
V International Conference on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2013

S. Idelsohn, M. Papadrakakis and B. Schrefler (Eds)

SCIENCE & ENGINEERING SOFTWARE MIGRATION: MOVING
FROM DESKTOP TO MOBILE APPLICATIONS

FEDERICO AMÉNDOLA AND LILIANA FAVRE

Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA)

Tandil, Argentina
e-mail: famendola@alumnos.exa.unicen.edu.ar

 lfavre@exa.unicen.edu.ar

Key words: Mobile Computing, Reengineering, Reverse Engineering, Model Driven
Architecture, Android Platform, Eclipse Modeling Framework

1 INTRODUCTION
The proliferation of mobile devices over the last years provides opportunities and

challenges for solving problems in science and engineering. Among other novel features,
mobile devices contain global positioning sensors, wireless connectivity, built-in web
browsers and photo/video/voice capabilities that allow providing highly localized, context
aware applications. Mobile phones have become as powerful as any desktop computer in
terms of applications they can run. However, the software development in mobile computing
is still not as mature as it is for desktop computer and the whole potential of mobile devices is
wasted [7, 8].

Although mobile technologies present new opportunities for services and business, they
also present development and implementation challenges. Various authors describe
challenges of mobile software development, for example, in [7] authors highlight creating
user interfaces for different kinds of mobile devices, providing reusable applications across
multiple mobile platforms, designing context aware applications and handling their
complexity and, specifying requirements uncertainly. To ensure that the application provides
sufficient performance while maximizing battery life is remarked in [18]. Some mobile
applications also must determine the user location before offering the service and then track
the location to adapt services and information accordingly. Besides, an additional challenge is
to achieve the required level of security, reliability and quality of mobile services. Accepted
rules for the design of traditional interfaces can not be fully implemented in the design of
mobile interfaces [7].

A current problem in the engineering community is the modernization of legacy software.
Software modernization, understood as technological and functional evolution of legacy
systems, provides principles, methods, techniques and tools to support the transformation
from an existing software system to a new one that satisfies different requirements. To meet
new demands, existing systems must be constantly evolved. Many of the existing systems
may be written for technology which is expensive to maintain and which may not be aligned
with current organizational politics. However, they resume key knowledge acquired over the
life of an organization and there is a high risk to replace them because they are generally
business-critical systems. A number of solutions have been proposed to deal with this problem
such as redevelopment, which rewrites existing applications, or migration, which moves the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Centro de Servicios en Gestión de Información

https://core.ac.uk/display/153564718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Federico Améndola and Liliana Favre

existing system to a more flexible environment while retaining the original system data and
functionality. A good solution should be to restore the value of the existing software,
extracting knowledge and exploiting investment in order to migrate to new software that
incorporates the new technologies.

On the one hand, traditional reverse engineering techniques can help in the software
migration to mobile applications. They are related to the process of analyzing available
software with the objective of extracting information and providing high-level views on the
underlying code [5,19].

On the other hand, the rapid proliferation of different mobile platforms has forced
developers to make applications tailored for each type of device. Within the mobile
development, many companies have different development teams redoubling the software
engineering efforts for functionally similar mobile applications. To achieve interoperability
with multiple platforms the migration needs of novel technical frameworks for information
integration and tool interoperability such as the initiative of the Object Management Group
(OMG) called Model Driven Architecture (MDA) [11]. The outstanding ideas behind MDA
are separating the specification of the system functionality from its implementation on
specific platforms, managing the software evolution from abstract models to implementations,
increasing the degree of automation of model transformations, and achieving interoperability
with multiple platforms. Models play a major role in MDA which distinguishes at least
Platform Independent Model (PIM) and Platform Specific Model (PSM). An MDA forward
engineering process focuses on the creation of PIMs which are automatically transformed by
tools to PSMs which are next transformed to specific code.

The essence of MDA is the Meta Object Facility Metamodel (MOF) that allows different
kinds of software artifacts to be used together in a single project [14]. MOF provides two
metamodels: EMOF (Essential MOF) and CMOF (Complete MOF). EMOF favors simplicity
of implementation over expressiveness. CMOF is a metamodel used to specify more
sophisticated metamodels. Transformations are expressed in the MOF 2.0 Query, View,
Transformation (QVT) metamodel [16].

OMG is involved in the definition of standards to successfully modernize existing
information systems. The OMG Architecture-Driven Modernization Task Force (ADMTF) is
developing a set of specifications and promoting industry consensus on modernization of
existing applications [1].

 The objective of this paper is to describe a reengineering process that allow moving
existing desktop applications for solving engineering problems of multidisciplinary character
to mobile platforms. Our research aims to simplify the creation of applications for mobile
platforms by integrating traditional reverse engineering techniques, such static and dynamic
analysis, with MDA. It is worth considering that mobile applications are not different
applications but are mainly intend to complement the existing desktop systems in the
organization to make them mobile. We validated our approach by using the open source
application platform Eclipse, EMF (Eclipse Modeling Framework), EMP (Eclipse Modeling
Project) and the Android platform [2, 9].

This paper is organized as follows. Section 2 describes a reengineering process for
adapting existing object-oriented software applications to mobile platforms. In Section 3 we
summarizes reverse engineering techniques such as static and dynamic analysis. Section 4
describes metamodeling techniques in the context of the reenginering process. Particularly,

Federico Améndola and Liliana Favre

this section specifies how to transform models by using transformation languages aligned
with the MDA standards. Also, it describes how to obtain a target application in the mobile
platform. Finally, Section 5 presents conclusions and challenges in the modernization of
legacy systems to mobile technologies.

2 A REENGINEERING PROCESS: FROM DESKTOP TO MOBILE
APPLICATIONS

We propose a reengineering process for modernizing desktop applications to mobile
platforms (Fig. 1). Reengineering process can be summarized into three steps: reverse
engineering, model transformation and implementation. Reverse engineering extracts out
higher level views of the system expressed by different kind of artifacts that allow creating a
model of the source application called PIM in the MDA context. The transformation for one
PIM to several PSMs is at the core of MDA. The objective of the model transformation step is
to transform the source model (a PIM), into target models (PSMs linked to different mobile
platforms). Finally, during the implementation step, target applications for different mobile
platforms are generated from the PSMs.

The proposed process starts from a source application and the application of reverse
engineering techniques to support the understanding of it. We consider that only the source
code is the repository of information for recovering the system design. Because of this, the
first stage of this process consists of applying different techniques of reverse engineering that
are based on two main types of analysis: structural or static analysis, and behavioral or
dynamic analysis.

 Static analysis extracts static information that describes the software structure reflected in
the documentation (e.g., the source code text) and is supported by CASE tools. Dynamic
analysis information describes the structure of the run-behavior and can be extracted by using
debuggers, event recorders and general tracer tools. Then, the first stage of the reengineering
process allows extracting artifacts in a high abstraction level that describe the application
being analyzed.

At this point, it is necessary to consider the dependencies that have the recovered software
artifacts with the technologies applied to implement the system under analysis. These
dependencies should not impact to the artifacts that describe the new system to be
implemented. To avoid these situations, the integration of reverse engineering techniques with
MDA is proposed. MDA aims interoperability between platforms and technology
independence proposing that all devices involved in a development process are represented
from MOF. MOF allows different kinds of software artifacts to be used together in a single
project. The transformation between models allows representing the new system to be
implemented.

There are different ways to achieve model transformations, for example by using a
programming language or metamodeling techniques. There exists specific transformation
languages that provides a way to specify how generate a target model that conforms to a target
metamodel from a source model that conforms to a source metamodel, for example, we can
mention QVT or ATL transformation languages.As a result of this step, models of target
applications related to different mobile platforms are created.

Federico Améndola and Liliana Favre

Figure 1 : A reengineering process

 Next, in the implementation step, target applications are generated. To ensure the success of
the steps of the reeengineering process different tools known as CASE (Computer Aided
Software Engineering) are needed. Each of these tools presents different features and support
for the techniques involved in the reengineering process. In Section 2.1 we describe
characteristics of different CASE tools.

2.1 CASE Tools

The success of MDA depends on the existence of CASE tools that make a significant
impact on software processes such as forward engineering and reverse engineering processes.
All of the MDA tools are partially compliant to MDA features. CASE MDA are generally
extensions of CASE UML and most of them are not aligned with MOF. They provide good
support for modeling and limited support for automated transformation in reverse engineering
[6].

Many CASE tools support reverse engineering, however, they only use more basic
notational features with a direct code representation and produce very large diagrams. Reverse
engineering processes are facilitated by inserting annotations in the generated code. These
annotations are the link between the model elements and the language.

Federico Améndola and Liliana Favre

The Eclipse Modeling Framework (EMF) [9] was created for facilitating system modeling
and the automatic generation of Java code. EMF started as an implementation of MOF
resulting Ecore, the EMF metamodel comparable to EMOF. EMF has evolved starting from
the experience of the Eclipse community to implement a variety of tools and to date is highly
related to Model Driven engineering (MDE). For instance, commercial tools such as IBM
Rational Software Architect, Spark System Enterprise Architect or Together are integrated
with Eclipse-EMF. Blu Age Reverse Modeling recovers from legacy systems some
information necessary to build UML 2 models [6]

Few MDA-based CASE tools support any of the QVT languages. As an example, IBM
Rational Software Architect support model-to-model and model-to-text transformations but
not MOF and QVT. Spark System Enterprise Architect is based on MDA and UML 2.1 and
then is compatible with MOF.

Other tools partially support QVT, for instance Together allows defining and modifying
transformations model-to-model (M2M) and model-to-text (M2T) that are QVT-Operational
compliant [17]. Medini QVT supports partially MOF and implements QVT. It is integrated
with Eclipse and allows the execution of transformations expressed in the QVT-Relation
language [13]. The MMT (Model-to-Model Transformation) Eclipse project, is a sub-project
of the top-level Eclipse Modeling Project that provides a framework for model-to-model
transformation languages. Transformations are executed by transformation engines that are
plugged into the Eclipse Modeling infrastructure. The main transformation engines developed
in the scope of that project are ATL and QVT [3,17]. ATL is a model transformation language
and toolkit developed by ATLAS INRIA & LINA research group. In the MDE field, ATL
provides ways to produce a set of target models from a set of source models. To date, the
QVT declarative component is in its “incubation” phase and provides only editing capabilities
to support the QVT language.

Currently, there are no tools supporting a complete reengineering process as proposed by
this work. However, various tools are available to deal with it. In this paper we validate our
approach by using the open source application platform Eclipse, EMF and EMP. In this
context, we select a set of appropriate tools that will be described in the following sections.
Besides, we select as a running example an adaptation of a CRM (Customer Relationships
Management) desktop application to mobile platforms, Android platform in particular. Next,
in Section 2.2, we introduce the running example.

2.2. A running example

In the following sections we describe in detail the proposed reengineering process. The
different steps are illustrated by using a common example, a CRM (Customer Relationship
Management) application. A CRM manages company interactions with current and future
customers. Interactions are supported and guided by creating dynamic customer profiles that
register information such as contracted services and products, frequent contact channels, and
commercial transactions and their associated responses.

The CRM application that will be used to exemplify each step of the proposed process
reengineering is called SellWin [17]. The analysis in this examples, will prioritize entities
related to managing customer data. The simple client-server architecture of the application
follows a component-oriented design separated in different modules: Domain, Data Base,

Federico Améndola and Liliana Favre

Server and User Interface. SellWin lacks adequate documentation to understand its design,
which allows us to analyze the strengths and weaknesses of the application of reverse
engineering techniques for understanding its functionality.

3 REVERSE ENGINEERING: FROM OBJECT-ORIENTED CODE TO MODEL
Reverse Engineering is the process of analyzing available software artifacts such as

requirements, design, architectures, code or byte code, with the objective of extracting
information and providing high-level views on the underlying system. Reverse engineering
does not involve changing the source legacy systems, but understanding them to help
reengineering processes that are concerned with their re-implementing. The main traditional
techniques related to reverse engineering are static and dynamic analysis.

Static analysis extracts static information that describes the software structure reflected in
the software documentation (e.g., the source code text) whereas dynamic analysis information
describes the structure of the run-behavior and can be extracted by using debuggers, event
recorders and general tracer tools. Static analysis is based on classical compiler techniques
and abstract interpretation.

 In [10], author provides a comparison of static and dynamic analysis from the point of
view of their synergy and duality. He argues that static analysis is conservative and sound.
Conservatism means reporting weak properties that are guaranteed to be true, preserving
soundness, but not be strong enough to be useful. Soundness guarantees that static analysis
provides an accurate description of the behavior, no matter on what input or in what execution
environment. Dynamic analysis is precise due to it examines the actual run-time behavior of
the program, however the results of executions may not generalize to other executions. Also,
author argues that whereas the chief challenge of static analysis is choosing a good abstract
interpretation, the chief challenge of performing good dynamic analysis is selecting a
representative set of test cases. A test can help to detect properties of the program, but it can
be difficult detect whether results of a test are true program properties or properties of a
particular execution context. The combination of static and dynamic analysis can enrich
reverse engineering process. There are different ways of combination, for instance performing
first static analysis and then dynamic one or perhaps, iterating static and dynamic analysis.
Likewise, the definition of appropriate heuristics may guide the search for information on the
traces generated during the dynamic analysis.

3.1 Example
The first stage focuses on retrieving software artifacts that are useful to understand the

design and implementation decisions for the chosen application. The aim is to detect the
classes that make up the application and objects involved in the different functionality. With
this information, models expressed by UML diagrams are generated [21].

Static analysis allows detecting the classes that compose the application and their
relationships. Dynamic analysis is used to detect how they interact to solve the offered
functionality. In this case, dynamic information is recovered using two techniques: execution
trace and memory snapshot.

Federico Améndola and Liliana Favre

3.1.1 Static analysis: Class Diagrams

The initial step had to do with the recovering of class diagrams to detect relationships
between the various components that make up the main modules. The explorer tool integrated
with the Eclipse development environment, called UML ObjectAid [6], was used in this step.
ObjectAid is a free tool for working with class diagrams but, it restricts access to sequence
diagrams using a special license.

As an example, we show the class diagram of the Customer Management (Fig. 2). The
purpose of this diagram is to visualize the relationships between the various modules. As we
can see, the user interface module is unrelated to the database, and the access to data is
provided by the server module, with which it maintains a direct association via a defined
interface. Moreover, the user interface is the only one that has direct associations with the
domain, since both the server and database, have only registered dependencies according to
the methods of the interface of each class.

3.1.2. Dynamic analysis: execution traces and memory snapshots

 To obtain and analyze execution traces of an application, we select the Eclipse Test and
Performance Tools Platform (TPTP). It provides an open platform supplying powerful
frameworks and services that allow software developers to build unique test and performance
tools. TPTP allows executing instances of the application and registering the invocations.
While the result is not a classic sequence diagram (for example, control statements are not
detected) it is a good approximation to detect methods involved in each specific functionality
and method invocation sequences. Also, the resulting diagram lets see how user interface
components interact directly with domain components but not with the database components.
Other dynamic analysis technique that was used in the process is memory snapshots. This
analysis seeks to recover what is the current value of each of the attributes of the objects
created during the execution of the application. This information is important not only to
successfully deploy the application on the target platform, but in the modeling stage, as
described in the next section. To detect the state of the memory was used a commercial tool
that can be freely used for a limited evaluation time called YourKit Java Profiler. This tool
allows running the application and capturing the information of the objects that were created
in memory.
 As a result of the application of static and dynamic analysis techniques it is possible to
recover artifacts that allow reconstructing the design of the application under consideration.
From this design, the source application can be implemented on the target platform, making
the necessary modifications according to the mobile restrictions (memory space, screen size,
usage limitations, among others).

Federico Améndola and Liliana Favre

Figure 2 : Class diagram Customer Management.

4 MODEL TRANSFORMATION
MDA aims at the development of software systems based on the separation of business and

application logic from underlying platform technologies, facilitating technology independence
and interoperability between platforms. All artifacts involved in a development process are
represented by means of metamodeling techniques, MOF metamodeling in particular. MOF
metamodels are used to describe the transformations at model level. For each transformation,
source and target metamodels are specified. A source metamodel defines the family of source
models to which transformation can be applied. A target metamodel characterizes the
generated models. In the MDA context, we consider that source models are PIMs and target
models are PSMs. Model transformation provides a way to specify how generate a target
model that conforms to a target metamodel from a source model that conforms to a source
metamodel.

We validate our approach in the Eclipse Modeling Framework. Source and target
metamodels conform to Ecore metamodel, which is comparable to EMOF. In this
experience, we select ATL as model transformation language. This stage of the translation
process, was supported by the Eclipse Modeling Project (EMP) which provides tools for both
defining metamodels and transformation rules, and executing the translation process.

Federico Améndola and Liliana Favre

4.1 Example
The Android platform provides a version of the Java language that is different to the version

provided by environments of standard execution (Java Runtime Environment). One of main
differences of this version of Java is the way of constructing graphic interfaces. It does not
provide frameworks such as Swing or AWT but its own component libraries called widgets.
Considering the above-mentioned, we present examples of translation centered on the
components of the user interface module, which require substantial changes.

Fig. 3 shows a simplified Java/JSwing metamodel that includes classes (and attributes)
used for the construction of client management screen . On the other hand, Fig. 3 also shows a
simplified Java/Android target metamodel to implement screens of client management.

Figure 3. Java/JSwing source metamodels and Java/Android target metamodel

 The main difference between the source and target metamodels is that interface controls
do not provide the same functionality for all cases. In some cases, due to technological
constraints and characteristics of the target platform, it is necessary create equivalent
functionality using different widgets. One such case may be the JTable class, which

Federico Améndola and Liliana Favre

module SwingToAndroid;

create OUT : JavaAndroid from IN : JavaSwing;

helper context JavaSwing!Component def:
getVisibility(): JavaAndroid!Visibility =
if self.visible = true then
 #VISIBLE
else
 #INVISIBLE
endif;
helper context JavaSwing!Component def: getWidth(s:
JavaSwing!Dimension): Integer =
if s.oclIsUndefined() then
 0
else
 s.width
endif;
helper context JavaSwing!Component def:
getHeight(s: JavaSwing!Dimension): Integer =
if s.oclIsUndefined() then
 0
else
 s.height
endif;
rule ComponentToView {
 from
 jc: JavaSwing!Component
 to tv: JavaAndroid!View (

visibility <- jc.getVisibility(),
id <- jc.name,
enabled <- jc.enabled,
width <- jc.width,
height <- jc.height,
mLeft <- jc.x,
mTop <- jc.y,
mMinHeight <- jc.getHeight(jc.minimumSize),
mMinWidth <- jc.getWidth(jc.minimumSize))

}

rule ContainerToViewGroup extends
ComponentToView {
 from

jc: JavaSwing!Container
 to

tv: JavaAndroid!ViewGroup (
mChildren <- jc.component,
mChildrenCount <- jc.ncomponents)

}

rule JComponentToViewGroup extends
ContainerToViewGroup {
 from

jc: JavaSwing!JComponent
 to

tv: JavaAndroid!ViewGroup

}

rule JLabelToTextView extends
JComponentToViewGroup {
 from

jc: JavaSwing!JLabel
 to

tv: JavaAndroid!TextView(
mText <- jc.text)

}

rule JTextFieldWithColumnsToEditText extends
JComponentToViewGroup {
 from

jc: JavaSwing!JTextField(jc.columns > 0)
 to

tv: JavaAndroid!EditText(
enabled <- jc.editable,
mFilters <- filters),
filters: JavaAndroid!LengthFilter (
mMax <- jc.columns)

}

rule JTextFieldToEditText extends
JComponentToViewGroup {
 from

jc: JavaSwing!JTextField(jc.columns = 0)
 to

tv: JavaAndroid!EditText (
enabled <- jc.editable)

Figure 4. From Swing to Android: ATL rules

implements a data table, which has no equivalent functionality in Android and will be
implemented by combining other controls. In other cases, we can also see restrictions that are
configured from attributes of a control, becoming associations between widgets. For
example, to set a maximum size for the number of characters that can be entered in an edit
control (for class JTextFiels, attribute column), it is represented in Android by means of the
association between the class editText with a filter of input of lenght (class LenghtFilter and

Federico Améndola and Liliana Favre

Figure 5. The original and the resulting screen of Client Management
the configuration of its attribute nMax). These considerations will be present at the moment of
establishing translation rules in ATL. In Fig. 4, we present some of the ATL rules that allow
the translation between the two metamodels. For example, the first rule describes how to
transform the parent metaclass of the source class Component into the parent metaclass of the
target class View. The transformation is performed for each attribute in an almost direct way,
except for attributes that need to be invoked from the previously defined helpers. The main
difficulties in the new implementation are associated with the particular features of platforms,
primarily the size of the screen available to build the user interface, and methods of use of the
input devices available which differ significantly from those found in a classical computer.
Fig. 5 shows the original screen of client management and the resulting screen on the mobile
device.

6 CONCLUSIONS
In this paper we have described a model driven reengineering process to adapt software

systems for mobile platforms. Our proposal intends to improve the productivity of
development teams taking into account the following strategies: working at a higher
abstraction level focusing on design rather than on implementations, encapsulating mobile

Federico Améndola and Liliana Favre

platform model knowledge in a metamodel specification that will be reused in different
applications, linking different CASE tools to the different activities , and particularly linking
models to full code generators.

To propose a development process that considers platform-independent models is a very
important practice to prevent future duplication of effort when trying to deploy the application
to a new target platform. However, we detect some inconveniences. When the only
information is the code, the success of the reverse engineering process depends largely on the
availability of assistance and automation tools. This is one of the most important
complications when attempting to migrate legacy system logic into a new application.

Beyond these difficulties, we show the acceptable feasibility of the proposed reengineering
process by integrating different CASE tools and highlight the importance of having tools that
assist during each stage of the proposed process. Our approach focuses on important problems
in mobile development: creating user interfaces and enabling software reuse across multiple
mobile platforms.

REFERENCES

[1] ADM. Architecture-Driven Modernization Task Force. http://www.omgwiki.org/admtf/doku.php (2013).
[2] Android Platform.http://www.android.com/ (2013).
[3] ATL Documentation. www.eclipse.org/m2m/atl/documentation (2013).
[4] Bruneliere, H., Cabot, J., and Dupé G. How to Deal with your IT Legacy: What isComing up in MoDisco?.

ERCIM NEWS 88, http://ercim- news.ercim.eu/ images/stories/EN88/EN88-web.pdf (2012) 43-44
[5] Canfora, G. and Di Penta, M. New Frontiers of Reverse Engineering. Future of Software Engineering,

FOSE’07, IEEE Press (2007) 326-341.
[6] CASE MDA. Committed Companies And Their Products. www.omg.org/mda/committed-products.htm

(2013).
[7] Dehlinger, J. and Dixon, J. Mobile Application Software Engineering: Challenges and Research Directions.

Proc. Workshop on Mobile Software Engineering. www.mobileSEworkshop.org, USA (2011).
[8] Dunkel, J. and Bruns, R.. Model-Driven Architecture for Mobile Applications. Lecture Notes in Computer

Science 4439, Springer-Verlag (2007) 464-477.
[9] Eclipse Modeling Framework. http://www.eclipse.org/emf/ (2013).
[10] Ernst, M. . Static and Dynamic Analysis: Synergy and duality. Proceedings of ICSE Workshop on

Dynamic Analysis (WODA 2003) (2003) 24-27.
[11] MDA. The Model-Driven Architecture. http://www.omg.org/mda/ (2013).
[12] Medini . Medini QVT. http://projects.ikv.de/qvt (2013).
[13] MoDisco . Model Discovery. http://www.eclipse.org/MoDisco (2013).
[14] MOF. Meta Object Facility (MOF) Core Specification Version 2.4.1, OMG Document Number:

formal/2011-08-07. http://www.omg.org/spec/MOF/2.4.1 (2011).
[15] ObjectAid. http://www.objectaid.com/home (2013).
[16] QVT. QVT: MOF 2.0 Query, View, Transformation. Version 1.1, OMG Document Number : formal/2011-

01-01. http://www.omg.org/spec/QVT/1.1/ (2012).
[17] SellWin, http://sellwincrm.sourceforge.net/. (2013).
[18] Thompson, C. Schmidt, D Turner, H. and White, J. Analyzing Mobile Application Software Power

Consumption via Model-Driven Engineering. PECCS 2011 (2011) 101-113.
[19] Tonella,P. and Potrich, A. Reverse Engineering of Object Oriented Code. Monographs in Computer

Science. Heidelberg: Springer-Verlag (2005).
[20] UML. Unified Modeling Language: Infrastructure. Version 2.4.1, OMG Specification formal/2011-08-05.

http://www.omg.org/spec/UML/2.4.1/ (2011).

