
I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3 - 3

1. INtroDUctIoN

Let f be an objective function which has to be minimized
(e.g., a cost function). A solution s is optimal for f if there is
no better solution than it, that is, there is no solution s’ such
that f(s’) < f(s). As mentioned in (Zufferey & Vasquez, 2015),
an exact method guarantees the optimality of the provided
solution. However, for a large number of applications and
most real-life optimization problems, such methods need
a prohibitive amount of time to find an optimal solution,
because such problems are NP-hard (Garey & Johnson,
1979). For these difficult problems, one should prefer to
quickly find a satisfying solution, which is the goal of heuristic
and metaheuristic solution methods. There mainly exist
three families of (meta)heuristics: constructive algorithms
(a solution is built step by step from scratch, like the greedy
algorithm where at each step, the best element is added to
the solution under construction), local search methods (a
solution is iteratively modified: this will be discussed below),
and evolutionary metaheuristics (a population of solutions
is managed, like genetic algorithms and ant algorithms). The
reader is referred to (Gendreau & Potvin, 2010; Zufferey,
2012b) for more information on metaheuristics and general
guidelines to adapt them.

Only the context of local search methods is considered in
this work. A local search algorithm starts with an initial
solution and tries to improve it iteratively. At each iteration,
a modification, called a move, of the current solution s

is performed in order to generate a neighbor solution
s’. Let N(s) denote the set of all neighbor solutions of
s. The definition of a move, that is the definition of the
neighborhood structure N, depends on the considered
problem. Popular local search methods are the descent
local search, simulated annealing, tabu search and variable
neighborhood search.

In a descent local search, the best move is performed at each
iteration and the process stops when a local optimum is
found. Tabu search was proposed by Fred Glover in the 80’s
and is nowadays still considered as one of the most efficient
method for exploring the search space. Tabu search has a
good balance between exploitation (i.e., the ability to guide
the search in the solution space and to take advantage of
the problem structure) and exploration (i.e., the ability to
visit various zones of the solution space). Indeed, to prevent
tabu search from being stuck in a local optimum, when a
move is performed, the reverse move is forbidden (i.e., set
as tabu) for tab (parameter) iterations. In most tabu search
algorithms, only one neighborhood structure N is used.
The goal of this paper is to present tabu search approaches
where at each iteration, different neighborhood structures
N1, N2, …, Nq are used. The resulting method, denoted
MNTS (for Multiple Neighborhoods in a Tabu Search), is
presented in Algorithm 1, where s* denotes the best visited
solution (returned at the end to the user). The motivation
of using several neighborhood structures is the following.

aBStract

A metaheuristic is a refined solution method able to find a satisfying solution to a difficult problem in a reasonable
amount of time. A local search metaheuristic works on a single solution and tries to improve it iteratively. Tabu search is
one of the most famous local search, where at each iteration, a neighbor solution is generated from the current solution
by performing a specific modification (called a move) on the latter. In contrast with most of the existing literature, the
goal of this paper is to present tabu search approaches where different neighborhood structures (i.e., different types of
moves) are jointly used. The discussion is illustrated for various operations management problems: truck loading, job
scheduling, inventory management, and dimensioning of assembly lines.

Key WorDS: optimization, operations management, tabu search, metaheuristics.

MUltIple NeIghBorhooDS IN taBU
Search: SUcceSSfUl applIcatIoNS for
operatIoNS MaNageMeNt proBleMS
UDK 519.8:005 / JEL C44 ; M11 / PRELIMINARY COMMUNICATION

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

NIcolaS ZUfferey
PROFESSOR
GENEVA SCHOOL OF ECONOMICS AND MANAGEMENT
GSEM – UNIVERSITY OF GENEVA
SWITZERLAND
n.zufferey@unige.ch

4 - I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3

A local optimum according to neighborhood structure N is
a solution s such that there is no solution in N(s) which is
better than s. Let N1 and N2 be two different neighborhood
structures. Obviously, if s is a local optimum according to
N1, it may not be a local optimum according to N2. In other
words, if a N1-move is not able to improve s anymore, then
a N2-move may do it.

Algorithm 1: MNTS (Multiple Neighborhoods in a Tabu
Search)

Generate an initial solution s and set s* = s.

While no stopping criterion is met, do

• from the current solution s, generate the best
non-tabu neighbor s’ ∈ N1(s) ∪ … ∪ Nq(s);

• forbid the reverse move for tab (parameter)
iterations;

• set s = s’;

• if f(s) < f(s*), set s* = s;

In order to design a MNTS for a specific problem (P),
the following ingredients have to be defined: a way to
encode a solution s, an objective function f, the various
neighborhood structures N1, …, Nq, the tabu list structures
(i.e., the nature of the forbidden moves), and the stopping
condition (e.g., a time limit, a specific number of iterations).
Strongly relying on (Respen & Zufferey, 2013; Thevenin et
al., 2013; Zufferey, 2014; Zufferey, 2012a), the discussion is
illustrated for various operations management problems,
namely truck loading (Section 2), job scheduling (Section
3), inventory management (Section 4), and dimensioning
of assembly lines (Section 5).

2. MNtS for trUcK loaDINg

2.1. Presentation of the considered problem (P)

The French car manufacturer Renault daily faces a complex
truck loading problem (P), where items need to be placed
in a truck while satisfying different constraints. More than a
thousand trucks are daily considered to deliver components
to the car plants. As a single truck can deliver goods to
different delivery points, classes of items are defined, where
a class is associated with a delivery point. Each problem
instance contains the size of the truck and the various sizes
of all the items that must fit in. The heights of the items
can be ignored as they rely on complex factory constraints
which are supposed to be already satisfied. At first sight, (P)
seems related to a strip-packing 2D problem with rotation,
which has been already covered by many research papers
(e.g., Hopper & Turton, 2001; Lodi et al., 2002; Ntene & van
Vuuren, 2009; Riff et al., 2009). (P) is NP-hard, and Renault
even showed in (Nguyen & Brenaut, 2009) that no exact

method can be competitive to tackle their real instances.
Therefore, (meta)heuristics are more than relevant.

Problem (P) can be formally described as follows: a number
n of items, each one belonging to a specific class Ci (with i ∈
{1, … , m} such that m ≤ n), need to be placed in a truck such
that all the items belonging to the same class are adjacent.
In addition, the classes must be placed in an increasing
fashion from the front to the rear of the truck. More
formally, the ordinate of the origin item which belongs to
class Ci (label 1 on Figure 1) must be strictly smaller than
the ordinate of the extremity of any item of class Ci+1 (label
2 on Figure 1), and such that the ordinate of the extremity
item (the closest one to the rear) of class Cm (label 3 on
Figure 1), denoted as f, is minimized. The truck size is a hard
constraint to fulfill, as it is not allowed to exceed neither its
length nor its width.

Figure 1. A possible solution (view from the top of the
truck, with rear on the left)

Because of the specificity of (P) (e.g., different classes of
items, a significant number of items per truck in conjunction
with a large standard deviation of the sizes of the items),
it is not possible to take advantage of the existing exact
algorithms (e.g., (Martello & Vigo, 1998; Martello et al.,
2003; Lesh et al., 2004; Pisinger & Sigurd, 2005; Puchinger &
Raidl, 2007)) to tackle it. Additional references on the topic
can be found in (Lodi et al., 1999; Respen & Zufferey, 2013).

To solve (P), Renault proposes a simple but efficient greedy
heuristic (denoted SG), and an advanced greedy heuristic
called look-ahead greedy (denoted LAG). An important
aspect is the tradeoff between the computing time and
the solution quality. As LAG is fast, another metaheuristic
is only relevant if it is fast and leads to improvements. SG
builds a solution from scratch, and at each iteration, selects
an item (following different possible rules) from a list L of
non-already inserted items, and adds it to the solution at
minimum cost (i.e., which minimizes the augmentation of
f, label 3 of Figure 1). This process stops when L is empty.
In LAG, at each iteration, the algorithm tries each item j
of L, and for each j, tries the next p (parameter) insertions
following this possible insertion of j (look-ahead process).
At the end of the iteration, the item j that would involve the
lowest cost in the next p iterations is selected and inserted
at the best position. As before, this process stops when L
becomes empty. Both SG and LAG algorithms are fast (a few
seconds per run), and therefore relevant to Renault. The
two methods perform restarts as long as a given time limit
T is not reached. When T is reached, the best generated
solution is returned.

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3 - 5

2.2. Tabu search for (P)

Working with encoded solutions is relevant to tackle (P)
within the framework of local search methods. An encoded
solution s is actually a list of elements. To build a solution
and compute its quality, a decoding greedy algorithm
(DGA) is performed on the encoded solution. It decodes
the solution s into a real solution sreal, and then returns the
total length of the truck load f. To drive DGA, information
(some are mandatory and others are optional) are carried
in each element of s, and can contain the item identifier
(ID, mandatory), the class identifier (C, mandatory),
the item orientation (O, optional), and the item side (S,
optional). Thus, component i of the solution s takes the
form si = (IDi, Ci, Oi, Si), where ID ∈ {1, …, n}, C ∈ {1, …,
m}, O ∈ {not rotated, 90-degrees rotated}, and S ∈ {left-
sided, right-sided}. DGA thus decodes the vector s into a
real solution sreal by inserting in sreal the items from s in a
FIFO order, and using the O and S information (if provided)
while respecting the class constraint. At each step, DGA
pops the next item i of s, greedily loads it in the truck, while
respecting Ci, Oi and Si. If Oi (or Si) is not provided, DGA can
decide by itself its value (minimizing the augmentation of
f), and thus owns more freedom.

The decoding process is illustrated on an example. Five items,
initially oriented as presented in Figure 2, have to be placed
in a truck. A possible encoded solution is the following: s =
((ID1, 1, not rotated, right-sided), (ID3, 1, 90-degrees rotated,
right-sided), (ID2, 1, 90-degrees rotated, left-sided), (ID5, 2,
?, ?), (ID4, 2, ?, right-sided)). The corresponding decoded
solution sreal is illustrated in Figure 3. To generate this
solution, DGA performs the following steps: it pops the first
element ID1 and loads the corresponding item on the right
side, without rotation. At that time, the next item, namely
ID3, is loaded on the right with a 90-degrees rotation. Then
item ID2 is loaded on the left with rotation whereas ID5 is
inserted at the best possible position tried by DGA while
respecting the class constraint. Finally item ID4 is inserted on
the right side but DGA decided its orientation. When DGA
is over, it returns the value f, which is in this example the
extremity of item ID4.

Figure 2: Items (with initial orientations)

	

Figure 3: Decoded solution sreal (top view)

To generate a neighbor solution s’ from the current
solution s, the seven following neighborhood structures
are possible:

• N1: move item j from position x to position y;

• N2 (resp. N3): move item j from position x to y,
and switch to the opposite value its orientation
O (resp. side S);

• N4: move item j from position x to y, and switch S
and O to the opposite values;

• N5 (resp. N6): switch O (resp. S) to the opposite
value;

• N7: switch O and S to the opposite values.

All the moves are performed while respecting the class
constraint, and ties are broken randomly. Four different
tabu search approaches are developed, denoted TS1, TS2,
TS3 and TS4. The notation TS is simply used if it refers to
common features of the four tabu search algorithms. TS
starts from an initial encoded solution where items are
ordered by decreasing areas. TS1, TS2, TS3 and TS4 differ
in the sense that for TS1, only the information ID and C is
contained in each element of the encoded solution. TS2
contains ID, C and O. TS3 contains ID, C and S. TS4 contains
ID, C, O and S. Thus, for TS1, DGA can decide on its own the
orientations and the sides (while focusing on the smallest
augmentation of f). In TS2 and TS3, DGA has the order in
which the insertion must be made, and the orientation or
the side of each item (but not both). Finally TS4 constraints
DGA at the maximum level due to the complete information
set contained in each component si of the vector s. In TS,
only a fraction v (set to 50%) of the possible moves are
generated (it allows to performing more iterations for a
same time limit, and helps in bringing more diversification).
After each move, the tabu tenure tab is set to a uniformly
distributed value between 25 and 55.

2.3. Results

The above methods are compared on a set of 30 real
benchmark instances provided by Renault. Tests were
performed on an Intel Quad-core i7 @ 3.4 GHz with 8 GB
DDR3 of RAM memory. The time limit T is 1800 seconds
(as validated by practitioners). The results are summarized
in Table 1. The first two columns indicate the values of
n (number of items) and m (number of classes) of each
instance. Column f* indicates to the objective function
value of the best solution ever found by any of the
algorithms. The following column reports the percentage
gap between the solution of SG and f*. The next columns
provide the same information for the other methods.
The last rows give the average gap and computing time
for each method. As SG and LAG are greedy constructive
methods with restarts, it is not relevant to indicate their
computing times.

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

6 - I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3

Table 1. Computational results (averaged over 5 runs for tabu search)

n m f* SG LAG TS1 TS2 TS3 TS4

23 1 12840 1.01 0.86 4.6 0.06 0.21 0.92

25 1 13000 3.85 0.31 3.85 0 0.05 0.98

24 1 12920 1.32 0.08 1.39 0 0.06 0.38

25 1 13040 3.76 0.31 3.76 0 0 0.6

26 1 13460 0.15 0.07 0.15 0 0 0.01

20 2 13610 6.83 1.25 14.11 0 1.25 0.53

23 1 12980 3.08 0.08 6.63 0 0 0.26

25 1 14120 4.02 4.01 3.75 0.07 0 0.26

18 4 13295 0.56 0.15 24.69 0 0.05 0.18

23 3 12852 5.23 0.5 18.67 0 0.03 0.16

20 2 13330 9.08 0.6 12.08 0 0.08 0.08

17 3 13070 0.23 0.15 14.77 0 0 0

25 1 13390 1.12 0.97 1.05 0 0.16 0.42

20 2 13150 7.53 1.52 12.09 0 0.61 0.67

20 4 13325 4.68 2.42 25.77 0 2.65 0.11

24 1 13010 3.69 0.46 3.61 0 0 0.52

23 4 12902 3.36 2.19 6.17 0.02 1.02 0.39

24 1 13380 1.12 0.6 4.11 0 0 0.04

24 1 13380 1.12 0.6 4.11 0 0 0.04

23 1 13040 3.68 0.23 6.75 0 0.05 0.26

25 1 13020 3.76 0.23 3.76 0 0 0.53

25 1 13380 0.82 0.6 0.75 0 0 0.2

24 1 13380 1.12 0.6 4.04 0 0 0.01

18 2 11530 10.41 0.95 11.88 0 0 0

23 1 12550 21.12 0 9.96 0 0 0

19 2 12170 6.98 0.33 9.2 0 0 0

23 1 13070 3.83 0.23 6.96 0 0.05 0.51

25 1 13380 0.75 0.6 0.75 0 0 0.12

20 1 13300 1.5 1.13 17.29 0 0.18 1.01

25 1 13080 3.59 0.08 3.59 0 0 0.28

Average gaps 3.98 0.74 8.01 0 0.21 0.32

Average times [s] 176 232 240 645

The superiority of LAG over SG is significant. This is mainly
due to the fact that LAG, with the parameter p, explores
the impact of future possible insertions. Tabu search does
not show amazing improvements on the greedy heuristics.
One can conjecture that it is due to the fact that f* is not
far from the optimum. TS1 is a method to avoid as it obtains
poor results. This is probably due to the full freedom given
to DGA to build a solution, when compared to the other
algorithms. TS4 is less competitive than TS2 and TS3. This
can be easily explained by the fact that TS4 does not let
DGA any choice on the solution building. It is thus not
surprising that TS4 is the fastest method (regarding the
time needed per iteration) of the TS family, as DGA does
not have to perform many tests to insert an item at the best
position. However, even if TS4 it is the fastest method per

iteration, it is the slowest method to find its best solutions.
Experiments clearly show that some freedom should be
given to DGA, as TS2 and TS3 are the most powerful tabu
search methods. Remember that the difference between
TS2 and TS3 is the carried information O or S. As TS2 has
the minimum gap on 29 instances over 30, it shows that
O is the most important feature to carry in the encoded
solution s. This can be explained in the sense that the
orientation O has an important impact, as it clearly drives
sreal by forcing the orientation of each item.

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3 - 7

3. MNtS for JoB ScheDUlINg

3.1. Presentation of the considered problem (P)

On the one hand, the range of problems consisting in
selecting a subset of given jobs, and then in scheduling
them in order to minimize rejections and some other costs,
are called order acceptance and scheduling problems (OAP).
It has been studied in various scheduling environments and
a review is given in (Slotnick, 2011). Such problems are
particularly relevant in make-to-order production systems
(Zorzini et al., 2008). On the other hand, earliness and
tardiness penalties have captured a lot of attention due to
their correspondence with the just-in-time paradigm. In
(Valente & Gonçalves, 2009), it is mentioned that the use
of quadratic tardiness functions is appropriate to model
customers’ dissatisfaction. In (Valente et al., 2011), the
authors emphasize that quadratic penalties avoid situations
in which only a few jobs contribute to the objective function.

When the production capacity of a company is overloaded,
all received orders cannot be performed on time. It then
makes sense to reject some of them. In the considered
problem (P), following the customers’ requirements, a due
date corresponds to the date at which an order has to be
delivered. Late deliveries lead to customers’ dissatisfaction,
which is modeled by a quadratic tardiness penalty
depending on the completion time of the job. The deadline
corresponds to the point in time where the dissatisfaction
associated with the rejection of the order, modeled by a
rejection penalty, is equal to the dissatisfaction of delivering
late. In other words, it is preferable to reject the order to
allow the client to get its goods by another supplier. Usually,
no job can be scheduled before its release date. It often
corresponds to the date at which all the necessary raw
material is ready to be used. In contrast, release dates can
be reduced in (P) if a quadratic earliness penalty (depending
on the starting time of the job) is paid. Obviously, there is
a lower bound and no job can start before its available
date. The use of controllable release dates is relevant in
practice. As explained in (Shakhlevich & Strusevich, 2006),
it may be profitable for the manufacturer and its suppliers
to cooperate. In some cases, a supplier can allow to deliver
raw material earlier, which reduces the release dates at the
manufacturer’s level. In counterpart, the manufacturer will
pay a higher price to the involved supplier, which creates a
win-win situation.

Between two consecutive jobs j and j’ of different families F
and F’, a setup time sFF’ must be performed and a setup cost
cFF’ is incurred. The considered problem (P) can be formally
stated as follows. A set of n jobs is given, a subset of these
jobs has to be selected and scheduled (without preemptions
but idle times are allowed) on a single machine which can
handle only one job at a time. For each job j are given: a
processing time pj, an available date Rj, a release date rj, a due
date dj, a deadline Dj, and a rejection penalty uj. Let Cj and Bj
respectively denote the completion time and the starting
time of job j. In a feasible solution, each accepted (i.e., not
rejected) job j satisfies Cj ≤ Dj and Bj ≥ Rj. The earliness and
tardiness penalties are respectively defined as follows:

• Ej(Bj) = wj ∙ (rj – Bj)
2 if Bj < rj, and 0

otherwise;

• Tj(Cj) = wj’ ∙ (Cj – dj)
2 if Cj > dj, and 0

otherwise.

The objective function to minimize is the sum of the three
following components: (1) the setup costs cjj’ between
every successively performed jobs j and j’; (2) the rejection
penalties uj associated with each rejected job j; (3) the
earliness and tardiness penalties Ej + Tj for all accepted jobs
j. In the context of (P), the reader interested in additional
references is referred to (Yalçin et al., 2007; Oguz et al.,
2010; Cesaret et al., 2012; Thevenin et al., 2013).

In (Thevenin et al., 2012), a greedy algorithm and a tabu
search are proposed for a similar problem but with regular
(i.e., non-decreasing) cost functions instead of earliness
and tardiness penalties. In contrast with most scheduling
objective functions, the one considered in (P) is not regular
since earliness penalties are decreasing functions of the
completion times. When objective functions are regular,
most algorithms solving a single machine scheduling
problem consist in finding an ordered sequence of jobs.
From such a sequence, a schedule is easily built by starting
each job as early as possible. In case of non-regular cost
functions, the insertion of idle times may decrease the costs.
Therefore, building an optimal schedule when a production
sequence is given is not as easy, and can be time-consuming.
The timing procedure proposed in (Hendel & Sourd, 2007)
is adapted for (P), which is particularly efficient within the
framework of local search algorithms.

3.2. Solution methods for (P)

To solve (P), a solution s is modeled by an ordered sequence
s(s) of jobs, and a set W(s) of rejected jobs. Given such a
solution representation, the timing procedure computes
the starting and ending times of each job of s(s), such that
the objective function is minimized. A greedy algorithm and
a tabu search approach are now presented for (P). The first
phase of the greedy method consists in sorting the jobs by
increasing slack time (Dj − Rj − pj), where ties are broken by
decreasing rejection penalties uj. In a second phase, jobs
are taken one by one in the previously defined order, and
inserted in the schedule at the position minimizing the costs.
Note that a job is rejected if it is better than inserting it. The
insertions are enforced, that is, other jobs can be deleted
to maintain feasibility. The associated repairing procedure
is explained below.

Four types of straightforward moves can be used for
tabu search. All moves are enforced by using one of the
repairing procedures described later.

• N1: Add takes a rejected job and inserts it in the
schedule.

• N2: Drop takes an accepted job and removes it from
the schedule.

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

8 - I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3

• N3: Reinsert takes an accepted job and inserts it
elsewhere in the schedule.

• N4: Swap, exchanges the position of two jobs in s(s).

Five different tabu structures are designed. The first
(resp. second) forbids to add (resp. removing) a dropped
(resp. added) job during t1 (resp. t2) iterations. The third
forbids to move a job which has been added/reinserted/
swapped during t3 iterations. The fourth forbids to move
a job j between its two previous neighbors of s(s) during
t4 iterations, if j has been reinserted/swapped. As the cost
function associated with each job is constant over the
interval [rj, dj], it induces plateaus in the search space. To
escape from them, a tabu status is associated with the cost
of the most recently visited solutions during t5 iterations: it
is forbidden to visit a solution whose cost is tabu.

As mentioned above, inserting a job may lead to an
unfeasible solution due to available dates and deadlines
constraints. To maintain feasibility, a repairing procedure
must delete some jobs, and the choice of those jobs is a
crucial point in local search methods for OAP. Note that a
Reinsert move can be performed by a Drop move followed
by an Add move, and a Swap move consists of two Drops
followed by two Adds. As dropping a job cannot lead to
unfeasible solutions, a repairing procedure is only needed
for the move Add. Assuming that job j is inserted at
position p, three repairing procedures can be compared.

• REPAIR1. Remove randomly a job adjacent to position p
until the insertion of j is possible. Deleting jobs which are
adjacent to the insertion position reduces the shifting of
other jobs, which is expensive with quadratic penalties.

• REPAIR2. Let j’ and j’’ be two jobs such that j’ is at the
left of p, and j’’ at its right. Jobs j’ and j’’ are blocking if
by shifting j’ (resp. j’’) as most as possible towards the
left (resp. right), the insertion of j is still not possible.
REPAIR2 deletes one of the closest blocking jobs to p until
the insertion of j is possible. These blocking jobs are likely
to be associated with large earliness/tardiness penalties,
and dropping them should not be expensive.

• REPAIR3. While the solution is not feasible, greedily
remove a job (based on the costs).

3.3. Results

To generate a set of instances for (P), two critical values
are used: the number n of jobs, and a parameter a which
controls the interval of time in which release dates and
due dates are generated. More precisely, a value Start is
chosen large enough, and End is equal to Start + a ∙ ∑j pj.
Then, rj is chosen in the interval [Start, End], and dj in [rj +
pj, End]. Basically, methods are likely to reject more jobs
for small values of a. n belongs to {25, 50, 100, 200} and a
to {0.5, 1, 2}. One instance for each pair (n, a) is generated.
The weights wj and wj’ are randomly chosen in {1, 2, 3, 4,
5}. Dj and Rj are chosen such that Tj(Dj) = Ej(Rj) = uj. pj is
an integer randomly chosen in [50, 100]. As observed in
realistic situations, the rejection penalty uj is related to the
processing time: uj = b ∙ pj, where b is an integer randomly
picked in [50, 200]. The number of job families belongs to
[10, 20]. Setup times and costs are likely to be related in
realistic situations, therefore sFF’ is chosen in [50, 200] and
cFF’ = g ∙ sFF’, where g is chosen in the interval [0.5, 2].

Four methods are compared. Greedy refers to the greedy
method combined with REPAIR2 (the other repairing
procedures do not provide good results when combined
with Greedy). TSi is the tabu search using repairing procedure
REPAIRi (with i ∈ {1, 2, 3}). Parameters (t1, t2, t3, t4, t5) are
set to (80, 60, 90, 180, 30) for n ∈ {50, 100, 200}, and to
(20, 20, 15, 25, 10) for n = 25. Average results (over 5 runs)
are presented in Table 2, where the column f* reports the
best result found by any of the presented methods for the
considered instance. In each cell is indicated the percentage
gap between the average result obtained by the concerned
method and f*. The results clearly show the superiority of
tabu search over Greedy, as the gap obtained by the best
tabu search is 9.22%, versus 28.70% for Greedy. Tabu search
with repairing procedure REPAIR3 obtains the best results for
8 instances over 12, however the results obtained for large
instances are bad. This is not surprising as REPAIR3 is efficient
but very slow. REPAIR2 is slightly better than REPAIR1: their
respective average gaps are 9.22% and 10.22%. One would
thus advise the use of repairing procedure REPAIR3 for small
instances, and REPAIR2 for larger ones.

Table 2. Computational results

n a f* Greedy TS1 TS2 TS3

25 0.5 115361 0 0.13 0 0
25 1 28602 6.7 0 7.39 0
25 2 149134 0 0 0 0
50 0.5 237414 0.89 2.03 3.62 0
50 1 148237 12.88 13.12 11.39 4.22
50 2 38899 32.4 2.72 2.55 0

100 0.5 550950 5.36 3.33 4.69 1.11
100 1 339100 23.9 12.77 10.95 3.54
100 2 31706 176.18 57.88 42.38 204.47
200 0.5 934898 22.17 0.94 1.43 10.66
200 1 473244 68.62 3.03 4.62 84.63
200 2 42397 302.82 11.44 12.45 1586.88

average 28.7 10.22 9.22 23.7

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3 - 9

4. MNtS for INVeNtory MaNageMeNt

4.1. Presentation of the considered problem (P)

In most inventory management problems, two types
of decision have to be made at the manufacturer level:
when and how much to order to suppliers. It is assumed
that setup, carrying and shortage costs are encountered
during the year. Usually, inventory management models
are characterized by stochastic demand and constant
lead times. In contrast, the approach proposed in (Silver
& Zufferey, 2005) and generalized below deals with the
situation where there is a constant known demand rate,
but probabilistic lead times whose probability distributions
change seasonally. The lead times for different orders are
assumed to be independent, thus crossovers can occur.
Therefore, the interactive effects between different cycles
(a cycle is defined as the time between two consecutive
orders) due to the occurrence of shortages are difficult to
model. Consequently, even if the annual approximated
costs can be analytically computed with a mathematical
function f, simulation (of the lead times) is the only way to
compute the annual actual costs F of a solution.

The considered problem (P) was motivated by the
management of raw material at a sawmill in North America.
Without loss of generality, consider a 52-weeks planning
horizon (a time period is a week). A solution (P,S) can be
modeled by two vectors P and S defined as follows: Pt =
1 if an order occurs at the beginning of week t, and Pt = 0
otherwise; St is the order-up-to-level of available inventory
at the beginning of week t if Pt = 1, and St = 0 if Pt = 0. The
following reasonable assumptions are made. (1) It is possible
to analytically approximate the annual costs with a function
f(P,S) relying only on P, S and the probability distributions
of the lead times. (2) It is possible to compute F(P,S) (i.e.,
the annual actual costs) with a simulation tool. (3) Based on
f, it is possible to analytically compute S from P with a so-
called Compute(S|P) procedure. As a consequence, anytime
P is modified, its associated S vector can be immediately
updated with Compute(S|P).

4.2. Design of a solution method

Due to the non-stationarity in the lead time distribution,
the problem is combinatorial in nature (choice of the Pt’s
and St’s). Moreover, simulation is required to compute
the actual cost of a solution. Thus, it makes sense to use
(meta)heuristics. The solution space X(N) is defined as the
set of all the solutions (P,S) with N orders. The approach
consists in providing good solutions for different solutions
spaces, starting with U(N) orders and ending with L(N)
orders, where U(N) ≤ 52 (resp. L(N) ≥ 1) is an upper (resp.
a lower) bound on N. At the end, the overall best solution
is returned to the user. For a fixed solution space X(N), the
following steps are performed.

(S1) Generate an initial solution (P,S) with N orders as
equi-spaced as possible.

(S2) Based on f, try to reduce the approximate costs
of (P,S) with a tabu search TSf(P,S) working on P
(using neighborhood N1, as described below).

(S3) Based on F and without changing P, apply a
descent local search DLS(S) working on S (a move
in this neighborhood N2 consists in augmenting or
reducing an St by one unit).

In TSf(P,S), a move in the neighborhood structure N1 consists
in putting an order earlier or later, but without changing the
global sequence of orders. When an order is moved, then
it is forbidden (tabu) to move it again for tab (parameter
depending on N) iterations. The stopping condition is a
maximum number Iter (parameter) of iterations without
improvement of the best visited solution.

An extension of TSf(P,S), denoted TSf
M(P,S), is now presented

for step (S2). Instead of only providing a single solution,
a set M containing m (parameter) promising local optima
is provided (promising according to the quality function f
and a diversity function Div(M)). To achieve this, additional
ingredients are now defined. The distance between P and
P’ is Dist(P,P’) = ∑t |Pt – Pt’|. The distance between P and
a set M of solutions is defined as Dist(P,M) = |M|-1 ∙ ∑P’∈M
Dist(P,P’). The diversity of a set M of solution is computed
as Div(M) = |M|-1 ∙ ∑P∈M Dist(P,M–{P}). M is initialized with
solutions randomly generated. Let P be a solution found by
tabu search at the end of an iteration. The key idea is the
following: P should replace a bad (according to f) solution
of M which poorly contributes to its diversity Div(M).
More precisely, let M’ be the subset of M containing the
m’ (parameter) worst solutions of M, for which the worst
value is f**. Let P(div) be the solution of M’ minimizing
Dist(P’,M−{P’}). Then, if f(P) > f**, M is not updated.
Otherwise, P replaces P(div). The resulting metaheuristic
is summarized in Algorithm 2, relying on neighborhoods
N1 (modify P) and N2 (modify S). The returned solution is
(P*,S*) with an actual cost of F*, which is the best solution
visited in all the considered solution spaces.

Algorithm 2: General approach for (P)

Initialization: set F* = ∞ and N = UB(N).

While N ≥ LB(N), do

• generate an initial solution P with N orders as
equi-spaced as possible;

• apply TSf(P,S) or TSf
M(P,S), and let M = {P(1), …, P(m)}

be the resulting set of local optima according to f
(m = 1 if TSf(P,S) is used);

• for i = 1 to m, do: apply DLS(S) on (P(i),S(i));

• set (P,S) = arg min i∈{1,...,m} F(P(i),S(i));

• if F(P,S) < F*, set (P*,S*) = (P,S), and F* = F(P,S);

• reduce N by one unit;

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

1 0 - I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3

4.3. Results

The experiments were performed on a PC Pentium 4 (1.6
GHz/1 Go RAM). The parameters Iter, m and m’ were
respectively set to 1000, 10, 3. As the method has to plan
the orders for a whole year, the computing time is not an
issue (but an hour of computation is never exceeded).
Each instance is characterized by its cost parameters (the
fixed setup cost A per order, the inventory cost h per unit
per period, the shortage cost B per missing unit). For
each period t is known the minimum (resp. most likely
and maximum) lead time at (resp. mt and bt). From these
three values, discrete triangular distributions can be
easily constructed. Two types T1 and T2 of instances were
generated according to two sets of lead time distributions,
with 24 instances per type (which differ according to A, h

and B). Set T1 is based on realistic data from the sawmill
context, and is characterized by at ∈ {2, 5}, mt ∈ {3, 7} and
bt ∈ {6, 13}. Set T2, which represents a form of sensitivity
analysis (the variation of the lead times is larger), is
characterized by at ∈ {1, 8}, mt ∈ {2, 10} and bt ∈ {5, 16}. In
Table 3 is provided a summary of the average percentage
improvements (over a basic constructive heuristic based
on an EOQ analysis) provided by the general presented
approach relying on DLS(P) (where a descent local search
is performed at step (S2) instead of tabu search), TSf(P,S)
and TSf

M(P,S), respectively. The results are shown for three
levels of B and for the two sets T1 and T2. Unsurprisingly,
the potential benefit of the three methods augments as
the seasonality is increased. One can observe that TSf

M(P,S)
outperforms TSf(P,S), and both methods are better than
DLS(P).

Table 3. Compact comparative results

Set T1 Set T2

Method Small B Average B Large B Small B Average B Large B

DLSf(P,S) 1.39 1.52 1.61 3.75 3.58 3.47

TSf(P,S) 1.72 1.82 2.01 4.15 4.05 3.74

TSf
M(P,S) 1.82 1.86 2.16 4.18 4.06 3.79

5. MNtS for DIMeNSIoNINg aSSeMBly lINeS

In this section, a tabu search based on various moves with
different amplitudes is first presented, and then adapted
to the dimensioning of assembly lines.

5.1. Tabu search within a simulation context

Let X = (X1, X2, …, Xu) be a solution of problem (P) which
consists in maximizing an objective function f. Each Xi is a
vector of size s(i) and can be denoted Xi = (xi

1, x
i
2, . . . , x

i
s(i)),

where the xi
j’s are real number. The following limitation

constraint has to be satisfied for each i: ∑j x
i
j = ci. As random

events can occur, it is assumed that f can only be evaluated
with a simulation tool. In such a context, within a local
search framework, it is straightforward to define a move
in three steps:

(A) select a decision variable type i;

(B) augment (resp. reduce) an xi
k by an amount of w;

(C) reduce (resp. augment) some other xi
j’s (with j ≠

k) by a total amount of w (in order to satisfy the
limitation constraint).

Within a tabu search framework, if a decision variable xi
k is

augmented (resp. reduced), it is then forbidden to reduce
(resp. augment) it during tabi (parameter) iterations. The
three key issues are presented below, and the various
neighborhood structures N1, N2, … result from these issues.

(I1) Which type of decision variable should be
selected in (A)?

(I2) What is the amplitude w of the move in (B)?

(I3) How should the solution be adjusted in (C)?

According to issue (I1), u types of phase are used in the
solution method: each phase of type i works on Xi without
modifying the other Xl’s (l ≠ i). Each phase of type i can be
performed during Ii

max (parameter) uses of the simulator.
Working with phases (i.e., on one decision variable type
at a time) allows to having a better control on the search.

To tackle issue (I2), and in contrast with classical tabu
search approaches, the move amplitude w is dynamically
updated during each phase of the search, within interval
[wi

min, w
i
max] (parameters). Each phase starts with w = wi

max,
and anytime Ii (parameter) iterations without improvement
of the best encountered solution X* have been performed,
w is reduced by d i (parameter), but never under wi

min. If
a move leads to a solution better than X*, the process
restarts with w = wi

max. This strategy allows to progressively
focus on a promising region of the solution space.

Issue (I3) depends on the two other issues: if xi
k has been

selected for a variation of w, the search process should
focus on that decision and not modify as much the other
decision variables (of the same type) in order to adjust the
solution with respect to the associated constraint ci. Thus,
if xi

k was augmented (resp. reduced) by w, the process
should then equally reduce (resp. augment) the s(i) − 1
other variables (of the same type) by a total amount of
w, which means that each decision variable is in average
reduced (resp. augmented) by [s(i)−1]/w.

The resulting tabu search method is summarized in
Algorithm 3, which returns the best encountered solution

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3 - 1 1

X* with value f*. At each iteration, the neighbor solution
can be the best among a set of N (parameter) candidate
neighbor solutions.

Algorithm 3: Tabu search with various amplitudes

Initialization

• generate an initial solution X = (X1, X2, … , Xu);

• initialize the best encountered solution: set X* =
X and f* = f(X);

• set i = 1 and w = wi
max;

While the involved simulation software has not been used
Q (parameter) times, do

• generate a non-tabu neighbor solution Xi’ of Xi by
modifying a variable xi

k of Xi by w;

• update the current solution: set Xi = Xi’;

• update the move amplitude w:

(a) if Ii iterations without improving X* have been
performed, set w = w − d i;

 (b) if w < wi
min, set w = wi

min;

(c) if f(X) > f*, set w = wi
max;

• update the best encountered solution: if f(X) > f*,
set X* = X and f* = f(X);

• update the tabu tenures: it is forbidden to modify
xi

k in the reverse way for tabi iterations;

• next phase: if Ii
max runs of the simulator were

performed, set i = (i mod u) + 1 and w = wi
max;

5.2. Application to the dimensioning of
assembly lines

The above tabu search is relevant for dimensioning assembly/
disassembly production systems. By dimensioning, one
can refer to maximizing the production rate of a machine
without successors, with respect to limited resources (e.g.,
buffer capacity between the machines, total cycle time of
the machines). Papers in the field are (Dolgui et al., 2007;
Shi & Gershwin, 2009). As random failures might occur on
the machines, the software Arena is appropriate to evaluate
a solution.

Consider a production system with m machines and n
buffer zones, modeled by a graph G = (V,A) with vertex set
V and arc set A. Vertex v represents machine v and there is
an arc (v, v’) from v to v’ if a piece processed on machine
v has then to be processed on machine v’. Moreover, each
arc (v, v’) also represents a buffer (i.e., a limited zone where

are stored the pieces between the associated machines).
Two types of decision variables (i.e., resource types) are
considered: the designed cycle time tv for machine v, and
the buffer capacity bvv’ allocated to arc (v, v’). In Figure
4, a solution for a production network. The cycle time
associated with machine 1 is t1 = 8, and the buffer capacity
between machines 1 and 3 is b13 = 43. The considered
limitations are 60 for the total cycle time (i.e., ∑v∈V tv = 60)
and 320 for the buffer capacity (i.e, ∑(v,v’)∈A bvv’ = 320).

Figure 4. Graph representation of a production system
with m = 9 and n = 8

The above presented MNTS approach showed a very
good performance on such a production system (Zufferey
& Cheikhrouhou, 2012). Indeed, it was tested on the
production network associated with Figure 4, for which
each machine has its own role: machines 1, 2, 4, 8
and 9 are classical processing machines, machines 3
and 5 are assembling machines, and machines 6 and
7 are disassembling machines. The objective consists
in maximizing the production rate of machine 5. The
breakdown probability is 5% (associated with each
time step) and its length is generated with a uniform
distribution in interval [100, 800]. MNTS was compared
with a descent local search DLS (the same algorithm
as MNTS, but without considering tabu tenures), and
a classical tabu search TS for which at each iteration,
a move consists in augmenting/reducing any decision
variable by any possible amount (followed by the
adjustment of the other variables of the same type in
order to meet the upper bounds). In TS, a sample of all
possible amplitudes is considered at each iteration to
modify the decision variable. A pool of 50 initial solutions
were generated, which have an average production rate
of 1.31 (pieces/minute). DLS was able to reach an average
production rate of 1.39, TS obtained 1.37, and MNTS
reached 1.41. It was also observed that the quality of
the resulting solution negligibly depends on the initial
solution, which indicates that MNTS is a robust approach.

6. coNclUSIoNS

In contrast with most of the existing literature on tabu search
where only a single type of move is used at each iteration,
this paper proposes MNTS (Multiple Neighborhoods in a
Tabu Search). With a unified terminology, the success of
some existing solutions methods is presented, which can

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

1 2 - I N t e r N a t I o N a l J o U r N a l o f M U l t I D I S c I p l I N a r I t y I N B U S I N e S S a N D S c I e N c e , V o l . 3 , N o . 3

be considered as belonging to the MNTS methodology.
Problems in four domains are successively discussed:
truck loading, job scheduling, inventory management, and
assembly line dimensioning. It is important to mention
that MNTS approaches were also successfully adapted in
other fields (e.g., (Hertz et al., 2009; Hertz et al., 2005;
Schindl & Zufferey, 2013).

The performance of a metaheuristic can be evaluated
according to several criteria (Zufferey, 2012b): (1) quality:
value of the obtained results; (2) speed: time needed to
get good results; (3) robustness: sensitivity to variations
in problem characteristics and data quality; (4) ease of
adaptation: the ability to organize the method so that
it can appropriately apply to different specific classes
of problems; (5) ability to take advantage of problem

structure (considering that efficiency often depends on
making effective use of properties that differentiate a given
class of problems from other classes). MNTS has a good
behavior according to these criteria. Indeed, the following
ingredients make it possible: (1) the best non-tabu move
is performed at each iteration, which contributes to
quality; (2) speed is mainly allowed by the incremental
computation used to compute the value of any neighbor
solution; (3) the use of various neighborhood structures
enhances the robustness as well as the quality; (4) only
one solution is handled during the search, which makes
the method fairly easy to adapt and quick; (5) a dedicated
(in contrast with generic) solution encoding allows to
accounting for the structure of the problem, and it also
contributes to quality.

1. Cesaret, B., Oguz, C., & Salman, F. S. (2012.) A tabu search algorithm for
order acceptance and scheduling. Computers & Operations Research,
39(6), pp. 1197-1205. Special Issue on Scheduling in Manufacturing
Systems.

2. Dolgui, A., Eremeev, A., & Sigaev, V. (2007.) HBBA: Hybrid algorithm
for buffer allocation in tandem production lines. Journal of Intelligent
Manufacturing, 18(3), pp. 411-420.

3. Garey, M., & Johnson, D.S. (1979.) Computer and Intractability: a Guide
to the Theory of NP-Completeness. San Francisco: Freeman.

4. Gendreau, M., & Potvin, J.-Y. (2010.) Handbook of Metaheuristics.
International Series in Operations Research & Management Science,
vol. 146. Springer.

5. Hendel, Y., & Sourd, F. (2007.) An improved earliness-tardiness timing
algorithm. Computers & Operations Research, 34(10), pp. 2931-2938.

6. Hertz, A., Schindl, D., & Zufferey, N. (2005.) Lower bounding and
tabu search procedures for the frequency assignment problem with
polarization constraints. 4OR, 3(2), pp. 139-161.

7. Hertz, A., Schindl, D., & Zufferey, N. (2009.) A Solution Method for a Car
Fleet Management Problem with Maintenance Constraints. Journal of
Heuristics, 15(5), pp. 425-450.

8. Hopper, E., & Turton, B.C.H. (2001.) An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem. European
Journal of Operational Research, 128(1), pp. 34-57.

9. Lesh, N., Marks, J., McMahon, A., & Mitzenmacher, M. (2004.)
Exhaustive approaches to 2D rectangular perfect packings. Information
Processing Letters, 90(1), pp. 7-14.

10. Lodi, A., Martello, S., & Vigo, D. (1999.) Heuristic and Metaheuristic
Approaches for a Class of Two-Dimensional Bin Packing Problems.
INFORMS Journal on Computing, 11(4), pp. 345-357.

11. Lodi, A., Martello, S., & Monaci, M. (2002.) Two-dimensional packing
problems: A survey. European Journal of Operational Research, 141(2),
pp. 241-252.

12. Martello, S., & Vigo, D. (1998.) Exact Solution of the Two-Dimensional
Finite Bin Packing Problem. Management Science, 44(3), pp. 388-399.

13. Martello, S., Monaci, M., & Vigo, D. (2003.). An Exact Approach to the
Strip-Packing Problem. INFORMS Journal on Computing, 15, pp. 310-
319.

14. Nguyen, A., & Brenaut, J.-Ph. (2009.) A truck loading algorithm for
Renault’s supply chain system. In: 23rd EURO Conference.

15. Ntene, N., & van Vuuren, J.H. (2009.) A survey and comparison of
guillotine heuristics for the 2D oriented offline strip packing problem.
Discrete Optimization, 6(2), pp. 174-188.

16. Oguz, C., Salman, S. F., & Yalcin, Z. B. (2010.) Order acceptance and
scheduling decisions in make-to-order systems. International Journal of
Production Economics, 125(1), pp. 200-211.

17. Pisinger, D., & Sigurd, M. (2005.) The two-dimensional bin packing
problem with variable bin sizes and costs. Discrete Optimization, 2(2),
pp. 154-167.

18. Puchinger, J., & Raidl, G. R. (2007.) Models and algorithms for three-
stage two-dimensional bin packing. European Journal of Operational
Research, 183(3), pp. 1304-1327.

19. Respen, J., & Zufferey, N. (2013.) A Renault Truck Loading Problem: from
Benchmarking to Improvements. In: Proceedings of the 14th EU/ME
Workshop (EU/ME 2013).

20. Riff, M.C., Bonnaire, X., & Neveu, B. (2009.) A revision of recent
approaches for two-dimensional strip-packing problems. Engineering
Applications of Artificial Intelligence, 22(45), pp. 823-827.

21. Schindl, D., & Zufferey, N. (2013.) Solution Methods for Fuel Supply of
Trains. Information Systems and Operational Research, 51(1), pp. 22-29.

22. Shakhlevich, N. V., & Strusevich, V. A. (2006.) Single machine scheduling
with controllable release and processing parameters. Discrete Applied
Mathematics, 154(15), pp. 2178-2199.

23. Shi, C., & Gershwin, S. B. (2009.) An efficient buffer design algorithm for
production line profit maximization. International Journal of Production
Economics, 122(2), pp. 725-740.

24. Silver, E. A., & Zufferey, N. (2005.) Inventory control of raw materials
under stochastic and seasonal lead times. International Journal of
Production Research, 43, pp. 5161-5179.

25. Slotnick, S. A. (2011.) Order acceptance and scheduling: A taxonomy
and review. European Journal of Operational Research, 212(1), pp. 1-11.

26. Thevenin, S., Zufferey, N., & Widmer, M. (2012.) Tabu search to minimize
regular objective functions for a single machine scheduling problem
with rejected jobs, setups and time windows. In: Proceedings of the
9th International Conference on Modeling, Optimization & Simulation
(MOSIM 2012).

27. Thevenin, S., Zufferey, N., & Widmer, M. (2013.) Tabu Search for a Single
Machine Scheduling Problem with Discretely Controllable Release
Dates. Pages 1590 – 1595 of: Proceedings of the 12th International
Symposium on Operations Research in Slovenia (SOR 2013).

28. Valente, J. M. S., & Gonçalves, J. F. (2009.) A genetic algorithm approach
for the single machine scheduling problem with linear earliness and
quadratic tardiness penalties. Computers & Operations Research, 36,
pp. 2707-2715.

29. Valente, J. M. S., Moreira, M., Singh, A., & Alves, R. (2011.) Genetic
algorithms for single machine scheduling with quadratic earliness and
tardiness costs. The International Journal of Advanced Manufacturing
Technology, 54, pp. 251-265.

30. Yalçin, Z. B., Oguz, C., & Salman, S. F. (2007.) Order Acceptance and
Scheduling Decisions in Make-to-Order Systems. Pages 80–87 of:
Proceedings of the 3rd Multidisciplinary International Conference on
Scheduling: Theory and Application (MISTA 2007).

31. Zorzini, M., Corti, D., & Pozzetti, A. (2008.) Due date (DD) quotation
and capacity planning in make-to-order companies: Results from an
empirical analysis. International Journal of Production Economics,
112(2), pp. 919-933.

32. Zufferey, N. (2012a.) Dynamic Tabu Search with Simulation for a
Resource Allocation Problem within a Production Environment. In:
Proceedings of 4th International Conference on Metaheuristics and
Nature Inspired Computing (META 2012).

33. Zufferey, N. (2012b.) Metaheuristics: some Principles for an Efficient
Design. Computer Technology and Applications, 3(6), pp. 446-462.

34. Zufferey, N. (2014.) Tabu Search with Diversity Control and Simulation
for an Inventory Management Problem. In: Proceedings of the 5th
International Conference on Metaheuristics and Nature Inspired
Computing (META 2014).

35. Zufferey, N., & Cheikhrouhou, N. (2012.) Tabu search using variable
amplitudes for dimensioning an assembly/disassembly production
system. In: Proceedings of the 13th International Workshop on Project
Management and Scheduling (PMS 2012).

36. Zufferey, N., & Vasquez, M. (2015.) A Generalized Consistent
Neighborhood Search for Satellite Scheduling Problems. RAIRO
Operations Research, 41(1), pp. 99-121.

refereNceS

NICOLAS ZUFFEREY - MULTIPLE NEIGHBORHOODS IN TABU SEARCH: SUCCESSFUL APPLICATIONS FOR OPERATIONS MANAGEMENT PROBLEMS

