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1. INtroDUctIoN

Let f be an objective function which has to be minimized 
(e.g., a cost function). A solution s is optimal for f if there is 
no better solution than it, that is, there is no solution s’ such 
that f(s’) < f(s). As mentioned in (Zufferey & Vasquez, 2015), 
an exact method guarantees the optimality of the provided 
solution. However, for a large number of applications and 
most real-life optimization problems, such methods need 
a prohibitive amount of time to find an optimal solution, 
because such problems are NP-hard (Garey & Johnson, 
1979). For these difficult problems, one should prefer to 
quickly find a satisfying solution, which is the goal of heuristic 
and metaheuristic solution methods. There mainly exist 
three families of (meta)heuristics: constructive algorithms 
(a solution is built step by step from scratch, like the greedy 
algorithm where at each step, the best element is added to 
the solution under construction), local search methods (a 
solution is iteratively modified: this will be discussed below), 
and evolutionary metaheuristics (a population of solutions 
is managed, like genetic algorithms and ant algorithms). The 
reader is referred to (Gendreau & Potvin, 2010; Zufferey, 
2012b) for more information on metaheuristics and general 
guidelines to adapt them.

Only the context of local search methods is considered in 
this work. A local search algorithm starts with an initial 
solution and tries to improve it iteratively. At each iteration, 
a modification, called a move, of the current solution s 

is performed in order to generate a neighbor solution 
s’. Let N(s) denote the set of all neighbor solutions of 
s. The definition of a move, that is the definition of the 
neighborhood structure N, depends on the considered 
problem. Popular local search methods are the descent 
local search, simulated annealing, tabu search and variable 
neighborhood search.

In a descent local search, the best move is performed at each 
iteration and the process stops when a local optimum is 
found. Tabu search was proposed by Fred Glover in the 80’s 
and is nowadays still considered as one of the most efficient 
method for exploring the search space. Tabu search has a 
good balance between exploitation (i.e., the ability to guide 
the search in the solution space and to take advantage of 
the problem structure) and exploration (i.e., the ability to 
visit various zones of the solution space). Indeed, to prevent 
tabu search from being stuck in a local optimum, when a 
move is performed, the reverse move is forbidden (i.e., set 
as tabu) for tab (parameter) iterations. In most tabu search 
algorithms, only one neighborhood structure N is used. 
The goal of this paper is to present tabu search approaches 
where at each iteration, different neighborhood structures 
N1, N2, …, Nq are used. The resulting method, denoted 
MNTS (for Multiple Neighborhoods in a Tabu Search), is 
presented in Algorithm 1, where s* denotes the best visited 
solution (returned at the end to the user). The motivation 
of using several neighborhood structures is the following. 
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A metaheuristic is a refined solution method able to find a satisfying solution to a difficult problem in a reasonable 
amount of time. A local search metaheuristic works on a single solution and tries to improve it iteratively. Tabu search is 
one of the most famous local search, where at each iteration, a neighbor solution is generated from the current solution 
by performing a specific modification (called a move) on the latter. In contrast with most of the existing literature, the 
goal of this paper is to present tabu search approaches where different neighborhood structures (i.e., different types of 
moves) are jointly used. The discussion is illustrated for various operations management problems: truck loading, job 
scheduling, inventory management, and dimensioning of assembly lines.
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A local optimum according to neighborhood structure N is 
a solution s such that there is no solution in N(s) which is 
better than s. Let N1 and N2 be two different neighborhood 
structures. Obviously, if s is a local optimum according to 
N1, it may not be a local optimum according to N2. In other 
words, if a N1-move is not able to improve s anymore, then 
a N2-move may do it.

Algorithm 1: MNTS (Multiple Neighborhoods in a Tabu 
Search)

Generate an initial solution s and set s* = s.

While no stopping criterion is met, do

• from the current solution s, generate the best 
non-tabu neighbor s’ ∈ N1(s) ∪ … ∪ Nq(s); 

• forbid the reverse move for tab (parameter) 
iterations;

• set s = s’;

• if f(s) < f(s*), set s* = s;

In order to design a MNTS for a specific problem (P), 
the following ingredients have to be defined: a way to 
encode a solution s, an objective function f, the various 
neighborhood structures N1, …, Nq, the tabu list structures 
(i.e., the nature of the forbidden moves), and the stopping 
condition (e.g., a time limit, a specific number of iterations). 
Strongly relying on (Respen & Zufferey, 2013; Thevenin et 
al., 2013; Zufferey, 2014; Zufferey, 2012a), the discussion is 
illustrated for various operations management problems, 
namely truck loading (Section 2), job scheduling (Section 
3), inventory management (Section 4), and dimensioning 
of assembly lines (Section 5).

2. MNtS for trUcK loaDINg

2.1. Presentation of the considered problem (P)

The French car manufacturer Renault daily faces a complex 
truck loading problem (P), where items need to be placed 
in a truck while satisfying different constraints. More than a 
thousand trucks are daily considered to deliver components 
to the car plants. As a single truck can deliver goods to 
different delivery points, classes of items are defined, where 
a class is associated with a delivery point. Each problem 
instance contains the size of the truck and the various sizes 
of all the items that must fit in. The heights of the items 
can be ignored as they rely on complex factory constraints 
which are supposed to be already satisfied. At first sight, (P) 
seems related to a strip-packing 2D problem with rotation, 
which has been already covered by many research papers 
(e.g., Hopper & Turton, 2001; Lodi et al., 2002; Ntene & van 
Vuuren, 2009; Riff et al., 2009). (P) is NP-hard, and Renault 
even showed in (Nguyen & Brenaut, 2009) that no exact 

method can be competitive to tackle their real instances. 
Therefore, (meta)heuristics are more than relevant.

Problem (P) can be formally described as follows: a number 
n of items, each one belonging to a specific class Ci (with i ∈ 
{1, … , m} such that m ≤ n), need to be placed in a truck such 
that all the items belonging to the same class are adjacent. 
In addition, the classes must be placed in an increasing 
fashion from the front to the rear of the truck. More 
formally, the ordinate of the origin item which belongs to 
class Ci (label 1 on Figure 1) must be strictly smaller than 
the ordinate of the extremity of any item of class Ci+1 (label 
2 on Figure 1), and such that the ordinate of the extremity 
item (the closest one to the rear) of class Cm (label 3 on 
Figure 1), denoted as f, is minimized. The truck size is a hard 
constraint to fulfill, as it is not allowed to exceed neither its 
length nor its width.

Figure 1. A possible solution (view from the top of the 
truck, with rear on the left)

Because of the specificity of (P) (e.g., different classes of 
items, a significant number of items per truck in conjunction 
with a large standard deviation of the sizes of the items), 
it is not possible to take advantage of the existing exact 
algorithms (e.g., (Martello & Vigo, 1998; Martello et al., 
2003; Lesh et al., 2004; Pisinger & Sigurd, 2005; Puchinger & 
Raidl, 2007)) to tackle it. Additional references on the topic 
can be found in (Lodi et al., 1999; Respen & Zufferey, 2013). 

To solve (P), Renault proposes a simple but efficient greedy 
heuristic (denoted SG), and an advanced greedy heuristic 
called look-ahead greedy (denoted LAG). An important 
aspect is the tradeoff between the computing time and 
the solution quality. As LAG is fast, another metaheuristic 
is only relevant if it is fast and leads to improvements. SG 
builds a solution from scratch, and at each iteration, selects 
an item (following different possible rules) from a list L of 
non-already inserted items, and adds it to the solution at 
minimum cost (i.e., which minimizes the augmentation of 
f, label 3 of Figure 1). This process stops when L is empty. 
In LAG, at each iteration, the algorithm tries each item j 
of L, and for each j, tries the next p (parameter) insertions 
following this possible insertion of j (look-ahead process). 
At the end of the iteration, the item j that would involve the 
lowest cost in the next p iterations is selected and inserted 
at the best position. As before, this process stops when L 
becomes empty. Both SG and LAG algorithms are fast (a few 
seconds per run), and therefore relevant to Renault. The 
two methods perform restarts as long as a given time limit 
T is not reached. When T is reached, the best generated 
solution is returned.
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2.2. Tabu search for (P)

Working with encoded solutions is relevant to tackle (P) 
within the framework of local search methods. An encoded 
solution s is actually a list of elements. To build a solution 
and compute its quality, a decoding greedy algorithm 
(DGA) is performed on the encoded solution. It decodes 
the solution s into a real solution sreal, and then returns the 
total length of the truck load f. To drive DGA, information 
(some are mandatory and others are optional) are carried 
in each element of s, and can contain the item identifier 
(ID, mandatory), the class identifier (C, mandatory), 
the item orientation (O, optional), and the item side (S, 
optional). Thus, component i of the solution s takes the 
form si = (IDi, Ci, Oi, Si), where ID ∈ {1, …, n}, C ∈ {1, …, 
m}, O ∈ {not rotated, 90-degrees rotated}, and S ∈ {left-
sided, right-sided}. DGA thus decodes the vector s into a 
real solution sreal by inserting in sreal the items from s in a 
FIFO order, and using the O and S information (if provided) 
while respecting the class constraint. At each step, DGA 
pops the next item i of s, greedily loads it in the truck, while 
respecting Ci, Oi and Si. If Oi (or Si) is not provided, DGA can 
decide by itself its value (minimizing the augmentation of 
f), and thus owns more freedom.  

The decoding process is illustrated on an example. Five items, 
initially oriented as presented in Figure 2, have to be placed 
in a truck. A possible encoded solution is the following: s = 
((ID1, 1, not rotated, right-sided), (ID3, 1, 90-degrees rotated, 
right-sided), (ID2, 1, 90-degrees rotated, left-sided), (ID5, 2, 
?, ?), (ID4, 2, ?, right-sided)). The corresponding decoded 
solution sreal is illustrated in Figure 3. To generate this 
solution, DGA performs the following steps: it pops the first 
element ID1 and loads the corresponding item on the right 
side, without rotation. At that time, the next item, namely 
ID3, is loaded on the right with a 90-degrees rotation. Then 
item ID2 is loaded on the left with rotation whereas ID5 is 
inserted at the best possible position tried by DGA while 
respecting the class constraint. Finally item ID4 is inserted on 
the right side but DGA decided its orientation. When DGA 
is over, it returns the value f, which is in this example the 
extremity of item ID4. 

Figure 2: Items (with initial orientations) 

	  

Figure 3: Decoded solution sreal (top view)

       

To generate a neighbor solution s’ from the current 
solution s, the seven following neighborhood structures 
are possible:

• N1: move item j from position x to position y;

• N2 (resp. N3): move item j from position x to y, 
and switch to the opposite value its orientation 
O (resp. side S);

• N4: move item j from position x to y, and switch S 
and O to the opposite values;

• N5 (resp. N6): switch O (resp. S) to the opposite 
value;

• N7: switch O and S to the opposite values.

All the moves are performed while respecting the class 
constraint, and ties are broken randomly. Four different 
tabu search approaches are developed, denoted TS1, TS2, 
TS3 and TS4. The notation TS is simply used if it refers to 
common features of the four tabu search algorithms. TS 
starts from an initial encoded solution where items are 
ordered by decreasing areas. TS1, TS2, TS3 and TS4 differ 
in the sense that for TS1, only the information ID and C is 
contained in each element of the encoded solution. TS2 
contains ID, C and O. TS3 contains ID, C and S. TS4 contains 
ID, C, O and S. Thus, for TS1, DGA can decide on its own the 
orientations and the sides (while focusing on the smallest 
augmentation of f). In TS2 and TS3, DGA has the order in 
which the insertion must be made, and the orientation or 
the side of each item (but not both). Finally TS4 constraints 
DGA at the maximum level due to the complete information 
set contained in each component si of the vector s. In TS, 
only a fraction v (set to 50%) of the possible moves are 
generated (it allows to performing more iterations for a 
same time limit, and helps in bringing more diversification). 
After each move, the tabu tenure tab is set to a uniformly 
distributed value between 25 and 55.

2.3. Results

The above methods are compared on a set of 30 real 
benchmark instances provided by Renault. Tests were 
performed on an Intel Quad-core i7 @ 3.4 GHz with 8 GB 
DDR3 of RAM memory. The time limit T is 1800 seconds 
(as validated by practitioners). The results are summarized 
in Table 1. The first two columns indicate the values of 
n (number of items) and m (number of classes) of each 
instance. Column f* indicates to the objective function 
value of the best solution ever found by any of the 
algorithms. The following column reports the percentage 
gap between the solution of SG and f*. The next columns 
provide the same information for the other methods. 
The last rows give the average gap and computing time 
for each method. As SG and LAG are greedy constructive 
methods with restarts, it is not relevant to indicate their 
computing times.

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS



6   -   I N t e r N a t I o N a l  J o U r N a l  o f  M U l t I D I S c I p l I N a r I t y  I N  B U S I N e S S  a N D  S c I e N c e ,  V o l .  3 ,  N o .  3

Table 1. Computational results (averaged over 5 runs for tabu search)

n m f* SG LAG TS1 TS2 TS3 TS4

23 1 12840 1.01 0.86 4.6 0.06 0.21 0.92

25 1 13000 3.85 0.31 3.85 0 0.05 0.98

24 1 12920 1.32 0.08 1.39 0 0.06 0.38

25 1 13040 3.76 0.31 3.76 0 0 0.6

26 1 13460 0.15 0.07 0.15 0 0 0.01

20 2 13610 6.83 1.25 14.11 0 1.25 0.53

23 1 12980 3.08 0.08 6.63 0 0 0.26

25 1 14120 4.02 4.01 3.75 0.07 0 0.26

18 4 13295 0.56 0.15 24.69 0 0.05 0.18

23 3 12852 5.23 0.5 18.67 0 0.03 0.16

20 2 13330 9.08 0.6 12.08 0 0.08 0.08

17 3 13070 0.23 0.15 14.77 0 0 0

25 1 13390 1.12 0.97 1.05 0 0.16 0.42

20 2 13150 7.53 1.52 12.09 0 0.61 0.67

20 4 13325 4.68 2.42 25.77 0 2.65 0.11

24 1 13010 3.69 0.46 3.61 0 0 0.52

23 4 12902 3.36 2.19 6.17 0.02 1.02 0.39

24 1 13380 1.12 0.6 4.11 0 0 0.04

24 1 13380 1.12 0.6 4.11 0 0 0.04

23 1 13040 3.68 0.23 6.75 0 0.05 0.26

25 1 13020 3.76 0.23 3.76 0 0 0.53

25 1 13380 0.82 0.6 0.75 0 0 0.2

24 1 13380 1.12 0.6 4.04 0 0 0.01

18 2 11530 10.41 0.95 11.88 0 0 0

23 1 12550 21.12 0 9.96 0 0 0

19 2 12170 6.98 0.33 9.2 0 0 0

23 1 13070 3.83 0.23 6.96 0 0.05 0.51

25 1 13380 0.75 0.6 0.75 0 0 0.12

20 1 13300 1.5 1.13 17.29 0 0.18 1.01

25 1 13080 3.59 0.08 3.59 0 0 0.28

Average gaps 3.98 0.74 8.01 0 0.21 0.32

Average times [s]   176 232 240 645

The superiority of LAG over SG is significant. This is mainly 
due to the fact that LAG, with the parameter p, explores 
the impact of future possible insertions. Tabu search does 
not show amazing improvements on the greedy heuristics. 
One can conjecture that it is due to the fact that f* is not 
far from the optimum. TS1 is a method to avoid as it obtains 
poor results. This is probably due to the full freedom given 
to DGA to build a solution, when compared to the other 
algorithms. TS4 is less competitive than TS2 and TS3. This 
can be easily explained by the fact that TS4 does not let 
DGA any choice on the solution building. It is thus not 
surprising that TS4 is the fastest method (regarding the 
time needed per iteration) of the TS family, as DGA does 
not have to perform many tests to insert an item at the best 
position. However, even if TS4 it is the fastest method per 

iteration, it is the slowest method to find its best solutions. 
Experiments clearly show that some freedom should be 
given to DGA, as TS2 and TS3 are the most powerful tabu 
search methods. Remember that the difference between 
TS2 and TS3 is the carried information O or S. As TS2 has 
the minimum gap on 29 instances over 30, it shows that 
O is the most important feature to carry in the encoded 
solution s. This can be explained in the sense that the 
orientation O has an important impact, as it clearly drives 
sreal by forcing the orientation of each item. 
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3. MNtS for JoB ScheDUlINg

3.1. Presentation of the considered problem (P)

On the one hand, the range of problems consisting in 
selecting a subset of given jobs, and then in scheduling 
them in order to minimize rejections and some other costs, 
are called order acceptance and scheduling problems (OAP). 
It has been studied in various scheduling environments and 
a review is given in (Slotnick, 2011). Such problems are 
particularly relevant in make-to-order production systems 
(Zorzini et al., 2008). On the other hand, earliness and 
tardiness penalties have captured a lot of attention due to 
their correspondence with the just-in-time paradigm. In 
(Valente & Gonçalves, 2009), it is mentioned that the use 
of quadratic tardiness functions is appropriate to model 
customers’ dissatisfaction. In (Valente et al., 2011), the 
authors emphasize that quadratic penalties avoid situations 
in which only a few jobs contribute to the objective function.

When the production capacity of a company is overloaded, 
all received orders cannot be performed on time. It then 
makes sense to reject some of them. In the considered 
problem (P), following the customers’ requirements, a due 
date corresponds to the date at which an order has to be 
delivered. Late deliveries lead to customers’ dissatisfaction, 
which is modeled by a quadratic tardiness penalty 
depending on the completion time of the job. The deadline 
corresponds to the point in time where the dissatisfaction 
associated with the rejection of the order, modeled by a 
rejection penalty, is equal to the dissatisfaction of delivering 
late. In other words, it is preferable to reject the order to 
allow the client to get its goods by another supplier. Usually, 
no job can be scheduled before its release date. It often 
corresponds to the date at which all the necessary raw 
material is ready to be used. In contrast, release dates can 
be reduced in (P) if a quadratic earliness penalty (depending 
on the starting time of the job) is paid. Obviously, there is 
a lower bound and no job can start before its available 
date. The use of controllable release dates is relevant in 
practice. As explained in (Shakhlevich & Strusevich, 2006), 
it may be profitable for the manufacturer and its suppliers 
to cooperate. In some cases, a supplier can allow to deliver 
raw material earlier, which reduces the release dates at the 
manufacturer’s level. In counterpart, the manufacturer will 
pay a higher price to the involved supplier, which creates a 
win-win situation.

Between two consecutive jobs j and j’ of different families F 
and F’, a setup time sFF’ must be performed and a setup cost 
cFF’ is incurred. The considered problem (P) can be formally 
stated as follows. A set of n jobs is given, a subset of these 
jobs has to be selected and scheduled (without preemptions 
but idle times are allowed) on a single machine which can 
handle only one job at a time. For each job j are given: a 
processing time pj, an available date Rj, a release date rj, a due 
date dj, a deadline Dj, and a rejection penalty uj. Let Cj and Bj 
respectively denote the completion time and the starting 
time of job j. In a feasible solution, each accepted (i.e., not 
rejected) job j satisfies Cj ≤ Dj and Bj ≥ Rj. The earliness and 
tardiness penalties are respectively defined as follows: 

• Ej(Bj) = wj ∙ (rj – Bj)
2   if Bj < rj, and 0 

otherwise; 

• Tj(Cj) = wj’ ∙ (Cj – dj)
2                  if Cj > dj, and 0 

otherwise. 

The objective function to minimize is the sum of the three 
following components: (1) the setup costs cjj’ between 
every successively performed jobs j and j’; (2) the rejection 
penalties uj associated with each rejected job j; (3) the 
earliness and tardiness penalties Ej + Tj for all accepted jobs 
j. In the context of (P), the reader interested in additional 
references is referred to (Yalçin et al., 2007; Oguz et al., 
2010; Cesaret et al., 2012; Thevenin et al., 2013). 

In (Thevenin et al., 2012), a greedy algorithm and a tabu 
search are proposed for a similar problem but with regular 
(i.e., non-decreasing) cost functions instead of earliness 
and tardiness penalties. In contrast with most scheduling 
objective functions, the one considered in (P) is not regular 
since earliness penalties are decreasing functions of the 
completion times. When objective functions are regular, 
most algorithms solving a single machine scheduling 
problem consist in finding an ordered sequence of jobs. 
From such a sequence, a schedule is easily built by starting 
each job as early as possible. In case of non-regular cost 
functions, the insertion of idle times may decrease the costs. 
Therefore, building an optimal schedule when a production 
sequence is given is not as easy, and can be time-consuming. 
The timing procedure proposed in (Hendel & Sourd, 2007) 
is adapted for (P), which is particularly efficient within the 
framework of local search algorithms. 

3.2. Solution methods for (P)

To solve (P), a solution s is modeled by an ordered sequence 
s(s) of jobs, and a set W(s) of rejected jobs. Given such a 
solution representation, the timing procedure computes 
the starting and ending times of each job of s(s), such that 
the objective function is minimized. A greedy algorithm and 
a tabu search approach are now presented for (P). The first 
phase of the greedy method consists in sorting the jobs by 
increasing slack time (Dj − Rj − pj), where ties are broken by 
decreasing rejection penalties uj. In a second phase, jobs 
are taken one by one in the previously defined order, and 
inserted in the schedule at the position minimizing the costs. 
Note that a job is rejected if it is better than inserting it. The 
insertions are enforced, that is, other jobs can be deleted 
to maintain feasibility. The associated repairing procedure 
is explained below.

Four types of straightforward moves can be used for 
tabu search. All moves are enforced by using one of the 
repairing procedures described later.

• N1: Add takes a rejected job and inserts it in the 
schedule.

• N2: Drop takes an accepted job and removes it from 
the schedule.
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• N3: Reinsert takes an accepted job and inserts it 
elsewhere in the schedule.

• N4: Swap, exchanges the position of two jobs in s(s).

Five different tabu structures are designed. The first 
(resp. second) forbids to add (resp. removing) a dropped 
(resp. added) job during t1 (resp. t2) iterations. The third 
forbids to move a job which has been added/reinserted/
swapped during t3 iterations. The fourth forbids to move 
a job j between its two previous neighbors of s(s) during 
t4 iterations, if j has been reinserted/swapped. As the cost 
function associated with each job is constant over the 
interval [rj, dj], it induces plateaus in the search space. To 
escape from them, a tabu status is associated with the cost 
of the most recently visited solutions during t5 iterations: it 
is forbidden to visit a solution whose cost is tabu.

As mentioned above, inserting a job may lead to an 
unfeasible solution due to available dates and deadlines 
constraints. To maintain feasibility, a repairing procedure 
must delete some jobs, and the choice of those jobs is a 
crucial point in local search methods for OAP. Note that a 
Reinsert move can be performed by a Drop move followed 
by an Add move, and a Swap move consists of two Drops 
followed by two Adds. As dropping a job cannot lead to 
unfeasible solutions, a repairing procedure is only needed 
for the move Add. Assuming that job j is inserted at 
position p, three repairing procedures can be compared.

• REPAIR1. Remove randomly a job adjacent to position p 
until the insertion of j is possible. Deleting jobs which are 
adjacent to the insertion position reduces the shifting of 
other jobs, which is expensive with quadratic penalties.

• REPAIR2. Let j’ and j’’ be two jobs such that j’ is at the 
left of p, and j’’ at its right. Jobs j’ and j’’ are blocking if 
by shifting j’ (resp. j’’) as most as possible towards the 
left (resp. right), the insertion of j is still not possible. 
REPAIR2 deletes one of the closest blocking jobs to p until 
the insertion of j is possible. These blocking jobs are likely 
to be associated with large earliness/tardiness penalties, 
and dropping them should not be expensive.

• REPAIR3. While the solution is not feasible, greedily 
remove a job (based on the costs).  

3.3. Results

To generate a set of instances for (P), two critical values 
are used: the number n of jobs, and a parameter a which 
controls the interval of time in which release dates and 
due dates are generated. More precisely, a value Start is 
chosen large enough, and End is equal to Start + a ∙ ∑j pj. 
Then, rj is chosen in the interval [Start, End], and dj in [rj + 
pj, End]. Basically, methods are likely to reject more jobs 
for small values of a. n belongs to {25, 50, 100, 200} and a 
to {0.5, 1, 2}. One instance for each pair (n, a) is generated. 
The weights wj and wj’ are randomly chosen in {1, 2, 3, 4, 
5}. Dj and Rj are chosen such that Tj(Dj) = Ej(Rj) = uj. pj is 
an integer randomly chosen in [50, 100]. As observed in 
realistic situations, the rejection penalty uj is related to the 
processing time: uj = b ∙ pj, where b is an integer randomly 
picked in [50, 200]. The number of job families belongs to 
[10, 20]. Setup times and costs are likely to be related in 
realistic situations, therefore sFF’ is chosen in [50, 200] and 
cFF’ =  g ∙ sFF’, where g is chosen in the interval [0.5, 2]. 

Four methods are compared. Greedy refers to the greedy 
method combined with REPAIR2 (the other repairing 
procedures do not provide good results when combined 
with Greedy). TSi is the tabu search using repairing procedure 
REPAIRi (with i ∈ {1, 2, 3}). Parameters (t1, t2, t3, t4, t5) are 
set to (80, 60, 90, 180, 30) for n ∈ {50, 100, 200}, and to 
(20, 20, 15, 25, 10) for n = 25. Average results (over 5 runs) 
are presented in Table 2, where the column f* reports the 
best result found by any of the presented methods for the 
considered instance. In each cell is indicated the percentage 
gap between the average result obtained by the concerned 
method and f*. The results clearly show the superiority of 
tabu search over Greedy, as the gap obtained by the best 
tabu search is 9.22%, versus 28.70% for Greedy. Tabu search 
with repairing procedure REPAIR3 obtains the best results for 
8 instances over 12, however the results obtained for large 
instances are bad. This is not surprising as REPAIR3 is efficient 
but very slow. REPAIR2 is slightly better than REPAIR1: their 
respective average gaps are 9.22% and 10.22%. One would 
thus advise the use of repairing procedure REPAIR3 for small 
instances, and REPAIR2 for larger ones.

Table 2. Computational results

n a f* Greedy TS1 TS2 TS3

25 0.5 115361 0 0.13 0 0
25 1 28602 6.7 0 7.39 0
25 2 149134 0 0 0 0
50 0.5 237414 0.89 2.03 3.62 0
50 1 148237 12.88 13.12 11.39 4.22
50 2 38899 32.4 2.72 2.55 0

100 0.5 550950 5.36 3.33 4.69 1.11
100 1 339100 23.9 12.77 10.95 3.54
100 2 31706 176.18 57.88 42.38 204.47
200 0.5 934898 22.17 0.94 1.43 10.66
200 1 473244 68.62 3.03 4.62 84.63
200 2 42397 302.82 11.44 12.45 1586.88

average 28.7 10.22 9.22 23.7
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4. MNtS for INVeNtory MaNageMeNt

4.1. Presentation of the considered problem (P)

In most inventory management problems, two types 
of decision have to be made at the manufacturer level: 
when and how much to order to suppliers. It is assumed 
that setup, carrying and shortage costs are encountered 
during the year. Usually, inventory management models 
are characterized by stochastic demand and constant 
lead times. In contrast, the approach proposed in (Silver 
& Zufferey, 2005) and generalized below deals with the 
situation where there is a constant known demand rate, 
but probabilistic lead times whose probability distributions 
change seasonally. The lead times for different orders are 
assumed to be independent, thus crossovers can occur. 
Therefore, the interactive effects between different cycles 
(a cycle is defined as the time between two consecutive 
orders) due to the occurrence of shortages are difficult to 
model. Consequently, even if the annual approximated 
costs can be analytically computed with a mathematical 
function f, simulation (of the lead times) is the only way to 
compute the annual actual costs F of a solution.

The considered problem (P) was motivated by the 
management of raw material at a sawmill in North America. 
Without loss of generality, consider a 52-weeks planning 
horizon (a time period is a week). A solution (P,S) can be 
modeled by two vectors P and S defined as follows: Pt = 
1 if an order occurs at the beginning of week t, and Pt = 0 
otherwise; St is the order-up-to-level of available inventory 
at the beginning of week t if Pt = 1, and St = 0 if Pt = 0. The 
following reasonable assumptions are made. (1) It is possible 
to analytically approximate the annual costs with a function 
f(P,S) relying only on P, S and the probability distributions 
of the lead times. (2) It is possible to compute F(P,S) (i.e., 
the annual actual costs) with a simulation tool. (3) Based on 
f, it is possible to analytically compute S from P with a so-
called Compute(S|P) procedure. As a consequence, anytime 
P is modified, its associated S vector can be immediately 
updated with Compute(S|P).

4.2. Design of a solution method

Due to the non-stationarity in the lead time distribution, 
the problem is combinatorial in nature (choice of the Pt’s 
and St’s). Moreover, simulation is required to compute 
the actual cost of a solution. Thus, it makes sense to use 
(meta)heuristics. The solution space X(N) is defined as the 
set of all the solutions (P,S) with N orders. The approach 
consists in providing good solutions for different solutions 
spaces, starting with U(N) orders and ending with L(N) 
orders, where U(N) ≤ 52 (resp. L(N) ≥ 1) is an upper (resp. 
a lower) bound on N. At the end, the overall best solution 
is returned to the user. For a fixed solution space X(N), the 
following steps are performed. 

(S1) Generate an initial solution (P,S) with N orders as 
equi-spaced as possible. 

(S2) Based on f, try to reduce the approximate costs 
of (P,S) with a tabu search TSf(P,S) working on P 
(using neighborhood N1, as described below). 

(S3) Based on F and without changing P, apply a 
descent local search DLS(S) working on S (a move 
in this neighborhood N2 consists in augmenting or 
reducing an St by one unit).

In TSf(P,S), a move in the neighborhood structure N1 consists 
in putting an order earlier or later, but without changing the 
global sequence of orders. When an order is moved, then 
it is forbidden (tabu) to move it again for tab (parameter 
depending on N) iterations. The stopping condition is a 
maximum number Iter (parameter) of iterations without 
improvement of the best visited solution.

An extension of TSf(P,S), denoted TSf
M(P,S), is now presented 

for step (S2). Instead of only providing a single solution, 
a set M containing m (parameter) promising local optima 
is provided (promising according to the quality function f 
and a diversity function Div(M)). To achieve this, additional 
ingredients are now defined. The distance between P and 
P’ is Dist(P,P’) = ∑t |Pt – Pt’|. The distance between P and 
a set M of solutions is defined as Dist(P,M) = |M|-1 ∙ ∑P’∈M 
Dist(P,P’). The diversity of a set M of solution is computed 
as Div(M) = |M|-1 ∙ ∑P∈M Dist(P,M–{P}). M is initialized with 
solutions randomly generated. Let P be a solution found by 
tabu search at the end of an iteration. The key idea is the 
following: P should replace a bad (according to f) solution 
of M which poorly contributes to its diversity Div(M). 
More precisely, let M’ be the subset of M containing the 
m’ (parameter) worst solutions of M, for which the worst 
value is f**. Let P(div) be the solution of M’ minimizing 
Dist(P’,M−{P’}). Then, if f(P) > f**, M is not updated. 
Otherwise, P replaces P(div). The resulting metaheuristic 
is summarized in Algorithm 2, relying on neighborhoods 
N1 (modify P) and N2 (modify S). The returned solution is 
(P*,S*) with an actual cost of F*, which is the best solution 
visited in all the considered solution spaces.

Algorithm 2: General approach for (P)

Initialization: set F* = ∞ and N = UB(N).

While N ≥ LB(N), do

• generate an initial solution P with N orders as 
equi-spaced as possible;

• apply TSf(P,S) or TSf
M(P,S), and let M = {P(1), …, P(m)} 

be the resulting set of local optima according to f 
(m = 1 if TSf(P,S) is used);

• for i = 1 to m, do: apply DLS(S) on (P(i),S(i));

• set (P,S) = arg min i∈{1,...,m} F(P(i),S(i));

• if F(P,S) < F*, set (P*,S*) = (P,S), and F* = F(P,S);

• reduce N by one unit;
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4.3. Results

The experiments were performed on a PC Pentium 4 (1.6 
GHz/1 Go RAM). The parameters Iter, m and m’ were 
respectively set to 1000, 10, 3. As the method has to plan 
the orders for a whole year, the computing time is not an 
issue (but an hour of computation is never exceeded). 
Each instance is characterized by its cost parameters (the 
fixed setup cost A per order, the inventory cost h per unit 
per period, the shortage cost B per missing unit). For 
each period t is known the minimum (resp. most likely 
and maximum) lead time at (resp. mt and bt). From these 
three values, discrete triangular distributions can be 
easily constructed. Two types T1 and T2 of instances were 
generated according to two sets of lead time distributions, 
with 24 instances per type (which differ according to A, h 

and B). Set T1 is based on realistic data from the sawmill 
context, and is characterized by at ∈ {2, 5}, mt ∈ {3, 7} and 
bt ∈ {6, 13}. Set T2, which represents a form of sensitivity 
analysis (the variation of the lead times is larger), is 
characterized by at ∈ {1, 8}, mt ∈ {2, 10} and bt ∈ {5, 16}. In 
Table 3 is provided a summary of the average percentage 
improvements (over a basic constructive heuristic based 
on an EOQ analysis) provided by the general presented 
approach relying on DLS(P) (where a descent local search 
is performed at step (S2) instead of tabu search), TSf(P,S) 
and TSf

M(P,S), respectively. The results are shown for three 
levels of B and for the two sets T1 and T2. Unsurprisingly, 
the potential benefit of the three methods augments as 
the seasonality is increased. One can observe that TSf

M(P,S) 
outperforms TSf(P,S), and both methods are better than 
DLS(P). 

Table 3. Compact comparative results

Set T1 Set T2

Method Small B Average B Large B Small B Average B Large B

DLSf(P,S) 1.39 1.52 1.61 3.75 3.58 3.47

TSf(P,S) 1.72 1.82 2.01 4.15 4.05 3.74

TSf
M(P,S) 1.82 1.86 2.16 4.18 4.06 3.79

5. MNtS for DIMeNSIoNINg aSSeMBly lINeS

In this section, a tabu search based on various moves with 
different amplitudes is first presented, and then adapted 
to the dimensioning of assembly lines.

5.1. Tabu search within a simulation context

Let X = (X1, X2, …, Xu) be a solution of problem (P) which 
consists in maximizing an objective function f. Each Xi is a 
vector of size s(i) and can be denoted Xi = (xi

1, x
i
2, . . . , x

i
s(i)), 

where the xi
j’s are real number. The following limitation 

constraint has to be satisfied for each i: ∑j x
i
j = ci. As random 

events can occur, it is assumed that f can only be evaluated 
with a simulation tool. In such a context, within a local 
search framework, it is straightforward to define a move 
in three steps:

(A) select a decision variable type i;

(B) augment (resp. reduce) an xi
k by an amount of w;

(C) reduce (resp. augment) some other xi
j’s (with j ≠ 

k) by a total amount of w (in order to satisfy the 
limitation constraint).

Within a tabu search framework, if a decision variable xi
k is 

augmented (resp. reduced), it is then forbidden to reduce 
(resp. augment) it during tabi (parameter) iterations. The 
three key issues are presented below, and the various 
neighborhood structures N1, N2, … result from these issues.

(I1) Which type of decision variable should be 
selected in (A)? 
 

(I2) What is the amplitude w of the move in (B)?

(I3) How should the solution be adjusted in (C)?

According to issue (I1), u types of phase are used in the 
solution method: each phase of type i works on Xi without 
modifying the other Xl’s (l ≠ i). Each phase of type i can be 
performed during Ii

max (parameter) uses of the simulator. 
Working with phases (i.e., on one decision variable type 
at a time) allows to having a better control on the search.

To tackle issue (I2), and in contrast with classical tabu 
search approaches, the move amplitude w is dynamically 
updated during each phase of the search, within interval 
[wi

min, w
i
max] (parameters). Each phase starts with w = wi

max, 
and anytime Ii (parameter) iterations without improvement 
of the best encountered solution X* have been performed, 
w is reduced by d i (parameter), but never under wi

min. If 
a move leads to a solution better than X*, the process 
restarts with w = wi

max. This strategy allows to progressively 
focus on a promising region of the solution space. 

Issue (I3) depends on the two other issues: if xi
k has been 

selected for a variation of w, the search process should 
focus on that decision and not modify as much the other 
decision variables (of the same type) in order to adjust the 
solution with respect to the associated constraint ci. Thus, 
if xi

k was augmented (resp. reduced) by w, the process 
should then equally reduce (resp. augment) the s(i) − 1 
other variables (of the same type) by a total amount of 
w, which means that each decision variable is in average 
reduced (resp. augmented) by [s(i)−1]/w.

The resulting tabu search method is summarized in 
Algorithm 3, which returns the best encountered solution 
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X* with value f*. At each iteration, the neighbor solution 
can be the best among a set of N (parameter) candidate 
neighbor solutions.

Algorithm 3: Tabu search with various amplitudes

Initialization

• generate an initial solution X = (X1, X2, … , Xu);

• initialize the best encountered solution: set X* = 
X and f* = f(X);

• set i = 1 and w = wi
max;  

While the involved simulation software has not been used 
Q (parameter) times, do

• generate a non-tabu neighbor solution Xi’ of Xi by 
modifying a variable xi

k of Xi by w;

• update the current solution: set Xi = Xi’;

• update the move amplitude w: 

(a) if Ii iterations without improving X* have been 
performed, set w = w − d i;

 (b) if w < wi
min, set w = wi

min;  

(c) if f(X) > f*, set w = wi
max;

• update the best encountered solution: if f(X) > f*, 
set X* = X and f* = f(X);

• update the tabu tenures: it is forbidden to modify 
xi

k in the reverse way for tabi iterations;

• next phase: if Ii
max runs of the simulator were 

performed, set i = (i mod u) + 1 and w = wi
max;

5.2. Application to the dimensioning of 
assembly lines

The above tabu search is relevant for dimensioning assembly/
disassembly production systems. By dimensioning, one 
can refer to maximizing the production rate of a machine 
without successors, with respect to limited resources (e.g., 
buffer capacity between the machines, total cycle time of 
the machines). Papers in the field are (Dolgui et al., 2007; 
Shi & Gershwin, 2009). As random failures might occur on 
the machines, the software Arena is appropriate to evaluate 
a solution.

Consider a production system with m machines and n 
buffer zones, modeled by a graph G = (V,A) with vertex set 
V and arc set A. Vertex v represents machine v and there is 
an arc (v, v’) from v to v’ if a piece processed on machine 
v has then to be processed on machine v’. Moreover, each 
arc (v, v’) also represents a buffer (i.e., a limited zone where 

are stored the pieces between the associated machines). 
Two types of decision variables (i.e., resource types) are 
considered: the designed cycle time tv for machine v, and 
the buffer capacity bvv’ allocated to arc (v, v’). In Figure 
4, a solution for a production network. The cycle time 
associated with machine 1 is t1 = 8, and the buffer capacity 
between machines 1 and 3 is b13 = 43. The considered 
limitations are 60 for the total cycle time (i.e., ∑v∈V tv = 60) 
and 320 for the buffer capacity (i.e, ∑(v,v’)∈A bvv’ = 320).

Figure 4. Graph representation of a production system 
with m = 9 and n = 8

 
The above presented MNTS approach showed a very 
good performance on such a production system (Zufferey 
& Cheikhrouhou, 2012). Indeed, it was tested on the 
production network associated with Figure 4, for which 
each machine has its own role: machines 1, 2, 4, 8 
and 9 are classical processing machines, machines 3 
and 5 are assembling machines, and machines 6 and 
7 are disassembling machines. The objective consists 
in maximizing the production rate of machine 5. The 
breakdown probability is 5% (associated with each 
time step) and its length is generated with a uniform 
distribution in interval [100, 800]. MNTS was compared 
with a descent local search DLS (the same algorithm 
as MNTS, but without considering tabu tenures), and 
a classical tabu search TS for which at each iteration, 
a move consists in augmenting/reducing any decision 
variable by any possible amount (followed by the 
adjustment of the other variables of the same type in 
order to meet the upper bounds). In TS, a sample of all 
possible amplitudes is considered at each iteration to 
modify the decision variable. A pool of 50 initial solutions 
were generated, which have an average production rate 
of 1.31 (pieces/minute). DLS was able to reach an average 
production rate of 1.39, TS obtained 1.37, and MNTS 
reached 1.41. It was also observed that the quality of 
the resulting solution negligibly depends on the initial 
solution, which indicates that MNTS is a robust approach.

6. coNclUSIoNS

In contrast with most of the existing literature on tabu search 
where only a single type of move is used at each iteration, 
this paper proposes MNTS (Multiple Neighborhoods in a 
Tabu Search). With a unified terminology, the success of 
some existing solutions methods is presented, which can 

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS



1 2   -   I N t e r N a t I o N a l  J o U r N a l  o f  M U l t I D I S c I p l I N a r I t y  I N  B U S I N e S S  a N D  S c I e N c e ,  V o l .  3 ,  N o .  3

be considered as belonging to the MNTS methodology. 
Problems in four domains are successively discussed: 
truck loading, job scheduling, inventory management, and 
assembly line dimensioning. It is important to mention 
that MNTS approaches were also successfully adapted in 
other fields (e.g., (Hertz et al., 2009; Hertz et al., 2005; 
Schindl & Zufferey, 2013).

The performance of a metaheuristic can be evaluated 
according to several criteria (Zufferey, 2012b): (1) quality: 
value of the obtained results; (2) speed: time needed to 
get good results; (3) robustness: sensitivity to variations 
in problem characteristics and data quality; (4) ease of 
adaptation: the ability to organize the method so that 
it can appropriately apply to different specific classes 
of problems; (5) ability to take advantage of problem 

structure (considering that efficiency often depends on 
making effective use of properties that differentiate a given 
class of problems from other classes). MNTS has a good 
behavior according to these criteria. Indeed, the following 
ingredients make it possible: (1) the best non-tabu move 
is performed at each iteration, which contributes to 
quality; (2) speed is mainly allowed by the incremental 
computation used to compute the value of any neighbor 
solution; (3) the use of various neighborhood structures 
enhances the robustness as well as the quality; (4) only 
one solution is handled during the search, which makes 
the method fairly easy to adapt and quick; (5) a dedicated 
(in contrast with generic) solution encoding allows to 
accounting for the structure of the problem, and it also 
contributes to quality.
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