile product development: Managing
development flexibility in uncertain environments," California Management
Review (41) 1, pp. 8-30.

Tolvanen, J.-P. (1995) “Incremental Method Development for Business Modelling: An
Action Research Case Study.” 6th Workshop on the Next Generation of CASE
Tools, NGCT'95, Paris, 1995, pp. 79-98.

Tolvanen, J.-P. (1998) Incremental Method Engineering with Modeling Tools: Theoretical
Principles and Empirical Evidence. Dissertation. Dissertation, University of
Jyväskylä.

Tolvanen, J.-P. and S. Kelly (2000) "Benefits of MetaCASE: Nokia Mobile Phones Case
Study," MetaCase Consulting plc.,
http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf (1/7, 2004).

Tolvanen, J.-P. and M. Rossi. (1996) Metamodeling Approach to Method Comparison: A
Survey of a Set of ISD Methods. University of Jyväskylä WP-34.

Tolvanen, J.-P., M. Rossi, and H. Liu (1996) “Method Engineering: Current Research
Directions and Implications for Future Research,” in S. Brinkkemper, K. Lyytinen,
and R. Welke (Eds.) Method Engineering, Principles of Method Construction and
Support: Chapman-Hall, pp. 296-317.

Weiss, D. and C. T. R. Lai (1999) Software Product-line Engineering: Addison Wesley
Longman.

Wood-Harper, T. (1985) “Research Methods in Information Systems: Using Action
Research,” in E. Mumford, R. Hirschheim, G. Fitzgerald, and A. T. Wood-Harper
(Eds.) Research Methods in Information Systems: Elsevier Science Publishers,
pp. 169-191.

Zmud, R. W. (1980) "Management of Large Software Development Efforts," MIS
Quarterly (4) 2.

About the authors

Matti Rossi is an acting Professor of Information Systems and director of the electronic
business program for professionals at Helsinki School of Economics. He has worked as
research fellow at Erasmus University Rotterdam and as a visiting assistant professor at
Georgia State University, Atlanta. He received his Ph.D. degree in Business
Administration from the University of Jyväskylä in 1998. He has been the principal
investigator in several major research projects funded by the Technological
Development Center of Finland and Academy of Finland. His research papers have
appeared in journals such as Information and Organization, Information and
Management and Information Systems, and over twenty of them have appeared in
conferences such as ICIS, HICSS and CAiSE.

Balasubramaniam Ramesh is Professor of Computer Information Systems at Georgia
State University. His research work has appeared in several leading conferences and
journals including the IEEE Transactions on Software Engineering, Annals of Software
Engineering, Communications of the ACM, IEEE Computer, IEEE Software, IEEE
Internet Computing, IEEE Intelligent Systems, Annals of Operations Research and
Decision Support Systems. His research focuses on supporting complex organizational
processes such as requirements management and traceability, business process

Rossi et al./Managing Evolutionary Method Engineering

 Journal of the Association for Information Systems Vol. 5 No. 9, pp.356-391/September 2004 391

management and new product development. His areas of specialization include
knowledge management, data mining and e-services. His work has been funded by
several grants from leading government and private industry sources such as the NSF,
DARPA, ONR, ARL and Accenture and has been incorporated in several CASE tools.

Kalle Lyytinen is Iris S. Wolstein professor at Case Western Reserve University. He
serves currently on the editorial boards of several leading IS journals including, Journal
of AIS journal (Senior Editor), Information Systems Research, Journal of Strategic
Information Systems, Information&Organization, Requirements Engineering Journal, and
Information Systems Journal among others. He has published over 150 scientific
articles and conference papers and edited or written eight books on topics related to
system design, method engineering, implementation, software risk assessment,
computer supported cooperative work, standardization, and ubiquitous computing. He is
currently involved in research projects that look at the IT induced innovation in software
development, architecture and construction industry, design and use of ubiquitous
applications in health care, high level requirements model for large scale systems, and
the development and adoption of broadband wireless standards and services, where his
recent studies have focused on South Korea and the U.S.

Juha-Pekka Tolvanen is the CEO of MetaCase. He received his Ph.D. in 1998 from the
University of Jyväskylä, Finland. His area of expertise is in engineering of software
development methods for application-specific needs. In this role, Dr. Tolvanen has acted
as a consultant worldwide for method development and he has published papers on
software development methods in several journals and conferences.

Copyright © 2003 by the Association for Information Systems. Permission to make
digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. Copyright
for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists requires prior specific permission
and/or fee. Request permission to publish from: AIS Administrative Office, PO Box 2712
Atlanta, GA, 30301-2712, Attn: Reprints, or via e-mail from ais@aisnet.org.

ISSN: 1536-9323

EDITOR
Sirkka L. Jarvenpaa

University of Texas at Austin

JAIS SENIOR EDITORS
Soon Ang
Nanyang Technological University

Izak Benbasat
University of British Columbia

Matthias Jarke
Technical University of Aachen

Kalle Lyytinen
Case Western Reserve University

Tridas Mukhopadhyay
Carnegie Mellon University

Robert Zmud
University of Oklahoma

JAIS EDITORIAL BOARD
Ritu Agarwal
University of Maryland

Paul Alpar
University of Marburg

Anandhi S. Bharadwaj
Emory University

Yolande E. Chan
Queen’s University

Alok R. Chaturvedi
Purdue University

Roger H.L. Chiang
University of Cincinnati

Wynne Chin
University of Houston

Ellen Christiaanse
University of Amsterdam

Alan Dennis
Indiana University

Amitava Dutta
George Mason University

Robert Fichman
Boston College

Henrique Freitas
Universidade Federal do
Rio Grande do Sul

Guy G. Gable
Queensland University of
Technology

Rudy Hirschheim
Louisiana State University

Juhani Iivari
University of Oulu

Matthew R. Jones
University of Cambridge

Elena Karahanna
University of Georgia

Robert J. Kauffman
University of Minnesota

Prabhudev Konana
University of Texas at
Austin

Kai H. Lim
City University of Hong
Kong

Claudia Loebbecke
University of Cologne

Mats Lundeberg
Stockholm School of Economics

Stuart E. Madnick
Massachusetts Institute of
Technology

Ann Majchrzak
University of Southern
California

Ryutaro Manabe
Bunkyo University

Anne Massey
Indiana University

Eric Monteiro
Norwegian University of
Science and Technology

B. Jeffrey Parsons
Memorial University of
Newfoundland

Nava Pliskin
Ben-Gurion University of
the Negev

Jan Pries-Heje
Copenhagen Business School

Arun Rai
Georgia State University

Sudha Ram
University of Arizona

Suzanne Rivard
Ecole des Hautes Etudes
Commerciales

Rajiv Sabherwal
University of Missouri – St. Louis

Christopher Sauer
Oxford University

Peretz Shoval
Ben-Gurion University

Sandra A. Slaughter
Carnegie Mellon
University

Christina Soh
Nanyang Technological University

Ananth Srinivasan
University of Auckland

Kar Yan Tam
Hong Kong University of
Science and Technology

Bernard C.Y. Tan
National University of
Singapore

Dov Te’eni
Bar-Ilan University

Yair Wand
University of British
Columbia

Richard T. Watson
University of Georgia

Gillian Yeo
Nanyang Business School

Youngjin Yoo
Case Western Reserve University

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Samantha Spears
Subscriptions Manager
Georgia State University

Reagan Ramsower
Publisher, JAIS
Baylor University

