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1. Introduction

It is quite often to have the situation where all the associated

jobs are not completed due to a working hour limit or a

production capacity limit. However, all the associated jobs are

supposed to be completed in traditional scheduling problems

with regular performance measures such as makespan, total

tardiness and total completion time (Pinedo, 2012). In this

research, a non-regular performance measure (i.e., total job

value) is presented and maximized on the assumption that a

machine does not have to complete all jobs.

The values of jobs in this paper deteriorate over time.

It can be used to represent customer satisfaction that

deteriorates with the increase in waiting time for the service

(Bielen and Demoulin, 2007; van Riel et al, 2012; Borges

et al, 2015).

The proposed situation can be illustrated by a repair service

example for air conditioners. During hot summer, a mechanic

is not able to accommodate all repair requests for the broken

air conditioners within work hours. Based on the data

collected, the repair firm knows how customer satisfaction

decreases with the increase in waiting time. With this

information, the repair firm may be interested in maximizing

total satisfaction of the customers assigned to a mechanic.

This research is based on two broad branches of scheduling

literature: job selection and job deterioration.

A thorough review on job selection and scheduling literature

is given in Slotnick (2011) and Shabtay et al (2013). Several

topics are introduced to capture a characteristic of the

literature. Job selection was mainly used to maximize total

profit (or revenue) under a limited processing capacity (Lin

and Ying, 2013, 2015; Reisi-Nafchi et al, 2015; Zhang et al,

2016). Some papers focused on minimizing the completion

time of the last accepted job penalizing the value of rejected

jobs (Bartal et al, 2000; Zhong et al, 2014; Ou et al, 2015). A

few papers considered the trade-off between the cost to use an

expensive machine and the service level. The service level

increases as the processing time on the expensive machine

increases. Therefore, jobs are selected to find the maximal

trade-off (Thevenin et al, 2015, 2016).

As seen in the above-referenced work, job selection is

employed to consider a production capacity limit or/and a time-

related penalty. Likewise, this paper selects jobs to consider

time-dependent job value with a machine availability constraint.

The scheduling literature describes the deterioration of jobs

in two different ways. The first way is to define jobs whose

processing times increase as their delays for processing

increase (Voutsinas and Pappis, 2010). Most work in the area

of deteriorating jobs focused on this description (Wang et al,

2011). However, like the repair service example for air

conditioners, the deterioration of jobs may not increase the

processing times of jobs. Therefore, another way to describe

the deterioration of jobs appeared in the literature, that is, to

define jobs whose values decrease over time. In Voutsinas and

Pappis (2002, 2010), the values of jobs decrease in an
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exponential fashion. In Janiak and Krysiak (2007), the values

of jobs decrease in a stepwise fashion.

Following Janiak and Krysiak (2007), this paper uses a

stepwise value function, taking advantage of its robustness in

approximating any type of value functions. However, Janiak

and Krysiak (2007) assume that all jobs should be completed,

while this paper employs job selection with a machine

availability constraint that may be in practice.

The scheduling problem is described in Section 2. Some

solution properties of the problem are developed in Section 3.

Based on the properties, a branch-and-bound algorithm and a

heuristic algorithm are derived in Sections 4 and 5, respec-

tively. The numerical experiments to evaluate the performance

of the algorithms are presented in Section 6. Finally, some

concluding remarks are made in Section 7.

2. Problem description

A set of jobs J ¼ f 1; . . .; n g is to be scheduled for processing

on a single machine where only one job is allowed at a time and

the time horizon of from time 0 to time T is considered, and T is

less than the sum of processing times of all jobs. All jobs in J

are independent, non-preemptive and available for processing

at time zero. Each job j 2 J has its processing time pj [ 0 and

its job value VjðCjÞ which is given as a non-increasing stepwise
function represented by the completion time of job j Cj [ 0 and

the same moments of change et [ 0; t ¼ 1; . . .; k � 1 for all

jobs in the situation where at least one job in J decreases in its

value. VjðCjÞ is defined as follows:

VjðCjÞ ¼

Vj1; 0\Cj � e1
Vj2; e1\Cj � e2

..

.

Vjk; ek�1\Cj

8
>>><

>>>:

where Vj1 �Vj2 � � � � �Vjk � 0 and 0\e1\e2\ � � �\ek�1.

The objective is to find a schedule p that maximizes the

total value of jobs (total job value: TJV) completed within the

limited machine available time (from time 0 to time T) under

the assumption that the considered jobs do not need all to be

processed.

Since the problem under consideration with constant job

values that do not depend on the job completion times is

equivalent to the problem 1 j dj ¼ d j
P

wjUj which is proved

NP-hard by Karp (1972), the proposed problem with stepwise

job values is also NP-hard.

3. Problem analysis

Denote by r the assigned partial schedule and r0 the set of jobs
not in r but in J: Let h denote a time point t in the interval

ðet�1; et� where t ¼ 1; 2; . . .; k; e0 ¼ 0;ek ¼ T ; which satisfies

the relation et�1\
P

j2r pj � et and Dt denote the difference of

job values between two jobs i; j 2 J during the interval

ðet�1; et�.

Property 1 Given that two unscheduled jobs i 2 J and j 2 J

satisfy the following conditions simultaneously, job i

precedes job j in the optimal schedule when the optimal

schedule contains both jobs, while only job i is selected in

the optimal schedule when the optimal schedule contains

one job out of two jobs i and j:

(a) Vit �Vjt, t ¼ h; hþ 1; . . .; k; and i; j 2 r0

(b) Dh �Dhþ1 � � � � �Dk

(c) pi � pj, i; j 2 r0

Proof Consider the following notations:

pu = partial schedule, u ¼ 1; 2; 3,

tpu = sum of the job processing times of pu,

Wpu = TJV of pu.

Case 1 (when schedules contains both i and j).

Given two feasible schedules as shown in Figure 1, say

ðrp1ip2 jp3Þ and ðrp1jp2ip3Þ, TJV of ðrp1ip2 jp3Þ
= WrþWp1 þVi trþ tp1 þ pið ÞþWp2 þVj trþ tp1þð
piþ tp2 þ pjÞþWp3 and TJV of ðrp1jp2ip3Þ =
W 0

rþW 0
p1þ Vj trþð tp1 þpjÞþ W 0

p2 þVi trþ tp1 þpjþ
�

tp2 þpiÞþ W 0
p3 . Since the start times of r;p1 andp3 in

ðrp1ip2 jp3Þ are equivalent to the start times of

r;p1 andp3 in ðrp1jp2ip3Þ, respectively, Wr¼W 0
r;

Wp1 ¼W 0
p1 and Wp3 ¼W 0

p3 . Since trþ tp1 þpi�trþ
tp1 þpj (*pi�pj (condition c) and each job’s value

in p2 is non-increasing in its completion time, Wp2�
W 0

p2 . Since Vit�Vjt (condition a), Dh� Dhþ1����
�Dk (condition b) and pi�pj (condition c), Viðtrþ
tp1 þpiÞþ Vjðtrþ tp1 þpiþ tp2þ pjÞ�Vjðtrþ tp1 þpjÞ
þViðtrþ tp1þ pjþ tp2 þpiÞ. By the above three results,
TJV of ðrp1ip2 jp3Þ� TJV of ðrp1jp2ip3Þ:

Case 2 (when schedules contain only one job out of i and j).

Given two feasible schedules, say ðrp1ip2Þ and ðrp1
jp2Þ, TJV of ðrp1ip2Þ = WrþWp1 þVi ðtrþ tp1 þpiÞ
þWp2 sand TJV of ðrp1jp2Þ = W 0

rW
0
p1 þVjðtrþ tp1

þpjÞþW 0
p2 . Since the start times of r and p1 in

ðrp1ip2Þ are equivalent to the start times of r and p1
in ðrp1jp2Þ, respectively, Wr¼W 0

r and Wp1 ¼W 0
p1 .

Since trþ tp1 þpi�trþ tp1 þpj (*pi�pj (condition c)

and each job’s value in p2 is non-increasing

in its completion time, Wp2�W 0
p2 . Since Vit�Vjt

(condition a) and pi�pj (condition c), Viðtrþ tp1 þ
piÞ�Vjðtrþ tp1 þpjÞ . By the above three results, TJV
of ðrp1ip2Þ� TJV of ðrp1jp2Þ. h

Let DCi
denote the difference of job values between two jobs

i; j 2 J at the completion time of job i in a given schedule and

s denote the difference of job values between two jobs i; j 2 J

at the completion time of job j in a given schedule. The
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following properties (from Property 2 to Property 5) can be

proved in similar way to the proof of Property 1.

Property 2 Given that the following conditions hold in

ðp1ip2 jp3Þ where p1, p2 and p3 are partial schedules and
i; j 2 J, TJV of ðp1jp2ip3Þ is greater than or equal to TJV

of ðp1ip2 jp3Þ:

(a) VjðCiÞ�ViðCiÞ and VjðCjÞ�ViðCjÞ
(b) DCi

�DCj

(c) pi � pj

Property 3 Given that the following conditions hold in the

given schedule ðp1ip2 jp3Þ where p1, p2 and p3 are partial
schedules and i; j 2 J, TJV of ðp1jp2ip3Þ is greater than
or equal to TJV of ðp1ip2 jp3Þ:

(a) ViðCiÞ�VjðCiÞ and ViðCjÞ�VjðCjÞ
(b) DCi

�DCj

(c) pi � pj

Property 4 Given that the following conditions hold in the

given schedule ðp1ijp2Þ where p1 and p2 are partial

schedules and i; j 2 J, TJV of ðp1jip2Þ is greater than or

equal to TJV of ðp1ijp2Þ:

(a) VjðCiÞ[ViðCiÞ and VjðCjÞ�ViðCjÞ
(b) DCi

[DCj

(c) pi � pj
(d) job j in ðp1jip2Þ and job i in ðp1ijp2Þ are completed

during the same interval ðet�1; et� where

t¼1; 2; . . .; k; e0 ¼ 0; ek ¼ T .

Property 5 Given that the following conditions hold in the

given schedule ðp1ijp2Þ where p1 and p2 are partial

schedules and i; j 2 J, TJV of ðp1jip2Þ is greater than or

equal to TJV of ðp1ijp2Þ:

(a) ViðCiÞ[VjðCiÞ and ViðCjÞ�VjðCjÞ
(b) DCi

\DCj

(c) pi � pj
(d) job j in ðp1jip2Þ and job i in ðp1ijp2Þ are completed

during the same interval ðet�1; et� where

t¼1; 2; . . .; k; e0 ¼ 0; ek ¼ T .

This analysis implies that when two jobs i and j in a

schedule satisfy a property out of 4 properties (from Property 2

to Property 5), the schedule can increase TJV (or remain the

same) interchanging the positions of i and j.

4. Branch-and-bound

This section derives a branch-and-bound algorithm, referring

to Baker (1974) and Pinedo (2012).

4.1. Upper bound

Let PK
r represent a subproblem at level K where r specifies

the assigned partial schedule in a branching tree and K

specifies the number of jobs in the partial schedule r. PK
r is

the same as the original problem P0 except with the first K

positions assigned in the partial schedule r. Let s denote the

last job of the partial schedule r, Cs denote the completion

time of the last job of the partial schedule r, g denote a time

point t in the interval ðet�1; et� where t ¼ 1; 2; . . .;

k;e0 ¼ 0; ek ¼ T; which satisfies the relation et�1\Cs � et,

and ri denote the partial schedule in which the partial

schedule r is immediately succeeded by job i 2 J.

In order to find an upper bound at the subproblem PK
r , the

algorithm modifies the values of all jobs in set r0 first. For
each job j 2 r0, all values in the interval ðet�1; et� where t ¼
gþ 1; gþ 2; . . .; k; ek ¼ T are converted to Vjg which is the

value of job j in the interval ðeg�1; eg�.

Figure 1 Structure of two schedules ðrp1ip2 jp3Þ and ðrp1jp2ip3Þ.
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Then, a knapsack problem to maximize TJV with all jobs,

having the modified job values, in set r0 and the available time

(capacity) constraint given as T � Cs is derived. This problem

is denoted by Problem �. To solve Problem �, Dantzig’s

upper bound in Dantzig (1957) and Martello et al (2000) is

adopted as follows:

Let n0 denote the number of jobs in set r0 and ½j� denote the
job at jth position in a arbitrary sequence.

1. Arrange the jobs in set r0 as V½j�g
�
p½j� � V½jþ1�g

�
p½jþ1�

where j ¼ 1; . . .; n0 � 1.

2. Find l which is the greatest integer such that
Pl

j¼1 p½j� � T � Cs.

3. Calculate an upper bound of Problem �.

Upper bound of Problem � =
Pl

j¼1 V½j�g þ T � Cs�ð½
Pl

j¼1 p½j� � V½lþ1�g
�
p½lþ1�Þ�.

Thus, the upper bound at the subproblem PK
r is obtained as

follows:

UB1 ¼
X

j2r
VjðCjÞ þ Dantzig upper bound of Problem �:

For the second upper bound at the subproblem PK
r , the

values of all jobs in set r0 are also changed but in a different

way. For each job j 2 r0, the job value in each interval

ðet�1; et� where t ¼ g; gþ 1; . . .; k; ek ¼ T is converted to the

maximum value, in each interval ðet�1; et� where t ¼ g; gþ
1; . . .; k; of all jobs in set r0.
After the changes in the job values, the single-machine

scheduling problem that maximizes the TJV with all jobs,

having the same job values, in set r0 and machine available

time ðT � CsÞ is derived. This problem is denoted by

Problem `.

Lemma 1 The optimal solution of Problem ` is obtained in

SPT sequence.

Proof Suppose that p� is the optimal schedule that contains

job u and job v which is the successor of u, and does not

contain job w, where pu [ pv [ pw.

Case 1 (Comparison between u and v).

Set k ¼ u and l ¼ v, then follows the proof of Janiak

and Krysiak (2007)’s Property 1.

Case 2 (Comparison between u and w).

Since pu [ pw, the completion times of the jobs

processed after u will decrease after replacing job u

with job w. Since VjðCjÞ is a non-increasing function,

the values of the jobs processed after job u increases

(or remains the same) after the replacement.

Moreover, the completion times of the jobs

processed before job u remain the same. Therefore,

replacing job u with job w can increase the TJV of

p�. This contradicts the assumption.

By the results of Case 1 andCase 2, without loss of generality,

SPT rule give the optimal solution of Problem `. h

The second upper bound for subproblem PK
r is obtained as

follows:

UB2 ¼
X

j2r
VjðCjÞ þ TJV of the SPT sequence in Problem `:

While UB2 gives a tighter bound when the difference of job

values within each ðet�1; et� is small, UB1 gives a tighter

bound when the decreasing rate of job values is small. The

upper bound of subproblem PK
r is defined as:

UB ¼ min fUB1;UB2g:

4.2. Branching

A subproblem (P0 or PK
r ) is partitioned into one or more

subproblems (P1
i or P

Kþ1
ri ) that are defined by sequencing job i

in set r0 right after the partial schedule r if the partial schedule

ri satisfies the available time constraint. If no job in set r0

satisfies the available time constraint at the subproblem PK
r , P

K
r

is a ending node and the partial schedule r is called a trial

solution which updates LB (lower bound).

To select a subproblem for branching, the depth-first

rule is adopted to select the subproblem with the largest

K and, in the case of tie, the best-first rule is adopted to

select the subproblem with the largest UB. Moreover, prop-

erties (from Property 1 to Property 5) will be used as branching

rules.

4.3. Bounding

With the original problem P0, the initial LB is computed by a

heuristic which will be explained in Section 5. The algorithm

calculates the UB of the subproblem PKþ1
ri at the subproblem

PK
r . If the UB is greater than the current LB, the subproblem

PKþ1
ri will be branched from the subproblem PK

r . Otherwise,

the subproblem PKþ1
ri will be fathomed. Moreover, when the

algorithm finds a new LB, the subproblems whose UBs are not

greater than the new LB are also fathomed.

4.4. Overall procedure of branch-and-bound algorithm

Step 1 Obtain the initial LB and trial solution by the

heuristic (see Section 5). Place the original problem

P0 on active list and go to Step 2

Step 2 If active list = ;, go to Step 7. Otherwise, remove the

first PK
r from active list. If 9 i 2 r0 such that

P
j2r pj þ pi � T , then go to Step 3. Otherwise,

update trial solution such that trial solution = r and

LB and then go to Step 6

Joonyup Eun et al—Maximizing total job value on a single machine 1001



Step 3 Check the conditions of Property 1 for all pairs of

jobs included in r0. If the conditions hold, the jobs

which satisfy the conditions of job j in Property 1 are

eliminated from r0. Calculate UB of PKþ1
ri for each

job i 2 r0 such that
P

j2r pjþpi �T : If UB of PKþ1
ri is

less than or equal to the current LB, PKþ1
ri is fathomed

and go to Step 2. If the number of jobs in r is zero, go

to Step 5. Otherwise, set q = 1 and go to Step 4

Step 4 Check the conditions of from Property 2 to Property 5

with qth scheduled job and job i in ri. If the

conditions of any one of those properties hold, PKþ1
ri

is fathomed and go to Step 2. If q is the number jobs

in r, go to Step 7. Otherwise, set q ¼ qþ 1 and

repeat Step 4

Step 5 Place PKþ1
ri on active list and rank subproblems by the

criteria which are the largest K and, in the case of tie,

the largest UB, and go to Step 2

Step 6 Eliminate the subproblems whose UB�LB from

active list and go to Step 2

Step 7 Terminate the algorithm. The lastly updated trial

solution is optimal

5. Heuristic

The proposed heuristic algorithm consists of two parts. One

part is job selection and allocation mechanism. The other one

is the interchange mechanism of job positions.

5.1. Job selection and allocation

Let A denote the set of jobs which can be assigned to the

partial schedule r at a dispatching point (a completion time of

the partial schedule r). The algorithm selects and assigns a job

which has the largest job value divided by its processing time

in the situation where each job in set A is processed right after

the partial schedule r. Then the algorithm can give the best

solution from the dispatching point to the completion time of

the selected job. Moreover, any two jobs in the partial schedule

r which is made by the above job selection mechanism do not

satisfy the conditions of Property 1 and Property 2, because

these properties deal with the specific situation such that the

jobs having smaller processing times and larger job values

precede any other jobs having larger processing times and

smaller job values in the optimal solution.

5.2. Interchange of job positions

Given the partial schedule r, the algorithm can increase the

associated TJV by Property 3, Property 4 and Property 5. If a

new job is assigned to the partial schedule r, the conditions of

those properties are checked with the new assigned job and

any other one job existing in the partial schedule r until all

pair jobs in the partial schedule r do not satisfy the conditions

of all those properties. If the existing job moves backward in

its position by interchanging mechanism, the algorithm should

check the conditions of Property 2 with the backward-position-

changed job and the jobs which are scheduled between the

previous and the new position of the backward-position-

changed job, by the fact that the new position of the backward-

position-changed job was not assigned by job selection

mechanism.

5.3. Overall procedure of heuristic algorithm

Step 1 Put all the jobs not included in r into r0 and put all

i 2 r0 such that
P

j2r pj þ pi �T into A. If the

number of jobs in A is greater than zero, select q 2
r0 such that q ¼ argmax

i2A
Vit=pi, where the time point

t in the interval ðet�1; et�; t ¼ 1; 2; . . .; k; e0 ¼ 0;

ek ¼ T satisfies the relation et�1\
P

j2r pj þ pi � et,

and assign job q to the last position in r. Otherwise,
go to Step 9. If the number of jobs in r is 1, repeat

Step 1. Set v = the number of jobs in r and

u ¼ v� 1. Let j½ �r denote the job at j th position in

r. Add v½ �r to List1 and go to Step 2

Step 2 Check u½ �r and v½ �r whether they satisfy the

conditions of Property 3, Property 4 and Property 5,

respectively. If the conditions of any one of those

properties hold, go to Step 3. Otherwise, go to Step 4

Step 3 Add u½ �r to List2 and let the position of uþ 1½ �r be a

breakpoint. If u½ �r is on a breakpoint or the first

scheduled job, remove the job index of v½ �r from

List1 or List2, interchange the positions of u½ �r and

v½ �r, and go to Step 6. Otherwise, interchange the

positions of u½ �r and v½ �r, and go to Step 5

Step 4 If u½ �r is on a breakpoint or the first scheduled job,

remove v½ �r from List1 or List2 and go to Step 6.

Otherwise, set u ¼ u� 1 and go to Step 2

Step 5 If List1 = ;, go to Step 6. Otherwise, find any one

job z in List1. Set u = the number of jobs scheduled

before job z and v ¼ uþ 1. Go to Step 2

Step 6 If List2 = ;, go to Step 1. Otherwise, find any one

job y in List2. Set u = the number of jobs scheduled

before job y and v ¼ uþ 1. Go to Step 7

Step 7 Check u½ �r and v½ �r whether they satisfy the

conditions of from Property 2 to Property 5. If the

conditions of any one of those properties hold, go to

Step 3. Otherwise, go to Step 8

Step 8 If u½ �r is on a breakpoint or the first scheduled job,

remove v½ �r from List1 or List2 and go to Step 6.

Otherwise, set u ¼ u� 1 and go to Step 7
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Step 9 Terminate the algorithm. The schedule r is the

solution

Note that the interchanging mechanism requires Oðn log nÞ
time and the job selection mechanism selects less than n jobs.

Thus, the time complexity of this algorithm is Oðn2 log nÞ.

6. Computational study

For the numerical experiments, the algorithms are coded in

C?? language and tested on a personal computer with a

2.40 GHz Intel Core i7-3630QM processor (8 GB RAM) and

evaluated by use of several impact factors including the

number of jobs (n) and the number of intervals (k). In addition,

to determine whether the ranges of pj and Vjt for t ¼ 1; . . .; k

have any influence on the performance of the algorithms, three

different range sets are established and shown in Table 1.

Instances were generated referring to the data generation

scheme used in Hall and Posner (2001) and Kim et al (2009).

All instances used in this study are available online at https://

www.dropbox.com/s/mjv07qzkttxtfn0/Instances.zip?dl=0.

Each pj takes an integer selected randomly from a discrete

uniform distribution. k integer values are generated and used

for Vjt where Vi1 � � � � �Vik which is checked whether it

satisfies the assumption that the value of at least one job in J

decreases at each moment of change. T takes an integer

selected randomly from a discrete uniform distribution under

the range
P

j2J pj

.
2;
P

j2J
pj � 1

" #

. For generating the moments

of change, (k � 1) integers are selected without duplicating

number under the range ½1; T � and used for et where

e1\ � � �\ek�1.

The algorithms were tested for 60 problem cases of 10

instances each. In Table 2, the third, sixth and ninth columns

show the average run times of the branch-and-bound (B-&-B)

algorithm to give the optimal solution. As k increases, the

computation of the B-&-B algorithm tends to take more time.

The procedure of computing UB, in which the number of job

values modified for computing UB depends on k, accounts for

this tendency.

The fifth, eighth and eleventh columns of Table 2 show the

average Gap between the TJV corresponding to the optimal

solution of the B-&-B algorithm (TJV of B-&-B) and the TJV

corresponding to the heuristic solution (TJV of heuristic):

Gap ð%Þ ¼ TJV of B�&�B� TJV of heuristic

TJV of B-&-B
� 100:

Table 2 Performances of the B-&-B and the heuristic

n k pj 2 ½1; 50�, Vjt 2 ½0; 100� pj 2 ½1; 100�, Vjt 2 ½0; 50� pj 2 ½1; 100�, Vjt 2 ½0; 100�

B-&-B
average run
time (s)

Heuristic
average run
time (s)

Average
Gap (%)

B-&-B
average run
time (s)

Heuristic
average run
time (s)

Average
Gap (%)

B-&-B
average run
time (s)

Heuristic
average run
time (s)

Average
Gap (%)

5 10 0.00 0.00 1.48 0.00 0.00 2.31 0.00 0.00 1.78
5 20 0.00 0.00 1.32 0.00 0.00 0.98 0.00 0.00 2.25
5 30 0.00 0.00 1.09 0.00 0.00 0.37 0.00 0.00 1.03
5 40 0.00 0.00 0.31 0.00 0.00 1.37 0.00 0.00 2.08
10 10 0.03 0.00 2.82 0.02 0.00 2.77 0.02 0.00 3.74
10 20 0.04 0.00 1.57 0.03 0.00 3.28 0.03 0.00 2.20
10 30 0.04 0.00 2.49 0.03 0.00 2.47 0.04 0.00 3.31
10 40 0.04 0.00 1.08 0.03 0.00 0.90 0.04 0.00 1.29
15 10 2.60 0.00 4.85 2.54 0.00 3.63 4.00 0.00 3.76
15 20 3.05 0.00 2.29 5.27 0.00 3.37 2.95 0.00 2.66
15 30 7.49 0.00 2.71 3.68 0.00 2.31 4.73 0.00 2.40
15 40 5.88 0.00 2.03 5.73 0.00 2.66 5.32 0.00 1.86
20 10 277.61 0.00 5.20 133.24 0.00 5.19 288.63 0.00 5.89
20 20 489.04 0.00 4.04 331.15 0.00 3.43 368.34 0.00 4.02
20 30 947.26 0.00 3.37 430.89 0.00 2.34 309.22 0.00 2.98
20 40 675.44 0.00 2.46 454.51 0.00 2.38 531.23 0.00 3.21
23 10 2676.92 0.00 4.46 1204.90 0.00 4.36 1447.39 0.00 5.33
23 20 4243.53 0.00 3.42 3751.48 0.00 3.09 2769.74 0.00 4.28
23 30 4216.37 0.00 2.79 3117.73 0.00 2.58 6037.83 0.00 3.03
23 40 7928.35 0.00 2.35 6205.54 0.00 3.00 10147.17 0.00 1.99

Table 1 Three different range sets for generating pj and Vjt

pj Vjt

Set 1 [1, 50] [0, 100]
Set 2 [1, 100] [0, 50]
Set 3 [1, 100] [0, 100]
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Minimum average Gap is 0.31% and maximum average Gap

is 5.89%. The heuristic algorithm gives quite a good solution,

whereas the run time of the heuristic algorithm is short. The

average Gap shows a trend such that as k increases, the

average Gap gets smaller because, with large k, the differences

of job values in each interval ðet�1; et� are relatively smaller,

and thus, the penalty for the non-optimal schedule is small.

In addition, Table 2 shows that there are no distinct trends

between three different range sets for pj and Vjt. The

performances of the B-&-B and the heuristic algorithms are

indifferent to the ranges for pj and Vjt.

Table 3 shows the average number of interchanging job

positions by each property in the heuristic algorithm. The

number of interchanges by Property 2 is quite small because

the job selection mechanism guarantees that any two jobs in

the partial schedule r do not satisfy the conditions of Property

2, and thus, Property 2 is applicable only to the jobs which is

moved its position backward by the interchanging mechanism.

Property 3 plays an important role in the interchanging

mechanism because Property 3 argues that the jobs which have

larger processing times and lower job values can precede other

job which has smaller processing times and higher job values

in the optimal solution, which is the opposite argument of the

job selection mechanism. In the same reason, Property 5 is

used more frequently than Property 4. Thus, it is concluded

that the job selection mechanism and properties complement

each other to give a better solution. Since Property 4 and

Property 5 are applicable only to the adjacent pair jobs in the

partial schedule r, the number of interchanging job positions

by those properties is smaller than the number of interchanging

job positions by Property 3.

7. Conclusion

This paper considers a single-machine scheduling problem in

which the value of each job decreases over time in a stepwise

fashion, and jobs need to be selected for processing due to a

machine availability constraint. The problem can be applied to

making a service sequence that maximizes total customer

satisfaction with limited working hours. Solution properties of

the problem are developed. Those properties are used for the

branch-and-bound algorithm and the heuristic algorithm to

efficiently explore the solution space without debasing the

quality of solutions. The computational study shows that the

heuristic algorithm is efficient and effective comparing with the

performance of the branch-and-bound algorithm. Therefore, the

heuristic algorithm may be applied to large-size problems.

As further study, it would be interesting to consider a

multiple machine scheduling problem with machine availabil-

ity constraints. In addition, considering resumable and non-

resumable cases under multiperiod limited machine availabil-

ity is also an interesting issue.
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