82 research outputs found

    Multiple neighborhoods in tabu search: successful applications for operations management problems

    Get PDF
    A metaheuristic is a refined solution method able to find a satisfying solution to a difficult problem in a reasonable amount of time. A local search metaheuristic works on a single solution and tries to improve it iteratively. Tabu search is one of the most famous local search, where at each iteration, a neighbor solution is generated from the current solution by performing a specific modification (called a move) on the latter. In contrast with most of the existing literature, the goal of this paper is to present tabu search approaches where different neighborhood structures (i.e., different types of moves) are jointly used. The discussion is illustrated for various operations management problems: truck loading, job scheduling, inventory management, and dimensioning of assembly lines

    Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows

    Full text link
    [EN] In practice due dates usually behave more like intervals rather than specific points in time. This paper studies hybrid flowshops where jobs, if completed inside a due window, are considered on time. The objective is therefore the minimization of the weighted earliness and tardiness from the due window. This objective has seldom been studied and there are almost no previous works for hybrid flowshops. We present methods based on the simple concepts of iterated greedy and iterated local search. We introduce some novel operators and characteristics, like an optimal idle time insertion procedure and a two stage local search where, in the second stage, a limited local search on a exact representation is carried out. We also present a comprehensive computational campaign, including the reimplementation and comparison of 9 competing procedures. A thorough evaluation of all methods with more than 3000 instances shows that our presented approaches yield superior results which are also demonstrated to be statistically significant. Experiments also show the contribution of the new operators in the presented methods. (C) 2016 Elsevier Ltd. All rights reserved.The authors would like to thank Professors Lofti Hidri and Mohamed Haouari for sharing with us the source codes and explanations of the lower bounds. Quan-Ke Pan is supported by the National Natural Science Foundation of China (Grant No. 51575212), Program for New Century Excellent Talents in University (Grant No. NCET-13-0106), Science Foundation of Hubei Province in China (Grant No. 2015CFB560), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130042110035), Key Laboratory Basic Research Foundation of Education Department of Liaoning Province (LZ2014014), Open Research Fund Program of the State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, China. Ruben Ruiz and Pedro Alfaro-Fernandez are supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) financed by FEDER funds.Pan, Q.; Ruiz García, R.; Alfaro-Fernandez, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research. 80:50-60. https://doi.org/10.1016/j.cor.2016.11.022S50608

    Order Acceptance and Scheduling: A Taxonomy and Review

    Get PDF
    Over the past 20 years, the topic of order acceptance has attracted considerable attention from those who study scheduling and those who practice it. In a firm that strives to align its functions so that profit is maximized, the coordination of capacity with demand may require that business sometimes be turned away. In particular, there is a trade-off between the revenue brought in by a particular order, and all of its associated costs of processing. The present study focuses on the body of research that approaches this trade-off by considering two decisions: which orders to accept for processing, and how to schedule them. This paper presents a taxonomy and a review of this literature, catalogs its contributions and suggests opportunities for future research in this area

    Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment Using Hybrid GA-PSO Algorithm

    Get PDF

    Multi-coloring and job-scheduling with assignment and incompatibility costs

    Get PDF
    Consider a scheduling problem (P) which consists of a set of jobs to be performed within a limited number of time periods. For each job, we know its duration as an integer number of time periods, and preemptions are allowed. The goal is to assign the required number of time periods to each job while minimizing the assignment and incompatibility costs. When a job is performed within a time period, an assignment cost is encountered, which depends on the involved job and on the considered time period. In addition, for some pairs of jobs, incompatibility costs are encountered if they are performed within common time periods. (P) can be seen as an extension of the multi-coloring problem. We propose various solution methods for (P) (namely a greedy algorithm, a descent method, a tabu search and a genetic local search), as well as an exact approach. All these methods are compared on different types of instance

    Maximizing total job value on a single machine with job selection

    Get PDF
    This paper describes a single machine scheduling problem of maximizing total job value with a machine availability constraint. The value of each job decreases over time in a stepwise fashion. Several solution properties of the problem are developed. Based on the properties, a branch-and-bound algorithm and a heuristic algorithm are derived. These algorithms are evaluated in the computational study and the results show that the heuristic algorithm provides effective solutions within short computation times

    Maximizing total job value on a single machine with job selection

    Get PDF
    This paper describes a single machine scheduling problem of maximizing total job value with a machine availability constraint. The value of each job decreases over time in a stepwise fashion. Several solution properties of the problem are developed. Based on the properties, a branch-and-bound algorithm and a heuristic algorithm are derived. These algorithms are evaluated in the computational study and the results show that the heuristic algorithm provides effective solutions within short computation times

    Coordinated Production and Delivery Operations With Parallel Machines and Multiple Vehicles

    Get PDF
    This paper investigated a coordinated optimization problem of production and delivery operations with parallel machines and multiple vehicles so that a more cost-effective and sustainable supply chain performance can be achieved. We propose an effective hybrid metaheuristic solution framework to deal with this problem, by which the investigated problem is decomposed into 3 sub-problems namely, vehicle assignment, parallel machine scheduling and traveling salesman sub-problem. This framework is established for handling the 3 sub-problems in a coordinated manner so as to simplify the optimization process and to reduce the computational complexity. To evaluate the effectiveness of the methodology, this paper integrates a genetic algorithm, the longest processing time heuristic and a tabu search under this framework to solve the investigated problem. Extensive numerical experiments have been conducted and experimental results show that the proposed solution framework can handle the investigated problem efficiently and effectively

    Aproximações heurísticas para um problema de escalonamento do tipo flexible job-shop

    Get PDF
    Mestrado em Engenharia e Gestão IndustrialEste trabalho aborda um novo tipo de problema de escalonamento que pode ser encontrado em várias aplicações do mundo-real, principalmente na indústria transformadora. Em relação à configuração do shop floor, o problema pode ser classificado como flexible job-shop, onde os trabalhos podem ter diferentes rotas ao longo dos recursos e as suas operações têm um conjunto de recursos onde podem ser realizadas. Outras características de processamento abordadas são: datas possíveis de início, restrições de precedência (entre operações de um mesmo trabalho ou entre diferentes trabalhos), capacidade dos recursos (incluindo paragens, alterações na capacidade e capacidade infinita) e tempos de setup (que podem ser dependentes ou independentes da sequência). O objetivo é minimizar o número total de trabalhos atrasados. Para resolver o novo problema de escalonamento proposto um modelo de programação linear inteira mista é apresentado e novas abordagens heurísticas são propostas. Duas heurísticas construtivas, cinco heurísticas de melhoramento e duas metaheurísticas são propostas. As heurísticas construtivas são baseadas em regras de ordenação simples, onde as principais diferenças entre elas dizem respeito às regras de ordenação utilizadas e à forma de atribuir os recursos às operações. Os métodos são designados de job-by-job (JBJ), operation-by-operation (OBO) e resource-by-resource (RBR). Dentro das heurísticas de melhoramento, a reassign e a external exchange visam alterar a atribuição dos recursos, a internal exchange e a swap pretendem alterar a sequência de operações e a reinsert-reassign é focada em mudar, simultaneamente, ambas as partes. Algumas das heurísticas propostas são usadas em metaheurísticas, nomeadamente a greedy randomized adaptive search procedure (GRASP) e a iterated local search (ILS). Para avaliar estas abordagens, é proposto um novo conjunto de instâncias adaptadas de problemas de escalonamento gerais do tipo flexible job-shop. De todos os métodos, o que apresenta os melhores resultados é o ILS-OBO obtendo melhores valores médios de gaps em tempos médios inferiores a 3 minutos.This work addresses a new type of scheduling problem which can be found in several real-world applications, mostly in manufacturing. Regarding shop floor configuration, the problem can be classified as flexible job-shop, where jobs can have different routes passing through resources and their operations have a set of eligible resources in which they can be performed. The processing characteristics addressed are release dates, precedence constraints (either between operations of the same job or between different jobs), resources capacity (including downtimes, changes in capacity, and infinite capacity), and setup times, which can be sequence-dependent or sequence-independent. The objective is to minimise the total number of tardy jobs. To tackle the newly proposed flexible job-shop scheduling problem (FJSP), a mixed integer linear programming model (MILP) is presented and new heuristic approaches are put forward. Three constructive heuristics, five improvement heuristics, and two metaheuristics are proposed. The constructive heuristics are based on simple dispatching rules, where the main differences among them concern the used dispatching rules and the way resources are assigned. The methods are named job-by-job (JBJ), operation-by-operation (OBO) and resource-by-resource (RBR). Within improvement heuristics, reassign and external exchange aim to change the resources assignment, internal exchange and swap intend changing the operations sequence, and reinsert-reassign is focused in simultaneously changing both parts. Some of the proposed heuristics are used within metaheuristic frameworks, namely greedy randomized adaptive search procedure (GRASP) and iterative local search (ILS). In order to evaluate these approaches, a new set of benchmark instances adapted from the general FJSP is proposed. Out of all methods, the one which shows the best average results is ILS-OBO obtaining the best average gap values in average times lower than 3 minutes

    Mathematical Model and Meta-Heuristic Algorithm for Dual Resource Constrained Hybrid Flow-Shop Scheduling Problem with Job Rejection

    Get PDF
    In the real world, firms with hybrid flow-shop manufacturing environment generally facethe human resource constraint, salary cost increasment and efforts to make better use oflabor, in addition to machine constraint. Given the limitations of these resources, productdelivery requierements to customers have made the job rejection essential in order to meetdistinct customer requirements. Therefore, this research has studied the dual resourceconstrained hybrid flow-shop scheduling problem with job rejection in order to minimizethe total net cost (the sum of the total rejection cost and the total tardiness cost of jobs)which is widely used in many industries. In this article, a mixed integer linear programmingmodel has developed for the research problem. In addition, an improved sooty ternoptimization algorithm (ISTOA) has proposed to solve the large-sized problems as well asa decoding method due to the NP-hardness of the problem. In order to evaluate theproposed optimization algorithm, five well-known algorithms in the literature including(immunoglobulin-based artificial immune system (IAIS), genetic algorithm (GA), discreteartificial bee colony (DABC), improved fruit fly optimization (IFFO), effective modifiedmigrating birds optimization (EMBO)) have adapted with the proposed problem. Finally,the performance of the proposed optimization algorithm has investigated against theadapted algorithms. Results and evaluations show the good performance of the improvedsooty tern optimization algorithm
    corecore