
A FRAMEWORK FOR AUTOMATIC DYNAMIC CONSTRAINT
VERIFICATION IN CYBER PHYSICAL SYSTEM MODELING

LANGUAGES

by

Matt Bunting

Copyright c� Matt Bunting 2020

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2020

3

ACKNOWLEDGEMENTS

I would like to acknowledge the National Science Foundation for their support under

award CNS-1253334.

I am eternally grateful for my advisor Professor Jonathan Sprinkle for his men-

torship during my graduate student career. He has provided incredible and unique

research and academic opportunities that have directly correlated to my success.

This work would not be possible without his guidance.

I would also like to thank my parents, friends, and family for their unhindered

support. I would not have accomplished what I have without them.

Finally, I would also like to thank my girlfriend Ashley Ramsey. She has provided

an incredible amount of close support throughout the majority of my graduate

career.

4

TABLE OF CONTENTS

LIST OF FIGURES . 7

LIST OF TABLES . 9

ABSTRACT . 11

CHAPTER 1 Introduction . 13
1.1 Overview . 13
1.2 Motivation . 17
1.3 Potential Impact . 20
1.4 Contribution . 21

CHAPTER 2 Background . 23
2.1 Model Based Development . 23

2.1.1 DSME . 26
2.1.2 Web-Based Generic Modeling Environment 27
2.1.3 Model Transformations . 28
2.1.4 Software Design Patterns . 31

2.2 Cyber Physical Systems . 32
2.2.1 Autonomous Vehicles . 32
2.2.2 MATLAB and Robotics Operating System 32
2.2.3 Verification Tools . 33

2.3 Control Systems . 34
2.3.1 Linear Time Invariant Systems 35
2.3.2 Hybrid Systems . 39

2.4 Related Work . 40
2.4.1 Automatic Controller Tuning 40
2.4.2 Dynamic Constraint Feedback 40

2.5 Problem Statement . 42

CHAPTER 3 A Verification Feedback Framework 43
3.1 Components in the Framework . 43

3.1.1 Metamodel . 44
3.1.2 Interpreters . 46
3.1.3 Verification . 47
3.1.4 Constraint Comparator . 48
3.1.5 Expert Block . 49
3.1.6 Model Transformation for Correction 52

3.2 Considerations of the Framework . 52

TABLE OF CONTENTS – Continued

5

3.3 DCF Based Modeling Language Design Patterns 53
3.3.1 Metamodel and Transformations 53
3.3.2 Verification Tools . 54

3.4 DCF Based Modeling Language Properties 54
3.4.1 Level of Automation . 55
3.4.2 Automatic Correction Properties 55

CHAPTER 4 The Dynamic Constraint Feedback Metamodeling Language . 58
4.1 Overview . 61
4.2 Metamodel . 62
4.3 Constraints . 62
4.4 Expert Block . 64
4.5 Model Transformations . 64

CHAPTER 5 Case Study: Pathing Language 67
5.1 Domain Definitions . 68

5.1.1 Constraints and Verification 69
5.1.2 Deployment . 73

5.2 Transitioning to the DCFML . 74
5.2.1 Constraint Remodeling . 75
5.2.2 Model Transformation . 77
5.2.3 Expert Blocks . 77

CHAPTER 6 Case Study: Reachability . 84
6.1 Domain Definitions . 84

6.1.1 Metamodel . 87
6.1.2 Model Transformations . 88
6.1.3 LTI Verification . 89
6.1.4 Reachability Verification . 92
6.1.5 Expert Block for Reachability 96
6.1.6 Expert Block for LTI . 98
6.1.7 DCF as a Control System . 100

CHAPTER 7 Conclusion . 104
7.1 Contribution . 104

7.1.1 Limitations . 105
7.2 Future Work . 106

7.2.1 Improving Limitations . 106
7.2.2 Designability and Verifiability 107

TABLE OF CONTENTS – Continued

6

APPENDIX A Generated Transformation Code 109
A.1 Generated Transformation Code . 109

REFERENCES . 112

7

LIST OF FIGURES

1.1 Complexity growth shown as increasing Source Lines of Code in air-
craft and spacecraft [55]. 18

1.2 Cost of corrections at di↵erent stages of development [69]. Definitions
are in Table 1.1. 19

2.1 The components of Model Based Development. 25
2.2 An example system in the complex frequency domain. 36
2.3 A closed-loop feedback constol system. 37

3.1 A closed-loop dynamic constraint feedback modeling language. . . . 44

4.1 The updated MIC diagram from Figure 2.1, showing integration of
DCF with the DCFML. 60

4.2 The meta-metamodel of a modeling language considering dynamic
constraint feedback. 61

4.3 The formal specification of a metamodel, i.e. the meta-metamodel. . . 63
4.4 Model transformation definitions, relating to components in the meta-

model. 65

5.1 The possible set of primitive motions in the pathing language. 68
5.2 An example path using primitive motions within a grid constraint.

Shown are the coordinates, orientation, and a diagram of a physical
space for running paths. 70

5.3 The metamodel for the pathing language. 71
5.4 An example path created using the metamodel from figure 5.3 in

WebGME. 71
5.5 Example feedback provided to the user after verification failure. . . . 74
5.6 The model of DCF using the DCFML for the updated pathing language. 75
5.7 The model of the constraint for determining a well defined path. . . . 76
5.8 The updated pathing metamodel using DCFML, with removed con-

straints. 76
5.9 The model transformation rule for AddMotion. 77
5.10 Example trivial re-routing solutions for problems with a final straight

motion and a priorly placed obstacle. 79
5.11 Followup non-trivial re-routing solutions for problems with a final

straight motion and a priorly placed obstacle. 80

LIST OF FIGURES – Continued

8

5.12 Example trivial re-routing solutions for problems with a final left
motion and a priorly placed obstacle. 81

5.13 Followup non-trivial re-routing solutions for problems with a final left
motion and a priorly placed obstacle. Some motions have a dotted
line to aid in trajectory clarity. 81

5.14 Example trivial re-routing solutions for problems with a final zigzag
motion and a priorly placed obstacle. 82

5.15 Followup non-trivial re-routing solutions for problems with a final
zigzag motion and a priorly placed obstacle. 83

6.1 The DCF design of a simple hybrid controller language 85
6.2 The kinematic bicycle model, commonly used for autonomous vehicle

approximations [77]. 86
6.3 The metamodel of a simple hybrid controller. 87
6.4 An example set of modes in a Diagram constructed using the meta

in Figure 6.3. Also shown is the inclusion of explicit constraints that
are user definable. 88

6.5 A rule in the AddModeAndTransition model transformation using
the HybridMetaModel 6.3. 89

6.6 An example model before and after the AddModeAndTransform is
executed. In the before image, the state of interest is highlighted to
show mode of interest, representing the NewMode in figure 6.5. . . . 90

6.7 Configuration file abstraction for dReach and HyCreate hybrid sys-
tem models. 93

6.8 Output of HyCreate with a single mode system, marked to show the
unreached circle. A second system is shown after model transforma-
tion with the necessary added mode to reach the goal coordinates.
. 97

6.9 Controller performance per iteration of model correction with
Kdesign = 20, representing an over-dampened system. 101

6.10 Controller performance per iteration of model correction with
Kdesign = 80, representing an overshoot. 101

6.11 Controller performance per iteration of model correction with
Kdesign ⇡ 148.7968, closely representing an oscillator. 102

6.12 Controller performance per iteration of model correction with
Kdesign = 148.7969, closely representing an unstable system 103

9

LIST OF TABLES

1.1 The list of definitions for Figure 1.2. 20

5.1 The list of pathing language constraints, classification in the DCFML,
purpose, data types, and verification methods. 73

6.1 Verification result from stepinfo() defined in Listing 6.1. 91
6.2 Gain tuning from overshoot violation 99
6.3 Gain tuning from rise time violation 99

10
Listings

6.1 Generated verification input for MATLAB’s stepinfo(). 91
6.2 A derivative in dReach . 94
6.3 A derivative in HyCreate . 94
6.4 A full derivative definition in a data model 95
A.1 Generated transformation from AddModeAndTransformation. 109
A.2 Generated transformation from ModifyControllerValue. 110

11

ABSTRACT

Design of Cyber-Physical Systems (CPSs) involves overlapping the domains of con-

trol theory, network communication, and computational algorithms. Involving mul-

tiple domains within the same design greatly increases the system complexity. Fur-

thermore, the physical nature of CPSs generally involves important safety con-

straints where constraint violations can be catastrophic. The design of CPSs benefits

from focusing on the construction of abstracted, high-level models in a Domain-

Specific Modeling Language (DSML). A Domain-Specific Modeling Environment

(DSME) may aid in the design of such complex systems by enforcing structural

design constraints during the construction of models. Models built using a DSME

may also use compilers or interpreters to produce real working, low-level artifacts

that represent the high-level design. Though each model in a DSME may abide by

a formal specification, the behavior of a design may violate dynamic constraints if

deployed. Engineers are tasked to ensure that models behave safely by implement-

ing their expert knowledge after using appropriate verification tools. Constraint

violations may be eliminated by a modification of the model based on verification

feedback, known as Dynamic Constraint Feedback (DCF). Mending such constraint

violations is a task generally performed by the model designer. Such a process could

potentially be automated through the capture of well-known design practices. The

challenging task when automating model correction then becomes in the design of a

DSML. A designer of a DSML may have a clear understanding of how to design the

syntax and semantics for their domain, but there are no formal methods for imple-

menting verification tools for automatic model correction. Such a framework could

greatly aid in the selection of available verification tools, implement well-established

design methods, and model dynamic constraints. Presented is the Dynamic Con-

straint Feedback Metamodeling Language (DCFML), a new metamodel to imple-

12

ment DCF upfront in DSML design. This particular solution provides a concrete

solution to the abstraction of the various components of DCF, and then appends

them to the DSML design process provided by a DSME.

13

CHAPTER 1

Introduction

1.1 Overview

A Cyber-Physical System (CPS) is a system that interfaces computational tech-

niques with physical elements [59] [99]. A CPS is by nature a multidisciplinary field

involving multiple design domains. Formally, a CPS encompasses the domains of

network communication, computational algorithms, and control systems [11]. Each

domain may provide unique techniques to solve design problems relative to other

domains. A particular domain may also benefit from the integration of domain

concepts from another. For example, the design of a control system to operate a

physical process may benefit from the use of computational perception algorithms

instead of using an analog solution. Design of a CPS is therefore typically done as

an integration of multiple networked components rather than focusing on the design

of a single element [68].

Various design domains may be under the umbrella of CPS classification, as

long as they incorporate two or more of the fundamental domains comprising of a

CPS. Such design domains may include the industries of power distribution grids

[26] [117], self-driving vehicles [73] [51] [78], medical devices and monitoring [121]

[83], automatic pilots in aviation [94] [31], and robotics [4] [111]. This diverse set of

domains is a demonstration of the wide variety and impact that CPS techniques have

in complex design spaces. Challenges solved in one domain may provide a larger-

scale solution for general CPSs. For example, solving control system cybersecurity

concerns in the domain of self-driving cars may also apply to nuclear reactors and

manufacturing plants, even though these domains do not seem directly related [57].

14

Thus improving upon CPS design practices, in general, can have a large impact

among many engineering domains.

Design of a CPS can be a complicated task due to the interconnected components

and real-world interaction [6]. The dynamic behaviors of a system often need to

consider important constraints to ensure safe operation. Consider a factory robotic

arm, a common engineering practice in CPSs [102]. The robotic arm may need to

operate in such an environment where all target setpoints are within a safe boundary.

Software for the robot can automatically compute the necessary trajectories for the

robot to take to reach each setpoint [108]. Though the setpoints are within a safe

region, the dynamically computed path under which the robot moves may enter an

unsafe region, causing damage during operation [88].

A method to aid in the design of complex systems like CPSs is to make use of

Model-Based Engineering (MBE). Instead of focussing on low-level implementation

details, design of a system occurs at a high abstraction level. Since the particular

target domain can vary, even within a CPS, modeling can be done within a particular

construct, known as Domain-Specific Modeling (DSM). In the case of electrical

design, focus can be shifted from discrete components like resistors, capacitors, and

transistors, to larger assemblies like logic gates and op-amps. In the case of software,

focus can be shifted from functions and primitive data types to objects and messages.

Proper domain abstraction ensures that models properly represent the subassembly

needed to achieve the model performance. For a CPS, abstractions like electrical

op-amps and software objects may still be too low-level for the particular domain,

and even further abstractions are needed for a manageable design. Design of a CPS

generally has more of a focus on network topology, system blocks, or state diagrams.

As similar to the lower-level abstractions, a proper high-level abstraction means

that there is a way to transform the high-level models into lower-level artifacts.

This lets an engineer focus on model composition at the design phase rather than

implementation, and translations of models into low-level, real-working artifacts are

15

based on the domain’s best-known practices.

A more concrete method of employing MBE is through the establishment of

a Domain-Specific Modeling Language (DSML). A DSML is a language that al-

lows models to be designed around particular domain concepts and abstractions.

DSML implementation also typically implements methods of model interpretation

to automatically translate models into real-world functional artifacts. Such model

interpretation makes use of codified expert knowledge in the form of software tools,

that generate artifacts using best-known methods and practices. Design of a model

using a DSML with interpreters is very similar to writing source code with a com-

piler. DSML interpreters are often called code generators due to their comparison

to compilers. For example, a developer in the C language designs program func-

tionality in lines of code. The intention of such a language is to make the design

process much more readable. These lines of code represent the high-level behavior,

letting the developer focus on functionality rather than particular machine code.

The designer of the C language, an expert in processor machine code, understands

how the code should best translate into machine code. The expert can then codify

their knowledge into the compiler, a useful tool to generate real working machine

code from any well-formed C code. This process can reduce, or even eliminate errors

of translating C into machine code.

For even higher-level programming, a DSML abstraction can be designed in such

a way that it provides a syntax for models in the form of a visual context. Instead

of reading lines of code in a design, pictures are e↵ectively drawn to represent the

system. A domain-expert may be able to decipher how low-level designs function

and interact, but a drawing of connected components is also easy to convey designs

to even non-domain-experts. This aids in model validation [22]. As with any other

language, a DSML has both syntax and semantics. The syntax defines the rules of

construction for models within the domain. Semantically, models in a DSML have a

translatable meaning to real functioning components, i.e. lower-level counterparts.

16

The high-level approach of DSML based design is an attempt to manage system

complexity. CPSs are examples of such complexity, and DSMLs have already made

a successful impact on CPS design [120] [90] [9] [52] [13] [109] [44]. Multiple domain

considerations for a CPS mean that di↵erent modeling techniques may need to be

implemented in a cohesive manner. One basic method is to provide di↵erent aspects

for each domain, but let each domain have interfaces to communicate with other

domains [18].

Models may be designed using a DSML by using a software-based construction

tool known as a Domain-Specific Modeling Environment (DSME). A DSME takes

the definition of a DSML’s syntax and enforces constraints on a model’s construc-

tion [43]. This is known as a correct-by-construction methodology [50]. This means

that all models constructed within a DSME can only ever abide by the DSML syn-

tax. Correct-by-construction does not however mean that models will meet require-

ments. Requirements that state desired behavioral outcomes are known as dynamic

constraints. In a typical DSML, dynamic constraints are not modeled since the con-

straints will not change how low-level artifacts are generated. The model designer

is then responsible for ensuring that their model behaves correctly under a set of

dynamic requirements.

Artifacts may however be generated not only for a functional solution but also for

verification tools. These verification tools e↵ectively simulate the dynamic behavior

of a design. The output of verification tools may then be compared against the set

of requirements. Should any constraint violation exist, the user could be notified of

the behavioral error, so that they could modify their model into a potentially correct

revision. Such model correction may also be performed automatically. A designer of

a DSML may be already aware of best-known design practices based on particular

constraint violations. The designer could capture this knowledge by codifying their

knowledge of constraint violation correction methods and algorithmically modify

the model. This concept is known as Dynamic Constraint Feedback (DCF).

17

Design of a DSML with interpreters is already a challenging task, so designing a

DSML with DCF adds even more development time. The presented approach to aid

in the development process is through the introduction of the Dynamic Constraint

Feedback Metamodeling Language (DCFML). The intention of the DCFML is to

reduce development time in DSMLs implementing DCF while increasing the utility

of produced DSMLs with the inclusion of DCF. This not only aids the DSML de-

velopers, but end users of the language can see benefits by being provided expert

knowledge during the design of their specific models. Models produced with DCF

tools will also be ensured to not violate any dynamic constraints, resulting in safer

CPS production.

1.2 Motivation

As computer processors and architectures continue to improve, more computational

power is available to compute advanced algorithms in real-time. This increase in

algorithm performance provides new functionality to enable new technologies like

self-driving cars [71]. This however comes at a great cost of increased complexity,

creating di�culty in ensuring that all code dynamically performs as expected. Fig-

ure 1.1 shows how Source Lines of Code (SLOC) are increasing over time in both

aircraft and spacecraft [55]. The automotive industry also has similar trends in

SLOC increase over time [97].

From a technical standpoint, potential for introduced errors increases with com-

plexity. Even the smallest of errors can lead to catastrophic results, such as the unit

conversion error in the Mars Climate Orbiter [95]. This particular error was a minor

issue between the communication of di↵erent components, and was not caught due

to being shrouded in system complexity. A similar disaster occurred with the Ariane

5 [70]. A common practice in engineering and especially software is reuse, making

use of previously known working systems. The Ariane 5 had used the same flight

software as the Ariane 4, however the larger scale of the Araine 5 was not anticipated

18

Figure 1.1: Complexity growth shown as increasing Source Lines of Code in aircraft
and spacecraft [55].

19

Figure 1.2: Cost of corrections at di↵erent stages of development [69]. Definitions
are in Table 1.1.

to cause issues. The inertial measurement system was incapable of measuring the

larger physical scale of the rocket, resulting in an overflow in part of the feedback

for the engine control system.

From an economic standpoint, this exponential increase in complexity also in-

creases the cost of development. Correcting for errors at the end of the development

cycle is more costly than at the beginning [92]. A survey of software engineering

economics has shown the only 3.5% of errors are found during the requirements and

design phase, and 80% are found during or after integration tests [69]. Figure 1.2

shows a breakdown of definitions for Figure 1.2.

There also exists a wide variety of verification tools, often with an overlap in out-

put data. Making use of verification tools is critical to check the dynamic behavior

of systems, but choosing the right tool often has barriers. Such barriers include the

tool’s accessibility and the tool’s system requirements. By democratizing verification

20

Abbreviation Definition
Req Requirements
Dsn Design
Code Coding
UT Unit Testing
IT Software Integration Testing
ST System Integration Testing
AT Final Acceptance Tests
Ops In Service Operations

Table 1.1: The list of definitions for Figure 1.2.

tools, adoption could be greatly increased, resulting in better, verified designs.

1.3 Potential Impact

CPS design is continuing forward as new technologies and design methodologies

are being introduced. CPS researchers and developers are finding new ways of de-

signing systems while also using traditional design methods, and understand the

importance of verification. This process normally involves a modeler manually de-

signing, simulating, and correcting until verification is passed. This is not scalable as

complexity continues to increase, as shown in Figure 1.1. The solution is not to limit

the exponential growth in lines of code but account for it with better development

techniques.

There has already been much research into the abstraction and analysis of CPSs

into DSMLs. DSMLs provide a domain-specific development process paradigm to

benefit both the model designers and the resulting target artifacts. Adoption of

DSMLs, though a practiced e↵ort, is not particularly prevalent. Increasing further

utility can increase such adoption by making DSMLs more attractive than tradi-

tional methods. The more useful utilities available to designers, the less time and

money spent on developing projects. By defining an architecture for DCF, time

to implement automatic model correction methods may be reduced, and resulting

21

models can be verified for safe behavior amongst a breadth of CPS based domains.

1.4 Contribution

DSML methodologies are becoming more mainstream in CPS development. This

work aims to provide improved methods that can improve the quality and utility

of a DSML. The presented framework involves a set of novel ideas that build upon

the state-of-the-art. The core contribution of this work is to modify the standard

metamodelling methodologies to contain integration of DCF upfront in modeling

language design. This method may also be expanded to other DSMLs with de-

sired utilities outside of DCF, by shifting focus from a general approach to a more

constrained DSML design.

This dissertation is organized as follows. First, a high-level overview of DCF

is presented in Chapter 3. This framework is the abstracted practice of design in-

volving verification tools in the loop. The structure provided by this DCF model

provides the needed design constraints to build a well-defined DCF based DSML.

Chapter 4 takes this abstraction of DCF and presents a concrete design method

for DCF based DSMLs. This concrete implementation is called the Dynamic Con-

straint Feedback Metamodeling Language (DCFML). This language contributes to

the state-of-the-art in two factors. The direct contribution is from deployment of

the language itself by improving DSMLs for CPS applications. The indirect con-

tribution is through general DSML design, by thinking of structural constraints on

the metamodel process to add to DSML utility. Finally, two simple CPS based case

studies of DCFML implementation are provided. The first case study is presented

in Chapter 5. This case study involves the adaptation of a prior DSML to now fit

under the new construct of the DCFML. Since the case study involved a form of

modeled dynamic constraints, the necessary metamodel refactoring is also shown.

The second case study is presented in Chapter 6. This study involves the develop-

ment of a new language under the DCFML, with a focus on full automatic model

22

correction and o↵-the-shelf verification tools. Di↵erent correction methods are also

shown to demonstrate how di↵erent corrections can result in model evolution behav-

ior akin to traditional control system behavior. Also, this language demonstrates

how verification tool input interfaces in similar domains can be modeled di↵erently.

23

CHAPTER 2

Background

2.1 Model Based Development

Model Based Development (MBD) encompasses the method of design through the

use of abstracted domain elements known as models [87]. A design utilizing MBD

is a set of domain concepts that are associated and interact with one another. Since

such abstractions may be unique to a domain, multiple domains, or even a subset

of a domain, MBD is often successful if performed through a DSML. Such do-

main abstractions may be represented in various forms, including visual, textual,

or mathematical representations [28]. Each domain may be quite di↵erent, thus

specific forms of modeling approaches may be better suited than others for target

domains. Each domain may have a di↵erent set of semantics and syntax that need

to be defined. The concrete syntax of a model is defined through the design of a

metamodel. The metamodel defines how models may be constructed, i.e. is a model

of the model. A metamodel is responsible for defining the set of allowable domain

design components and how they are interrelated. The design of a metamodel is

normally performed by a domain expert.

Implementation of a DSML typically benefits from two major utilities: correct-

ness from construction, and model interpretation. If a metamodel is determined

to be valid for the domain, then models created by following the metamodel can

be considered to be correct-by-construction. This means that the model is syn-

tactically correct. Programming languages and practices provide a similar level of

thought when thinking about modeling languages. A programming language neces-

sitates code to be well-formed before tools such as compilers may be run. During

24

development however, syntax is typically temporarily broken since functions and

declarations need to be typed out. In the middle of typing a line of code, the syntax

is invalid. Syntax errors become one of the simplest yet most common mistakes in

programming. If however a line of code is copied and pasted, then the code will

be syntactically correct before and immediately after the change. This is e↵ectively

modifying the code by implementing something that is guaranteed to follow the

syntax, and can be considered to be correct-by-construction. In the case of a cus-

tom metamodel, typically domain concepts are generated from the formal definition.

This is typically done through the use of a DSME, to be discussed further in section

2.1.1.

The second major tool that greatly increases the utility of a DSML is the use

of interpreters. Again, programming languages have a similar utility in the form of

a compiler. The use of a compiler removes the need to translate the code by hand

into another language. Converting C code into machine code can be a daunting

task, and can be even more daunting with higher-level languages like C++. A

well-trained person may also make simple mistakes during the translation process,

adding to the development time. The use of a compiler is a model interpreter that

has the functionality to automatically translate the program model into a working

set of artifacts. An expert in the domain of both the C language and in machine

code can algorithmically capture their expert translation knowledge in the form of

the compiler. This process can be similarly accomplished in the scope of general

MBD, by letting the metamodel designer create interpreters that can iterate over

models and produce domain artifacts. In terms of a DSML, the particular domain

may encompass a wide variety of necessary artifacts. For a CPS, this can involve

computation algorithms (source code), control systems (schematics or code), and

networks (hardware configurations). Some specific modeling languages bridge the

gap between such disciplines, such as INTO-CPS [66]. It may be expected that an

interpreter for a CPS model produces software, controller tunings, or schematics, or

25

Metamodeling Environment
Formal Specifications

Meta Level
Transition

Domain Specific
Modeling Environment

Model Builder

ModelModelModel

Model InterpreterModel InterpreterModel Interpreter

Model
Interpretation

Application Domain

AppApp App

Application
Evolution

Language
Evolution

Figure 2.1: The components of Model Based Development.

network configuration information. Interpretation is a form of model transformation,

discussed further in section 2.1.3.

Figure 2.1 shows how models, metamodeling, output artifacts, and interpreters

fit within the context of general DSML design. This diagram can be related to devel-

opment of source code by observing the Model and Model Interpreter as similar to

source code and compilation, respectively. Compiling code produces target artifacts

in the Application Domain, through Model Interpretation. Application Evolution is

then the process of trying out code by executing the application, then correct the

program based on observed errors. A DSML works with a DSME to provide further

tools, such as the Model Builder to provide a correct-by-construction methodology

to build models. A DSML is defined by Formal Specifications in the Metamodeling

Environment. Generally, the Metamodeling Environment has a special interpreter

known as the Meta Level Transition to generate the rules for the Model Builder, as

well as templates for Model Interpreters. As similar with general code development,

if the domain abstractions are incomplete or incorrect, then the metamodel may be

refined through Language Evolution.

26

Development of a DSML may begin at any of the abstraction levels. In the case of

previous work in a field rich with applications, a DSML design begins by abstracting

the applications into modeling techniques, and eventually into a metamodel. In a

brand new domain, models may be drawn first for a particular aesthetic, followed

by interpreters for practical use. Starting with a working set of code is possible to

more easily build the set of interpreters by converting working code into templates

[115].

Methods have been previously done in the formalization of DSMLs [49] [37] [27].

Such works have established a formalization of a language L as a 5-tuple as shown

in Equation 2.1.

L =< C,A, S,MS,MC > (2.1)

Where C represents the Concrete Syntax, A represents the Abstract Syntax, S rep-

resents the Semantics, MS represents the Semantic Mapping, and MC represents

the Syntactic Mapping. The Concrete Syntax represents the specific notation for

model constructs. Abstract Syntax represents the modeling concepts and relation-

ships, where the Syntactic Mapping relates syntactic notations to elements in the

Concrete Syntax. The Semantic Domain is the set of meanings and behaviors of

language constructs, with the Semantic Mapping relating the Abstract Syntax to

elements in the Semantic Domain. With these five components in place, a model

can then be a realization of a language L.

2.1.1 DSME

A DSME provides the necessary tools to define the meta specification and to build

models based on the formal specification [32]. DSMEs are the technical implemen-

tation of the theory of Model Integrated Computing (MIC), by providing the tools

to aid in metamodeling, model building, and interpretation. Figure 2.1 shows how

a DSME provides the framework to build metamodels, then uses the specifications

to provide a model builder and interpreter integration. The model builder is only

27

allowed to create models that abide by the metamodel, thus the DSME aids in

providing the correct-by-construction methodology. Usually a DSME provides the

metamodeling environment in tandem with the model builder. By providing the

tools that provide the key utilities for MBD, modeling languages can be rapid pro-

totyped. The use of a DSME can greatly aid in the success of designing a CPS

[34].

Various DSMEs exist, including GME [67], MetaEdit [101], GEMS [113], Eclipse

Modeling Project [103], and OMG [16]. Some DSMEs even focus on functionality

for particular domains, such as the CPS focused OpenMETA [104] [105]. All of

these DSMEs provide a meta-level definition suite for metamodel design, and each

allows for di↵erent process requirements, interfaces, and modeling methods. Some

provide a more visual context to the metamodel design, whereas others define the

metamodel in an XML schema.

2.1.2 Web-Based Generic Modeling Environment

The Web-based Generic Modeling Environment (WebGME) [76] is an example of

a DSME that provides a method of designing a metamodel that closely represents

a class diagram from the Unified Modeling Language (UML). This particular envi-

ronment is well suited for software experts with experience in UML and Javascript.

Design of language syntax is fairly easy due to model visualizations, enabling rapid

prototyping of the formal specification. Languages are designed to be mainly vi-

sual, where models are typically represented as graph-like connected nodes and

edges. The prototyping phase of a language is generally a quick process due to the

drag-and-drop nature of the metamodel design interface.

WebGME also features template generation for decorators, add-ons, and plugins.

The Javascript-based plugins using WebGME’s Core API are invokable through the

web interface and provide model traversal and modification methods. The Core API

is the e↵ective method of designing model interpreters and model transformations.

28

WebGME provides a method of decorators following the software-based decorator

design pattern, to aid in improving language quality through customizable aspects

and visualizations of models during creation. A decorator may be used in the aid

of more closely matching the visual representation in a design domain, i.e. drawing

correctly shaped boxes based on the UML standard. Custom visualizations may

also take advantage of a decorator’s use by providing verification results directly on

the model.

WebGME is not necessarily CPS focused but is generic to capture a superset

of design domains. WebGME has been used for autonomous vehicle applications

involving verification [79]. The WebGME-based SURE language is targeted towards

security and resilience evaluation in CPSs [85]. A taxonomy of verification tools

resource is also making use of WebGME for verification tool evaluation in CPS

applications [56].

2.1.3 Model Transformations

Model transformations encompass the design of functions that take an inputted set

of source models and produce a set of target models. Source and target models

may exist at di↵erent abstraction layers and with either di↵erent or similar meta-

model definitions [81] [29] [30]. An interpreter or compiler, for example, transforms

the model from a high-level language into a set of low -evel artifacts. Conversely,

rewriting a program written in C++ into Java would be at the same abstraction

level but under a di↵erent formal specification. Model transformations may also

exist as model evolution by modifying the functional graph, maintaining the meta-

model between the source and target models by only needing to modify the model

structure.

Some frameworks have been written to handle a variety of transformation meth-

ods such as ATL for OMG [54] [53] [16]. GReAT is an example that works with the

Generic Modeling Environment, the prior version of WebGME [67] [1] [14]. Such

29

transformation tools work directly with the metamodel definitions to easily provide

a methodology to define model transformations in a DSME.

The concept of a model transformation is a very simple idea that covers a breadth

of converting a model into a di↵erent, new model. A taxonomy of model transforma-

tions has been established to aid in the recognition of the various qualities di↵erent

transformations a model may undergo [81]. For example, part of this taxonomy

defines a classification between exogenous and endogenous transformations.

• Endogenous Transformation - A transformed model will be within the

same language.

• Exogenous Transformation - A transformed model will be in a di↵erent

language.

Another, orthogonal classification of model transformations is defining them as ei-

ther being horizontal or vertical [25]. Further classifications at various levels exist,

but only these two categories will be discussed in the context of the DCFML.

Horizontal Transformations

A horizontal transformation occurs when the source and target models both rep-

resent the same abstraction level. One form of a horizontal transformation is con-

verting a model from one similarly abstracted language into another language, i.e.

language translation. For example, converting a program written in C++ to Java

would both represent a new language but at a similar abstraction. Another term

for this transformation would be language migration, which is considered to be an

exogenous horizontal transformation. In this particular work, horizontal transfor-

mations are used in two parts of the DCFML:

• To establish a standard interface between multiple verification tools.

30

• To translate dynamic constraint violations into expert block inputs for model

correction.

The other form of a horizontal transformation is an endogenous transformation.

In this case, the language stays the same and is under the same abstraction level. An

example of this transformation is also known as model evolution, where the model

is modified but is within the same language. Such horizontal transformations may

involve tuning of a value or restructuring of elements. Horizontal endogenous trans-

formations happen during the design phase of a project, where high-level models

undergo transformation remaining at the same abstraction level. In software devel-

opment, refactoring is a common example of this classification. For the DCFML,

horizontal endogenous transformations are used in the following:

1. To be performed by the expert blocks, as a model correction step.

Vertical Transformations

A vertical transformation represents a di↵erent abstraction level between the source

and target models. Since the abstraction level is di↵erent, it is easier to think about

vertical exogenous transformations. Here, both the abstraction level and language

are di↵erent. The simplest example of this is a software compiler, where a higher-

level language is transformed into target artifacts that can be executed on a hardware

platform. For a DSML in general, an interpreter is generally built to provide what

is commonly known as a code generator, providing a great amount of utility to the

language. For the DCFML, vertical exogenous transformations are used in three

areas:

1. As a final code generation method, defined by the DCFML user as similar to

designing a typical DSML, to generate real working code from their DSML.

2. To translate the model into the necessary inputs for verification tools.

31

3. As a provided DCFML interpreter, converting the model of DCF into the

plugins necessary for the user’s DSML to integrate their DCF definitions.

A vertical endogenous transformation involves the same language, but at a dif-

ferent abstraction level. Another term for this is formal refinement, which is a

common development step in the iterative process of DSML design. If a model is

created and there is an incorrect or incomplete syntax or semantic mapping, then

the metamodel needs to be refined. This is not a step that is done when developing

in languages like C++, since the language cannot be modified. The DCFML has

employed vertical endogenous transformations as follows:

1. The DCFML has provided a metamodel builder for a DSML user, to evolve

their metamodel.

2. The DCFML, in its current form, is the result of a vertical endogenous

transformation by adding structure and constraints to WebGME’s base meta-

metamodel.

2.1.4 Software Design Patterns

Software design e�cacy greatly increases when implementing well-known design

methods known as software design patterns [40]. Expert knowledge may be codified

through the abstraction of solutions to common software problems [118]. Thus, with

the implementation of software patterns, software design becomes less error-prone

and readable.

For example, if a developer is to write a program that requires multiple aspects

of a program to access a single resource, such as navigation application where the

UI displays current whereabouts while a background algorithm needs to constantly

poll GPS information, then two separately programmed components may conflict

when accessing the same resource. A beginner developer may attempt to imple-

ment an e↵ective-yet-complex logic solution to ensure mutual exclusion, treating

32

the problem as a new issue. A more well-versed developer may recognize that the

Singleton design method is used to ensure that a single object is used amongst

multiple class instantiations. If a new developer were to read the code from both,

the singleton design pattern will be easy to recognize and understand, whereas the

beginner developer’s solution will require in-depth reading to understand the logic

involved.

The use of well-known patterns in software development also results in the focus

on higher-level modeling concepts rather than low-level implementation details [58].

Such design at a higher-level ensures easier traceability to requirements and thus

aids in the validation of software design.

2.2 Cyber Physical Systems

2.2.1 Autonomous Vehicles

Autonomous vehicles (i.e. self-driving cars) are examples of a CPS, usually imple-

menting all three core subdomains of a CPS (networking, computation, and control).

Research in this area received a major push after DARPA announced the original

DARPA Grand Challenge in 2004 [20]. No group was able to complete the chal-

lenge until the challenge was o↵ered a second time [107]. In 2019, there are many

companies and research groups developing autonomous vehicles [10]. Some groups

are developing model based design methods of automotive vehicles [33]. One of the

case studies of the DCFML presented here is based on a deployed language that

functions on the CAT Vehicle, and is based on a prior trajectory-based modeling

language [79].

2.2.2 MATLAB and Robotics Operating System

The Robotics Operating System (ROS), unlike the name suggests, is not an oper-

ating system but rather a middleware [91]. ROS is targeted for CPSs, particularly

33

for distributed computation applications. Being a middleware, ROS provides a set

of hardware and network abstractions, providing computational cluster capabilities

through message passing structures. This framework aids complex system develop-

ment by simplifying the interfaces and providing feature-rich utilities including data

recording and the Gazebo physics simulator [60]. The paradigm of design is shifted

to be focused on component based design rather than needing to juggle network

code with a target domain. Part of the component design also allows for e↵ortless

Software-In-The-Loop (SWIL) to Hardware-In-The-Loop (HWIL) testing.

The popularity of ROS has caught the attention of other high profile software

suites, including MATLAB. MATLAB’s Simulink, a DSML for Matlab, includes

code generation tools that produce C++ artifacts [19]. Simulink is capable of gen-

erating ROS code [80]. This particular framework is interesting due to its high

flexibility, verification potential (MATLAB tool suite), and its ability to generate

HWIL/SWIL code. Using such a framework would be a prime candidate for the

DCFML, however Simulink’s metamodel is proprietary and therefore the loop can-

not be closed for automatic DCF.

2.2.3 Verification Tools

A verification tool is generally a specific piece of software that aims to simulate

models using particular methods. Most of what fits under this classification may

not even be labeled as a verification tool, but is rather classified as a method of

checking qualities of a model in a particular domain. Thus finding verification tools

can be a challenging task without having unified, searchable metadata. While many

researchers aim to find solutions for particular problems, some find the need to

develop novel methods to check their e↵orts. The resulting checking methods are

then sometimes scaled up for use by others, and become known as a verification tool.

Sometimes e↵orts are done on model checking without providing a specific tool, such

as checking Linear Temporal Logic (LTL) [106] or some CPS model checking e↵orts

34

[42].

Some examples of verification tools include verifying LTL (SPIN [15]), Hybrid

Systems (SpaceEx [39], CORA [3], FLOW* [23], dReach [62], HyCreate [12]), level

set methods (Level Set Methods Toolbox [82]), digital systems (DSVerifier [48]),

bisimulation (CADP [41]), falsification (S-Taliro [5]), and real-time systems (UP-

PAAL [65]), to name a few. Though many appear to have direct overlap by veri-

fying the same domain, some tools provide di↵erent qualities of the solution from

implementation of di↵erent computational methods. Some of these even result in

producing information that may be of direct use for model correction, such as dReach

being able to provide a hybrid system’s proper initial conditions to reach a particular

state. Some other reachability tools like HyCreate do not provide such information.

One of the active e↵orts in organizing all verification tools for CPS applications is

the Cyber-Physical System Virtual Organization (CPS-VO) Active Resources [93].

A portion of this e↵ort is to create a functional taxonomy of verification tools. Part

of the e↵ort is to provide examples of use, and eventually virtualization to remove

the requirement of particular system specifications to execute tools. A follow-up

e↵ort to this is creating design studios for verification tools for rapid evaluation [56].

2.3 Control Systems

Control system design theory is based on the principle of providing inputs to a dy-

namical system to achieve a new, desired set of dynamics. The dynamic system to

be under control is known as a plant, consisting of a process and actuation. Gener-

ally, the plant does not exhibit the desired behavior. For example, a person sitting

in a car with an automatic transmission may want their car to drive at a particular

speed, but the car is unable to perform this with no control input. A throttle is

provided for the person to modify the engine’s power which eventually modifies the

speed state of the car. There are many di↵erent control methodologies that may be

suitable for di↵erent plants. One of the simplest controllers is a feedforward con-

35

troller. In this case, inputs are provided to a plant, and the result is not observed

by the controller. This would be akin to driving a car with a blindfold. In principle,

it is possible to drive to a location from memorizing the dynamics of the car and

the roads, but any disturbance or error in understanding the car’s dynamics can

be catastrophic. Removing the blindfold allows the driver to adjust by sensing the

surroundings and adjust for such errors, in what is commonly known as a form of

feedback control.

2.3.1 Linear Time Invariant Systems

A Linear Time Invariant (LTI) system is a system where the output is linearly

related to the input and has no dynamic variation in time. For example, consider a

plant g() for the system, with output y(t), and input x(t) as in Equation 2.2.

y(t) = g(x(t)) (2.2)

If a system satisfies the equality in Equation 2.3, then it is said that the system

is linear, since it obeys the superposition principle.

g(a1x1(t) + a2x2(t)) = a1g(x1(t)) + a2g(x2(t)) (2.3)

Secondly, a system is said to be time invariant if the response of the system is

not dependent on time. This means that if the same input is provided, regardless

of a shift in time, the same output will be produced. This concept is described in

Equation 2.4.

y(t) = g(x(t))! y(t+�) = g(x(t+�)) (2.4)

An LTI system is then a valid candidate for a simple transformation from the

time domain into the complex frequency domain, as defined by the Laplace trans-

form. This seems like a strange jump and questions of e↵ectiveness arise, however

36

Figure 2.2: An example system in the complex frequency domain.

this transfer opens up a new domain of analysis and design possibilities. Performing

a Laplace transform can take a calculus level problem in the time domain to pro-

duce an algebraic level problem in the frequency domain. The Laplace transform

definition, to convert a signal g(t) into the complex frequency domain, is shown in

Equations 2.5.

G(s) = L {g(t)} =

Z 1

0

g(t)e�st
dt (2.5)

Similar to converting calculus problems to algebraic problems, a Laplace trans-

form often eases system design by making system design easier by allowing for easier

separation of system blocks. This concept involves thinking about the concept of

transfer functions. When one signal input is provided to the input of a function,

time domain analysis needs to make use of convolution to determine the output sig-

nal. The system of convolution, when converted into the complex frequency domain,

becomes simplified into a multiplication. Figure 2.2 shows a common representa-

tion of a system in the complex frequency domain. The transfer function for G(s)

is defined as in equation 2.6.

U(s) = G(s)X(s) =) G(s) =
U(s)

X(s)
(2.6)

The full system transfer function can be determined as follows.

C(s)G(s) =
Y (s)

U(s)

U(s)

X(s)
=

Y (s)

X(s)
(2.7)

37

Figure 2.3: A closed-loop feedback constol system.

Figure 2.2 is representative of a feedforward control system of plant G(s) with

controller C(s). As stated before, feedforward control is e↵ectively blind and is

highly dependent on model error and initial conditions. An example of a simple feed-

back control mechanism is shown in Figure 2.3. In this case, the output is measured

and compared against a reference input, producing an error for a di↵erently-designed

controller C(s) and in the feedforward case. The full system transfer function for

feedback control is shown in Equation 2.8

Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
(2.8)

Second Order Systems

A second order system is a subset of linear system models, characterized by having

two poles. A second order system is often a simplified yet acceptable approximation

of many real world dynamics. For example, often a physical dynamics example

is constructed using a mass, a spring, and a dampener. In electronics, a system

that contains two successive filters also falls under second order system modeling.

Generically, a 2-pole system may be described as a transfer function in equation 2.9.

G(s) =
!
2
n

s2 + 2⇣!ns+ !2
n

(2.9)

This transfer function is constructed in such a way that basic time domain re-

38

sponse characteristics can be directly observed. The characteristics may be adjusted

with both the natural frequency !n and dampening ratio ⇣. By adjusting the values

for !n and ⇣, the time domain properties change. Often one of the first questions

of a designed system is how quickly the system approaches its equilibrium point.

There may be varying definitions of what is considered to be ”close enough”, but

often it is seen as reaching within 2% of the equilibrium from a step response. For

this case, the settling time ts solution is shown in Equation 2.10.

ts =
�ln

⇣
0.02

p
1� ⇣2

⌘

⇣!n
⇡ 4

⇣!n
(2.10)

A corollary to this is analyzing the transient response characteristics, specifically

how quickly the system approaches the equilibrium from a step input. Again this

may be defined in various ways. Typically for an over dampened system, this is

defined as the time to go from 10% to 90% of the final value. The rise time tr for

this scenario can be determined in Equation 2.11.

tr =
2.16⇣ + 0.60

!n
(2.11)

In cases where the dampening is weak, the system exhibits oscillatory behavior,

going beyond the equilibrium point. This behavior is known as overshoot. In some

cases, it may be desirable to prefer rise time performance over overshoot perfor-

mance. However, there are some safety-critical systems where an overshoot may

drive a physical system into a boundary. Thus in the case of overshoot, the amount

of overshoot may be of importance to determine. Equation 2.12 shows the calcula-

tion for the percentage of overshoot PO. Notice that the overshoot is independent

of !n, and the overshoot equation is only valid, i.e. overshoot only exists, when

⇣ < 1.

PO = 100 ⇤ e
✓

�⇣⇡p
1�⇣2

◆

(2.12)

39

A corollary to the existence of overshoot is determining the time the peak value

occurs. This peak time tp can be calculated, again if ⇣ < 1, with Equation 2.13.

tp =
⇡

!n

p
1� ⇣2

(2.13)

2.3.2 Hybrid Systems

A hybrid system is a system involving both continuous and discrete events. This is

often the case in CPS modeling and design, due to the generally continuous physical

nature yet having the discrete computation [6].

Often in complex systems like CPSs, simple controllers are not su�cient to satisfy

complex requirements. Also, not every plant provides a linear method of interaction.

As an example, a common home thermostat does not adjust the level of cooling or

heating, but only turns an air conditioner or heater either on or o↵. In other systems

like automotive cruise control, traditional control theory can be used to some extent

but di↵erent control modes are needed for braking and throttle. One method of

making use of traditional control theory but attempting to satisfy important safety

constraints is hybrid control design [74]. Hybrid controllers change their control

modes based on particular conditions, thus combining state diagram design with

control design. Di↵erent tools are available to simulate a hybrid control design but

vary in their methods of evaluation, such examples are dReach [62] and HyCreate

[12]. Due to the extensive research being done on reachability and its importance to

CPSs, this serves as a great case study for the use of the DCFML. Design of hybrid

controllers may even be reduced to simpler, easier to design modes yet still need to

consider critical safety constraints [79] [21]. Online resources are also being built to

create a taxonomy of verification tools for easier discovery and tool selection [86].

Such online resources include examples for implementation methods, potentially in

the future example modeling languages and metamodels could be provided for easier

DSML integration.

40

2.4 Related Work

2.4.1 Automatic Controller Tuning

Control systems are prevalent in CPSs at varying levels of complexity, from low-

level components like voltage regulation [35] to high-level integrations like lane con-

trol for autonomous vehicles [46]. Many controller types and tuning methods exist

for various scenarios [100]. Many systems to be controlled may be approximated

as second order systems, however model errors result in varying controller perfor-

mance. Plenty of e↵orts exist to automatically tune controllers for systems where

even approximations are di�cult to establish. The PID controller is an example

well-rounded control method that is widely used in industry [110]. PID stands for

three gains with processes computed on the error signal: Proportional, Integral, and

Derivative. Each of these three methods of handling error are coupled into a single

controller providing di↵erent dynamic characteristics. Because of the prevalence in

real-world systems, methods for determining the three optimal gain values in di↵er-

ent scenarios are often researched [96] [8] [75]. One such method to tune controllers

based on a black-box view of a system plant is known as the Ziegler-Nichols method

[7]. This method is a heuristic-based algorithm that attempts to achieve a particular

quality of tuning based on a general analysis. This method involves adjust one gain

until particular qualities are observed from testing the system, then further gains

are adjusted until the algorithm is complete.

2.4.2 Dynamic Constraint Feedback

One of the natural e↵orts in designing a model interpreter is to run a model in

a real system to check the system dynamics. This leads to an evaluation of the

system where the syntax alone cannot check that dynamic constraints have been met.

Interpreters may also be written to translate the model into artifacts for verification

and simulation tools for DCF. Past e↵orts have been conducted to use DCF in

41

particular custom modeling languages [116] [114]. These works encompass real-world

engineering problems with custom made codified expert knowledge to automatically

correct the model. This includes controller tuning through value modification or

adding new gains to an existing controller. Other e↵orts have implemented DCF

using very di↵erent DSMLs, such as concurrent state diagram modeling using the

SPIN model checker [119]. In this example work, concurrent state machines issues

such as deadlock are corrected by adding states or transitions.

The domain of Computer Aided Design (CAD) has recently made use of a form

of DCF in the form of generative design [63] [72] [98]. Generative design methods

exist in professional CAD software such as Solidworks. In this particular case, a set

of criteria is provided to an initial model, and the generative process either adds

to or cuts away parts of the design while checking that the design criteria have not

been broken. In other words, models are modified based on the set of constraints,

and therefore may be thought of as a DCF example. This is similar in other CAD

applications, such as envelope design based on assembly criteria [38].

The domain of Printed Circuit Board (PCB) design involves tools that sometimes

provide a feature called autorouter [84]. PCB routing involves connecting electri-

cal components with traces based on an electrical specification, but simultaneously

needs to account for manufacturability constraints. A PCB design tool usually pro-

vides a verification tool to ensure that traces of separate electrical connections do

not cross and that all connections have been made. In general, autorouters attempt

to provide a fully automated process by incrementally modifying the design to avoid

constraint violations. Some autorouters also provide partial automation [45].

Notable in these prior other works with DCF based model correction is that a

high-level perspective is used when describing the methodology, but each example’s

implementation is performed at a low level in the modeling language design. The

focus in each work is on the methods used to close the loop on model correction.

Each describes the definitions of how models are created and how they should be

42

modified based on the output of specific verification tools. The data types at each

stage vary greatly, though the high-level discussion about the design is very similar

in each work. It is these past works that serve as one of the focuses for the DCFML

design presented in this work.

2.5 Problem Statement

Design of CPSs has shown a trend in the implementation of DSMLs for better

design management. Recent tools and methodologies have implemented forms of

DCF methodologies, however these have been realized on a case by case basis.

The engineering design process involves the implementation of known solutions to

meet requirements. In more complex systems, high-level modeling is used before

transitioning to a low-level implementation. This work seeks to resolve and discuss

these issues by developing and exploring the following tasks:

• Develop an abstraction of DCF for modeling language design.

• Develop a concrete, democratizing framework for DCF based DSML design.

• Ensure the framework closes the loop on automatic model correction.

• Ensure o↵-the-shelf tools can be implemented in the framework.

• Ensure dynamic constraints can be modeled by the framework.

43

CHAPTER 3

A Verification Feedback Framework

3.1 Components in the Framework

Section 1.1 has already provided a brief overview of closing the loop on DCF, but

only as a high level thought experiment. Figure 3.1 is an example high-level visual

representation of a modeling language that employs DCF. This figure shows how

the implementation of DCF may be thought of as a component based design, with

blocks representing Model Transformations, Verification, and Constraint/Behavior

Comparison. Lacking in the diagram are low-level details, and most importantly

how di↵erent components can interact. The model transformation block needs to

work with the model, i.e. model transformations need to be designed along with

a metamodel. Similarly, a designer of a metamodel needs to be aware of both the

deployment interpreter and the inputs necessary for verification tools. This section

will serve to dive a bit deeper into the definitions and concerns of establishing a DCF

framework by looking at these individual components. The deployment interpreter

will not be discussed in great detail since it is a common part of DSML design

and is no di↵erent in this implementation. This section will also consider some of

the challenges of implementing DCF, and how the framework can serve to benefit a

DSML designer when either creating a new language from the ground up or adapting

a prior language to implement DCF.

Figure 3.1 is a visual aid to the concept of closing the loop on DCF. An initial

model is first provided as x, which may be directly deployed or may be interpreted

into artifacts necessary for verification tools. Execution of a verification tool pro-

vides the set of dynamic behaviors b, which may be compared against the set of

44

Figure 3.1: A closed-loop dynamic constraint feedback modeling language.

requirements r. Should any constraint violations e exist, an expert block may de-

cide on the appropriate model correction method. With a known model modification

method u, an update to the model may be performed. This cycle may be performed

if necessary multiple times until all constraint violations are removed.

3.1.1 Metamodel

The language syntax is defined by the metamodel and enforces structural constraints

in a DSME. The variable x in Figure 3.1 represents the model created from the

metamodel. The metamodel is not shown in Figure 3.1, but is necessary to construct

x. As with any metamodel design, a semantic mapping must exist between the

metamodel structure and the target domain. Employing the DCF has an added

further metamodel design constraint, since it also needs to have a semantic mapping

to verification tools. If a metamodeler were to design a DSML with DCF and had

no prior knowledge of a DCF framework, then the metamodel would also need to

have a model of the dynamic constraints. In Figure 3.1 however, the set of dynamic

constraints are represented as requirements r, providing a more structured approach

to dynamic constraint modeling. This prevents an unrestricted implementation of

building a metamodel, providing the following benefits.

• Allows a DSML designer to build metamodels with well-established design

methods, without the burden of complicating the metamodel with dynamic

45

constraint modeling.

• Keeps a clear separation of dynamic constraints versus structural constraints.

• Provides traceability of verification methods and requirements.

Di↵erent DSMEs may necessitate particular design methodologies. Some meta-

models are defined by UML while others may be defined using XML. These di↵er-

ences should have no impact on this framework, especially since the metamodel does

not need to be designed di↵erently. The only added set of constraints is that model

evolution transformations need to be designed and implemented, and that the model

can undergo transformation for verification tools. These constraints are certainly

not small considerations, however if met they do provide the potential benefits of a

fully automated DCF model correction.

Design of metamodels under this framework needs to consider the verification

tools for the requirements. When analyzing the inputs to a verification tool, one of

the first methods may be too abstract the inputs into a verification tool metamodel.

The metamodel should be domain specific, however this does not mean that they

need to be verification tool-specific. For example, if the design domain were for a

vehicle controller, it may be assumed that the vehicle will never change. Similarly, a

closed loop controller may be expected as part of a metamodel. This means that only

the controller needs to be defined, but parts like the vehicle plant and the feedback

mechanism are implicitly defined. A verification tool may be able to define a full

set of signals and systems, but an implicit framework can already be defined by the

metamodeler. This greatly eases the constraints of implementing verification tools

in the metamodel, but only needing to consider domain-specific elements. Avoiding

full verification tool abstraction also benefits the use of multiple verification tools

that may be di�cult to combine.

Similarly, creating a highly domain-specific language lets the metamodeler focus

on the implicit characteristics of design. The model transformations are easier to

46

define is the language is simpler, or has specific elements targeted for model evo-

lution. If a metamodel were to be too generic, then the model transformations

would be di�cult to target particular, acceptable parts of the model for modifica-

tion. For example, if again the design domain were for a controller for a particular

car, then distinguishing between the plant and controller in a signals and systems

generic model may be non-trivial. Thus again, the more specificity in the domain,

the easier the implementation of DCF.

3.1.2 Interpreters

The interpreters serve as the glue logic to interface the model to both verification

tools and real-world deployment. These exist as vertical exogenous transformations,

transforming the model in the DSML to lower level target artifacts. In the case of

the deployment interpreter, this has been standard practice in language design ever

since the first compiler was built. The deployment interpreter transforms the model

x into the real working output artifacts y. Implementing DCF has no particular

restrictions on the deployment interpreter, however if a prior language was modified

to employ DCF, then language di↵erences may need to be accounted for. There

may be two methods in this approach:

• Restructure the prior deployment interpreter to account for new modeling

di↵erences (i.e. a new concrete syntax or semantic mapping).

• Design a new horizontal exogenous transformation to convert the new verifiable

model into a model of the old metamodel, for prior deployment interpreter use.

Again, this is only in the case that a prior language needs to be adapted for DCF use,

whereas a new language will undergo the traditional steps of deployment interpreter

development.

The second use of an interpreter occurs during the verification steps, by trans-

forming the model into verification inputs. This interpreter is usually an additional

47

development step for a DSML, whether the language is new or old. A rare case

may also exist where the deployment interpreter produces artifacts that identically

match the inputs necessary for verification tools. An example of this instance is the

generation of ROS nodes through the design of Simulink with code generation. The

set of ROS nodes may be deployed on a full hardware-in-the-loop (HWIL) system

as generated, or the same ROS nodes may run through ROS’s gazebo simulator in a

software-in-the-loop (SWIL) setting and generate rosbag files for dynamic verifica-

tion. Generally speaking, the verification interpreter will need to be di↵erent since

most verification tools require a very particularly defined input and quite simply are

not acceptable artifacts for deployment.

3.1.3 Verification

The verification block represents a mapping from a model to a set of dynamic

behaviors of interest. These blocks represent a set of necessary verification methods

needed to satisfy the set of requirements r, by producing comparable behaviors

b. This means that the dimensionality and data types of the set b need to match

that of the dynamic requirements r. In some simple cases, a single verification tool

may provide the exact size of b to match r. Usually, a verification tool provides even

more data than necessary, so only a subset of the verification tool’s output is needed

to construct b. In more complex systems spanning multiple domains, like a CPS,

multiple verification tools need to combine their parts of their outputs to produce

b.

The chosen verification tools may be custom constructed or from a selection

of o↵-the-shelf tools. In many cases involving a complex dynamical system, well-

established o↵-the-shell tools are the easiest and quickest tools to implement. This

is a preferable option for complex verification needs, such as needing a full physics

simulation. Using such tools may however still require significant development time

regarding the verification tool interpreter. In other cases, no verification tool may

48

exist for a particular domain or set of requirements. This scenario is usually use-

ful for simple requirements where no verification tool exists, and simple operators

are su�cient for determining the dynamic behavior. For example, if a robot was

commanded to move between two goal points, an o↵-the-shelf tool involving reach-

ability may be great for ensuring that no collision occurs between valid goal points,

whereas a custom tool would be su�cient for determining whether the goal points

are valid in the first place since the data types may be trivial comparisons against

requirements.

3.1.4 Constraint Comparator

The constraint comparator as shown in Figure 3.1 is a highly simplistic view of the

comparison operation. This symbol is used as inspired from control system theory,

but does not represent the true internal complexity of constraint comparison. The

constraint comparator will have varying amounts of complexity depending on the

design domain and selected verification tools. The comparator is responsible for

taking the current dynamic behaviors b of the model, and compare them against

the set of requirements r, and produces a set of constraint violations e. In con-

trol system theory, e represents the error, where the negative feedback mechanism

and controllers try to reduce the error to 0 with particular performance character-

istics. In DCF, e represents a set of dynamic constraint violations, with the goal

of re-designing the model to achieve an empty set for e, thus passing requirements

verification. The constraint comparator is constructed in conjunction with the ver-

ification outputs, as defined by the requirement. Normally a requirement is defined

in prose, sometimes with a particular associated value. For example:

• ”The timer shall not extend past 10 seconds.”

• ”The robot shall not collide with any wall.”

In both of these example requirements, the comparison operation and the corre-

49

sponding values are described. In the first example, the comparison is a trivial

example where the behavior needs only a single operation. The second example is

non-trivial, and the comparison may need the check the full robot path against all

defined walls.

Each dynamic constraint falls under two main categories: explicit or implicit.

Implicit requirements are those assumed to be held by the design domain. These

are defined by the DSML designer, and are non-modeler configurable. Such con-

straints are assumed to always be held under any model in the domain, regardless

of the modeler’s design choices. Implicit constraints are therefore domain-specific.

Explicit constraints, on the other hand, are defined by the modeler, which is often

the case when engineers are tasked to meet particular requirements defined by the

customer. In such a constraint, the modeler may have particular needs from using

the language, thus requiring dynamic constraint flexibility. Explicit constraints are

therefore model specific. An implicit constraint may be read as ”All models should

behave like X”, whereas explicit constraints may be read as ”This particular model

should behave like X”. Take for example traditional LTI controller design, where it

is expected that all controllers have an intention to produce stable dynamics, but

di↵erent systems may have di↵erent settling time requirements. The distinction be-

tween these categories is important to consider when designing a language to fit the

verification feedback framework since explicit constraints must be presented to the

modeler, i.e. modeled in the metamodel. On the other hand, implicit constraints

may be defined either as a part of the automatic correction framework or by the

chosen set of verification tools.

3.1.5 Expert Block

The expert block is responsible for deciding the correct transformation to evolve

the model into a more correct model. This step occurs if the model has constraint

violations, i.e. e is not an empty set. If e is not empty, then the expert block

50

represents a domain mapping from the set of constraint violations e to a change

in the model u. Expert blocks decide on the best horizontal transformation that

focuses on either a change to the model’s structure or a change in particular model

parameters. Each expert block represents the codified knowledge of a domain expert,

who understands how to modify the model based on a verification failure. Such

knowledge may be as simple as tuning a value, or more advanced by deleting or

adding components. Not drawn in Figure 3.1 is a mapping from the model to the

expert block. In some cases, the verification output may be too trivial to make

an intelligent decision, and thus model context may be necessary to determine the

correct model transformation. Also as similar to the verification tool block, the

expert block may represent a composite set of multiple experts. Important to note

is that expert blocks will vary greatly based on the domain. Designing general

rules of thumb for a breadth of domains is a complex task due to the complicated

mappings and structures between the model, requirements, and verification tools.

Thus generally the expert blocks are needed to be highly custom algorithms for each

DSML.

There are two main categories of expert blocks, either assuming a reactive algo-

rithm or a memory-based algorithm. A reactive type of algorithm makes a change

simply based on the current constraint violation. Generally these may be used for

simple corrections, or simple mappings between model parameters or structures to

constraint violations. In this case, any past model modifications are not needed for

future model modifications. Reactive techniques may not be suitable in all cases,

and memories of past changes may be needed. In such a case, keeping a track of

prior modifications may need to be stored for future modifications. A classic ex-

ample in control theory for a memory-based algorithm is the Ziegler Nichols tuning

method. In this algorithm, a controller gain is adjusted until a particular result from

verification is achieved, before tuning a separate gain until a di↵erent quality from

the same verification is achieved. This is e↵ectively a multi-mode setup, where each

51

time the expert block executes, the prior state of modification needs to be known.

Three further classifications of expert blocks involve the method of evolving the

model towards a verified solution. Such expert blocks may be analytically driven,

heuristic driven, or data driven.

1. Analytic methods exist in many design domains, where models have direct

mathematical derivations for design solutions. In this case, the model most

likely needs to be provided to the expert block for analysis. There can be some

simple cases where the constraint violation directly translates into a model

evolution solution using a mathematical formula. Analytic design techniques

can provide optimal solutions with one model evolution step. Though analytic

modifications may have the power to provide optimal solutions, many domains

are unable to provide full analytic environments.

2. In systems where no analytic solutions exist, often engineering methods involve

some sort of best practice or rule of thumb. This is often the case where the

mathematical models involve non-linearities, and no closed form solution ex-

ists. This is where the importance of verification tools fit, to test models that

cannot be solved analytically. Rules of thumb are then determined through

trial and error to produce a set of design heuristics. Not all design domains

may have such established heuristics. Worse yet, complex multi-domain en-

vironments like CPSs may involve unique domains, and thus have no rules of

thumb for design.

3. If analytic and heuristic-based methods fail to define an expert block, the next

step is to look into data-driven solutions. Such solutions may be based on trial

and error, and could potentially involve some form of machine learning-based

solution. Such machine learning could be automated through model mutation

akin to a genetic algorithm, and the process could be supervised by the same

verification tools for DCF. Similarly, data may be collected on what domain

52

experts perform to modify models after presented with constraint violations,

and their typical decisions may be codified.

3.1.6 Model Transformation for Correction

The model transformations, as connected in the DCF loop after the expert block,

are intended for model modification. In Figure 3.1, representing a control system,

the model transformation maps the control input u provided from the expert block,

and provides the process of model modification. Design of this set of model trans-

formation possibilities is based on the metamodel of model x, with target models

fitting under the same metamodel. Thus the model transformation needs to be

aware of the metamodel construction. As before, the model transformation block

represents a set of possible transformations that may be directly tied to particu-

lar expert blocks. The transformations are a simple set of modification rules that

dictate the possible model changes �x that can be applied to the model x.

When adapting a prior language to employ DCF, model modifications need to

be specified. Generally, a DSME provides the framework for model transformation,

but further development is needed to design model transformations into a prior

metamodel.

3.2 Considerations of the Framework

The described components in the framework from Section 3.1 provide the set of

classifications and features of each component required for DCF. Looking at the

framework as a whole, various properties and development techniques can be estab-

lished. The framework aims to be specific for DCF based modeling languages, but

generic to accommodate a wide variety of domains, verification tools, and model

correction techniques.

53

3.3 DCF Based Modeling Language Design Patterns

Similar to software design, certain patterns for metamodels could be established de-

pending on the domain, DSME, and set of verification tools. Such patterns will aid

in reuse of solutions to well-established domains. There exist many correct methods

of metamodel design for a particular domain, but generally a particular practice may

be more adopted than others. The same is for general software design. In a soft-

ware project, unrestricted implementation may fulfill the requirements, however not

making use of well-known patterns adds to design and development time. Reusing

well-established design methodologies in a particular software domain greatly aids

in the success and reduces the cost of development. For DCF, such patterns may be

established for metamodels, transformations, and verification tools to aid the adop-

tions and success of DCF based modeling languages. Such patterns are an e↵ective

constraint on the language syntax where many valid syntax definitions exist with

proper semantic mappings. Using patterns lets the designer focus on the semantics

rather than both the syntax and semantics.

3.3.1 Metamodel and Transformations

There has already been an e↵ort in establishing sets of metamodel design patterns

[24] [2]. The same is true for model transformation patterns [64] [17] [47] [36]. In

the context of DCF, design patterns in metamodels and transformation can be tar-

geted towards known domains to better guarantee DCF success. Some languages

in di↵erent domains may share similar metamodels even though the domains seem

quite di↵erent, such as defining finite state machines or hybrid controls. An ac-

cepting end state may be similar to an acceptable final mode. Thus defining how

an accepting state should appear in the metamodel for the domain of finite state

machines may translate similarly into the domain hybrid control design. Similarly,

the set of model transformations to correct the model for a hybrid controller may

54

also translate to the corrections needed for a finite state machine. Having a set

of metamodel patterns with model evolution techniques can then potentially trans-

late amongst multiple domains, and therefore have a broad impact. This can let a

DSML designer focus not on the exact abstraction method for a domain, but simply

reuse established methods and then shift focus to model correction methods for their

design techniques.

3.3.2 Verification Tools

Though individual verification tools in similar domains provide slightly di↵erent

qualities regarding verification output, di↵erent tools in similar classes aim to verify

the behavior of identical domains. Thus verification tool input abstraction may

be classified under di↵erent patterns. Having particular verification patterns also

implies the potential for ready working interpreters. This can greatly reduce the

adoption time of DCF by reducing the development time of verification interpreters.

As taxonomies of verification tools are developed, input design patterns can be

provided as part of a tool selection suite for quick integration. Focusing on tool

selection also may provide the necessary design constraints for the metamodel, and

therefore the following model evolution transformations.

3.4 DCF Based Modeling Language Properties

The high-level DCF framework in Figure 3.1 represents a system construction with a

potential set of dynamic properties. Such properties describe the qualities of project

development, rather than the qualities of the product. One of the first questions to

be asked of the framework is regarding the level of automation. A second question,

assuming the DCF is fully automated, regards how the models evolve over time to

satisfy the requirements.

55

3.4.1 Level of Automation

The level of automatic model correction is dependent on the relationship between

the dynamic constraints, verification output, and expert blocks. Full automation in

this sense does not consider potential limitations of the model correction process.

For example, some verification tools may require a manual entering of data into

a UI, but it is assumed that if proper verification transformations exist then no

design choice is made. Therefore full automation means that a user does not need

to make a decision in the correction process for full automation. A DCF DSML can

therefore be fully automated if there is a full mapping between verification output

and the dynamic constraints, and expert blocks exist to handle all possible dynamic

constraint violations. There may very well be implementations where an expert

block is unable to be determined for a subset of the dynamic constraint violations,

and therefore may only be partially automated. This may be especially true in highly

complex design domains. The focus of this framework is to provide the possibility

of full automation, agnostic to a particular domain.

3.4.2 Automatic Correction Properties

Due to the similar negative feedback connection as inspired from control systems,

particular properties may be notable when designing a DSML with verification feed-

back correction. This raises questions on the design dynamics of the system, since

iterative development through model evolution is similar to a dynamic system state

over time. Looking at basic properties of control systems, similar properties of

the design process may be speculated. Such speculations are not a perfect map-

ping between the DCF framework and control design, but they may exhibit similar

properties.

• Initial Conditions - Some languages may require that an initial model be

provided, or that the initial model is already relatively close to a verifiable

56

solution. In rare cases, it may be possible that no initial model needs to be

provided. This is a particularly interesting case since this implies that only

the set of requirements needs to be provided to generate a model that passes

verification. In most instances, it is expected that some base model is needed

since model transformations may only operate on model modification, not

necessarily model creation.

• Set Point - The set of requirements is similar to the setpoint input to a

control system. There may be many instances where the set of requirements is

unattainable. In such cases, the requirements may be considered to be invalid.

For explicit requirements, there may be many instances where a non-domain

expert modeler does not understand that being too strict on requirements has

no solution.

• Convergence - Depending on the initial model, the set of defined constraints,

and the expert block, models may converge to meet requirements. In many

cases models may never be able to converge and design changes may need

to occur either on the expert block or from the language user by selecting

less aggressive constraints. Ideally, convergence for a model implies that all

verification passes. There may be cases when the model may never converge to

a solution, or simply take too many iterations to solve. A model not converging

is parallel to a control system having a non-zero steady-state.

• Divergence - As opposed to convergence, a divergent system may occur in

some domains when the initial conditions are too far from a design equilibrium,

the setpoints are too aggressive, or if the expert block is too aggressive. The

expert block being too aggressive is similar to control systems where the gains

are set too high, causing oscillations or unstable dynamics. In the context of

model evolution, divergent properties may be manifested either as values run-

ning away, or additional model nodes being added infinitely. In the oscillatory

57

divergent case, the first method of correction may drive the model to fail other

verification, and a following di↵erent expert block may then drive the model

back to an even less correct state from before, to be driven by the original

correction step.

• Over Dampening - An over-dampened control system implies that the con-

troller may be sub-optimal regarding settling time. Similarly, with DCF, an

expert block may make changes that only have minimal impact on the model,

requiring further model iteration before passing constraints.

• Under Dampening - An under-dampened control system implies that the

controller may overshoot the goal before settling to a steady-state solution.

Similarly, with DCF, an expert block may make changes that only have min-

imal impact on the model, requiring further model iteration before passing

constraints. There may be cases when the model may never converge to a

solution, or simply take too many iterations to solve.

58

CHAPTER 4

The Dynamic Constraint Feedback Metamodeling Language

Chapter 3 provides a high-level functional view of the various required components

for a DCF featured DSML. In order to increase the adoption of DCF featured DSML,

the framework needs to be concretely and practically defined. With this in mind,

here is a short review of what has been covered.

1. Implementing DCF, as presented, involves a structure of connected compo-

nents, but the exact implementation per domain may vary.

2. Implementing DCF requires knowledge of the DSML’s metamodel for model

transformation and constraint definitions, i.e. the metamodel is in a similar

abstraction layer.

3. Dynamic constraints need to be modeled in conjunction with model transfor-

mations and verification tools.

4. A DSML aids design processes through focus on modeling domain concepts

rather than low-level details.

5. A DSME imposes structural constraints by only allowing model creation based

on the metamodel.

Design of a DSML is in itself, a design domain: the domain of modeling language

design. Similar to how a DSML provides the benefits of structural constraints on a

model, a DSME has rules for metamodel design. Implementation of DCF in a DSML

is possible but has the potential for an unrestricted implementation. Design of a

DSML with DCF therefore may have a higher success rate by enforcing DCF-based

59

structural constraints during DSML design. Thus, the philosophy of improving

modeling design through the use of a DSML may be applied to the design process

of a DSML itself. In other words, the principles and benefits provided by a DSML

during model design may also apply to the design of DSMLs. This is e↵ectively

what DSMEs provide: a pre-defined meta-metamodel for the design of metamodels.

Structurally, metamodels are constrained by the meta-metamodel, thus enforcing a

certain structural quality to metamodel design. A DSML may therefore be created

for the design of DCF based DSMLs, by rethinking the meta-metamodel to account

for DCF qualities. DSMEs also provide interpreters to produce the set of model

builders and template interpreters for a DSML, and such tools may also be useful

for a DCF based DSML. This new DSML language is called the Dynamic Constraint

Feedback Metamodeling Language (DCFML).

When considering implementation of DCF in a DSML, particular aspects in

Chapter 3 need to be implemented. These include the modeling methods necessary

for capturing constraints, mapping verification tools to constraints, and defining

model transformations for model correction. If carefully thought out, these may

be implemented in any standard DSME. Current DSMEs such as WebGME, as

taken from the name, are intended to be generic to model anything, including a

DCF featured DSML. However, as similar to developing low-level artifacts by hand,

it is easy to fall into unrestricted development, potentially making DCF a messy

integration. Certainly, this does not mean the resulting DCF integration methods

will not be e↵ective, but rather that they can be di�cult to implement. Also with

the prior abstractions described in Chapter 3, the wheel should not need to be

reinvented for each DSML to implement DCF.

Therefore it follows that implementation of DCF during DSML development can

benefit from the use of both interpreters and structural constraints. The DCFML,

presented in this work, replaces the standard WebGMEmeta-metamodel. The struc-

tural constraints from the DCFML can ensure that constraints are modeled and con-

60

Figure 4.1: The updated MIC diagram from Figure 2.1, showing integration of DCF
with the DCFML.

nected to the appropriate verification tools and design techniques. Similarly, model

correction transformations may be designed with knowledge of the metamodel and

may be tied to design expert blocks. An interpreter can then ensure that a produced

DSML follows a well-established structure.

Figure 4.1 shows an updated version of the DSML design diagram from Fig-

ure 2.1, highlighting the new components from the integration of the DCFML.

The blue highlighted components represent the new components. This abstrac-

tion demonstrates the DCF closed loop by using new model interpreters to produce

inputs for verification tools. The verification tools then provide the information for

constraint comparison, which sends constraint violations to the design experts. The

design experts then provide the model modification necessary to evolve the model,

61

Figure 4.2: The meta-metamodel of a modeling language considering dynamic con-
straint feedback.

from which the process may repeat. These components, other than the verifica-

tion tools, are produced from the Meta-Level Transition from the metamodeling

environment, which retains the original metamodeling design method. In addition,

dynamic constraints and the rest of the connections needed for closing the DCF

loop are defined in the similar abstraction layer as the metamodel. Such structure

is defined in a higher abstraction, at the meta-metamodel layer, and is where the

DCFML is defined. A concrete implementation of the DCFML is discussed in the

following sections.

4.1 Overview

The DCFML has components that may be thought of as functional mapping between

di↵erent parts in a component based design. An overview of the framework may

be built as a metamodel using WebGME following from the high-level perspective

in Figure 3.1. The metamodel for the DCFML is shown in figure 4.2. A main

62

di↵erence between the two figures is how edges are defined, where the metamodel

needs to represent the connections as models representing a mapping. For example,

the output of verification tools needs to be associated with corresponding dynamic

constraints, so the VerificationOutputMapping model provides this functionality.

Some other notable di↵erences are the exclusion of the deployment interpreter and

the comparator block. The comparator block is purely implied since it is not needed

to create the block for each constraint. Instead, each constraint is mapped to an

expert block, implying that a violation of the particular constraint will be provided

to the expert. The lack of the deployment interpreter is due to not being a necessary

part of the closed feedback loop.

4.2 Metamodel

The metamodel is the formal specification of how models are constructed and drives

how model transformations are to be defined. Figure 4.3 shows the formal specifica-

tion of a metamodel, i.e. the meta-metamodel. This meta-metamodel is designed to

replicate how common DSMLs are constructed in WebGME. This meta-metamodel

does not capture the full capabilities of metamodels, but is su�cient for the DCF

framework in simple languages. First Class Objects (FCOs) are replicated with a

similar name, the MetaModel FCO (MMFCO). This is also true for three class rela-

tionships for Inheritance, Containment, and Pointers. WebGME provides the ability

to decorate objects in a model and even includes their own metamodel style decora-

tor to make models produced under this meta-metamodel appear like a WebGME

metamodel.

4.3 Constraints

In the prior works that implemented a method of DCF, constraints were defined

either implicitly by the design domain (i.e. controller stability, no deadlock) or they

63

Figure 4.3: The formal specification of a metamodel, i.e. the meta-metamodel.

64

were defined explicitly (i.e. controller rise time, accepting states). Implicitly defined

constraints do not need to be captured by the metamodel since they are assumed to

be held for any model, but explicitly defined constraints vary between models and

need to be defined. For the DCFML, all constraints need to be defined for closing

the loop. Figure 4.2 shows the method of constraint capture, with an attribute to

define whether the constraint is explicit or implicit. The constraints also contain

a set of datatypes to define the structure of the constraint. Upon interpreting a

model of a DSML from the DCFML, explicit constraints become an addition to the

metamodel which will be shown in the case studies in Chapters 5 and 6.

4.4 Expert Block

Each expert block in the feedback loop may require a complex set of rules and

heuristics. Currently, this expert block serves as a placeholder since modeling an

entire set of possible algorithms into a single metamodel is outside of the scope of this

work. The case studies will only provide a simple reactive set of expert blocks that

will encompass a simple mapping between violations and model transformations.

More complex expert blocks may involve the coordination of multiple methodologies

and may need to include functionality like history tracking and stopping criteria.

An example of this is the Ziegler-Nichols controller tuning method. Here a model

needs to be dynamically tested until a particular state of tuning is reached before

proceeding with the next phase of tuning involving di↵erent gains to be adjusted.

4.5 Model Transformations

For the DCFML, model transformations serve as a method to evolve a model into

a more correct solution. An already available transformation language could also

potentially be used in place of the transformation definitions defined in this DCFML.

The model transformation language GReAT would be a good fit, but support is only

65

Figure 4.4: Model transformation definitions, relating to components in the meta-
model.

available for GME instead of WebGME. The only caveat to using a general purpose

transformation language is that they provide methods for many transformations,

for any horizontal, vertical, exogenous, and endogenous situation. Since only model

evolution is needed for the DCFML, transformations needed are fairly simple due

to both the source and target models being under the same metamodel. This is

further simplified by limiting the types of transformations to either adding, deleting,

or modifying attributes of model components. There are perhaps more evolution

techniques needed when considering general domains, but these simple rules are

su�cient for the case studies.

Figure 4.4 shows the metamodel for transformations. This metamodel is inspired

by simple examples in GReAT. Each transformation method has a set of rules,

where rules contain references to the metamodel. Each reference to a metamodel

component also has an attribute that defines the function of the reference. These

functions include either adding, removing, changing an attribute, or no action.

Interpretation of the model transformation definitions provides source code in

the form of functions with inputs relating the references. These functions require

the WebGME identifier of the blocks, a necessary part to ensure that the correct

66

blocks are added and related to existing instances in the model. Each expert block

is responsible for deciding which transform needs to be performed.

67

CHAPTER 5

Case Study: Pathing Language

The Pathing Language is a simple DSML intended for fourth-year elementary school

students to design behaviors for a self-driving vehicle. The simplicity of the language

serves an example design domain that demonstrates fitting a language into the ver-

ification feedback framework. The language’s intent was to be deployed at multiple

elementary schools among many students, all tasked with designing a trajectory for

the CAT Vehicle that would not violate important safety constraints. This served

as an educational tool for the children, to learn about issues of non-holonomic mo-

tion planning to improve spatial reasoning. To ensure safety without needing any

double-checking by a third party, verification tools were implemented to ensure that

behaviors operated within safety-critical boundaries. Models of trajectories were

then interpreted into code and demonstrated at each school’s open fields. Also,

models could be interpreted into Lego EV3 code, which corresponds to a scaled-

down version of the field for students to run their code on a physical platform inside

the classroom.

This language is highly domain-specific, as it is intended for generating code for

a particular vehicle to be operated in a particular environment. This results in a

modeling language that does not need to capture all aspects of the working system.

For example, since the vehicle is known and does not change, this does not need

to be captured in the metamodel. Similarly, aspects of the environment also do

not need to be modeled. The resulting metamodel and constraints are therefore

greatly reduced in complexity. Important safety constraints do however need to be

considered since many potential paths may drive the vehicle into obstacles or outside

of the constrained environment.

68

Figure 5.1: The possible set of primitive motions in the pathing language.

This language was developed and deployed before the consideration of the

DCFML. The description of the language will be initially presented as it was initially

developed before demonstrating how it can be fit into the DCFML. This serves as

a case study for adapting a prior language to make use of DCF. The language’s

simplicity serves well as a preliminary demonstration for the DCFML.

5.1 Domain Definitions

This particular domain is highly specific, considering that only limited choices were

allowed for path creation. A path in this regard is a combination of a set of ordered

primitive motions. After one primitive motion is executed, a following primitive

motion is executed. A complete path may then be thought of as a sequence model,

with no branching nor decision making. Figure 5.1 shows the set of primitive motions

designed for this language. Each primitive motion has no adjustable parameters, so

anytime a primitive motion is invoked the vehicle will drive in the same manner.

Deployment in this domain involves generating necessary code to carry out the

sequence of ordered primitive motions on the self-driving car. For the final demon-

stration, the vehicle would be placed on a large open field before running the path.

The primitive motions were designed based on the capabilities of the vehicle, from

pre-developed sets of controllers. The chosen motions result in a grid of possible

destination coordinates due to the 90 degree turns and driving distances. Figure 5.2

69

shows a sketch of an open field at an elementary school with the largest grid layout

available, a 4x4 square. As an added challenge for path creation an obstacle may

be placed at one of the grid points, and the students must create a path that avoids

the obstacle.

The metamodel for the pathing language is shown in Figure 5.3. A Path is

defined as being the combination of PrimitiveMotions, and Prim Mot Connections

to describe the ordering. Each PrimitiveMotion can be of one concrete type, ei-

ther ZigZagLeft, Left, Straight, Right, or ZigZagRight. The metamodel has some

attributes like Distance and Velocity listed, however these were for initial develop-

ment and served no purpose when deployed. Inside of Path, multiple attributes let

a modeler define the set of explicit constraint values. Figure 5.4 shows an exam-

ple model from the metamodel, with a decorator implemented to reduce ambiguity

during model design.

5.1.1 Constraints and Verification

Even with a simple language, it is easily possible to design a path that places the

vehicle in a dangerous situation. Constraints therefore need to be implemented and

validated to ensure no unsafe driving behavior becomes generated code. As shown

in the metamodel, some explicit constraints were defined as attributes in the Path

node. Constraints for this language were defined both explicitly and implicitly, and

therefore not all constraints are shown in the metamodel. Since explicit constraints

place the responsibility on the modeler, they need to be a part of the metamodel.

Implicit constraints still need to be understood by the modeler, but that are non-

modifiable.

The first main constraint involving safety is that no path should ever drive

beyond the defined grid from Figure 5.2. This constraint is safety-critical, since it is

a trivial task to model a path that extends beyond the grid, i.e. four Straight motions

in a row. Since this applies to all paths, this is an implicit constraint. This constraint

70

Figure 5.2: An example path using primitive motions within a grid constraint.
Shown are the coordinates, orientation, and a diagram of a physical space for running
paths.

71

Figure 5.3: The metamodel for the pathing language.

Figure 5.4: An example path created using the metamodel from figure 5.3 in We-
bGME.

72

is verified using path integration techniques, which is similar to reachability analysis.

Pseudocode for the path integration method is shown in Algorithm 1. If the path

ever reaches a grid point outside of the domain’s area, then this dynamic constraint

is violated.

Algorithm 1 Check Path Behavior

1: procedure GoodPathBehavior

2: motion = getStartMotion()

3: waypoint = getStartWaypoint()

4: repeat

5: waypoint integrate(motion, waypoint)

6: if ¬inBounds(waypoint) then return false

7: motion getNextMotion(motion)

8: until getNumSrcConnections(motion) = 0

9: waypoint integrate(motion, waypoint)

10: if ¬inBounds(waypoint) then return false

11: if waypoint 6= getEndWaypoint() then return false

return true

The next safety-critical constraint involves the obstacle. It was a task for the

teacher to place an obstacle on a particular grid point, which the student’s then

needed to define. Because of this flexibility, this constraint was an explicit part of

the metamodel. As similar to the out of bounds constraint, this constraint can be

verified through path integration or reachability methods.

The third constraint is viewable in the metamodel, and is therefore explicit.

To ensure that students had a well-formed path with a properly defined starting

point, the students needed to define both the starting and ending coordinates and

orientation. For fewer complications on demonstration day, the starting points had

to be on the grid corners. For more interesting paths, the endpoint had to also be on

a corner. The particular corners were not important, but the verification ensured

73

Constraint Classification Purpose Type Verification
ObstacleAvoid Explicit Safety Coordinates Path Integration
OutOfBounds Implicit Safety Area Path Integration
WellDefinedPath Explicit Both Coordinates Path Integration
MinMoves Implicit Education Numerical Comparison

Table 5.1: The list of pathing language constraints, classification in the DCFML,
purpose, data types, and verification methods.

that the path with expected start and endpoints were fully well-formed, serving

purposes both for safety and education. Verification is also handled through path

integration, ensuring that the end can be reached from the initial starting location.

The final constraint is intended to avoid paths that are too simple and is therefore

a purely educational constraint. To avoid a straight path from one corner to another

(i.e. three Straight motions), a minimum number of moves was required for each

path. This lets students flex their creativity but serves no safety purpose. No path

should be under six total moves, therefore this was an implicit constraint. This is

the simplest constraint to check, as only the number of primitive motions needs to

be compared.

Table 5.1 shows all of the constraints for the pathing language, along with the

corresponding classification, purpose, type, and verification method.

5.1.2 Deployment

Deployment interpretation occurs when invoking the interpreter plugin in WebGME,

however code would only be generated after verification was passed. This verification

step is checked on each attempt to generate code to ensure that only verified models

would produce code. Feedback was provided to the modeler upon plugin invocation,

either being a green box for a pass or a red box for a failure. If the model passed

verification, code for both the self-driving car and the Lego EV3 robots could be

downloaded. If verification failed then no code was available for download, but

clicking on the error provided the exact verification failure. Figure 5.5 shows three

74

Figure 5.5: Example feedback provided to the user after verification failure.

examples of di↵erent verification failures, providing guidance for the students to

correct their models. Part of this feedback also provides information regarding

some structural errors if pathing ambiguities exist.

5.2 Transitioning to the DCFML

This language originally had most of the pieces needed for DCF, however does not

have a fully closed loop. The pieces missing include the model transformations and

design technique expert blocks. Fortunately, the language is relatively simple, where

the model evolution steps only exist as adding or deleting primitive motions. Also

since the language was priorly created in WebGME, transitioning to DCFML is a

trivial task since the metamodel is directly compatible. Other parts still need to be

designed, such as the model transformation definitions and expert blocks. Also, the

constraints now need to be formally defined.

75

Figure 5.6: The model of DCF using the DCFML for the updated pathing language.

5.2.1 Constraint Remodeling

Constraints exist in both an implicit and explicit aspect, but only the explicit con-

straints were modeled in the original pathing language metamodel. When transi-

tioning to DCFML, all constraints need to be modeled within the same aspect. Con-

straints have attributes that describe whether they are implicit or explicit. Figure 5.6

shows how the DCF enabled pathing language appears with the new constraints.

A decorator is used in the model builder to help distinguish between di↵erent DCF

components. The metamodel appears disconnected, however it contains the meta

specification needed to define the transformations.

The DCFML provides minimal support for constraint definition, which is su�-

cient for the pathing language’s constraints. Figure 5.7 shows the modeled constraint

for the explicit constraint needed to ensure that paths are well defined. This con-

straint requires the definition of a start and end location and orientation, which is

76

Figure 5.7: The model of the constraint for determining a well defined path.

Figure 5.8: The updated pathing metamodel using DCFML, with removed con-
straints.

seen defined as vectors named startLocation and endLocation.

Furthermore, the original metamodel does not need to have the dynamic con-

straints modeled since the DCFML specifies them elsewhere. As a result, the Path

node can have reduced apparent complexity in the metamodel. Figure 5.8 shows

the updated metamodel with removed explicit constraints. Also, the metamodel is

slightly changed from removing deprecated parameters, along with a minor refac-

toring and a renamed connection relation.

77

Figure 5.9: The model transformation rule for AddMotion.

5.2.2 Model Transformation

As shown in the DCF model in Figure 5.6, only two types of model modifications

exist for the pathing language. AddMotion, as the name implies, adds a connected

motion to the sequence. Conversely, RemoveMotion removes a motion and connec-

tion from the sequence. Figure 5.9 shows the transformation rule definition. Before

adding a new motion and connection, the parent of the newly added models needs

to be known, along with a reference to a current motion for a proper connection.

All of this is modeled in the transformation rule. RemoveMotion is modeled in a

similar fashion, however the reference has an attribute that designates the motion

and connection for removal.

5.2.3 Expert Blocks

The pathing language is relatively simple, along with the transformation definitions.

It would seem that the expert blocks would also be simple. Unfortunately due to the

constraints, the expert blocks are not as trivial as simple as the language. For the

sake of brevity, only the expert block for the obstacle avoidance constraint violation

will be discussed.

78

Per the language deployment and corresponding developed curriculum, it was

deemed that a modeler would design an initial path, then an obstacle would be

placed at the second-to-last reached grid point. This provided to be a small design

challenge for the students to work around the added constraint. Automating this

process requires an algorithmic implementation to account for all of these possibil-

ities. Fortunately, the grid system is very symmetric, therefore only a small subset

of obstacle violations needs to be solved for a variety of potential collisions. This

results in only needing to look at one corner since a constraint for the endpoint is

to end in a corner. Each corner has only two possible ending orientations. These

orientations have a diagonal, mirror symmetry. Since all corners are similar under

a rotational symmetry, only one corner at one orientation needs to be considered.

For the sake of these examples, the North-East corner was chosen, with a final

Northward orientation.

Working backward from the end location, there only exist three valid motions

to reach this grid point and orientation. These motions are a Straight, a Left, or

a ZigZagRight turn. Initially, it appears that only three potential corrections are

needed for all possibilities. First look at the case with a final Straight motion.

Backtracking to the second-to-last grid point, an obstacle prevents the path from

reaching this location. The straight path was initially valid, but now that the grid

point is invalid the end must be approached from a di↵erent grid point. Thus, the

final straight motion must be changed to either a left turn or a right zigzag, in

order to maintain the goal orientation. Unfortunately, the second-to-last motion

now also needs to be changed for path realignment. Figure 5.10 shows the two

trivial solutions for path correction based on the last and second-to-last motions

in the path. This solution is relatively straight forward in the cases of a second-

to-last motion involving either a straight or a zigzag right turn, as both motions

can be easily changed to avoid the obstacle. For the expert block, each of these

can be corrected by invoking two RemoveMotion transformations, followed by two

79

Figure 5.10: Example trivial re-routing solutions for problems with a final straight
motion and a priorly placed obstacle.

AddMotion rules.

However, there exists a third option for the second-to-last motion in the case of

a final straight motion: a left turn. The orientation and location at the start of the

left turn scenario have no available primitive motion to connect to the final motion.

As a result, a further step back is needed to check for further routing possibilities.

At this stage, all five primitive motions can have a valid lead into a left turn. All

five of these scenarios need to be evaluated for routing possibilities since each starts

at a unique pose. Figure 5.11 shows all five scenarios along with five corresponding

solutions. As opposed to the initial two trivial scenarios, some of the solutions now

change the number of motions. Two scenarios remove a motion, and one scenario

adds two motions. In total, the final straight scenario resulted in needing seven

potential design corrections.

There are now two scenarios remaining. The final left motion leaves the second-

to-last grid point non-adjacent to the boundary, therefore having a prior motion

existing as any of the five potential motions. In all of these corrections, the only valid

final motion that avoids the obstacle is a straight motion. Figure 5.12 demonstrates

trivial solutions in the case of a second-to-last straight, zigzag left, or left motion.

80

Figure 5.11: Followup non-trivial re-routing solutions for problems with a final
straight motion and a priorly placed obstacle.

Though these are trivial, in all cases the total motion count needs to increase by

either one or two motions in order to reach final straight motion with the correct

orientation. The case of the leading right or leading zigzag right is more cumbersome

since the limited set of primitive motions with obstacle location require large changes

in the overall trajectory. As shown in Figure 5.13, the leading zigzag right motion

path now must loop around the obstacle, causing two path intersections to reach

the final straight. This scenario adds an additional eight new motions. The leading

right motion needs to follow a similar correction but adds nine total motions to the

original path.

The final scenario involves the final zigzag right motion. As similar to the final

left motion case, the only valid final motion to avoid the obstacle placement is a

straight motion. Also similar are the possibilities of the second-to-last motion, where

all five motions are valid. Figure 5.14 demonstrates the three trivial solutions,

involving a second-to-last motion of either a zigzag left, straight, or left motion.

These path corrections also represent some of the inverse operations from previous

81

Figure 5.12: Example trivial re-routing solutions for problems with a final left mo-
tion and a priorly placed obstacle.

Figure 5.13: Followup non-trivial re-routing solutions for problems with a final left
motion and a priorly placed obstacle. Some motions have a dotted line to aid in
trajectory clarity.

82

Figure 5.14: Example trivial re-routing solutions for problems with a final zigzag
motion and a priorly placed obstacle.

straight corrections in Figure 5.10 and Figure 5.11. The non-trivial scenarios of

either a leading right or zigzag right are shown in Figure 5.15, resulting in an

additional six or nine moves, respectively.

83

Figure 5.15: Followup non-trivial re-routing solutions for problems with a final
zigzag motion and a priorly placed obstacle.

84

CHAPTER 6

Case Study: Reachability

The reachability language is designed with the idea of using di↵erent types of veri-

fication tools for a potentially similar task. Each verification tool requires di↵erent

inputs and produces di↵erent outputs, but sometimes these can be incredibly close.

Arbitrary, o↵-the-shelf tool selection will be a key component to the success of the

DCFML. This language therefore, as opposed to the pathing language in Chap-

ter 5, is built from scratch to discover the challenges with incorporating di↵erent

available verification tools. Also, this language’s goal is to demonstrate di↵erent be-

haviors of expert block selection, and how they relate to traditional control system

characteristics.

6.1 Domain Definitions

This language makes use of hybrid system design through modeling of state tran-

sitions and LTI based controllers. Design starts by concisely defining the design

domain to ease design complexity. This example DSML is based on controlling

an autonomous, Ackerman steering style vehicle using hybrid control techniques to

reach a particular goal. Gains for each control mode may be modified, and the time

that a controller is active before transitioning into a sequential mode is also config-

urable. Figure 6.1 shows the model of DCF constructed using the metamodel from

the DCFML. This DCF model incorporates two di↵erent verification tools, three

constraints, two experts, and two transformation techniques.

The control of vehicle trajectory is based on a kinematic model of a car, reduced

to the kinematic bicycle model. This method is a common approximation for au-

tonomous vehicles [89] [61]. It is assumed that the car has 0 for all variable initial

85

Figure 6.1: The DCF design of a simple hybrid controller language

86

Figure 6.2: The kinematic bicycle model, commonly used for autonomous vehicle
approximations [77].

conditions. Only the front wheel is steerable with angle ✓, and the angle of the

front wheel creates a perpendicular projected intersection with respect to the rear

wheel, which is known as the Instantaneous Center of Rotation (ICR). The rear

wheel drives operate the speed with control input v. The front and rear wheels are

separated by length L. Figure 6.2 shows the kinematic construction. The mathe-

matical model showing the rates of change in position x and y, as well as angular

rate �, based on the control inputs are shown in Equation 6.1.

2

6664

ẋ

ẏ

�̇

3

7775
=

2

6664

vcos�

vsin�

v
Ltan✓

3

7775
(6.1)

87

Figure 6.3: The metamodel of a simple hybrid controller.

6.1.1 Metamodel

Inside of the HybridMetaModel block, the metamodel is constructed. Figure 6.3

shows the metamodel definition. This not an all-encompassing method to model all

hybrid controllers, but is rather targeted for the simple domain of driving a car to

a particular location. An example of a controller a user may construct using this

metamodel is in figure 6.4. Each mode transitions to another after a defined amount

of time in seconds resulting in modes acting sequentially. Each mode has attributes

corresponding to the controller set points for both speed and tire angle. Modes also

contain a simple control law, known as a proportional gain, to control steering and

speed.

88

Figure 6.4: An example set of modes in a Diagram constructed using the meta in
Figure 6.3. Also shown is the inclusion of explicit constraints that are user definable.

6.1.2 Model Transformations

This example language features two model transformation examples. Figure 6.5

shows a rule inside the AddModeAndTransition transformation. This transforma-

tion is responsible for adding a new mode, then connecting a new transition from

an existing state to the new state. The new state and transition need to be refer-

enced to both an already existing state, and the parent diagram. Here there are two

components that are needed for reference, the original diagram and a state where a

new transition is to be connected.

Appendix A shows the code generated from interpretation of the transformation

in Figure 6.5. The function shows that the references in the transformation meta

result as function inputs, a necessary part to place models under the right parent

and to build appropriate associations. Figure 6.6 demonstrates a simple execution

of the model transformation on a set of sequential modes. The reference mode is

the final mode in the sequence and is highlighted to show WebGME’s ID which

is used for correct placement when invoking the function shown in Appendix A.

After transformation execution a new mode is created along with a new outgoing

transition from the referenced mode.

89

Figure 6.5: A rule in the AddModeAndTransition model transformation using the
HybridMetaModel 6.3.

6.1.3 LTI Verification

Constraint modeling is based on the capabilities of the verification methods due to

the need for tool outputs to be directly compared. The constraints of the system

will be to ensure that a system will be able to reach a particular goal starting from

the origin and make sure that there is no overshoot in each controller while being

under a particular rise time. Three di↵erent verification tools are explored for this

language. MATLAB’s stepinfo is a simple function to execute and provides simple

results that may be directly comparable to primitive constraint data types. For this

example language, it is assumed that a 2nd order model is valid to represent the

plant of the car as described in Equation 6.2.

P =
1

s2 + 20s+ 40
(6.2)

This model of the car is not something that the user can change since this is a

language specifically designed for a particular system. Our controller may then have

a proportional gain set by the user at an initial value of 100. An interpreter would

90

Figure 6.6: An example model before and after the AddModeAndTransform is ex-
ecuted. In the before image, the state of interest is highlighted to show mode of
interest, representing the NewMode in figure 6.5.

91

Stepinfo Label Value
RiseTime 0.2237

SettlingTime 0.3502
SettlingMin 0.6474
SettlingMax 0.7193
Overshoot 0.6962
Undershoot 0

Peak 0.7193
PeakTime 0.4974

Table 6.1: Verification result from stepinfo() defined in Listing 6.1.

then need to be designed to take the prior knowledge of the system plant, along

with user-set controller design. The script in Listing 6.1 is an example of generated

MATLAB code from the stepinfo() verification interpreter. Executing this script

results in the output seen in Table 6.1.

Listing 6.1: Generated verification input for MATLAB’s stepinfo().

1 Kp = 100 ;

2 s = t f (’ s ’) ;

3 C = pid (Kp) ;

4 P = 1/(s ˆ2 + 20⇤ s + 40) ;

5 T = feedback (C⇤P, 1) ;

6 output = s t e p i n f o (T) ;

This is a pretty trivial verification tool to implement especially if the plant is not

needed to be modeled, however provides directly comparable information against the

constraints of rise time and overshoot. One note is that this is only for one particular

mode, whereas a hybrid system is usually intended to be built with multiple control

modes, thus implying that this tool needs to be run against each mode. This tool is

su�cient for checking two of the three constraints, however it cannot handle running

the constraint of reachability.

92

6.1.4 Reachability Verification

Use of reachability tools may appear to be redundant, and obsolete the decision

to use Matlab’s stepinfo. There are two primary reasons why using stepinfo in

conjunction with reachability analysis is still valid.

• Stepinfo provides basic information that directly relates to the constraints

and forgoes the need to write data analysis tool to convert data for direct

requirement comparison.

• Dynamics of the controllers may be too slow for the transition time, so extrap-

olation of dynamic behaviors for LTI design has the potential to be incomplete.

Similarly, stepinfo is incapable of providing the result of a hybrid system, hence why

the combination of verification tools is important.

There exists a wide selection of reachability tools, however only two di↵erent

tools were inspected for checking models. For this particular language, dReach

and HyCreate were chosen based on their availability and ease of use. dReach

and HyCreate provide di↵erent methods of computing reachability using a hybrid

system. Either of these tools will work for the purpose of this simple language, but

there are scenarios where some of the methods of computation and features in each

tool may be useful in particular domains. For example, dReach can solve for the

specific initial conditions necessary to achieve a strict reachable state.

Both of these tools are based on hybrid control system design, allowing for the

modeling of modes and transitions. To generate files for each tool, configuration

files can be reverse-engineered for their internal structure. When abstracted, each of

these languages model hybrid systems using a di↵erent metamodel. Figure 6.7 shows

the corresponding class diagrams of each tool. In dReach, outgoing transitions are

contained within each mode, whereas transitions are separate entities that manage

an association between modes in HyCreate. Note that both of these metamodels

also di↵er from the standard of WebGME metamodel design, where a connective

93

Figure 6.7: Configuration file abstraction for dReach and HyCreate hybrid system
models.

model is associated through pointers. All of these di↵erent modeling techniques are

certainly valid for modeling a hybrid system, but demonstrates the need for model

transformation methods to map a model from one metamodel to a di↵erent design

paradigm.

Each tool also has very di↵erent lower-level syntax. HyCreate files are written in

XML format while dReach has its own custom yet easily readable syntax. dReach

is mostly order-agnostic by referring to di↵erent modes through a unique integer.

HyCreate requires strict ordering, so each mode needs to have derivatives defined

in the same order. HyCreate functions by generating Java code, then compiles

and runs the simulation to provide reachability data. Due to this, derivatives and

guards need to be written in a particular syntax. This can complicate interpreter

writing, for example, to call a sinusoidal function in dReach, using sin(x) would

su�ce whereas HyCreate would use Math.sin(x).

As an example of the complications, in dReach, a derivative is written as shown

94

in Listing 6.2. On the other hand, the same derivative for HyCreate is shown in

Listing 6.3.

Listing 6.2: A derivative in dReach

1 d/dt [v] = ((((r�v)⇤1)/1)�((v ⇤ 0 . 2) / 1)) ;

Listing 6.3: A derivative in HyCreate

1 re turn new I n t e r v a l ((((($R�$V)⇤1)/1)�(($V⇤0 . 2) / 1)) ,

2 (((($R�$V)⇤1)/1)�(($V⇤ 0 . 2) / 1))) ;

Handling the syntax in one particular language is not very di�cult, but gener-

alizing a method for all tools is a challenging problem. This is especially true when

defining specific properties in one tool that have similar or no use in another. A sin-

gle interpreter has been written to generate code for both tools described. Normally

an interpreter can directly translate models into artifacts, however here a model is

first translated into a data model in the JavaScript Object Notation (JSON) format.

The structure of the data model closely represents the metamodel, but has added

attributes for easier model traversal. For example, a mode under the specification

of WebGME or HyCreate has no information on the incoming and outgoing tran-

sitions, which would be a helpful part of generating a dReach configuration file.

Likewise, only modes have transitions under the dReach model, so iterating over

just transitions for HyCreate file generation is a challenge. The data model has all

components flattened for easy iteration, and each component has references to all

connected components. Each mode has a list of incoming and outgoing transitions,

and transitions are contained under the diagram with references to the source and

destination.

This data model acts as an intermediary step so that the artifact generation

becomes trivial for both tools. The data model is also populated with elements

95

that are tool-specific, such as the faceSizeRatio and GridSize needed for HyCreate,

and the unique integers for each mode needed for dReach. Math expressions for

derivatives are also generated for inclusion in the data model. Embedded javascript

may then be used to fill out a template version of a configuration file for each

tool. A data model snippet of a derivative in a mode is shown in JSON format

where di↵erences in expressions and particular tool-specific attributes are shown in

Listing 6.4.

Listing 6.4: A full derivative definition in a data model

1 ”v eNd ” : {

2 ”name” : ”v�d e r i v a t i v e ” ,

3 ”uname” : ”v�derivative emRG ” ,

4 ” expre s s i on ” : ” ((((r eNc�v eNd)⇤1)/1)�((v eNd ⇤0 .2)/1))” ,

5 ” id ” : ”/e/m/R/G” ,

6 ” f a ceS i z eRa t i o ” : 0 .1 ,

7 ” g r i d S i z e ” : 0 .02 ,

8 ” reg r i dRa t i o ” : 1 .7 ,

9 ” express ionHyCreate ” : ” (((($R�$V)⇤1)/1)�(($V⇤0 .2)/1))” ,

10 ”expressionDReach ” : ” ((((r�v)⇤1)/1)�((v ⇤0 .2)/1))” ,

11 ” der i va t i veAss i gnment ” : ”v eNd”

12 } ,

The practice of transforming a model to fit two di↵erent verification tools shows

how further verification tools could be more quickly implemented. Production of

a flat data model could be in a generalized form for a majority of metamodels.

Verification tools would then only need to be a skeleton version. For the purposes

of this particular hybrid design language, only one verification tool is needed to

assess reachability. HyCreate was chosen based purely on ease of execution, though

switching to dReach in the future will be easier for backend server integration.

96

6.1.5 Expert Block for Reachability

The expert block for the constraint of reaching a particular set of coordinates within

a radius is based on the reachability information provided by HyCreate. A final

reachable set that is not within the target circle needs to have a modification that

could occur either with a change in gain tuning, a transition time, or an additional

mode. This expert takes the approach of adding a control mode at the end of the

control sequence. Figure 6.8 shows a simple example illustrated on data provided

by HyCreate. The first model iteration only has a single control mode, driving the

vehicle along the x-axis. This does not achieve the target circle. The expert block, in

this case, takes the centroid of the final reachable set and solves the tangent circular

path needed to reach the goal center. The path information is then used to set the

controller set points in a new mode. Invocation of the model transformation shown

in Figure 6.5 then modified the model, shown as 2 mode solution. This the new

mode, the HyCreate tool is invoked once more and demonstrates a proper reachable

set.

The kinematic bicycle model provides a simple geometric solution for reaching

the goal from a current state. This can be solved by first determining the centroid

of the current state from the verification output, for the position (x, y) and heading

�. To make the solution easier, the goal point (xg, yg) is transformed to be with

respect to the current heading and location, as in Equations 6.3.

2

4 x
0

y
0

3

5 =

2

4 cos(�) sin(�)

�sin(�) cos(�)

3

5

2

4 xg � x

yg � y

3

5 (6.3)

After this transformation the trajectory circular sector angle can be deter-

mined, as in Equation 6.4.

 = 2tan�1(
x
0

y0
) (6.4)

From knowing the sector angle, the turning radius r of the final motion can be

97

Figure 6.8: Output of HyCreate with a single mode system, marked to show the
unreached circle. A second system is shown after model transformation with the
necessary added mode to reach the goal coordinates.

98

determined.

r =

p
x02 + y02

sin()
sin(

⇡

2
�

2
) (6.5)

The turning radius can then be used to determine the front wheel angle ✓, bases

on the wheelbase L.

✓ = tan
�1(

L

r
) (6.6)

The only other two values to set are the speed and the transition time. Since

only the traversal distance is the most important part, one value can be set and

the other can be calculated. for this example, the speed is set as v = 1, and the

transition time t can be determined by the arc length.

t = r (6.7)

For this particular language, only simple solutions to the expert blocks were

introduced. Though this simple case can be solved by this expert, it is clear that

the reachable set became larger in area. For a more complicated system with many

modes, this may grow large enough to break feasibility of this solution. Instead a

reduction in modes and gain tweaking may be a better approach. This solution is

here to illustrate a simple method of model evolution to correct a model.

6.1.6 Expert Block for LTI

There are two designed expert blocks for the simple hybrid language to handle the

three possible constraint violations. The first two constraint violations of rise time

and overshoot are handled by the same expert block involving controller tuning. The

controller tuner is provided with constraint violations and then makes adjustments

to the corresponding controller gains. As an example, a user may define the rise

time constraint to be 0.4 seconds but must never tune the gains too high to create

overshoot. From the previous example, we see that a small amount of overshoot

99

Iteration Gain Overshoot
1 100 0.6962
2 90 0.3228
3 81 0.1054
4 72.9 0.0127
5 65.61 0

Table 6.2: Gain tuning from overshoot violation

Iteration Gain RiseTime
1 10 0.7693
2 14 0.7045
3 19.6 0.6284
4 38.416 0.4531
5 53.7824 0.3636

Table 6.3: Gain tuning from rise time violation

does exist, resulting in a constraint violation. We also see that the rise time has

not exceeded the user’s defined constraint. A heuristic-based expert block may then

have a rule to decrease the gain by 10%, then try again. Using this rule, table 6.2

shows how the dynamics of the model evolve over each iteration.

This heuristic appears to work well for overshoot violations. Likewise, if the

gain is tuned to be too small, then the rise time will be too slow. If we start with

an initial model with a gain of 10, then the rise time will be 0.7693. Similar to

the overshoot handling, the expert may be designed to increase the gain by 40%

until the rise time does not violate the constraint. This rule results in the iterations

shown in table 6.3. Both the rise time and overshoot corrections can be codified as

in Equation 6.8. KP represents the proportional gain of the controller to be tuned.

KP KP ⇤

8
<

:
0.9 overshoot > 0

1.4 risetime > 0.4
(6.8)

100

6.1.7 DCF as a Control System

For the sake of example, take the previous expert block for LTI constraint violations

and rework it to more closely represent a control system by correcting the model

based on the magnitude away from being constraint violation-free. This is similar

to what a proportional gain controller accomplishes. Equation 6.8 has now been

update to reflect this expert block design change, as shown in Equation 6.9.

KP KP �Kdesign

8
<

:
�(0� overshoot) overshoot > 0

0.4� risetime risetime > 0.4
(6.9)

Kdesign now represents a proportional change to the design based on constraint

violation error, adjusting the rate of change of the model’s proportional gain KP .

With this new expert in place, di↵erent behaviors may be observed with di↵erent

values for Kdesign. Assuming an initial gain of KP = 100 as before, the resulting

trend can be seen in Figure 6.9. With these parameters, it can be observed that

the controller starts with an overshoot of 0.7, then exponentially decays over each

iteration. At iteration 25, the overshoot is very close to 0. These characteristics are

similar to an over-dampened controller.

For the next example, Kdesign has been increased to 80, to be more aggressive

and hopefully reduce the number of iterations. Figure 6.10 shows the results with

Kdesign = 80. At first glance, this also appears the be over-dampened but this time

in rise time. However, with the same initial conditions, the first iteration shows to

be the same overshoot as before, at 0.7. The correction for this overshoot error was

so extreme that the next iteration failed the rise time constraint. This example,

therefore, represents an overshoot in design.

Since moving from Kdesign = 20 to Kdesign = 80 went from an over-dampened

to an under-dampened system, heuristically it may make sense to attempt a middle

ground, say Kdesign = 50. Doing so corrects the model in a single iteration, resulting

in 0 overshoot and a rise time of 0.3155.

101

Figure 6.9: Controller performance per iteration of model correction with Kdesign =
20, representing an over-dampened system.

Figure 6.10: Controller performance per iteration of model correction with Kdesign =
80, representing an overshoot.

102

Figure 6.11: Controller performance per iteration of model correction withKdesign ⇡
148.7968, closely representing an oscillator.

Regarding further dynamic behavior of control systems, there exists the construct

of having imaginary poles with little or no real number component. In such cases,

oscillatory behavior can be observed. Since an overshoot example from increasing

Kdesign has already been shown, this suggests that oscillatory may be observed

by further increasing Kdesign. With Kdesign = 148.796828025, oscillatory behavior

appears, as shown in Figure 6.11. This does not represent a pure oscillator since

the oscillation eventually dies down and converges on a corrected model at the

17th iteration, however it does exhibit similar behavior to a dynamical system with

imaginary poles with a little real part. Every other iteration, the behavior of the

controller represents a close-to-previous yet closer-to-correct result, which is why

the model eventually meets the dynamic constraints.

The value of Kdesign for the previous example was discovered by brute force

attempts to create long oscillations. By increasing this value such that Kdesign =

148.7969, the design system is unstable. Figure 6.12 shows the results of the unstable

design expert. In this example, every other iteration has the behavior of being close-

to-previous yet further-from-correct. At iteration 12, stepinfo resulted in producing

103

Figure 6.12: Controller performance per iteration of model correction with Kdesign =
148.7969, closely representing an unstable system

NaN as verification output, which is due to the expert block setting KP ⇡ �814.5.

This represents a positive feedback loop, and stepinfo can only produce numerical

verification output for stable systems.

104

CHAPTER 7

Conclusion

7.1 Contribution

The DCFML provides an extension to WebGME’s meta-metamodel to consider

DCF integration in DSML design. Implementing automatic verification methods in

CPS based DSMLs can be a critical part of ensuring that models abide by impor-

tant safety constraints. The verification loop can also be potentially fully closed to

automatically correct constraint violations through model evolution. This frame-

work aids a DSML designer by extending an already familiar metamodel with the

methods needed for model transformation, constraint modeling, and expert block

connectivity. By providing a concrete syntax for DCF based DSMLs, unrestricted

implementation can be avoided and therefore aid in dynamic requirement validation

and verification. Implementation of DCF is not a new idea, but the abstraction as

an extension to the metamodel is new.

Design of the DCFML also provides a concrete example regarding the improve-

ment of DSML design in general. Outside of implementing DCF, DSML design pro-

cesses may benefit from thinking about constraints imposed on the metamodeling

process, through abstract thinking of the meta-metamodel. The DCFML example

shows that a family of languages for verification-important CPS domains benefited

from rethinking the meta-metamodel. The same could be true for further families

of languages in CPSs, not necessarily with a focus on verification but with other

potential qualities. These may even extend outside of CPS development and impact

DSML design in general.

This work briefly looked at case studies implementing the framework into both

105

a trajectory language and a simple hybrid controller design language. The hybrid

controller DSML demonstrated the design of the metamodel, model transformation,

expert blocks, and verification tool integration. Interpretation of the design auto-

matically fit constraints into the metamodel, and generated code for model trans-

formations. Expert blocks were also constructed to demonstrate simple methods of

closing the loop. These are primitive examples but demonstrations were shown on

how models can be automatically evolved into working solutions.

7.1.1 Limitations

The DCFML described is in its infancy, and parts of the design could be further

defined. The expert block is lacking in its current state, requiring code to be written

at a low level to be properly implemented. As discussed, expert blocks can vary

greatly so abstraction for general purpose modeling is not a small task. Doing so

could result in coupling model transformations with the expert block during system

interpretation, greatly reducing the time of implementing DCFML. Implementing

expert block design in such a language is challenging due to the algorithmic nature,

and could easily become too generic to be useful in a visual modeling scenario.

Verification tools also vary greatly by their necessary inputs and outputs. Gen-

eration of a model interpreter to create a flat metamodel could greatly reduce imple-

mentation time. This way a DSML designer would only need to focus on building

a template of verification tools rather than build custom transformations to pro-

duce verification tool artifacts. This is again a challenging task since the particular

DSML to be designed may not fit under a general structure.

Dynamic constraints are also under-modeled in the DCFML. Defining simple

data types is the only supported format. Cases of requirements exist like avoiding a

particular area for reachability feedback, which cannot be expressed in the current

form. This also ties in with the comparison operation and verification output mod-

eling. All of this needs to be handwritten like the components of the DCFML listed

106

above.

One of the keys to the success of the DCFML is adapting prior metamodels to fit

under the new construct. As presented, the DCFML is only designed for WebGME,

and other DSMEs are not supported. Theoretically, it should be workable in other

DSMEs, however there could be some metamodels that cannot fully self define, which

is a necessary part in establishing the DCFML. Also, some modeling languages like

Simulink do not have metamodeling methods, and therefore the DCFML cannot be

implemented.

7.2 Future Work

The DCFML is a prime candidate for future work considering the enormous impact

it could have on both model design and DSML design. Future work can be deter-

mined based on the observation of current limitations. Also, future analysis may

be performed that has not yet been presented. Such analysis may be explored by

looking at further domain parallels between the DCFML and control system design.

7.2.1 Improving Limitations

Since the DCFML aims to abstract the dynamic constraints as part of closing the

loop, working to further refine dynamic constraint modeling techniques would be

highly beneficial. The process of metamodeling enforces the structural constraints

during model creation. Further structural constraints have also been imposed by

specifically creating languages to add rich rulesets to the structure, such as the

Object Constraint Language (OCL) [112]. OCL lets constraints be imposed on

model design based on the model itself, as opposed to just the formal specification.

Similarly, dynamic constraints enforce corrections based on the model beyond the

metamodel. Having a formalized Dynamic Constraint Language (DCL) could be

directly interfaced with, and improve the DCFML.

107

Current e↵orts on the CPS-VO Active Resources involve working on the de-

mocratization of verification tools through the use of modeling languages. Their

method focuses on the evaluation of verification tools for CPS applications. These

focus on the modeling techniques needed for full verification tool use rather than

for a DSML. Such e↵orts could eventually establish standardized interfaces for veri-

fication tools that are within similar domains. The examples presented in this work

involved assessing two di↵erent verification tool input modeling techniques. Having

a standardized interface for verification tool types could act as interfaces for DSMLs.

The limitations may be solved from the implementation of the DCFML into

further domains. Each DSML provides varying constraints, verification, and design

techniques. Implementing more DSML case studies into the DCFML will help carve

out the modeling needs for general-purpose use.

7.2.2 Designability and Verifiability

In control systems theory, there exists the potential to have an under-actuated

system. Under-actuation means that the system cannot be commanded to follow

arbitrary trajectories. A simple example of this scenario is when a system has fewer

actuators than it has degrees of freedom. This does not however mean that desired

states cannot be reached. This term for determining whether an under-actuated can

be commanded is controllability.

The duality to this concept deals with an under-sensed system. Similarly, under-

sensed systems do not provide the sensors necessary to measure all system states. In

other words, the number of sensors is less than the degrees of freedom. This study

is called observability.

Since DCF involves a control system structure and properties of automatic cor-

rection performance have been shown, concepts of controllability and observability

may also be related to DCF. To have more clarity on the relationship between do-

mains, controllability could be known as designability, and observability could be

108

known as verifiability. Designability and verifiability may be similar in concept,

but may not have a direct relationship. They do however relate from a high-level

perspective.

Designability deals with the ability to evolve the model into all possible solution

states. A designable DCF system is one that can translate dynamic constraint viola-

tions into corrected models. Establishing designability may be of critical importance

in validating full automatic correction. In control systems, there are usually con-

straints on the physical system that makes full articulation impossible. Contrary,

model evolution is only limited by the model transformations and metamodel. De-

termining the metrics of what is designable could involve future studies.

Similarly, verifiability would involve the ability to understand the full dynamic

behavior of a system. A verifiably DCF would be able to fully map all models

into dynamic behavior for requirement comparison. Establishing verifiability may

be critical to having full automatic correction. Again, control systems are usually

constrained by the sensing technology or physical implementation. DCF will be

limited both by the availability of verification method and the semantic mapping

between models and verification tool input. Verifiability could involve another set

of metrics that could be studied in the future.

109

APPENDIX A

Generated Transformation Code

A.1 Generated Transformation Code

The following is the function generated from the AddModeAndTransformation

transformation in figure 6.5. This code is intended to be implemented in a

Javascript-based plugin in WebGME. The Core API is responsible for performing

the actual modification. The transformation model is used to determine the inputs

for this function, in this case being references by WebGME generated IDs.

Listing A.1: Generated transformation from AddModeAndTransformation.

1 HybridLanguage . prototype . addModeRule =

2 function (dataModel , DiagramMMReferenceID ,

3 ModeMMReferenceID) {

4 var s e l f = t h i s ;

5

6 var newTransitionMeta = ’ Transi t ion ’ ;

7 var NewModeMeta = ’Mode ’ ;

8

9 var DiagramMMReferenceNode =

10 s e l f . pathToNode [DiagramMMReferenceID] ;

11 var ModeMMReferenceNode =

12 s e l f . pathToNode [ModeMMReferenceID] ;

13

14 var paramsnewTransition = {

15 parent : DiagramMMReferenceNode ,

110

16 base : s e l f .META[newTransitionMeta]

17 } ;

18 var newTransit ion =

19 s e l f . co re . createNode (paramsnewTransition) ;

20 s e l f . co re . s e tAt t r i bu t e (newTransit ion , ’name ’ ,

21 ’ newTransit ion ’) ;

22

23 var paramsNewMode = {

24 parent : DiagramMMReferenceNode ,

25 base : s e l f .META[NewModeMeta]

26 } ;

27 var NewMode = s e l f . co re . createNode (paramsNewMode) ;

28 s e l f . co re . s e tAt t r i bu t e (newMode , ’name ’ , ’NewMode ’) ;

29

30 s e l f . co re . s e tPo in t e r (newTransit ion , ’ s r c ’ ,

31 ModeMMReferenceNode) ;

32 s e l f . co re . s e tPo in t e r (newTransit ion , ’ dst ’ ,

33 NewMode) ;

34

35 s e l f . co re . s e tAt t r i bu t e (NewMode , ’ SetPointAngle ’ ,

36 0 . 0) ;

37 s e l f . co re . s e tAt t r i bu t e (NewMode , ’ SetPointSpeed ’ ,

38 1 . 0) ;

39 } ;

Modifying a model’s structure is much more di�cult compared to modifying

attributes. The following function is a demonstration of modifying a node’s value

based on the node id, attribute name, and attribute value.

111

Listing A.2: Generated transformation from ModifyControllerValue.

1 HybridLanguage . prototype . s e tAt t r i bu t e =

2 function (dataModel , MMReferenceID , attributeName ,

3 a t t r ibut eVa lue) {

4 var s e l f = t h i s ;

5 var Node = s e l f . pathToNode [MMReferenceID] ;

6

7 s e l f . core . s e tA t t r i b u t e (Node , attr ibuteName ,

8 a t t r i b u t eVa l u e) ;

9 } ;

112

REFERENCES

[1] A. Agrawal. Graph rewriting and transformation (great): a solution for the

model integrated computing (mic) bottleneck. In 18th IEEE International

Conference on Automated Software Engineering, 2003. Proceedings., pages

364–368. IEEE, 2003.

[2] H. Albin-Amiot and Y.-G. Guéhéneuc. Meta-modeling design patterns: Ap-

plication to pattern detection and code synthesis. In Proceedings of ECOOP

Workshop on Automating Object-Oriented Software Development Methods,

2001.

[3] M. Altho↵. An introduction to cora 2015. In Proc. of the Workshop on Applied

Verification for Continuous and Hybrid Systems, 2015.

[4] R. E. Andersen, E. B. Hansen, D. Cerny, S. Madsen, B. Pulendralingam,

S. Bøgh, and D. Chrysostomou. Integration of a skill-based collaborative

mobile robot in a smart cyber-physical environment. Procedia Manufacturing,

11:114–123, 2017.

[5] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan. S-taliro:

A tool for temporal logic falsification for hybrid systems. In International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 254–257. Springer, 2011.

[6] P. Antsaklis. Goals and challenges in cyber-physical systems research editorial

of the editor in chief. IEEE Transactions on Automatic Control, 59(12):3117–

3119, 2014.

[7] K. J. Åström and T. Hägglund. Revisiting the ziegler–nichols step response

method for pid control. Journal of process control, 14(6):635–650, 2004.

113

[8] K. J. Åström, T. Hägglund, C. C. Hang, and W. K. Ho. Automatic tuning

and adaptation for pid controllers-a survey. Control Engineering Practice,

1(4):699–714, 1993.

[9] M. W. Aziz and M. Rashid. Domain specific modeling language for cyber

physical systems. In 2016 International Conference on Information Systems

Engineering (ICISE), pages 29–33. IEEE, 2016.

[10] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi,

L. F. R. Jesus, R. F. Berriel, T. M. Paixão, F. Mutz, et al. Self-driving cars:

A survey. arXiv preprint arXiv:1901.04407, 2019.

[11] R. Baheti and H. Gill. Cyber-physical systems. The impact of control tech-

nology, 12(1):161–166, 2011.

[12] S. Bak. Hycreate: A tool for overapproximating reachability of hybrid au-

tomata. Retrieved January, 17:2016, 2013.

[13] B. Balaji, A. Faruque, M. Abdullah, N. Dutt, R. Gupta, and Y. Agarwal.

Models, abstractions, and architectures: The missing links in cyber-physical

systems. In Proceedings of the 52nd Annual Design Automation Conference,

page 82. ACM, 2015.

[14] D. Balasubramanian, A. Narayanan, C. van Buskirk, and G. Karsai. The graph

rewriting and transformation language: Great. Electronic Communications of

the EASST, 1, 2007.

[15] J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed ltl model-checking in spin. In

International SPIN Workshop on Model Checking of Software, pages 200–216.

Springer, 2001.

114

[16] J. Bézivin and O. Gerbé. Towards a precise definition of the omg/mda frame-

work. In Proceedings 16th Annual International Conference on Automated

Software Engineering (ASE 2001), pages 273–280. IEEE, 2001.

[17] J. Bézivin, F. Jouault, and J. Paliès. Towards model transformation design

patterns. In Proceedings of the First European Workshop on Model Transfor-

mations (EWMT 2005), 2005.

[18] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl. Multi-domain modeling of

cyber-physical systems using architectural views. 2010.

[19] R. Bucher and S. Balemi. Rapid controller prototyping with matlab/simulink

and linux. Control Engineering Practice, 14(2):185–192, 2006.

[20] M. Buehler, K. Iagnemma, and S. Singh. The 2005 DARPA grand challenge:

the great robot race, volume 36. Springer, 2007.

[21] M. Bunting, Y. Zeleke, K. McKeever, and J. Sprinkle. A safe autonomous vehi-

cle trajectory domain specific modeling language for non-expert development.

In Proceedings of the International Workshop on Domain-Specific Modeling,

pages 42–48. ACM, 2016.

[22] J. Cabot, R. Clarisó, E. Guerra, and J. De Lara. Verification and validation

of declarative model-to-model transformations through invariants. Journal of

Systems and Software, 83(2):283–302, 2010.

[23] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for

non-linear hybrid systems. In International Conference on Computer Aided

Verification, pages 258–263. Springer, 2013.

[24] H. Cho and J. Gray. Design patterns for metamodels. In Proceedings of the

compilation of the co-located workshops on DSM’11, TMC’11, AGERE! 2011,

AOOPES’11, NEAT’11, & VMIL’11, pages 25–32. ACM, 2011.

115

[25] A. Christoph. Describing horizontal model transformations with graph rewrit-

ing rules. In Model Driven Architecture, pages 93–107. Springer, 2004.

[26] M. H. Cintuglu, O. A. Mohammed, K. Akkaya, and A. S. Uluagac. A survey

on smart grid cyber-physical system testbeds. IEEE Communications Surveys

and Tutorials, 19(1):446–464, 2017.

[27] T. Clark, A. Evans, S. Kent, and P. Sammut. The mmf approach to engineer-

ing object-oriented design languages. 2001.

[28] M. F. Costabile, D. Fogli, P. Mussio, and A. Piccinno. Visual interactive

systems for end-user development: a model-based design methodology. IEEE

transactions on systems, man, and cybernetics-part a: systems and humans,

37(6):1029–1046, 2007.

[29] K. Czarnecki and S. Helsen. Classification of model transformation ap-

proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Tech-

niques in the Context of the Model Driven Architecture, volume 45, pages 1–17.

USA, 2003.

[30] K. Czarnecki and S. Helsen. Feature-based survey of model transformation

approaches. IBM Systems Journal, 45(3):621–645, 2006.

[31] L. C. B. da Silva, R. M. Bernardo, H. A. de Oliveira, and P. F. Rosa. Multi-uav

agent-based coordination for persistent surveillance with dynamic priorities.

In Military Technologies (ICMT), 2017 International Conference on, pages

765–771. IEEE, 2017.

[32] J. R. Davis. Model integrated computing : A framework for creating domain

specific design environments. 2002.

[33] P. Deng, F. Cremona, Q. Zhu, M. Di Natale, and H. Zeng. A model-based

synthesis flow for automotive cps. In Proceedings of the ACM/IEEE Sixth

116

International Conference on Cyber-Physical Systems, pages 198–207. ACM,

2015.

[34] P. Derler, E. A. Lee, and A. S. Vincentelli. Modeling cyber–physical systems.

Proceedings of the IEEE, 100(1):13–28, 2012.

[35] L. dos Santos Coelho. Tuning of pid controller for an automatic regulator volt-

age system using chaotic optimization approach. Chaos, Solitons & Fractals,

39(4):1504–1514, 2009.

[36] K. Duddy, A. Gerber, M. Lawley, K. Raymond, and J. Steel. Model transfor-

mation: A declarative, reusable patterns approach. In Seventh IEEE Inter-

national Enterprise Distributed Object Computing Conference, 2003. Proceed-

ings., pages 174–185. IEEE, 2003.

[37] M. J. Emerson, J. Sztipanovits, and T. Bapty. A mof-based metamodeling

environment. J. UCS, 10(10):1357–1382, 2004.

[38] J. H. Frazer, J. M. Frazer, X. Liu, M. X. Tang, and P. Janssen. Generative

and evolutionary techniques for building envelope design. 2002.

[39] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,

A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid

systems. In International Conference on Computer Aided Verification, pages

379–395. Springer, 2011.

[40] E. Gamma. Design patterns: elements of reusable object-oriented software.

Pearson Education India, 1995.

[41] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp 2010: A toolbox

for the construction and analysis of distributed processes. In International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 372–387. Springer, 2011.

117

[42] C. Gerking, W. Schäfer, S. Dziwok, and C. Heinzemann. Domain-specific

model checking for cyber-physical systems. In MoDeVVa@ MoDELS, pages

18–27, 2015.

[43] J. Gray, S. Neema, J.-P. Tolvanen, A. S. Gokhale, S. Kelly, and J. Sprinkle.

Domain-specific modeling. Handbook of dynamic system modeling, 7:7–1, 2007.

[44] M. Heß, M. Kaczmarek, U. Frank, L. Podleska, and G. Täger. A domain-

specific modelling language for clinical pathways in the realm of multi-

perspective hospital modelling. In ECIS, 2015.

[45] G. Horlick, R. Lawson, D. Morgan, P. Musto, J. Smedley, K. Wadland,

R. Woodward, S. Bergan, and W. M. Katz. User-guided autorouting, May 19

2009. US Patent 7,536,665.

[46] S.-J. Huang and H.-Y. Chen. Adaptive sliding controller with self-tuning fuzzy

compensation for vehicle suspension control. Mechatronics, 16(10):607–622,

2006.

[47] M.-E. Iacob, M. W. Steen, and L. Heerink. Reusable model transformation

patterns. In 2008 12th Enterprise Distributed Object Computing Conference

Workshops, pages 1–10. IEEE, 2008.

[48] H. I. Ismail, I. V. Bessa, L. C. Cordeiro, E. B. de Lima Filho, and J. E.

Chaves Filho. Dsverifier: A bounded model checking tool for digital systems.

In International SPIN Workshop on Model Checking of Software, pages 126–

131. Springer, 2015.

[49] E. Jackson and J. Sztipanovits. Formalizing the structural semantics of

domain-specific modeling languages. Software & Systems Modeling, 8(4):451–

478, 2009.

118

[50] E. K. Jackson and J. Sztipanovits. Towards a formal foundation for domain

specific modeling languages. In Proceedings of the 6th ACM & IEEE Interna-

tional conference on Embedded software, pages 53–62. ACM, 2006.

[51] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen. A survey on platoon-based

vehicular cyber-physical systems. IEEE communications surveys & tutorials,

18(1):263–284, 2016.

[52] Y. Jiang, H. Song, R. Wang, M. Gu, J. Sun, and L. Sha. Data-centered runtime

verification of wireless medical cyber-physical system. IEEE transactions on

industrial informatics, 13(4):1900–1909, 2016.

[53] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl: A model transformation

tool. Science of computer programming, 72(1-2):31–39, 2008.

[54] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. Atl: a qvt-like

transformation language. In Companion to the 21st ACM SIGPLAN sympo-

sium on Object-oriented programming systems, languages, and applications,

pages 719–720. ACM, 2006.

[55] P. A. Judas and L. E. Prokop. A historical compilation of software metrics

with applicability to nasa’s orion spacecraft flight software sizing. Innovations

in Systems and Software Engineering, 7(3):161–170, 2011.

[56] T. Kecskes, P. Meijer, T. T. Johnson, and M. Lucas. a design studio for

verification tools. In Proceedings of the Workshop on Design Automation for

CPS and IoT, pages 60–61. ACM, 2019.

[57] F. Khorrami, P. Krishnamurthy, and R. Karri. Cybersecurity for control sys-

tems: A process-aware perspective. IEEE Design & Test, 33(5):75–83, 2016.

[58] S. Khwaja and M. Alshayeb. Survey on software design-pattern specification

languages. ACM Computing Surveys (CSUR), 49(1):21, 2016.

119

[59] J. Knight, J. Xiang, and K. Sullivan. A rigorous definition of cyber-physical

systems. Trustworthy Cyber-Physical Systems Engineering, 47:47–70, 2016.

[60] N. P. Koenig and A. Howard. Design and use paradigms for gazebo, an open-

source multi-robot simulator. In IROS, volume 4, pages 2149–2154. Citeseer,

2004.

[61] J. Kong, M. Pfei↵er, G. Schildbach, and F. Borrelli. Kinematic and dynamic

vehicle models for autonomous driving control design. In 2015 IEEE Intelligent

Vehicles Symposium (IV), pages 1094–1099. IEEE, 2015.

[62] S. Kong, S. Gao, W. Chen, and E. Clarke. dreach: �-reachability analysis for

hybrid systems. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 200–205. Springer, 2015.

[63] S. Krish. A practical generative design method. Computer-Aided Design,

43(1):88–100, 2011.

[64] K. Lano and S. Kolahdouz-Rahimi. Model-transformation design patterns.

IEEE Transactions on Software Engineering, 40(12):1224–1259, 2014.

[65] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International

Journal on Software Tools for Technology Transfer (STTT), 1(1):134–152,

1997.

[66] P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn,

T. Lecomte, M. Pfeil, O. Green, S. Basagiannis, et al. Integrated tool chain for

model-based design of cyber-physical systems: The into-cps project. In 2016

2nd International Workshop on Modelling, Analysis, and Control of Complex

CPS (CPS Data), pages 1–6. IEEE, 2016.

[67] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,

G. Nordstrom, J. Sprinkle, and P. Volgyesi. The generic modeling environ-

120

ment. In Workshop on Intelligent Signal Processing, Budapest, Hungary, vol-

ume 17, page 1, 2001.

[68] E. A. Lee. Cyber physical systems: Design challenges. In 11th IEEE Sympo-

sium on Object Oriented Real-Time Distributed Computing (ISORC), pages

363–369. IEEE, 2008.

[69] B. Lewis. Position paper : Need for architecture description language with

standardized well defined meaning for architecture centric engineering of

cyber-physical systems. 2010.

[70] J.-L. Lions, L. Luebeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat,

S. Levedag, L. Mazzini, D. Merle, and C. O’Halloran. Ariane 5 flight 501

failure report by the inquiry board, 1996.

[71] S. Liu, J. Tang, C. Wang, Q. Wang, and J.-L. Gaudiot. A unified cloud

platform for autonomous driving. Computer, 50(12):42–49, 2017.

[72] J. Lopes and A. Leitão. Portable generative design for cad applications. 2011.

[73] C. Lv, Y. Liu, X. Hu, H. Guo, D. Cao, and F.-Y. Wang. Simultaneous ob-

servation of hybrid states for cyber-physical systems: A case study of electric

vehicle powertrain. IEEE Transactions on Cybernetics, 48(8):2357–2367, 2018.

[74] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications

for hybrid systems. Automatica, 35(3):349–370, 1999.

[75] T. T. Mac, C. Copot, T. T. Duc, and R. De Keyser. Ar. drone uav control

parameters tuning based on particle swarm optimization algorithm. In 2016

IEEE International Conference on Automation, Quality and Testing, Robotics

(AQTR), pages 1–6. IEEE, 2016.

121

[76] M. Maróti, R. Kereskényi, T. Kecskés, P. Völgyesi, and A. Lédeczi. Online

collaborative environment for designing complex computational systems. Pro-

cedia Computer Science, 29:2432–2441, 2014.

[77] P. Martinet, C. Thibaud, B. Thuilot, and J. Gallice. Robust controller syn-

thesis in automatic guided vehicles applications. Advances in Vehicles Control

and Safety (AVCS’98), pages 395–401, 1998.

[78] D. Massey. Applying cybersecurity challenges to medical and vehicular cyber

physical systems. In Proceedings of the 2017 Workshop on Automated Decision

Making for Active Cyber Defense, pages 39–39. ACM, 2017.

[79] K. McKeever, Y. Zeleke, M. Bunting, and J. Sprinkle. Experience report:

Constraint-based modeling of autonomous vehicle trajectories. In Proceedings

of the Workshop on Domain-Specific Modeling, pages 17–22. ACM, 2015.

[80] W. Meng, J. Park, O. Sokolsky, S. Weirich, and I. Lee. Verified ros-based de-

ployment of platform-independent control systems. In NASA Formal Methods

Symposium, pages 248–262. Springer, 2015.

[81] T. Mens and P. Van Gorp. A taxonomy of model transformation. Electronic

Notes in Theoretical Computer Science, 152:125–142, 2006.

[82] I. M. Mitchell. A toolbox of level set methods. UBC Department of Computer

Science Technical Report TR-2007-11, 2007.

[83] R. Mitchell and R. Chen. Behavior rule specification-based intrusion detec-

tion for safety critical medical cyber physical systems. IEEE Transactions on

Dependable and Secure Computing, 12(1):16–30, 2015.

[84] K. Mitzner. Complete PCB design using OrCad capture and layout. Elsevier,

2011.

122

[85] H. Neema, P. Volgyesi, B. Potteiger, W. Emfinger, X. Koutsoukos, G. Karsai,

Y. Vorobeychik, and J. Sztipanovits. Sure: An experimentation and evaluation

testbed for cps security and resilience: Demo abstract. In Proceedings of the

7th International Conference on Cyber-Physical Systems, page 27. IEEE Press,

2016.

[86] C.-P. S. V. Organization. Verification tool library.

[87] F. Paterno. Model-based design and evaluation of interactive applications.

Springer Science & Business Media, 1999.

[88] S. Petti and T. Fraichard. Safe motion planning in dynamic environments. In

2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 2210–2215. IEEE, 2005.

[89] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle. The kine-

matic bicycle model: A consistent model for planning feasible trajectories for

autonomous vehicles? In 2017 IEEE Intelligent Vehicles Symposium (IV),

pages 812–818. IEEE, 2017.

[90] S. M. Pradhan, A. Dubey, A. Gokhale, and M. Lehofer. Chariot: A domain

specific language for extensible cyber-physical systems. In Proceedings of the

workshop on domain-specific modeling, pages 9–16. ACM, 2015.

[91] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng. ROS: an open-source Robot Operating System. In ICRA

workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[92] D. Redman, D. Ward, J. Chilenski, and G. Pollari. Virtual integration for im-

proved system design. In First Analytic Virtual Integration of Cyber-Physical

Systems Workshop, pages 57–64, 2010.

123

[93] S. A. Rees, T. Kecskes, P. Meijer, T. T. Johnson, K. Dey, P. Tabuada, and

M. Lucas. Cyber-physical systems virtual organization: Active resources:

enabling reproducibility, improving accessibility, and lowering the barrier to

entry. In Proceedings of the 10th ACM/IEEE International Conference on

Cyber-Physical Systems, pages 340–341. ACM, 2019.

[94] K. Sampigethaya and R. Poovendran. Aviation cyber–physical systems:

Foundations for future aircraft and air transport. Proceedings of the IEEE,

101(8):1834–1855, 2013.

[95] B. J. Sauser, R. R. Reilly, and A. J. Shenhar. Why projects fail? how contin-

gency theory can provide new insights–a comparative analysis of nasa’s mars

climate orbiter loss. International Journal of Project Management, 27(7):665–

679, 2009.

[96] T. S. Schei. A method for closed loop automatic tuning of pid controllers.

Automatica, 28(3):587–591, 1992.

[97] J. Schroeder, C. Berger, A. Knauss, H. Preenja, M. Ali, M. Staron, and T. Her-

pel. Predicting and evaluating software model growth in the automotive in-

dustry. In Software Maintenance and Evolution (ICSME), 2017 IEEE Inter-

national Conference on, pages 584–593. IEEE, 2017.

[98] K. Shea, R. Aish, and M. Gourtovaia. Towards integrated performance-driven

generative design tools. Automation in Construction, 14(2):253–264, 2005.

[99] J. Shi, J. Wan, H. Yan, and H. Suo. A survey of cyber-physical systems. In

2011 international conference on wireless communications and signal process-

ing (WCSP), pages 1–6. IEEE, 2011.

[100] C. A. Smith and A. B. Corripio. Principles and practice of automatic process

control, volume 2. Wiley New York, 1985.

124

[101] K. Smolander, K. Lyytinen, V.-P. Tahvanainen, and P. Marttiin. Metaedit-a

flexible graphical environment for methodology modelling. In International

Conference on Advanced Information Systems Engineering, pages 168–193.

Springer, 1991.

[102] D. Sonntag, S. Zillner, P. van der Smagt, and A. Lörincz. Overview of the cps

for smart factories project: Deep learning, knowledge acquisition, anomaly

detection and intelligent user interfaces. In Industrial internet of things, pages

487–504. Springer, 2017.

[103] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse mod-

eling framework. Pearson Education, 2008.

[104] J. Sztipanovits, T. Bapty, S. Neema, L. Howard, and E. Jackson. Openmeta:

A model-and component-based design tool chain for cyber-physical systems.

In From Programs to Systems. The Systems perspective in Computing, pages

235–248. Springer, 2014.

[105] J. Sztipanovits, T. Bapty, S. Neema, X. Koutsoukos, and E. Jackson. Design

tool chain for cyber-physical systems: Lessons learned. In Proceedings of the

52nd Annual Design Automation Conference, page 81. ACM, 2015.

[106] P. Tabuada and G. J. Pappas. Model checking ltl over controllable linear

systems is decidable. In International Workshop on Hybrid Systems: Compu-

tation and Control, pages 498–513. Springer, 2003.

[107] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Ho↵mann, et al. Stanley: The robot that

won the darpa grand challenge. Journal of field Robotics, 23(9):661–692, 2006.

125

[108] P. Tournassoud. Motion planning for a mobile robot with a kinematic con-

straint. In French Workshop on Geometry and Robotics, pages 150–171.

Springer, 1988.

[109] J. Wan, A. Canedo, and M. A. Al Faruque. Functional model-based design

methodology for automotive cyber-physical systems. IEEE Systems Journal,

11(4):2028–2039, 2017.

[110] Q.-G. Wang, T.-H. Lee, H.-W. Fung, Q. Bi, and Y. Zhang. Pid tuning for

improved performance. IEEE Transactions on control systems technology,

7(4):457–465, 1999.

[111] X. V. Wang, Z. Kemény, J. Váncza, and L. Wang. Human–robot collabo-

rative assembly in cyber-physical production: Classification framework and

implementation. CIRP annals, 66(1):5–8, 2017.

[112] J. B. Warmer and A. G. Kleppe. The object constraint language: getting your

models ready for MDA. Addison-Wesley Professional, 2003.

[113] J. White, D. C. Schmidt, A. Nechypurenko, and E. Wuchner. Introduction to

the generic eclipse modeling system. Eclipse Magazine, 6:11–18, 2007.

[114] S. Whitsitt. A methodology for mending dynamic constraint violations in

cyber physical systems by generating model transformations. 2014.

[115] S. Whitsitt and J. Sprinkle. Model based development with the skeleton design

method. In Engineering of Computer Based Systems (ECBS), 2013 20th IEEE

International Conference and Workshops on the, pages 12–19. IEEE, 2013.

[116] S. Whitsitt, J. Sprinkle, and R. Lysecky. Generating model transformations for

mending dynamic constraint violations in cyber physical systems. In Proceed-

ings of the 14th Workshop on Domain-Specific Modeling, pages 35–40. ACM,

2014.

126

[117] X. Yu and Y. Xue. Smart grids: A cyber–physical systems perspective. Pro-

ceedings of the IEEE, 104(5):1058–1070, 2016.

[118] C. Zhang and D. Budgen. What do we know about the e↵ectiveness of software

design patterns? IEEE Transactions on Software Engineering, 38(5):1213–

1231, 2012.

[119] K. Zhang and J. Sprinkle. A closed-loop model-based design approach based

on automatic verification and transformation. In Proceedings of the 14th Work-

shop on Domain-Specific Modeling, pages 1–6. ACM, 2014.

[120] L. Zhang. Modeling automotive cyber physical systems. In 2013 12th Inter-

national Symposium on Distributed Computing and Applications to Business,

Engineering & Science, pages 71–75. IEEE, 2013.

[121] Y. Zhang, M. Qiu, C.-W. Tsai, M. M. Hassan, and A. Alamri. Health-cps:

Healthcare cyber-physical system assisted by cloud and big data. IEEE Sys-

tems Journal, 11(1):88–95, 2017.

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER Introduction
	Overview
	Motivation
	Potential Impact
	Contribution

	CHAPTER Background
	Model Based Development
	DSME
	Web-Based Generic Modeling Environment
	Model Transformations
	Software Design Patterns

	Cyber Physical Systems
	Autonomous Vehicles
	MATLAB and Robotics Operating System
	Verification Tools

	Control Systems
	Linear Time Invariant Systems
	Hybrid Systems

	Related Work
	Automatic Controller Tuning
	Dynamic Constraint Feedback

	Problem Statement

	CHAPTER A Verification Feedback Framework
	Components in the Framework
	Metamodel
	Interpreters
	Verification
	Constraint Comparator
	Expert Block
	Model Transformation for Correction

	Considerations of the Framework
	DCF Based Modeling Language Design Patterns
	Metamodel and Transformations
	Verification Tools

	DCF Based Modeling Language Properties
	Level of Automation
	Automatic Correction Properties

	CHAPTER The Dynamic Constraint Feedback Metamodeling Language
	Overview
	Metamodel
	Constraints
	Expert Block
	Model Transformations

	CHAPTER Case Study: Pathing Language
	Domain Definitions
	Constraints and Verification
	Deployment

	Transitioning to the DCFML
	Constraint Remodeling
	Model Transformation
	Expert Blocks

	CHAPTER Case Study: Reachability
	Domain Definitions
	Metamodel
	Model Transformations
	LTI Verification
	Reachability Verification
	Expert Block for Reachability
	Expert Block for LTI
	DCF as a Control System

	CHAPTER Conclusion
	Contribution
	Limitations

	Future Work
	Improving Limitations
	Designability and Verifiability

	APPENDIX Generated Transformation Code
	Generated Transformation Code

	REFERENCES

